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A REAL~-TIME MULTITARGET TRACKER BY ADAPTIVE HYPOTHESIS
TESTING FOR ATRBORNE SURVEILLANCE SYSTEMS

CHAPTER I
INTRODUCTION

In the last decade a considerable volume of literature has
developed on recursive 'a.lgorithms. Because of the variety of military
and civilian applications, ranging from ballistic missile defense to
harbor traffic control, and because of the diversity of sensors,
extending from radar to optical scanners, numerous algorithms have
been developed for specific purposes. These algorithms are generally
based on Kalman filter theory with a vast body of research in the
various extensions and suboptimizations necessary for real time
applications. These algorithms are generally successful for a specific
application which is often a single-target, single sensor system or a
multiple-target, single sensor system.

In airborne surveillance systems, tracking multiple targets
with a variety of sensors is a requirement. 1In target tracking there
is often uncertainty associated with the origin of an observation as
well as measurement inaccuracy, usually modeled as additive white
noise. This uncertainty can result from clutter, false targets, or
track densities which preclude a positive target/observation pairing.

lection of the wrong measurement as input to the tracking algoritlms



can have disastrous effects on track continuity, maneuver response,
and smoothed parameters.

One means, in theory, of reducing the observation uncertainty
is to equip aircraft with transponders which reply to interrogation
with range, azimuth, and a track signature that can be unique. This
track signature, which can be changed by the pilot ursn request,
offers positiire proof of the observation's origin and can be accepted
or rejected as input to the tracking algorithm depending upon whether
or not it matches the code assigned in ¢he database.

Airborne surveillance systems employ transponder technology
with less success than ground based systems. As early as 1977,
operators aboard the Airborne Warning and Control System's E-3As
reported significant difficulty in maintaining track continuity for
tracks with beacon reports as the primary measurement. This was in
direct conflict with the experience of ground based control systems
and underscored the change in environment and the role of the airborne
platform. New environmental and operational demands present unique
tracking problems.

This dissertation presents the framework for a new
multitarget tracker specifically designed for an airborne surveillance
platform. This Real-time Adaptive Hypothesis Testing Tracker (RAHTT)
is influenced by the sensors available, several previous tracker
algorithms, the environment of an airborne system, and the tactics of
modern high performance fighters. This first chapter will examine
each of these factors in order to provide a clear, consolidated

starting point for the development of the RAHTT algorithm.
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The pertinent mathematics are reviewed in the second chapter.
Unlike more ad hoc algorithms, RAHTT is based on a snlid mathematical
foundation. As will be discussed in chapter III, this mathematical
basis ailows an initial simplification of the problem without concern
for the eventual extensions.

In chapter III the concepts and important details of RAHTT
are examined. Because the algorithmn is rather complex, considerable
effort is made to explain the concept of RAHIT.

The results of RAHIT are evaluated in chapter IV. As will be
discussed more thoroughly then, it is difficult to evaluate RAHIT and
other existing algorithms due to their philosophizai 3:fferences.

Finally, chapter V will give the conclusions of this work and
the remaining extensions necessary to implement RAHTT in an airborne

system,
Sensor Fundamentals

Radar

Development of background information logically begins with
the sensor systems. Sensors are divided into two classes, those that
provide number-of-targets type information as well as the location of
each target and those that provide some form of identification about
the originating target. Radar is typical of the fommer and IFF, of
the later. The track of a target can be determined by discrete
measurements taken from scan to scan. The quality of such a track is

dependent on the time between observations, the accuracy of the



sensor, and the number of other targets and reports in the vicinity
[Skolnik,1980:183].

Radar provides azimuth, range, and, depending upon radar
type, range rate (radial velocity) and altitude. Associated with
these parameters, there are measurement errors, generally assumed as
additive white noise, which must be reduced by some estimation
technique. Some form of Kalman filter is the preferred estimation
technique due to its low memory requirement and recursiveness.

In addition to these parameters for true reports, radar also
returms false alarms. A false alarm, wnich has a Poisson distribution
[Skolnik,1980:123-129], results when noise exceeds the minimum
detectable signal. To a tracking algorithm, a false alarm is
indistinguishable from a true measurement.

Potentially, the most powerful tool for discriminating
between targets in radar tracking is range rate. When coupled with
range, rande rate provides exceptionally accurate maneuver and heading
information. Discounting engine modulation effects, which may be
accurate enough for aircraft type identification [Allen,1980], the
range rate of an aircraft in straight-line, unaccelerated flight has
very little error. Range rate can provide information on acceleration
or heading changes. Because of its sensitivity to heading, range rate
provides an additional dimension for discriminating among dense
traffic.

Range rate also provides an effective means of rejecting
clutter. Reports that have a range rate below a threshold are likely

to be noise and are not processed as true reports. Camplicating the
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use of range rate, certain track geometries can produce a low radial
velocity report that is indistinguishable fram clutter.

The nature of long range radar requires slow rotation rates
(commonly six or ten RPM). With a single receiver and unity detection
probability, the sample rate is only every six or ten seconds. Reid
[1979] noted that tracker performance is bound by the accuracy of the
data and the data rate. This is particularly true in the maneuvering,
multitarget problem. When targets maneuver, poor measurement
resolution will disguise the maneuver. If the maneuver is not large,
the filter will treat it as a particularly noisy report and will
suffer degradation in the target estimates. If the maneuver is large
but the data rate is too low, the target can become hopelessly lost
among other reports.

One proposal [Allen,1980] is to increase the number of
radars within the present rotodome or vary the rotation so that the
radar repeatedly scans only a sector of the sky. While the
feasibility of this proposal, in terms of aircraft structure, power,
and space, is unstudied, it clearly would have positive effects on
tracker performance.

Radar has no inherent identification characteristics. When
the report proximity exceeds the radar's resolution, the lack of
identification data can have serious consequerices for tracking
algoritims. In the multitarget problem, many target geometries cause
targets to exchange tracks (tracks switches). Once a switch has
occurred, there is no automatic means available to reestablish the

true track on its correct trajectory.
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Identification Friend of Foe (IFF)

Identification data are gathered on targets suitably equipped
with transponders, such as the U.S. standardized Mark XII IFF/SIF
(selective identification feature). IFF provides range, azimuth, and,
usually code and altitude information. This transmitted code can be
campared with the code assigned to specific tracks and stored in the
database to decrease the observation's uncertainty.

A limitation to transponder technology is that an aircraft
must be equipped with the appropriate hardware and must receive the
interrogation before a report is generated. Obviously, those aircraft
without transponders cannot be tracked by IFF.

Years of experience with ground based systems show that IFF
measurement error is white and that the probability of receiving a
correct code is approximately 0.95. Yet, when the first operational
missions with the Airborne Warning and Control System's E-3As were
flown, periods of erratic azimuthal measurements were observed. 1In
addition, during these periods of azimuthal excursions, the
probability of decoding the track's code dropped dramatically. This
perturbation of azimuth is known as jitter.

Jitter is related to target density, distance from the
airborne receiver, and the reflectivity of the surface over which the
targets are flying. These factors cause multipath returns to the
transponder receiver which garble the code and defeat the hardware's

ability to determine report azimuth.



All existing systems have some multipath effect. The
mitigating circumstance for ground systems is that the multipath
report is so close to the direct reply that no detectable distortion
occurs. For airborne systems relying on IFF, the multipath effects
can be disastrous.

IFF was designed as a means of identification, but because of
its discrete capability, many systems rely on the measurement for
tracking. As will be discussed in the Environment section, the
potential problems of IFF make it highly unreliable as a primary
tracking source. The unexpected problems of jitter and code
reliability degrade the capabilities of transponder tracking by
increasing the uncertainty of the report's origin. There is, however,
considerable information to be gleaned from an IFF report other than
as a primary input to the filter.

Since 1977, the Air Force, the MITRE Corporation, and The
Boeing Company have studied the effects and causes of jitter, and the
potential software and hardware solutions for the E-3A. As of now, no
canpletely suitable software fix has been proposed. While studies
continue at Tinker AFB and at MITRE on software suitable for
integration in present tracking algorithms, the research presented in
this dissertation extends previous work to a new tracker designed more
suitable for the environment of the E-3A and other airborne sensor
systems and more capable of dealing with jitter. Before examining
this new design, it is instructive to understand the fundamentals of
tracking targets and the enviromment that makes an airborne receiver

unique,



Trazking Fundamentals

Terminology

Three common elements in all the tracking algorithms to be
examined are a predictive phase, an association/correlation phase, and
a smoothing phase.

Track prediction is the estimation of the target's position
to the time of the next observation. This is done in conjunction with
the state extrapolation of the Kalman filter and is the prime input to
the second phase, association/correiation.

Association is a coarse screening process which selects for
further consideration only those tracks that have a reasonable
probability of being related to a specific report. Correlation is a
fine screening process which determines report/track pairs that have a
high probability of being related to each other (correlated pairs).
Not all algorithms require a correlation but all require same form of
association. Typically, an association window is conceptually drawn
around the predicted report position. This window, which may be a
circle, an ellipse, or a simple range and azimuth test, represents a
statistical area that should contain the next observation. The
association window is based upon the extrapolated track states and
performance characteristics (the track's ability to maneuver,
accelerate, or decelerate) weighted by some statistical multiplier to

raise the confidence level.



It should be clear that in dense traffic, the association
windows for different tracks will overlap. For those algorithms that
require a one-to-one track/report pair, a correlation process breaks
the multiple associations. A track signature plays a very important
role for these algorithms because it reduces the likelihood of a wrong
pairing. If there is no signature and there are multiple
associations, the probability of an incorrect association increases.
Various algorithms have been proposed to contend with the multiple
association problem. Though the approaches vary greatly, these
methods all utilize an association window for report selection and a
Ralman filter for track smoothing.

The peril of multitarget tracking is the association of the
observation with the wrong track. The recent literature in
multitarget tracking is motivated by the need to find a reasonable
means of incorporating the uncertainty of the measurement's origin
into the tracking algorithms Y@ar-Shalom,1978]. Those algoritims
having a direct impact on this dissertation are presented in

historical order.

Major Algorithms
Nearest Neighbor. This is the standard and most often
implemented correlation procedure. The observation selected is the
one that most nearly matches the predicted position.
In most implementations, "nearest" is based upon some

positional test value and IFF code matches. A positional test value



is based on the sum of the standardized errors of those parimeters
appropriate for the report (i.e. range, azimuth, and range rate
error).

