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A REAL-TIME MULTITARGET TRACKER BY ADAPTIVE HYPCQBESIS 

TESTING FOR AIRBORNE SURVEILLANCE SYSTEMS

CHAPTER I 

INTRCDUCnCN

In the la s t  decade a considerab le  volume of l i t e r a tu r e  has 

developed chi recursive algorithms. Because of the variety  of m ilitary  

and c iv ilian  applications, ranging from b a l l i s t i c  m iss ile  defense to  

h a rb o r t r a f f i c  c o n tro l, and because of the  d iv e r s i ty  of sen so rs , 

extending from radar to  o p tic a l scanners, numerous algorithm s have 

been developed fo r  specific  purposes. These algorithms are generally 

based on Kalman f i l t e r  theory w ith a v a s t  body of research  in  th e  

v a r io u s  e x te n s io n s  and suboptim izations necessary  fo r  re a l  tim e 

applications. These algorithms are generally successful for a sp e c if ic  

a p p lica tio n  which i s  often a sing le-targe t, single sensor system or a 

m ultip le-target, single sensor system.

In a irbo rne  su rv e illa n c e  systems, tracking multiple ta rge ts  

with a varie ty  of sensors i s  a requirement. In ta rg e t  track in g  th e re  

i s  o ften  u n c e rta in ty  associated  with the orig in  of an observaticHi as 

well as measurement inaccuracy , u su a lly  modeled as a d d itiv e  w hite 

n o ise . This u n ce rta in ty  can r e s u l t  from c lu tte r , fa lse  ta rg e ts , or 

track densities vAiich preclude a positive ta rg e t/o b serv a tio n  p a ir in g . 

Selection of the wrong measurement as input to  the tracking algorithms
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can have d isa s tro u s  e f fe c ts  on track continuity, maneuver response, 

and smoothed parameters.

One means, in  theory, of reducing the cbser/ation uncertainty 

is  to  equip a irc ra f t  with transponders which rep ly  to  in te rro g a tio n  

w ith range, azimuth, and a track signature that can be unique. % is 

track  s ig n a tu re , which can be changed by the  p i lo t  uron re q u e s t ,  

o ffe rs  p o s it iv e  proof of the observation's origin and can be accepted 

or rejected as input to  the tracking algorithm depending upon whether 

or not i t  matches the code assigned in the database.

Airborne surveillance systons employ transponder technology 

w ith  l e s s  su c c e ss  than ground based system s. As e a rly  as 1977, 

opera to rs aboard the  Airborne Warning and Control System 's E-3As 

reported  s ig n if ic a n t  d i f f ic u l ty  in  maintaining track continuity for 

tracks with beacon reports as th e  primary measurement. This was in  

d ire c t  c o n f l ic t  w ith the  experience of ground based control systems 

and underscored the change in  environment and the ro le  of the a irbo rne  

p latfo rm . New environm ental and operational demands present unique 

tracking problems.

T h is  d i s s e r t a t i o n  p r e s e n t s  th e  framework f o r  a new 

m ultitarget tracker specifica lly  designed fo r an airborne su rv e illan ce  

p la tfo rm . This Real-time Adaptive Hypothesis Testing Tracker (RAHTT) 

i s  in fluenced  by the  sensors a v a ila b le , se v e ra l previous t r a c k e r  

algorithm s, the environment of an airborne system, and the ta c tic s  of 

modem high performance f ig h te r s .  This f i r s t  chap ter w i l l  examine 

each o f th e s e  f a c to r s  in  order to  provide a c le a r ,  conso lida ted  

sta rtin g  point fo r the development of the RAHTT algorithm.
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The p e rtin en t mathematics are reviewed in the second chapter. 

Dnlike more ad hoc algorithms, RAHTT is  based on a so lid  mathematical 

foundation . As w ill  be d iscussed  in  chapter I I I ,  th is  mathematical 

basis allows an in i t i a l  sim plification of the problem w ithout concern 

for the eventual extensions.

In chap ter I I I  the  concepts and important d e ta ils  of RAHTT 

are examined. Because the algoritbmn is  rather complex, considerable 

e ffo rt i s  made to  explain the concept of RAHTT.

The resu lts  of RAHTT are evaluated in chapter IV. As w ill  be 

discussed  more thoroughly then, i t  is  d if f ic u lt  to  evaluate RAHTT and 

other existing algorithms due to  th e ir  philosophical differences.

F in a lly , chapter V w ill give the conclusions of th is  work and 

the remaining extensions necessary to  implement RAHTT in  an a irborne 

system.

5ens.oc_Eundamgitals
Radar

Development of background information logically  begins with 

the sensor systems. Sensors are divided in to  two c la s se s , those th a t  

provide num ber-of-targets type information as well as the location of 

each ta rg e t and those th a t provide some form of id e n tif ic a t io n  about 

the  o r ig in a tin g  ta rg e t .  Radar i s  ty p ic a l of the former and IFF, of 

the  l a t e r .  The trac k  of a ta rg e t  can be determ ined by d i s c r e t e  

measurements taken from scan to  scan. The quality  of such a track i s  

dépendait on the time between observations, the accuracy of the
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sensor, and the  number of other targets and reports in the v ic in ity  

[Skolnik,1980:183].

Radar provides azimuth, range, and, depending upon radar 

type, range ra te  (ra d ia l v e lo c ity ) and a l t i tu d e .  Associated w ith 

these  param eters, th e re  a re  measurement e rro rs , generally assumed as 

ad d itiv e  w hite n o ise , which must be reduced  by some e s tim a tio n  

technique. Some form of Kalman f i l t e r  i s  the  preferred estimation 

technique due to  i t s  low memory requirement and recursiveness.

In ad d itio n  to  these parameters fo r true reports, radar also 

returns fa lse  alarms. A fa lse  alarm, which has a Poisson d is tr ib u tio n  

[S k o ln ik , 1 9 8 0 :1 2 3 -1 2 9 ], r e s u l t s  when no ise  exceeds the minimum 

d e te c tab le  s ig n a l. To a t r a c k in g  a lg o r i th m , a f a l s e  alarm  i s  

indistinguishable from a true  measurement.

P o te n tia lly , the  most powerful to o l  fo r  d is c r im in a t in g  

between ta rg e ts  in  radar track ing  is  range ra te . When coupled with 

range, range ra te  provides exceptionally accurate maneuver and heading 

in form ation . D iscounting engine modulation e f f e c ts ,  which may be 

accurate enough fo r  a i r c r a f t  type id e n t i f ic a t io n  [A llen ,1980], the  

range ra te  of an a i r c r a f t  in  s tra ig h t-lin e , unaccelerated f lig h t has 

very l i t t l e  e rro r. Range ra te  can provide information on accelera tion  

or heading changes. Because of i t s  sen s itiv ity  to  heading, range ra te  

provides an a d d itio n a l dimension fo r  d isc r im in a tin g  among dense 

t r a f f ic .

Range ra te  a lso  provides an e ffe c tiv e  means of re je c tin g  

c lu tte r . Reports tha t have a range ra te  below a th resho ld  a re  l ik e ly  

to  be n o ise  and are  not processed as true reports. Complicating the
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use of range r a te ,  c e r ta in  track geometries can produce a low rad ial 

velocity  report th a t i s  indistinguishable from c lu tte r .

The na tu re  of long range radar requires slow ro tation ra tes 

(conmonly six  or ten PPM). With a single receiver and unity d e te c tio n  

p ro b a b ility , the  sample r a te  i s  only every six  or ten seconds. Peid 

[1979] noted th a t tracker performance i s  bound by the  accuracy of the  

da ta  and the data ra te . îh is  i s  particu la rly  true  in the maneuvering, 

m u lti ta rg e t problem. When t a r g e t s  m aneuver, poor m easurem ent 

re so lu tio n  w ill  disguise the maneuver. I f  the maneuver is  not large , 

th e  f i l t e r  w i l l  t r e a t  i t  as a p a r t ic u la r ly  noisy rep o rt and w i l l  

s u ffe r  degradation  in the ta rg e t estim ates. I f  the maneuver i s  large 

but the data ra te  i s  too low, the ta rg e t can become hopelessly  l o s t  

among other reports.

One p ro p o sa l [A llen ,1980] i s  to  increase  the  number of 

radars within the present rotodome or vary th e  ro ta t io n  so th a t  th e  

r a d a r  re p e a te d ly  scan s on ly  a s e c to r  o f th e  sk y . W hile th e  

fe a s ib ility  of th is  proposal, in  terms of a i r c r a f t  s t ru c tu re , power, 

and space, i s  unstud ied , i t  c le a r ly  would have positive effectzs on 

tracker performance.

Radar has no in h eren t id e n tif ic a tio n  ch arac te ris tics . When 

the  rep o rt proxim ity exceeds the  r a d a r 's  re s o lu tio n , th e  lac k  of 

i d e n t i f i c a t i o n  d a ta  can have se rio u s  consequences fo r  track in g  

algorithms. In the m ultitarget problem, many ta rg e t geom etries cause 

t a r g e t s  to  exchange tra c k s  (tra c k s  sw itches) . Once a sw itch has 

occurred, th e re  i s  no autom atic means a v a ila b le  to  reestablish  the 

true track on i t s  correct tra jec to ry .
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Iden tification  Friend of Foe (IFF)

Iden tifica tion  data are gathered on ta rg e ts  suitably equipped 

w ith  tran sponders , such as the  U.S. standard ized  Mark XII IFF/SIF 

(selective iden tifica tion  fea tu re). IFF provides range, azimuth, and, 

u su a lly  code and a l t i tu d e  information. Ih is  transmitted code can be 

compared with the code assigned to  sp ec ific  tra c k s  and sto red  in  the  

database to  decrease the observation 's uncertainty.

A lim ita tion  to  transponder technology i s  th a t  an a i r c r a f t  

must be equipped w ith th e  ap p ro p ria te  hardware and must receive the 

in terrogation before a report i s  generated. Obviously, those a i r c r a f t  

without transponders cannot be tracked by IFF.

Years of experience with ground based systems show th a t  IFF 

measurement e r ro r  i s  w hite and th a t  th e  p ro b a b ility  of receiving a 

correct code is  approximately 0.95. Yet, when the  f i r s t  op e ra tio n a l 

m issions w ith the  Airborne Warning and C ontrol System's B-3As were 

flown, periods of e rra tic  azimuthal measurements were observed. In  

a d d i t io n ,  d u rin g  th e s e  p e r io d s  o f az im u th a l e x c u rs io n s , th e  

probability  of decoding the tra c k 's  code dropped d ram a tica lly . This 

perturbation of azimuth i s  known as j i t t e r .

J i t t e r  i s  r e l a t e d  to  t a r g e t  d e n s ity , d is tan ce  from the 

airborne receiver, and the re f le c tiv ity  of tdie surface over which th e  

ta rg e ts  a re  f ly in g . These fa c to rs  cause m u ltipa th  re tu rn s  to  t±e 

transponder receiver which garble the code and d e fe a t the  hardw are 's 

a b ility  to  determine report azimuth.
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A ll e x is t in g  system s have some m u ltip a th  e f f e c t .  The 

m itig a tin g  circum stance fo r  ground systems i s  th a t  the  m u ltip a th  

re p o rt i s  so c lo se  to  th e  d ire c t reply that no detectable d isto rtion  

occurs. For airborne systems re ly in g  on IFF, th e  m ultipath  e f fe c ts  

can be d isastrous.

IFF was designed as a means of iden tifica tion , but because of 

i t s  d is c re te  c a p a b il i ty , many systems re ly  on the measurement fo r  

t r a c k in g .  As w i l l  be d iscussed  in  th e  Environment se c tio n , the  

p o te n t ia l  problems of IFF make i t  h igh ly  u n re lia b le  as a prim ary  

t r a c k in g  so u rc e . The unexpec ted  problem s of j i t t e r  and code 

r e l i a b i l i t y  degrade th e  c a p a b i l i t ie s  of transponder t r a c k in g  by 

in creasin g  the uncertainty of the rep o rt 's  o rig in . There i s ,  however, 

considerable information to  be gleaned from an IFF rep o rt o ther than 

as a primary input to  the f i l t e r .

Since 1977, th e  Air Force, th e  MITRE C orporation, and %e 

Boeing Company have studied the e ffec ts  and causes of j i t t e r ,  and th e  

p o te n tia l  software and hardware solutions for the B-3A. As of now, no 

completely su itab le  softw are f ix  has been proposed. While s tu d ie s  

c o n tin u e  a t  T in k er AFB and a t  MITRE on so f tw a re  s u i ta b le  fo r  

in tegration  in  present tracking algorithms, the research presented  in  

t h i s  d issertaticx i extends previous work to  a new tracker designed more 

su itab le  fo r the environment o f the  E-3A and o th er a irborne  sensor 

systems and more capable of dealing  w ith j i t t e r .  Before examining 

th is  new design, i t  i s  in structive  to  understand th e  fundamentals of 

track in g  ta rg e ts  and th e  environment th a t makes an airborne receiver 

unique.
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5!£a.ç)iinq ĵ mdtanentals 

Terminology

Œhree ccnmai elements in  a l l  the  track ing  algorithm s to  be 

examined are a predictive phase, an association/correlaticm  0iase, and 

a smoothing phase.

Track p re d ic tio n  i s  the  estim ation of the ta rg e t 's  positicxi 

to  the time of the next observation. This i s  done in conjunction w ith 

the  s ta te  extrapolation of the Kalman f i l t e r  and is  the prime input to  

the second phase, association/correlation.

A ssociation  i s  a coarse screening process which se lec ts  for 

f u r th e r  c o n s id e ra t io n  on ly  those trac k s  th a t  have a reasonable 

p ro b a b ility  of being re la te d  to  a specific report. Correlation i s  a 

f in e  screening process which determines report/track pairs th a t have a 

high p ro b a b ility  of being re la te d  to  each other (correlated PairÆ). 

Not a l l  a lgorithm s require a correlation but a l l  require some form of 

association. l ^ i c a l ly ,  an association window is  conceptually  drawn 

around the  p red ic ted  rep o rt p o s itio n . This window, which may be a 

c irc le , an e llip se , or a simple range and azimuth t e s t ,  rep resen ts  a 

s t a t i s t i c a l  a rea  th a t  should con ta in  the  next observation . The 

association window i s  based upon the  ex trapo la ted  track  s ta te s  and 

perform ance c h a r a c t e r i s t i c s  ( th e  t r a c k 's  a b i l i ty  to  maneuver, 

accelerate, or decelerate) weighted by some s t a t i s t i c a l  m u lt ip lie r  to  

ra ise  the confidence lev e l.

- 8 -



I t  should be c le a r  th a t  in  dense t r a f f i c ,  the associaticm 

windows for d ifferen t tracks w ill overlap. For those algorithm s th a t  

req u ire  a one-to-one trac k /re p o rt pa ir, a  correlaticm process breaks 

the multiple associations. A track signature  p lays a very im portant 

ro le  fo r  these algorithms because i t  reduces the likelihood of a wrong 

p a i r in g .  I f  th e re  i s  no s ig n a tu r e  and t h e r e  a re  m u l t i p l e  

a sso c ia tio n s , the  p ro b a b ility  of an incorrect association increases. 

Various algorithms have been proposed to  contend w ith the  m u ltip le  

a s s o c ia t io n  problem . Though th e  approaches vary g re a tly , these  

methods a l l  u t i l iz e  an a s s o c ia t i f  window fo r  rep o rt se le c tio n  and a 

Kalman f i l t e r  for track smoothing.

The p e r i l  of m ulti ta rge t tracking is  the association of the 

o b se rv a tio n  w ith  th e  wrong t r a c k .  The re c e n t  l i t e r a t u r e  in  

m u ltita rg e t track ing  i s  m otivated by the  need to  find a reasonable 

means of incorporating the  u n certa in ty  of the  measurement's o rig in  

in to  the  track in g  algorithm s Y@ar-Shalom,1978]. Those algorithms 

having a d i r e c t  im pact on t h i s  d i s s e r t a t i o n  a re  p re se n te d  in  

h is to rica l order.

