INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Ann Arbor, MI 48106

to the second second

8224202

Numbere, Daopu Thompson

A GENERAL STREAMLINE MODELLING TECHNIQUE FOR HOMOGENEOUS AND HETEROGENEOUS POROUS MEDIA, WITH APPLICATION TO STEAMFLOOD PREDICTION

The University of Oklahoma

Рн.D. 1982

University Microfilms Internationai 300 N. Zeeb Road, Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $_{-}\sqrt{_{-}}$.

1.	Glossy photographs or pages
2.	Colored illustrations, paper or print
3.	Photographs with dark background
4.	Illustrations are poor copy
5.	Pages with black marks, not original copy
6.	Print shows through as there is text on both sides of page
7.	Indistinct, broken or small print on several pages
8.	Print exceeds margin requirements
9.	Tightly bound copy with print lost in spine
10.	Computer printout pages with indistinct print
11.	Page(s) lacking when material received, and not available from school or author.
12.	Page(s) seem to be missing in numbering only as text follows.
13.	Two pages numbered Text follows.
14.	Curling and wrinkled pages

University Microfilms

International

15. Other____

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

A GENERAL STREAMLINE MODELLING TECHNIQUE FOR HOMOGENEOUS AND HETEROGENEOUS POROUS MEDIA, WITH APPLICATION TO STEAMFLOOD PREDICTION

A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

> By DAOPU THOMPSON NUMBERE Norman, Oklahoma 1982

A GENERAL STREAMLINE MODELLING TECHNIQUE FOR HOMOGENEOUS AND HETEROGENEOUS POROUS MEDIA, WITH APPLICATION TO STEAMFLOOD PREDICTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF PETROLEUM AND GEOLOGICAL ENGINEERING

APPROVED BY

ACKNOWLEDGEMENTS

I welcome this opportunity to express my gratitude to everyone that aided me in this research work.

Special appreciation goes to my advisor, Dr. D. Tiab for his guidance and support to the fruitful completion of this work. Sincere gratitude goes to Dr. H. B. Crichlow for all his professional advice and personal encouragement all through the various stages of this work. I would also like to thank all the members of my dissertation committee for their support. To my friend, Robert Whalen, for bringing the Boundary Element Method to my attention, a big thank you.

A special acknowledgement is extended to the University of Oklahoma Research Council for partial financial support for this work during the 1980-81 academic year. Special thanks are due to Dr. F. Hartmann of the University of California, Irvine, and to Professor D. J. Shippy of the University of Kentucky, Lexington, neither of whom I have met, but were very helpful in sending me valuable information whenever I requested it.

Finally, to Detia Roe, a special thank you for her patience while typing this dissertation over numerous changes and delays.

iii

ABSTRACT

A general streamline/streamtube simulation method applicable to homogeneous, anisotropic, as well as piecewise homogeneous porous media is described with its application to steamflood recovery prediction. The boundaries of the media can be of any arbitrary but smooth shape with boundary conditions that can be any of or combination of either Neuman, Dirichlet, or mixed boundary conditions.

The (Laplace's) equation describing the distribution of potential was solved by the Boundary Element Method (BEM) also called the Boundary Integral Element Method (BIEM). This method utilizes the superposition of singular solutions whose distributions are determined by the boundary conditions of the problem. The streamlines are generated assuming single phase flow (unit mobility assumption). The streamtubes are assumed to be linear tubes of rectangular cross section. Streamlines and streamtubes were generated for a homogeneous reservoir assuming it was bounded on all sides by sealing faults. Then, it was assumed to have an oilwater contact (constant pressure) boundary on one side, while the remainder of the boundary remained sealed. Oil recovery calculations were made for a steam drive process

iv

in each streamtube generated and added together to give the recovery in the entire field or pilot area. Finally, the reservoir was treated as a piecewise homogeneous reservoir having two regions of unequal permeabilities. The streamlines and streamtubes were again generated and oil recovery calculated for each of the two types of boundary arrangements mentioned above.

Steamflood prediction was made assuming each streamtube existed in isolation. Thus, there was no heat exchange between streamtubes. For homogeneous reservoirs, recovery was calculated using the Marx and Langenheim equations. For the piecewise homogeneous reservoir, new equations were derived for the location and rate of advance of the steam front while it is in the second permeability region of a streamtube containing two permeability regions. Comparison of the potentials obtained by the BEM and those obtained analytically for simple domains confirm the validity of the Boundary Element Method. This method provides a general technique to properly model different reservoirs with arbitrary boundaries and boundary conditions, particularly, piecewise homogeneous reservoirs which had not been possible using the method of images.

v

TABLE OF CONTENTS

Pa	зe
CKNOWLEDGEMENTS	ii
BSTRACT	ίv
IST OF TABLES	x
IST OF FIGURES	ii
hapter	
I. INTRODUCTION	1
II. LITERATURE SURVEY	5
III. RESEARCH OBJECTIVE AND PROPOSED MODEL	13
IV. STATEMENT OF THE PROBLEM	5
V. MATHEMATICAL DEVELOPMENT	8
Transformation to an Integral Formulation Representation as a Boundary Integral Equation	22 30
VI. SOLUTION BY DISCRETIZATION OF THE BOUNDARY	36
Evaluation of the Integrals	10
VII. DETERMINATION OF THE POTENTIAL AND VELOCITY AT INTERIOR POINTS	¥5
Potential	↓6 ↓7
III. EXTENSION TO HETEROGENEOUS POROUS MEDIA	53
Piecewise Homogeneous Porous Media Homogeneous Systems with Impermeable Inclusions Streamline and Streamtube Calculation Procedure Continuation of Streamlines in Adjacent Regions	53 59 51

•

Chapter

Chapter	Pa	ge
IX. RATE OF ADVAN HOMOGENEOUS I	NCE OF STEAM FRONT IN A PIECEWISE LINEAR POROUS MEDIUM	67
Instantaneous Moving Cond Heat Balance Mass Balances Oil Water . Enthalpy Rate of Heat	s Heat and Mass Balance Across the densation Front	70 75 78 79 83
Wise Homoge Solution by I Constant Inje Oil Recovery	eneous Linear Porous Medium Laplace Transform Method ection Rate	84 97 99 00
X. TEST FOR THE	VALIDITY OF THE BEM 1	02
XI. APPLICATIONS	AND RESULTS 1	08
Sample Field Boundary	Problem: Shiells Canyon Field 1 y Conditions	08 09
Homogeneous Results for S	s Reservoir 1 Shiells Canyon Field Analysed as a	10
Homogeneous Sealed E Part of	s Reservoir 1 Boundary	14 14
the Re Case 2: Shie	emainder Sealed 1 ells Canyon Field Analysed as a	14
Piecewise H Results for S	Homogeneous Reservoir 1 Shiells Canyon Field Analysed as a	24
Piecewise H Sealed E Part of	Boundary	29 29 29
Discussion of	emainder Sealed	29 38
Method	\cdots	44
XII. CONCLUSIONS A	AND RECOMMENDATIONS 1	48
Conclusions Limitations c Suggestions f	of the Study	48 48 49
NOMENCLATURE		50

APPEND	IX	F	age
Α.	Derivations of $H_{b,L}$, $G_{b,L}$, $H'_{b,L}$, and $G'_{b,L}$.	•	158
В.	Evaluation of the Terms Under the Integral Sign		163
C.	Temperature Distribution in the Cap and Base Rock	•	167
D.	Laplace Transform of a Sectionally Continuous Function	•	171
Ε.	Computer Implementation of Boundary Element Method of Streamline Modelling	•	175
F.	Computer Implementation of Steamflood Recovery Calculation	•	195
G.	Results of Streamline Modelling of Shiells Canyon Field as a Homogeneous Reservoir with Sealed Boundary	•	198
Н.	Results of Steamflood Prediction of Shiells Canyon Field Analysed as a Homogeneous Reser- voir with Sealed Outer Boundary	•	210
I.	Results of Streamline Modelling of Shiells Canyon Field as a Homogeneous Reservoir. Part of Its Boundary at Constant Pressure, the Remainder Sealed	•	221
J.	Results of Steamflood Prediction of Shiells Canyon Field Analysed as a Homogeneous Reser- voir. Part of Its Boundary at Constant Pres- sure, the Remainder Sealed	•	233
К.	Results of Streamline Modelling of Shiells Canyon Field as a Piecewise Homogeneous Reser- voir with Sealed Outer Boundary	•	244
L.	Results of Steamflood Prediction of Shiells Canyon Field Analysed as Piecewise Homogeneous Reservoir having Sealed Boundary	•	259
М.	Results of Streamline Modelling of Shiells Canyon Field as a Piecewise Homogeneous Reser- voir. Part of its boundary at Constant Pres-		270
	sure, the Remainder Sealed	•	2/0

-

APPENDIX

🖕 - K - K

٠

Ν.	Results of Steamflood Prediction for Shiells Canyon Field as a Piecewise Homogeneous Reser- voir. Part of its Boundary at Constant Pres-	
	sure, the Remainder Sealed	34
0.	Listing of Computer Programs	95
REFERE	ICES	37

Page

LIST OF TABLES

.

.

.

Table	Page
1.	Input Data for Test Program
2.	Results at Boundary Nodes
3.	Comparison with Analytical Solution 106
4.	The Coordinates of the Extreme Points of the Boundary Elements for Shiells Canyon Reservoir Analysed as a Single Homogeneous Region 112
5.	Coordinates of Sources and Sinks for Shiells Canyon Reservoir Analysed as a Single Homogeneous Reservoir
6.	Prescribed Boundary Conditions for Shiells Canyon Reservoir Analysed as a Homogeneous Reservoir with Sealed Outer Boundary
7.	Calculated Streamtube Dimensions for Shiells Canyon Field Analysed as a Homogeneous Reservoir with Sealed Outer Boundary
8.	Input Data to Steamflood Recovery Prediction Program
9.	Calculated Streamtube Dimensions for Shiells Canyon Field Analysed as a Homogeneous Reservoir. Part of the Boundary at Constant Pressure, the Remainder Sealed 122
10.	The Coordinates of the Extreme Points of the Boundary Elements for Shiells Canyon Field Anal- ysed as a Piecewise Homogeneous Reservoir 127
11.	The Coordinates of the Sources and Sinks for Shiells Canyon Reservoir Analysed as a Piecewise Homogeneous Reservoir
12.	Boundary Conditions for Shiells Canyon Field Analysed as a 2-Region Piecewise Homogeneous Reservoir

LIST OF TABLES

Table	Pa	age
1.	Input Data for Test Program	L O 5
2.	Results at Boundary Nodes	106
3.	Comparison with Analytical Solution	L06
4.	The Coordinates of the Extreme Points of the Boundary Elements for Shiells Canyon Reservoir Analysed as a Single Homogeneous Region]	112
5.	Coordinates of Sources and Sinks for Shiells Canyon Reservoir Analysed as a Single Homogeneous Reservoir	113
6.	Prescribed Boundary Conditions for Shiells Canyon Reservoir Analysed as a Homogeneous Reservoir with Sealed Outer Boundary	115
7.	Calculated Streamtube Dimensions for Shiells Canyon Field Analysed as a Homogeneous Reservoir with Sealed Outer Boundary	117
8.	Input Data to Steamflood Recovery Prediction Program	L18
9.	Calculated Streamtube Dimensions for Shiells Canyon Field Analysed as a Homogeneous Reservoir. Part of the Boundary at Constant Pressure, the Remainder Sealed	122
10.	The Coordinates of the Extreme Points of the Boundary Elements for Shiells Canyon Field Anal- ysed as a Piecewise Homogeneous Reservoir 1	L 2 7
11.	The Coordinates of the Sources and Sinks for Shiells Canyon Reservoir Analysed as a Piecewise Homogeneous Reservoir	L 2 8
12.	Boundary Conditions for Shiells Canyon Field Analysed as a 2-Region Piecewise Homogeneous Reservoir	L30

•

Table

•

13.	Calculated Streamtube Dimensions for Shiells		
	Canyon Reservoir Analysed as a Piecewise Homo-		
	geneous Reservoir with Sealed Outer Boundary .	•	132

Page

LIST OF FIGURES

.

•

Figure	F	'age
1.	Piecewise-homogeneous domain	16
2.	Linear, one-dimensional model of piecewise- homogeneous reservoir	16
3.	Elemental volumes	18
4.	Method of evaluating improper integral	32
5.	Straight-line boundary elements or segments	36
б.	Piecewise homogeneous domain showing types of boundary conditions	53
7.	Homogeneous porous medium with impermeable shale inclusions	59
8.	Homogeneous porous medium with impermeable shale inclusions showing discretization and numbering scheme	59
9.	Reservoir cross section showing location of steam front	69
10.	Reservoir cross section for heat balance	72
11.	Schematic of piecewise-homogeneous porous medium for heat loss calculations	84
12.	Distance as a function of time in each region of a linear piecewise-homogeneous porous medium	84
13.	Steady flow of an ideal fluid in a corner \ldots	102
14.	Division of square domain into segments and numbering scheme	103
15.	Distribution of absolute errors	107
16.	Shiells Canyon fieldzone 203	108

Figure Pag	e
17. Division of the boundary of Shiells Canyon Field into discrete elements	1
18. Boundary element modelling of Shiells Canyon Field as a single homogeneous reservoir with sealed outer boundary	.6
19. Steamflood recovery prediction for Shiells Canyon Field as a homogeneous reservoir with sealed outer boundary	20
20. Boundary element modelling of Shiells Canyon Field as a homogeneous reservoir with part of the boundary at constant pressure, the remainder sealed 12	21
21. Steamflood recovery prediction for Shiells Canyon Field as a homogeneous reservoir with part of the boundary at constant pressure, the remainder sealed	23
22. Shiells Canyon Field arbitrarily divided into two regions with different material properties 12	25
23. Shiells Canyon Field as a piecewise homogeneous field showing discretization and numbering scheme	26
24. Boundary element modelling of Shiells Canyon field as a piecewise homogeneous reservoir with sealed outer boundary	51
25. Steamflood recovery prediction for Shiells Canyon field as a piecewise-homogeneous reser- voir with sealed outer boundary	53
26. Boundary element modelling of Shiells Canyon field as a piecewise homogeneous reservoir with part of the boundary at constant pressure, the remainder sealed	34
27. Steamflood recovery prediction for Shiells Canyon field as a piecewise homogeneous reser- voir with part of the boundary at constant pressure, the remainder sealed	37
28. Boundary element modelling of Shiells Canyon field as a homogeneous reservoir with sealed outer boundary. Unequal production rates 13	38

F

•

Figure	· · · · · · · · · · · · · · · · · · ·		I	age
29.	Streamlines for Shiells Canyon Steamflood (after Konopnicki, et al.)	•	•	140
30.	Comparison with field performance	•	•	140
31.	Comparison of results	•	•	143
32.	Actual injection rates	•	•	144

.

.

A GENERAL STREAMLINE MODELLING TECHNIQUE FOR HOMOGENEOUS AND HETEROGENEOUS POROUS MEDIA, WITH APPLICATION TO STEAMFLOOD PREDICTION

CHAPTER I

INTRODUCTION

Steamflood recovery performance can be predicted either by the use of analytical equations derived fcr linear and radial homogeneous porous media, or by the use of numerical simulators. The numerical simulators have the benefits of giving more detailed and more reliable results. They also have the advantage of being applicable to a wide variety of types of porous media. Unfortunately, these simulators require a great deal of detailed reservoir data, making them expensive to run. Quite often, the available geological and production data are not sufficient, and economic considerations prohibit the collection of such extensive data. In such situations, simulators are often run with some of the data being assumed. This reduces the advantages of the numerical simulator. Improving the accuracy by obtaining more data may make the cost of running one unjustifiable.

The analytical methods have the advantage of simplicity and therefore are relatively cheap. But, in order to predict recovery using analytic equations for an entire field with multiple sources and sinks, the field must be reduced to an equivalent linear or radial system. One way to achieve this is by the so-called streamline/streamtube technique. Previous methods of determining the streamlines and streamtubes for reservoirs with regular as well as irregular boundaries were based on the technique of image wells. According to the well-image theory, hydrogeologic boundaries may be replaced, for analytical purposes, by imaginary wells which produce the same distrubance effects as the boundaries. Boundary problems are thereby simplified to the consideration of an infinite reservoir in which real and image wells operate simultaneously and their effects are superposed to give the potentials and streamlines at desired locations. This imagewell method is inadequate in the following respects:

- Theoretically, the number of image wells and their locations extend to infinity. The actual number of image wells used in the solution of a particular problem becomes a matter of experience or judgement.
- It has only been applied to homogeneous reservoirs. Extension to heterogeneous systems is theoretically possible but the calculations very quickly become tedious.

3. Irregular boundaries are generally modelled by arbitrary locations of image wells whose rates are determined as those necessary to confine as much of the streamlines as desired. Hence, the derived potentials from which the streamlines and streamtubes are calculated do not represent the true potential solutions to the problem with its boundary conditions.

It is therefore easy to see that a new modelling technique is needed for cases where current streamline methods would either be over-simplifications or incorrect, and numerical simulators uneconomical. These would include:

(i) Homogeneous reservoirs with irregularly shaped boundaries having a variety of boundary conditions.

(ii) Heterogeneous reservoirs whose properties are such that they could be naturally divided into a number of subregions with homogeneous properties.

The research work described here develops such a model. A heterogeneous reservoir is assumed to be made up of a few subregions with constant material properties such as transmissibility, porosity, etc. The model exploits the simplicity of the analytical models by utilizing as its basis the point source solution in infinite medium, from which it determines other solutions by superposition. At the same time, it uses a numerical technique where the boundaries of the region are discretized, called the Boundary Element

Method (BEM) or the Boundary Integral Element Method (BIEM). This technique is used to generate the streamtubes (or stream channels) for heterogeneous reservoirs of any arbitrary shape or boundary conditions. These streamtubes form the conduits through which the steam displacement processes take place from injectors to producers.

CHAPTER II

LITERATURE SURVEY

In the year 1899, Slichter¹ used the concept of steady state streamlines in his theoretical investigation of the motion of ground waters. In 1962, Ferris et al² published a comprehensive study of ground water flow in bounded systems with various kinds of boundary conditions. The effects of the boundaries were simulated by the use of image wells. This image-well technique is now widely used by ground water hydrologists as well as petroleum engineers.^{2,3,4,5}

Petroleum engineers have extended the streamline concept to include so-called streamtubes or streamchannels whose dimensions are determined from the knowledge of the streamlines.^{6,7} The streamtubes act as the channels, inside which oil displacement processes are assumed to be taking place. The use of image-wells to simulate the boundary conditions has generally been limited to homogeneous domains with boundaries of simple geometrical shapes such as squares, rectangles, circles, etc. Even though, in theory, the image well method can be applied to heterogeneous media⁴ as well as to arbitrary boundary shapes, in

practice, the calculations quickly become tedious. This is partly due to the fact that the image wells and their locations extend to infinity even for the simplest closed systems. This problem was partially addressed by Chan.⁸ who in 1975 presented an improved image-well method for straight-line boundaries that involves a rearrangement of the image pattern depending on the boundary configurations. However, even with this improvement, the number of image wells required still prohibits its use in all but the simplest geometrical shapes. Secondly, the improved method does not account for heterogeneous media. The limitation to simple geometrical shapes was removed by Leblanc^9 and Lin.¹⁰ Leblanc used the image-well technique to bound the streamlines in a homogeneous reservoir of arbitrarily shaped boundary by using a trial and error procedure to determine the image well rates required to adequately confine the streamlines. Lin extended the method to include reservoirs which are not sealed but have some restricted flow as in the case of partial water encroachment. Each method is unsatisfactory because locations of the image wells (and therefore the potentials) are determined by how well the streamlines are confined rather than by the true boundary conditions of the physical system. Thus, the imagewell technique is inadequate for reservoirs that are: (a) heterogeneous and (b) have arbitrarily shaped boundaries.

The Boundary Element Method (BEM), also called the Boundary Integral Element Method (BIEM), is a technique that can handle several kinds of shapes and heterogeneities. It is an integral method that utilizes the superposition of singular solutions of the partial differential equations of the system. The method has recently emerged as an important numerical technique for the solution of linear elliptic equations such as occur in potential flow and elastostatics.^{11,14} During the last decade, the BEM has been extended to solve linear parabolic equations as well.^{15,16} The extension of the method to piece-wise non-homogeneous bodies of arbitrary shape has been attempted by Banerjee,¹⁷ and Jaworski¹⁸ while Butterfield and Tomlin¹⁹ have used the method for solving zoned anisotropic continuum prob-The literature on the BEM is large and growing lems. rapidly as more researchers develop new methods of appli-Reference 17 lists more than 70 references on cation. this subject and contains a good review of the literature on BEM up to the year 1976. The Boundary Element Method has been used in this research work to generate the steady state streamlines and associated streamtubes for heterogeneous reservoirs. The streamtubes serve as the channels inside which any displacement process (steam drive in this case) takes place. In what follows, a brief review of the literature on steam drive processes is given.

The benefits of applying heat to an oil reservoir to aid oil recovery were foreseen as early as 1917, 59 and

in the 1920's and 1930's, steam was used to remove paraffin from the wellbore.²² Since Shell Oil Company's successful stimulation of a California oil well in the early 1960's, steam injection has steadily gained prominence as an oil recovery method. In fact, steam injection is currently the most popular of all enhanced oil recovery methods-producing 405 million barrels per day (MMBPD) worldwide as compared with 221 MMBPD from all other enhanced recovery methods combined.²²

Even before Shell Oil Company's successful stimulation of the early 1960's, technical papers began to be published describing the transport of injected heat in porous media. One of these papers was by Lauwerier, ²³ whose model for the injection of hot water into an oil bearing formation was published in 1955. He assumed a linear homogeneous reservoir of constant thickness, sandwiched between two oil sands. The thermal conductivity of the oil sand in the vertical direction was assumed equal to that of the cap and base rock which were identical. The horizontal thermal conductivity in the oil sand was assumed to be zero. The vertical thermal conductivity in the water sand was assumed infinite so that the temperature in the vertical direction for the water sand was always uniform. Instantaneous equilibrium was assumed between sand grains and reservoir fluid so that the sand grains had the same temperature as the reservoir fluid throughout. Finally,

he formulated his problem by assuming that at time t, the temperature at the boundaries between the two zones were elevated and kept at a constant temperature due to the injection of hot water. By making separate heat balances within the oil and water sands, two equations were obtained. They were solved using the Laplace transform technique to obtain the temperature distributions in the two sands. In 1959, Rubenstein²⁴ improved Lauwerier's model by assuming constant, isotropic thermal conductivities in the reservoir as well as in the confining cap and base rock.

In 1959. Marx and Langenheim²⁵ presented a model for calculating the heated area and its rate of advance based on idealized step temperature at the steam front. Thev also presented an equation for the temperature gradient for a linear temperature distribution in the steam zone. Finally, they proposed a method of predicting the oil recovery. In 1961, Willman, et al²⁶ presented data on oil recovery mechanisms for hot water and steam injection for a variety of oils and sand types. They presented a modified Buckley-Leverett method to predict the oil recovery for a radial system. Both the Marx and Langenheim, and the Willman, et al models have been further explained and expanded by several authors.²⁷⁻³⁰ Baker³¹ reported on an experimental study of heat flow in steam flooding in a radial system. Among some of Baker's results were: (a) the fraction of injected heat lost when expressed as a function

of time did not depend on injection rate. (b) A significant portion of injected heat was contained in the hot water zone ahead of and underlying the steam zone. (c) The division of heat between the steam and hot water zones did depend on injection rate. In the same year, Mandle and Volek³² made a rigorous calculation of the transport of heat during steamflooding. They found that earlier theory, based on neglecting the heat transport from the steam zone into the oil/water region was consistent with the physical model up to a critical time t_c . t_c marks the time at which the mode of heat transfer from the steam zone into the oil/water region changes from being predominantly conductive to being predominantly convective. The equation describing the growth of the steam zone changes accordingly at $t = t_c$. They presented approximate equations to describe the steam zone growth after $t = t_c$.

In 1970, Shutler and Boberg³³ presented a graphical method for calculating oil recovery during steamflooding. The method was a modification of the Buckley-Leverett method for isothermal, two phase flow in porous media. The 1970's saw continued and more diverse interest in steam drive mechanisms. Previous efforts had been directed more on obtaining analytical solutions to simplified models. But in the 1970's the analytical, experimental, as well as numerical models, became more sophisticated. Some of the experimental and analytical research reported were:

Neuman³⁴ presented a theoretical analysis for a steam flood model that included the effects of gravity override. Van Lookeren³⁵ derived equations to estimate the approximate shape of the steam/liquid interface. Huygen³⁶ who fitted curves to recovery and sweep data for a three dimensional model of a five-spot pattern. Gomaa³⁷ used a numerical method to determine the effects of various parameters on steamflood recovery. He reported the following: (a) above 150 ft., the reservoir thickness had little effect on vertical heat loss. (b) Pattern shape and spacing had insignificant effect on steamflood oil recovery if injection rate per unit reservoir volume was fixed and well productivity was not a limiting factor. Chu³⁸ studied the effects of well patterns on steamflood performance. He reported that the alteration of one pattern resulted in substantial loss of production in the surrounding patterns. He also reported that a 5-spot pattern produced more oil, the production getting progressively less in the inverted 7-spot, the inverted 13-spot and the inverted 9-spot, respectively. Atkinson and Ramey³⁹ presented a general relationship between the various mathematical models of heat transfer in porous media. They also presented new models for fractured and non-fractured porous media. Rhee and Doscher⁴⁰ presented a semi-analytical method for calculating oil recovery by steamflooding that combined the effects of steam distillation and gravity override. Myhill and

Stegemeier⁴¹ published correlations for the effects, of thermal, reservoir petrophysical, and steam properties on the equivalent oil/steam ratio.

CHAPTER III

RESEARCH OBJECTIVE AND PROPOSED MODEL

The objective of this research work is to develop a streamline model to predict oil recovery during steamflooding in heterogeneous porous media of arbitrary shapes and boundary conditions. The prediction model is desired to be able to handle the following types of heterogeneities:

- Piece-wise homogeneous reservoirs. That is, heterogeneous reservoirs that can be split into subregions such that rock properties such as permeability, porosity, etc. can be considered as uniform within each subregion, but only be different from region to region.
- 2. Anisotropic reservoirs.
- 3. Homogeneous reservoirs with impermeable shale inclusions.

The external boundaries of these reservoirs can be

1. completely closed

2. partially closed, with the remainder at infinity. The boundary conditions can be any of Neuman, Dirichlet, mixed, or any combination of the aforementioned.