Nearest neighbor can lead to very poor results in areas where
there are false targets, multiple targets, or jitter because the
tracking algorithm does not account for the possibility that the
measurement used might have originated from a source other than the
track of interest [Bar-Shalam,1978].

Track Splitting. Smith and Buechler [1975] presented a
multiple-object branching algorithm. Tracks are initialized based
upon one or two measurements; then for each measurement falling within
the association window, the track is split. From the innovations
property of the Kalman filter, the likelihood of each split is
calculated.

Since the optimal branching solution consists of splitting
each preceding trajectory into alternate trajectories at each scan and
then evaluating alternatives, for N scans the number of alternatives
is sufficient to overwhelm any real-time machine. In order to make a
practical algorithm three pruning rules are used:

1. If the measurement is further than a specified

maximum distance from the predicated position of a

track, it is considered unlikely to have originated

from this track and is discarded (association).

2., If two hypothesized trajectories are similar

they likely represent the same track. Trajectories

within a specified distance of a more likely
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trajectory =cre dropped. Up to Lyax of the best

trajectories are kept.

3. Trajectories that fall below a given likeli-

hood threshold are dropped.

Reid[1979] pointed out several flaws with this work. 1In
calculating the likelihoods, Smith and Buechler assumed that each
report was present (Pgq =1.0), and they did not account for false
alarms. Moreover, apparently a target can be associated with every
measurement within it's association window. If the track density if
sufficient, measurements can be in several windows leading to
data-association hypotheses that are not mutually exclusive.

In spite of these errors, track splitting is a fundamental
concept of many modern trackers. The work of Smith and Buechler
extended the theory of branching algorithms by noting that if unknown
process parameters are constant and assume only a limited number of
values, then the optimal nonlinear filter can be separated into
parallel linear filters.

Maximum ILikelihood. The problems of false returns, missing
reports, and mutually exclusive data associations were addressed by
Morefield [1977]. This approach yields the most likely data
association hypotheses by approaching the issue as an unsupervised
pattern recognition problem.

Feasible track trajectories are reduced by a coarse window
association. The set of feasible tracks, F, is considered as clusters
of measurements Z that are reasonable to incorporate into hypotheses.

The Bayesian decision process is restricted to hypotheses formed using

-11-



F, so that any hypotheses formed using F is sinply a subset of Z. In
other words, a measurement cannot belong to more than one track.

It is natural to compute the likelihood function of the
Ralman filter state estimates, basing the hypothesis test on the
innovations sequence. In this problem, finding the most likely
trajectory coincides with maximizing the likelihood function of the
feasible measurements over all feasible tracks. The negative
log-likelihood function is modified to include the number of points in
each track and the hypervolume in which the observations are made.

Morefield formulates multitarget tracking in terms of an
integer linear programming problem. His algorithm is basically a
batch-processing technique allowing N data points to accumulate before
backtracking through the data. Although a recursive version is
included, it does not guarantee optimality over time as does the
batch-processing version [Reid,1979].

Both track splitting and maximum likelihood are essentially
nonBayesian approaches that attempt to make decisions upon the
likelihood of a trajectory and then estimate the states of the
trajectory. The state estimates and the covariances are conditioned
upon accepted tracks being true.

Probabilistic Data Association. Probabilistic data
association (PDA) algorithms are Bayesian approaches that yield
estimates and covariances and account for measurement origin
uncertainty [Bar-Shalom and Tse, 1975].

In the suboptimal form, the best estimate of a target's state

is the conditioned mean based upon the measurements that have some
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probability of originating from that track. These observations are
selected by constructing an ascsociation window. Those reports falling
within the window are assumed to have scme probability of originating
from the track of interest. This "all neighbors™ approach does not
allow track splits but combines all the latest measurements into the
state estimates.

While the suboptimal approach used only the last observation,
ir the optimal form, the state estimate is a combination of all
measurements from initial to present. The exponentially increasing
memory and computational requiremente are eased by combining all
tracks which have identical histories for the past N cbservations.
This modification is referred to as the "N-scan-back" filter.

The Reid Alagorithm. A potentially more powerful algorithm
is the nonprobabilistic data association, Baynesian, multiple-scan
algorithm of David B. Reid[1979].

The basic approach is to generate a set of data-association
hypotheses that account for the origin of all observations. The
probabilities of these associations are calculated recursively using
all known information, including the report density and sensor
characteristics. A tree structure is constructed with each branch
representing a data association. This technique allows a track/report
pairing based upon previous and subsequent measurements. To minimize
the computation and space requirements, unlikely hypotheses are
eliminated and like target estimates are combined. All targets and

measurements are divided into independent cluster. Clustering gives
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the algorithm a parallel characteristic since each cluster can be
processed independently.

Multiple-scan associations give the algorithm the capability
to use later measurements to aid correlation. FEence, the algorithm is
not committed to a unique pairing until sufficient data is available
to make the correlation with a degree of certainty.

Adaptive Hypothesis Testing. Closely related to the work of
Reid is that of Keverian and Sandell([1979]. Their algorithm is
nonBayesian and differs in hypothesis deletion strategies. FKeverian
and Sandell have been influenced by work in hypothesis testing for
dynamic systems, especially the multiple-model adaptive estimation
(MMAE) of Magill[1965].

A MMAE algcrithm provides an optimal nonlinear filter for the
estimation problem with observations coming from one of a finite set
of linear systems [Keverian and Sandell,1979:5]. In its Bayesian form
the algorithm recursively calculates the probabilities of the
hypotheses that one of the possible linear systems is the actual
system and produces the optimal estimate of the system state. 1In
general, it can be shown that the MMAE algorithm identifies the linear
model closest, where the measure of closeness is some information
distance [Baram and Sandell, 1968], to the true state, which may be
nonlinear and high order.

In the multitarget problem, the set of possible linear
systems generating the measurements corresponds to the set of objects
being tracked. By adapting the hypotheses deletion and creation to

the evolving situation, a data—-driven algorithm adaptive on a more

-14-



abstract level is created. Such an algorithm is termed adaptive
hypothesis testing.

Multiple-scan correlations and hypothesis testing offer a
framework for a more advanced multitarget tracker appropriate for the
environment encountered by airborne surveillance systems such as
AWACS and NIMROD. To understand why existing tracking systems are
inadequate, it is important to understand the environment these

systems encounter.
Environment

Surveillance Volume

By virtue of being at altitude, the surveillance volume for
airborne systems is considerably larger than more powerful ground
based systems. With this increased coverage comes far more sensor
measurements than can possibly be tracked. For example, a single E-3A
off the coast of Virginia can monitor nearly the entire East Coast.
Such a vast number of observations would swamp any real-time computing
system, especially when it is noted that the surveillance function is
only one of many Command and Control tasks competing for processing
time.

Many proposed algorithms assume that all targets will be
tracked. With the Reid algorithm, for example, a report is either the
track desired, a new track, or a false report. This simplifies the
problem of resolving correlation conflicts since all observations are
either tracks or false reports. Since the statistics of false reports

are well known, there is a fixed statistic available for assigning
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probabilities to various types of origins. Reid also assumes that the
density of known to unknown targets is available. While this data
could be adaptive, the point remains that an airborne system cannot be
designed to track all targets in all environments.

Target Density

During engagements track densities become exceptionally high.
Considering the range from the battle at which airborne systems
operate, correct report/track pairing becomes exceptionally difficult.
Algorithms, based on nearest neighbor criteria, that force a decision
on correlated pairs in this environment are often wrong.

IFF will not provide any information in the battle area.
Most tacticians agree that fighter aircraft will turn off their
transponders when they reach the forward edge of battle to preclude
the enemy from identifying and tracking them. Any algorithm that
relies on IFF as the primary sensor for tracking will find itself

seriously degraded in a major engagement.

Machine-Machine, Man-Machine Interface

Multiple-scan correlation algorithms are limited by the
interfaces taking place in a Command and Control network. The
periodic reporting of target information is utilized throughout a
battle area to make time dependent decisions. Other computer based
systems are often tracking identical targets that, if not updated
properly, will result in considerable confusion. Frequently,
therefore, a multiple~scan algorithm must reach a decision more

rapidly than the data will allow.
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A more serious problem is the man-machine interface. The
operator of the system must have timely track updates vpon which to
make decision; a track cannot “hang in space” while ambigquities are
resolved by the tracker. The operator of the system can resolve
tracking conflicts far better than any software, but his attention is
often focused on more critical areas of the engagement making
intervention in software decisions unlikely. When an area of the
battle has his attention, the position update must come with the
regularity he expects. By using, at worst, the extrapolated movement
of the target, the past history of the observations, and his knowledge
of tactics, he can make decisions about track trajectories that
software could not reach. This limits the time a tracker can wait
before forcing a decision on ambiguous data. A careful balance must
be developed that keeps the man-machine interface foremost in

perspective.

Environmental Factors Not Considered

There are additional complications that are not examined in
this study. The most difficult, and not fully resolved problem, is
jaming. The advances in electronic counter measures are primarily
dealt with in hardware. In this work all tracking is done "in the
clear."

A second area, the problems and errors induced in ground
stabilizing the sensor measurements is not included. It is assumed
that this conversion is error free. While error free conversion is
not possible, carefully derived equations can guarantee maximum errors

of .2 NM. Finally, the position of the surveillance platform is
_17_



considered stationary and known. This is done primarily to increase
the readability of the equations. Navigation equipment has progressed
to the point that positional error of the platform is not significant.

Summary

In this first chapter, the literature and language of
multiple correlation algorithms and tracking were introduced. A brief
discussion was presented on the enviromment and the tracking problems
of airborne sensors.

The key mathematics of RAHTT are examined in the next
chapter. The algorithm developed in the sequel closely follows the
work of Reid and of Kervian and Sandell except that it is designed for
an airborne system. Since a major problem for current trackers using
IFF is jitter and mode/code reliability, an adaptive scheme is
developed to maximize the information from an IFF report. The result
is an algorithm that is adaptive on several levels. Since a primary
goal of this research is to extend previous work to include IFF
jitter, the tracks are assumed to be straight~line, nonmaneuvering.
This assumption does not appear to be overly restrictive and follows
the examples of previous authors in validating new concepts. Further,
this restriction eliminates only a few data points as interceptors
tend to fly straight-line, unaccelerated flight paths, except during
canbat, with only periodic course corrections.