Major Algorithms 

N e a re s t N eighbor. T h is i s  the  standard  and most o ften  

implemented c o rre la tio n  procedure. The o b se rv a tif  selected is  the 

m e tha t most nearly matches the predicted position.

In  most im p le m e n ta tio n s , " n e a re s t"  i s  based upon some 

positional te s t  value and IFF code matches. A p o s i t i f a l te s t  value

- 9 -



i s  based on th e  sum of th e  standard ized  e rrors of those parameters 

ap p ro p ria te  fo r  th e  re p o rt ( i . e .  remge, azim uth, and range r a t e  

e rro r) ,

N earest neighbor can lead to  very poor resu lts  in  areas where 

th e re  a re  f a ls e  t a r g e ts ,  m u ltip le  ta r g e ts ,  o r j i t t e r  because th e  

t ra c k in g  algorithm  does no t account fo r  th e  p o s s ib i l i ty  th a t  the  

measurement used might have o r ig in a te d  from a source o ther than th e  

track of in te re s t [Bar-Shalom,1978].

T rack S p l i t t i n g . Smith and Buechler [1975] p resented  a 

mul t i p i  e -o b je c t branching algorithm . Tracks a re  in itia liz e d  based 

upon one or two measurements; then fo r each measurement fa llin g  w ith in  

the  a sso c ia tio n  window, th e  track  i s  s p l i t .  From the  innovations 

p roperty  of the  Kalman f i l t e r ,  the  l ik e l ih o o d  of each s p l i t  i s  

calculated.

Since the  optim al branching so lu tio n  c œ s is ts  of sp littin g  

each preceding tra jec to ry  in to  a lterna te  tra je c to rie s  a t  each scan and 

then evaluating  a l te r n a t iv e s ,  for N scans the number of a lternatives 

is  su ffic ien t to  overvdielm any real-tim e machine. In  order to  make a 

p rac tical algorithm three pruning rules are used:

1. I f  the measurement i s  fu rther than a specified 

maximum distance from the predicated positicxi of a 

track , i t  i s  considered unlikely to  have originated 

from th is  track and i s  discarded (associâtiw i).

2, I f  two hypothesized tra je c to rie s  are sim ilar 

they lik e ly  represent the same track . T rajectories 

within a specified distance of a more lik e ly

-1 0 -



tra jec to ry  rre  dropped. Up to  l^AX of the best 

tra je c to rie s  are kept.

3. T rajectories th a t f a l l  below a given l ik e l i­

hood threshold are dropped.

R e id [1979] poin ted  out sev era l flaw s w ith t h i s  work. In 

calcu lating  th e  l ik e lih o o d s , Smith and Buechler assumed th a t  each 

r e p o r t  was p resen t (Pg =1.0 ),  and they  d id  no t account fo r  fa ls e  

alarms. Moreover, apparently a ta rg e t  can be a sso c ia ted  w ith every 

measurement w ith in  i t ' s  association  window. I f  the track density i f  

s u f f ic ie n t ,  measurements can be in  s e v e r a l  windows le a d in g  to  

data-association hypotheses th a t are not mutually exclusive.

In sp ite  of these e r ro rs ,  trac k  s p l i t t i n g  i s  a fundamental 

concep t of many modern t r a c k e rs .  The work of Smith and Buechler 

extended the theory of branching algorithms try noting th a t  i f  unknown 

process param eters are  co n stan t and assume only a lim ited number of 

v a lu es , then the  optim al non linear f i l t e r  can be s e p a ra te d  in to  

p a ra lle l lin ea r f i l t e r s .

Maximum L ikelihood . The problems of fa lse  returns, missing 

re p o r ts , and m utually exclusive  d a ta  associations were addressed by 

M orefield [1977 ]. T h is  approach  y i e ld s  th e  most l i k e l y  d a ta  

a sso c ia tio n  hypotheses by approaching the  is su e  as an unsupervised 

pattern  recognition problem.

F easib le  trac k  t r a j e c to r i e s  a re  reduced by a coarse window 

association. The se t of feasib le  tracks, F, i s  considered as c lu s te r s  

of measurements Z th a t are reasonable to  incorporate in to  hypotheses. 

The Bayesian decision process i s  re s tric te d  to  hypotheses formed using
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F, SO th a t  any hypotheses formed using F i s  sin.ply a subset of Z. In 

other words, a measurement cannot belong to  more than one track.

I t  i s  n a tu r a l  to  compute the  lik e lih o o d  function  of the 

Kalman f i l t e r  s t a te  e s tim ate s , basing th e  hypothesis t e s t  on th e  

in n o v a tio n s  sequence. In th is  problem, find ing  th e  most l ik e ly  

tra jec to ry  coincides with maximizing the  lik e lih o o d  function  of the  

f e a s i b l e  m easurem ents over a l l  f e a s ib l e  tra c k s . The negative 

log-likelihood function i s  modified to  include the number of p o in ts  in  

each track and the hypervolume in  which the observations are made.

M orefield form ulates m u lti ta rg e t track in g  in  terms of an 

in te g e r  l in e a r  programming problem. His algorithm  i s  b asica lly  a 

batch-processing technique allowing N data points to  accumulate before 

b a c k tra c k in g  through  th e  d a ta . Although a recu rsiv e  version  i s  

included , i t  does no t guarantee op tim ality  over time as does th e  

batch-processing version [Reid,1979].

Both tra c k  s p l i t t i n g  and maximum likelihood are essen tia lly  

nonBayesian approaches th a t  attem pt to  make d e c is io n s  upon th e  

l ik e l ih o o d  o f a t r a j e c t o r y  and then estim ate  th e  s ta te s  of the  

tra jec to ry . The s ta te  estimates and the covariances a re  conditioned 

upon accepted tracks being true .

P ro b a b iliS -tic_ -D a ta  A s s o c ia t io n . P r o b a b i l i s t i c  d a ta  

a s s o c ia t io n  (PDA) algorithm s a re  Bayesian approaches th a t  y ie ld  

e stim ates  and c o v a r ia n c e s  and accoun t fo r  m easurem ent o r ig in  

uncertainty [Bar-Shalcm and Tse, 1975].

In th e  suboptimal form, the best estimate of a ta rg e t 's  s ta te  

i s  the conditioned mean based upon the  measurements th a t  have some
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p ro b a b ility  of o r ig in a tin g  from th a t  track . ïhese observatiais are 

selected by constructing an association window. Those reports f  filling  

w ith in  the  window are assumed to  have seme probability  of originating 

from the track of in te re s t. This " a l l  neighbors" approach does not 

allow track  s p l i t s  but combines a l l  the la te s t  measurements in to  the 

s ta te  estimates.

While the  suboptimal approach used only the la s t  observatioi, 

in  th e  optim al form, the  s t a te  estim ate  i s  a com bination  of a l l  

measurements from i n i t i a l  to  p re se n t. The exponentially increasing 

memory and com putational requirem ents a re  eased by combining a l l  

tra c k s  which have id e n tic a l  h is to r ie s  fo r  the  past N dDservaticms. 

This modification is  referred to  as the "N-scan-back" f i l t e r .

The Reid A lgorithm . A p o ten tia lly  more powerful algorithm 

is  the  n o n p ro b ab ilis tic  d a ta  a sso c ia tio n , Baynesian, multiple-scan 

algorithm of David B. Reid[1979].

The basic  approach i s  to  generate a se t of data-association 

hypotheses th a t  account fo r  the  o r ig in  of a l l  ob serv a tio n s. The 

p ro b a b il i t ie s  of these  associations are calculated recursively using 

a l l  known inform ation , includ ing  th e  r e p o r t  d e n s i ty  and se n so r 

c h a r a c te r is t ic s .  A t r e e  s tru c tu re  i s  constructed  with each branch 

representing a data association. This technique allows a tra c k /re p o rt 

p a irin g  based upon previous and subsequent measurements. To minimize 

th e  computation and space requirem ents, u n lik e ly  h y p o th eses  a re  

e lim inated  and l ik e  ta rg e t  es tim ates  are combined. All ta rge ts  and 

measurements are divided in to  independent c lu s te r. Clustering gives
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th e  algorithm  a p a ra l le l  c h a ra c te r is t ic  s in ce  each c luste r can be 

processed independently.

M ultip le-scan  associations give the algorithm the capability  

to  use la te r  measurements to  aid correlation . Hence, the algorithm  i s  

not committed to  a unique pairing u n til su ffic ien t data i s  available 

to  make the correlation with a degree of certa in ty .

Adaptive H ypothesis Testing. Closely rela ted  to  the work of 

Reid i s  th a t  of Keverian and S andell[1979]. Their algorithm  i s  

nonBayesian and d iffe rs  in  hypothesis d e le tio n  s t r a te g ie s .  Keverian 

and Sandell have been in fluenced  by work in  hypothesis testing  for 

(garnie Q^sterns, e sp e c ia lly  th e  m ultiple-m odel adaptive estim ation  

(MMAE) of Magill[1965].

A MMAE algorithm provides an optimal nonlinear f i l t e r  for the 

estimation problem with observations coming from one of a f i n i t e  s e t  

of l in e a r  ^sterns [Keverian and Sandell,1979:5]. In i t s  Bayesian form 

the  algorithm  re c u rs iv e ly  c a lc u la t e s  th e  p r o b a b i l i t i e s  of th e  

hypotheses th a t  one of th e  p o ss ib le  l in e a r  systems i s  th e  ac tua l 

systen and produces the  optim al estim ate  of th e  system s t a te .  In 

g en era l, i t  can be shown th a t the MMAE algorithm id en tifie s  the linear 

model c lo s e s t ,  where the  measure of c lo seness i s  some inform ation 

d is tan ce  [Baram and S andell, 1968], to  the true  s ta te , which may be 

nonlinear and high order.

In  th e  m u l t i t a r g e t  p roblem , th e  s e t  of p o ss ib le  l in e a r  

systems generating the measurements corresponds to  th e  s e t  of o b jec ts  

being track ed . By adapting the  hypotheses deletion and creation to  

the evolving s itu a tio n , a d a ta -d riv en  a lgorithm  adaptive  on a more
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a b s tra c t  le v e l  i s  c re a te d . Such an algorithm  i s  termed adaptive 

hypothesis te s tin g .

M ultip le-scan  c o rre la t io n s  and hypothesis te s tin g  offer a 

framev?ork for a more advanced m ultitarget tracker appropria te  fo r  the  

environm ent encountered by a irbo rne  su rv e illan c e  systems such as 

MM2S and NIMROD. To understand why e x is tin g  track ing  systems are  

in a d e q u a te , i t  i s  im portant to  understand the  environment th ese  

systems encounter.

Environment

Surveillance Volume

By v irtu e  of being a t a ltitu d e , th e  su rv e illan c e  volume fo r 

a irborne  systems i s  considerab ly  la rg e r  than more powerful ground 

based Q^stems. With th is  increased  coverage comes fa r  more sensor 

measurements than can possibly be tracked. For example, a single B-3A 

off the coast of V irginia can monitor n early  the  e n ti r e  East Coast. 

Such a vast number of observations would swamp any real-tim e computing 

system, especially  when i t  i s  noted tha t the su rve illance  fu n c tio n  i s  

only one of many Command and Control tasks competing for processing 

time.

Many proposed a lgorithm s assume th a t  a l l  ta rg e ts  w il l  be 

tracked. With the Reid algorithm, for example, a report i s  e ith e r  the  

track  d e s ire d , a new tra c k , or a f a ls e  report. This s in p lif ie s  the 

problem of resolving correlation  ccxiflicts since a l l  observations a re  

e i th e r  tracks or fa lse  reports. Since the s ta t i s t ic s  of fa lse  reports 

are well known, th e re  i s  a fix ed  s t a t i s t i c  a v a ila b le  fo r assign ing
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p ro b a b il i t ie s  to  various types of orig ins. Reid also assumes tha t the 

density of known to  unknown ta rg e ts  i s  a v a ila b le . While th is  d a ta  

could be adaptivef the point remains th a t an airborne system cannot be 

designed to  track a l l  ta rge ts  in a l l  envircnmentis.

Target Density

During engagements track densities become exoeptionally h igh . 

C o n sid e rin g  th e  range from the b a t t l e  a t  which airborne systems 

operate, correct report/track pairing becomes exceptionally d i f f i c u l t .  

A lgorithm s, based on nearest neighbor c r i te r ia ,  tdiat force a decision 

on correlated pa irs  in th is  environment are often wrcmg.

IFF w il l  no t provide any inform ation in  the  b a t t l e  a re a . 

Most ta c t ic ia n s  agree th a t  f ig h te r  a i r c r a f t  w i l l  tu r n  o f f  t h e i r  

transponders when they reach the  forward edge of b a ttle  to  preclude 

the eneny from id e n tify in g  and track in g  them. Any algorithm  th a t  

r e l i e s  on IFF as the  primary sensor fo r  track in g  w il l  find  i t s e l f  

seriously degraded in  a major engagement.

Machine-Machine, Man-Machine Interface

M ultip le -scan  c o rre la tio n  algorithm s are  l im i te d  by th e  

i n t e r f a c e s  ta k in g  p la c e  in  a Command and Control network. The 

periodic rep o rtin g  of ta rg e t  inform ation i s  u t i l iz e d  throughout a 

b a t t l e  a rea  to  make time dependent decisions. Other computer based 

systems a re  o ften  track in g  id e n tic a l  ta r g e ts  th a t ,  i f  not updated 

p r o p e r ly ,  w i l l  r e s u l t  in  c o n s id e ra b le  confusion . F requently , 

th e re fo re , a m u ltip le -scan  algorithm  must reach a d e c is io n  more 

rapidly than the data w ill allow.
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A more se rio u s  problem i s  the man-machine in te rfa c e . Bie 

operator of the system must have tim ely track  updates upon which to  

make d ec is io n ; a track  cannot "hang in  space" while ambiguities are 

resolved by the  tra c k e r . The operator of the  system can re so lv e  

track in g  c o n f l ic ts  fa r b e tte r  than any software, but h is  attention is  

o ften  focused on more c r i t i c a l  a re a s  of th e  engagement making 

in te rv en tio n  in  softw are d ec is io n s u n lik e ly . When an area  of the 

b a t t l e  has h is  a tte n t io n , the  p o s itio n  update must come w ith  th e  

re g u la r ity  he expects. By using, a t  worst, the extrapolated movement 

of the ta rg e t, the past history  of the observations, and h is  knowledge 

o f t a c t i c s ,  he can make d ec is io n s about track  t r a je c to r ie s  th a t  

software could not reach . This l im its  the  time a tra c k e r can w ait 

before fo rc ing  a decision  on ambiguous data. A careful balance must 

be developed th a t  keeps th e  man-machine i n te r f a c e  fo rem o st in  

perspective.

Environmental Factors Not Considered 

There are additional complications th a t  are  no t examined in  

th is  study. The most d i f f i c u l t ,  and not fu lly  resolved problem, is  

jamming. The advances in  e le c tro n ic  counter measures are  p rim arily  

d e a lt  w ith in  hardware. In th i s  work a l l  track ing  i s  done "in the 

c lear."

A second area , th e  problems and e rro rs  induced in  ground

stab iliz ing  the sensor measurements i s  not included . I t  i s  assumed

th a t  th i s  conversion i s  e rro r  free . While error free  conversion i s

not possible, carefully  derived equations can guarantee maximum e rro rs

o f .2 NM. F in a lly , the  p o s itio n  of th e  su rv e illa n c e  platform  i s
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considered s ta tio n a ry  and known. This i s  done primarily to  increase 

the readability  of the equations. Navigation equipment has progressed 

to  the point th a t positional error of the platform is  not sign ifican t.