In this research work, only the piecewise homogeneous reservoirs will be treated in detail, the others

are handled by minor modifications. The proposed model uses the Boundary Element Method to generate steady state streamlines for the above mentioned heterogeneous reservoirs. As each streamline is traced, the dimensions of a hypothetical streamtube surrounding it are calculated. Thus, for each streamline, an associated streamtube is calculated. When this is done for all the streamlines, the heterogeneous system is now assumed to be replaced by a series of straight conduits connecting injectors to producers. Each of these conduits is considered to be an isolated system inside which the steam displacement processes take place. Lateral heat losses from the sides of the streamtubes are ignored. For piecewise homogeneous reservoirs, some, but not all, of the streamtubes will consist of regions of differing permeabilities. For these cases, a new generalized derivation of the equations of Marx and Langenheim or Mandle and Volek was made. The rate of advance of the steam front and recovery in each of the tubes is accumulated for any time to complete the desired model.

CHAPTER IV

STATEMENT OF THE PROBLEM

Consider a two-dimensional reservoir domain (D), of arbitrary shape enclosed by the boundary surface (S). The domain D is made up of a number of homogeneous subdomains, D_i for i = 1, ..., number of sub-domains (Figure 1). Thus, $D = D_1 + D_2 + \cdots + D_n$. Each subdomain has its own value of material properties such as permeability, porosity etc., that may or may not be different from those of the adjacent region or regions.

The surface S is assumed to be sufficiently smooth and can be such that part or all of it is at infinity. S can be made up of any combination of three kinds of surfaces S_{ϕ} , S_n , and $S_{\phi,n}$. Each specifies a different kind of boundary condition. $S = S_{\phi} + S_n + S_{\phi,n}$. Over S_{ϕ} , the potentials are specified. Over S_n , the gradients $\left(\frac{\partial \phi}{\partial n}\right)$ are specified; and over $S_{\phi,n}$, a mixed boundary condition is specified.

Inside any or all of the domains are arbitrarily located sources and sinks. The first problem is to find the steady state potential, streamline and streamtube distributions for the whole system subject to any combination of the three types of boundary conditions:

FIGURE 1: Piecewise-Homogeneous Domain

PRODUCER

FIGURE 2

Linear one-dimensional model of piecewise-homogeneous reservoir
a. The Dirichlet condition prescribes the potential on the S $_{\Phi}$ boundary. That is,

$$\Phi = \overline{\Phi}(\mathbf{x}, \mathbf{y}) \text{ on } \mathbf{S} = \mathbf{S}_{\Phi}$$
(1)

b. The Neumann condition prescribes the normal derivative of the potential on the S_n boundary. That is,

$$\frac{\partial \Phi}{\partial n} = \frac{\partial \bar{\Phi}}{\partial n}$$
 on $S = S_n$ (2)

c. The mixed boundary condition prescribes a relation between ϕ and $\frac{\partial \phi}{\partial n}$ on the S_{ϕ ,n} boundary. That is,

$$\Phi = f\left(\frac{\partial \Phi}{\partial n}\right) \text{ on } S = S_{\phi,n}$$
(3)

The third condition is found on the free-water surface in an aquifer and is not generally of concern to Petroleum Engineers.

The second half of the problem to be solved to complete the model is to derive equations that describe the rate of advance of the steam zone in a linear system made up of regions of different permeability (Fig. 2). These equations will be used to predict the oil recovery inside the generated streamtube.

CHAPTER V

MATHEMATICAL DEVELOPMENT

A common method of formulating the equations that describe the characteristics of a physical system is by considering some elemental portion of its domain and applying some physical law to it, such as the the conservation principle. This method of formulation generally results in differential equations which can be solved analytically or numerically. The most widely-used numerical technique is the method of finite differences. In this method, the domain is divided into elements or cells and the differential operators are approximated by difference operators resulting in a

FIGURE 3. Elemental volumes⁴⁵

system of algebraic equations that are valid at the "nodes" of the cells within the domain. Because the domain of the problem is discretized, the method will be termed a domain method. Another way of solving the differential equations is by the Boundary Element Method. In this method, the differential equations in the domain are first transformed into integral equations which relate the unknown function and possibly certain of its derivatives to the given values on the boundary. The method of solution utilizes the superposition of known basic solutions to give the complete solution. After the differential equations that describe the system have been derived, they are first transformed into integral equations on the boundary before being solved by the boundary element technique.

The equations describing the potential distribution and flow of a single phase, incompressible fluid in a homogeneous porous medium is developed by taking an elemental volume of the reservoir and applying the law of conservation of mass to it. This is a procedure that can be found in standard texts.^{44,45,46} The result is called the continuity equation and can be expressed in general form as:

$$\nabla \cdot (\rho u) = - \frac{\partial}{\partial t} (\rho \phi) \qquad (V.1.1)$$

Equation (V.1.1) is called the continuity equation where $\nabla \cdot (\rho u) = \text{divergence of } (\rho u)$ $\rho = \text{density}$

19

- t = time
- ϕ = porosity

Darcy's law relates the volume flux (u) to the potential gradient.

$$\mathbf{u} = -\nabla \left(\frac{\mathbf{k}}{\mu} \Phi \right) \tag{V.1.2}$$

where

k = permeability Φ = potential μ = fluid viscosity

Substituting Equation (V.1.2) into Equation (V.1.1) gives:

$$\nabla \cdot \left[\frac{\rho}{\mu} \nabla (k \Phi) \right] = \frac{\partial}{\partial t} (\rho \phi) \qquad (V.1.3)$$

Equation (V.1.3) is completely general. No assumptions have been made about the nature of the medium. It can be applied to any coordinate system, and is valid at any point of a three dimensional domain except at locations where there are sources or sinks.

The following simplifying assumptions are made in order to formulate the equations describing the physical system.

- Incompressible, homogeneous, single phase fluid is assumed to be flowing in the system.
- 2. The medium is homogeneous and isotropic.
- 3. Two-dimensional flow exists. This means that flow

in the vertical direction is negligible. Therefore, flow is only in the horizontal x and y directions.

4. Gravitational effects are neglected. Introducing these simplifying assumptions gives, in two dimensions:

$$\frac{\rho}{\mu} \frac{\partial}{\partial x} \left[k_x \frac{\partial \Phi}{\partial x} \right] + \frac{\rho}{\mu} \frac{\partial}{\partial y} \left[k_y \frac{\partial \Phi}{\partial y} \right] = - \frac{\partial}{\partial t} \left(\rho \phi \right)$$
(V.1.4)

Making the further assumption of steady state flow, Equation (V.1.4) reduces to:

$$\frac{\partial}{\partial x} \left(k_x \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial \Phi}{\partial y} \right) = 0 \qquad (V.1.5)$$

For a homogeneous reservoir, $k_x = k_y = k$. Therefore, Equation (V.1.5) becomes:

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0 \qquad (V.1.6)$$

Equation (V.1.6) is known as Laplace's equation. It applies everywhere in the domain except where sources and sinks exist. When sources and sinks are present in the domain, Equation (V.1.6) changes to:

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\mu}{k} \sum_{j=1}^{N} q_j \delta(x - x_j, y - y_j) = 0 \quad (V.1.7)$$

which is known as Poisson's equation, where

- q_j = the volumetric flow rate per unit reservoir thickness of the jth source or sink
- N = the number of sources and sinks
- δ = the Dirac delta function

For a heterogeneous reservoir made up of two or more homogeneous subregions, Darcy's law applies in each subregion. This means that Equation (V.1.6) as well as Equation (V.1.7) are applicable depending on whether there are sources or not. To obtain the potential distribution for the heterogeneous system, either Equation (V.1.6) or Equation (V.1.7) (depending upon the presence or absence of sources and sinks) is applied to each region. They are combined by taking care of the compatibility and continuity conditions on the various interfaces between adjacent regions.

V.2 TRANSFORMATION TO AN INTEGRAL FORMULATION

As stated earlier, when the domain is a heterogeneous one, made up of homogeneous subdomains, the method is to apply Laplace's or Poisson's equation to each subdomain. They are then combined (making sure to satisfy compatibility and continuity conditions on the common boundaries between the regions). Thus, the homogeneous subregions form the basic building blocks for the heterogeneous system. For this reason, the theory will be developed for a homogeneous domain.

Extensions to heterogeneous systems will be discussed in a later section. The objective, therefore, is to find

22

potential distributions that satisfy the differential equation

$$L\Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = -\frac{\mu}{k} \sum_{j=1}^{N} q_j \delta(x - x_j, y - y_j) \quad (V.2.1)$$

subject to:

$$\Phi |_{S_{\Phi}} = \Phi_{S_{\Phi}}$$
 (V.2.2)

$$\frac{\partial \Phi}{\partial n}\Big|_{S_n} = (\bar{\Phi}_n)_{S_n}$$
(V.2.3)

where L is the differential operator $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$.

N is the number of sources and sinks $\bar{\Phi}_{S_{\phi}}$ is the specified potential on the S_{ϕ} boundary $(\bar{\Phi}_{n})_{S_{n}}$ is the specified normal gradinet $\left(\frac{\partial \Phi}{\partial n}\right)$ on the S_{n} boundary

The first step in the integral formulation of the problem is to form the product of a function W with both sides of Equation (V.2.1) and integrate over the domain of interest. This is called the inner, or scalar, or dot prod-duct of W with L ϕ and is denoted $\langle W, L\phi \rangle$.⁴⁷ By definition,

$$\langle W, L \phi \rangle = \int_{D} W\{L\phi\} dD$$
 (V.2.4)

L is the linear differential operator $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ on ϕ . W is an arbitrary function which is sufficiently differentiable for L*{W} to exist, where L* is the formal adjoint differential operator associated with L. Integration by parts is performed on (V.2.4) until the operator on Φ disappears (i.e., integrating twice by parts for two-dimensional problems). The result is of the form

$$\int_{D} W\{L\phi\} dD = \{boundary terms\} + \int_{D} \phi\{L*W\} dD \quad (V.2.5)$$

In two dimensions, the boundary terms are line integrals; and in three dimensions, they are surface integrals. Forming the inner product $(L\Phi,W)$ for the left hand side of Equation (V.1.2) gives

$$\langle L \Phi, W \rangle = \int_{D} \left(\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} \right) W dD$$
 (V.2.6)

where D represents the domain of integration. Integration of (V.2.6) by parts is done by first rewriting it as a double integral:

$$\langle L\Phi, W \rangle = \int_{y_1}^{y_2} \int_{x_1(y)}^{x_2(y)} \frac{\partial^2 \Phi}{\partial x^2} W \, dx \, dy$$

$$+ \int_{y_1}^{y_2} \int_{x_1(y)}^{x_2(y)} \frac{\partial^2 \Phi}{\partial y^2} W \, dx \, dy$$

$$(V.2.7)$$

Integrate each term by parts to give, for the first term,

$$\int_{y_{1}}^{y_{2}} \int_{x_{1}(y)}^{x_{2}(y)} \frac{\partial^{2} \phi}{\partial x^{2}} W dx dy = \int_{y_{1}}^{y_{2}} \left[W \frac{\partial \phi}{\partial x} \right]_{x_{1}}^{x_{2}}$$
$$- \int_{x_{1}(y)}^{x_{2}(y)} \frac{\partial \phi}{\partial x} \frac{\partial W}{\partial x} dx dy dx dx dx dx = \int_{x_{1}}^{y_{2}(y)} \left[W \frac{\partial \phi}{\partial x} \right]_{x_{1}}^{x_{2}}$$

Integrate the last term on the R.H.S. of (V.2.8) by parts and substitute back into (V.2.8) to give

$$\begin{split} & \begin{pmatrix} y_{2} \\ y_{1} \end{pmatrix} \begin{pmatrix} x_{2}(y) \\ x_{1}(y) \end{pmatrix} \frac{\partial^{2} \Phi}{\partial x^{2}} W \, dx \, dy = \int_{y_{1}}^{y_{2}} \left[W \left(\frac{\partial \Phi}{\partial x} \right) \right|_{x_{1}(y)}^{x_{2}(y)} \\ & \quad - \frac{\partial W}{\partial x} \left(\Phi \right) \left| \begin{pmatrix} x_{2}(y) \\ x_{1}(y) \end{pmatrix} + \int_{x_{1}(y)}^{x_{2}(y)} \Phi \left(\frac{\partial^{2} W}{\partial x^{2}} \right) dx \right] dy \\ & \quad = \int_{y_{1}}^{y_{2}} W \left(\frac{\partial \Phi}{\partial x} \right|_{x_{1}(y)}^{x_{2}(y)} dy - \int_{y_{1}}^{y_{2}} \frac{\partial W}{\partial x} \left(\phi \right|_{x_{1}(y)}^{x_{2}(y)} \right) dy \\ & \quad + \int_{y_{1}}^{y_{2}} \int_{x_{1}(y)}^{x_{2}(y)} \Phi \left(\frac{\partial^{2} W}{\partial x^{2}} \right) dx dy \end{split}$$
 (V.2.9)

Now

$$dy = ds \cos \theta$$

and

$$\cos \theta = \hat{i} \cdot \hat{n}$$

$$\therefore dy = \hat{i} \cdot \hat{n} ds \qquad (V.2.10)$$

where \hat{n} is the outward unit normal and ds is the differential element of arc length along the boundary S. \hat{i} is the unit vector in the x direction.

Substituting for dy into (V.2.9) gives

$$\int_{y_{1}}^{y_{2}} \int_{x_{1}(y)}^{x_{2}(y)} \frac{\partial^{2} \phi}{\partial x^{2}} W \, dx \, dy = \int_{S} \left[W \, \frac{d \phi}{dx} \right] \hat{i} \cdot \hat{n} \, ds - \int_{S} \left(\frac{\partial W}{\partial x} \phi \right) \hat{i} \cdot \hat{n} \, ds$$

$$\int_{D} \phi \frac{\partial^{2} W}{\partial x^{2}} \, dD \qquad (V.2.11)$$

By a similar procedure

$$\int_{y_{1}}^{y_{2}} \int_{x_{1}(y)}^{x_{2}(y)} \frac{\partial^{2} \Phi}{\partial x^{2}} W \, dx \, dy = \int_{S} \left[W \, \frac{\partial \Phi}{\partial y} \right] \hat{j} \cdot \hat{n} \, ds - \int_{S} \left[\frac{\partial W}{\partial y} \, \Phi \right] \hat{j} \cdot \hat{n} \, ds$$
$$+ \int_{D} \frac{\partial^{2} W}{\partial y^{2}} \, dD \qquad (V.2.12)$$

Combining (V.2.11) and (V.2.12) gives

$$\int_{y_{1}}^{y_{2}} \int_{x_{1}(y)}^{x_{2}(y)} \left(\frac{\partial^{2} \phi}{\partial x^{2}} + \frac{\partial^{2} \phi}{\partial y^{2}} \right) W \, dx \, dy = \int_{S} W \left(\frac{\partial \phi}{\partial x} \, \hat{i} + \frac{\partial \phi}{\partial y} \, \hat{j} \right) \cdot \hat{n} \, ds$$
$$- \int_{S} \phi \left(\frac{\partial W}{\partial x} \, \hat{i} + \frac{\partial W}{\partial y} \, \hat{j} \right) \cdot \hat{n} \, ds + \int_{D} \phi \left(\frac{\partial^{2} W}{\partial x^{2}} + \frac{\partial^{2} W}{\partial y^{2}} \right) \, dD$$
(V.2.13)

where \hat{j} is the unit vector in the y-direction. Therefore, the inner product of the left hand side of Equation (V.2.1) gives:

$$\langle L\Phi, W \rangle = \int_{S} W \frac{\partial \Phi}{\partial n} ds - \int_{S} \Phi \frac{\partial W}{\partial n} ds + \int_{D} \left(\frac{\partial^{2} W}{\partial x^{2}} + \frac{\partial^{2} W}{\partial y^{2}} \right) dD$$

$$(V.2.14)$$

The inner product of the right hand side of Equation (V.2.1) is:

$$\langle \sum_{j=1}^{N} q_{j} \delta(x - x_{j}, y - y_{j}), W \rangle \qquad (V.2.15)$$
$$= \frac{\mu}{k} \int_{y_{1}}^{y_{2}} \int_{x_{1}(y)}^{x_{2}(y)} \sum_{j=1}^{N} q_{j} \delta(x - x_{j}, y - y_{j}) W dx dy$$

which is simply,

$$\frac{\mu}{k} \sum_{j=1}^{N} q_j(x_j, y_j) \quad W(x_j, y_j) \quad (V.2.16)$$

Therefore, from Equations (V.2.14) and (V.2.16), the inner product of both sides of Equation (V.2.1) is:

$$\int_{S} W \frac{\partial \Phi}{\partial n} ds - \int_{S} \Phi \frac{\partial W}{\partial n} ds + \int_{D} \Phi \nabla^{2} W dD$$
$$= - \frac{\mu}{k} \sum_{j=1}^{N} q_{j}(x_{j}, y_{j}) W (x_{j}, y_{j}) \qquad (V.2.17)$$

where ∇^2 is the two-dimensional Laplacian differential operator denoting the vector dot product $\nabla \cdot \nabla$. ∇ is the gradient operator defined in cartesian coordinates as

$$\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y}$$
.

Thus,

$$\nabla^2 = \nabla \cdot \nabla = \left(\hat{i} \ \frac{\partial}{\partial x} + \hat{j} \ \frac{\partial}{\partial y}\right) \cdot \left(\hat{i} \ \frac{\partial}{\partial x} + \hat{j} \ \frac{\partial}{\partial y}\right) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

 \hat{i} and \hat{j} are unit vectors in the x and y directions, respectively. Equation (V.2.17) can be rewritten as:

$$\int_{D} \Phi \nabla^{2} W \, dD = \int_{S} \Phi \frac{\partial W}{\partial n} \, ds - \int_{S} W \frac{\partial \Phi}{\partial n} \, ds$$
$$- \frac{\mu}{k} \sum_{j=1}^{N} q_{j}(x_{j}, y_{j}) W (x_{j}, y_{j}) \qquad (V.2.18)$$

Now, by a clever choice of W, the left part of Equation (V.2.18), that is, the domain integral, can be reduced to

the potential Φ only. When this is done, the original differential equation would have been transformed into an integral equation involving just boundary integrals only. The value of W to achieve this is that W which satisfies the equation

$$\nabla^2 W = -\delta(x - x_i, y - y_i)$$
 (V.2.19)

without satisfying any boundary conditions. Equation (V.2.19) happens to be the equation describing the potential distribution that would occur due to the application of a unit charge at (x_i, y_i) , and the solution to it is variously called the fundamental solution, the free-space Green's function, or the principal solution. Using the right side of Equation (V.2.19) to substitute for $\nabla^2 W$ in Equation (V.2.18) gives:

$$-\int_{D} \Phi \delta(\mathbf{x} - \mathbf{x}_{i}, \mathbf{y} - \mathbf{y}_{i}) dD = \int_{S} W \frac{\partial \Phi}{\partial n} d\mathbf{s} - \int_{S} \Phi \frac{\partial W}{\partial n} d\mathbf{s}$$
$$+ \frac{\mu}{k} \sum_{j=1}^{N} q_{j}(\mathbf{x}_{i}, \mathbf{y}_{j}) W (\mathbf{x}_{j}, \mathbf{y}_{j}) \qquad (V.2.20)$$

The left side of Equation (V.2.20) is simply $-\phi(x_i, y_i)$; thus $\phi(x_i, y_i) = \int_S W \frac{\partial \phi}{\partial n} ds - \int_S \phi \frac{\partial W}{\partial n} ds$ $+ \frac{\mu}{k} \sum_{j=1}^N q_j(x_j, y_j) W(x_j, y_j)$ (V.2.21)

Equation (V.2.21) relates the potential at an interior point (x_i, y_i) to both its value on the boundary and that

of its normal derivative to the boundary. It contains the function W which is the solution to Equation (V.2.19) and for this work will be called the fundamental solution given as, 48

$$W = \frac{1}{2\pi} \ln \frac{1}{r}$$
 (V.2.22)

where r is the distance between an observation point (x,y)and the point of application of the unit charge (x_i,y_i) . If the observation point is anywhere within the domain (except at the source/sink locations),

$$r = r_i = \sqrt{(x - x_i)^2 + (y - y_i)^2}$$
 (V.2.23)

and

$$W = \frac{1}{2\pi} \ln \frac{1}{\sqrt{(x - x_i)^2 + (y - y_i)^2}}$$
(V.2.24)

Let

$$r_{i,j} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$$
 (V.2.25)

be the distance between the unit charge point (x_i, y_i) and the source point (x_j, y_j) ; then

$$W(x_{j},y_{j}) = \frac{1}{2\pi} \ln \frac{1}{\sqrt{(x_{j} - x_{i})^{2} + (y_{j} - y_{i})^{2}}} (V.2.26)$$

Equation (V.2.21) can be rewritten as:

$$\Phi(\mathbf{x}_{i}, \mathbf{y}_{i}) = \frac{1}{2\pi} \int_{S} \frac{\partial \Phi}{\partial n} \left\{ \ln \frac{1}{\mathbf{r}_{i}} \right\} ds - \frac{1}{2\pi} \int_{S} \Phi \frac{\partial}{\partial n} \left\{ \ln \frac{1}{\mathbf{r}_{i}} \right\} ds$$
$$+ \frac{\mu}{2\pi k} \sum_{j=1}^{N} q_{j}(\mathbf{x}_{j}, \mathbf{y}_{j}) \ln \frac{1}{\mathbf{r}_{i,j}} \qquad (V.2.27)$$

It is of interest to note that Equation (V.2.27) could have been obtained by different methods, such as application of Green's second identity directly to Equation (V.1.7), or by the method of weighted residuals.¹²

V.3 REPRESENTATION AS A BOUNDARY INTEGRAL EQUATION

Equations (V.2.21) or (V.2.27) are integral formulations of the differential equation (V.2.1). In order to apply the boundary element solution method, Equation (V.2.22) or (V.2.27) must be transformed to a boundary integral equation. This means that the unknown $\Phi(x_i, y_i)$ on the left of Equation (V.2.22) or (V.2.27) should be in terms of boundary coordinates. Therefore, the point of application of the unit charge (Equation V.2.20) has to be on the boundary. Let the boundary point of application of the unit charge be denoted (x_b, y_b) , then the fundamental solution is, then:

$$W(x_b, y_b) = \frac{1}{2\pi} \ln \frac{1}{r_b}$$
 (V.3.1)

where r_b is the distance from any point (x,y) to the boundary unit charge point (x_b, y_b) and is given as

$$r_b = \sqrt{(x - x_b)^2 + (y - y_b)^2}$$
 (V.3.2)

The distance from the source/sink locations (x_j, y_j) to the boundary unit charge point is:

$$r_{b,j} = \sqrt{(x_b - x_j)^2 + (y_b - y_j)^2}$$
 (V.3.3)

By taking the point of application of the unit charge to the boundary, the boundary integral formulation of the problem becomes:

$$\Phi(\mathbf{x}_{b},\mathbf{y}_{b}) = \int_{S} W \frac{\partial \Phi}{\partial n} ds - \int_{S} \frac{\partial W}{\partial n} ds + \frac{\mu}{k} \sum_{j=1}^{N_{j}} q_{j}(\mathbf{x}_{j},\mathbf{y}_{j}) W(\mathbf{x}_{j},\mathbf{y}_{j}) \qquad (V.3.4)$$

Substituting for $W(x_b, y_b)$ and $W(x_j, y_j)$ using Equations (V.3.2) and (V.3.3) gives:

$$\Phi(\mathbf{x}_{b},\mathbf{y}_{b}) = \frac{1}{2\pi} \int_{S} \frac{\partial \Phi}{\partial n} \ln \frac{1}{\mathbf{r}_{b}} ds - \frac{1}{2\pi} \int_{S} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{\mathbf{r}_{b}} \right) ds$$
$$+ \frac{\partial \mu}{2\pi k} \sum_{j=1}^{N} q_{j}(\mathbf{x}_{j},\mathbf{y}_{j}) \ln \frac{1}{\mathbf{r}_{b,j}} \qquad (V.3.5)$$

where r_b and $r_{b,j}$ are given by Equations (V.3.2) and (V.3.3). The evaluation of the right hand side of Equation (V.3.5) gives the potential at any boundary point with coordinates (x_b, y_b) .

V.3.1 EVALUATION OF THE IMPROPER INTEGRALS

All the integrals involve the term $\ln \frac{1}{r_b}$ which has a singularity at the point $r_b = 0$. These kinds of integrals whose integrands become infinite at some point in the domain of integration are known as improper integrals. The usual method of evaluating such integrals is as follows:^{12,48}

- a. For a two-dimensional problem, take a small circle or semi-circle of radius ε around the point of singularity. This divides the domain of integration (the boundary) into two parts; one part contains the singularity and the other part does not (Figure 4).
- b. Evaluate both integrals and take the limit as ε tends to zero. The result is the required value of the integral.

FIGURE 4. Method of evaluating improper integral.