Finally, as mentioned and as will be more fully developed in
the next chapter, the underlying theory of the algorithm provides a

straight forward, though not trivial, extension to nonlinear motion.
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CHAPTER II

KALMAN FILTERS AND MULTIPLE MCDEL ESTIMATICN

Introduction

The key mathematics of the algorithm presented in the next
chapter come from two closely related fields—Kalman filter theory and
multiple model estimation. It has been over a decade since
Kalman[1960] and Kalman and Bucy[1961] extended Wiener's work. During
that time the papers and books written explaining, extending, and
modifying Kalman's work number in the thousands. 1In a similiar way,
the work of Magill[1965] in multiple model estimation has been
studied, extended, and formalized.

The theoretical foundation of this dissertation is the
Multiple Model Estimation Algorithm (MMEA) and its variations. Since
MMEA is dependent on Kalman filter theory, it is appropriate to begin

there.
Discrete Kalman Filter

Introduction
The purpose of this section is to introduce the basics of

discrete time Kalman filter and derive the equations needed in the



next chapter. A more rigorous treatment of the field can be found in
numerous texts.l

The Kalman filter is generally accepted as the best method of
providing the motion analysis of the steady state parameters of a
moving target. With benefit of foresight, this discussion of Kalman
filtering is limited to the discrete time linear Kalman filter and
linear equations of target motion.

Generally, the motion, measurement, and Kalman filter
equations are partitioned into X and Y components. Whis uwacoupling
yields independent X and Y tracking algorithms which must be solved
each iteration.

There are important benefits from this decoupling. Sensor
measurements are generally in terms of range and azimuth. With the
exception of radial or constant speed circular flight, an aircraft
flying at a constant velocity in polar coordinates causes a nonlinear
change in range and azimuth. Thus polar coordinates are generally
inconsistent with aircraft tracking algorithms [Burke,1972].2

The reduction in size of the covariance and state matrices
that accompany partitioned components significantly reduces the amount
of computer time needed. Kalata[l1976] states that for a six-state
tracking problem, partitioning the filter into a three dimensional

system reduced computation time from 5000 to 375 microseconds.

1 por a basic introducticn to Kalman fiitering with applications
to aircraft tracking see Burke[l1972]. BAn advanced mathematically
oriented work is Jazwinski[1970].

2 various authors have proposed spherical tracking systems. See
[Moose, Vanlandingham, and McCabe, 1979].
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Further, the loss in performance due to the partitioning can be
bounded by comparing the off diagonal terms of the measurement
uncertainty matrix R with the diagonal terms. These are generally

very small percentages.

Pguations of State and Measurement
For the remainder of this work, targets are assumed to evolve

according to the general equation

Z(k+l) =ox(k) +ru(k) 2.1
where

¢ is the state transition matrix

r is the disturbance matrix

w is a white noise sequence with zero mean and covariance Q

The state variables are related to measurements z by

2(k+l) = BX(k+l) + y(k+l) 2.2

where

H is a measurement matrix
v is a white noise sequence with zero mean and covariance R.
¢ and H are represented as time invariant only for notational
ease. The term ry(k) is used to model random disturbances in the
state vectors; often representing aircraft maneuvers or inaccuracies
or unknowns in the state model. It is ignored for the remainder of

this work.
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For straight line, unaccelerated target, the equations of

motion are
x(k+l) = x(k) + x(k) at 2.3
x(k+l) = x(k) 2.4
y(k+l) = y(k) + y(k) at 2.5
y(k+l) = y(k) 2.6
where

a t is the time interval between updates

x and y compoients are independent camponents of velocity

k is the time index (k At is the total elapsed time}.
Placing equations 2,3 through 2.5 in the form of 2.1 and

dropping the time index yields

“1 L st 0 o] x o
x _0 1 0 0 X 0
Yy ——0 0 1 at}] (o y
il oo 1fl ¥ 2.7

Because measurements are received in range and azimuth but the
equations of motion and the Kalman filter equations are in terms of x
and y it is necessary to calculate the variance of the measurement in
terms of x and y (see appendix B).

Vym(k+1) = (OR Cosw)2+ (Op R Sinw )2 2.8

Vym(k+1)

(OR Sin¥)2 + (0g R Cosw)2 2.9



where

R is the range of the report

Wis the azimuth of the report

cRis the standard deviation of sensor range

O,is the standard deviation of sensor azimuth
Thus the measurement ecjuations are

Xp(k+l) = x(k+l) + Vyp(k+1)

Ym(k+l) = y(k+1) + Vyp(k+1) 2.10
and, in the form of equation 2.2,

x,r] rl 0 0 0 x me.1
Z= = x| +
Ym 0 0 1 o Yy Vym 2.11
. L
¥

The estimation of the state variables is the objective of the
Kalman
filter. There are two phases to the estimation problem that provide a
minimum variance estimate of the states and that give the filter its

recursive feature. These two phases are examined in order.

Predicti Ext lation

The general Kalman filter equations for state and covariance
prediction are

ki1lk) = @R(klk) 2.12

Bik+1lk) = o PkIk)+Q 2.13

where
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the state estimate

[ N
n

w
| 22
(&

+

he costimated covariance matrix of the states

{

Q is the covariance of the disturbance matrix and may be
dependent on I' . Under the ascumptions already introduced, Q
is dropped.

The notation (k+1l|k) refers to the estimation problem when
the time of interest occurs after the last available measurement. In
tracking problems, this is the estimation of the target's next
position based upon the filter's estimate of the target's last
position. The notation (klk) is used to indicate that an estimate is
desired to coincide with the last measurement point. In estimation
theory this is called filtering but more often, in aircraft tracking,
is referred to as smoothing. Swoothing, in estimation terms, occurs
when the time of interest falls within the span of available
data[Gelb,1979:2]

With these definitions in mind, the prediction equations for
the state variable are

Bk+11k) = R(kIKk) + R(kIK) at

2k+11k) = 2kik)
Dxs1ik) = §klk) = $kIk) at
Sk = Fkix) 2.14

where

A denotes estimated temms.
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For the partitioned constant speed straight-line cartesian
coordinate formulation of aircraft motion, the covariance matrix P for
the x component of state variables is

Vx  Cyg
Py= 2.15
Cxx Vi
where
Vx is the variance in x
Cyx is the covariance of x and x
and the time indicies are dropped for convenience.
Vx and Vy are initialized to Vyy and Vym respectively.
Vg is found by noting that

R = xp(k+l) - xg(k)

_ at

¥q = X~ ¥

X = Fq(k+l) = xp(k)
at

1>

%2= Tp(k+1)2 + ¥p(k)2 - 2% (k+1) (k)

At<
but since X (k+l) and Fy(k) are independent

at2 2.16
where

% is the estimate of %

X is the error in the estimate
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In a similar way

RR = xp(kH1) [np(k+1) - xq(K) 1/ At

XX = Fp(k+l) [Fp(k+l) _ Fnlk))/ t
= (Fm(k+1))2 - T (k+1) Ty (k)

_ at
Cxk = E[XX] = Vypy

At
The derivation for Py is identical. The predicted

covariance equations are
Vg (k+11K) = Vy (k1K) + 2 atCyg(klk) + at2vg(klk)
Vy(k+11K) = Vy(k1k) + 2 atCyy(klk) + at?Vy(klk)
Vi (k+11k) = Vi (klk) 2.17
Vy (k1K) = Vg (klk)
Cyex (K+1 1K)
Cyy (k+11k)

In this section the state and covariance prediction equations

Cyc (k1K) + atVy(kIK)
Cyy(kIK) + atvy(KIK)

were derived for partitioned, straight line, constant velocity
aircraft motion. In the next section the smoothed state and

covariance equations are developed.

Update and Gain Equatiocns

The general Kalman filter equations for state and covariance

update are
B(k+11k41) = R(k+11k) + R[z(k+l) - HR(k+11K)] 2.18
K = P(k+1|k)HT[HP(k+1|k)ET + R]™1 2.19
P(k+1|k+1) = [I-KH]P(k+1|k) 2.20
where



K is the Kalman gain matrix

I is the identity matrix
(z(k) = H £(kIk) ) is the innovation

The criterion for choosing a Kalman gain matrix K is to

minimize a weighted scalar sum of the diagonal elements of the error

covariance matrix P. This is equivalent to minimizing the length

ofthe estimation error [Gelb,1979:109].

The gain matrix for x, Ky(k+l) is formulated by letting
S(k+1lk) = [HP(k+l|k) BT + R]

2.21
then
Ry (k+1) = Py(k+l|k) HTS,(k+l]k)~1
J, (k41 1K) Cp (kL 1K) 1 0
Sy (k+1[k)~1
Cyx (k+1 1K) Vy(k+1]k) 0 o
- e -
Vy (k+11k)
= Sy (k+1i1)~1
Cyxc (k+1 1K)

Sx(k+11k)™1 = [HP(k+1|k)HT + R]-1
which simplifies to

1l

Sx(k#llk)"1 = Vy (k41 1K) + Vi

L 0
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— -
Vy + V.
\'Tx -l X xm
Bx = * Cxx

In the notation adopted in this paper, the gains are

Vx (k+1 k)
Kox(k#l) = Vg (K+11K) + Vg (k+1)
Cyx (k+11k)
Rpx(k+l) = Vi (K+11K) + Vi (k+1)
Vy (k+1 1K)
K,,Y(k+1) = Vy(k+1|k)+vym(k+1)
ny(k+llk)
pr(k+l) = Vy(k+llk)+Vym(k+l)

2.23
The updated state and covariance equations are now
available by substitution and matrix operations. The updated state

equations are



2k411k41) = R(k+1ik) + Rox [xq(k+1) - Q(k+11K))

R(kHL1kH) = R(K+H11K) + Ry [¥pn(k+1) - R(k+1]K)] 2.24
§lkellkel) = Q(kellk) + Koy Iym(k+l) - $(ke1lk)]
(k1 1kH1) = §k+1 1K) + Kpy [ym(k+l) - $(kedlk)]

and the updated covariance eguations are

Vg (k+l|k+l) = Vy(k+LiK) [1=Rqg (k+1) ]

Cyxc (K+L1k+1) = Cyy(k+1 1K) [1-Koy (k+1) )

Vy(k+1lk+1) = Vy(k+l k) [l—Kcy(k+1)] 2.25
ny(k+1ik+1) = ny(k-*-llk) [1—1@(k+1)]

Vi (k+1Uk+1) = Vg (k+11k)-Kpx (k+1) i (k+1 k)

Vy(k+1lk+1) = V)‘,(k+1lk)-KBy(k+1)Cy}',(k+llk)

To complete the filter equations it is necessary to examine
how the tracker is initialized. As previously noted, the elements of

the covarizince matrix are initialized to

Vym Vym
A
(0= V. 2V.
Xm Xm
2 —aZ

This is reasonab‘l-e since the only values of Eny real certainty
are the statistics of the sensor data. For the same reason the target
position is initialized to the report position.