Sumnaiy
In  t h i s  f i r s t  c h a p te r ,  th e  l i t e r a t u r e  and language of 

m ultiple correlation algorithms and tracking were introduced. A b r ie f  

d iscussion  was presented on the environment and the tracking problems 

of airborne sensors.

The key m athem atics o f RAHTT a re  examined in  the  next 

chapter. The algorithm developed in  the  sequel c lo se ly  follow s the  

work of Reid and of Kervian and Sandell except tha t i t  is  designed for 

an ciirborne system. Since a major problem for current tra c k e rs  using 

IFF i s  j i t t e r  and m ode/code r e l i a b i l i t y ,  an adaptive scheme i s  

developed to  maximize the information from an IFF re p o rt. The r e s u l t  

i s  an algorithm  th a t  i s  adaptive on several leve ls . Since a primary 

goal of th i s  research  i s  to  extend previous work to  in c lu d e  IFF 

j i t t e r ,  th e  trac k s  are  assumed to  be s tra ig h t- lin e , nonmaneuvering. 

This assumption does not appear to  be overly r e s t r i c t iv e  and follow s 

the  examples of previous authors in  validating new concep>ts. Further, 

th is  re s tric tio n  e lim in a tes  only a few d a ta  p o in ts  as in te rc e p to rs  

tend to  f ly  s t r a ig h t - l in e ,  unaccelerated f lig h t paths, except during 

combat, with only periodic course corrections.

F in a lly , as mentioned and as w ill be more fu lly  developed in  

the next chapter, the underlying theory of the  algorithm  provides a 

s tra ig h t forward, though not t r iv ia l ,  extension to  nonlinear motion.
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CHAPTER II

kauian filters and multiple mcdel estimation 

Introduction

The key mathematics of th e  algorithm  presen ted  in  the next 

chapter come fron two closely related fie ld s—Kalman f i l t e r  theory and 

m u l t ip le  model e s t im a t io n .  I t  has been over a decade s in c e  

Kalman[1960I and Kalman and Bucy[l%l] extended Wiener's work. During 

th a t  tim e th e  papers and books w ritte n  exp la in ing , extending, and 

modifying Kalman's work number in the thousands. In a s im il ia r  way, 

th e  work of M ag ill[1 9 6 5 ] in  m u ltip le  model estim ation  has been 

studied, extended, and formalized.

The t h e o r e t i c a l  fo u n d a tio n  o f t h i s  d is s e r ta t io n  i s  the  

Multiple Model Estimation Algorithm (MMEA) and i t s  v a r ia t io n s . Since 

MMEA i s  dependent on Kalman f i l t e r  theory, i t  is  appropriate to  begin 

there.

Discrete-Kaljnan F i l te r  

Introduction

The purpose of t h i s  se c tio n  i s  to  in troduce  th e  b a s ic s  o f 

d iscrete  time Kalman f i l t e r  and derive the equations needed in  the
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next c h ap te r. A more rigorous treatment of the f ie ld  can be found in 

numerous te x ts .1

The Kalman f i l t e r  i s  gen era lly  accepted as the best method of 

providing th e  motion an a ly s is  of the  steady s ta te  param eters of a 

moving ta r g e t .  With b e n e f it  of fo resigh t, th is  discussion of Kalman 

f i l te r in g  i s  lim ited  to  the  d is c re te  tim e l in e a r  Kalman f i l t e r  and 

linear equations of ta rg e t motion.

G e n e ra lly , th e  m o tio n , m easurem ent, and Kalman f i l t e r  

equations are partitioned  in to  X and Y components. This uncoupling 

y ie ld s  independent X and Y track in g  algorithms which must be solved 

each ite ra tio n .

There are  im portant b e n e f its  from th is  decoupling. Sensor 

measurements are generally in  terms of range and azimuth. With the  

exception of ra d ia l  or co n stan t speed c ir c u la r  f l ig h t ,  an a irc ra f t 

flying a t  a constant velocity  in  polar coordinates causes a non linear 

change in  range and azimuth. Thus po lar coordinates are generally 

inconsistent with a irc ra f t  tracking algorithms [Burke,1972].2

The reduction in  s iz e  of th e  covariance and s ta te  m atrices 

th a t  accompany partitioned components sign ifican tly  reduces the amount 

of computer time needed. Kalata[1976] s ta te s  th a t  fo r  a s ix - s ta te  

track in g  problem, p a r t i t io n in g  th e  f i l t e r  in to  a three dimensicxial 

system reduced computation time from 5000 to  375 m ic ro seco n d s .

1 For a basic  in tro d u c tim  to  Kalman f i l te r in g  with ^^ ilications 
to  a i r c r a f t  track in g  see Burke[1972]. An advanced m athem atically 
oriented work i s  Jazwinski [1970].

2 V arious authors have proposed spherical tracking i^stems. See 
[Moose, Vanlandingham, and McCabe, 1979].
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F u r th e r ,  th e  lo s s  in  performance due to  the  p a r ti tio n in g  can be 

bounded by comparing th e  o ff  d iagonal te rm s of th e  m easurement 

u n c e rta in ty  m atrix R w ith th e  diagonal term s. These are generally 

very small percentages.

Equations of S tate and Measurement 

For th e  remainder of th is  work, targe ts are assumed to  evolve 

according to  the general equation

;i(k+l) =<t>x(k) +rs£(k) 2.1

where

0  i s  the s ta te  t ra n s it im  matrix 

r i s  the disturbance matrix

w i s  a white noise sequence with zero mean and covariance Q 

The s ta te  variables are rela ted  to  measurements z by 

Z(k+1) = HX(k+l) + it(k+l) 2.2

where

H i s  a measurement matrix

V i s  a white noise sequence with zero mean and covariance R.

<p and H are represented as time invariant only fo r  n o ta tio n a l 

ease . The term rü (k )  i s  used to  model random disturbances in  the 

s ta te  v e c to rs ; o ften  represen ting  a irc ra f t  maneuvers or inaccuracies 

or unknowns in  the s ta te  model. I t  i s  ignored fo r  the  remainder of 

th is  work.
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For s t r a ig h t  l in e ,  unaccelerated  ta rg e t ,  the  equations of 

motion are

x(k+l) = x(k) + x(k) a t  2.3

x(k+l) = x(k) 2.4

y(k+l) = y(k) + y(k) a t  2.5

y(k+l) = y(k) 2.6

where

a t  i s  the time in terval between updates 

X and ÿ components are independent components cf velocity 

k i s  the time index (k a t  is  the to ta l elapsed time).

P lacing equations 2.3 through 2.6 in  the  form of 2 .1  and 

dropping the time index y ields

1 a t  0 0

0 1 0  0

0 0 1 a t

0 0 0 1 2.7

Because measurements are received in  range and azimuth bu t th e  

equations of motion and the Kalman f i l t e r  equations are in  terms of x 

and y i t  i s  necessary to  calculate the variance of th e  measurement in  

terms of x and y (see appendix B).

Vxm(k+1) = ( Or Cosu»)2+ (Og R Sinv )2 2.8

vym(k+l) = ( OR Sinv)2 + (Og R Cosv )2 2.9
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where

R i s  the range of the report 

V is  the azimuth of the report 

Op is  the standard dev ia tim  of sensor range 

Ogis the standard deviation of sensor azimuth 

Ihus the measurement equations are

%(k+l) = x(k+l) + Vxm(k+1) 

ym(k+l) = y(k+l) + Vym(k+1) 

and, in  the form of equation 2 .2 ,

2.10

Z. =
%

Ym,

1 0  0 0

0 0 1 0

X ^ x r a

X +

y V y m

_y_

2.11

The estim ation of the s ta te  variables i s  the objective of the

Kalman

f i l t e r .  There are two phases to  the estimation problem th a t provide a 

minimum variance estimate of the s ta te s  and th a t  g ive th e  f i l t e r  i t s  

recursive feature. These two phases are examined in order.

■Ergdiçtion -on .EXtcapplobian 
The general Kalman f i l t e r  equations for s ta te  and covariance 

prediction are

i(k + l|k ) = $ i(k |k )  2.12

P(k+l|k) = «pê(k|k)-KJ 2.13

where
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i s  the s ta te  estimate 

ê i s  the estimated covariance matrix of the s ta te s  

Q i s  th e  covariance of th e  d istu rbance  m atrix  and may be 

dependent on f  . Under the assumptions alreac^ introduced, Q 

i s  dropped.

The n o ta tio n  (k+ l|k) r e fe rs  to  the estimation prctolem when 

the time of in te re s t occurs a fte r the la s t  available measurement. In 

t r a c k in g  p ro b lem s, t h i s  i s  the  e stim ation  of th e  t a r g e t 's  next 

p o s itio n  based upon th e  f i l t e r ' s  e s t im a te  o f th e  t a r g e t ' s  l a s t  

p o s it io n . The no tation  (k|k) i s  used to  indicate th a t an estimate is  

desired to  coincide with the l a s t  measurement p o in t. In estim ation  

theory  th i s  i s  c a lled  f i l te r in g  but more often, in a irc ra f t  tracking, 

i s  re fe r re d  to  as smoothing. Smoothing, in  estimation terms, occurs 

when th e  tim e o f i n t e r e s t  f a l l s  w ith in  th e  span of a v a ilab le  

data[Gelb,1979:2]

With th ese  d e f in i t io n s  in  mind, the prediction equatiais for 

the s ta te  variable are

x(k+l|k) = &(k|k) + x(k|k) a t

x(k+llk) = x(k|k)

y(k+l|k) = y(klk) = y(k|k) a t

y(k+llk) = y(klk) 2.14

where

^ denotes estimated terms.
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For the  p a r t i t io n e d  constan t speed s t r a ig h t - l in e  cartesian 

coordinate formulation of a irc ra f t  motim, the covariance matrix P fo r 

the X component of s ta te  variables is

Px=

Cxx 

Cxx Vx

2.15

where

Vjç i s  the variance in  x

Cxx i s  the covariance of x and x 

and the time ind icies are dropped for convenience.

Vx and Vy are in itia liz e d  to  V^m and Vym respectively. 

Vx is  found by noting th a t

^ = %(k+l) -  %(k)

. A Ax = i -  x x jn = x -x m
At

then X = Xjn(k+1) -  x^Ck)

At

P =  Xm(k+1)2 + %(k)2 -  2%(k+l) %(k)
   ^ -------------------------------

but since %(k+l) and Xm(k) are independent

Vx = E[52] = 2Vxm

where

^ i s  the estimate of x 

i  i s  the error in the estimate

2 .16
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In a sim ilar way

^  = %(k+l) [%m(k+l) - %(k)]/ At 

xx'= l^dc+l) I%(k+1) _ j^(k)]/ t 

«=(%(k+l))2 - %(k+l)%(k)

At
Cxx = ErSuT] = Vjjjij

At
The d e r i v a t i o n  f o r  P y  i s  i d e n t i c a l .  The p re d ic te d  

covariance equations are

V x(k+ l |k )  = Vx(k lk )  + 2 AtCxi (k lk )  + At2v^(k|k)

V y(k+llk) = V y (k |k )  + 2 AtCyÿ(klk) + A t2vÿ(k|k)

Vx(k+ l |k )  = Vx(klk)  2.17

Vy(k+ l |k )  = Vy(klk)

Cxx(k+l|k) = Cxx(k|k) + AtVx(kjk)

Cyy(k+l|k) = Cyy(klk) + AtVy(k|k)

In th is  section the s ta te  and covariance p red ic tio n  equations 

were d e riv e d  fo r  p a r t i t i o n e d ,  s t r a ig h t  l in e ,  constan t v e lo c ity  

a i r c r a f t  m otion . In  th e  n e x t s e c t io n  th e  sm oothed s t a t e  and 

covariance equations are developed.

Update and Gain Equatims 

The general Kalman f i l t e r  equations fo r s t a te  and covariance

update are

where

i(k+ l|k+ l) = i(k + l|k )  + K[i(k+1) -  Hx(k+l|k)] 2.18

K = P (k+11 k) [HP (k+11 k) #  + R]-l 2.19

P(k+l|k+l) = [I-KH]P(k+lIk) 2.20
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K is  the Kalman gain matrix

I  i s  the iden tity  matrix

(Z(k) -  H x(k|k) ) is  the innovation

The c r i t e r i o n  f o r  choosing  a Kalman gain m atrix  K i s  to  

minimize a weighted scalar sum of the diagonal elements of th e  e rro r  

covariance m atrix  P. This i s  equ iva len t to  minimizing th e  length 

ofthe estimation error [Gelb,1979:109].

ïhe gain matrix for x, Ky(k+1) i s  formulated ky le ttin g  

S(k+llk) = [HP(k+l|k) #  + R] 2.21

then

Kx(k+1) = Px(k+llk) HTSx(k+l|k)“ l  

V x(k+l|k)  Cxx(k+llk)

Cxx(k+l|k) Vx(k+llk)

V x(k+l|k)

S x ( k + l |l ) - l

Cxx(k+1|k)

S x ( k + l |k ) - l  = lHP(k+l|k)HT + R ] - l  

which sim plifies to

1

Sx(k+llk)-l =

1 0

0 0

V x(k+l|k) + Vxui 

0

S x ( k + l |k ) - l
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thus

Kv ~
Vx

Vx

1 Vx Vxm

Vx + Vxm
* Cxx

0 Vx + Vxm

In the notation adopted in  th is  paper, the gains are

V x(k+ l|k )

K„x(k+1) =

Kay(k+1) =

Kpy(k+1) =

V x(k+ l|k ) +Vxm(k+1) 

C xx(k+l|k)

V%(k+l|k) +Vxm(k+1) 

V y(k+llk) 

Vy(k+l|k)+Vym(k+l) 

C yy(k+l|k) 

Vy(k+l|k)+Vym[k+l)

2.23

The updated s t a t e  and c o v a r ia n c e  e q u a tio n s  a re  now 

a v a ila b le  by s u b s ti tu t io n  and m atrix  operations. The updated s ta te  

equations are
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x(k+l|k+l) = 

x(k+l|k+l) = 

y(k+l|k+l) = 

y(k+l|k+l) =

x(k+lik) + Kax [%h,(k+D 

^(k+l|k) + Kpx Ixn,(k+1) 

P(k+l|k) + Kay Iym(k+1) 

y(k+l|k) + Kpy [ym(k+l)

-  A(k+l|k)J

-  x(k+l|k)]

-  ^(k+l|k)l

-  y(k+l|k)]

2.24

and the updated covariance equations are

V x(k+ l|k+ l)

C xx(k+llk+ l)

V y(k+ l|k+ l)

C yy(k+lik+ l)

Vx(k+lUk+l)

V y(k+llk+ l)

= V x (k + lik )il-K ax (k + l)]

= C xx(k + l|k )[l-K o x (k + l)]

= V y(k+l|k) [1-Kay(k+D]

= C y y (k + l lk ) [ l - ^ (k + l) ]

= Vx(k+1Ik)-Kpx(k+1)Cxx(k+1 k) 

= V ÿ(k+ l|k)-K py(k+ l)C yÿ(k+ l|k )

2 .25

To complete the f i l t e r  equations i t  i s  necessary  to  examine 

how the  tra c k e r  i s  in it ia l iz e d . As previously noted, the elemmts of 

the covariance matrix are in it ia liz e d  to

Pv(0) "

V.xm

V.

'xm

2V.'xm -<=-'xm

This i s  reasonable s in ce  the  only values of any rea l certainty

are the s ta t i s t i c s  of t±e sensor data. For the same reason the ta rg e t

position i s  in it ia liz e d  to  the report position .

V elo c ity  i n i t i a l i z a t i o n  depends upon whether a two or one

p o in t i n i t i a l i z a t i o n  i s  used. For a two p o in t in i t i a l i z a t io n  the
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i n i t i a l  track  ve loc ity  components and heading are determined from the 

two measurements. I f  a one point in it ia liz a tio n  is  used, then p rio r  

inform ation about ta rg e t  heading and velocity  must be assumed. Ohe 

heading and v e lo c ity  e s t im a te s  a re  independen t in  a one p o in t 

i n i t i a l i z a t i o n  th e re fo re  the  o ff-d iagonal terms of the  covariance 

matrix are se t to  zero [Kalata,1976].