On the part of the boundary S - 2ε , $\ln \frac{1}{r_b}$ is continuous. Following the procedure outlined above, the integrals in Equation (V.3.5) can be evaluated as follows: For the second integral on the right of Equation (V.3.5),

$$\frac{1}{2\pi} \int_{S} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b}} \right) ds = \frac{1}{2\pi} \int_{S-S_{\varepsilon}} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b}} \right) ds$$
$$+ \frac{1}{2\pi} \int_{S_{\varepsilon}} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b}} \right) ds \qquad (V.3.6)$$

For the last integral of Equation (V.3.6), the normal direction is the same as the radial direction. That is,

$$\frac{\partial}{\partial n} \left(\ln \frac{1}{r_b} \right) = \frac{\partial}{\partial r_b} \left(\ln \frac{1}{r_b} \right) \bigg|_{r_b = \varepsilon} = -\frac{1}{\varepsilon}$$
(V.3.7)

The last term of Equation (V.3.6) now becomes:

٠

$$\frac{1}{2\pi} \int_{S_{\epsilon}} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{r_b} \right) ds = -\frac{1}{2\pi\epsilon} \int_{S_{\epsilon}} \Phi ds \quad (V.3.8)$$

For the case where the surface S_{ϵ} is a semi-circle, Equation (V.3.8) becomes:

$$\frac{1}{2\pi\epsilon} \int_{S_{\epsilon}} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b}} \right) ds = -\frac{1}{2\pi\epsilon} \int_{\frac{2\pi\epsilon}{2}} \Phi ds = -\frac{1}{2\pi\epsilon} \left(\frac{2\pi\epsilon}{2} \Phi^{*} \right)$$
$$= -\frac{1}{2} \Phi^{*} \qquad (V.3.9)$$

where Φ^{*} is an average value of $\Phi(x,y)$ on $S_{}_{\epsilon},$ and in the limit as ϵ tends to zero

$$\lim_{\varepsilon \to 0} \left(-\frac{1}{2} \phi^* \right) = -\frac{1}{2} \phi(\mathbf{x}_b, \mathbf{y}_b)$$
 (V.3.10)

The first integral on the right of Equation (V.3.5) is split into two integrals as:

$$\frac{1}{2\pi} \int_{S} \ln \frac{1}{r_{b}} \frac{\partial \Phi}{\partial n} ds = \frac{1}{2\pi} \int_{S-S_{\epsilon}} \ln \frac{1}{r_{b}} \left(\frac{\partial \Phi}{\partial n} \right) ds + \frac{1}{2\pi} \int_{S_{\epsilon}} \ln \frac{1}{r_{b}} \left(\frac{\partial \Phi}{\partial n} \right) ds \qquad (V.3.11)$$

Following the procedure leading to Equation (V.3.9) gives

$$\frac{1}{2\pi} \int_{S_{\varepsilon}} \ln \frac{1}{r_{b}} \left(\frac{\partial \phi}{\partial n} \right) ds = -\frac{1}{2\pi\varepsilon} \left(\frac{2\pi\phi}{2} \right) \left(\frac{\partial \phi}{\partial n} \right)^{*}$$
$$= -\frac{1}{2} \frac{\partial \phi^{*}}{\partial n} \qquad (V.3.12)$$

where $\frac{\partial \Phi^*}{\partial n}$ is an average value of $\frac{\partial \Phi}{\partial n}$ on S_{ϵ} and

$$\lim_{\varepsilon \to 0} \left(-\frac{1}{2} \frac{\partial \phi^*}{\partial n} \right) = 0 \qquad (V.3.13)$$

From (V.3.6)

$$\lim_{\epsilon \to 0} \frac{1}{2\pi} \int_{S-S_{\epsilon}} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b}} \right) ds = \frac{1}{2\pi} \int_{S} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b}} \right) ds \quad (V.3.14)$$

From (V.3.11)

$$\lim_{\varepsilon \to 0} \frac{1}{2\pi} \int_{S-S_{\varepsilon}} \ln \frac{1}{r_{b}} \left(\frac{\partial \phi}{\partial n} \right) ds = \frac{1}{2\pi} \int_{S} \ln \frac{1}{r_{b}} \left(\frac{\partial \phi}{\partial n} \right) ds$$
(V.3.14a)

Substituting (V.3.10), (V.3.13), (V.3.14), and (V.3.14a) into (V.3.5) gives the potential at any boundary point (x_b, y_b) as:

$$\Phi(\mathbf{x}_{b},\mathbf{y}_{b}) = \frac{1}{2\pi} \int_{S} \Phi \frac{\partial}{\partial n} \left(\ln \frac{1}{\mathbf{r}_{b}} \right) \, ds - \frac{1}{2\pi} \int_{S} \left(\ln \frac{1}{\mathbf{r}_{b}} \right) \frac{\partial \Phi}{\partial n} \, ds$$
$$+ \frac{1}{2} \Phi(\mathbf{x}_{b},\mathbf{y}_{b}) + \sum q_{j}(\mathbf{x}_{j},\mathbf{y}_{j}) \frac{1}{2\pi} \ln \frac{1}{\mathbf{r}_{b_{j}}} \qquad (V.3.15)$$

Therefore,

$$\frac{1}{2} \Phi(\mathbf{x}_{b}, \mathbf{y}_{b}) = \frac{1}{2\pi} \int_{S} \ln \frac{1}{\mathbf{r}_{b}} \left(\frac{\partial \Phi}{\partial \mathbf{n}} \right) ds - \frac{1}{2\pi} \int_{S} \Phi \frac{\partial}{\partial \mathbf{n}} \left(\ln \frac{1}{\mathbf{r}_{b}} \right) ds$$
$$+ \frac{\mu}{k} \sum q_{j}(\mathbf{x}_{j}, \mathbf{y}_{j}) \frac{1}{2\pi} \ln \frac{1}{\mathbf{r}_{b,j}} \qquad (V.3.16)$$

Equation (V.3.16) is the boundary integral formulation of the problem. The boundary S is made up of two parts, S_1 and S_2 such that $S = S_1 + S_2$. On S_1 , Φ is prescribed and $\frac{\partial \Phi}{\partial n}$ is unknown. On S_2 , $\frac{\partial \Phi}{\partial n}$ is prescribed and Φ is unknown.

CHAPTER VI

SOLUTION BY DISCRETIZATION OF THE BOUNDARY

The integral equations (V.2.26) and V.3.16) are solved numerically be discretizing the boundaries of the domain into elements (hence the name: Boundary Element Method). A homogeneous medium will be assumed. Later, the method will be modified to handle heterogeneous media made up of homogeneous regions. The boundary of the domain is divided into M straight line segments as shown in Figure 5.

FIGURE 5

Straight-line boundary elements or segments

The unknown values of ϕ and $\frac{\partial \phi}{\partial n}$ are evaluated at the mid-points of each segment. These points are called the node points. In the present work, the node points will always be at the mid-points of straight line boundary segments. The cases where the boundary segments are curved and cases where the node points are at the intersections of the boundary elements are treated in Brebbia.¹² Of the M boundary segments, M₁ belong to the S_{ϕ} type boundary where ϕ is specified as constant ($\bar{\phi}$) on each segment while $\frac{\partial \phi}{\partial n}$ is unknown. The remaining M₂ segments belong to the S_n type boundary where $\frac{\partial \phi}{\partial n}$ is specified as constant $\left(\frac{\partial \bar{\phi}}{\partial n}\right)$ on each segment and ϕ is unknown. Equation (V.3.16), when put in discrete form over the two types of boundaries, is:

$$\frac{1}{2} \Phi(\mathbf{x}_{b}, \mathbf{y}_{b}) = \frac{1}{2\pi} \sum_{L=1}^{M_{1}} \left[\frac{\partial \Phi}{\partial n}\right]_{L} \int_{S_{L}} \ln \frac{1}{\mathbf{r}_{b,L}} dS_{L}$$

$$+ \frac{1}{2\pi} \sum_{L=1}^{M_{2}} \left[\frac{\partial \bar{\Phi}}{\partial n}\right]_{L} \int_{S_{L}} \ln \frac{1}{\mathbf{r}_{b,L}} dS_{L}$$

$$- \frac{1}{2\pi} \sum_{L=1}^{M_{1}} \bar{\Phi}_{L} \int_{S_{L}} \frac{\partial}{\partial n} \left[\ln \frac{1}{\mathbf{r}_{b,L}}\right] dS_{L}$$

$$- \frac{1}{2\pi} \sum_{L=1}^{M_{2}} \Phi_{L} \int_{S_{L}} \frac{\partial}{\partial n} \left[\ln \frac{1}{\mathbf{r}_{b,L}}\right] dS_{L}$$

$$+ \frac{\mu}{k} \sum_{j=1}^{M_{2}} q_{j}(\mathbf{x}_{j}, \mathbf{y}_{j}) \frac{1}{2\pi} \ln \frac{1}{\mathbf{r}_{b,j}} (VI.0.1)$$

which can be combined as:

$$\frac{1}{2} \Phi(\mathbf{x}_{b}, \mathbf{y}_{b}) = \frac{1}{2\pi} \sum_{L=1}^{M} \left(\frac{\partial \Phi}{\partial n} \right)_{L} \int_{S_{L}} \ln \frac{1}{\mathbf{r}_{b,L}} dS_{L}$$

$$- \frac{1}{2\pi} \sum_{L=1}^{M} \Phi_{L} \int_{S_{L}} \frac{\partial}{\partial n} \left(\ln \frac{1}{\mathbf{r}_{b,L}} \right) dS_{L}$$

$$+ \frac{\mu}{k} \sum_{j=1}^{N} q_{j}(\mathbf{x}_{j}, \mathbf{y}_{j}) \frac{1}{2\pi} \ln \frac{1}{\mathbf{r}_{b,j}}$$
(VI.0.2)

where

$$M = M_{1} + M_{2}$$

$$S = S_{\phi} + S_{n}$$

$$\bar{\Phi}_{L} = \text{given boundary condition of } \Phi \text{ on } S_{\phi} \text{ of the Lth segment}$$

$$\left(\frac{\partial \bar{\Phi}}{\partial n}\right)_{L} = \text{given boundary condition of } \frac{\partial \Phi}{\partial n} \text{ on } S_{n} \text{ of the Lth segment}$$

Let

٠

$$G_{b,L} = \frac{1}{2\pi} \int_{S_{L}} \ln \frac{1}{r_{b,L}} dS_{L} \qquad (VI.0.3)$$

$$H_{b,L} = \frac{1}{2\pi} \int_{S_{L}} \frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b,L}} \right) dS_{L} \qquad (VI.0.4)$$

Equation (VI.0.2) then becomes:

$$\frac{1}{2} \Phi(\mathbf{x}_{b}, \mathbf{y}_{b}) = \sum_{L=1}^{M} \left(\frac{\partial \Phi}{\partial n}\right)_{L} [G_{b,L}] - \sum_{L=1}^{M} \Phi_{L}[H_{b,L}]$$

$$+ \frac{\mu}{2\pi k} \sum_{j=1}^{N} q_{j}(\mathbf{x}_{j}, \mathbf{y}_{j}) \ln \frac{1}{r_{b,j}} \qquad (VI.0.5)$$

 $G_{b,L}$ and $H_{b,L}$ are evaluated for all the segments all around the boundary, including the setment containing the charge point (x_b, y_b) . Therefore, there are two kinds of integrals to be evaluated, namely:

- 1. Integration over the segment b that contains the unit charge point. This segment contains a singularity point at (x_b, y_b) . Integration over this segment happens when L = b.
- 2. Integration over the rest of the segments. These are the condition when $L \neq b$.

Because of this need to evaluate two kinds of integrals, the boundary integral equation (VI.0.5) can be rewritten to reflect these two kinds of integrals by defining the following:

$$G_{b,L} = \begin{cases} \tilde{G}_{b,L} & \text{when } L \neq b \\ G_{b,b} & \text{when } L = b \end{cases}$$
$$H_{b,L} = \begin{cases} \tilde{H}_{b,L} & \text{when } L \neq b \\ H_{b,b} & \text{when } L = b \end{cases}$$

Equation (VI.0.5) now becomes:

$$\frac{1}{2} \phi(\mathbf{x}_{b}, \mathbf{y}_{b}) = \left[\left(\frac{\partial \phi}{\partial n} \right)_{L=b}^{G} \mathbf{G}_{b,b} + \sum_{L=1}^{M} \left(\frac{\partial \phi}{\partial n} \right)_{L\neq b}^{K} \mathbf{G}_{b,L} \right]$$

$$- \left[\phi(\mathbf{x}_{b}, \mathbf{y}_{b})^{H} \mathbf{b}_{,b} + \sum_{L=1}^{M} \left(\phi \right)_{L\neq b}^{K} \mathbf{H}_{b,L} \right]$$

$$+ \frac{\mu}{2\pi k} \sum_{j=1}^{N} q_{j}(\mathbf{x}_{j}, \mathbf{y}_{j}) \ln \frac{1}{\mathbf{r}_{b,j}} \qquad (VI.0.6)$$

which can be rearranged to give (where
$$\Phi(\mathbf{x}_{b}, \mathbf{y}_{b}) = \Phi_{L=b}$$
)

$$\begin{bmatrix} \Phi_{L=b} \left(\mathbf{H}_{b,b} + \frac{1}{2} \right) + \sum_{L=1}^{M} (\Phi)_{L\neq b} \mathbf{H}_{b,L} \end{bmatrix}$$

$$- \left[\left(\frac{\partial \Phi}{\partial n} \right)_{L=b} \mathbf{G}_{b,b} + \sum_{L=1}^{M} \left(\frac{\partial \Phi}{\partial n} \right)_{L\neq b} \mathbf{G}_{b,L} \right]$$

$$= \frac{\mu}{2\pi k} \sum_{j=1}^{N} \mathbf{q}_{j}(\mathbf{x}_{j}, \mathbf{y}_{j}) \ln \frac{1}{\mathbf{r}_{b_{j}}} \qquad (VI.0.7)$$

V.1 EVALUATION OF THE INTEGRALS

Equation (VI.0.7) requires the evaluation of the following integrals:

$$G_{b,L} = \frac{1}{2\pi} \int_{S_L} \ln \frac{1}{r_{b,L}} dS_L \begin{cases} \text{for all } L \neq b, \text{ denoted as } \tilde{G}_{b,L} \\ \text{for all } L = b, \text{ denoted as } G_{b,b} \end{cases}$$

$$H_{b,L} = \frac{1}{2\pi} \int_{S_L} \frac{\partial}{\partial n} \ln \frac{1}{r_{b,L}} dS_L \begin{cases} \text{for all } L \neq b, \text{ denoted as } H_{b,L} \\ \text{for } L = b, \text{ denoted as } H_{b,b} \end{cases}$$

These integrals can easily be evaluated analytically for the present case where the segments S_L are straight lines. However, for generality, they are expressed in dimensionless form and evaluated numerically using a four-point Gaussian quadrature method with the formula:

$$\int_{-1}^{1} f(\alpha) d\alpha = \sum_{k=1}^{n} W_k f(\alpha_k) + E_n \qquad (VI.1.1)$$

where

 W_k = weighting factor α_k = coordinate of the k'th integration point n = total number of integration points (n = 4) E_n = error term

In order to apply the quadrature formula to G_{i,L} and H_{i,L}, they must be transformed to integrals with limits from -1 to +1. This is achieved by expressing the variable of integration dS in dimensionless form as:

define a dimensionless variable S as:

$$S_{L_{D}} = \frac{S_{L}}{\frac{1}{2}|S_{L}|}$$
, then $dS_{L} = \frac{1}{2}|S_{L}| dS_{L_{D}}$

where

$$S_{L_{D}} = 0 \text{ when } S_{L} = 0$$

$$S_{L_{D}} = -1 \text{ when } S_{L} = -\frac{1}{2}|S_{L}|$$

$$S_{L_{D}} = 1 \text{ when } S_{L} = \frac{1}{2}|S_{L}|$$

and

$$S_{L} = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

Therefore, from Equation (A.1.10) of Appendix A,

$$H_{b,L} = \frac{1}{2\pi} \int_{S_{L}} \frac{\partial}{\partial n_{L}} \left(\ln \frac{1}{r_{b,L}} \right) ds \qquad (VI.1.2)$$
$$= -\frac{1}{4\pi} \int_{-1}^{1} \frac{(x_{L} - x_{b})(y_{2} - y_{1}) + (y_{L} - y_{b})(x_{2} - x_{1})}{(x_{L} - x_{b})^{2} + (y_{L} - y_{b})^{2}} dS_{D}$$

From Equation (A.1.11) of Appendix A

$$G_{b,L} = \frac{1}{2\pi} \int_{S_{L}} \ln \frac{1}{r_{b,L}} ds$$

$$= \frac{\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}}{8\pi} \int_{-1}^{1} \ln \frac{1}{\sqrt{(x_{L} - x_{b})^{2} + (y_{L} - y_{b})^{2}}} dS_{D}$$

For the element where L = b:

For this case, the vector r_b is along the length of the segment and is equal to one-half the length of the segment. Therefore, ds = dr.

Since $r_{b,b}$ is along the segment,

$$\frac{\partial}{\partial n_{b}} = \frac{\partial}{\partial r_{b,b}} \cdot \frac{\partial r_{b,b}}{\partial n_{b}}$$

but $\frac{\partial r_{b,b}}{\partial n_b} = 0$ because $r_{b,b}$ is perpendicular to n_b . Define the dimensionless variable

$$\mathbf{r}_{\mathrm{D}} = \frac{\mathbf{r}_{\mathrm{b},\mathrm{b}}}{|\mathbf{r}_{\mathrm{b},\mathrm{b}}|} \qquad \mathrm{d}\mathbf{r} = |\mathbf{r}_{\mathrm{b},\mathrm{b}}|\mathrm{d}\mathbf{r}_{\mathrm{D}}$$

From Equations (A.1.12) and (A.1.15) of Appendix A,

$$H_{b,b} = \frac{1}{2\pi} \int_{S_{b}} \frac{\partial}{\partial n_{b}} \left(\ln \frac{1}{r_{b,b}} \right) ds_{b} = 0 \quad (VI.1.4)$$

$$G_{b,b} = \frac{1}{2\pi} \int_{S_{b}} \ln \frac{1}{r_{b,b}} ds_{b} = \frac{\dagger r_{b,b}}{\pi} \left(\ln \frac{1}{|r_{b,b}|} - 1 \right) \quad (VI.1.5)$$

$$G_{b,b} = \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{2\pi} \left[\ln \frac{1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} - 1.0 \right]$$
(VI.1.6)

No integration is therefore required for the case when L = b. Applying the quadrature formula to Equations (VI.1.2) and (VI.1.3) result in:

$$H_{b,L} = -\frac{1}{4\pi} \sum_{k=1}^{4} W_{k} \left(\frac{(x_{L_{k}} - x_{b})(y_{2} - y_{1}) + (y_{L_{k}} - y_{b})(x_{2} - x_{1})}{(x_{L_{k}} - x_{b})^{2} + (y_{L_{k}} - y_{b})^{2}} \right)$$
(VI.1.7)

$$G_{b,L} = \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{4\pi} \sum_{k=1}^{4} W_k \left[\ln \left(\frac{1}{\sqrt{(x_{L_k} - x_b)^2 + (y_{L_k} - y_b)^2}} \right) \right]$$
(VI.1.8)

where (x_{L_k}, y_{L_k}) are the quadrature points. The values of $H_{b,L}$ and $G_{b,L}$ for all the boundary segments can now be calculated using Equations (VI.1.4) through (VI.1.8). Since $H_{b,b} = 0$, Equation (VI.0.10) becomes:

$$\frac{1}{2} \phi_{b} = \sum_{L=1}^{M} \left(\frac{\partial \phi}{\partial n} \right)_{L}^{G} g_{b,L} - \sum_{L=1}^{M} \phi_{L}^{H} g_{b,L} + \frac{1}{2\pi} \sum_{j=1}^{n} q_{j}(x_{j}, y_{j}) \times \ln \frac{1}{r_{b,j}}$$
(VI.1.9)

which is put in the form

$$\sum_{L=1}^{M} \phi_L H_{b,L} - \sum_{L=1}^{M} \left(\frac{\partial \phi}{\partial n} \right)_L^G b_{,L}$$
$$= \frac{\mu}{2\pi k} \sum_{j=1}^{n} q_j (x_j, y_j) \ln \frac{1}{r_{b,j}} \qquad (VI.1.10)$$

Note that when L = b, the first term on the left of Equation (VI.1.10) is $\Phi_b(\frac{1}{2} + H_{b,b})$. But, since $H_{b,b} = 0$ when L = b, the first term on the left of Equation (VI.1.10) becomes $\frac{1}{2} \Phi_b$.

CHAPTER VII

DETERMINATION OF THE POTENTIAL AND VELOCITY AT INTERIOR POINTS

Equation (VI.1.10) is written for every node in the system; that is, for b = 1, 2, ..., m (number of nodes). This will result in m equations in m unknowns which can be put in matrix notation (Brebbia¹²) as:

$$[H] \Phi = [G] \Phi_n + B \qquad (VII.0.1)$$

where $\Phi_n = \frac{\partial \Phi}{\partial n}$ = the derivative normal to the boundary
 $B = \frac{\mu}{2\pi k} \sum_{j=1}^{n} q_j (x_j, y_j) \ln \frac{1}{r_{b,j}}$

B is a column vector, H and G are m by m matrices.

Let $m = m_1 + m_2$ where m = number of elements. In the L.H.S. of (VII.0.1), m_1 values of Φ are specified as boundary conditions, leaving m_2 unknown values of Φ . Within the R.H.S. of (VII.0.1), m_2 values of $\left(\frac{\partial \Phi}{\partial n}\right)$ are specified in the boundary conditions, leaving m_1 unknown values of $\left(\frac{\partial \Phi}{\partial n}\right)$. All the values of the B vector are known. Therefore, Equation (VII.0.1) has m equations and a total of m unknowns which can be rearranged as:

$$Ax = F (VII.0.2)$$

where x now is a vector containing the m unknowns, m_1 of which are the unknown $\frac{\partial \Phi}{\partial n}$'s and m_2 of which are the unknown Φ 's on the boundaries. $m_1 + m_2 = m$. The matrix system of Equation (VII.0.2) can be solved by Gauss elimination method to give the m_1 values of $\frac{\partial \Phi}{\partial n}$ and m_2 values of Φ on the boundaries.

VII.1 POTENTIAL

After the solution, all the boundary values of ϕ and $\frac{\partial \phi}{\partial n}$ are now known and are used to determine the potentials and velocities at any desired interior point.

Interior points where the potentials are desired are denoted with the coordinates (x_i,y_i) . Therefore, in this case,

$$r_{i,L} = \sqrt{(x_L - x_i)^2 + (y_L - y_i)^2}$$
 (VII.1.1)

$$r_{i,j} = \sqrt{(x_j - x_i)^2 + (y_j - x_i)^2}$$
 (VII.1.2)

The potential at any interior point can be determined by Equation (V.2.27) which in discrete form is:

$$\Phi(\mathbf{x}_{i},\mathbf{y}_{i}) = \sum_{L=1}^{M} \left(\frac{\partial \Phi}{\partial n}\right)_{L} G_{i,L} - \sum_{L=1}^{M} \Phi_{L} H_{i,L}$$
$$+ \frac{\mu}{2\pi k} \sum_{j=1}^{n} q_{j}(\mathbf{x}_{j},\mathbf{y}_{j}) \ln \frac{1}{r_{i,j}} \qquad (VII.1.3)$$

where:

$$G_{i,L} = \frac{1}{2\pi} \int_{S_L} \frac{\partial}{\partial n} \left(\ln \frac{1}{r_{i,L}} \right) dS \qquad (VII.1.4)$$

$$H_{i,L} = \frac{1}{2\pi} \int_{S_L} \ln \frac{1}{r_{i,L}} dS$$
 (VII.1.5)

 $r_{i,L}$ is the distance from the interior point $(x_{i,y_{i}})$ to the mid-point of the L'th boundary point $(x_{L,y_{L}})$. $r_{i,L}$ and $r_{i,j}$ are given by Equations (VII.1.1) and (VII.1.2) respectively.