Velocity initialization depends upon whether a two or one

point initialization is used. For a two point initialization the
-29-



initial track velocity components and heading are determined fram the
two measurements. If a one point initialization is used, then prior
information about target heading and velocity must be assumed. The
heading and velocity estimates are independent in a one point
initialization therefore the off-diagonal terms of the covariance
matrix are set to zero [Kalata,1976].

The Kalman filter provides the minimum variance estimate of
the target's states. As such, it is the optimal estimator.
Unfortunately, the Kalman filter has no capacity to select, from a set
of reports, that measurement caused by the target of interest.

In the first chapter, the various approaches were introduced
that form the historical and theoretical foundations for RAHTT. The
most significant of these, multiple model estimation, must be examined

further befmie digaugsing the actual algorithm.

Multicle Model Estimati

Introduction

The stated purpose of this dissertation is to develop the
algorithmic framework for a tactical tracker suitable for the
environment. described in the previous chapter. Such an algorithm must
be capable of utilizing numerous sensors, responsive to both linear
and nonlinear flight paths, and consistent with airborne computing
systems.

The theoretical foundation for the algorithm developed in the
sequel is MMEA, introduced in chapter I. The mathematical basis for

multiple model estimation and the transition to adaptive hypothesis
=30~



testing are presented in this section. The mathematical details of
MMEA are quite intricate and a full presentation is beyond the scope
of this work.

Before discussing MMEA more formally, it is useful to give the
reader an idea of where the presentation is going. Consider a target
whose motion is described by one of a set of possible linear systems.
The problem is to decide which of the possible systems most nearly
represents the true motion of the target.

If a series of measurements is taken of the target motion and
filtered using a Kalman filter appropriately developed for each of the
possible linear systems, then, as the number of measurements
increases, the Kalman filter matched to the correct system should bz
closer to the data than the mismatched s'ystems.

In other words, by using several Kalman filters, each matched
to one of a set of possible linear systems and each filter driven by
identical measurements, it is possible to select that system that most
nearly describes the true system.

Consider a similiar case where the target motion may be
nonlinear and high order. By considering each of the components of
motion, it is possible to derive linear equations describing each
camponent., Kalman filters can be used to estimate each component by
driving the filters with the identical measurement sequer;ce and
calculating online the probabilities of each component. In this way a
nonlinear system can be estimated by a bank of linear filter.

With this basic introcduction complete it is possible to give a

more formal discussion. The development in the next section closely
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follows the tutorial work of Athans and Change[1976] supplemented by
the dissertation of Yoram Baram[1976].

State Estimation With Unknown Parameters

The basic concept of MMEA is to construct a bank of Kalman
filters with each filter matched t¢ a peossible parameter vector value.
The Kalman filters generate state estimates that are combined using
the posteriori hypothesis probabilities as weighting factors. If one
of the selected parameter vectors coincides with the true parameter
vector, MMEA gives the minimum variance estimate of both the stat~ and
parameter vector.

MMEA is concerned with the problem of selecting, from a
specified set of models, the "best" model by using a set of
observations to mathematically describe a physical phenomenon. The
relationship between the model and the observations is uncertain and
must be expressed in a probabilistic framework. The model set can be
specified in terms of a parameter set such that to each parameter
there corresponds a model and vice versa. The problem of model
selection can then be defined as a parameter estimation problem. It
should be noted that the true parameter cannot, in general, be assumed
to belong to the specified parameter set.

If a parameter vector is denoted by Y then the standard state
equation can be rewritten as a stochastic dynamic system whose
dynamics depend on Y.

Bktl) = o(v)IRK) + r(v)mk) 2.27
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Similiarly, the measurement equation can be written as

Z(k+l) = H(v) X(k+l) + y(k+l) 2.28

Y is a vector whose elements represent the key parameter:s.
These elements are, in general, only approximately known; however, in
any practical application, reasonable information about the nominal
value(Y,) and the degree of uncertainty is available from engineering
studies, simulation, etc.

Y can be viewed as a random vector with all prior information
captured in its prior density function p(Y ). The confidence in the
estimation of Y,is communicated to the mathematics by the prior

covariance matrix

CovlL:y] = E{Y - o) (L - X )T}

In filtering measurements Z(k) the objective is to obtain, in
real time, estimates of the actual true state g(k). The state
estimate is denote

fixlk) 2.29

and the state estimation error is denoted by

Zkik) & x(k) - &(kIK)

Accurate state estimation is affected by the uncertainty in
modeling the true values of the parameter vector Y by its nominal¥s.
As these errors become more significant, the performance of the Kalman
filter begins to deteriorate. If the major parameter uncertainty is

in the state dynamics rather than the measurement equation, then the
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increased parameter uncertainty is reflected in the calculation of the
one-step prediction estimate Q(kﬂlk). It is possible to overcome
this uncertainty by relying more on the data, especially when
measurement ambigquity is minimized. However, if the observations are
seriously misleading, as with jitter and code reliability, the
resultant state estimate can be seriosusly in error with
filterdivergence probable.

As the uncertainty in Y increases, even with well behaved
data, using an extended or adaptive Kalman filter will give
unsatisfactory performance[Athans and Chang,1979:7-17].

The effects of large parameter uncertainty on the state
estimation algorithm can be studied by subdividing the parameter space

into regions.

Subdivision of the Parameter Space

A major concern of this dissertation is the state estimation
of targets when uncertainty arises as to the proper report/target
pairing. The proper framework for studying this uncertainty consists
of an underlying probability space and a separate parameter space, of
vwhich the true parameter may not be a member. Likelihood ratios and
maximum likelihood estimates are naturally defined in this framework.
In a Bayesian framework, the inherent assumption is that the true
parameter is a member of a given parameter space, i.e., the parameter
space is part of the underlying sample space. Thus, while the
Bayesian hypothesis is assumed in the definition of Bayesian

estimates, the analysis of these estimates, as well as the maximum
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likelihood estimate, is performed using the underlying nonBayesian
estimate [Baram,1979:11-12].

Since in most physical problems some prior knowledge is
available about the ranges of the parameter vector elements, it is
possible to find a subset of the parameter space representing all
reasonable values that Y can attain. A finite set of parameter values

is denoted Yor Y1/ ..., ¥n, For each Y; , redefine

>

o(Y4) ®4
revy) = rs 2.31
H(vy) 285

with the understanding that all matrices in 2.31 can be time varying.
It is then possible to rewrite 2.27 and 2.28 as
o8k + ryuk) 2.32

diX (k+l) + yw(k+l) 2.33

Rk+1)

[

Z(k+1)
resulting in a class of N distinct linear stochastic dynamic systems.

Y is a discrete random vector which can be modeled by a set of
hypotheses {H;, H2,...,Hp} denoting a set of events and H, a scalar
variable, representing a hypotheses variable. The interpretation
attached to the event H = Hj isy = AL [Athans and Chang, 1976:23].
Then if

Z2(k) = {2(1), 2(2)ree.rz(k)}
Ri(k) & Pp(H = Hi | 2(K) )
=Pr(Y = ¥j12(k) )
Given the measurement set Z(k), Aj (k) is interpreted as the
probability that the ith hypotheses (the ith model) is the correct

one.



A recursive relationship describing the dynamic evolution of
the posterior probabilities Ay (k) is derived by Athans and Chang
[1976:26-35] based upon the innovations property of the Ralman filter,
standard statistical relationships, and estimation theory.

A bank of N Kalman filters is constructed with each filter
using a specific set of matrices associated with Yj. Each filter is
driven by the same measurement sequence. From each Kalman filter mean
ﬁi(klk) and covariance matrix Pj(k|k), the Gaussian density function
p(x(k) |H;,2(k)) is calculated. The overall state estimate is the
probabilistically weighted average, by the posterior (hypotheses)
probabilities of Aj(k) of the state estimates generated by all of the
N Kalman filters.

Conclusions

If there exists some form of statistically consistent
measurement errcr, then the residuals of the correct Kalman filter
model will be less than those of the mismatched model. As
measurements are processed, the correct probability Aj (k) will
increase, while the mismatched model probabilities will decrease.

MMEA provides an optimal nonlinear filter for an estimation
problem with measurements coming from one of a set of possible linear
systems. It asymtotically identifies which of the possible linear
systems is the actual system and converges to the optimal Kalman
filter for that system[Kervian and Sandell,1979:5].

MMEA provides a sound theoretical foundation for a multitarget
tracker and, could, in fact, be formally extended to the

multiobject/multiple target case. As a practical matter, it is
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necessary to develop an algorithm less rigorous mathematrically but
mcre intelligent; one capable of adding and deleting hypotheses in

reaction to the evolving situation.

Multiple Target Hypothesis Testing
A key point of multiple model estimation is that a nonlinear
system can be described by a bank of linear Kalman filters. In the
multiobject tracking problem, the set of linear systems generating the
observations is the set of targets to be tracked. Because the
mathematics of MMEA is theoretically sound and, further, is capable of
resolving nonlinear as well as linear tracks, this work is limited to
the linear multitarget problem.
The problem of multitarget tracking by adaptive hypothesis
testing revolves around two issues:
1. Prudent report/track selection (association)
2. Mathematical selection of the most likely target
trajectory.
The mathematics of these two issues is examined in this

section with algorithm details delayed until chapter III.

7 iati

As previously defined, association is the selection of reports
likely to have been caused by the target of interest. In associating
reports and tracks, the set of report/track pairs selected for further
consideration must be the smallest set possible while maintaining a

high probability of including the correct pair.
-37-



Association is accomplished via test on report range, azimuth,
and range rate (if available). A report is asscciated with a track if
all applicable tests are passed. Appendix B shows the derivation of
the association eguations.

It is necessary to arrive at a unique report/track pair
(correlation) for reports and tracks having multiple associations.
This is accomplished by postulating target motion to account for the

associating reports and applying a maximum likelihood test.