The Kalman f i l t e r  provides the  minimum variance estimate of 

th e  t a r g e t ' s  s t a t e s .  As such , i t  i s  th e  o p tim a l e s t im a to r .  

U nfortunately, the Kalman f i l t e r  has no capacity to  se lec t, from a se t 

of reports, th a t measurement caused hy the ta rge t of in te re s t.

In the  f i r s t  ch ap te r, th e  various approaches were introduced 

th a t form the h is to rica l and theoretical foundations fo r RAHTT. The 

most s ig n if ic an t of these, multiple model estimation, must be examined 

further befmre diqauqsing the actual algorithm.

Multiple Jiodel Æ stirotion 

Introduction

The s ta te d  purpose of th is  d is s e r ta t io n  i s  to  develop th e  

a lg o r i th m ic  framework fo r  a t a c t i c a l  t ra c k e r  su ita b le  fo r the  

environment described in the previous chapter. Such an algorithm must 

be capable of u t i l iz in g  numerous sensors, responsive to  both linear 

and nonlinear f l ig h t  p a th s , and c o n s is te n t w ith a irbo rne  computing 

systems.

The th e o re tic a l  foundation for the algorithm developed in the

sequel i s  MMEA, introduced in chapter I .  The m athem atical b a s is  fo r

m u ltip le  model estim ation  and the  tra n s itio n  to  adaptive hypothesis
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ten tin g  are  presented  in  th i s  section. %e mathematical d e ta ils  of 

HHEA are qu ite  in tr ic a te  and a fu ll  p resen ta tion  i s  beyond th e  scope 

of th is  work.

Before discussing MMEA more formally, i t  i s  useful to  give the 

reader an idea of where the presentation is  going. Consider a ta rg e t  

whose motion i s  described by one of a se t of possible lin ear systems. 

The problem i s  to  decide which of the  p o ss ib le  systems most nearly  

represents the true motion of the ta rg e t.

I f  a se ries of measurements is  taken of the ta rg e t  motion and 

f i l t e r e d  using a Kalman f i l t e r  appropriately developed for each of the 

p o ss ib le  l in e a r  sy s tem s, th e n , as  th e  number o f m easurem ents 

in c re a se s , the  Kalman f i l t e r  matched to  the correct system should be 

closer to  the data than the mismatched systems.

In o ther words, by using several Kalman f i l t e r s ,  each matched 

to  one of a se t of possible linear systems and each f i l t e r  d riven  by 

id e n tic a l  measurements, i t  i s  possible to  se lec t th a t system th a t most 

nearly describes the true  ^stera .

C onsider a s i m i l i a r  c a se  where th e  ta rg e t  motion may be 

nonlinear and high order. By considering  each of th e  components of 

motion, i t  i s  p o ss ib le  to  derive  l in e a r  equations describ ing  each 

conponent. Kalman f i l t e r s  can be used to  estim ate  each component by 

d r iv in g  th e  f i l t e r s  w ith  the  id e n tic a l  measurement sequence and 

calculating online the p robab ilities  of each component. In th is  way a 

nonlinear system can be estimated hy a bank of linear f i l t e r .

With th is  basic introduction complete i t  i s  possible to  give a 

more form al d isc u ss io n . The development in  the next section closely
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follow s the  t u to r i a l  work of Athans and QiangeI1976] supplemented by 

the d isse rta tion  of Yoram Baramll976].

S tate Estimation With Unknown Parameters 

The basic concept of MMEA i s  to  co n s tru c t a bank of Kalman 

f i l t e r s  with each f i l t e r  matched to  a possible parameter vector value. 

%e Kalman f i l t e r s  generate s ta te  estim ates th a t  a re  combined using 

the  p o s te r io r i  hypothesis p robab ilities as weighting fac to rs . I f  one 

of the selected parameter vectors co incides w ith th e  t ru e  param eter 

v e c to r , MMEA gives the minimum variance estim ate of both the s ta te  and 

parameter vector.

MMEA i s  concerned  w ith  th e  problem of s e le c tin g , from a 

s p e c i f i e d  s e t  o f m odels, th e  " b e s t"  model by u s in g  a s e t  o f  

observations to  m athem atically  d escribe  a physical phenomenon. %e 

relationship  between the model and the observations i s  u n certa in  and 

must be expressed in  a p robab ilis tic  framework. The model se t can be 

specified  in  terms of a param eter s e t  such th a t  to  each parameter 

th e r e  co rre sp o n d s  a model and v ice  v e rsa . The problem of model 

selection can then be defined as a parameter estim ation  problem. I t  

should be noted th a t the true  parameter cannot, in general, be assumed 

to  belong to  the specified parameter s e t.

I f  a param eter vecto r i s  denoted by Y then the standard s ta te  

equation can be re w ritte n  as a s to c h a s t ic  dynamic system  whose 

(Ramies depend cxi Y

i(k+ l) = 4 > ( Y  )A(k) + r(Y )H(k) 2.27
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Sim iliarly , the measurement equaticm can be w ritten as

l(k+ l) = H ( Y  ) ü(k+l) +it(k+l) 2.28

Y i s  a vector whose elements rep re sen t th e  key param eters. 

These elem ents a re , in general, only approximately known; however, in  

any p rac tica l a jç lic a tio n , reasonable inform ation about the  nominal 

value (Yo ) and th e  degree of uncertainty i s  available from engineering 

stud ies, simulation, e tc .

Y can be viewed as a random vector with a l l  prior information 

captured in  i t s  p rio r density function p( Y ) . The confidence in  th e  

e s t im a t io n  o f Yq i s  communicated to  th e  mathematics by the p r io r  

covariance matrix

Cavll.il} = Etv -  Vo) OL -  Iq)^}

In f i l t e r i n g  measurements Z(k) the objective is  to  obtain, in 

r e a l  t im e , e s t im a te s  o f th e  a c tu a l tru e  s ta te  i ( k ) . The s ta te  

estimate i s  denote

x(k|k) 2.29

and the s ta te  estimation error i s  denoted by

x(kik) A x(k) -  x(k|k)

Accurate s ta te  estim ation  i s  a ffe c te d  by the uncertainty in  

modeling the true  values of the parameter vec to r Y by i t s  n o m i n a l . 

As th ese  erro rs become more s ig n ifican t, the performance of the Kalman 

f i l t e r  begins to  de te rio ra te . I f  the major param eter u n ce rta in ty  i s  

in  th e  s ta te  dynamics ra th e r  than the measurement equation, then the
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increased  parameter uncertainty is  reflected in the calculation of the 

cxie-step prediction estim ate  & (k+ l|k ). I t  i s  p o ss ib le  to  overcome 

t h i s  u n c e r ta in ty  by re ly in g  more on th e  d a ta , e sp e c ia lly  when 

measurement ambiguity i s  minimized. However, i f  the observations are  

s e r io u s ly  m is le a d in g , as w ith  j i t t e r  and code r e l i a b i l i t y ,  the  

r e s u l t a n t  s t a t e  e s t im a te  can  be s e r i o u s l y  in  e r r o r  w ith  

filterd ivergence probable.

As th e  u n ce rta in ty  in  Y in c re a se s , even w ith w ell behaved 

d a ta ,  u s in g  an ex tended  or a d a p tiv e  Kalman f i l t e r  w i l l  g iv e  

unsatisfactory performance [Athans and Chang,1979:7-17 ] .

The e f f e c ts  of la rg e  param eter u n certa in ty  on th e  s t a t e  

estim ation  algorithm can be studied by subdividing the parameter space 

in to  regions.

Subdivision of the Parameter Space 

A major concern of th is  d isse rta tio n  i s  the  s ta te  estim ation  

of ta rg e ts  when u n ce rta in ty  a r is e s  as to  the  proper re p o rt/ta rg e t 

pairing. ïhe proper framework for stuc^ing th is  u n certa in ty  c o n s is ts  

of an underlying probability  space and a separate parameter space, of 

v^ich the true  parameter may not be a member. L ikelihood r a t io s  and 

maximum lik e lih o o d  estimates are naturally  defined in th is  framework. 

In a Bayesian framework, th e  in h eren t assumption i s  th a t  the  tru e  

param eter i s  a member of a given parameter space, i . e . ,  the parameter 

space i s  p a r t  of th e  underlying sample sp a c e . T hus, w h ile  th e  

B ayesian  h y p o th e s is  i s  assumed .in th e  d e f i n i t i o n  of Bayesian 

estim ates, the analysis of these estim ates, as well as the maximum
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lik e lih o o d  e s tim a te , i s  performed using the underlying nonBayesian 

estimate [Baram,1979:11-12],

S in ce  in  m ost p h y s ic a l  problems some p r io r  knowledge i s  

available about the ranges of the  param eter vector elem ents, i t  i s  

p o ss ib le  to  f in d  a subset of the  param eter space represen ting  a ll  

reasonable values th a t Y can a tta in . A f in ite  se t of parameter values 

i s  denoted Yo,Y i , . . . .  ï n .  por each Y; , redefine

®(^i) =

f(Vi) A n  2.31

H(Vi) A Hi

with the understanding th a t a l l  matrices in  2.31 can be time varying.

I t  i s  then possible to  rewrite 2.27 and 2.28 as 

x(k+l) = <Pii(k) + r̂ MCk) 2.32

A(k+1) = Hix(k+1) + y(k+l) 2.33

resulting  in  a c lass of N d is tin c t lin ea r stochastic dynamic systems.

Y i s  a d isc re te  random vector which can be modeled by a se t of 

hypotheses {H%, H2  , . . .  .Hp} denoting a se t of events and H, a scalar 

variab le , rep resen tin g  a hypotheses v a r ia b le . The in te rp re ta tio n  

a ttached  to  the  event H = Hj i s  v. = Xj [Athans and Chang, 1976:23]. 

Then i f

Z (k) = {2.(1}. 2 (2 ) , .  . .  ,2(k) }

Ai(k) A Pj.(H = Hi I Z(k) )

=Pr(X = XilZ(k) )

G iven th e  m easurem ent s e t  Z (k ) , A i (k) i s  i n te r p r e te d  as th e  

p ro b a b ility  th a t  th e  i^h  hypotheses (the  i^h  model) i s  the correct 

one.
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A recu rs iv e  re la tio n sh ip  describing the dynamic evoluticxi of 

th e  p o s te r io r  p ro b a b i l i t ie s  A i(k) i s  derived  by Athans and Chang 

[1976:26-35] based upon the innovations property of the Kalman f i l t e r ,  

standard s ta t i s t ic a l  relationships, and estimation theory.

A bank of N Kalman f i l t e r s  i s  constructed  w ith  each f i l t e r  

using a s p e c if ic  s e t  of m atrices associated with Y.i. Each f i l t e r  i s  

driven by the same measurement sequence. From each Kalman f i l t e r  mean 

A i(k |k ) and covariance m atrix P i(k |k ), the Gaussian density functicxi 

P ( z ( k ) lH i,Z (k)) i s  c a lc u la te d . The o v e ra ll s ta te  estim ate  i s  the 

p ro b a b i l is t ic a l ly  weighted average, by the  p o s te r io r  (hypotheses) 

p ro b a b i l i t ie s  of A^Ck) of the s ta te  estimates generated by a l l  of the 

N Kalman f i l t e r s .

■Coaclvisicins.
I f  th e r e  e x i s t s  some form  o f s t a t i s t i c a l l y  c o n s is te n t  

measurement e rro r, then the  re s id u a ls  of th e  c o rre c t Kalman f i l t e r  

m odel w i l l  be l e s s  th an  th o se  o f th e  m ism atched m odel. As 

m easurem ents a re  p ro c e ss e d , the  c o rre c t p ro b a b ility  Aj^(k) w ill  

increase, while the mismatched model p robab ilities  w ill decrease.

MMEA provides an optim al non linear f i l t e r  fo r an estimation 

problem with measurements coming from one of a se t of p o ss ib le  l in e a r  

system s. I t  a sy m to tica lly  id e n t i f ie s  which of the  possible linear 

systems i s  th e  a c tu a l system and converges to  the  optim al Kalman 

f i l t e r  fo r th a t ^stem[Kervian and Sandell,1979:5].

MMEA provides a sound theore tical foundation for a m u ltita rg e t 

t r a c k e r  a n d , c o u ld ,  in  f a c t ,  be f o r m a l ly  ex tended  to  th e  

m u ltio b je c t/m u ltip le  ta rg e t  case . As a p r a c t ic a l  m a t te r ,  i t  i s

—36—



necessary  to  develop an algorithm  le s s  rigorous mathematically but 

more in te llig e n t; one capable of adding and d e le tin g  hypotheses in  

reaction to  the evolving situa tion .

M ultiple .Target Hypothesis Testing

A key p o in t of m u ltip le  model estimation is  th a t a nonlinear 

si'stera can be described by a bank of l in e a r  Kalman f i l t e r s .  In  the  

m u ltio b jec t tracking problem, the se t of linear systems generating the 

o bserva tions i s  th e  s e t  of ta rg e ts  to  be t r a c k e d . B ecause th e  

mathematics of MMEA is  theo re tica lly  sound and, fu rther, is  capable of 

resolving nonlinear as well as linear tracks, th is  work i s  lim ite d  to  

the lin ea r multi ta rge t problem.

The problem of m u lti ta rg e t trac k in g  by adaptive hypothesis 

te s tin g  revolves around two issues:

1. Prudent report/track  selection (association)

2 . M athem atical s e l e c t i o n  of th e  most l i k e l y  t a r g e t  

tra jec to ry .

The m athem atics o f th e s e  two issu e s  i s  examined in  th is  

section with algorithm d e ta ils  d e lv ed  u n til chapter I I I .

As previously  defined, association i s  the selection of reports

lik e ly  to  have been caused ty  the ta rg e t of in te re s t .  In a sso c ia tin g

re p o rts  and tracks, the se t of report/track  pairs selected for fu rther

consideration must be the sm allest s e t  p o ss ib le  w hile m aintain ing  a

high probability  of including the correct p a ir .
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A ssociation i s  accanpQ.ishecl v ia  te s t  on report range, azimuth, 

and range ra te  ( if  availab le). A report i s  associated with a track  i f  

a l l  a p p licab le  t e s t s  are passed. ^>pendix B shows the derivation of 

the association equations.

I t  i s  n e c e s sa ry  to  a r r i v e  a t  a unique re p o r t/tra c k  p a ir  

(correlation) fo r re p o rts  and tra c k s  having m u ltip le  a sso c ia tio n s . 

This i s  accomplished by postulating ta rg e t moticxi to  account for the 

associating reports and ^jplying a maximum likelihood te s t .

Maximum Likelihood 
The Kalman f i l t e r  e q u a tio n s  a lre a d y  s p e c i f ie d  allow  a 

likelihood function to  be calculated fo r each data association. Under 

th e  maximum lik e lih o o d  approach, th e  hypothesized ta rge t motion i s  

evaluated based on how well i t  f i t s  the date.

Fran Kalman f i l t e r  theory, the likelihood of the innovatiois 

Vj(k)

fo r ta rg e t j  i s

Vj(k) = i j ( k )  - i j ( k + l |k )  2.34

P(Vj (k) ,Vj (k-1), . .  .Vj (1) I Ôn) = 2  JT-k/2nk |Sj (k) 11/2 

exp{-l/2 2'^v7(k)S-î(k)-lVj(k)} 2.35
A
Dn ” as a p a rticu la r measurement sequence 

L j(k ) i s  defined  as th e  negative  log-likelihood function of 

2.28. I t  i s  calculated recursively by [Smith and Buechlar,1975]

Lj(k) = L j(k-l) + In lS j(k )1+ Vj(k)Sj(k)“lVj(k)

2 2 

+ln 2n 2.36
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simplifying

L j(k )= L j(k - l)+  ln l S j ( k ) |  + V j(k )S j(k )- lV j(k )

ln2n

= Lj (k-1) +in. {(Vx+Vxm) (Vy+Vym)} +
X r + Yi 2

______________   In 2n
2(Vjri-Vym) 2 (Vx+Vxm) 2.37

where

xi=%(k+l) -  x(k+l|k) 

yi=ym(k+l) -  ?(k+l|k)

and the time indexes are dropped in  2.37 for notational ease.