After the application of the quadrature formula, $H_{i,L}$ and $G_{i,L}$ can be evaluated as:

$$H_{i,L} = - \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{4\pi} d_{i,L}$$

$$\times \sum_{k=1}^{4} W_k \frac{1}{\sqrt{(x_i^{-x_L})^2 + (y_1^{-y_L})^2}} \quad (VII.1.6)$$

$$G_{i,L} = \frac{\sqrt{(x_2 - x_1)^2 + (y_2^{-y_1})^2}}{4\pi} \sum_{k=1}^{4} W_k \ln \frac{1}{\sqrt{(x_{L_k}^{-x_i})^2 + (y_{L_k}^{-y_i})^2}} \quad (VII.1.7)$$

VII.2 VELOCITY

The velocities in the x and y directions at any point in the interior of the domain are obtained by Darcy's law:

$$v_{x} = -\frac{k}{\mu\phi} \frac{\partial}{\partial x} \phi(x,y) \qquad (VII.2.1)$$

$$v_{y} = -\frac{k}{\mu\phi}\frac{\partial\phi}{\partial y}$$
(VII.2.2)

Utilizing (VII.1.4) and (VII.1.5), the potential at an interior point (x_i, y_i) can be written as:

$$\Phi(\mathbf{x}_{i},\mathbf{y}_{i}) = \frac{1}{2\pi} \sum_{L=1}^{m} \left(\frac{\partial \phi}{\partial n}\right)_{L} \int_{S_{L}} \ln\left(\frac{1}{\mathbf{r}_{i,L}}\right) dS_{L}$$
$$- \frac{1}{2\pi} \sum_{L=1}^{m} \Phi_{L} \int_{S_{L}} \frac{\partial}{\partial n} \left(\ln \frac{1}{\mathbf{r}_{i,L}}\right) dS_{L} + \frac{\mu}{k} \frac{1}{2\pi} \sum_{j=1}^{n} q_{j} \ln\left(\frac{1}{\mathbf{r}_{i,j}}\right)$$
$$(VII.2.3)$$

From Appendix A,

$$\frac{\partial}{\partial n} \left(\ln \frac{1}{r_{i,L}} \right) = - \frac{d_{i,L}}{r_{i,L}^2}$$
(VII.2.4)

Substituting (VII.2.4) into (VII.2.3) and differentiating with respect to x and y gives:

$$\frac{\partial \Phi(\mathbf{x}_{i}, \mathbf{y}_{i})}{\partial \mathbf{x}_{i}} = \frac{1}{2\pi} \sum_{L=1}^{m} \left(\frac{\partial \Phi}{\partial n}\right)_{L} \int_{S_{L}} \frac{\partial}{\partial \mathbf{x}_{i}} \left(\ln \frac{1}{\mathbf{r}_{i,L}}\right) dS_{L}$$
$$- \frac{1}{2\pi} \sum_{L=1}^{m} \Phi_{L} \int_{S_{L}} \frac{\partial}{\partial \mathbf{x}_{i}} \left(\frac{-d_{i,L}}{\mathbf{r}_{i,L}^{2}}\right) dS_{L} + \frac{\mu}{k} \frac{1}{2\pi} \sum_{j=1}^{n} q_{j} \frac{\partial}{\partial \mathbf{x}_{i}} \ln\left(\frac{1}{\mathbf{r}_{i,j}}\right)$$
(VII.2.5)

Similarly,

$$\frac{\partial \Phi(\mathbf{x}_{i},\mathbf{y}_{i})}{\partial \mathbf{y}_{i}} = \frac{1}{2\pi} \sum_{L=1}^{m} \left(\frac{\partial \Phi}{\partial n}\right)_{L} \int_{S_{L}} \frac{\partial}{\partial \mathbf{y}_{i}} \left(\ln \frac{1}{\mathbf{r}_{i,L}}\right) dS_{L}$$

$$- \frac{1}{2\pi} \sum_{L=1}^{m} \Phi_{L} \int_{S_{L}} \frac{\partial}{\partial \mathbf{y}_{i}} \left(\frac{-d_{i,L}}{\mathbf{r}_{i,L}^{2}}\right) dS_{L} + \frac{\mu}{k} \frac{1}{2\pi} \sum_{j=1}^{n} q_{j} \frac{\partial}{\partial \mathbf{y}_{i}} \ln\left(\frac{1}{\mathbf{r}_{i,j}}\right)$$
(VII.2.6)

where:

$$r_{i,L} = \sqrt{(x_{i} - x_{L})^{2} + (y_{i} - y_{L})^{2}}$$

$$r_{i,j} = \sqrt{(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2}}$$

$$d_{i,L} = \frac{\left(\frac{y_{2} - y_{1}}{x_{2} - x_{1}}\right)x_{i} - y_{i} + y_{1} - \left(\frac{y_{2} - y_{1}}{x_{2} - x_{1}}\right)x_{1}}{\frac{1}{x_{2} - x_{1}} + \frac{1}{x_{2} - x_{1}}} \quad (VII.2.7)$$

The sign is chosen so that $d_{i,L}$ is always positive. The terms

$$\frac{\partial}{\partial x_{i}} \left[- \frac{d_{i,L}}{r_{i,L}^{2}} \right], \text{ and } \frac{\partial}{\partial y_{i}} \left[- \frac{d_{i,L}}{r_{i,L}^{2}} \right]$$

are given in Appendix A as:

$$\frac{\partial}{\partial x_{i}} \left(-\frac{d_{i,L}}{r_{i,L}^{2}} \right) = \frac{2(x_{i} - x_{L})d_{i,L}}{r_{i,L}^{4}} - \left(\frac{1}{r_{i,L}^{2}}\right) \left(\frac{A}{\pm\sqrt{A^{2} + 1}}\right) \quad (VII.2.8)$$

$$\frac{\partial}{\partial y_{i}} \left(-\frac{d_{i,L}}{r_{i,L}^{2}} \right) = \frac{2(y_{i} - y_{L})d_{i,L}}{r_{i,L}^{4}} - \left(\frac{1}{r_{i,L}^{2}}\right) \left(\frac{A}{\pm\sqrt{A^{2} + 1}}\right) \quad (VII.2.9)$$

where

.

$$A = \frac{y_2 - y_1}{x_2 - x_1}$$

Since

$$\frac{\partial}{\partial x_{i}}\left(\ln \frac{1}{r_{i,L}}\right) = -\frac{\partial}{\partial x_{i}}\left(\ln r_{i,L}\right) = -\frac{1}{r_{i,L}}\left(\frac{dr_{i,L}}{dx_{i}}\right) = -\frac{x_{i} - x_{L}}{r_{i,L}^{2}}$$
(VII.2.10)

$$\frac{\partial}{\partial y} \left(\ln \frac{1}{r_{i,L}} \right) = - \frac{y_i - y_L}{r_{i,L}^2}$$
(VII.2.11)

Equations (VII.2.8) to (VII.2.11) are substituted into (VII.2.5) and (VII.2.6) to give:

$$\frac{\partial \Phi(\mathbf{x}_{i}, \mathbf{y}_{i})}{\partial \mathbf{x}_{i}} = \frac{1}{2\pi} \sum_{L=1}^{m} \left(\frac{\partial \Phi}{\partial n} \right)_{L} \int_{S_{L}} - \frac{\mathbf{x}_{i} - \mathbf{x}_{L}}{\mathbf{r}_{i,L}^{2}} dS_{L}$$
$$- \frac{1}{2\pi} \sum_{L=1}^{m} \Phi_{L} \int_{S_{L}} \left[\frac{2(\mathbf{x}_{i} - \mathbf{x}_{L})d_{i,L}}{\mathbf{r}_{i,L}^{4}} - \left(\frac{1}{\mathbf{r}_{i,L}^{2}} \right) \left(\frac{A}{\pm \sqrt{A^{2} + 1}} \right) \right] dS_{L}$$
$$+ \frac{\mu}{2\pi k} \sum_{j=1}^{n} q_{j} \quad \left[\frac{\mathbf{x}_{i} - \mathbf{x}_{j}}{\mathbf{r}_{i,j}^{2}} \right] \qquad (\text{VII.2.12})$$

$$\frac{\partial \Phi(\mathbf{x}_{i},\mathbf{y}_{i})}{\partial \mathbf{y}_{i}} = \frac{1}{2\pi} \sum_{L=1}^{m} \left[\frac{\partial \Phi}{\partial n} \right]_{L} \int_{S_{L}} - \frac{\mathbf{y}_{i} - \mathbf{y}_{L}}{\mathbf{r}_{i,L}^{2}} dS_{L}$$
$$- \frac{1}{2\pi} \sum_{L=1}^{m} \Phi_{L} \int_{S_{L}} \left[\frac{2(\mathbf{y}_{i} - \mathbf{y}_{L})d_{i,L}}{\mathbf{r}_{i,L}^{4}} - \left(\frac{1}{\mathbf{r}_{i,L}^{2}} \right) \left(\frac{1}{\pm \sqrt{A^{2} + 1}} \right) \right] dS_{L}$$
$$+ \frac{\Psi}{2\pi k} \sum_{j=1}^{n} q_{j} \left(\frac{(\mathbf{y}_{i} - \mathbf{y}_{j})}{\mathbf{r}_{i,j^{2}}} \right)$$
(VII.2.13)

When Equations (VII.2.12) and (VII.2.13) are evaluated and substituted into Equations (VII.2.1) and (VII.2.2), the velocities in the x and y directions are obtained at any given locations in the interior of the domain. The integrals in Equations (VII.2.12) and (VII.2.13) are evaluated numerically using a four point Gaussian quadrature formula as given earlier in Section 5.1. In matrix representation, Equations (VII.2.12) and (VII.2.13) can be expressed as:

$$\frac{\partial \Phi(\mathbf{x}_{i},\mathbf{y}_{i})}{\partial \mathbf{x}_{i}} = \sum_{L=1}^{m} [\mathbf{G}_{\mathbf{x}}']_{i,L} \left(\frac{\partial \Phi}{\partial n}\right)_{L} - \sum_{L=1}^{m} [\mathbf{H}_{\mathbf{x}}']_{i,L} \Phi_{L} + \mathbf{B}' \quad (\text{VII.2.14})$$

$$\frac{\partial \Phi(\mathbf{x}_{i},\mathbf{y}_{i})}{\partial \mathbf{y}_{i}} = \sum_{L=1}^{m} [\mathbf{G}_{\mathbf{y}}']_{i,L} \left(\frac{\partial \Phi}{\partial n}\right)_{L} - \sum_{L=1}^{m} [\mathbf{H}_{\mathbf{y}}']_{i,L} \Phi_{L} + \mathbf{B}' \quad (\text{VII.2.15})$$

After applying the quadrature formula,

$$H'_{x i,L} = -2 \sum_{k=1}^{4} W_{k} \left[\frac{d_{i,L}(x_{i} - x_{L_{k}})}{r_{i,L_{k}}^{4}} + \frac{A}{r_{i,L_{k}}^{2} \pm \sqrt{A^{2} + 1}} \right] \left(\frac{1}{2} |S_{L}| \right)$$
(VII.2.16)

$$H'_{y i,L} = -2 \sum_{k=1}^{4} W_{k} \left[\frac{d_{i,L}(y_{i}^{-y_{L_{k}}})}{r_{i,L_{k}}^{4}} + \frac{A}{r_{i,L_{k}}^{2} \pm \sqrt{A^{2} + 1}} \right] \left(\frac{1}{2} |S_{L}| \right)$$

(VII.2.17)

$$G_{x i,L} = -\sum_{k=1}^{4} \frac{x_{i} - x_{L_{k}}}{r_{i,L_{k}}} \left(\frac{1}{2}|S_{L}|\right)$$
(VII.2.18)

$$G'_{y i,L} = -\sum_{k=1}^{4} \frac{y_i - y_{L_k}}{r_{i,L_k}} \left(\frac{1}{2} |S_L|\right)$$
(VII.2.19)

where (x_{L_k}, y_{L_k}) are the coordinates of the kth quadrature point on the Lth boundary segment.

 r_{i,L_k} = the distance from an interior point (x_i,y_i) to the kth quadrature point (x_{L_k},y_{L_k}) on the Lth boundary segment $|S_{L}|$ = the length of the Lth segment

$$= \sqrt{(x_{2_{L}} - x_{1_{L}})^{2} + (y_{2_{L}} - y_{1_{L}})^{2}}$$
CHAPTER VIII

EXTENSION TO HETEROGENEOUS POROUS MEDIA

Two kinds of heterogeneities can be considered. They are:

1. Piece-wise homogeneous systems

2. Homogeneous systems with impermeable inclusions

VIII.1 PIECEWISE HOMOGENEOUS POROUS MEDIA

The domain of interest is made up of a number of homogeneous sub-domains. For the purposes of illustration, only two sub-domains will be treated in this work, but the theory applies to any finite number of sub-domains. Each sub-domain has a different permeability and each sub-domain has three kinds of boundaries enclosing it; namely (Figure 6) for the pth subdomain:

- 1. S^p_{Φ} boundary where values of potentials are specified.
- 2. $S_n^{\hat{p}}$ boundary where values of the normal derivatives of potential $\left(\frac{\partial \cdot \phi}{\partial \cdot n}\right)$ are specified.
- 3. S_{I}^{p} boundary is the interface with the adjacent sub-domain. On S_{I}^{p} both ϕ and $\frac{\partial \phi}{\partial n}$ are unknown.

where p = 1, 2, ..., number of sub-domains.

All the equations derived for a single domain (or sub-domain) in the previous sections apply to each one of the p sub-domains in turn.

FIGURE 6. Piecewise homogeneous domain showing types of boundary conditions

Considering any arbitrary p'th sub-domain, Equation (VII.0.1) can be written as:

$$[H]^{(p)}_{\{\Phi\}}^{(p)} = [G]^{(p)}_{\{\Phi_n\}}^{(p)} + B \qquad (VIII.1.1)$$

Equation (VIII.1.1) is applied to each sub-domain as if it exists in isolation, and then all the sub-domain matrices are assembled into one by utilizing continuity of flux conditions and compatibility conditions on the common boundaries. The continuity condition on the common boundary shown in Figure 6 as:

$$-T_{1}\left(\frac{\partial \Phi_{I}}{\partial n_{I}}\right)^{(1)} = -T_{2}\left(\frac{\partial \Phi_{I}}{\partial n_{I}}\right)^{(2)}$$
(VIII.1.2)

The compatibility condition on the common boundary is:

$$\Phi_{\rm I}^{(1)} = \Phi_{\rm I}^{(2)}$$
(VIII.1.3)

For each sub-domain, the boundary elements are numbered such that the sub-domain is always on the left as we go round the boundary. This ensures that the direction of the normal on the boundary surface of each element is always pointing away from the interior of the sub-domain.

For each sub-domain, the vector $\{\phi\}^{(p)}$ is made up of the unknown ϕ 's from the S_n boundary (where $\frac{\partial \phi}{\partial n}$ is specified) and from the common boundary S_I (where both ϕ and $\frac{\partial \phi}{\partial n}$ are unknown). Therefore:

$${}_{\left\{ \Phi \right\}} {}^{\left(p \right)} = \begin{cases} {}^{\Phi} S_{n} \\ {}^{\Phi} S_{I} \end{cases}$$

Hence the L.H.S. of (VIII.1.1) is expanded as:

$$\begin{bmatrix} H_{S_{n}} & H_{S_{\phi}} & H_{S_{I}} \end{bmatrix}^{(p)} \begin{pmatrix} \Phi_{S_{n}} \\ \bar{\Phi}_{S_{\phi}} \\ \Phi_{S_{I}} \end{pmatrix}^{(p)}$$

where $\bar{\Phi}_{S_{\Phi}}$ indicates known (specified) values of Φ . Similar treatment of the $\left\{\frac{\partial \Phi}{\partial n}\right\}^{(p)}$ gives the following

$$\begin{bmatrix} G_{S_{n}} & G_{S_{\Phi}} & G_{S_{I}} \end{bmatrix} \begin{bmatrix} (\bar{\Phi}_{n})_{S_{n}} \\ (\Phi_{n})_{S_{\Phi}} \\ (\Phi_{n})_{S_{I}} \end{bmatrix}^{(p)}$$

where $\bar{\Phi}_n$ denotes known (specified) values of $\frac{\partial \Phi}{\partial n}$. Equation (VIII.1.1) then becomes, for a single subregion (the p'th subregion),

$$\begin{bmatrix} H_{S_n} & H_{S_{\phi}} & H_{S_{I}} \end{bmatrix}^{(p)} \begin{pmatrix} \Phi_{S_n} \\ \tilde{\Phi}_{S_{\phi}} \\ \Phi_{S_{I}} \end{pmatrix}^{(p)} = \begin{bmatrix} G_{S_n} & G_{S_{\phi}} & G_{S_{I}} \end{bmatrix}^{(p)} \begin{pmatrix} (\tilde{\Phi}_n) & S_n \\ (\Phi_n) & S_{\phi} \\ (\Phi_n) & S_{I} \end{pmatrix}^{(p)} + \{B\}$$

$$(VIII.1.4)$$

The system of matrices represented by Equation (VIII.1.4) is set up for every one of the sub-domains and assembled using Equations (VIII.1.2) and (VIII.1.3), (consider the case where the number of sub-domains = 2, i.e., p = 2). For the first sub-domain, p = 1, putting all unknowns in the G-matrix gives:

$$\begin{bmatrix} G_{S_{\phi}}^{(1)} & G_{S_{I}}^{(1)} & - H_{S_{I}}^{(1)} & - H_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} (\Phi_{n})_{S_{\phi}}^{(1)} \\ (\Phi_{n})_{S_{I}}^{(1)} \\ (\Phi_{n})_{S_{I}}^{(1)} \\ \Phi_{S_{I}}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S_{\phi}}^{(1)} \\ \bar{\Phi}_{S_{n}}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S_{\phi}}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S_{\phi}}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S_{\phi}}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S_{\phi}}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S_{\phi}}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S_{\phi}}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S_{n}}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S}^{(1)} \\ \Phi_{S}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \end{bmatrix} \begin{pmatrix} \bar{\Phi}_{S}^{(1)} \\ \bar{\Phi}_{N}^{(1)} \\ \Phi_{S}^{(1)} \\ \Phi_{S}^{(1)} \\ \Phi_{S}^{(1)} \end{pmatrix} = \begin{bmatrix} H_{S}^{(1)} & - G_{S_{n}}^{(1)} \\ \Phi_{S}^{(1)} \\ \Phi_{S}^$$

For the second sub-domain, p = 2.

$$[G_{S_{\phi}}^{(2)} G_{S_{I}}^{(2)} - H_{S_{I}}^{(2)} - H_{S_{n}}^{(2)}] \begin{cases} \Phi_{S_{\phi}}^{(2)} \\ \Phi_{S_{f}}^{(2)} \\ \Phi_{S_{I}}^{(2)} \\ \Phi_{S_{I}}^{(2)} \\ \Phi_{S_{I}}^{(2)} \\ \Phi_{S_{I}}^{(2)} \\ \Phi_{S_{n}}^{(2)} \\ \Phi_{S_{n}}$$

The continuity condition on the common boundary is:

$$\Phi_{S_{I}}^{(1)} = \Phi_{S_{I}}^{(2)}$$
(VIII.1.7)

The compatibility condition is:

$$-T_{1} \Phi_{n_{S_{I}}}^{(1)} = T_{2} \Phi_{n_{S_{I}}}^{(2)}$$

$$\therefore \Phi_{n_{S_{I}}}^{(2)} = -\frac{T_{1}}{T_{2}} \Phi_{n_{S_{I}}}^{(1)}$$
 (VIII.1.8)

The assembled system matrix is:

•

$$\begin{bmatrix} -H_{S_{n}}^{(1)} & G_{S_{\phi}}^{(1)} & -H_{S_{I}}^{(1)} & G_{S_{I}}^{(1)} & 0 & 0 \\ 0 & 0 & -H_{S_{I}}^{(2)} & -\frac{T_{1}}{T_{2}} & G_{S_{I}}^{(2)} & -H_{S_{n}}^{(2)} & G_{S_{\phi}}^{(2)} \end{bmatrix} \begin{pmatrix} \Phi_{S_{n}}^{(1)} \\ \Phi_{S_{\phi}}^{(1)} \\ \Phi_{S_{\phi}}^{(1)} \\ \Phi_{S_{f}}^{(1)} \\ \Phi_{S_{f}}^{(1)} \\ \Phi_{S_{f}}^{(1)} \\ \Phi_{S_{f}}^{(2)} \\ \Phi_{S_{h}}^{(2)} \\ \Phi_{S_{\phi}}^{(2)} \\ \Phi_$$

The matrix system given by (VIII.1.9) is solved for the boundary values of ϕ and $\frac{\partial \phi}{\partial n}$. These values are used to calculate the interior values of $\phi(x,y)$, $\frac{\partial \phi}{\partial x}$, and $\frac{\partial \phi}{\partial y}$ within any of the sub-domains of interest by applying Equations (VII.1.3), (VII.2.14) and (VII.2.15).

The matrix system given by (VIII.1.9) can be expressed schematically as:

 $\begin{bmatrix} X & X & X & X & 0 & 0 \\ 0 & 0 & X & X & X & X \end{bmatrix} \left\{ \begin{array}{c} \\ \end{array} \right\} = \left\{ \begin{array}{c} Y \\ Y \end{array} \right\}$

This can be generalized for other kinds of systems. For example, for a system having n regions, we have

For a system of the type

the matrix system will be of the form

X	Х	Х	Х	Х	Х	0	0	0	0	0	0][0			$\left(\right)$	}
0	0	Х	X	Ø	Ø	Х	X	х	х	0	0 {		= 1		ł
0	0	0	0	Х	Х	х	х	0	0	Х	x∫{	J		l.]
		(a)		(b)		(c)									

(a) = interface between regions 1 and 2
(b) = interface between regions 1 and 3
(c) = interface between regions 2 and 3

VIII.2 HOMOGENEOUS SYSTEM WITH IMPERMEABLE INCLUSIONS

This kind of system can easily be handled by the Boundary Element Method. Instead of one, there are now three surfaces that bound the domain of interest (Figure 8). All that is required is to maintain the numbering convention on each of the surfaces so that the domain is on the left hand side.

It is observed in Figure 8 that, to satisfy the numbering convention,

FIGURE 7. Homogeneous porous medium with impermeable shale inclusions.

FIGURE 8. Homogeneous porous medium with impermeable inclusions showing discretization and numbering scheme.

- Internal boundaries are numbered in the clockwise direction.
- External boundaries are numbered in the counterclockwise direction.

VIII.3 STREAMLINE AND STREAMTUBE CALCULATION PROCEDURE

The streamlines are determined by following the path of a hypothetical fluid particle from the injector to the producer. For any injection well, the number of streamlines emanating from that well is independent of its injection rate. For a system with multiple injection wells, a fixed number of streamlines is assigned to each well. Thus, assigning the fixed number of streamlines (N_L) to an injector with rate q_L , the injection rate into each stream-tube emanating from it is:

$$q_s = \frac{q_L}{N_L}$$
(VIII.3.1)

The injection rate into the streamtubes emanating from any other injector with injection rate q_1 becomes:

$$q_{s_1} = \frac{q}{q_L} \times q_s \qquad (VIII.3.2)$$

The points of origin of the fluid particles (and therefore the streamlines) are distributed equidistant along a small arbitrary circle centered at the source. At any current position, the potential is determined using Equation (VII.1.3) and velocity vectors v_x and v_y in the x and y directions are determined using Equations (VII.2.1) to (VII.2.15). In order to determine the next location of the fluid particle, the assumption is made that the velocity remains constant over a finite distance increment Δs . At any point, the resultant particle velocity (v_t) is the vectorial sum of v_x and v_y . Since v_x and v_y and thus v_t are assumed constant over $\Delta \dot{s}$, the time of travel can be calculated as:

$$\Delta t = \frac{\Delta s}{v_t}$$
(VIII.3.3)

Hence, from any starting point denoted by (x_i, y_i) , the particle would move to a new point given by:

$$x_{i+1} = x_i + v_{x_i} \Delta t$$
 (VIII.3.4)
 $y_{i+1} = y_i + v_{y_i} \Delta t$ (VIII.3.5)

The distance step increment Δs is chosen to be constant for convenience. As successive steps are taken, a curve is generated and is commonly called a streamline.

The width of the streamtube at any position of the fluid particle can be determined from the injection rate and the velocity. For each injector, the volume of injected fluid associated with a streamline is:

$$q_s = \frac{q}{N}$$
 (VIII.3.6)

where N is the number of streamlines emanating from the injector and is given by Equation (VIII.3.2). Since this volume of fluid must be conserved at all positions along the streamline, then for any arbitrary position i of coordinates (x_i, y_i)

$$q_s = v_t A_i$$
 (VIII.3.7)

where v_{ti} is the resultant velocity at position i A_i is the vertical cross sectional area at position i, and

 ϕ is the porosity, assumed constant Making the assumption that the vertical thickness of the reservoir (and therefore the streamtube) is a known constant h, the width of the streamtube at any position i (x_i, y_i) can be determined as:

$$W_{i} = \frac{q_{s}}{v_{t_{i}}h}$$
(VIII.3.7)

Due to the fact that analytical solutions to the equations that describe the rate of advance of a steam front in porous medium have only been obtained for linear or radial models, the streamtube is modified to be linear as follows: Using Equation (VIII.3.7), the width of the streamtube is determined at any given streamline location and averaged along the length of the entire streamline to give a single width for every streamtube. The streamtubes are then assumed to have rectangular cross sections. The streamlines and associated streamtubes are terminated by defining an arbitrary capture radius around the producer. When the calculated position of the streamline gets within the capture radius, the streamline is terminated.

VIII.4 CONTINUATION OF STREAMLINES IN ADJACENT REGIONS

For piece-wise homogeneous reservoirs, some of the streamlines may cross into adjacent regions where the permeabilities are different. In such cases, continuation of the streamlines into adjacent regions can be achieved by noting the interface boundary segment where the streamline crossed as well as the coordinates of this crossing point. Since the potential derivative normal to every segment is known as part of the solution, this normal gradient can be used with Darcy's law to determine the velocities and distances needed to continue tracing the streamlines.

In practice, however, the streamlines could not be traced all the way until they met any boundary. The potentials exhibited fluctuations at distances closer than half an element length away from any boundary. The reason for this is the singular nature of the fundamental

solution $\ln \frac{1}{r_{i,j}}$ as i approaches j. Therefore, the method adopted here was to test every new position to see if it is less than half an element length away from the mid point of any boundary. If it is, a perpendicular line was dropped from the previous position to the interface segment. This is consistent with the fact that the streamline must be normal to a flow boundary. The point of intersection of this normal with the interface segment is taken as the starting point for continuation of the streamline into the adjacent region and is given as:

$$x_{c} = \frac{(c_{1} - y_{1_{L}})x_{i} - c_{2}x_{1_{L}} + y_{1_{L}} - y_{i}}{c_{1} - c_{2}}$$
$$y_{c} = c_{1}(x_{1_{L}} - x_{i}) + y_{i}$$

where:

(x_c,y_c) = coordinates of the point where the streamline crosses the interface boundary

$$c_{1} = \frac{x_{1_{L}} - x_{2_{L}}}{y_{2_{L}} - y_{1_{L}}}$$
$$c_{2} = \frac{y_{2_{L}} - y_{1_{L}}}{x_{2_{L}} - x_{1_{L}}}$$

 (x_i, y_i) = coordinates of last position of streamline (x_1, y_1) , (x_2, y_2) = coordinates of the extreme points of the Lth interface element The normal derivative of the potential at the Lth interface is already known as part of the solution. This normal derivative is introduced into Darcy's law to determine the next position away from the boundary into the adjacent region. A check is made to ensure that this position is further from the boundary than half the interface segment length.

A package of computer programs has been written in FORTRAN to generate and plot the streamlines, and to calculate the dimensions of the associated streamtubes. Details of the algorithms and flow charts are listed in Appendix E. The computer program itself is listed in Appendix O.

The final part of this modelling effort is its application to a continuous steam drive process. Since some of the streamtubes in a piecewise homogeneous reservoir will contain two or more permeability regions, the next section develops the appropriate equations for the rate of advance of the steam front in a linear streamtube of constant cross section having two or more permeability regions.

CHAPTER IX

RATE OF ADVANCE OF STEAM FRONT IN A PIECE-WISE HOMOGENEOUS LINEAR POROUS MEDIUM

In order to design a steamflood project or to predict recovery from such projects, a knowledge of the distribution and movement of temperature fronts in the reservoir is required. This information can be obtained by taking a control volume within the medium (reservoir) and applying the general and particular laws of physics to it. A general law is one whose application is independent of the nature of the medium under consideration. A particular law is one whose application is dependent on the nature of the medium. In the formulation of a steam drive model, the general laws employed are:

a. the law of conservation of energy (heat balance)

b. the law of conservation of mass and the particular laws employed are:

c. Fourier's law of conduction

In modelling steam drive processes, some basic asasumptions are made such as:

1. Changes in viscosity and density due to changes in temperature have negligible effect on energy transfer. This assumption enables energy balance equations to be uncoupled from mass balance equations.³⁹

2. The thermal conductivity in the direction perpendicular to the direction of fluid flow within the reservoir is infinite. This assumption means that the temperature in the reservoir at any cross section perpendicular to the direction of fluid flow is uniform.

3. The sand grains and the reservoir fluids maintain instantaneous thermal equilibrium. This means that the sand grains and surrounding fluids were always at the same temperature.

A general heat balance for thermal recovery projects may be expressed as:

The amount of heat (enthalpy) contained within a given volume at any time = { heat - heat injected - produced}

+ $\left\{ \begin{array}{c} heat \\ generated \end{array} \right\}$ - $\left\{ \begin{array}{c} heat \\ lost \end{array} \right\}$

Mathematically, it can be expressed in integral form as⁴² $\int_{V} \rho cT \, dV = \int_{0}^{t} \dot{Q}(\tau) \, d\tau - \int_{0}^{t} \left[\int_{A} \left(-k \, \frac{\partial T}{\partial n} + V_{f} \rho_{f} c_{f} T \right) dA \right] dt$

In this equation, V is the volume over which the balance is made (the entire steam zone). Since V varies with time for the present problem, it will be more convenient to make an instantaneous heat balance as:

$$\int_{V} \rho cT dV = \dot{Q}(\tau) - \int_{A} \left(-k \frac{\partial T}{\partial n} + V_{f} \rho_{f} c_{f} T \right) dt$$

This equation and the one preceding it are completely general and include the effects of variations in formation properties with location and time.