. Likelihood
The Kalman filter equations already specified allow a
likelihood function to be calculated for each data association. Under
the maximum likelihood approach, the hypothesized target motion is
evaluated based on how well it fits the date.
From Kalman filter theory, the likelihood of the innovations
v4(k) 2 25(k) - Rj(k+11k) 2.34
for target j is
PV4(K) V4 (k-1) yo..V5(1) 10p) = 2 27K/20K |55 (k) 11/2
exp{-1/2 ;_‘:va(k) 55 (k)~1v5 ()} 2.35
6,—, = asl-a particular measurement seguence
Lj(k) is defined as the negative log-likelihood function of
2.,28. It is calculated recursively by [Smith and Buechlar,1975]
Lj(k) = Lj(k-1) + InIS;(k) I+ V5 (K)S;(k)~1v5(k)
2 2

+ln 2x 2.36



Simplifying
Lj(k)=L(k-1)+ 1nlSy(k) | + Vg(k)Sj(k)'IVj(k) -+

2 2
In2xn
1
= Lyj(k-1) +12n. L (VA Vym) (VytVym) } +
i+ Y2

— |n 2x

2 (VyHVym) 2 (VyetVym) 2.37

where

x7=%q(k+1) - R(k+11k)
y1=ym(k+1) - §(k+11k)
and the time indexes are dropped in 2.37 for notational ease.
Thnis chapter has studied the mathematics of the RAHTT
algorithm to be developed in the sequal. As demonstrated, RAHIT has,
as its basis, so0lid mathematical theory. There is, however,
considerably more intelligence to this algorithm than implied by the
mathematics. The concepts and algorithm details are presented in the

next chapter.



CHAPTER III1
DESCRIPTION OF THE RAHTT ALGORITHM
Introduction

The details of the Real-time Adaptive Hypothesis Testing
Tracker (RAHTT) are presented in this chapter. The intent of this
chapter is to discuss infcrmally the concepts of each of the
algorithm's functions (RAHIT is formally presented in appendix A).

The overall concept is to split each cluster of data
associations into hypothesized tracks. A likelihood function is
calculated for each postulated track based on the innovation sequence.
After a low number of samples (three or less) the most likely data
correlations are determined. Based upon the type and history of radar
correlations and the frequency of correlating, code matching IFF
returns, if available, the most likely track for each of the known
targets is selected.

The algorithm divides naturally into three main blocks: i)
report/track correlation, ii) hypothesis generation and deletion, and
iii) trajectory verification. A key development in this paper is the
three tier correlation process. It is imperative, for efficient
tracking, that a report associate with as few reports as possible

while maintaining a high probability that the correct report is
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included since a large number of data associations can overwhelm the

camputing system,

Correlation

Correlation in RAHTT is defined as an associated cne-to-one
report/track pair. It serves as the algorithm’s best estimate of the
origin of the report and is the key to successful multitarget
tracking. Often the targets are widely distributed and it is
unnecessary to resort to such an expensive correlation process as a
maximum likelihood selection. Even in "dense" traffic it is often
possible to find unique report/track associations.

In the suboptimal data correlation used in this algorithm,
correlations occur as the result of i) a unique radar report/track
association, ii) the mostly likely data association as the result of
the hypothesis testing framework, or iii) the most likely pairing
resulting from hypothesis construction rules for the terminal level.
No effort is made to modify the covariances to account for the
probability of an incorrect correlation.

The unique association of a radar report/track is highly
dependent upon the density of nearby traffic, false reports, and the
geometry of other tracks. The association tests described in chapter
II are very discriminating and will produce a high percentage of the
total correlations. Because the association windows provide the
report that most nearly fits the hypothesized trajectories, whenever a
unique report/track pair is found, that pair is correlated and the
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report, "fully identified"™, a term to be explained in the next
section.

Radar report/track associations that are not unique must be
resolved via the hypothesis testing framework of the next section.
Each data association within the cluster is tested for likelihood
against the postulated tracks. The most likely set of data
associations based upon the measurement innovation sequence are termed
correlated pairs.

IFF reports are associated in a similiar manner.
Functionally, IFF reports attempt to verify target trajectories by
confirming or denying the presence of the correct code matching IFF
reply within a hypothesized targets association window. This is
discussed in more detail in a later section.

Unique radar report/track associations provide a substantial
number of the total correlations. By utilizing these correlations
outside the more computationally demanding hypotheses testing scheme
of the next section, RAHTT avoids generating unnecessary tracks and,
more significantly, is able to accelerate the overall track selection

process.
! besis G 5 i peletion

Informal Discussion
The basic approach used in this algorithm is to generate a set
of data-association hypotheses to account for all associated pairs
that are not unique. These data-associations generate hypothesized

tracks in a measurement oriented tree [Reid, 1979] contrasted with the
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target-oriented hypotheses of Bar-Shalom[1975]. This allows more
efficient space utilization, pruning techniques, and track initiation
(see RKeverian and Sandell,; 1979:11] and [Reid, 1979]. The
hypothesized tracks, generated tracks, represent the most likely
target paths based upon prior knowledge of the number and states of
the established tracks.

Data associations are mutually exclusive. Before a hypothesis
is formed for track j, a check is made to ensure that track j is not
associated with more than one measurement in the current dataset. If
j is associated with a measurement but does not exist on a particular
hypothesis then a new track is generated representing a trajectory
from the last hypothesized data association.

Experience has shown that the orientation of the measurement
hypothesis tree is difficult to understand. Since the effectiveness
of RAHTT depends directly on the algorithm's ability to manipulate the
date-associations in the tree, an example is warranted.

Consider figure 3.la where established tracks Tl and T2
associate with reports A, B, and C. There are six feasible tracks
represented by the lines connecting the targets and the reports. The
date-associations and the hypothesized trajectories are represented by
the hypothesis tree figure 3.1lb.

In a measurement oriented hypothesis tree each level
represents a report and the nodes of the tree, the tracks that
associate with that report. Level A indicates that tracks Tl and T2

associated with report A plus a false alarm hypothesis.
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a b c

FIGURE 3.1h Exampls hypothesis tree
KOTE: Gensrated tracks are indicated by X.Y.1 where I is the parent track
and Y and X are successive generations.
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Level B illustrates the mutually exclusive rule
fordata-associations. Note that tracks Tl and T2 plus the false alarm
hypothesis still associate with report B however new tracks have been
generated to account for the hypothesized trajectory (see note on
figure 3.2) and that not all associating tracks appear on all
hypotheses.

The generated tracks reflect the physical reality that if a
track was hypothesized to account for a data-association on one level
of the tree then the same track cannot have subsequent associations in
the same measurement dataset. It is important to keep in mind that
the hypotheses are tracks for some known target. Hence 1, 4.1, and
6.1 reflect different possible tracks for target 1.

In a similiar way, once a track is assumed as the origin of a
report on a hypothesis, then that track cannot be the assumed origin-
of another report in the same observation dataset. For example,Q ,
represents the fact that at level A, Tl was the assumed origin; at
level B, only track T2 (or a "spun" track fram 2) can be hypothesized;
and level C represents the fact that there are no tracks left to
hypothesize as the origin of report C. To do otherwise would indicate
that a target can, at the same instant, fly multiple paths,

It should be obvious that the number of generated tracks and
the number of trajectories can become excessive if allowed to grow
unbounded. In an airborne system, efficiently limiting the growth of
hypothetical tracks is a serious concern. The failure of most

multiple-scan correlation algorithms is their inability to deal with
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the rapidly growing number of track trajectories, especially when
missing reports and false alarms complicate the association process.

Tree Maintenance

In most N-scan correlation algorithms, a measurement is
identified after a constant number of scans (N). It is clear that
some measurement are readily identified after only one additional
sample while others can never be resolved. At a high level, an
adaptive hypothesis tree is constructed that identifies report/track
pairs consistent with the severity of the initial and subsequent
ambiguous report/track pairs. The tree is bound, first, by the
breadth of the search and second, by the depth of the search.

The hypothesis tree functions primarily as a FIFO buffer with
the early reports toward the root. As a report is resolved it is
pushed out of the tree. A measurement remains in the tree until i) it
is identified (correlated), ii) a maximum number of sampling periods
have passed or iii) roam is needed for new measurements.

Initially the tree is empty. When reports are entered into
the tree, the FIFO is allowed to grow until it either identifies the
first report or encounters one of the bounds. Selection of the bounds
is critical to algorithm effectiveness and to the control of the
tree's overall size. In selecting the bounds there are important
tradeoffs in computational demands, optimal hypothesis selection,
space consideration, and the man/machine interface.

Usually, the first bound encountered is the breadth of the

tree. Unlike Rervian and Sandell[1979] or Reid[1979], the maximum
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breadth of the tree is not fixed, except for an absolute upper limit,
but is adaptive to the number of tracks not uniquely paired during a
sample.

When the maximum breadth of the tree is reached and there are
more tracks to enter, the most unlikely hypothesis on the new level is
deleted unless it is the only remaining branch. Often, as a result of
this trimming, a report will have all nodes assigned to the same
track. Such a report is termed fully identified. A fully identified
report is the algorithm's final decision on report/track pairing
(correlation). When, in the process of building a terminal level, a
report becomes fully identified, it is dropped from the tree and the
appropriate track updated to reflect this correlation. This selection
of the most likely association at the terminal level is often very
accurate; especially when unforced. More generally, this type
correlation is in reaction to a cluster of data associations that is
too large for the hypothesis tree to accept and maintain its
prescribed bounds. Hence, as the tree pushes closer and closer to its
breadth bound, fewer different associations can be retained. This
approach is quite consistent with the overall adaptive intent of
RAHTT,

The breadth of the tree controls the number of hypotheses
considered. To provide for a maximum number of useful hypotheses,
there are two maximum breadths, both adaptive to the number of tracks
and severity of the cross-associations entering the tree. The
expansion bound, the larger bound, enables more hypotheses to be

considered during the addition of levels to the tree. Once the
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expansion of the tree is complete for all measurements in the sample,
the likelihood of all remaining hypotheses is calculated, and the tree
is reduced to the frim bound, the lower bound for breadth. This
branch and bound method corresponds to a breadth first expansion of
the tree resulting in the growth of the tree by set of hypothetical
data associations. Hypotheses with low likelihood functions are
discovered and pruned,

After all levels of the tree have been completed, the first
level is examined to see if it is fully identified. If the report is
fully identified, it is pushed fraom the tree and the new first level
is examined. This procedure continues until all fully identified
reports are pushed from the tree.