Tiiis c h a p te r  has s tu d ie d  th e  m athem atics of th e  RAHTT 

algorithm  to  be developed in  the sequal. As demonstrated, RAHTT has, 

as i t s  b a s is ,  s o l id  m ath em atica l th e o ry . There i s ,  how ever, 

considerab ly  more in te llig e n c e  to  th is  algorithm than implied by the 

mathematics. The concepts and algorithm d e ta ils  are presented in  the  

next chapter.
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CHAPTER II I  

DESCRIPTION OF THE RAHTT ALGORITHM 

Introduction

The d e ta i l s  of the  Real-tim e Adaptive H ypothesis T e s tin g  

Tracker (RAHTT) are  presen ted  in  th is  ch ap te r. The in ten t of th is  

chap ter i s  to  d is c u s s  in fo rm a lly  th e  c o n ce p ts  of each of th e  

algorithm 's functions (RAHTT is  formally presented in  appendix A).

The o v e ra l l  co n cep t i s  to  s p l i t  each c lu s t e r  o f  d a ta  

a s s o c ia t io n s  in to  hypothesized tra c k s . A lik e lih o o d  function  i s  

calculated for each postulated track based on the innovation sequence. 

A fter a low number of samples ( th ree  or le s s )  the  most like ly  data 

correlations are determined. Based upon the type and history of radar 

c o r r e la t io n s  and the  frequency of c o rre la t in g , code matching IFF 

returns, i f  availab le , the  most l ik e ly  track  fo r  each of the  known 

ta rge ts  i s  selected.

The algorithm  d iv id es n a tu ra lly  in to  th ree  main blocks: i)

report/track correlaticxi, i i )  hypothesis generation and d e le tio n , and 

i i i )  t r a je c to ry  v e rif ic a tio n . A key development in  th is  paper i s  the 

th re e  t i e r  c o rre la t io n  p rocess . I t  i s  im perative , fo r e f f i c i e n t  

tra c k in g , th a t  a rep o rt a sso c ia te  w ith as few re p o rts  as possible 

w hile m aintaining a high p ro b a b ility  th a t  th e  c o r r e c t  r e p o r t  i s
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included s ince  a la rg e  number of data a s s o c ia t i f s  can overwhelm the 

computing system.

C o rre la tio n  in  RAHTT i s  defined  as an associated one-to-one 

report/track  p a ir. I t  serves as the algorithm 's best estim ate  of th e  

o r ig in  o f th e  r e p o r t  and i s  th e  key to  su ccessfu l m u lti ta rg e t 

tra c k in g . Often th e  t a r g e t s  a re  w id e ly  d i s t r i b u t e d  and i t  i s  

unnecessary to  r e s o r t  to  such an expensive c o r r é l a t i f  p r f  ess as a 

maximum likelihood s e le c tio n . Even in  "dense" t r a f f i c  i t  i s  o ften  

possible to  find unique repoirt/track associations.

In the suboptimal d a ta  c o rre la t io n  used in  t h i s  a lgorithm , 

c o rre la t io n s  occur as th e  r e s u l t  of i)  a unique radar report/track  

association, i i )  the mostly lik e ly  data a sso c ia tio n  as th e  r e s u l t  of 

th e  hypo thesis te s t in g  framework, or i i i )  the  most l ik e ly  pairing 

resulting  from hypothesis construction ru le s  fo r  th e  term ina l le v e l .  

No e f f o r t  i s  made to  m odify the covariances to  account fo r  the  

probability  of an incorrect c o r r é l a t i f .

The un ique  a s so c ia t io n  of a radar re p o r t / tra c k  i s  h igh ly  

dependent upon the density of nearby t r a f f i c ,  f a ls e  re p o r ts , and th e  

geometry of o th er tracks. The a s s o c ia t i f  te s ts  described in chapter 

I I  are very discrim inating and w ill produce a h igh percentage of the  

t o t a l  c o r r e la t io n s .  Because the  a sso c ia tio n  windows provide th e  

report th a t most nearly f i t s  the hypothesized tra je c to rie s , whenever a 

unique report/track  p a ir i s  found, th a t pa ir i s  correlated and the

—41—



r e p o r t ,  " f u l ly  i d e n t i f i e d " ,  a terra to  be explained in  th e  next 

section.

Radar re p o r t / tra c k  a sso c ia tio n s  th a t  are  not unique roust be 

resolved v ia  the hypothesis te s t in g  framework of the  next se c tio n . 

Each d a ta  a sso c ia tio n  w ith in  the  c lu s te r  i s  te s te d  fo r likelihood 

a g a in s t  th e  p o s tu la te d  t r a c k s .  The roost l i k e l y  s e t  of d a ta  

a sso c ia tio n s based upcxi the roeasurement innovation sequence are termed 

correlated pa irs .

IF F  r e p o r t s  a r e  a s s o c i a t e d  in  a s i m i l i a r  m an n e r. 

Functionally, IFF re p o rts  attem pt to  v e r ify  ta rg e t  t r a je c to r ie s  by 

confirm ing or denying th e  presence of the correct code matching IFF 

reply w ith in  a hypothesized t a r g e t 's  a sso c ia tio n  window. This i s  

discussed in more d e ta il in  a la te r  secticm.

Unique radar report/track  assoc iations provide a s u b s ta n tia l  

number of th e  t o ta l  c o r re la t io n s .  By u t i l i z in g  these c o rre la t io n  

outside the more computationally demanding hypotheses te s t in g  scheme 

of th e  next se c tio n , RAHTT avoids generating unnecessary tracks and, 

more sign ifican tly , i s  able to  accelerate the overall tra c k  s e le c tio n  

process.

Hypothesis. GeneratlPH-an̂  Rele.tl<2P

Informal Discussion

The basic approach used in  th is  algorithm i s  to  generate a s e t  

of d a ta -a s so c ia tio n  hypotheses to  account fo r  a l l  associated pa irs  

th a t are not unique. These d a ta -a s so c ia tio n s  genera te  hypothesized 

tra c k s  in  a measurement oriented tre e  [Reid, 1979] ccaitrasted with the
—42—



ta rg e t-o r ie n te d  hypotheses of Bar-Shalotn[1975]. This allows more 

e ff ic ie n t space u tiliz a tio n , pruning techniques, and track  in i t i a t io n  

( s e e  K e v e r ia n  and S a n d e ll ,  1979:11] and [R eid , 1979]. The 

hypo thesized  tra c k s , generated t r a c k s , rep resen t the  most l ik e ly  

ta rg e t  paths based upon p r io r  knowledge of the nunber and s ta tes of 

the established tracks.

Data associations are mutually exclusive. Before a hypothesis 

i s  formed for track j ,  a check is  made to  ensure th a t  track  j  i s  not 

a sso c ia ted  w ith more than one measurement in  the current dataset. I f  

j  i s  associated with a measurement but does not e x is t  on a p a r t ic u la r  

hypothesis then a new trac k  i s  generated  representing a tra jectory  

from the la s t  hypothesized data association.

Experience has shown th a t  the  orientation of the measurement 

hypothesis tree  i s  d if f ic u lt  to  understand. Since th e  e ffec tiv en ess  

of RAHTT depends d irec tly  m  the algorithm 's a b ility  to  manipulate the 

date-associations in  the tree , an example is  warranted.

C onsider f ig u r e  3 .1 a  where e s tab lish ed  trac k s  T1 and T2 

associate with reports A, B, and C. There are  s ix  fe a s ib le  track s 

represented  by the lines connecting the targe ts  and the reports. The 

date-associations and the hypothesized tra jec to rie s  are represented by 

the hypothesis tree  figure 3.1b.

In  a m easurem ent o r ie n te d  h y p o th e s is  t r e e  each le v e l  

rep re sen ts  a re p o rt and the  nodes of th e  t r e e ,  th e  t r a c k s  t h a t  

a sso c ia te  w ith  th a t  re p o r t . Level A indicates th a t tracks TL and T2 

associated with report A plus a fa lse  alarm hypothesis.
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F I G U R E 3.1* F e i s i b U  t r i c k  l u n i f l i

0 O

0

FI GURE 3. 1k E i a t n p l t  h j p o t h i s i s  t r i i
N O T E :  G e n e n t i d  t r a c k s  a r a  i n d i c a t e d  by X. Y. Z  w h e r e  Z i s  t h e  p a r e n t  t r a c k  

a n d  Y a n d  X a r e  s u c c e s s i v e  g e n e r a t i o n s .
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L e v e l  B i l l u s t r a t e s  th e  m u tu a l ly  e x c lu s iv e  r u l e  

fordata-associations. Note th a t tracks H  and 12 plus the fa lse  alarm 

hypothesis s t i l l  associate with report B however new tracks have been 

generated to  account fo r the  hypothesized tr a je c to ry  (see no te  on 

f ig u r e  3 .2 ) and t h a t  n o t a l l  a s s o c ia t in g  tra c k s  appear on a l l  

hypotheses.

The generated  tra c k s  r e f l e c t  the  physical re a lity  th a t i f  a 

track was hypothesized to  account fo r a data-association  on one le v e l 

of the  tre e  t±en the same track cannot have subsequent associatim s in  

the same measurement dataset. I t  i s  im portant to  keep in  mind th a t  

the  hypotheses a re  trac k s  fo r  some known ta rg e t. Hence 1, 4 .1 , and 

6.1 re f le c t d iffe ren t possible tracks for ta rge t 1.

In  a s im il ia r  way, once a track is  assumed as the origin of a 

report on a hypothesis, then th a t track cannot be the  assumed o r ig in  

of another rep o rt in  the  same observation datase t. For example, O , 

represents the fa c t  th a t  a t  le v e l A, Tl was the  assumed o r ig in ; a t  

le v e l B, wily track T2 (or a "spun" track from 2) can be hypothesized; 

and le v e l C rep re sen ts  the  f a c t  th a t  th e re  a re  no tra c k s  l e f t  to  

hypothesize as the origin of report C. To do otherwise would indicate 

tha t a ta rg e t can, a t  the same in stan t, f ly  m ultiple paths.

I t  should be obvious th a t  the  number of generated tracks and 

the number of t r a je c to r ie s  can become excessive i f  allowed to  grow 

unbounded. In an airborne ^ s ta n ,  e ff ic ie n tly  lim iting  the growth of 

h y p o th e tica l tra c k s  i s  a se rio u s  co n ce rn . The f a i l u r e  o f m ost 

multiple-scan correlation  algorithms i s  th e ir  in a b ility  to  deal with
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the  ra p id ly  growing number of trac k  t r a j e c to r i e s ,  especially whai 

missing reports and fa lse  alarms complicate the association process.

Tree Maintenance 

In most N-scan c o rre la t io n  a lg o rith m s , a measurement i s  

id e n t i f ie d  a f t e r  a constan t number of scans (N). I t  i s  clear th a t 

seme measurement a re  re a d ily  id e n t i f ie d  a f te r  only one ad d itio n a l 

sam ple w h ile  o th e rs  can never be reso lved . At a high le v e l, an 

adaptive hypothesis tree  i s  constructed th a t  id e n t i f ie s  re p o r t/tra c k  

p a i r s  c o n s is te n t w ith  the  se v e r i ty  of th e  i n i t i a l  and subsequent 

ambiguous re p o r t/ tra c k  p a ir s .  The t r e e  i s  bound, f i r s t ,  by th e  

breadth of the search and second, by the depth of the search.

The hypothesis tre e  functions prim arily as a FIFO b u ffe r w ith 

the  e a rly  re p o rts  toward th e  ro o t. As a rep o rt i s  resolved i t  is  

pushed out of the tre e . A measurement remains in  the tree  u n t i l  i )  i t  

i s  id e n t i f ie d  (c o r re la te d ) , i i )  a maximum number of sampling periods 

have passed or i i i )  room i s  needed for new measurements.

I n i t i a l l y  the  t r e e  i s  empty. When reports are entered in to  

the tree , the FIFO is  allowed to  grow u n t i l  i t  e i th e r  id e n t i f ie s  the  

f i r s t  report or encounters one of the bounds. Selection of the bounds 

i s  c r i t i c a l  to  algorithm  e ffe c tiv e n e ss  and to  th e  co n tro l of th e  

t r e e 's  o v e ra ll s iz e .  In s e le c tin g  th e  bounds th e re  are  important 

tradeoffs in  com putational demands, optim al hypothesis s e le c tio n , 

space consideration, and the man/machine in te rface .

Usually, th e  f i r s t  bound encountered i s  th e  bread th  of the  

t r e e .  Unlike Kervian and S a n d e ll[1979] or Reid[1979], the maximum
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bread th  of th e  t r e e  i s  not fixed, except fo r an absolute upper lim it, 

but i s  a d ^ i v e  to  the number of tracks not uniquely paired  during a 
sample.

When th e  maximum breadth of the tree  i s  reached and there are 

more tracks to  en ter, the most unlikely lypothesis on the new le v e l i s  

d e le ted  unless i t  i s  the only remaining branch. Often, as a re su lt of 

th i s  trimming, a rep o rt w ill  have a l l  nodes assigned to  the  same 

tra c k . Such a repo rt i s  termed fu llv  iden tified . A fu lly  identified  

r e p o r t  i s  the  a lg o rith m 's  f in a l  decision  on re p o r t/ tra c k  p a irin g  

(correlation). When, in the process of bu ild ing  a term ina l le v e l ,  a 

rep o rt becomes f u l ly  id e n tif ie d , i t  i s  dropped from the tree  and the 

appropriate track updated to  re fle c t th is  correlation . This se le c tio n  

of th e  most l ik e ly  a sso c ia tio n  a t  th e  term inal level i s  often very 

accu ra te ; e sp e c ia lly  when unforced. More g e n e ra l ly ,  t h i s  type  

c o rre la t io n  i s  in  rea c tio n  to  a c lu s te r of data associations th a t is  

too  la rg e  fo r  th e  h y p o th e s is  t r e e  to  a c c e p t and m a in ta in  i t s  

p rescribed  bounds. Hence, as the tree  pushes closer and closer to  i t s  

breadth bound, fewer d if f e r e n t  a sso c ia tio n s  can be re ta in e d . This 

approach i s  q u ite  c o n s is te n t w ith the  o v e ra ll adap tive  in te n t  of 

RAHTT.

The bread th  of the  t r e e  co n tro ls  the  number of hypotheses

considered. To provide fo r  a maximum number of u se fu l hypotheses,

th e re  a re  two maximum breadths, both adaptive to  the number of tracks

and s e v e r i ty  o f th e  c ro s s -a s s o c ia t io n s  en te rin g  th e  t r e e .  The

expansion bound, th e  la rg e r  bound, enables more hypotheses to  be

c o n s id e re d  d u rin g  th e  ad d itio n  of le v e ls  to  th e  t r e e .  Qice th e
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expansion of th e  tree  i s  complete for a ll  measurements in  the sairple, 

the likelihood of a l l  remaining liypotheses i s  calculated, and the t re e  

i s  reduced to  the  trim  bound, the  lower bound fo r b read th . This 

branch and bound method corresponds to  a breadth f i r s t  expansion of 

the tree  resulting  in  the growth of the  t r e e  by s e t  of hypo thetica l 

d a ta  a sso c ia tio n s . Hypotheses w ith low lik e lih o o d  functions are  

discovered and pruned.