Assuming the confining layers are semi-infinite planes with constant, homogeneous thermal properties, assuming further that the temperature difference imposed on the boundaries of the confining layers is directly proportional to the amount of heat stored in the reservoir, the solution of the instantaneous heat balance equation is:⁴²

$$H(t) = \int_{0}^{t} \dot{Q}(\tau) e^{\theta(t-\tau)} \operatorname{erfc} \sqrt{\theta(t-\tau)} d\tau$$

$$\dot{Q}(\tau) = \operatorname{rate} \operatorname{of} \operatorname{heat} \operatorname{injection} - \operatorname{rate} \operatorname{of} \operatorname{heat} \operatorname{produced}$$

.

H(t) = heat contained in the reservoir at time t

= (heat content of rock + fluids) vol/sec of
 steam zone

Since vol/sec = velocity x cross-sectional area, this equation can be used to calculate the velocity of the steam front.

The next section makes such an instantaneous heat balance across the condensation front for a piecewise homogeneous linear porous medium.

IX.1 INSTANTANEOUS HEAT AND MASS BALANCE ACROSS THE MOVING CONDENSATION FRONT

Consider a condensation front located at position z(t) in the N'th region of a multiregion composite porous medium. Take two arbitrary fixed cross sections at positions z_{N_a} and z_{N_b} on the upstream and downstream sides of the condensation front respectively. (See Figure 9.)

The region behind the condensation front is completely covered by steam. In this work, the terms condensation front and steam front will be used interchangeably.

Steam front

FIGURE 9. Reservoir cross section showing location of steam front.

The objective is to determine the velocity of the steam or condensation front as it moves within any arbitrary region of a multi-region heterogeneous linear porous medium. To achieve this, an elemental volume is taken on the steam front such that one half of it is behind the steam front and the other half is ahead of the steam front. The law of conservation of energy is applied in the form of a heat balance to the elemental volume enclosed by the two fixed cross sections at z_{N_a} and z_{N_b} . The upstream plane of the condensation front is denoted z^- , while the downstream plane is denoted z^+ .

A heat balance in the fixed elemental area between the two fixed cross sections z_{N_a} and z_{N_b} is: $\begin{bmatrix} \text{Heat flux}\\ \text{in at } z_{N_a} \end{bmatrix} = \begin{bmatrix} \text{Heat flux}\\ \text{out at } z_{N_b} \end{bmatrix} = \begin{bmatrix} \text{Rate of}\\ \text{accumulation}\\ \text{of heat} \end{bmatrix} + \begin{bmatrix} \text{rate of loss}\\ \text{of heat from}\\ \text{the volume} \end{bmatrix}$

Following Mandle and Volek,³² the heat balance can be expressed mathematically as:

$$Q_{N}(z_{N_{a}},t) - Q_{N}(z_{N_{b}},t) = \frac{d}{dt} \int_{z_{N_{a}}}^{z_{N}(t)} H_{N}(z_{N_{a}},t) dz_{N}$$

+
$$\frac{d}{dt} \int_{z_N^+(t)}^{z_N} H_N(z_{N_b}, t) dz_N + Q_{L_N}(t)$$
 (IX.1.1)

where, for the steam front in the N'th region,

$$H_N(z_{N_a},t)$$
 denotes the heat content per unit volume

of fluid/solid system between z_{N_a} and z_N^{-} . $H_N(z_{N_b}, t)$ denotes the heat content per unit volume of fluid/solid system between z^+ and z_{N_b} $Q_N(z_{N_a}, t) =$ the heat flux in at z_{N_a} per unit cross sectional area $Q_N(z_{N_b}, t) =$ the heat flux out at z_{N_b} per unit cross

sectional area

The application of the Leibnitz rule to Equation (IX.1.1) and considering that z_{N_a} and z_{N_b} are fixed values, gives

$$Q_{N}(z_{N_{a}},t) - Q_{N}(z_{N_{b}},t) = \int_{z_{N_{a}}}^{z_{N}(t)} \frac{d}{dt} H_{N}(z_{N_{a}},t) dz$$

+ $H_{N}(z_{N}(t),t) \frac{d}{dt} z_{N}(t) + \int_{z_{N}(t)}^{z_{N_{b}}} \frac{d}{dt} H_{N}(z_{N_{b}},t) dz$
- $H_{N}(z_{N}^{+}(t),t) \frac{d}{dt} z_{N}^{+}(t) + Q_{L_{N}}(t)$ (IX.1.2)

Equation (IX.1.2) is the heat balance across two fixed cross sections containing the steam front in the N'th region. In the limit as z_{Na} tends to $z_{N}(t)$ and z_{Nb} tends to $z_{N}^{+}(t)$, the heat balance equation becomes:

$$Q_{N}(z_{N}(t),t) - Q_{N}(z_{N}^{+}(t),t) = H_{N}(z_{N}^{-}(t),t) \frac{d}{dt} z_{N}^{-}(t)$$
$$- H_{N}(z_{N}^{+}(t),t) \frac{d}{dt} z_{N}^{+}(t) + Q_{L_{N}}(t)$$

Making the assumption that $\frac{d}{dt} z_N(t) = \frac{d}{dt} z_N^+(t) = \frac{d}{dt} z_N(t)$ and no heat is lost within the thin condensation front,

and dropping the time function of z^- and z^+ for convenience, the heat balance equation becomes the heat balance across a moving condensation front which is instantaneously frozen in time.

FIGURE 10. Reservoir cross section for heat balance.

That is, the instantaneous heat balance across a moving condensation front is described as:

 $\begin{bmatrix} \text{Heat flux}\\ \text{in at } z_{N} \end{bmatrix} - \begin{bmatrix} \text{Heat flux}\\ \text{out at } z_{N}^{+} \end{bmatrix} = \begin{bmatrix} \text{Rate of change of heat}\\ \text{content between } z_{N}^{+} \text{ and } z_{N}^{+} \end{bmatrix}$ (IX.1.4)

where, since there are no heat sources or sinks in the steam zone,

$$Q_{N}(z_{N}^{-},t) = \begin{bmatrix} \text{Heat flux}\\ \text{in at } z_{N}^{-} \end{bmatrix} = \begin{bmatrix} \text{Rate of heat}\\ \text{injection} \end{bmatrix} - \begin{bmatrix} \text{Rate of heat loss}\\ \text{in } N - 1 \text{ regions} \end{bmatrix} \\ - \begin{bmatrix} \text{Rate of heat loss}\\ \text{in } N' \text{th region} \end{bmatrix} - \begin{bmatrix} \text{Rate of change of heat}\\ \text{content in } N - 1 \text{ regions} \end{bmatrix} \\ - \begin{bmatrix} \text{Rate of change of heat}\\ \text{content in } N' \text{th region} \end{bmatrix} \qquad (IX.1.5) \\ Q_{N}(z_{N}^{+},t) = \begin{bmatrix} \text{Heat flux}\\ \text{out at } z_{N}^{+} \end{bmatrix} = \begin{bmatrix} \text{Heat flux out}\\ \text{by convection}\\ \text{of the fluids} \end{bmatrix} + \begin{bmatrix} \text{Heat flux out}\\ \text{by conduction} \end{bmatrix} \\ (IX.1.6) \end{aligned}$$

and

 $\begin{bmatrix} \text{Rate of change} \\ \text{of heat content} \\ \text{between } z \text{ and } z^{+} \end{bmatrix} = \begin{bmatrix} \text{Heat} \\ \text{content} \\ \text{at } z^{-} \end{bmatrix} - \begin{bmatrix} \text{Heat} \\ \text{content} \\ \text{at } z^{+} \end{bmatrix} * \begin{bmatrix} \text{Velocity of} \\ \text{the steam} \\ \text{front} \end{bmatrix}$ (IX.1.7)

Equations (IX.1.4) through (IX.1.7) apply to mass balances as well as to heat balances. When making mass balances "heat" is replaced by "mass". Furthermore, for mass balances, the second and third terms on the right hand side of Equation (IX.1.5) disappear because there are no mass losses behind the steam front as is the case with heat. Also, Equation (IX.1.5) shows that the regions behind the steam front are handled in two parts. The first part is made up of all the N - 1 regions behind the steam front. The second part is the part of the N'th region behind the steam front. For a condensation front at any arbitrary location $z_N(t)$ in the N'th region of a multi-region composite medium, the heat balance for an elemental area taken across the condensation front (Figure 10) has been shown by Equation (IX.1.3) to be

$$Q_N(z_N,t) - Q_N(z_N,t) = v_N(t)[H_N(z_N,t) - H_N(z_N,t)]$$
 (IX.2.1)

for a unit reservoir cross section area. Following Equation (IX.1.5) the rate of heat input $Q_N(z_N,t)$ per unit cross section area at z_N is:

$$Q_{N}(z_{N}^{-},t) = Q(0,t) - \sum_{j=1}^{N-1} (Q_{L}(t))_{j} - (Q_{L}(t))_{N}$$

$$- \rho_{st}(L_{st} + c_{w}\Delta T(z^{-})) \left[\sum_{j=1}^{N-1} \phi_{j} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{st_{j}}(z_{j},t)] dz_{j} \right]$$

$$- \phi_{N} \int_{x_{n-1}}^{z_{N}(t)} \frac{d}{dt} [S_{st_{j}}(z_{N},t)] dz_{N} \right]$$

$$- \rho_{w}(T_{st}) c_{w}\Delta T(z^{-}) \sum_{j=1}^{N-1} \phi_{j} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{w_{j}}(z_{j},t)] dz_{j}$$

$$- \rho_{w}(T_{st}) c_{w}\phi_{N}\Delta T(z^{-}) \int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{w_{j}}(z_{N},t)] dz_{N}$$

$$- \rho_{o}(T_{st}) c_{o}\Delta T(z^{-}) \sum_{j=1}^{N-1} \phi_{j} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{o_{j}}(z_{j},t)] dz_{j}$$

$$- \rho_{o}(T_{st}) c_{o}\Delta T(z^{-}) \phi_{N} \int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{o_{j}}(z_{N},t)] dz_{N} \quad (IX.2.2)$$

where:

- $Q_N(z_N,t)$ = the rate of flow of heat per unit cross sectional area through the vertical cross sectional area at z_N into the elemental volume in the N'th region
- $Q_N(z_N^+,t)$ = the rate of flow of heat per unit cross sectional area out of the elemental volume through the vertical cross section at z_N^+ in the N'th region

- $H_N(z^+,t)$ = heat content per unit volume of reservoir rock/fluid system at the downstream face of the steam front in the N'th region
- Q(0,t) = rate of injection of heat per unit cross sectional area
- (Q_L(t))_j = rate of loss of heat per unit cross sectional area to overburden and underburden from the j'th region
- $\rho_m(T)$ = density of m at temperature T, where m can be oil, water, or steam
- L_{st} = latent heat of steam
- c_m = specific heat of m, where m = oil, water, steam

$$\Delta T(z)$$
 = change in temperature at the upstream
face of the steam front

+

$$\phi_j$$
 = porosity of the rock in the j'th region
 $S_m(z_j,t)$ = saturation distribution of m in the j'th
region, where m = oil, water, steam

The rate of heat injection per unit cross sectional area Q(0,t) is obtained as the sum of the rate of heat injection in the form of water and the rate of heat injection in the form of steam.

$$Q(0,t) = M_{st}(0,t)[L_{st} + c_w T_{st}] + M_w(0,t)c_w T_{st}$$
(IX.2.3)
The heat flux out of the condensation front

$$Q_N(z_N^+,t)$$
 = the heat flux out by horizontal conduction
+ convective heat flux associated with mass
flux of fluids out of the front

Mathematically, the heat flux out of the condensation front is written as:

$$Q_{N}(z_{N}^{+},t) = M_{w}(z_{N}^{+},t)c_{w}\Delta T(z_{N}^{+}) \qquad (IX.2.4)$$
$$+ M_{o}(z_{N}^{+},t)c_{o}\Delta T(z_{N}^{+}) + \left(-\hat{K}\left.\frac{\partial T}{\partial x}\right|_{z_{N}^{+}}\right)$$

The mass rates $M_w(z_N^+,t)$ and $M_o(z_N^+,t)$ are obtained from mass balances across the condensation front.

IX.3 MASS BALANCES

A mass balance for any fluid on an elemental volume taken across the condensation front from z_N^- to z_N^+ in the N'th region is given as:

mass flux in at z_N^- - mass flux out at z_N^+

The rate of change of mass content is expressed in terms of the velocity of the condensation front. The mass flux in at z_N^- is the difference between the mass rate of injection, and the rate of accumulation of mass in the swept portion.

IX.3.1 0il

For oil, the mass rate of injection = 0, and the expression for the mass balance is:

$$-\left\{ \rho_{0}(T_{st}) \sum_{j=1}^{N-1} \phi_{j} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{0}(z_{j},t)] dz_{j} + \rho_{0}(T_{st})\phi_{N} \int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{0}(z_{N},t)] dz_{N} \right\} - M_{0}(z_{N}^{+},t)$$

$$= \phi_{N}v_{N}(t) [\rho_{0}(T_{z}^{-})S_{0_{N}}(z_{N}^{-},t) - \rho_{0}(T_{z_{N}^{+}})S_{0_{N}}(z_{N}^{+},t)]$$
(IX.3.1)

from which,

$$M_{o}(z_{N}^{+},t) = -\rho_{o}(T_{st}) \sum_{j=1}^{N-1} \phi_{j} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{o}(z_{j},t)] dz_{j}$$

$$- \rho_{o}(T_{st})\phi_{N} \int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{o}(x,t)] dz_{N}$$

$$- \phi_{N}v_{N}(t) [\rho_{o}(T_{z})S_{o_{N}}(z_{N}^{-},t) - \rho_{o}(T_{z}^{+})S_{o_{N}}(z_{N}^{+},t)]$$
(IX.3.2)

IX.3.2 Water

The mass flux of water into the elemental area at $\bar{z_{\rm N}}$ is from a combination of sources:

(a) The mass fraction of steam that was injected as water.

(b) The mass of water that condensed out of the injected steam.

(c) Displaced connate water.

The mass flux of water that condensed from the injected steam is the difference between the mass rate of injection of steam and the rate of change of steam saturation in the steam zone. Mathematically, the mass balance for water is:

$$q(0,t) [x_{\rho_{st}+1-x_{\rho_{w}}(T_{st})] - \rho_{w}(T_{st})\sum_{j=1}^{N-1}\phi_{j}\int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{w}(z_{j},t)] dz_{j}$$

- $\rho_{w}(T_{st})\phi_{N}\int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{w}(z_{N},t) dz_{N} - \rho_{st}\sum_{j=1}^{N-1}\phi_{j}\int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{st}(z_{j},t) dz_{j}]$
- $\rho_{st}\phi_{N}\int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{st}(z_{N},t) dz_{N} - M_{w}(z_{N}^{*},t)] = \phi_{N}v_{N}(t) [\rho_{w}(T_{z_{N}^{-}})S_{w}(z_{N}^{-},t)]$
+ $\rho_{st}S_{st}(z_{N}^{-},t) - \rho_{w}(T_{z_{N}^{+}})S_{w}(z_{N}^{+},t)]$ (IX.3.3)

from which, the mass flux of water out of the elemental area at $z_{\rm N}^{+}$ can be derived as:

$$M_{w}(z_{N}^{+},t) = Q(0,t) [x_{\rho_{st}}^{+} 1 - x_{\rho_{w}}]^{-} \rho_{w}(T_{st}) \sum_{j=1}^{N-1} \phi_{j} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{w}(z_{j},t)] dz_{j}$$

$$= \rho_{w}(T_{st}) \phi_{N} \int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{w}(z_{N},t)] dx$$

$$= \rho_{st} \sum_{j=1}^{N-1} \phi_{j} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{st}(z_{j},t)] dx$$

$$= \rho_{st} \phi_{N} \int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{st}(z_{N},t) dz_{N}$$

$$= \phi_{N} v_{N}(t) [\rho_{w}(T_{z_{N}^{-}}) S_{w}(z_{N}^{-},t) + \rho_{st} S_{st}(z_{N}^{-},t)$$

$$= \rho_{w}(T_{z_{N}^{+}}) S_{w}(z_{N}^{+},t)] \qquad (IX.3.4)$$

All the component terms that make up the heat balance have now been defined. Equations (IX.3.4) and (IX.3.2) can be substituted into Equation (IX.2.4). The resulting expression, as well as Equation (IX.2.2) can be substituted into Equation (IX.2.1) to give a general heat balance equation. But first, the integrals in the heat and mass balance equations are evaluated so as to simplify those equations.

Applying the result of Appendix B, we observe that, for the N - 1 regions behind the steam front, their limits of integration are constants. Therefore,

$$\int_{x_{j-1}}^{x_j} \frac{d}{dt} [S_m(z_j, t)] dz_j = (x_{j-1} - x_j) \frac{d}{dt} \bar{S}_{m_j}(t) \quad (IX.3.6)$$

For the N'th region (which contains the steam front), the lower limit of integration, x_{N-1} , is a constant, but the upper limit, $z_N(t)$, varies with time. Therefore,

$$\int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{m}(z_{N},t)] dz_{N} = v_{N}(t) [\bar{S}_{m_{N}}(t) - S_{m}(z_{N},t)] + \frac{d}{dt} \bar{S}_{m_{N}}(t) [z_{N}(t) - x_{N-1}]$$
(IX.3.7)

Combining (IX.3.6) and (IX.3.7) gives:

$$\begin{split} & \sum_{j=1}^{N-1} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{m}(z_{j},t)] dz_{j} + \phi_{N} \int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{m}(z_{N},t) dz_{N} \\ &+ \sum_{j=1}^{N-1} \phi_{j} [(x_{j} - x_{j-1})] \frac{d}{dt} \tilde{S}_{m_{j}}(t)] + \phi_{N} v_{N}(t) [\tilde{S}_{m_{N}}(t) \\ &- S_{m_{N}}(z_{N},t)] + \phi_{N} \frac{d}{dt} \tilde{S}_{m_{N}}(t) [z_{N}(t) - x_{N-1}] \end{split}$$
(IX.3.8)

where m = oil, water, or steam. $S_m = (S_0 + S_w + S_t)_j$ Making the assumption that $\frac{d}{dt} \bar{S}_m(z,t) = 0$ for each region

$$\sum_{j=1}^{N} \phi_{j} \int_{x_{j-1}}^{x_{j}} \frac{d}{dt} [S_{m_{j}}(z_{j},t)] dz_{j} + \phi_{N} \int_{x_{N-1}}^{z_{N}(t)} \frac{d}{dt} [S_{m_{N}}(z_{N},t)] dz_{N}$$
$$= \phi_{N} v_{N}(t) [\bar{S}_{m_{N}} - S_{m}(\bar{z_{N}},t)] \qquad (IX.3.9)$$

Introducing Equation (IX.3.9) into Equation (IX.2.2) gives the heat flux per unit cross section at the inlet of the steam front as:

$$Q_{N}(z_{N},t) = Q(0,t) - \sum_{j=1}^{N} Q_{L_{j}}(t) - \rho_{st}[L_{st} + c_{st}(T_{st} - T_{i})]$$

$$\times \phi_{N}v_{N}(t)[\bar{S}_{st_{N}} - S_{st}(z_{N},t)] - \rho_{w}(T_{st})c_{w}(T_{st} - T_{i})\phi_{N}v_{N}(t)$$

$$\times [\bar{S}_{w_{N}} - S_{w_{N}}(z_{N},t)] - \rho_{0}(T_{st})c_{0}(T_{st} - T_{i})\phi_{N}v_{N}(t)$$

$$\times [\bar{S}_{o_{N}} - S_{o_{N}}(z_{N},t)] - (IX.3.10)$$

Note that this equation still contains the unknown heat lost rates per unit cross sectional area $Q_{L_j}(t)$ for j = 1, 2, ..., number of regions.

Noting that $T_{z} = T_{st}$, Equation (IX.3.9) is substituted into the equations describing the mass fluxes out of the condensation front as:

$$M_{o_{N}}(z_{N}^{+},t) = \phi_{N}v_{N}(t) [\rho_{o}(T_{st})\bar{S}_{o_{N}} - \rho_{o}(T_{z^{+}})S_{o_{N}}(z_{N}^{+},t)]$$
(IX.3.10a)

$$M_{w_{N}}(z_{N}^{*},t) = Q(0,t) [x_{\rho}_{st}^{+1-x_{\rho}}w^{(T}_{st})] - N^{v_{N}}(t) [w^{(T}_{st})\bar{S}_{w_{N}}$$

+ $\rho_{st}\bar{S}_{st_{N}} - \rho_{w}(T_{z}^{+})S_{w_{N}}(z_{N}^{+},t)]$ (IX.3.11)

Equations (IX.3.10) and (IX.3.11) are substituted into Equation (IX.2.4) to give the heat flux out of the condensation front as:

$$Q_{N}(z_{N}^{+},t) = c_{0}\Delta T(z_{N}^{+})\phi_{N}v_{N}(t) [\rho_{0}(T_{st})\bar{S}_{0_{N}} - \rho_{0}(T_{z}^{+})S_{0_{N}}(z_{N}^{+},t)] + \{c_{w}\Delta T(z_{N}^{+})(1-x)\rho_{w}+x\rho_{st}L_{st}\}Q(0,t) - c_{w}\Delta T(z_{N}^{+})\phi_{N}v_{N}[\rho_{w}(T_{st})\bar{S}_{w_{N}} + \rho_{st}\bar{S}_{st_{N}} - \rho_{w}(T_{st})S_{w_{N}}(z_{N}^{+},t)]$$
(IX.3.12)

IX.3.3 Enthalpy

The enthalpy of the rock and associated fluids at the inlet and outlet faces of the elemental area are: $H_{N}(z_{N},t) = \rho_{r_{N}}c_{r_{N}}(1 - \phi_{N})(T_{st} - T_{i}) + \rho_{st}\phi_{N}L_{st}S_{st_{N}}(z_{N},t)$ $+ \rho_{st}c_{w}(T_{st} - T_{i})\phi_{N}S_{w_{N}}(z_{N},t) + \rho_{w}c_{w}(T_{st} - T_{i})\phi_{N}S_{w_{N}}(z_{N},t)$ $+ \rho_{o}c_{o}(T_{st})(T_{st} - T_{i})\phi_{N}S_{o_{N}}(z_{N},t) \qquad (IX.3.13)$ $H(z^{+},t) = \rho_{r}c_{r_{N}}(1 - \phi_{N})\Delta T(z_{N}^{+}) + \rho_{w}(T_{z_{N}^{+}})c_{w}\Delta T(z_{N}^{+})\phi_{N}S_{w_{N}}(z_{N}^{+},t)$

+
$$\rho_{0}(T_{z_{N}^{+}})c_{0}\Delta T(z_{N}^{+})\phi_{N}S_{0}(z_{N}^{+},t)$$
 (IX.3.14)

Recall that the heat balance equation is:

 $Q_N(z_N,t) - Q_N(z_N,t) = v_N(t)[H_N(z_N,t) - H_N(z_N,t)]$ (IX.3.15) where:

 $Q_N(z_N,t)$ is given by Equation (IX.3.10) but contains the still unknown rates of heat loss $Q_L(t)$ for j = 1,...,N

 $Q_N(z_N^+,t)$ is given by Equation (IX.3.12) $H_N(z_N^-,t)$ is given by Equation (IX.3.11) $H_N(z_N^+,t)$ is given by Equation (IX.3.12)

The assumption is made that there is no convective heat flux across the steam front. This means that all the heat arriving at the steam front is used up in heating the rock and fluids. The condensate leaves at z_N^+ having the original reservoir temperature T_i . Thus $\Delta T(z_N^+) = 0$. This assumption makes $Q_N(z_N^+,t) = 0$, and $H_N(z_N^+,t) = 0$. Therefore, the heat balance equation becomes:

$$Q_N(z_N,t) = v_N(t)H_N(z_N,t)$$
 (IX.3.16)

The unknown heat loss rates contained in the equation for $Q_N(z_N,t)$ is calculated next.

IX.4 RATE OF HEAT LOSS TO CAP AND BASE ROCK IN A PIECE-WISE HOMOGENEOUS LINEAR POROUS MEDIUM

The properties of the cap and base rock are assumed to be identical and constant even though those of the porous medium vary in regions (Figure 11). The cap and base rock are assumed to extend to infinity in either direction. The objective here becomes the calculation of the rate of heat loss to semi-infinite slabs on each side that represent the cap and base rocks.

Since the cap and base rock are assumed identical, the heat loss derivations will be made using only the cap rock, but the result is simply doubled to account for the base rock as well.

The steam front is assumed to be located in the N'th region of a piece-wise homogeneous linear porous medium. Each of the N steam-invaded regions behind the front are divided into equal elemental areas (Figure 11). Let there be P_j such elemental areas in each j'th region where j = 1, 2, ..., N.

FIGURE 11. Schematic of linear porous medium for heat loss calculations.

The rate of heat loss per unit cross sectional area to the cap and base rock from an elemental area in an arbitrary j'th region is:

$$Q_{L_{j}}(t) \Big|_{\Delta A_{j}} = -2k\Delta A_{j} \frac{dT}{dz} \Big|_{z=0}$$
 (IX.4.1)

which, after substituting for $\frac{dT}{dz}\Big|_{z=0}$ from Appendix D, becomes:

$$Q_{L_{j}}(t)\Big|_{\Delta A_{j}} = -\frac{2k\Delta A_{j}}{Wh}\left(\frac{T_{s} - T_{i}}{\sqrt{\pi\alpha(t - \tau_{j})}}\right)$$
(IX.4.1a)

Summing for all P_j such elemental areas in the j'th region gives:

$$Q_{L_j}(t) = -\sum_{m=1}^{P_j} \frac{2k\Delta A_{j,m}}{Wh} \left(\frac{T_s - T_i}{\sqrt{\pi\alpha(t - \tau_{jm})}} \right)$$
(IX.4.2)

Since $A_j = W z_j$, in the limit as A_j tends to zero,

$$\lim_{\Delta A \to 0} Q_{L_{j}}(t) = -\frac{2k(T_{s} - T_{i})}{L} \int_{0}^{L_{j}} \frac{1}{\sqrt{\pi\alpha(t - \tau_{j})}} dz_{j}(\tau_{j})$$
(IX.4.3)

where L_{i} is the length of the j'th region.