The maximum depth of the tree is a function of the maximum
time delay permitted before forcing a pairing and a function of the
number of reports having ambiguious associations. If the depth of the
tree exceeds the maximum allowed depth, then the first level is
identified by using the most likely hypothesis and is pushed from the
tree.

The identification of a level of the hypothesis tree during
the reduction from the expansion bound to the trim bound may mean that
the set of hypothesized tracks can be reduced. Referring again to
figures 3.la and 3.1b, if report A is identified as track T2 then
obviously the hypothesized trajectory for Tl to A is invalid.
Moreover, all subsequent hypotheses based on the existence of a track
Tl as initially defined, i.e. Tl to report A, must have been

determined as unlikely (or less likely) and must have been dropped
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from the tree. In place of the old Tl, the next "spun® track of Tl is
prawoted to Tl. In this example, T4.1 becomes Tl. All generated
tracks surviving this initial pruning are termed potential tracks.

The hypothesis tree determines the most likely correlation of
ambiguious report/track associations. It does this by reacting to
both the number and complexity of the data associations. The more
ambiguious the data the wider the tree; the more voluminous the date,
the deeper the tree. BAs the bounds are approached, the tree becames
more selective in those date associations it considers until it is
forced to declare the most likely association the correlation.

The hypothesis tree makes only initial decisions about target
trajectories. The ultimate decision about a target's true path is

left to the trajectory verification function.
raiect Verificati

Radar Verification

The three tier correlation scheme results in multiple tracks
with correlations occurring at different times. In order to account
for the probability that the correlated pair is incorrect, conjectural
tracks surviving the initial pruning become potential tracks and are
allowed to compete for future correlations. Consider figure 3.2
representing the hypothesis tree from figure 3.1b after the initial
pruning and table 3.1, the corresponding track file.

A potential track must correlate within a prescribed time

period, the potential track delay, or be dropped. Generally the
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FIBURE 3.2 Example hypothesis tree after pruning
TRACK FilE

ESTABLISHED POTENTIAL TENTATIVE |}
1 3.2
2 41
b.2
6.1
TABLE 3.1
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minimum is the time delay required by the hypothesis tree, as a
function of maximum depth, before forcing a correlation.

A potential track that correlates with a report by any means
is promoted to a fentative track. Tentative tracks are subjected to
additional tests for i) convergence with the parent, ii) quality, and,
iii) duplicate trajectories.

Tentative tracks will often converge to their parent track.
Tests are made on the states of the tentative tracks and their parent
tracks. Those tentative tracks found "close"™ to the parent track are
dropped as duplicate trajectories.

Tentative tracks surviving the similiar trajectory test are
then compared with their parent track for quality. Simulation studies
show that each of the three correlations have a relatively stable
success rate. Track selection is thus a probabilistic problem. Each
of the three correlations is weighted in proportion to its mean
success rate. This weighting is the track's quality.

The quality of the parent track and that of the tentative
track are compared and if the quality of the tentative track exceeds
that of the parent track by a predefined amount, the parent track
assumes the states of the tentative track and the tentative track is
dropped.

If the quality of the tentative track does not exceed the
parent's by the required amount within a specified time, the fentative
track delay, the parent track and the tentative track qualities are
compared and the track with the higher quality becomes the established

track.
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Once the quality tests have been completed, the tentative
tracks are compared for duplicate trajectories. Tracks with the
lowest quality are dropped. When the quality is equal, the quality of
the parent track is compared and the tentative track of the parent
with the highest quality is dropped. If this test fails, neither of
the tentative tracks is dropped.

Unfortunately, there are many track geametries that can cause
track switch or a track convergence. Figures 3.3, 3.4, and 3.5
illustrate one simple example. Unlike scme tracking systems, RAHTT
has the added capability to use realistic IFF data to correct target

trajectories.
IFF Veritacation

IFF verifies that the hypothesized track is in the proper
location by attempting to associate the track with the proper code and
the IFF report. If the report and track associate and no other tracks
associate with the report, then the IFF report is used for smoothing.
If the report associates with more than one track, at least one of
which has the proper code, then the hypothesized track is assumed
correct. If the report does not associate with a code matching track,
then tests are performed to determine whether or not the report is
jittered.

IFF jitter is manifested as an azimuth only distortion ana can
be detected by an association test for azimuth. The tests for jitter

are necessary to prevent the algorithm from detecting a missed
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association and taking corrective action on a jittered report. When
a report fails to associate in azimuth only, it is a probable jittered
report.

It is possible for switched or converged tracks to be
reflected as azimuth only association failures. To prevent these
conditions from giving continuous false jitter indications,
consecutive azimuth only association failures are tested for
consistency. If the reports are found to be within a reasonable
orientation, then a new track is generated to account for the IFF
path. The new track is subject to the same upgrading rules as radar
agenerated tracks.

Converged or switched tracks are often detected by IFF. When
reports fail to associate in all dimensions, the report more
accurately reflects the true track position than the hypothesized
track. Under this condition, the report is used for smoothing.

It is important to remember that a target that is an in area
where unique associations are not possible has probably generated
several new tracks to account for the ambiguous data associations.
wWnen these tracks are tested against a code matching IFF report, each
may fall into a different IFF test. The result is that the track
closest to the true track will have the best IFF association and,
consequently, will more accurately refiect the target's path. Tracks
that do not have as strong an IFF association will eventually be
dropped through the quality tests.

IFF gives RAHTT the capability to recover from incorrect

correlations. The tests devised are simple yet very effective.
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Further, the way IFF is used is consistent with the overall adaptive
testing framework employed for radar reports and reflects the

algorithm's ability to adapt on a more abstract level.

High Level Adaptation

Adaptive hypothesis testing, as employed in RAHTT, results in
an algorithm that adjusts to its environment on a high level. The
hypothesis tree and the Kalman filter statistics carry with them
knowledge of the past. These features have memory and hence decisions
are made not simply on tne data available, but on data and decisions
of the past.

The hypothesis tree reacts to more than just the positions of
the radar reports; it reacts to the volume of data by adjusting the
breadth of its search. When the limits of the tree's ability to
canpensate for report density is reached, the algorithm compensates by
selecting the most likely data association of the terminal level.

The flow of data associations through the hypothesis tree, the
quality tests, and the Kalman filter statistics give this algorithm
memory. It makes decisions on hypothesized track trajectories by
observing the flow of unique radar correlations, most likely radar
correlations, terminal level correlations, and IFF code matches. It
adjust its hypothesized tracks over time to reflect the best estimate

of the target's position based on this often conflicting data.



Algorithm Computational Aspects

As noted several times, RAYTT is designed to work in an
airborne system where computer resources are limited. It is
appropriate to briefly examine the impact on such a system.

The RAHTT algorithm is formally presented in appendix A.
Careful study will show that there are two main computational and
space intensive sections.

The first such section performs the generation and deletion of
hypotheses via the hypothesis tree. The algorithm used for the
simulation study contained a true tree structure however in any
realistic application, using one of the present command and control
languages (JOVIAL and ADA), a matrix structure would be far more
efficient.

The cost of the hypothesis framework, whether tree or matrix,
is directly determined by the size of that structure. The size of the
hypothesis tree used by this algorithm is minimized by the measurement
orientation, rapid elimination of unlikely hypotheses, and the
correlation process which effectively keep the tree very small.

The second primary computational savings is achieved by
judicious track growth. Each track beginning a process sampling must
be tested for association against each report. Computationally, the
association test require more camputer time than any other aspect of
the processing cycle. Since any optimization of the association tests
applies equally well to any tracker, the measure of efticiency for

association is the number of tracks generated by the algorithm.
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Interestingly, the Kalman filter is called exactly once for
each association. By noting whether a smoothing has been accomplished
for this report/track pair, it is possible to eliminate duplicate
calls to the filter. This rather surprising result means that once
again the measure of the increased computer resources is directly
proportional to the number of generated tracks. Limiting the number
of tracks and the size of the hypothesis tree are precisely the
approaches used in developing this algorithm.

Extensive simulation studies have veritied the effectiveness
of the Real-time Adaptive Hypothesis Testing Tracker. These studies

are summarized in the next chapter.



CHAPTER 1V

EVALUATION OF THE ALGORITHM

Introduction

This chapter documents, via simulation studies, the initial
evaluation of the Real~time Adaptive Hypothesis Testing Tracker
(RAYTT}. The goal is to determine whether RAHTT provides sufficient
improvement over a Nearest Neighbor style Tracker (NNT) to warrant
further research and testing.

Comparing trackers with such differing underlying
philosophies, as have RAHTT and NNT, can be a somewhat demanding task.
NNT has the decided advantage, in a linear problem, of tending to fail
to the correct path. When muiltiple associations occur, NNT selects
the association that most nearly fits the predicted track position.
This correlation process leaves same tracks without a correlation when
the probability of detection is less than unity. If those tracks
missing correlations were previously well established then the lack of
a correlation has no effect on tracker performance. i.e., NNT must
correlate with the wrong report before track divergence or switches
can occur. It follows from this reasoning that performance is
optimistic for an NNT optimized for linear motion.

Likewise, jitter has little effect on track centinuity for a

linear NNT. The NNT selects the IFF report within the association
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window with the proper code. Only rarely does the proper set of
jittered reports occur that can defeat the association process.

RAHTT, on the other hand, may generate a false track in
response to a jittered report. Without some means of making
reasonable decisions about the existence of a jittered reply, RAHIT
would generate numerous, IFF supported, tracks.

This brief philosophical discussion is not designed to prepare
the reader to accept poor results. Clearly RAHTT must make a
substantial improvement in performance over NNT to justify future
study. The standard selected to measure RAHTT performance is the
performance of the optimized NNT over identical data. The measure for
this evaluation is track continuity which is defined as the percentage
of tracks completing a scenario within two miles of the actual target
position and correlating on the correct report. The performance of
the RAHTT is studied in terms of i) track continuity as radar
detection rates vary, ii) track continuity as clutter (false alarms)
and report density increases, and iii) track continuity for RAHIT in
the presence of jitter with and without jitter logic. The performance
is expressed, where appropriate, as a percentage of tracks completing
a scenario. Care should be taken to note only the relative
performance of the two trackers considered since the absolute
performance is appropriate only for those scenarios and conditions of
the test,

RAHTT is a complex algorithm with a multitude of parameters to
be optimized. Experimental conclusions about all the parameters

availiable in the algorithm and their interactions are left for future
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study. The intention of of the rest of this chapter is to develop a
basic understanding of a few of the parameters. This is a reasonable
approach. Ultimately this algorithm, to be of practical use, must be
extended to include maneuvering, multiple targets. It is during that
extention that full study of the parameters is most appropriate.
Clearly the results of a tracking test are conditioned by the
scenarios. To eliminate biasing the test resnlts, fiftyv randomly
generated scenarios were used as the test cases. A test case
consisted of ten targets. Each target within a scenario was randomly
placed within a prescribed area and given a random heading and
velocity. Each scenario was then executed three times using standard
simulation technigues; the mean of the three runs being the
performance of the tracker against that scenario. The test results
reflected in figures and tables for the remainder of this chapter were

determined from the fifty scenarios.