A fter a l l  le v e ls  of the  t r e e  have been completed, the f i r s t  

level i s  examined to  see i f  i t  i s  fu lly  iden tified . I f  the  rep o rt i s  

f u l ly  id e n t i f ie d ,  i t  i s  pushed from the tree  and the new f i r s t  level 

i s  examined. This procedure continues u n t i l  a l l  f u l ly  id e n tif ie d  

reports are pushed from the tre e .

The maximum depth of the  tr e e  i s  a function  of the maximum 

time d e l^  permitted before fo rc ing  a p a irin g  and a func tion  of the 

number of reports having ambiguious associations. I f  the depth of the 

tr e e  exceeds th e  maximum allowed depth, then th e  f i r s t  l e v e l  i s  

id e n t if ie d  by using the most lik e ly  hypothesis and i s  pushed from the 

tree .

The id e n t i f ic a t io n  of a le v e l of the  hypothesis tree  during 

the reduction from the expansion bound to  the trim bound may mean th a t  

the  s e t  of hypothesized trac k s  can be reduced. Referring again to  

figures 3 .1a  and 3 .1b , i f  rep o rt A i s  id e n tif ie d  as track  T2 then 

o b v io u sly  th e  h y p o th es iz ed  t r a j e c t o r y  fo r  Tl to  A i s  in v a lid . 

Moreover, a l l  subsequent hypotheses based on the ex istence  of a track  

Tl as i n i t i a l l y  d e f in e d , i . e .  Tl to  re p o rt A, must have been 

determined as un like ly  (or le s s  l ik e ly )  and must have been dropped
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from the  tre e . In place of the old Tl, the next "spun" track of TL i s  

promoted to  T l. In th is  example, T4.1 becomes T l. A ll generated 

tracks surviving th is  in i t ia l  pruning are termed potential tracks.

The hypothesis t re e  determines the most like ly  correlation of 

ambiguious rep o rt/track  a sso c ia tio n s . I t  does th i s  by reac tin g  to  

both the  number and complexity of the  d a ta  associations. Ihe more 

ambiguious the data the wider the tree ; the more voluminous the d a te , 

the  deeper the  t r e e .  As th e  bounds are approached, the tree  becomes 

more selective  in  those date a sso c ia tio n s  i t  considers u n t i l  i t  i s  

forced to  declare the most lik e ly  association the correlation .

Ihe hypothesis tre e  makes only in i t i a l  decisions about ta rg e t  

t r a j e c to r i e s .  The u ltim ate  dec ision  about a ta rg e t 's  true path i s  

l e f t  to  the tra jec to ry  verifica tion  function.

Tn êst.ory. -Veiif ipation

Radar V é r i f ic a t i f  

The three t i e r  correlation scheme r e s u l ts  in  m u ltip le  trac k s  

w ith c o rre la tio n s  occurring a t  d iffe ren t times. In order to  account 

for the probability  th a t the correlated pair i s  incorrect, con jec tu ra l 

tra c k s  surv iv ing  th e  i n i t i a l  pruning become poten tial tracks and eire 

allowed to  compete fo r  fu tu re  c o rre la t io n s . Consider f ig u re  3 .2  

rep resen tin g  the  hypothesis t r e e  from figure 3.1b a fte r  the in i t i a l  

pruning and tab le  3 .1 , the corresponding track f i l e .

A p o te n t ia l  trac k  must c o r re la te  w ith in  a p rescribed  tim e 

period, the po ten tial track delay, or be dropped. Generally the
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6.1

3.2

6.2

4.1

F I G U R E  3 . 2  E x a m p l e  h i p o t h e s i s  t r e e  a f t e r  p r u n i n g  

TRACK FILE

ESTABLI SHED PO TE HT I Al TENTATIVE

1 3 . 2
2 4 . 1

E.2

_ _ _ _ _ _ _ _ _ _
B.1

TABLE 3.1
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minimum i s  th e  tim e delay  requ ired  by the  hypothesis t r e e ,  as a 

function of maximum depth, before forcing a correlation.

A p o te n t ia l  trac k  th a t  c o rre la te s  with a report any means 

i s  promoted to  a te n ta t iv e  track . Tentative tracks are subjected to  

ad d itio n a l te s ts  for i) convergence with the parent, i i )  quality , and, 

i i i )  duplicate tra je c to rie s .

T en ta tive  tra c k s  w il l  o ften  converge to  th e ir  parent track . 

Tests are made on the s ta te s  of the ten ta tiv e  tracks and th e i r  pa ren t 

tra c k s . Those ten ta tiv e  tracks found "close" to  the parent track are 

dropped as duplicate tra je c to rie s .

T en ta tiv e  tra c k s  su rv iv ing  th e  s im il ia r  tra jec to ry  te s t  are 

then compared with th e ir  parent track for quality . Simulation s tu d ie s  

show th a t  each of the  th ree  c o rre la t io n s  have a r e la t iv e ly  stab le  

success ra te . Track selection  i s  thus a p ro b ab ilis tic  problem. Each 

o f th e  th r e e  c o r r e la t io n s  i s  weighted in  p roportion  to  i t s  mean 

success ra te . This weighting is  tdie tra c k 's  quality .

The q u a li ty  of the  p a ren t trac k  and th a t  of the  te n ta t iv e  

track are compared and i f  the quality  of th e  te n ta t iv e  tra c k  exceeds 

th a t  of the  p a ren t trac k  by a p redefined  amount, th e  paren t track 

assumes the s ta te s  of the ten ta tive  track and the  te n ta t iv e  track  i s  

dropped.

I f  th e  q u a li ty  of th e  te n ta t iv e  trac k  does no t exceed th e  

p a re n t 's  by the required amount within a specified time, the ten ta tiv e  

trac k  d e la v . th e  p a ren t tra c k  and th e  ten ta tiv e  track q u a litie s  are 

compared and the track with the higher quality  becomes the established 

track .
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Once the  q u a lity  t e s t s  have been completed, the  te n ta t iv e  

tra c k s  a re  compared fo r  d u p lica te  t r a je c to r ie s .  Tracks w ith  th e  

low est qua lity  are dropped. When the quality  is  equal, the quality  of 

the parent track i s  compared and the  te n ta t iv e  track  of the  parent 

w ith the  h ig h est q u a lity  i s  dropped. I f  th is  te s t  f a i l s ,  neither of 

the ten ta tive  tracks i s  dropped.

U nfortunately , th e re  are many track geometries tha t can cause 

track  sw itch or a track  convergence. Figures 3 .3 ,  3 .4 ,  and 3 .5  

i l l u s t r a t e  one simple example. Unlike seme tracking systems, RAHTT 

has the added capability  to  use r e a l is t ic  IFF data  to  c o rre c t ta rg e t  

tra je c to rie s .
IFF Veriticaticxi

IFF v e r i f ie s  th a t  the  hypothesized track  i s  in  the  proper 

lo ca tio n  by attempting to  associate the track with the proper code and 

the IFF report. I f  the report and track associate and no other track s 

a sso c ia te  w ith  the  report, then the IFF report i s  used for smoothing. 

I f  the report assoc ia tes w ith more than one tra c k , a t  l e a s t  one of 

which has the  proper code, then  the  hypothesized trac k  i s  assumed 

correct. I f  the report does not associate with a code matching tra c k , 

then t e s t s  a re  performed to  determ ine whether or not the report is  

j i t te re d .

IFF j i t t e r  i s  manifested as an azimuth only distorticm  ana can 

be detected by an association te s t  fo r azimuth. Tie t e s t s  fo r  j i t t e r  

are necessary to  prevent the algorithm from detecting a missed
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a sso c ia tio n  and taking corrective action on a j i t te re d  report. When 

a report f a i l s  to  associate in  azimuth only, i t  i s  a probable j i t t e r e d  

report.

I t  i s  p o s s ib le  fo r  sw itch ed  or converged t r a c k s  to  be 

re flec ted  as azimuth only a sso c ia tio n  f a i lu r e s .  To prevent these  

c o n d i t io n s  from  g iv in g  co n tin u o u s f a l s e  j i t t e r  in d ic a t io n s ,  

consecutive  azim uth  on ly  a s s o c ia t io n  f a i l u r e s  a re  t e s te d  fo r  

c o n s is te n c y . I f  the  rep o rts  a re  found to  be w ith in  a reasonable 

o rien ta tio n , then a new track  i s  generated to  account fo r the  IFF 

p a th . The new track  i s  sub ject to  the same upgrading rules as radar 

generated tracks.

Converged or switched tracks are often detected by IFF. When 

re p o rts  f a i l  to  a s s o c ia te  in  a l l  d im en sio n s, th e  r e p o r t  more 

a cc u ra te ly  r e f le c ts  the  tru e  trac k  p o s itio n  than the hypothesized 

track. Under th is  conditicxi, the report i s  used fo r smoothing.

I t  i s  im portant to  remember th a t a ta rge t tha t i s  an in  area 

where unique a sso c ia tio n s  a re  no t p o ss ib le  has probably generated 

sev era l new tra c k s  to  account fo r  the  ambiguous data a s s o c ia t i f s .  

When these tracks are tested  against a code matching IFF re p o rt, each 

may f a l l  in to  a d if f e re n t  IFF t e s t .  The r e s u l t  i s  th a t  the  track 

c losest to  th e  tru e  track  w ill  have th e  b e s t IFF a sso c ia tio n  and, 

consequently , w il l  more accurately re f le c t the ta rg e t 's  path. Tracks 

th a t  do no t have as strong  an IFF a sso c ia tio n  w il l  ev en tu a lly  be 

dropped through the quality  te s ts .

IFF g iv e s  RAHTT the  c a p a b il i ty  to  recover from in c o rre c t 

c o r re la t io n s .  The t e s t s  devised are  sim ple y e t  very  e f f e c t i v e .
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F urtherf th e  way IFF i s  used i s  consistent with the overall adaptive 

te s t in g  framework employed f o r  ra d a r  r e p o r ts  and r e f l e c t s  th e  

algorithm 's a b ility  to  adapt on a more abstract level.

High JL&jsJl -fidapt atiLm
Adaptive hypothesis te s tin g , as employed in RAHTT, resu lts  in  

an algorithm tha t a d ju s ts  to  i t s  environment on a high le v e l .  The 

h y p o th es is  t r e e  and the  Kalman f i l t e r  s t a t i s t i c s  carry  w ith them 

knowledge of the past. These features have memory and hence decisions 

a re  made not simply on tn e  data  available, but on data and decisions 

of the past.

The hypothesis t r e e  reacts to  more than ju s t the positions of 

the radar reports; i t  reacts to  th e  volume of d a ta  by ad ju s tin g  th e  

b re a d th  of i t s  search . When the  l im i ts  of th e  t r e e 's  a b i l i ty  to  

compensate for report density i s  reached, the algorithm compensates by 

selecting the most lik e ly  data association of the terminal level.

The flow of data associations through the hypothesis t r e e ,  th e  

q u a lity  t e s t s ,  and th e  Kalman f i l t e r  s ta t i s t ic s  give th is  algorithm 

manory. I t  makes d ec is io n s  on hypothesized trac k  t r a je c to r ie s  by 

observing th e  flow of unique radar c o rre la t io n s , most lik e ly  radar 

correlations, terminal level co rre la tions, and IFF code m atches. I t  

ad ju s t i t s  hypothesized tracks over time to  re fle c t the best estimate 

of the ta rg e t 's  position based on th is  often conflicting data.
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MciorlthnLCcmT?2tatim>al Aspects

Ab n o ted  s e v e ra l  t im e s , RAHTT i s  designed to  work in  an 

airbo rne  system  where com puter re s o u rc e s  a re  l im i te d .  I t  i s  

appropriate to  b rie fly  examine the inipact on such a ^stem .

The RAHTT algorithm  i s  form ally presented in  appendix  A. 

Careful study w il l  show th a t  th e re  are  two main computational and 

space intensive sections.

The f i r s t  such section performs the generation and deleti(xi of 

hypotheses v ia  the  hypothesis t r e e .  The a lgorithm  used f o r  th e  

s im u la tio n  s tu d y  contained a tru e  t re e  s tru c tu re  however in  any 

re a l is t ic  explication, using one of th e  p resen t command and con tro l 

languages (JOVIAL and ADA), a m atrix  s tru c tu re  would be f a r  more 

e ffic ien t.

The c o s t of th e  hypothesis framework, whether tree  or matrix, 

i s  d irec tly  determined by the size  of tha t struc tu re . The size  of the  

hypothesis tre e  used by th is  algorithm is  minimized by the measuronent 

o r ie n ta tio n , rap id  e lim ina tion  of u n l ik e ly  h y p o th e se s , and th e  

correlation process vhich e ffectively  keep the tree  very small.

The second primary com putational sa v in g s  i s  ach iev ed  by 

ju d ic io u s trac k  growth. Each track beginning a process sampling must 

be tested  for association against each re p o r t . Com putationally, the  

a sso c ia tio n  t e s t  requ ire  more computer time than any other aspect of 

the processing cycle. Since any optimization of the association t e s t s  

ap p lies  equally  w ell to  any tra c k e r , the  measure of efficiency fo r 

association is  the number of tracks generated fcy the algorithm.
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In te re s t in g ly ,  the  Kcilman f i l t e r  i s  ca lled  exactly once for 

each association. Ey noting whether a smoothing has been accomplished 

fo r  t h i s  re p o r t / tr a c k  p a ir ,  i t  i s  p o ss ib le  to  e lim ina te  duplicate 

c a lls  to  the f i l t e r .  H us ra th e r  su rp ris in g  r e s u l t  means th a t  once 

again the  measure of th e  increased  computer resources i s  d irec tly  

proportional to  the number of generated tra c k s . L im iting the  number 

of t r a c k s  and th e  s iz e  of th e  hypothesis t r e e  a re  p re c ise ly  the  

approaches used in  developing th is  algorithm.

Extensive sim u la tion  s tu d ie s  have verified  the effectiveness 

of the Real-time Adaptive Hypothesis Testing T racker. These s tu d ie s  

are sunmarized in  the next chapter.
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CHAPTER IV 

EVALUATION OF THE ALGCRITBM

This chap ter documents, v ia  sim ula tion  studies, the in i t ia l  

ev a lu a tio n  of th e  R eal-tim e Adaptive Hypothesis T e s tin g  T racker 

(RAHTT). The goal i s  to  determine whether RAHTT provides su ffic ien t 

improvement over a N earest Neighbor s ty le  Tracker (NNT) to  w arrant 

fu rther research and tes tin g .

C om paring  t r a c k e r s  w ith  su c h  d i f f e r i n g  u n d e r ly in g  

philosophies, as have RAHTT and NNT, can be a somewhat demanding ta sk . 

NNT has the decided advantage, in a lin ear problem, of tending to  f a i l  

to  th e  c o rre c t  pa th . When m uiltip le associations occur, NNT se lec ts 

the association th a t most nearly  f i t s  th e  p red ic ted  track  p o s itio n . 

This co rre la tio n  process leaves some tracks without a correlation when 

the p ro b a b ility  of d e te c tio n  i s  le s s  than u n ity . I f  those tra c k s  

m issing correlations were previously well established then the lack of 

a correlation  has no e f f e c t  on tra c k e r  p>erformance. i . e . ,  NNT must 

c o r re la te  w ith  th e  wrong rep o rt befo re  track divergence or switches 

can occur. I t  fo llow s from th i s  re a so n in g  t h a t  perfo rm ance i s  

optim istic  fo r an NNT optimized for lin ear motion.

Likewise, j i t t e r  has l i t t l e  e ffe c t on tra c k  c o n tin u ity  fo r  a

lin ear NNT. The NNT se lec ts  the IFF report within the associaticxi
—60—



window w ith  the  proper code. Only ra re ly  does the proper se t of 

j i t te re d  reports occur th a t can defeat the association process.

RAHTT, on th e  O ther hand, may generate  a f a ls e  track  in  

response to  a j i t t e r e d  r e p o r t .  W ithout some means of making 

reasonable d ec is io n s  about th e  ex istence  of a j i t te re d  reply, RAHTT 

would generate numerous, IFF supported, tracks.