Summing for all N regions behind the steam front gives the rate of heat loss per unit cross sectional area to cap and base rock from all N regions behind the steam front as: dz (-)

$$Q_{L}(t) = \sum_{j=1}^{N} Q_{L_{j}}(t) = -\frac{2k(T_{s}-T_{j})}{L} \sum_{j=1}^{N} \int_{t_{j-1}}^{t_{j}} \frac{\frac{d^{2}j(\tau_{j})}{d\tau_{j}} d\tau_{j}}{\sqrt{\pi\alpha(t-\tau_{j})}} d\tau_{j}$$
(IX.4.4)

where $A_{i}(\tau) = Wz_{i}(\tau)$ W = width of the porous medium

$$\alpha = \frac{k}{\rho_{cb}cb}$$

 ρ_{cb} = density of cap and base rock \mathbf{c}_{cb} = heat capacity of cap and base rock k = thermal conductivity of cap and base rock h = thickness of porous medium

In Equation(IX.4.4), each $z_i(\tau_i)$ is only defined and continuous in the region $t_{j-1} < \tau_j < t_j$. Since a function can have a differential quotient only at points where the function is continuous, the differential quotient $\frac{dz_j(\tau_j)}{d\tau_j}$ can only be taken at points within the region $t_{j-1} < \tau < t_j$ and not outside the region because $z_j(\tau_j)$ is not defined there. However, if $z_i(\tau_i)$ is expressed in terms of the Heaviside unit step function H(t), then each $z_{j}(\tau_{j})$ can be defined for all $\tau > 0$ with discontinuities at $\tau = t_{i-1}$ and $\tau = t_i$. A "generalized derivative" can be taken by product differentiation where generalization means a definition of the derivative at the points of discontinuity as well. Thus, introducing the Heaviside unit step function H(t) into Equation (IX.4.4) gives: $Q_{L}(t) =$

$$= \frac{-2k(T_{s}-T_{i})}{L} \sum_{j=1}^{N} \int_{0}^{t} \frac{\frac{d}{dt} \{ [H(\tau-\tau_{j-1})-H(\tau-\tau_{j})]\xi_{j}(\tau) \}}{\sqrt{\pi\alpha(t-\tau)}} d\tau$$
(IX.4.5)

The summation can be taken inside the integral and $Q_L(t)$ can be expressed as:

$$Q_{L}(t) = \frac{-2k(T_{s}-T_{i})}{h} \int_{0}^{t} \frac{\frac{d}{d\tau} \{\sum_{j=1}^{N} [H(\tau-\tau_{j-1})-H(\tau-\tau_{j})]\xi_{j}(\tau)\}}{\sqrt{\pi\alpha(t-\tau)}} d\tau$$
(IX.4.6)

Let

$$z(\tau) = \sum_{j=1}^{N} [H(\tau - \tau_{j-1}) - H(\tau - \tau_{j})]\xi_{j}(\tau) \quad (IX.4.7)$$

where each $\xi_j(t)$ is continuous and defined for all $\tau > 0$.

$$Q_{L}(t) = \frac{-2k(T_{s}-T_{i})}{h} \int_{0}^{t} \frac{\frac{d}{d\tau} z(\tau)}{\sqrt{\pi\alpha(t-\tau)}} d\tau \qquad (IX.4.8)$$

 $\frac{dz\,(\tau)}{d\tau}$ is obtained by the product differentiation of Equation (IX.4.7) to give

$$\frac{dz(\tau)}{d\tau} = \sum_{j=1}^{N} \{ [H(\tau - \tau_{j-1}) - H(\tau - \tau_{j})] \frac{d\xi_{j}}{d\tau} + v(\tau) [\delta(\tau - \tau_{j-1}) - \delta(\tau - \tau_{j})] \xi_{j}(\tau) \}$$
(IX. 4.9)
$$= \{ [H(\tau - \tau_{N-1}) - H(\tau - \tau_{N})] \frac{d\xi_{N}}{d\tau} + [\delta(\tau - \tau_{N-1}) - \delta(\tau - \tau_{N})] \xi_{N}(\tau) \}$$
(IX. 4.10)

where $H(\tau)$ is the Heaviside unit step function $\delta(\tau)$ is the Dirac delta function
Equation (IX.4.8) is substituted into Equation (IX.3.10). The result is $Q_N(z_N,t)$ which is substituted into the left side of Equation (IX.3.16). When the expression for $H_N(z_N,t)$ is substituted into the right side of Equation (IX.3.16), the result is:

$$Q(0,t) + \frac{2k(T_{s} - T_{i})}{h} \int_{0}^{t} \frac{d}{d\tau} \frac{z(\tau)}{\sqrt{\pi\alpha(t - \tau)}} d\tau$$

$$= \rho_{st}[L_{st} + c_{w}(T_{st} - T_{i})]\phi_{N}v_{N}(t)[\bar{S}_{st_{N}} - S_{st}(\bar{z}_{N}, t)]$$

$$= \rho_{w}(T_{st})c_{w}(T_{st} - T_{i})\phi_{N}v_{N}(t)[\bar{S}_{w_{N}} - S_{w_{N}}(\bar{z}_{N}, t)]$$

$$= \rho_{o}(T_{st})c_{o}(T_{st})(T_{st} - T_{i})\phi_{N}v_{N}(t)[\bar{S}_{o_{N}} - S_{o_{N}}(\bar{z}_{N}, t)]$$

$$= V_{N}(t)[\rho_{\gamma_{N}}c_{\gamma_{N}}(1 - \phi_{N})(T_{st} - T_{i}) + \rho_{st}L_{st}\phi_{N}S_{st_{N}}(\bar{z}_{N}, t)]$$

$$+ \rho_{st}c_{s}(T_{st} - T_{i})\phi_{N}S_{w_{N}}(\bar{z}_{N}, t)$$

$$+ \rho_{w}c_{w}(T_{st} - T_{i})\phi_{N}S_{w_{N}}(\bar{z}_{N}, t)$$

$$+ \rho_{o}(T_{z_{N}})c_{o}(T_{st})(T_{st} - T_{i})\phi_{N}S_{o_{N}}(\bar{z}_{N}, t)]$$

$$(IX.4.10)$$

Considering that

$$Q(0,t) = M_{st}(0,t) [L_{st} + c_w(T_{st} - T_i)] + M_w(0,t) c_w(T_{st} - T_i)$$
(IX.4.11)

where

$$M_{st}(0,t) = \rho_{st} \dot{x}q(0,t)$$
 (IX.4.12)

$$M_{W}(0,t) = \rho_{W}(T_{st})(1-x)q(0,t) \qquad (IX.4.13)$$

then Equation (IX.4.10) simplifies to:

$$q(0,t) [xL_{st}^{\rho}st + \rho_{w}c_{w}(T_{st} - T_{i})(1 - x)] + \frac{2k(T_{s} - T_{i})}{h\sqrt{\pi\alpha}} \int_{0}^{t} \frac{d_{\tau}}{\sqrt{t - \tau}} z(\tau) d\tau = V_{N}(t) [\rho_{r_{N}}c_{r_{N}}(1 - \phi_{N}) \\ \times (T_{st} - T_{i}) + \rho_{st}L_{st}\phi_{N}\bar{S}_{st_{N}} + \rho_{w}(T_{st})c_{w}(T_{st} - T_{i})\phi_{N}\bar{S}_{w_{N}} \\ + \rho_{o}(T_{st})c_{o}(T_{st})(T_{st} - T_{i})\phi_{N}\bar{S}_{o_{N}}]$$
(IX.4.13)

Let

.

$$\sum \overline{\rho c} = \rho_{r_N} c_{r_N} (1 - \phi_N) + \rho_w (T_{st}) c_w \overline{S}_{w_N} \phi_N$$
$$+ \rho_o (T_{st}) c_o (T_{st}) \overline{S}_{o_N} \phi_N + \rho_{st} c_w \overline{S}_{st_N} \phi_N \qquad (IX.4.14)$$

Also let

$$\frac{dz(\tau)}{d\tau} = v(\tau)$$
 (IX.4.15)

Then, introducing (IX.4.14) and (IX.4.15) into (IX4.13) gives

$$q(0,t) [x_{\rho}st^{L}st^{+\rho}w^{c}s^{(1-x)}(T_{st}^{-T}i)] + \frac{2k(T_{st}^{-T}i)}{h\sqrt{\pi\alpha}} \int_{0}^{t} \frac{v(\tau)}{\sqrt{t-\tau}} d\tau$$

= $V_{N}(t) \left[\sum_{\rho c} + \frac{\rho st^{L}st^{\bar{S}}st_{N}^{\phi}N}{T_{st}^{-T}i} \right] (T_{st}^{-T}i)$ (IX.4.16)

where

$$v(\tau) = \sum_{j=1}^{N} \{ [H(t-t_{j-1}) - H(t-t_{j})] \frac{d\xi_{j}(\tau)}{d\tau} + [\delta(t-t_{j-1}) - \delta(t-t_{j})]\xi_{j}(\tau) \}$$
(IX.4.17)

Equation (IX.4.16) is a generalization of the equation of Marx and Langenheim,²⁵ and Mandle and Volek³² derived for a piece-wise homogeneous linear porous medium. If the steam front is within the first region of a piecewise homogeneous linear porous medium, the N = 1, and

$$\begin{array}{c} V_{N}(\tau) = V_{1}(\tau) \\ V(\tau) = V_{1}(\tau) \end{array} \right\} \qquad \begin{array}{c} \text{A continuous} \\ \text{function of time} \end{array}$$

Then Equation (IX.4.16) becomes

$$q(0,t) \left[\rho_{st} x^{L}_{st} + c_{w} (T_{st} - T_{i}) (1 - x)\rho_{w} (T_{st})\right] \\ + \frac{2k(T_{st} - T_{i})}{h\sqrt{\pi\alpha}} \int_{0}^{t} \frac{V_{1}(\tau)}{\sqrt{t - \tau}} d\tau = V_{1}(t) \left[\sum_{i} \overline{\rho_{c}} + \frac{\rho_{st} L_{st} \overline{S}_{st}^{\phi}}{T_{st} - T_{i}}\right] (T_{st} - T_{i})$$
(IX. 4.18)

which is the same as the equation of Mandle and Volek. However, for a piece-wise homogeneous linear porous medium, $V(\tau)$ is a sectionally continuous function as given by (IX.4.17). After transformation to dimensionless form and simplification, Equation (IX.4.16) can be solved to give the velocity and distance of the steam front in any region of a piece-wise homogeneous porous medium.

Since
$$\alpha = \frac{k}{\rho_{cb}c_{cb}}$$
, Equation (IX.4.16) can be expressed

q(0,t)
$$[\rho_{st}xL_{st} + c_w(T_{st} - T_i)(1 - x)\rho_w(T_{st})]$$

$$- \sqrt{\frac{4k\rho_{cb}c_{cb}(T_{st} - T_{i})^{2}}{\pi h^{2}}} \int_{0}^{t} \frac{v(\tau)}{\sqrt{t - \tau}} d\tau$$
$$= v_{N}(t)(T_{st} - T_{i}) \left[\sum_{\rho c} + \frac{\rho_{st}L_{st}\bar{s}_{st}\phi_{N}}{T_{st}-\bar{T}_{i}} \right] \qquad (IX.4.19)$$

Define dimensionless variables.

as

.

Dimensionless time:

$$t_{D} = \left(\frac{4k}{\rho_{cb}c_{cb}h^{2}}\right) t \quad \text{or} \quad \tau_{D} = \left(\frac{4k}{\rho_{cb}c_{cb}h^{2}}\right) \tau (IX.4.20)$$

Dimensionless distance:

$$z_{\rm D}(t) = \frac{z(t)}{L}$$
 (IX.4.21)

where L is the length of the entire porous medium.

Dimensionless velocity:

$$v_{\rm D}(t) = \frac{dz_{\rm D}(t)}{dt_{\rm D}} = \frac{dz_{\rm D}(t)}{dt} \frac{dt}{dt_{\rm D}}$$
$$= \frac{1}{L} \frac{dz(t)}{dt} \frac{\rho_{\rm cb} c_{\rm cb} h^2}{4k}$$
$$= \left(\frac{\rho_{\rm cb} c_{\rm cb} h^2}{4kL}\right) v(t) \quad (IX.4.22)$$

Introducing the dimensionless variables into Equation (IX.4.19) gives:

q(0,t) $[\rho_{st}xL_{st} + c_w(T_{st} - T_i)(1 - x)\rho_w(T_{st})]$

$$- \left(\frac{4k\rho_{cb}c_{cb}}{\pi\hbar^{2}}\right)^{1/2} \int_{0}^{t_{D}} \left(\frac{4kL}{\rho_{cb}c_{cb}h^{2}}\right) \frac{\frac{dz(\tau_{D})}{d\tau_{D}} \left(\frac{\rho_{cb}c_{cb}h^{2}}{4k}\right)}{\left(\frac{\rho_{cb}c_{cb}h^{2}}{4k}\right)^{1/2}\sqrt{t_{D} - \tau_{D}}} d\tau_{D}$$
$$= \left(\frac{4kL}{\rho_{cb}c_{cb}h^{2}}\right) (T_{st} - T_{i}) \frac{dz_{N}(t_{D})}{dt_{D}} \left[\sum \rho c + \frac{\rho_{st}L_{st}\bar{s}st_{N}h}{T_{st} - T_{i}}\right]$$

(IX.4.23)

which is expressed as

$$\frac{q(0,t) \left[\rho_{st}xL_{st}+\rho_{w}c_{w}(T_{st} - T_{i})(1 - x)\right]\rho_{cb}c_{cb}h^{2}}{4kL(T_{st} - T_{i})\left[\sum_{\rho c} + \frac{\rho_{st}L_{st}S_{st}}{T_{st} - T_{i}}\right]}$$

$$- \frac{\rho_{cb}c_{cb}}{\sqrt{\pi} \left[\sum \rho c + \frac{\rho_{st}L_{st}S_{st}N^{\phi}N}{T_{st} - T_{i}} \right]} \int_{0}^{t_{D}} \frac{\frac{dz_{D}(\tau_{D})}{d\tau_{D}}}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D}$$
$$= \frac{d}{dt_{D}} z_{N_{D}}(t_{D}) \qquad (IX.4.24)$$

Let

٠

$$F_{N} = \frac{\left[\rho_{st} x^{L} st^{+} \rho_{w} c_{w} (T_{st} - T_{i}) (1 - x)\right] \rho_{cb} c_{cb} h^{2}}{4kL(T_{st} - T_{i}) \left[\sum_{\rho c} + \frac{\rho_{st} L_{st} st^{S} st_{N} \phi_{N}}{T_{st} - T_{i}}\right]} (IX.4.25)$$

$$\lambda_{N} = \frac{\rho_{cb}c_{cb}}{\left[\sum \overline{\rho c} + \frac{\rho_{st}L_{st}\bar{s}_{st}\phi_{N}}{T_{st}-T_{i}}\right]}$$
(IX.4.26)

Introducing (IX.4.25) and (IX.4.26) into (IX.4.24) gives:

$$F_{N}q(0,t) - \frac{\lambda_{N}}{\sqrt{\pi}} \int_{0}^{t_{D}} \frac{v_{D}(\tau_{D})}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D} = v_{ND}(t_{D}) \quad (IX.4.27)$$

Equation (IX.4.27) is the dimensionless form of Equation (IX.4.16) describing the velocity of the steam front in the Nth region of a piece-wise homogeneous linear porous medium. Note that $v_D(t_D) = \sum_{j=1}^{m} v_{jD}(t_D)$. Therefore, when the steam front is within the first region, N = 1, Equation (IX.4.27) becomes:

$$F_{1}q_{st}(0,t) - \frac{\lambda_{1}}{\sqrt{\pi}} \int_{0}^{t_{D}} \frac{v_{1D}(\tau_{D})}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D} = v_{1D}(t_{D}) \quad (IX.4.28)$$

where v_{1D} is a sectionally continuous function. If the reservoir is homogeneous, then v_{1D} becomes the continuous ous function \check{v}_{1D} . Dropping the subscripts, we have, for a homogeneous reservoir,

$$Fq(0,t) = \frac{\lambda}{\sqrt{\pi}} \int_0^t \frac{\breve{v}_D(\tau_D)}{\sqrt{t_D - \tau_D}} d\tau_D = \breve{v}_D(t_D) \quad (IX.4.29)$$

Let

The solution to Equation (IX.4.29) is obtained by Laplace transform method and is given in several references.^{25,32} For the case of constant injection rate [q(0,t) = q],

$$\xi_{\rm D}(t_{\rm D}) = \frac{\mathrm{Fq}}{\lambda^2} \left(e^{\lambda^2 t_{\rm D}} \operatorname{erfc} \sqrt{\lambda^2 t_{\rm D}} + \frac{2\sqrt{\lambda^2 t_{\rm D}}}{\sqrt{\pi}} - 1 \right) (\mathrm{IX.4.30}$$
$$v_{\rm D}(t_{\rm D}) = \mathrm{Fq} \left(e^{\lambda^2 t_{\rm D}} \operatorname{erfc} \sqrt{\lambda^2 t_{\rm D}} \right) \qquad (\mathrm{IX.4.31})$$

The solution to Equation (IX.4.28) for the case where the steam front is within the first region of a piece-wise homogeneous linear system can also be obtained by the Laplace transform method as well.

Consider the case of a linear piece-wise homogeneous porous medium having only two regions (N = 2). When the steam front is in the second region, Equation (IX.4.27) becomes:

$$F_{2}q(0,t) - \frac{\lambda_{2}}{\sqrt{\pi}} \int_{0}^{t_{D}} \frac{v_{D}(\tau_{D})}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D} = v_{2D}(t_{D}) \quad (IX.4.32)$$

where

$$v_{2_{D}}(t_{D}) = \{ [H(t_{D} - t_{D_{1}})] \tilde{v}_{2D}(t_{D}) + [\delta(t_{D} - t_{D_{1}}) - \delta(t_{d} - t_{D_{2}})] \xi_{2D}(t_{D}) \}$$
(IX.4.33)

and

$$v_{D}(t_{D}) = \frac{d\varepsilon_{D}(t_{D})}{dt_{D}} = \sum_{j=1}^{2} \{ [H(t_{D} - t_{D_{j-1}}) - H(t_{D} - t_{D_{j}})] \}$$

$$\times \breve{v}_{jD}(t_{D}) + [\delta(t_{D} - t_{D_{j-1}}) - \delta(t_{D} - t_{D_{j}})]\varepsilon_{jD} \}$$

$$= v_{1D}(t_{D}) + v_{2D}(t_{D}) \qquad (IX.4.34)$$

The expressions for $\xi_{1D}(t_D)$ and $v_{1D}(t_D)$ are known and given by Equations (IX.4.30) and (IX.4.31), respectively. Substituting for $v_D(t_D)$ from Equation (IX.4.34) into (IX.4.32) gives:

$$F_{2}q(0,t) - \frac{\lambda_{2}}{\sqrt{\pi}} \int_{0}^{t_{D}} \frac{v_{1D}(\tau_{D})}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D} - \frac{\lambda_{2}}{\sqrt{\pi}} \int_{0}^{t_{D}} \frac{v_{2D}(\tau_{D})}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D}$$
$$= v_{2D}(t_{D}) \qquad (IX.4.35)$$

The second term on the left of Equation (IX.4.34) gives the rate of heat loss from the first region while the front is in the second region. In order to obtain an analytical solution to Equation (IX.4.35), the assumption is made that no heat is lost from the first region after the steam front clears it. Equation (IX.4.35) simplifies to:

$$F_{2}q_{st}(0,t) = \frac{\lambda_{2}}{\sqrt{\pi}} \int_{0}^{t_{D}} \frac{v_{2D}(\tau_{D})}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D} = v_{2D}(t_{D}) \quad (IX.4.36)$$

In general, the assumption is made that if the steam front is moving within the Nth region, the rate of heat loss from the N-1 regions behind the steam front is negligible. In other words, only the region containing the steam front is losing heat at any given time. With this assumption, Equation (X.0.27) becomes:

$$F_{n}q(0,t) - \frac{\lambda_{N}}{\sqrt{\pi}} \int_{0}^{t_{D}} \frac{v_{ND}(\tau_{D})}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D} = v_{ND}(t_{D}) \quad (IX.4.37)$$

IX.5 SOLUTION BY LAPLACE TRANSFORM METHOD

The Laplace transform of each of the terms of Equation (IX.4.37) gives

$$\int_{0}^{t} \frac{v_{ND}(\tau_{D})}{\sqrt{t_{D} - \tau_{D}}} d\tau_{D}$$
 (IX.5.1)

is a convolution integral. Therefore,

$$x \left\{ \frac{-\lambda_{\rm N}}{\sqrt{\pi}} \int_{0}^{t_{\rm D}} \frac{\mathbf{v}_{\rm ND}(\tau_{\rm D})}{\sqrt{t_{\rm D} - \tau_{\rm D}}} \, d\tau_{\rm D} \right\} = \frac{-\lambda_{\rm N}}{\sqrt{\pi}} \left[x \left\{ \mathbf{v}_{\rm ND}(t_{\rm D}) \right\} \cdot x \left\{ \frac{1}{\sqrt{t_{\rm D}}} \right\} \right] \quad (IX.5.2)$$

Since

$$v_{ND}(t_{D}) = \{ [H(t_{D} - t_{D_{N-1}})]v_{ND}(t_{D}) + [\delta(t_{D} - t_{D_{N-1}}) - \delta(t_{D} - t_{D_{N}})] \xi_{ND}(t_{D}) \} (IX.5.3)$$

$$x \{ v_{D}(t_{D}) \} = x \{ [H(t_{D} - t_{D_{N-1}})] \frac{d\xi_{ND}(t_{D})}{dt_{D}}$$

+ $[\delta(t_{D} - t_{D_{N-1}}) - \delta(t_{D} - t_{D_{N}})]\xi_{ND}(t_{D}) \}$ (IX.5.3a)

From Appendix D,

$$\pounds \{ v_{D}(t_{D}) \} = S\xi_{D}(s) + \xi_{D}(0)$$
 (IX.5.4)

.

where

.

$$\xi_{ND}(0^{-}) = 0$$

$$\xi_{ND}(s) = \int_{t_{D_{N-1}}}^{t_{D}} \xi_{ND}(\tau_{D}) e^{-s\tau_{D}} d\tau_{D}$$

From standard tables of Laplace transforms, 49

$$\pounds \left\{ \frac{1}{\sqrt{t_{\rm D}}} \right\} = \frac{\sqrt{\pi}}{\sqrt{s}} \tag{IX.5.5}$$

Introducing (IX.5.4) and (IX.5.5) into the left of Equation (IX.4.28) gives:

$$x \left\{ \frac{-\lambda_{\rm N}}{\sqrt{\pi}} \int_{0}^{t_{\rm D}} \frac{v_{\rm D}(\tau_{\rm D})}{\sqrt{t_{\rm D} - \tau_{\rm D}}} \, d\tau_{\rm D} \right\} = \frac{-\lambda_{\rm N}}{\sqrt{\pi}} \, s\xi_{\rm D}(s) \, \frac{\sqrt{\pi}}{\sqrt{s}}$$
$$= -\lambda_{\rm N} \sqrt{s} \, \xi_{\rm D}(s) \quad (IX.5.6)$$

Considering Equations (IX.5.4), (IX.5.5) and (IX.5.6) the Laplace transform of Equation (IX.4.28) becomes:

$$F_N^{q(s)} - \lambda_N^{\sqrt{s}} \xi_{ND}(s) = s\xi_D(s) \qquad (IX.5.7)$$

$$\xi_{\rm D}(s) = \frac{F_{\rm N}q(s)}{\sqrt{s}(\sqrt{s} + \lambda_{\rm N})}$$
(IX.5.8)

In order to take the inverse transform of Equation (IX.5.8) it is rewritten as:

$$\xi_{\text{ND}}(s) = \frac{F_{\text{N}}}{\lambda_{\text{N}}^{2}} \frac{\lambda_{\text{N}}^{2}q(s)}{\sqrt{s}(\sqrt{s} + \lambda_{\text{N}})}$$
(IX.5.9)

The inverse transform of Equation (IX.5.9) is:

$$z_{N_{D}}(t_{D}) = \frac{F_{N}}{\lambda_{N}^{2}} \int_{0}^{t_{D}} q(0,t) e^{\lambda_{N}(t_{D}^{-\tau}T_{D})} \operatorname{erfc} \sqrt{\lambda_{N}(t_{D}^{-\tau}T_{D})} d\tau_{D}$$
(IX.5.10)

where

.

$$z_{D}(t_{D}) = \sum_{j=1}^{N} [H(t_{D} - t_{D_{j-1}}) - H(t_{D} - t_{D_{j}})] \xi_{Dj}(t_{D})$$
(IX.5.11)

IX.6 CONSTANT INJECTION RATE

In the case that the injection rate is constant,

 $q_{st}(0,t) = constant = q$

Therefore, the Laplace transform of Equation (IX.4.28) is:

$$\frac{F_N q}{s} - \lambda_N \sqrt{s} \xi_D(s) = s\xi_D(s)$$
 (IX.6.1)

from which,

$$\xi_{\rm D}(s) = \frac{F_{\rm N}q}{\sqrt{s}(s)(\sqrt{s} + \lambda_{\rm N})}$$
(IX.6.3)

The inverse transform of which is:

$$z_{N_{D}}(t_{D}) = \frac{F_{N}q}{\lambda_{N}^{2}} \left[e^{\lambda_{N}^{2}t_{D}} \operatorname{erfc} \sqrt{\lambda_{N}^{2}t_{D}} + \frac{2\sqrt{\lambda_{N}^{2}t_{D}}}{\sqrt{\pi}} - 1 \right]$$
(IX.6.4)

For the case of constant injection rates, the velocity is: $v_{N_{D}}(t_{D}) = \frac{dz_{N_{D}}(t_{D})}{dt_{D}} = F_{N}q[e^{\lambda_{N}^{2}t_{D}} \text{ erfc } \sqrt{\lambda_{N}^{2}t_{D}}]$ (IX.6.5)

where

$$v_{D}(t_{D}) = \sum_{j=1}^{N} \{ [H(t_{d} - t_{D_{j-1}}) - H(t_{D} - t_{D_{j}})] \frac{d\xi_{Dj}(t_{D})}{dt_{D}} + [\delta(t_{D} - t_{D_{j-1}}) - \delta(t_{D} - t_{D_{j}})]\xi_{Dj}(t_{D}) \}$$

IX.7 OIL RECOVERY CALCULATION

Oil recovery calculations are made based on the knowledge of the steam invaded volume and the residual oil saturation. This is a very simplified approach which ignores the oil recovery by the other mechanisms such as recovery by the hot and cold water zones ahead of the steam front; recovery by steam distillation; recovery by viscosity reduction; recovery by thermal expansion; and recovery by the gas drive mechanism of the steam. If it is assumed that the oil saturation is reduced from the initial saturation (S_{o_i}) to the residual saturation (S_{o_r}) for each of N permeability zones in a streamtube swept by steam, and the steam front is at position $z_N(t)$ in the Nth zone at time

t, then the oil recovered up to time t in a streamtube is:

$$\operatorname{Rec} = \frac{1}{5.61} \left[\sum_{j=1}^{N-1} \left\{ x Wh\phi(S_{o_{i}} - S_{o_{r}}) \right\}_{j} + z_{N} W_{N}h\phi_{N}(S_{o_{i}} - S_{o_{r}})_{N} \right]$$
(barrels) (IX.7.1)

If steam has broken through in a streamtube at time t_b, Equation IX.7.1 becomes:

Rec =
$$\frac{1}{5.61} \sum_{j=1}^{N} \{xWh\phi(S_{o_i} - S_{o_r})\}_{j}$$
 (barrels) (IX.7.2)

After the breakthrough time (t_b) for any streamtube, no more oil is recovered from that streamtube. Thus, the breakthrough times for each of the zones in a streamtube are required for the recovery calculation. Since the length of each permeability zone in a streamtube is known, by starting from time t = 0, the time for the steam front to clear each zone in sequence is calculated through the knowledge of the steamfront velocity with time. Equation IX.7.1 is applied to each streamtube in a producer and summed for all streamtubes in the producer. The results are added for all wells to give the recovery from the field at the specified time. For any streamtube where steam has broken through, Equation IX.7.2 is applied.