Test Results
As discussed in chapter III, RAHTIT has several aspects to its

memory. Like other multiple-scan algorithms, RAHTT generates tracks
via a hypothesis testing framework (tree) that accounts for multiple
associations. These hypothesized tracks represent the most likely
target paths based upon those statistics generated by examining
samples of measurement/track associations. Important guestions to
answer immediately are how large must the hypothesis tree be for
efficient correlation and how many samples of data must be gathered to

provide reasonable performance.
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Figure 4.1 shows the effect on correlation as the breadth of
the hypothesis tree is increased. The trim factor (bound) is set as
multiples of the number of reports and tracks in the cluster with the
number of established tracks in the cluster forming the lower bound.
Not surprisingly, the more hypothesized data associations in the tree
the more likely a correct correlation.

The depth of the tree partially defines the time delay in
determining the set of potential tracks and, computationally,
determines the likelihood of the track set. Tests were conducted with
three tree delays: i) a zero-scan delay which resolves the cross
associations based on the current scan of data, ii) a one-scan delay
which uses the present and previous data associations, and iii) a
two-scan delay. Additionaily, .2 zero-scan tree makes all decisions on
track trajectory in the current scan.

The results verify the work of Singer, Sea, and Housewright
[1974]. Their work showed that a two—scan memory tree performed
nearly as well as an optimal, all-scans, memory. An important
conclusion from that work and verified by the tests in this
dissertation is that it is unnecessary to retain more than two samples
of data to approach optimal estimation of the likely tracks and good
performance can be obtained with a one-scan memory.

The intention of the three level correlation scheme, described
in the previous chapter, is to reserve for the hypothesis tree those
track associations not unique thereby limiting the number of reports
placed in the tree. To minimize the depth of the tree a second

function, that of quality, examines the set of all tracks and makes
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decisions based on the frequency and type correlation for a parent and
its generations of tracks.

For the tests conducted in this dissertation the quality
function proved a powerful tool for determining true target trajectory
(see chapter III for a discussion of the quality function). Referring
to fiqure 4.1, note that any two correlations for a one or two-scan
tree will produce a probability of above 80%. Testing indicated that
indeed a two correlation quality difference was sufficient to make
most track decisioiis. This success rate verifies the results obtained
by varying the tentative track delay. Extending the tentative track
delay, the time allowed for the second correlation, beyond a certain
point has minimal effect. The improvement over time reflected in
fiqure 4.2 is a result of the few cases where two tracks were
supported by correlations for a time before one lost correlation.
More typically, the algorithm is able to make very rapid decisions on
track quality keeping the number of tracks at a minimum.

The depth and breadth of the hypothesis tree and the quality
function define the memory of RARTT. This memory enables RAHTT to
recover from wrong correlations where NNT fails. This approach

demonstrates considerable improvement over NNT.

Performance Comparison
RAHTT substantially out performs NNT in all tests conducted.
Figures 4.4 and 4.3 show the relative performance of the two trackers
for varying radar detection rates with and without false alarms
respectively. The curves for NNT compare favorably with that

calculated by Bar-Shalom and Tse[1975].
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Related to the performance is the computational burden
required to achieve the improved performance. The reader needs to
keep in mind that RAHTT resorts to the hypothesis tree only when there
are cross associations. At any one time there are relatively few
clusters of tracks utilizing independently constructed hypothesis
trees [Trunk and Wilson, 1980]. Table 4.1 shows the increased track
load at various points in the RAHIT algorithm as the number of reports
per association window increases. Comparisons with the probabilistic
data association filter (PDAF)cf Bar-Shalom and Tse, [1975] are
relatively meaningless. PDAF test results are for a single target
with varying amounts of clutter while RAHTT is a multitarget tracker.
Further, there are substantial differences in the way the statistics
were ganered. Neverthelcss, it is possible to get a feel for the
computational requirements by examining table 4.1.

A true track splitting algorithm (TSA) generates a new track
for each multiple association. Over twenty scans, the length of the
scenarios used to develope the date for table 4.1, a TSA can generate
up to 104 tracks (see(Bar-Shalom and Tse, 1975]} Table 4.1 shows the
increased track load a TSA would generate in a scan using the
association techniques of RAHTT.

While the track loading and performance of RARTT are quite
satisfactory the overall effectiveness can be substantially improved

by adding IFF sensor measurements.
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IFE _Performance

When unjittered IFF reports are processed by RAHTT the tracker
performance approximates the probability of IFF detection. For the
scenarios tested the performance is approximately 92% for all radar
detection rates.

When jittered reports are included the overall RAHTT
performance without the jitter detection and correction tests declines
to approximately the radar performance. This happens because RAHTIT
only confirms track/IFF positional relationships without the jitter
tests. Thus a jittered report cannot alter a track.

The jitter detection and correction tests improve the
performance to approximately 88% regardless of radar detection. The
success rate is lowered because there are always a few tracks still in
the process of being corrected at the end of the simulation.

These IFF jitter tests and corrections are very simple and
powerful tools for dealing with low to moderate jitter. Flight
testing has been conducted on these jitter tests with excellent

results.

Conclusions
RAHTT demonstrates a substantial improvement over NNT for
tests on specific and random scenarios. The size of the hypothesis
tree and the tracks generated are successfully limited by the three
tier correlation process and the quality tests. Effects of IFF jitter

are lessened by consistency checks on azimuth and orientation.
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CHAPTER V

CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

The Real-time Adaptive Hypothesis Testing Tracker developed in
this dissertation is designed specifically for an airborne
surveillance system. To meet the limited camputational resources, the
unique environmental demands, and the operational requirements, an
original three level correlation strategy is used to reduce the size
of the hypothesis testing tree. Probabilities of missed or incorrect
correlations are accounted for by a quality system based upon the type
and frequency of correlations. Various pruning criteria, most of
vwhich are found in the literature, are applied to further limit the
growth of the hypothetical tracks.

IFF is used as a means of verifying and correcting incorrect
trajectories. Consistency and orientation tests lessen the impact of
light to moderate jitter.

RAHTT is a substantial improvement over a nearest neighbor
tracker and preliminary results demonstrate its feasibility for
potential operational implementation.

There remain several areas for study before actual
implementation is possible.

The most obvious area is the extension to maneuvering flight.
While the techniques and mathematics of Multiple Model Estimation
insure that this extension is feasible, the actual implementation
remains to be determined. Certainly the association process will have

=T 2=
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to be modified to include a window modeled for aircraft maneuvers.
Likewise, the Kalman filter will have to be changed to also model
nonlinear motion. Neither of these problems is conceptually
significant. It is important to note that there is no requirement
that all tracks utilize the same filter or association mechanism.
This would permit varying association and filtering approaches to
differing data enviromments. One obvious approach would be to utilize
a Ralman filter optimized for maneuvering £light only when there is a
possibility the target is actually in a maneuver. At other times
suitable performance could be obtained with a less extensive, ang,
~ consequently, less camputationally demanding filter.

The Kalman filter is well suited for parallel computation. By
dividing the track/report pairs into independent clusters, RAHIT has
provided the foundation for a parallel or multiprocessor system.
There remains a significant amount of work in this area, especially in
the joining of previously independent clusters.

Finally, there remains the problems associated with an actual
implementation. While great care was taken in the design and testing
to account for known implementation problems, there are always
unanticipated problems.

On a higher level, this dissertation demonstrates a need for a
real time computational language that permits flexible, natural tree
structures such as found in LISP. The addition of some of the
artificial intelligence features of LISP would greatly enhance RAHTT's
ability to deal with more discrete or unique information. IFF is one

such attribute that could be of great value if it were more easily
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bound to the hypothesized tracks. When the extensions are made to
maneuvering f£light, aircraft type and performance would also be
immediate candidates. The potential benefits of adding more
artificial intelligence to a computational language would permit RAHTT
to be the truly flexible tracker desired.

The tracker developed in this dissertation represents a
significant improvement in airborne, multitarget tracking over the
present nearest neighbor algorithm. RAHTT provides improved track
continuity in all areas of target and report density, probability of
report detection, and susceptability to jittered reports. It
accomplishes this improvement with modest increases in computational
and space resources. Further, RAHTT was designed with potential
software, computer hardware, and new sensor systems in mind to allow

rapid and flexible upgrading.
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APPENDIX A
THE RAHTT ALGORITHM

DEFINITIONS
Time index
A radar report
Number of radar reports

{2y 33 1=1,2,...,M

All established tracks

All tentative tracks

All potential tracks

{tg Ut U Tp}

Associations for report i. 2--track(s) associated with
iﬂcrk

Associations for track %

Cluster index. A cluster is a grouping of associations
that have either reports or tracks in common.