This b r ie f  philosophical discussion i s  not designed to  prepare  

the  reader to  accep t poor r e s u l t s .  C le a r ly  RAHTT m ust make a 

su b s ta n tia l  improvement in  performance over NNT to  ju s t i f y  future 

s tu ^ .  The standard  se lec te d  to  measure RAHTT performance i s  the  

performance of the optimized NNT over identical data. The measure for 

th is  evaluation is  track continuity which is  defined as the percentage 

of trac k s  completing a scenario within two miles of the actual ta rge t 

position and correlating on the  c o rre c t re p o r t . The performance of 

th e  RAHTT i s  s tu d ie d  in  term s o f i )  tra c k  c o n tin u ity  as radar 

detection ra tes vary, i i )  track continuity as c lu t t e r  ( fa ls e  alarms) 

and rep o rt d en sity  in c re a se s , and i i i )  track continuity fo r RAHTT in 

the presence of j i t t e r  with and without j i t t e r  log ic . The performance 

i s  expressed, where appropriate, as a percentage of tracks completing 

a s c e n a r io .  Care sh o u ld  be tak e n  to  n o te  on ly  th e  r e l a t i v e  

perfo rm ance o f th e  two t r a c k e r s  co n sid ered  since  the  abso lu te  

performance i s  appropriate only for those scenarios and cond itions of 

the te s t .

RAHTT i s  a complex algorithm with a multitude of parameters to  

be optim ized. Experimental conclusions about a l l  the  param eters 

a v a ila b le  in the algorithm and th e ir  in teractions are l e f t  for future
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study. The in ten tio n  of of the res t of th is  chapter i s  to develop a 

basic understanding of a few of the parameters. % is  i s  a reasonable 

approach. U ltim ately th is  algorithm, to  be of p rac tical use, must be 

extended to  include maneuvering, multiple ta rg e ts . I t  i s  during th a t  

extention th a t fu l l  study of the parameters i s  most appropriate.

Clearly the resu lts  of a tracking te s t  are conditioned by the  

scenarios^ To e lim in a te  b ias in g  th e  t e s t  r e s u l ts ,  f i f t y  randomly 

generated scen ario s were used as th e  t e s t  c a s e s .  A t e s t  c ase  

consisted  of ten  ta rg e ts . Each ta rge t within a scenario was randomly 

placed w ith in  a p rescrib ed  area  and given a random head ing  and 

v e lo c ity . Each scenario was then executed three times using standard 

s im u la tio n  te c h n iq u e s ;  th e  mean of th e  th r e e  runs be ing  th e  

performance of the  tra c k e r  a g a in st th a t  scenario. Hie te s t  resu lts  

reflected  in  figures and tab les for the remainder of th is  chapter were 

determined from the f i f ty  scenarios.

Tsst Results
As discussed  in  chapter I I I ,  RAHTT has several aspects to  itzs 

memory. Like other m ultiple-scan algorithm s, RAHTT genera tes tra c k s  

v ia  a hypothesis te s t in g  framework (tree) th a t accounts fo r multiple 

associations. Hiese hypothesized trac k s  rep resen t th e  most l ik e ly  

t a r g e t  p a th s  based  upon those s t a t i s t i c s  generated  by examining 

samples of measurement/track a s so c ia tio n s . Im portant questions to  

answer immediately a re  how la rg e  must th e  hypothesis t r e e  be fo r  

e ffic ien t corre lation  and hew many samples of data must be gathered to  

provide reasonable performance.
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Figure 4 .1  shows the  e f f e c t  on c o rre la tio n  as the breadth of 

the  hypothesis t r e e  i s  increased. The trim  fac to r (bound) is  se t as 

m u ltip le s  of th e  number of reports and tracks in  the c lu ste r with the 

number of established tracks in  the c lu s te r  forming the  lower bound. 

Not su rp r is in g ly , the more hypothesized data associations in  the tree  

the more lik e ly  a  correct correlation .

The depth of th e  t r e e  p a r t i a l ly  d e fin es  the  time delay in  

determ ining the  s e t  of p o t e n t i a l  t r a c k s  and , c o m p u ta tio n a lly , 

determ ines the likelihood of the track s e t .  Tests were conducted with 

th ree  t r e e  d e lay s: i)  a zero-scan  delay which reso lv es th e  c ro s s  

a sso c ia tio n s  based on the  current scan of data , i i )  a one-scan delay 

which uses the  p re sen t and previous d a ta  a s so c ia tio n s , and i i i )  a 

two-scan delay. Additionally, a  zero-scan tre e  makes a l l  decisions on 

track tra jec to ry  in  the current scan.

The r e s u l ts  v e r ify  the  work of S inger, Sea, and Housewright 

[1974]. T heir work showed th a t  a two-scan memory t r e e  perform ed 

n e a r ly  as w e ll  as  an o p tim a l, a l l - s c a n s ,  memory. An im portant 

c o n c lu s io n  from  t h a t  work and v e r i f i e d  by th e  t e s t s  in  t h i s  

d is s e r ta t io n  i s  th a t i t  i s  unnecessary to  re ta in  more than two samples 

of data to  approach optimal estim atim  of th e  l ik e ly  tra c k s  and good 

performance can be obtained with a one-scan memory.

Ihe in ten tion  of the three level co rre la tion  scheme, described  

in  th e  p rev ious c h ap te r, i s  to  reserve fo r the hypothesis tre e  those 

track associations not unique thereby lim itin g  th e  number of rep o rts  

p la c e d  in  th e  t r e e .  To minimize th e  depth of th e  t r e e  a second 

function, th a t of qua lity , examines the se t  of a l l  tracks and makes
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decisio n s based on the frequency and type correlation for a parent and 

i t s  generatiais of tracks.

For th e  t e s t s  conducted in  th is  d is s e r ta t io n  the  q u a lity  

function proved a powerful tool for determining true target tra je c to ry  

(see chapter I I I  for a discussion of the quality  function). Referring 

to  figure 4 .1 , note tha t any two c o rre la t io n s  fo r  a one or two-scan 

t r e e  w il l  produce a probability of above 80%. Testing indicated th a t 

indeed a two c o rre la tio n  q u a lity  d iffe ren c e  was s u f f ic ie n t  to  make 

most track  decisions. Ih is  success ra te  v e rif ie s  the resu lts  obtained 

by varying the ten ta tive  track delay. Extending the  te n ta t iv e  track  

delay , the  time allowed fo r  the second correlaticai, beyond a certain  

point has minimal e f f e c t .  The improvement over time re f le c te d  in  

f ig u r e  4 .2  i s  a r e s u l t  o f th e  few c a se s  where two tra c k s  were 

suH »rted by c o rre la tio n s  fo r  a tim e before  one lo s t  c o rre la tio n . 

More ty p ic a l ly ,  the  algorithm is  able to  make very rapid decisions on 

track quality  keeping the number of tracks a t a minimum.

The depth and breadth  of th e  hypothesis tree  and the quality  

function define the  memory of RAHTT. This memory enables RAHTT to  

re c o v e r from wrong c o rre la tio n s  where NNT f a i l s .  This approach 

demonstrates considerable improvement over NOT.

Kerf pmance .Compari spn 
RAHOT s u b s ta n t ia l ly  out performs NOT in  a l l  te s ts  ccnducted. 

Figures 4.4 and 4,3 show the re la tiv e  performance of the  two tra c k e rs  

fo r  v a ry in g  ra d a r  d e te c tio n  ra te s  w ith  and w ithout f a ls e  alarms 

re sp e c tiv e ly . The curves f o r  NNT compare fa v o ra b ly  w ith  t h a t

calculated by Bar-Shalom and Tse[1975].
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R e la te d  to  th e  perform ance i s  th e  com putational burden 

required to  achieve the  improved performance. The reader needs to  

keep in  mind th a t RAHTT resorts to  the Ir/pothesis tree  only when there 

are cross a s so c ia tio n s . At any one time th e re  are  r e la t iv e ly  few 

c lu s te r s  of tra c k s  u t i l i z in g  independently constructed  hypothesis 

trees [Trunk and Wilson, 1980]. Table 4 .1  shows th e  increased  track  

load a t  various points in  the RflHlT algorithm as the nuirber of reports 

per association window increases. Comparisons with the  p ro b a b il is t ic  

d a ta  a s s o c ia t io n  f i l t e r  (PDAF)cf Bar-Shalom and Tse,[1975] are  

re la tive ly  meaningless. PDAF t e s t  r e s u l ts  a re  fo r  a s in g le  ta rg e t  

w ith  varying amounts of c lu tte r  while RAHTT is  a m ultitarget tracker. 

Further, there are substantial d ifferences in  the  way the  s t a t i s t i c s  

were gathered . N evertheless, i t  i s  p o ss ib le  to  get a fee l for the 

computational requirements by examining tab le  4.1.

A true track sp litt in g  algorithm (TSA) genera tes a new track  

fo r  each m u ltip le  a sso c ia tio n . Over twenty scans, the length of the 

scenarios used to  develope the date for tab le  4.1, a TSA can generate 

up to  104 trac k s  (see(Bar-Shalom and Tse, 1975]). Table 4.1 shows the 

increased  track  load a TSA would g e n e ra te  in  a scan  u s in g  th e  

association techniques of RAHTT.

While th e  track  loading  and performance of RAHTT are quite  

sa tisfac to ry  the overall effectiveness can be s u b s ta n tia l ly  improved 

ty  adding IFF sensor measurementis.
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When un j i t te r e d  IFF reports are processed by RAHTT the tracker 

performance approximates the p ro b a b ility  of IFF d e te c tio n . For the  

scenario s te s te d  the  performance i s  approximately 92% for a l l  radar 

detection ra te s .

When j i t t e r e d  r e p o r t s  a re  in c lu d e d  th e  o v e ra l l  RAHTT 

performance without the j i t t e r  detection and correction te s ts  declines 

to  approxim ately th e  radar performance. Ih is  happens because RAHTT 

only confirms track/IFF p o sitio n a l re la tio n sh ip s  w ithout the  j i t t e r  

te s ts .  Thus a j i t te r e d  report cannot a lte r  a track .

The j i t t e r  d e te c t io n  and c o r r e c t io n  t e s t s  improve th e  

performance to  approxim ately 88% regardless of radar detecticxi. %e 

success ra te  i s  lowered because there are always a few tracks s t i l l  in  

the process of being corrected a t the end of the simulation.

These IFF j i t t e r  t e s t s  and c o rre c tio n s  are  very sim ple and 

pow erfu l t o o l s  fo r  dealing  w ith low to  moderate j i t t e r .  F lig h t 

te s t in g  has been conducted on th ese  j i t t e r  t e s t s  w ith  e x c e l le n t  

re su lts .

Conclusions

RAHTT dem onstrates a su b s ta n tia l  improvement over NNT fo r  

t e s t s  on sp e c if ic  and random sc e n a rio s . Trie size of the hypothesis 

tree  and the tracks generated a re  su c ce ss fu lly  lim ite d  by th e  th ree  

t i e r  co rre la tion  process and the quality  te s ts .  Effects of IFF j i t t e r  

are lessened by consistency checks on azimuth and orientation .
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CHAPTER V

CONCLUSIONS AND AREAS PCR FUTURE RESEARCH

The Real-time Adaptive Hypothesis Testing Tracker developed in  

t h i s  d i s s e r t a t i o n  i s  d e s ig n ed  s p e c i f i c a l l y  f o r  an a irb o rn e  

surveillance system. To meet the lim ited ccmputaticxial resources, th e  

unique environm ental demands, and the  o p e ra tio n a l requirements, an 

orig inal three level correlation stra tegy  i s  used to  reduce the  s iz e  

of the  hypothesis te s tin g  tre e . P robab ilities of missed or incorrect 

correlations are accounted for by a quality  system based upon th e  type 

and frequency of c o r re la t io n s . Various pruning c r i t e r i a ,  most of 

which are found in  the l i te r a tu r e ,  a re  app lied  to  fu r th e r  l im it  the  

growth of the hypothetical tracks.

IFF i s  used as a means of verify ing  and correcting incorrect 

tra je c to rie s . Consistency and orientation te s ts  lessen  th e  impact of 

lig h t to  moderate j i t t e r .

RAHTT i s  a s u b s ta n t ia l  improvement over a n e a re s t neighbor 

tra c k e r  and p re lim inary  r e s u l ts  dem onstrate i t s  f e a s i b i l i t y  f o r  

po ten tial operational implementation.

T h e re  rem a in  s e v e r a l  a r e a s  f o r  s tu d y  b e fo re  a c tu a l  

implementation i s  possible.

The most obvious area  i s  the extension to  maneuvering f l ig h t .

While th e  techniques and m athematics of M ultip le  Model E stim ation

in su re  th a t  t h i s  ex tension  i s  f e a s ib le ,  th e  a c tu a l implementation

remains to  be determined. Certainly the association process w i l l  have
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to  be m odified to  inc lude  a window modeled fo r  a irc ra f t  maneuvers. 

Likewise, th e  Kalman f i l t e r  w il l  have to  be changed to  a lso  model 

n o n lin e a r  m o tion . N e ith e r  o f th e s e  problem s i s  concep tually  

s ig n ifican t. I t  i s  im portant to  note th a t  th e re  i s  no requirem ent 

th a t  a l l  tra c k s  u t i l i z e  th e  same f i l t e r  or a sso c ia tio n  mechanism. 

This would perm it varying a sso c ia tio n  and f i l t e r in g  approaches to  

d if fe r in g  data environments. Che obvious approach would be to  u t i l iz e  

a Kalman f i l t e r  optimized fo r maneuvering f lig h t only when th e re  i s  a 

p o s s ib i l i ty  the  ta rg e t  i s  a c tu a lly  in  a maneuver. At o ther times 

su itab le  performance could be obtained w ith a le s s  ex ten siv e , and, 

consequently, le ss  computationally demanding f i l t e r .

The Kalman f i l t e r  i s  well suited for p a ra lle l computation. By 

d iv id ing  th e  t ra c k /re p o r t  p a irs  in to  independent c lu s te rs , RAHTT has 

provided th e  foundation fo r  a p a ra l le l  or m ultip rocesso r system . 

There remains a s ign ifican t amount of work in th is  area, especially  in 

the joining of previously independent c lu s te rs .

F in a lly , th e re  remains the problems associated with an actual 

implementation. While g rea t care was taken in the design and te s t in g  

to  acco u n t f o r  known im plem entation  problem s, th e re  a re  always 

unanticipated problems.

On a higher lev e l, th is  d isse rta tion  demonstrates a need fo r a 

real time computational language th a t perm its f le x ib le ,  n a tu ra l  t r e e  

s t r u c tu r e s  such as found in  LISP. The a d d itio n  of some of th e  

a r t i f ic ia l  in te lligence  features of LISP would greatly  enhance RAHTT's 

a b i l i ty  to  deal w ith more d iscrete  or unique information. IFF i s  txie 

such a ttr ib u te  th a t could be of g re a t value i f  i t  were more e a s i ly

-7 3 -



bound to  th e  hypothesized tra c k s . When the  extensions are made to  

maneuvering f l i g h t ,  a i r c r a f t  type and performance would a ls o  be 

im m ediate c a n d id a te s .  The p o te n t i a l  b e n e f i t s  o f adding more 

a r t i f ic ia l  in te lligence to  a computational language would permit RAHTT 

to  be the tru ly  flex ib le  tracker desired.