A computer program was written in FORTRAN to perform the oil recovery calculations with time. Appendix F gives a short description of the program, a listing of the flow chart. A listing of the program itself is given in Appendix O.

CHAPTER X

TEST FOR THE VALIDITY OF BOUNDARY ELEMENT METHOD OF SOLUTION

The validity of the boundary element technique and the correctness of the solution algorithm were verified by applying the method to a simple problem where the analytical solution is known. The example is taken from Street⁵³ and involves the steady two-dimensional irrotational flow of an ideal fluid in a corner (Figure 13).

The mathematical model is:

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0, \quad 0 < x < \pi, \quad 0 < y < \pi$$

.

FIGURE 13. Steady flow of an ideal fluid in a corner.

with boundary conditions:

$$\frac{\partial \Phi(0, y)}{\partial x} = 0 \qquad 0 < y < \pi$$

$$\Phi(\pi, y) = 5 \qquad 0 < y \leq \pi$$

$$\frac{\partial \Phi(x, 0)}{\partial y} = 0 \qquad 0 < x < \pi$$

$$\Phi(x, \pi) = 10 \qquad 0 < x < \pi$$

The solution to this problem is given 5^8 as:

$$\Phi(x,y) = C_1 + \frac{4(C_2 - C_1)}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cosh[(n-\frac{1}{2})y] \cos[(n-\frac{1}{2})x]}{(2n-1) \cosh[(n-\frac{1}{2})\pi]}$$

where $C_1 = 5$ and $C_2 = 10$.

The boundary element method of solution is obtained by dividing each side into three equal segments. The nodes are taken at the mid-points of the segments as shown in Figure 14.

FIGURE 14. Division of square domain into segments and numbering scheme.

The results from the boundary element solution method are shown below. Table 1 lists the input data. Table 2 shows the calculated potentials at the boundary nodes and the potentials calculated at selected interior points. Table 3 compares the solutions obtained by the boundary element method at the interior points to that obtained analytically. The distribution of the absolute values of the errors $|\varepsilon|$ at the interior points are calculated and plotted in Figure 15 where $|\varepsilon|$ is defined as:

$$|\varepsilon| = \frac{\Phi(\text{BEM}) - \Phi(\text{Analytical})}{\Phi(\text{Analytical})}$$

It can be seen from Table 3 that at points farther than half an element length away from any boundary, the maximum error was less than 0.4 percent. Figure 15 shows that the error gets very large on and near the boundaries up to half an element length away from the boundaries. TEST FOR THE VALIDITY OF THE BOUNDARY ELEMENT METHOD(BEM) CALCULATION OF POTENTIALS IN A SQUARE USING THE (BEM) RESULTS COMPARED WITH ANALYTICAL SOLUTION GIVEN BY STREET

INPUT DATA

.

منه هيه هينه بينه هه، منه عنه برك مقدينية بالله ا

NUMBER OF BOUNDARY ELEMENTS=12 NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED=15 NUMBER OF SDURCES AND SINKS= 0

THE CORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS

POINT	Х		Y	
1	0.0000E	00	0.0000E	00
2	0.1047E	01	0.0000E	00
3	0.2094E	01	0.0000E	00
4	0.3142E	01	0.0000E	0 0
5	0.3142E	01	0.1047€	01
6	0.3142E	01	0.2094E	01
7	0.3142E	01	0.3142E	01
8	0.2094E	01	0.3142E	01
9	0.1047E	01	0.31420	01
10	0.0000E	00	0.3142E	C 1
11	0.0000E	00	0.2094E	01
12	0.0000E	00	0.1047E	01

BOUNDARY CONDITIONS

NODE	CODE	PRESCRIBED	VALUE
1	1	0.0000E	00
2	1	0.0000E	00
3	1	0.0000E	00
4	0	0.5000E	01
5	0	0.5000E	01
6	0	0.5000E	01
7	0	0.1000E	02
8	0	0.1000E	02
9	0	0.1000E	02
10	1	0.0000E	00
11	1	0.0000E	00
12	1	0.0000E	00

TABLE 2 RESULTS AT BOUNDARY NODES

BOL	JNDARY	NODES					
×		Y		POTENTIA	L.	DERIVATIVE	Ē
0.5235E	00	0.0000E	00	0.74316295	01	0.0000000E	00
0.1570E	01	0.0000E	00	0.6809022E	01	0.0000000E	00
0.2618E	01	0.0000E	00	0.56462835	01	0.0000000E	00
0.3142E	01	0.5235E	00	0.500000E	01	-0.1448967E	01
0.3142E	01 *	0.1570E	01	0.500000E	01	-0.1798650E	01
0.3142E	01	0.2618E	01	0.500000E	01	-0.7014348E	01
0.2618E	01	0.3142E	01	0.100000E	02	0.7014794E	01
0.1570E	01	0.3142E	01	0.100000E	02	0.1794951E	01
0.5235E	00	0.3142E	01	0.100000E	02	0.1448620E	01
0.0000E	00	0.2618E	01	0.9354136E	01	0.0000000E	00
0.0000E	00	0.1570E	01	0.8193880E	01	0.000000CE	00
0•0000E	00	0.5235E	00	0.7569907E	01	0.000000E	00

POTENTIALS AT SELECTED INTERNAL POINTS

X		Y		POTENTI	AL
0.1000E	01	0.1000E	01	0.7501E	01
0.1500E	01	0.1500E	01	0.7501E	01
0.2000E	01	0.2000E	01	0.7500E	01
0.2500E	01	0.2500E	01	0.7500E	01
0.3000E	01	0.3000E	01	0.70335	01
0.1000E	01	0.1571E	01	0.7927E	01
0.1500E	01	0.1571E	01	0.7566E	01
0.2000E	01	0.1571E	01	0•7013E	01
0.2500E	01	0.1571E	01	0.6232E	01
0.3000E	01	0.1571E	01	0.4877E	01
0.1000E	01	0.5000E	00	0.7282E	01
0.1500E	01	0.5000E	00	0.6928E	01
0.2000E	01	0.5000E	00	0.6446E	01
0.2500E	01	0.5000E	00	0.5841E	01
0.3000E	01	0.5000E	00	0.4825E	01

COMPARISON WITH ANALYTICAL SOLUTION TABLE 3

INTERNAL	POINTS			
×	۶	POTENTIAL (BEM)	POTENTIAL (ANALYTICAL	
0.1000E 01	0.1000E 01	0.7501070E 01	0.7500757E 01	
0.1500E 01	0.1500E 01	0.7500750E 01	0.7500802E 01	
0.2000E 01	0.2000E 01	0.7500497E 01	0.7500597F 01	
0.2500E 01	0.2500E 01	0.7500035E 01	0.7500886E 01	
0.3000E 01	0.3000E 01	0.7033089E 01	0.7504594E 01	
0.1000E 01	0.1571E 01	0.7926839E 01	0.7919108E 01	
0.1500E 01	0.1571E 01	0.7566373E 01	0.7565387E 01	
0.2000E 01	0.1571E 01	0.7012587E 01	0.7021172E 01	
0.2500E 01	0.1571E 01	0.6232046E 01	0.6254806E 01	
0.3000E 01	0.1571E 01	0.4877094E 01	0.5291536E 01	
0.1000E 01	0.5000E 00	0.7282336E 01	0.7292308E 01	
0.1500E 01	0.5000E 00	0.6928425E 01	0.6944761E 01	
0.2000E 01	0.5000E 00	0.6445957E 01	0.6463688E 01	
0.2500E 01	0.5000E 00	0.5841250E 01	0.5867875C 01	
0.3000E 01	0.5000E 00	0.4825499E 01	0.5196271E 01	

DISTRIBUTION OF ABSOLUTE ERROR

FIGURE 15. Distribution of error.

CHAPTER XI

APPLICATIONS AND RESULTS

XI.1 SAMPLE FIELD PROBLEM: SHIELLS CANYON FIELD⁵⁰

A steam-distillation drive pilot project in zone 203 of the Shiells Canyon field, Ventura County, California, has been reported by Konopnicki, et al.⁵⁰ from which this example is taken. Zone 203 is described as part of the Sespe formation of Oligocene age located in the Shiells Canyon field. The average sand thickness is 48.8 m (160 ft). The reservoir is bordered on all sides by faults that are assumed to be fluid sealing at the flood pressure (Fig. 16) The reservoir has a 35° dip, but for purposes of this application, it is assumed to be horizontal.

FIGURE 16. Shiells Canyon Field--Zone 203

(After Konopnicki, et al⁵⁰)

108

The primary producing mechanism has been solutiongas drive. The cumulative production before steam injection was 42,500 m³ (267,000 bbl) which is 9.5% of the estimated 449,175 m³ (2,825,000 bbl) of oil originally in place. The pilot is an inverted type pattern originally consisting of four producing wells (217A, 203, 237 and 225A) downdip from the injection well, one producing well (238) updip from the injection well, and one thermal observation well (150). Two additional producers (241 and 15) were drilled during the flood (Fig. 16).

XI.1.1 Boundary Conditions

Konopnicki et al. report that the reservoir is bordered on all sides by faults that are assumed to be fluid sealing. However, their figure (Fig. 16) shows the west boundary to be undefined. In the present analysis, two kinds of conditions are assigned at the west boundary for comparative analysis. The two types of boundary conditions are:

- (a) The west boundary is assumed to be an oil-water contact; thus, it is a constant-pressure boundary.
- (b) The west boundary is assumed to be fluid sealing, therefore making all the boundaries fluid sealing.

In what follows, the boundary element method of generating streamtubes and the steamflood calculation method are applied to the Shiells Canyon reservoir by considering it as:

- 1. A homogeneous reservoir with
 - a. sealed outer boundary
 - b. the west boundary assumed to be an oil/water contact and therefore at original reservoir pressure, the rest of the boundary sealed.
- A piece-wise homogeneous reservoir consisting of two regions that have unequal permeabilities with
 a. sealed outer boundary
 - b. the west boundary at constant pressure, the remainder of the boundary sealed.

XI.2 CASE 1:

XI.2.1 <u>Shiells Canyon Field Analysed as a Single</u> Region Homogeneous Reservoir

The discretization of the boundary and the scheme of numbering are shown in Figure 17. The numbering scheme was such that the domain under consideration was always on the left hand side. This scheme ensures that the direction of the normal gradient at any point of the boundary (or boundaries) is always away from the domain. There are a total of sixty elements taken on the boundary, but only a select few of them are indicated in Figure 17. The coordinates of the extreme points of all the boundary elements are shown in Table 4, while Table 5 gives the coordinates and strengths of the injectors and producers.

Scale: 1 inch = 738.46 ft

FIGURE 17. Discretization and numbering scheme for Shiells Canyon Field as a homogeneous reservoir.⁵⁰

TABLE 4.	The Coordinates of the End Points of the Boundary
	Elements for Shiells Canyon Reservoir Analysed
	as a Single Homogeneous Region

.

PUINT	X(INCH)	Y(INCH)
•	0 1000	0.1500
•	0.2500	0.1300
2	0.4000	0.2500
3	0.4000	0.2900
4	0.5500	0.2800
5	0.6500	0.3000
6	0.7000	0.3250
7	0.7500	0.3300
8	0.8000	0.3400
9	0.6500	0.3500
10	0.9000	0.4000
11	1.0000	0.4500
12	1.1000	0.5250
13	1.2500	0.6000
14	1.4000	0.6500
15	1.5500	0.6800
16	1.6500	0.6900
17	1.7000	0.7000
18	1.7500	0.7100
19	1.8000	0.7200
20	1.8500	0.7250
21	1.9000	0.7300
22	1.9500	0.7350
23	2.1000	0.7450
24	2.2500	0.7500
25	2.4000	0.7500
26	2.6000	0.7400
27	2.7500	0.7300
28	2.9000	0.7250
20	3-1600	1,0000
30	3-0600	1-2500
31	2.9500	1.5500
32	2.7500	1.6500
77	2.4000	1.8200
34	2.2500	1.8000
35	2.1000	1.7500
36	2.0500	1.7450
37	2.0000	1.7250
30	1 9500	1.7100
39	1.8500	1.6900
	1.7500	1.6500
40	1-6500	1.6100
41	1.6000	1.6500
42	1 35000	1.4800
43	1.3500	1 4400
44	1 2000	1.4400
45	1.2000	1.3000
40	1.1500	1.3800
47	1.0500	1.3250
48	0.9500	1.2000
49	0.9000	1.2500
50	0.8500	1.2000
51	0.8000	1.1700
52	0.7500	1.1200
53	0.6500	1.0800
54	0.5500	1.0200
55	0.5000	0.9900
56	0 .4500	0.9500
57	0.4000	0.9200
58	0.3000	0.8500
59	0-1000	0.7300
60	0.1000	0.5000

.

TABLE 5. Coordinates of Sources and Sinks for Shiells Canyon Field Analysed as a Single Homogeneous Region

X(INCH)	Y(INCH)	RATE(BBL/D)
0.4500	0.5500	-69.1000
0.5000	0.8000	-69.1000
0.7500	0.4000	-69.1000
0.9000	1.1500	-69.1000
1.0000	0.8000	560.0000
1.2500	1.2000	-69 • 1000
1.3500	1.0000	-69.1000
1.9000	0.9500	200.0000
1.8000	1.3500	-69 • 1000
2.0500	1.5500	-69.1000
2.1500	1.2500	-69.1000
2.3500	1.0500	-69.1000
2.5750	1.3000	-69.1000

THE	AVERAGE	RADIUS	OF	THE	WELLS	(INCH)	IS=	0.500
THE	CHARAC TE	ERISTIC	PRE	ESSUP	RE(PSI)	I S=	85.	0000

XI.3 RESULTS FOR CASE 1: SHIELLS CANYON FIELD MODELLED AS A HOMOGENEOUS RESERVOIR

XI.3.1 Sealed Outer Boundary

Table 6 lists the prescribed boundary conditions according to a preassigned code. If the potential is prescribed on the boundary segment, the code = 0. If the potential gradient is prescribed, the code = 1.

A plot of the streamlines generated is shown in Figure 18, while Table 7 gives the dimensions of the streamtubes generated which are read as input to the steamflood recovery calculation program. The input data to the steamflood program are given in Table 8. Figure 19 gives a plot of the oil recovery as a function of time. A complete listing of the outputs from the streamline modelling program is presented in Appendix G while the detailed output from the steamflood program is listed in Appendix H.

XI.3.2 <u>Part of the Boundary at Constant Pressure, the</u> Remainder Sealed

The only difference between the data for this case and that of the sealed boundary is the constant potential specified to boundary segments numbered 59 and 60. These two segments are assigned the initial pressure of 85 psi. Figure 20 shows a plot of the streamlines generated. Table 9 gives the dimensions of the streamtubes generated and Figure 21 gives a plot of the oil recovery as a function TABLE 6. The Prescribed Boundary Conditions for Shiells Canyon Reservoir Analysed as a Homogeneous Reservoir with Sealed Boundary

BOUNDARY CONDITIONS

NDDE	CODE	PRESCRIBED VALUE
1	I	0.0
2	1	0.0
3	1	0.0
4	1	0.0
5	1	0.0
6	1	0.0
7	1	0.0
8	1	0.0
10	1	0-0
10	1	0.0
12	1	0.0
13	1	0.0
14	ī	0.0
15	1	0.0
16	1	0.0
17	1	0.0
18	1	0.0
19	1	0.0
20	1	0.0
21	1	0.0
22	1	0.0
23	1	0.0
25	1	0.0
26	-	0.0
27	1	0.0
28	1	0.0
29	1	0.0
30	1	0.0
31	1	0.0
32	1	0.0
33	1	0.0
34	1	0.0
30	1	0.0
37	1	0.0
38	1	0.0
39	1	0.0
40	1	0.0
41	1	0.0
42	1	0.0
43	1	0.0
44	1	0.0
45	1	0.0
46	1	0.0
47	1	0.0
48	1	0.0
4 7	1	0.0
50	1	0.0
52	1	0.0
53	ĩ	0.0
54	1	0.0
55	1	0.0
56	1	0.0
57	1	0.0
58	1	0.0
59	1	0.0
60	1	0.0

.

`

59. .C 7,67 2 -69.10

FIGURE 18. Boundary element modelling of Shiells Canyon Field as a single homogeneous reservoir with sealed boundary.

TABLE 7.	Calculated Streamtube Dimensions for Shiells Canyon
	Field Analysed as a Homogeneous Reservoir with
	Sealed Outer Boundary

. .

WELL NO.	S/L NO.	CUDE	LENGTH	WIDTH	RATE
			(ft)	(ft)	(bb1/d)
1	1	1	538.10	45.18	28.00
1	2	1	425.00	23.75	28.00
1	3	1	686.10	79.51	28.00
2	1	1	441.40	27.76	28.00
2	2	1	344.70	19.18	28.00
3	1	1	334.80	18.06	28.00
3	2	1	384.80	21.76	28.00
4	1	1	269.70	13.51	28.00
4	2	1	269.70	14.88	28.00
5	1	1	359.80	15.89	28.00
5	2	1	338.10	14.26	28.00
G	1	1	294.70	12.69	28.00
6	2	1	288.10	11.96	28.00
7	1	1	809.80	29.41	28.00
7	2	1	759.80	28.63	28.00
8	1	1	112.00	38.76	28.00
8	2	1	950.00	34.34	28.00
8	3	1	588.10	15.61	10.00
8	4	1	569.70	12.31	10.00
8	5	1	598.00	13.78	10.00
9	1	1	260.40	6.27	10.00
9	2	1	291.40	6.74	10.00
9	3	1	378.30	8.90	10.00
9	4	1	288.10	6.46	10.00
10	1	1	463.10	10.18	10.00
10	2	1	369.70	8.22	10.00
10	3	1	331.60	7.53	10.00
10	4	1	334.80	7.39	10.00
10	5	1	403.30	10.92	10.00
11	1	1	716.40	22.42	10.00
11	Ź	1	903.30	34.43	10.00
11	3	1	713.10	19.76	10.00
2 1	4	1	538.10	15.60	10.00
11	5	1	606.60	22.23	10.00

117

TABLE 8.	Input Data Program	to	Steamflood	Recovery	Prediction
----------	-----------------------	----	------------	----------	------------

TOTAL NUMBER OF PRODUCERS=	11
STEAM TEMPERATURE (DEG. F)=	430.0000
STEAM QUALITY=	0.7000
CONVERGENCE LIMIT=	0.0010
RESERVOIR THICKNESS (FT)=	160.0000
STEAM PRESSURE (PSI)=	344.0000
INITIAL RESERVOIR TEMPERATURE(DEG F)=	105.0000

FLUID PROPERTIES

	WATER	OIL	STEAM
	مد خد شدرد خان دی 		ه نه ج هني ب ه ه
DENSITY(LB/CU FT) AT STD. TEMP.	62.4000	55.0000	
DENSITY(LB/CU FT) AT STEAM TEMP.	52.3800	48.7000	0.7431
SPECIFIC HEAT(BTU/LB \$F)	1.0000	0.4880	1.0000
LATENT HEAT (BTU/LB)			789.5100

PROPERTIES OF THE CAP AND BASE ROCK

DENSITY(LB/CU. FT)	145.0000
SPECIFIC HEAT(BTU/LB-+F)	0.2130
THERM. COND. (BTU/HR-FT-+F)	1.1000

,**e**

	RESERVOIR ROCK	PROPERTIES
	REGION 1	REGION 2
POROSITY	0.2050	0.1800
DEN.(LB/CU FT)	165.0000	165.0000
SPEC. HEAT (BTU/LB*F)	0.2000	0.2000
PERMEABILITY (MD)	140.0000	70.0000

INITIAL FLUID SATURATIONS

	REGION 1	REGIUN 2
WATER	0.5500	0.5500
DIL	0.4500	0.4500
STEAM	0.0	0.0

AVERAGE RESIDUAL SATURATIONS BEHIND THE FRONT

	REGION 1	REGIUN 2		
WATER	0.5800	0.5800		
OIL	0.1800	0.1800		
STEAM	0.2400	0.2400		

FIGURE 19. Steamflood recovery prediction for Shiells Canyon Field as a homogeneous reservoir with sealed outer boundary.

FIGURE 20. Boundary element modelling of Shiells Canyon Field as a homogeneous reservoir. Part of the boundary at constant pressure, part sealed. TABLE 9. Calculated Streamtube Dimensions for Shiells Canyon Field Analysed as a Homogeneous Reservoir. Part of the Boundary at Constant Pressure, the Remainder Sealed.

WELL NO.	S/L NO.	CODE	LENGTH	WIDTH	RATE
			(f+)	(ft)	(bb1/d)
			(IU)	(10)	(001/0)
1	1	1	541.40	45.84	28.00
1	2	1	425.00	23.67	28.00
1	3	1	678.30	73.69	28.00
2	1	1	441.40	27.62	28.00
2	2	1	344.70	19.14	28.00
3	1	1	338.10	18.06	28.00
3	2	1	384.80	21.62	28.00
4	1	~1	269.70	13.51	28.00
4	2	1	269.70	14.91	28.00
5	1	1	359.80	15.91	28.00
5	2	1	338.10	14.26	28.00
6	1	1	294.70	12.70	28.00
6	2	1	288.10	11.96	28.00
7	1	1	809.80	29.43	28.00
7	2	1	759.80	28.67	28.00
8	1	1	1120.00	38.69	28.00
8	2	1	950.00	34.38	28.00
8	3	1	588.10	15.55	10.00
8	4	1	569.70	12.31	10.00
8	5	1	598.00	13.79	10.00
9	1	1	266.40	6.27	10.00
9	2	1	291.40	6.75	10.00
9	3	1	378.30	8.92	10.00
9	4	1	288.10	6.46	10.00
10	1	1	463.10	10.17	10.00
10	2	1	369.70	8.22	10.00
10	3	1	331.60	7.53	10.00
10	4	1	334.80	7.39	10.00
10	5	1	403.30	10.97	10.00
11	1	1	716.40	22.47	10.00
11	2	1	903.30	34.84	10.00
11	3	1	713.10	19.81	10.00
11	4	1	538.10	15.61	10.00
11	5	1	606.60	22.34	10.00

.

FIGURE 21. Steamflood recovery prediction for Shiells Canyon Field as a homogeneous reservoir with part of the boundary at constant pressure, part sealed.

of time. The detailed output from the streamline modelling program is listed in Appendix I, while Appendix J presents the detailed output of the steamflood recovery program.

XI.4 CASE 2:

XI.4.1 <u>Shiells Canyon Field Analysed as a Piecewise</u> Homogeneous Reservoir

The Shiells Canyon field has been modified to consist of two regions with different permeabilities (Figure 22). Region 1 has an average permeability of 0.138 μ m² (140 md) while the second region is assigned a permeability half as much, 0.69 μ m² (70 md). Figure 23 shows the numbering scheme employed. The scheme was such that the domain of interest was always on the left as the numbering progressed. It is to be observed that the numbering of the second region starts where that for the first ends on the interface between the two regions. This was done purely for convenience in assembling the two matrices into one. The reservoir is analysed assuming first that the entire reservoir is enclosed by sealing faults, and then by assuming that the west boundary is at constant pressure.

The coordinates of the end points of the boundary elements for both regions are listed in Table 10. The coordinates and strengths of the injectors and producers are listed in Table 11.

Scale: 1" = 738.46 ft

.

FIGURE 22. Shiells Canyon Field (Zone 203) arbitrarily divided into two regions with different material properties.

Scale: 1" = 738.46 ft

FIGURE 23. Shiells Canyon Field (Zone 203) as a piecewisehomogeneous field showing discretization and numbering scheme.

TABLE 10. Case 2:

THE COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS

Region 1

.