Cluster
All hypothetical tracks for i

Terminal hypothesis indexed by m

Individual terminal nodes
A hypothesis of data associations

That part of ﬁn formed during k

A level of the tree



for k=1 to«= do;
/*Form associations via equations Chapter II*/
for i=1 to M, do;
for j =1 to Tr-1 do;

form associations {e;} and {e@};

i
end j;
end i;
for i=1 to M, do; /*loop through reports */
if |{eé}| = 1 and l{e§}| = 1 then do;/* looking */

/*for unique associations  */
SMOOTH(i,%);
Qp = Q *Qg; /*Quality of Track + Quality of */
/*Unique Correlation %/
end unique;
else if {61} = ¢ then nmext i; /*IF NO ASSOCIATIONS::-*/
/*NEXT REPORT */

else if A =0 then do; /* form first cluster */

else for each A do; /*IF A REPORT OR TRACK IN 8

OR 8Y  #/
1F(z51 n tel) # 9 or 12Ky n tef1£ g /* ADD TO*/
/* CLUSTER*/
then Zli = {21; U e%};

end;
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else do; /* ADD NEW CLUSTER ®x/
A=A+1;

k _ i,
A - {el}’

yA
end;
end loop on ij;
/* EACH CLUSTER IS FORMED INTO SUPERCLUSTERS BASED */
/* ON CO:MON TRACKS AND EXISTING TREES ARE REFORMED */
/* process each ZX INDEPENDENT CLUSTER
for each zf do; /* each Z§ can be solved by independent */

/* processors x/

for each i in Z¥ do;

Q? = {eé U 0}; /*ADD false alarm hypothesis */
if m = 0 then do; /* if first level this k */
m = 1;
52 = Q?; /* add new terminal level */
end;
else do; /*Add new level observing mutually */
. /*exclusive data */

/*ASSOCIATION- - *See Hypothesis Generation*/
/*and deletion Chapter III
for each 269? & %€ any ﬁg,n;

Create a new t_ and Replace % in R?; with

p
new T;
for each ﬁﬁ’n form new §E+1 by;
/*New Terminal sets §E+1 are formed by */
/*setting §E+l to null then for each terminal */
k

/*NODE ADD ALL TRACKS in Q; except those */
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. _ .
/*tracks already on ﬁn formed during k, ﬁn,k*/

k

sm+l _  mm+l k _
then " = {{Q "} v fag - a;

k
/*If terminal level exceeds the expansion x/

N all Qn,k}
/*bound reduce the most unlikely §£+1,n x/
/*except if it is the last child of previous */
/* ﬁgin

while |{aF"'} > EXPy DROP(Lpin B 1 that is not
’

B
last child of ﬁg’n);

IF NOT SMOOTHED IN k SMOOTH(QET%)

m=m+1;

end; /* A level has been added to tree */
/* ALL ASSOCIATIONS IN TREE. REDUCE TO THE TRIM BOUND*/
while |[{Qp}| > Ty DROP(L_; p°™);
/*IF it is time to identify level 1 or level 1 is */
/*fully identified push it off tree */
IF fully-identified(Q') then

increment Quality § PUSH from Tree;

/*Seiect most likely hypothesis in tree and use */

/*that hypothesis to select the level 1 correlation*/

else DO WHILE Tree to deep;

Find Lmax (Qn);

Construct tree based on ﬁn;
Push Lead level off Tree;
Increment Track Quality;

end;

end cluster;



/*RADAR REPORTS PROCESSED. T, REFLECTS NEW ™ */
/*and existing Tracks. Process IFF *x/
For All IFF Reports and all T, do;
IF report and track codes match do;
IF report AND Track Associate then Smooth;
else do; /* Jitter Test */
IF AZIMUTH ONLY ASSOCIATION Failure then do;
IF Previous code matching report also
AZIMUTH ONLY FAILURE then do;
IF COMPATIBLE ORIENTATION AND DISTANCE
START New Track;
end previous AZIMUTH ONLY;
end AZIMUTH FAILURE;
IF RANGE only failure SMOOTH;
STOR%(IFF report);
/* Process Ty */
FOR each 1, and each 7 child of t4;
IF Quality of Tr < Tg by at least Upgrade
minimum then
Tg * Tt and Drop Trs
IF Quality of Tg > Tt by at least Upgrade

minimum then DROP TT;
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IF Tt and Ty have similar trajectors drop(T)
with lower Quality To* Tt if necessary;
IF 14 correlation time to old (tentative

Track delay) DROP (TT);

end;
FOR each T do;
IF T has not had correlation with POTENTIAL
TRACK Delay then DROP (Tp);
end;

FOR ALL 14 doj;
IF any t; have similar paths then do;
DROP(TT) with lower Quality;
IF Quality equal then DROP T with T
having higher Quality;
end;
end;

end RAHTT;



APPENDIX B

For a variable A, oﬁ = Var A = E(dAz)

x = R Cosf dx

Cos 8 dR - R Sin#6 d6

y = R Sin6 dy Sin® dR + R Cos 6 dé

Var x = E(dx%) = E[(Cos® dR - R Sin8 d8)?]
= cé Cosze + RZSinze cg

Var y = Efdy%] = E[(Sin 6dR + R Cos 6 d8)?2]
= 0§ Sin%e +092R2Cos2

Correlation Coefficient
E (AB)

JEay VE(BY

Ppp = 9aB/0p9p =

E (dxdy)
JE@ax%) J/E(ay?)

using predicted azimuth § and predicted range R
E (dxdy) = SinB Cos§ E(dR%) - Sin® Cosd R2E(dF?)
+ R(Cos? & - sin%d) E (dRd9)

Since 6 and R are independent last term = 0

E (dxdy) = (cg - ﬁzog) Sind Cos®
2 22 2 e o=
o - (oR R e) Sin6 Cos®6

5 ]
(Var x)* (Var y)
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Using predicted asimuth 8, X, and ¥ the predicted range R is

R = X cos8 + ¥y sinf@

where
X = Xold + x4t
At = t report - t smoothing
(%y)
y
X
Cos® = A/X A = X cosb
Sin9 = B/y B =7y Sinf

R=A+B =X cosb + y sin®

then dR = Sin® dy + CosB dx

relates the changes in X and ¥ to changes in R while holding &
constant.

Using predicted R, X, and y

47 = xdy - ydx ., _Xx _xdy -y dx
- =2 2 2 2 2
1+ Lo x x“+y x“ 4y
x2
_ R*cos 8dy - R* sin§ dx"
RZ
a5 _ cos® dy - sinf dx

R



From

R=Xcosd + ¥y sin §

%% = %% cos® + dy/dt sin€
which relates changes in range to changes in velocity while
holding 8 constant.

Calculate expected variance in predicted range E(dﬁz)
based on expected variance in prediction X and ¥y E(d?z)GE(d§2)

dR = Cos® dX + Sin6 dy

E(dR®) = E[ (Cose d¥ + Sind dy)?)
= Cos82 E(dx?%) +Sin26E(d¥%) + 2 SinB As § E(dXdy)
where
2 2
E(dx%) = E[X ;4 + xAt)7)

Efx2 4] + 20tE(xg;gx) + at? E(x%)

2 . .
E(dy?) = Ely2 41 + 20tE(y 490 + 8t’ECPD)
E(dxdy) = ovE(dx?) VE(dy?)

2 2.2 R —
o - R0, Sin® Cos6
- R o — Je(ax?)  VE(dyH)

"2

(var x)%’ (var y)
Then the range window is

Wy = Kl(of2 + E(dR?))

Similarly
2 _ . 2 = 2 2 = 2 _ R —_— ___]_2
E(d6“) = [Sin“ 8 E(dy“) + Cos“ B E(dx“) - 2 Sin6CoseE(dxdy)IR

Z 4 E(d8%))

S W, o= Kz(c:6

5]
and



2 <2
dR L2 ) =Sin eE(-X—) + Cos eE( =)+ 2 SlnGCoseE( %X )

E( =3¢

with ) y
- =) =z
(S =0 E(ED

Al

. =2
. dR
WR = Kq(op® + E( $5))

Where Kl, Kz, and K3 are sigma weighting factors.

s



APPENDIX C
SIMULATION ALGORITHM

/* The simulation algorithm develops scenarios or reads scripted */
/* scenarios and generates report positions based on the true */

/¥ target position */

Procedure Main; /* Driver routine */
For I=1, forever do;
Call SETUP; /* Read and create data */
For J=1, nurber of simulations do; /* Simulations per scenario */
For N=1, number_oi scans do; /* Scans per scenario */
If N>1 then do;
Increment time by sample rate;
Call True target generator;
eng,
Call Apparent_target generator;
If N=1 do initialization; /* Kalman filter, housekeeping */
Call Radar report generator;
Call IFF report generator;
Call RAHIT,;
end N;
If J{ nurber of simulations reset track positions to starting
positions for this scenario;
end J;

end I;



Procedure SETUP;

/* Setup is used to input data for control over the number, length,

/* and characteristics of scenarios. To avoid excessive inputs

/* FORTRAN namelists are used to modify only the desired data

If generating random scenarios Call Random Scenario;
else do;
Read inputs and modify data base;
If input modifies scenario generation do;
If random scenarios to generate Call Random Scenario;

else for each track Read X, Y, velocity, and heading;

end;
If input = STOP then STCP;
If input = end read then EXIT read loop;

end read loop;

If tentative track delay = O then
Tentative track delay = (3.3 * sample rate);

If Potential track delay = O then
Potential track delay = Scan_delay * sample rate;

end SETUP;

*/
*/
*/



Procedure Random Geenario; /* Generate a scenario */

/* Upon input command a random scenario is created. On */
/* subsequent calls to setup randam scenarios are generated */
/* until the number of required scenarios have been created */
/* or until overriden */

Calculate location and dimension of test area; /* Tests were conducted
/* 140=X=150, 0=Y=10
Calculate scenario track start area; /¥ Target starting positions are
/* uniformly spaced in a triangle
/* 145=X =150, 5=Y =10
For I=1, number of Tracks desired; /* usually 10
Calculate X and Y position of track;
Calculate heading of track; /* random 105-180 degrees
Calculate velocity of track; /* randam 200-500 KTs

end I;

end Random Scenario;

*/
*/
*/

*/
*/

*/
*/



Procedure True Target_ Generator; J* TIG */
/* TIG moves the actual target position to the new true

/* position for this sampling using standard equations of motion

end;

Procedure Apparent Target Generator; /* ATG */

/* ATG generates the apparent target position by corrupting
/* the true target position

For each true track do;

/* For the radar reports */

*/
*/

*/
*/

Apply Guassian distributed error to true azimuth; /*us=0 Gp= .005 radians */

Apply Guassian distributed error to true range; /*uR=O 0R= A MM

Apply Guassian distributed error to true range rate; /*HR=O °§= 10kt

/* For IFF reports */
If not jitter_allowed apply Guassian distributed error to true
azimuth; /*H;=0 Tg= .005 radians */

Apply Guassian distributed error to true range; /*pR=0 OR= .25 NM

If jitter allowed and this should be a jittered report;
Apply jittered azimuth and azimuth bias;
else if jitter allowed apply Guassian distribution to

true azimth;

end AIG;

*/
*/

*/



Procedure Rader Report Generator;

Determine nurber and location of false alams;
/* False alamms are Possion distributed with mean 15 for test and */
/* uniformly distributed in test area */
For all reports detected and false alarms;
Create a raw buffer of reports with the reports azimuth ordered;
end;

end Radar Report Generator;

Procedure IFF Report Generator;
For each apparent IFF report detected;
Create a raw report buffer;
end;

end;
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