The tra c k e r  developed in  th is  d i s s e r t a t i o n  re p re s e n ts  a 

s ig n if ic a n t  improvement in  a irb o rn e , m u lti ta rg e t tracking over the 

p resa it nearest neighbor a lgorithm . RAHTT provides improved track  

c o n tin u ity  in  a l l  a reas of ta rg e t and report density, probability  of 

rep o rt d e te c tio n , and s u s c e p ta b i l i t y  to  j i t t e r e d  r e p o r t s .  I t  

accomplishes t h i s  improvement with modest increases in  computaticxial 

and space reso u rces . F u rth e r, RAHTT was designed w ith  p o te n t ia l  

so ftw are , computer hardware, and new sensor systems in  mind to  allow 

rapid and flex ib le  upgrading.
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APPENDIX A 

THE RAHTT ALGORITHM 

DEFINITIONS

k Time index

2, . A r a d a r  r e p o r t
K , 1

M̂  Number o f r a d a r  r e p o r t s

Z(k) = i  = 1 , 2 , . . .  ,M^

{tq} A ll e s ta b l i s h e d  t r a c k s  

A ll t e n t a t i v e  t r a c k s  

{Tp} A ll p o t e n t i a l  t r a c k s

T k  =  { T o  U u  T p }

{8%} A s s o c ia tio n s  fo r  r e p o r t  i .  & -- tra c k (s }  a s s o c ia te d  w ith  
i£ o T k

0
{6-} A s s o c ia t io n s  fo r  t r a c k  S,1
A C lu s te r  in d e x . A c lu s t e r  i s  a g roup ing  o f a s s o c ia t io n s

th a t  have e i t h e r  r e p o r t s  or t r a c k s  in  common.

C lu s te r

A ll h y p o th e t ic a l  t r a c k s  fo r  i  

Term inal h y p o th e s is  indexed  by m

In d iv id u a l  te rm in a l  nodes 

^n ^  h y p o th e s is  o f  d a ta  a s s o c ia t io n s

^ y. That p a r t  o f formed d u rin g  k

A le v e l  o f  th e  t r e e
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f o r  k = 1 ^  “ d o ;

/*Form a s s o c ia t io n s  v ia  e q u a tio n s  C hapter I I * /  

fo r  i  = l  ^  do ; 

fo r  j = 1 to

form a s s o c ia t io n s  {8^} and {6^}; 

end j ; 

end i ;

fo r  i = l ^  Mj, /* lo o p  th rough  r e p o r ts  * /

i f  I {8^1 I = 1 and |{6^}1 = 1 then  ^ ; /*  look ing  * /

/* f o r  unique a s s o c ia t io n s  * /

SMOOTH Ci ,&);

Qjĵ  = +Qg: /* Q u a li ty  o f Track + Q u a lity  of * /

/ * Unique C o r re la t io n  * /

end u n iq u e ;

e ls e  i f  {6^} = 0 th en  nex t i ; / * IP NO ASSOCIATIONS•••* /

/*NEXT REPORT */

e ls e  i f X =0 then  do ; /*  form f i r s t  c lu s t e r  * /

A = l ;

Z, = { e i} ;

end ;

e ls e  fo r  each A /* IF  A REPORT OR TRACK IN s j

OR 8& * /

IF{Z^} n {ej}  /  0 OR {z\ }  n {e^} / 0 /*  add  t o * /

/ * CLUSTER*/

th en  = {Z^ U e j} ;

end ;
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e ls e  do; /*  ADD NEW CLUSTER * /

A = X + 1 ;

2 5  = ( e j ) ;

end ; 

end loop on i ;

/*  EACH CLUSTER IS FORMED INTO SUPERCLUSTERS BASED * /

/*  ON COMMON TRACKS AND EXISTING TREES ARE REFORMED * /

/*  p ro c e ss  each zjj INDEPENDENT CLUSTER

fo r  each /*  each can be so lved  by independen t * /

/*  p ro c e s s o rs  * /

fo r  each i in  Zy do ;

^ i  ~ ^ 0}; /*ADD f a l s e  a larm  h y p o th e s is  * /

i f  m = 0 then  do ; /*  i f  f i r s t  le v e l  t h i s  k * /

m = I ;

~ /*  add new te rm in a l le v e l  * /

end ;

e ls e  do ; /*Add new le v e l  o b se rv in g  m u tua lly  * /

/* e x c lu s iv e  d a ta  * /

/*ASSOCIATION•* •See H ypo thesis G en e ra tio n * / 

/*and  d e le t io n  C hapter I I I  

fo r  each  ̂ 2 c any
kC rea te  a new and R eplace Z in  0^ ; w ith  

new Tp;

fo r  each form new by ;

/*New T erm inal s e t s  0^*^ a re  formed by * /

/* s e t t i n g  to  n u l l  then  fo r  each te rm in a l  * /

/*NODE ADD ALL TRACKS in  ex cep t th o se  * /
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/ ^ t r a c k s  a lre a d y  on formed d u rin g  k ,

then  u n a i i  ĵ }

/ * I f  te rm in a l le v e l  exceeds the  expansion  * /

/ * bound reduce th e  most u n l ik e ly  * /

/^ e x c e p t i f  i t  i s  the  l a s t  c h ild  o f p rev io u s  */
/*  n?*"' k

w hile  > EXPg DROP(Lmin^k^n th a t  i s  n o t

l a s t  c h ild  of ;

^  NOT SMOOTHED IN k SMOOTH 

m=m+l;

end ; /*  A le v e l  has been added to  t r e e  */

/* ALL ASSOCIATIONS IN TREE. REDUCE TO THE TRIM BOUND*/ 

w h ile  { { n p l  > Tg DROPiLmin 0 % '" ) ;

/* IF  i t  i s  tim e to  id e n t i f y  le v e l  1 or le v e l  1 i s  * /

/ * f u l l y  i d e n t i f i e d  push i t  o f f  t r e e  * /

IF f u l ly - i d e n t i f i e d ( n ^ )  then

increm en t Q u a lity  5 PUSH from T ree ;

/* S e le c t  most l ik e ly  h y p o th e s is  in  t r e e  and use  * / 

/ * th a t  h y p o th e s is  to  s e l e c t  th e  le v e l  1 c o r r e l a t io n * /  

e ls e  DO WHILE Tree to  deep;

Find hmax C"*);
C o n s tru c t t r e e  based  on ;

Push Lead le v e l  o f f  T ree;

Increm ent Track Q u a lity ;  

end ; 

end c lu s t e r ;
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/*RADAR REPORTS PROCESSED. t ,  REFLECTS NEW * /
K p

/*and  e x i s t in g  T ra c k s . P ro cess  IFF * /

For A ll IFF R eports and a l l  T|̂  do ;

I F r e p o r t  and t r a c k  codes match do ;

IF r e p o r t  AND T rack A sso c ia te  th en  Smooth; 

e ls e  do; /*  J i t t e r  T es t * /

IF AZIMUTH ONLY ASSOCIATION F a i lu r e  then  

IF P rev io u s  code m atching r e p o r t  a ls o  

AZIMUTH ONLY FAILURE th en  

2E COMPATIBLE ORIENTATION AND DISTANCE 

START New T rack ; 

end p re v io u s  AZIMUTH ONLY; 

end AZIMUTH FAILURE;

IF RANGE only  f a i l u r e  SMOOTH;

STORE(IFF r e p o r t ] ;

/*  P ro c ess  * /

FOR each Tq and each c h i ld  o f ;

IF Q u a lity  o f < Tq by a t  l e a s t  Upgrade

minimum th en  

Tq T.J, and Drop ;

%F Q u a lity  o f  Tq > by a t  l e a s t  Upgrade

minimum th en  DROP t^,;
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IF Ty and Tq have s im i la r  t r a j e c t o r s  d ro p (r )  

w ith  low er Q u a lity  Tg ^ r^  i f  n e c e s sa ry ;

IF Ty c o r r e l a t io n  tim e to  o ld  ( t e n t a t i v e  

Track d e la y ) DROP ( ty ) ;  

end ;

FOR each Tp do ;

IF T has n o t had c o r r e l a t io n  w ith  POTENTIAL 
—  P

TRACK Delay th en  DROP (T p);

end ;

FOR ALL do;

IF any t^ have s im i la r  p a th s  th en  do; 

DROP(Ty) w ith  low er Q u a lity ;

I F Q u a lity  eq u al th en  DROP w ith  Tq 

hav ing  h ig h e r  Q u a lity ;  

end ;

end ;

end RAHTT;
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APPENDIX B

For a v a r ia b le  A, = Var A = E(dA^)

X = R Cos6 dx = Cos 6 dR - R S in  8 d8 

y = R Sin6 dy = Sin 0 dR + R Cos 0 d0

Var X = E(dx^) = E[ (Cos9 dR - R S in 0 d 0 )^ ]

2  9  ?  ?  7= Cos“0 + R^Sin 0 Oq

Var y = E[dy^] = E[ (S in 0 dR + R Cos 9 d9)^]

= Sin^0 + Ge^R^cos^

C o r r e la t io n  C o e f f ic ie n t
E(AB)

^AB °AB^^A°B

P =

/ e (A^) / e (B^) 

E(dxdy)________

vÆ Td?) /E (dy^)

u s in g  p r e d ic te d  azim uth 9 and p re d ic te d  range R

E (dxdy) = Sin0 CosF E(dR^) - S inF  CosF R^E(d0^)

+ R(CosZ 0 - S in % ) E (dRd0)

S ince 9 and R a re  in d ep en d en t l a s t  term  = 0

E (dxdy) = (a^  - R^Og) Sin0 CosF

(On - SinF CosF
p =   1 ---------------------r ----------

(Var x )^  (Var y)
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Using predicted asimuth 6, x, and ÿ the predicted range ÏÏ is 

R = X cosF + ÿ sinF

where

X = X old + xAt 

At = t report - t smoothing

y

\ T :

X
CosF = A/x A = X cosF

Sin9 = B/y B = y SinF

R = A + B = X cosF + y s in F  

then  dR = S inF  dy + CosF dx

r e l a t e s  the  changes in  x and ÿ  to  changes in  R w hile  h o ld in g  F 

c o n s ta n t .

Using p re d ic te d  R, x , and y 

X = R cosF

ÿ  = R s in F

F = ta n   ̂ y /x

(d ÿ / I  -
dë  = ------------z:#—  = ;  y

1 '

X _ X dy - y dx 
x^+y^ x^ + y^

de

R*cos e d y  - R* s in  8 d x " 
R^

cosF dy - s in e  dx 
R
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From

R = X C O S 0  + y s in  W

^  ^  cosë’ + dÿ/dt  sinF

which r e l a t e s  changes in range to  changes in v e l o c i t y  while  

holding F constant .

C a lc u la te  ex p ec ted  v a ria n c e  in  p re d ic te d  range E(dR^) 

based on ex p ec ted  v a r ia n c e  in  p r e d ic t io n  x and ÿ  E (dx^)5E (dÿ^)

where

dR = Cos0 dx + SinG dy 

- E[ (CosG dx +

= CosG^ E(dx^) +Sin^0E(dy2)  +2 SinF As F E(dxdÿ)

E(dR^)  ̂ E[ (Cose dx + SinG dy)^]

E(dx“ ) = EtX^id + xAt)Z]

= E[^old^ + 2AtE(x^^jX) + At^ E(*2) 

E(dy“) = E[yZ^^] + 2AtE(yQijÿ) + At^E(y^)

E(dxdy) = p/E(dx^) /E(dy^)

ol  - R^Oa SinF CosF

(v ar x) (v a r y)^

Then the  range window i s

Wr = K^(o^ + E(dR^))

S i m i l a r l y

E(dG^) = [Sin^ FE(dy^ )  + Cos“ FE(dx^ )  - 2 SinFCos0E(dxdy)]R^ 

Wq = K2(Og + E(dF^))

and
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E( = Sin^eEC + Cos^eEC + 2 S i n 0 C o s e E ( ^  ^  )

wi th ______ _____

E ( a i  3 t  ) '  p

WR = + E( ^ § - )  )

Where K^, K2 , and a re  sigma we ight ing  f a c t o r s .
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APPENDIX C

SIMULATICN ALGORITHM

/*  Hie simulatic»! algorithm develops scenarios o r reads scripted ♦/

/* scenarios and generates report positions based on the tru e  */

/*  ta rge t position ♦/

Procedure Main; /* Driver routine */

For 1=1, forever do;

Call SETUP; /* Read and create data */

For J= l, nunrt>er_of_siniulations /* Simulations per scenario */ 

For N=l, nuni3er_of_scari3 /* Scans per scenario */

I f  N >1 then do;

Increment time by sample ra te ;

Call True_targetjgenerator; 

end.

Call Apparent_target_generator;

I f  N=1 do in itia liz a tio n ; /* Kalman f i l t e r ,  housekeeping */ 

Call Radar_report_generator;

Call IFF_report_generator;

Call RAHTT; 

end N;

I f  J<  nuirber_of_simulations reset track positions to  s ta rtin g  

positions for th is  scenario; 

end J; 

end I;
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P ro œ d u re  SETUP;

/* Setup Is used to  input data for control over the nimfcer, length, */ 

/* and charac teristics of scenarios. To avoid excessive inputs ♦/ 

/* HHTRAN namelists are used to  modify only the desired data */

I f  generating random scenarios Call Random_Scenario; 

e lse  do;

Read inputs and modify data base;

I f  input modifies scenario generation

I f  random scenarios to  generate Call Randcn^Scenario ; 

e lse  for eadi track Read X, Y, velocity, and heading; 

end;

I f  input = STCP then STOP;

I f  input = end_read then EXIT read loop; 

end read loop;

If  tentative_track_delay = 0 then

Tentative_track_delay = (3.3 * sample ra te );

I f  Potential_track_delay = 0 then

Potential_track_delay = Scanjdelay * sanplejrate; 

end SETUP;
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Procedure Random_ocenarlo; /*  G enerate a  sc e n a rio  * /

/♦ Upon input cotimand a random scenario is  created. On ♦/

/♦ subsequent c a lls  to  setup random scenarios are generated ♦/

/♦ u n til  the number of required scenarios have been created */

/* or u n til  overriden */

Calculate location and dimension of te s t  area; /*  Tests were conducted *

/* 140gXgl50, O^YglO *

Calculate scenario track s ta r t  area; /* Target s ta r tin g  positions are *

/* uniformly spaced in a triang le  *

/* 145^X^150, s g y g io  ♦

For 1=1, nvn±>er_of_Tracks desired; /* usually 10 *

Calculate X and Y position of track;

Calculate heading of track; /* random 105-180 degrees *

Calculate velocity of track; /* random 200-500 KTs *

end I;

end Random Scenario;
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Procedure T rue_T arget_G enerator ; /♦  TIG * /

/♦ tig  moves the actual ta rge t position to  the new true  */

/* position fo r th is  sampling using standard equations of moticMi */

end;

Procedure Apparent_Target_Generator; /* ATG */

/* ATG generates the apparent ta rge t positicxi by corrupting */

/* the tru e  ta rge t position */

For each true  track to ;

/* For the radar reports */

Apply Guassian d istribu ted  e rro r to  true  azimuth; /*|J@=0 (^= .005 radians ♦/ 

Apply Guassian d istribu ted  e rro r to  true  range; /*|ij^=0 .1 NM */

Apply Guassian d istribu ted  e rro r to  true  range ra te ; /*M^=0 lOkt */

/* For IFF reports */

I f  not jitter_allcw ed  apply Guassian d istribu ted  e rro r to  true 

azimuth; /*Pg=0 %= .005 radians */

Apply Guassian d istribu ted  erro r to  true  range; /*M|̂ =0 .25 NM */

I f  jitter_allow ed and th is  sliould be a j i t te r e d  report;

Apply j i t t e r e d  azimuth and azimuth b ias; 

e lse  i f  jitter_allcw ed  apply Guassian distributicxi to  

true  azimuth;

end ATG;
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Procedure  Rari8ar_Report_Generator;

Determine nurber and locaticxi of fa lse  alarms;

/* False alarms are Possion d istributed  with mean 15 for te s t  and */ 

/*  uniformly d istribu ted  in te s t  area */

For a l l  reports detected and fa lse  alarms;

Create a raw buffer of reports with the reports azimuth ordered; 

end;

end Radar__Reportj3enerator;

Procedure IFF__Report_Generator;

For eadi apparent IFF report detected;

Create a raw report buffer; 

end;

end;
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