Region 2

PUINT	X(INCH)	Y(INCH)	POINT	X(INCH)	Y(INCH)
1	1.5000	1.5500	1	1.5000	1.5500
2	1.3500	1.4800	2	1.5000	1.5000
3	1.2500	1.4400	3	1.4800	1.4500
4	1.2000	1.4000	4	1.4600	1.3500
5	1.1500	1.3800	5	1.4600	1.2500
6	1.0500	1.3250	6	1.4800	1.1500
7	0.9500	1.2600	7	1.5000	1.0500
8	0.9000	1.2500	8	1.5000	0.9500
9	0.8500	1.2000	9	1.5400	0.8500
10	0.8000	1.1700	10	1.5500	0.7500
11	0.7500	1.1500	11	1.5500	0.6800
12	0 •6500	1.0800	12	1.6500	0.6900
13	0.5500	1.0200	13	1.7000	0.7000
14	0.5000	0.9900	14	1.7500	0.7100
15	0.4500	0.9500	15	1.8000	0.7200
16	0.4000	0.9200	16	1.8500	0.7250
17	0.3000	0.8500	17	1.9000	0.7300
18	0.1000	0.7300	18	1.9500	0.7350
19	0.1000	0.5000	19	2.1000	0.7450
20	0.1000	0.1500	20	2.2500	0.7500
21	0.2500	0.2000	21	2.4000	0.7500
22	0.4000	0.2500	22	2.6000	0.7400
23	0.5500	0.2800	23	2.7500	0.7300
24	0.6500	0.3000	24	2.9000	0.7250
25	0.7000	0.3250	25	3.1600	1.0000
26	0.7500	0.3300	26	3.0600	1.2500
27	0.8000	0.3400	27	2.9500	1.5500
28	0.8500	0.3500	28	2.7500	1.6500
29	0.9000	0.4000	29	2.4000	1.8200
30	1.0000	0.4500	30	2.2500	1.8000
31	1.1000	0.5250	31	2.1000	1.7500
32	1.2500	0.6000	32	2.0500	1.7450
33	1.4000	0.6500	33	2.0000	1.7250
34	1.5500	0.6800	34	1.9500	1.7100
35	1.5500	0.7500	35	1-8500	1.6900
36	1 •5400	0.8500	36	1.7500	1.6500
37	1.5000	0.9500	37	1.6500	1.6100
38	1.5000	1.0500			
39	1.4800	1.1500			
40	1.4600	1.2500			
41	1.4600	1.3500			
42	1.4800	1.4500			
43	1.5000	1.5000			

COORDINATES OF SOURCES AND SINKS AND THEIR STRENGTHS

	Region 1	
X(INCH)	Y(INCH)	RATE(BEL/D)
0.4500	0.5500	-69.1000
0.5000	0.8000	-69.1000
0.7500	0.4000	-69.1000
0.9000	1.1500	-69 • 1000
1.0000	0.8000	560.0000
1.2500	1.2000	-69.1000
1.3500	1.0000	-69.1000

THE AVERAGE RADIUS OF THE WELLS(INCH) IS= 0.500 THE CHARACTERISTIC PRESSURE(PSI) IS= 85.0000

Region 2

COORDINATES OF SOURCES AND SINKS AND THEIR STRENGTHS

.

.

X(INCH)	Y(INCH)	RATE(BBL/D)		
1.9000	0.9500	200.0000		
1.8000	1.3500	-69.1000		
2.0500	1.5500	-69.1000		
2.1500	1.2500	-69.1000		
2.3500	1.0500	-69.1000		
2.5750	1.3000	-69 • 1000		

THE AVERAGE RADIUS OF THE WELLS(INCH) IS= 0.500 THE CHARACTERISTIC PRESSURE(PSI) IS= 85.0000

XI.5 RESULTS FOR CASE 2: SHIELLS CANYON RESERVOIR ANALYSED AS A PIECEWISE HOMOGENEOUS RESERVOIR

XI.5.1 Sealed Boundary

The prescribed boundary conditions are assigned on each boundary segment according to the code described earlier under Case 1. For the interface boundary, a code of 2 is assigned implying that the potential and the normal derivative of the potential are unknown at the interface. A listing of the boundary conditions for both regions is given in Table 12. A plot of the streamlines obtained are shown in Figure 24. Table 13 gives the dimensions of the streamtubes associated with the streamlines. These dimensions are read into the steamflood program to calculate recovery as a function of time which is plotted in Figure 25.

XI.5.2 Part of the Boundary at Constant Pressure, the Remainder Sealed

The coordinates of the end points of the boundary segments are the same as in Table 10. Also, the coordinates and strengths of the injectors and producers are the same as given in Table 11. The left boundary of region 1 is assumed to be at the initial reservoir pressure of 85 psi. Thus, segment numbers 18 and 19 are assigned this constant pressure. The result from the streamline simulation program is plotted in Figure 26. The dimensions of the streamtubes obtained are listed under Table 14. The petrophysical

Boundary Conditions for Shiells Canyon Reservoir Analysed as a 2-Region Piecewise Homogeneous Reservoir TABLE 12.

	Regio	n 1		Regio	on 2
	BOUNDARY CO	UND IT IONS		BOUNDARY CO	NDITIONS
NODE	CODE	PRESCRIBED VALUE	NODE	CODE	PRESCRIBED VALUE
1	1	0.0	1	2	0.0
2	1	0.0	2	2	0-0
3	1	0.0	3	2	0.0
4	1	0.0	4	2	0.0
5	1	0.0	5	2	0.0
6	1	0.0	6	2	0.0
7	1	0.0	7	2	0.0
8	1	0.0	8	2	0.0
3	1	0.0	9	2	0.0
10	1	0.0	10	2	0.0
11	1	0.0	11	1	0.0
12	1	0.0	12	1	0.0
13	1	0.0	13	1	0.0
14	1	0.0	14	1	0.0
15	1	0.0	15	1	0.0
16	1	0.0	16	1	0.0
17	1	0.0	17	1	0.0
18	1	0.0	18	1	0.0
19	1	0.0	19	1	0.0
20	1	0.0	20	1	0.0
21	1	0.0	21	1	0.0
22	1	0.0	22	1	0.0
23	1	0.0	23	1	0.0
24	1	0.0	24	1	0.0
25	1	0.0	25	1	0.0
26	1	0.0	26	1	0.0
27	1	0.0	27	1	0.0
28	1	0.0	28	1	0.0
29	1	0.0	29	1	0.0
30	1	0.0	30	1	0.0
31	1	0.0	31	1	0.0
32	1	0.0	32	1	0.0
33	1	0.0	33	1	0.0
34	2	0.0	34	1	0.0
35	2	0.0	35	1	0.0
36	2	0.0	36	1	0.0
37	2	0.0	37	1	0.0
38	2	0.0			
39	2	0.0			
40	2	0.0			
41	2	0.0			
42	2	0.0			
43	2	0.0			

FIGURE 24. Boundary element modelling of Shiells Canyon Field as two-region piecewise homogeneous reservoir. Sealed outer boundary.

÷.,

TABLE 13. Calculated Streamtube Dimensions for Shiells Canyon Reservoir Analysed as a Piecewise Homogeneous Reservoir with Sealed Boundary

		PEG				RE	REGION 2		
WELL NO.	S/L NO.	CUDE	LENGTH	WIDTH	RATE	LENGTH	WIDTH	RATE	
1	1	1	534.80	45.44	28.00	0.0	0.0	0.0	
1	2	1	425.00	23.89	28.00	0.0	0.0	0.0	
1	З	1	700.00	85.96	28.00	0.0	0.0	0.0	
2	1	1	441.40	27.95	28.00	0.0	0.0	0.0	
2	2	1	344.70	19.24	28.00	0.0	0.0	0.0	
3	1	1	334.80	18.07	28.00	0.0	0.0	0.0	
3	2	1	391.40	21.94	28.00	0.0	0.0	0.0	
4	1	1	269•70	13.51	28.00	0 .0	0.0	0.0	
4	2	1	269.70	14.84	28.00	0.0	0.0	0.0	
5	1	1	359.80	15.86	28.00	0.0	0.0	0.0	
5	2	1	338.10	14.26	28.00	0.0	0.0	0.0	
6	1	1	294.70	12.69	28.00	0.0	0.0	0.0	
6	2	1	288.10	11.95	28.00	0.0	0.0	0.0	
7	1	2	376.90	51.38	28.00	403.30	42.31	28.00	
7	2	2	411.10	79.31	28.00	313.10	32.17	28.00	
8	1	2	602.00	58.92	28.00	319.70	38.38	28.00	
8	2	2	427.10	58.81	28.00	484.80	46.20	28.00	
8	3	2	581.60	14.81	10.00	0.0	0.0	0.0	
8	4	1	566.40	12.23	10.00	0.0	0.0	0.0	
8	5	1	594.70	13.71	10.00	0.0	0.0	0.0	
Ģ	1	1	266.40	6.26	10.00	0.0	0.0	0.0	
9	2	1	291.40	6.74	10.00	0.0	0.0	0.0	
9	3	1	376.30	9.01	10.00	0.0	0.0	0.0	
9	4	1	288.10	6.44	10.00	0.0	0.0	0.0	
10	1	1	463.10	10.12	10.00	0.0	0.0	0.0	
10	2	1	369.70	8.20	10.00	0.0	0.0	0 • C	
10	3	1	331.60	7.52	10.00	0.0	0.0	0.0	
10	4	1	334.80	7.39	10.00	0.0	0.0	0.0	
10	5	1	403.30	11.19	10.00	0.0	0.0	0.0	
11	1	1	719.70	22.68	10.00	0.0	0.0	0.0	
11	2	1	913.10	36.20	10.00	0 • 0	0.0	0.0	
11	3	1	713.10	19.91	10.00	0.0	0.0	0.0	
11	4	1	538.10	15.62	10.00	0.0	0.0	0.0	
11	5	1	609.80	22.74	10.00	0.0	0.0	0.0	

FIGURE 25. Steamflood recovery prediction of Shiells Canyon Field as two-region piecewise homogeneous reservoir. Sealed outer boundary.

FIGURE 26. Boundary element modelling of Shiells Canyon Field as two-region piecewise homogeneous reservoir. Part of the boundary at constant pressure, part sealed.

TABLE 14.	Calculated Streamtube Dimensions for Shiells
	Canyon Field Analysed as a Piecewise Homogeneous
	Reservoir. Part of the Boundary at Constant
	Pressure, the Remainder Sealed

		REGICN 1				RE	_	
WELL NU.	S/L NO.	CUDE	LENGTH	WIDTH	RATE	LENGTH	WIDTH	RATE
1	1	1	553.30	49.91	28.00	0.0	0.0	0.0
1	2	1	425.00	23.40	28.00	0.0	0.0	0.0
1	3	1	656.60	66.11	28.00	0.0	0.0	0.0
2	1	1	444.70	27.95	28.00	0.0	0.0	0.0
2	2	1	344.70	19.06	28.00	0.0	0.0	0.0
3	1	1	338.10	17.95	28.00	0.0	0.0	0.0
З	2	1	381.60	21.11	28.00	0.0	0.0	0.0
4	1	1	269.70	13.31	28.00	0.0	0.0	0.0
4	2	1	269.70	14.75	28.00	0.0	0.0	0.0
5	1	1	366.40	15.86	28.00	0.0	0.0	0.0
5	2	1	331.60	13.79	28.00	0.0	0.0	0.0
6	1	1	291.40	12.62	28.00	0.0	0.0	0.0
6	2	1	294.70	12.12	28.00	0.0	0.0	0.0
7	1	2	451.30	60.06	28.00	216.40	30.08	28.00
7	2	2	478.40	58.33	28.00	248.00	31.38	28.00
8	1	2	376.40	61.82	28.00	541.40	43.88	28.00
8	2	1	591.40	13.37	10.00	0.0	0.0	0.0
8	З	1	619.70	14.81	10.00	0.0	0.0	0.0
9	1	1	266.40	6.40	10.00	0.0	0.0	0.0
9	2	1	288.10	6.87	10.00	0.0	0.0	0.0
9	3	1	363.10	8.27	10.00	0.0	0.0	0.0
9	4	1	288.10	6.64	10.00	0.0	0.0	0.0
10	1	1	478.30	11.11	10.00	0.0	0.0	0.0
10	2	1	384.80	8.51	10.00	0.0	0.0	0.0
10	3	1	334.80	7.71	10.00	0.0	0.0	0.0
10	4	1	331.60	7.47	10.00	0.0	0.0	0.0
10	5	1	384.80	9.71	10.00	0.0	0.0	0.0
11	1	1	703.30	21.65	10.00	0.0	0.0	0.0
11	2	1	834.80	27.73	10.00	0.0	0.0	0.0
11	3	1	719.70	19.85	10.00	0.0	0.0	0.0
11	4	1	538.10	16.01	10.00	0.0	0.0	0.0
11	5	1	591.40	20.86	10.00	0.0	0.0	0.0

•

data input to the steamflood program are the same as those given under Table 8. The calculated recovery of oil as a function of time is presented in Figure 27.

FIGURE 27. Steamflood recovery prediction for Shiells Canyon Field as a two-region piecewise homogeneous reservoir. Part of the boundary at constant pressure, part sealed.

FIGURE 23. Boundary element streamline modelling of Shiells Canyon Field as a homogeneous reservoir with sealed outer boundary. Unequal production rates.

XI.6 DISCUSSION OF RESULTS

The pattern of streamlines obtained by Konopnicki et al, is shown in Figure 28. This pattern differs considerably from those obtained in this study using the Boundary Element Method for a homogeneous reservoir (Figures 18 and 20). However, a direct comparison between the two studies is inappropriate for the following reasons:

a. The production rates assigned to each producer by Konopnicki et al. in their streamline model is unknown. In this study, equal rates, determined as the sum of all the injection rates divided by the number of producers were assigned to each producer. This is important because the rates assigned to the producers significantly affect the pattern of streamlines developed. This effect can be observed in Figure 28 where the producers surrounding each injector have been assigned rates equal to the injection rate divided by the number of producers around the injector.

b. There is one fewer producer in this study than that published by Konopnicki et al.

c. Even though Konopnicki et al. state that the boundary of the reservoir is assumed to be fluid sealing all around, it is evident from Figure 29 that the boundary on the west was certainly not a no-flow boundary. In this study, the west boundary is first assumed to be fluid sealing and then assumed to be at constant pressure (initial pressure of 85 psi). Considering the level of accuracy obtained for the test case (Section X.1), this author feels that the streamlines obtained in this study are representative of the true streamlines under the assumed boundary conditions.

Comparing the results of the sealed outer boundary and that where the west boundary is kept at constant pressure, it was observed that the values of potentials (Φ) and the normal gradients of potentials $\left(\frac{\partial \phi}{\partial n}\right)$ obtained on the boundary "nodes" are markedly different for the two cases. However, given such differences, the streamline patterns look identical to each other. Small differences are observed in the widths of the streamtubes generated. To investigate further, more of the boundary segments were changed to the constant pressure conditions. It was observed that the streamlines deviated more from the sealed boundary case as more of the boundary segments were changed to constant boundary segments. Further testing led this author to conclude that changes in the boundary conditions affected the pattern of the streamlines generated. The magnitude of the effect depended on (a) the proportion of the entire boundary that had been changed, (b) the strengths of the sources and sinks present, (c) the proximity to any boundary.

FIGURE 29. Streamlines for Shiells Canyon Steamflood (After Konopnicki, et al.⁵⁰)

FIGURE 30. Comparison with Field Performance (5°)

It was observed that the reason for the streamlines looking nearly identical to each other for the different boundary conditions was because the effects of the sources and sinks was so large in comparison to the boundary effects that the boundary effects were masked. Only near boundaries that are far from sources and sinks were the boundary effects felt.

The results from the analysis of the reservoir as a 2-region piecewise homogneous reservoir showed the same similarity in streamline patterns for the two kinds of boundary conditions (Figures 24 and 26) as observed earlier for the same reasons. Figure 31 gives a comparison of the oil recovery versus time for the two systems under the two kinds of boundary conditions. It can be observed that the recovery from the single homogeneous reservoir was higher than the recovery from the 2-region piecewise homogeneous reservoir for the two kinds of boundary conditions applied. This agreed with expectations since one of the regions of the 2-region reservoir has a permeability that is half the homogeneous reservoir. For the homogeneous reservoir, the summulative oil recovered was higher when part of the boundary was at constant pressure, the remainder sealed, than that when all the boundary was sealed. The reverse was the case in the 2-region piecewise homogeneous reservoir where the recovery from the sealed boundary condition was higher.

The cause of this is the loss of one streamline (Figure 26) in the case when part of the boundary was at constant pressure. Figure 30 shows a comparison between the predicted performance from this study and the actual field performance. The figure shows a high rate of recovery at early times in this study. This is consistent with the fact that the steam front velocity is relatively high at early times and declines exponentially with time. The recovery prediction by this study does not match the field performance. However, this was expected for several reasons: (a) The actual injection rates were neither steady nor continuous (Figure 32) whereas a constant injection rate was assumed for this study. (b) The prediction model used in this study assumes that the oil saturation reduces to irreducible in the steam swept area. (c) The production rates used to generate the streamlines for this study was assumed. Since the streamlines are very sensitive to the injection and production rates, this could introduce substantial errors.

FIGURE 31. Comparison of results

FIGURE 32. Field injection history ⁽⁵⁰⁾

XI.7 COMPUTATIONAL EFFICIENCY OF THE BOUNDARY ELEMENT METHOD

In practical terms, the most important question that any numerical method must answer is: "How does it compare with the commonly used methods with regard to accuracy and computational effort?" A comparison with the "method of images" is not appropriate here because the image method is only applicable to homogeneous reservoirs. Furthermore, it is not a numerical method. However, it can be said that the Boundary Element Method is superior

to the image method in terms of accuracy. In fact, it is claimed to be superior to both the finite difference and finite element methods in terms of accuracy and finer resolution in the interior.^{12,54,56} Part of the reason for this is because the error of discretization is confined to points on and near boundaries since only the boundary is discretized as opposed to discretizing the entire domain. Brebbia¹² reports that finite element results are usually accurate for the original variables under consideration (potentials) in this case, but when these variables are differentiated (to obtain fluxes), the results are much less accurate and are usually discontinuous between elements.

Several authors^{21,54,55} have reported on the comparative computational efforts associated with the solution of the coefficient matrix arising in the Boundary Element Method. For a homogeneous medium, the coefficient matrix arising from the Boundary Element Method (Equation VII.0.1) is generally non-symetric, fully populated, nonsingular, well conditioned but not diagonally dominant even though the largest terms are the diagonal terms. Hess²¹ compared the computing effort involved in a direct Gauss elimination procedure to that of the Gauss-Siedel iterative method for both the interior and exterior problem. As reported by Hess, the computing effort involved in a direct elimination is proportional to N³, where N is

the number of unknowns. The computing effort for an iterative solution is proportional to IFN², where I is the number of iterations required for convergence, and F is the number of solutions being obtained. Thus, if I was independent of N, the iterative method would require less computing effort than the direct method for sufficiently large N. He further reported that for the exterior flow problem, the Gauss-Siedel procedure converged in a number of iterations that was indepedent of N but dependent on the body shape. Thus, he found that the iterative procedure required less effort if N was as large as 100-300 depending on F, but had the considerable disadvantage that the required computing time was less predictable than was the case when a direct elimination was used. For the interior flow problem, I increases linearly with N, so that the iterative procedure is usually not competitive with direct elimination.

Bettes⁵⁴ compared the computational work involved in the Boundary Integral Element Method with that of the finite element method. He found that for a square n x n two-dimensional problem, the finite element method required fewer storage locations for all meshes smaller than n = 11, and fewer arithmetic operations for all meshes smaller than n = 35. For three dimensional problems (n by n by n cube), the finite element method required fewer storage locations if n is less than 30, and fewer arithmetic operations if n is less than 135. Bettes made the conclusion

that problems have to be very large before the Boundary Integral Element method is computationally cheaper than the finite element method.

Mukherjee and Morjaria⁵⁵ have also compared the accuracy and computational efficiency of the boundary element and finite element methods for problems of timedependent inelastic torsion of prismatic shafts. After making the comparisons for solid shafts with circular, square, elliptical, and triangular cross sections, they concluded that (a) the CPU times on an IBM 370/168 are of the same order for both BEM and FEM methods but with the BEM program generally running somewhat faster than the FEM program with the same internal mesh; (b) the discretization and input data preparation is much easier for the BEM than for the FEM.

CHAPTER XII

CONCLUSIONS AND RECOMMENDATIONS

XII.1 CONCLUSIONS

1. A streamline simulation model has been developed that is applicable to homogeneous as well as piecewise homogeneous porous media having arbitrarily shaped boundaries and under different kinds of boundary conditions. Such a general capability was not previously possible.

2. The model has successfully been used to predict steamflood recovery in both homogeneous and piecewise homogeneous porous media assuming streamtubes that are thermally isolated from each other.

3. The model can be used to predict oil recovery from any other form of secondary or tertiary recovery.

4. Interpretation of the results from this model should be done with the limitations in mind. It is recommended that the model be used primarily as a diagnostic tool prior to full scale simulation.

XII.2 LIMITATIONS OF THE MODEL

1. Streamlines are invariant with time.

2. Assumption of single phase flow is incorrect.

3. Assumption of zero heat transfer between streamtubes does not represent the physical condition.

4. The boundary element model can only be applied to systems described by linear differential equations.

5. Any region less than half an element size away from the boundary gives wrong results.

6. Cannot be used on domains with rapidly changing heterogeneities.

7. Cannot exploit existing sparse-matrix techniques.

XII.3 SUGGESTIONS FOR FURTHER STUDY

There are several areas in this research work that can be extended, improved upon. Some of the areas where further work is needed are:

1. The application of the Boundary Element Method to other equations such as parabolic equations.

2. Application to anisotropic porous media. This can very easily be done by making the appropriate transformation.

3. The search for a suitable analytical solution to the equation describing the velocity of the steam front in the second region without ignoring the heat losses in the first region.

4. The extension of the Boundary Element Method to handle reservoirs with part of their boundaries at infinity.

NOMENCLATURE

(x,y)	= coordinate axis
(x_i,y_i)	= coordinates of interior points
(x_b, y_b)	= coordinates of boundary points
(x _j ,y _j)	= coordinates of sources and sinks
φ	= porosity
k	= permeability
Κ	= thermal conductivity
D	= domain
S	= boundary
Φ	= potential
S _p	<pre>= boundary where potential is specified</pre>
s _n	= boundary where potential gradient $\frac{\partial \Phi}{\partial n}$ is speci-
	fied
S _{¢,n}	= boundary where mixed boundary conditions are
	specified
ρ	= density
u	= volume flux
∇ •	= divergence operator
t	= time
∇	= gradient operator
ц	= viscosity

N	= number of sources and sinks
δ	= Dirac delta function
^q j	= volumetric rate of flow of the jth source or
-	sink
$^{\Phi}$ n	= potential gradient $\frac{\partial \Phi}{\partial n}$
L	= two-dimensional difference operator, $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$
W	= potential distribution due to a unit charge
	in an infinite system
î	= unit vector in the x direction
ĵ	= unit vector in the y direction
ŕ	= unit vector normal to a surface
r	= radius
r _i	= distance between an observation point (x,y)
	and an internal charge point (x _i ,y _i)
	$= \sqrt{(x - x_i)^2 + (y - y_i)^2}$
^r i,j	= distance between a source or sink point (x _j ,y _j)
	and an internal charge point (x _i ,y _i)
	$= \sqrt{(x_{j} - x_{i})^{2} + (y_{j} - y_{i})^{2}}$
r, b,j	= distance between a source or sink point (x _j ,y _j)
	and a boundary charge point (x_b, y_b)
	$= \sqrt{(x_{i} - x_{b})^{2} + (y_{i} - y_{b})^{2}}$
r _{b,L}	= distance between a boundary node point (x_L, y_L)
·	and a boundary charge point (x_b, y_b)
	$= \sqrt{(x_{L} - x_{b})^{2} + (y_{L} - y_{b})^{2}}$
ε	= radius of a small circle on the surface (Fig-
	ure 4)

Sε	=	the surface of the semicircle of radius $\boldsymbol{\epsilon}$ (Fig-
		ure 4)
Ф *	=	average value of Φ on S $_{\epsilon}$
$(x_{L_{h}},y_{L_{h}})$	=	coordinates of Gaussian quadrature points
Φ K K	=	known value of potential specified as a bound-
		ary condition
<u>ə ф</u> Ən	=	known value of potential gradient specified
		as a boundary condition
Ml	=	number of boundary segments in which potentials
		are specified and potential gradients are un-
		known
M ₂	=	number of boundary segments in which potential
		derivatives are specified and potentials are
		unknowns
G _{b,L}	=	defined by Equation (VI.0.3)
H _{b,L}	=	defined by Equation (VI.0.4)
Ğ _{b,L}	=	G _{b,L} when L ≠ b
G _{b,b}	=	$G_{b,L}$ when $L = b$
G _{i,L}	=	defined by Equation (VII.1.4)
H _{i,L}	=	defined by Equation (VII.1.5)
v _x	e	velocity in the x-direction
vy	=	velocity in the y-direction
sL	=	the surface of the Lth line segment
s _{Ln}	=	dimensionless form of S_{L}
$Q_{N}(\xi^{-},t)$	=	the rate of flow of heat per unit cross sectional
		area through the vertical cross sectional area

at $\boldsymbol{\xi}^{-}$ into the elemental volume in the Nth region

- $Q_N(\xi^+,t)$ = the rate of flow of heat per unit cross sectional area out of the elemental volume through the vertical cross section at ξ^+ in the Nth region
- $V_{N}(t)$ = the velocity of the steam front in the Nth region
- H_N(ξ,t) = heat content per unit volume of reservoir rock/fluid system at the upstream face of the steam front in the Nth region
- $H_N(\xi^+,t)$ = heat content per unit volume of reservoir rock/fluid system at the downstream face of the steam front in the Nth region
- Q(0,t) = rate of injection of heat per unit cross sectional area
- $\rho_m(T)$ = density of m at temperature T, where m can be oil, water, or steam

L_{st} = latent heat of steam

- c = specific heat of m, where m = oil, water, steam
- ΔT(ξ) = change in temperature at the upstream face of the steam front

ΔT(ξ ⁺)	= change in temperature at the downstream face
	of the steam front
[¢] j	= porosity of the rock in the jth region
S _m (x,t)	= saturation distribution of m, where m = oil,
	water, steam
M _{st} (0,t)	= mass rate of injection of steam per unit cross
	sectional area
M _w (0,t)	= mass rate of injection of water per unit cross
	sectional area
^T st	= $(T_{st} - T_{i})$ where $T_{i} = 0$ and T_{st} is the tem-
	perature of steam
	$= \Delta T(\xi)$
Ŕ	= thermal conductivity of overburden and under-
	burden
ξ _j (t)	= the location of the steam front in the jth
	region at time t
Τ _ξ +	= the temperature at the downstream face of the
	steam front
Τ _ξ -	= the temperature at the upstream face of the
	steam front
q _{st} (0,t)	= rate of injection of steam per unit cross
	sectional area
^k j	= permeability of the jth region
hj	= thickness of the jth region
∑ _m (t)	= average saturation of phase m, where m = oil,
	water, steam

cr _N	=	specific heat of reservoir rock of the Nth region
$[Q_{L}^{(t)}]_{\Delta A}$	=	rate of heat loss per unit cross section area
		from an elemental area of size ΔA
d	=	thermal diffusivity of the overburden or under-
		burden $(k/\rho_{cb}c_{cb})$
P _j	=	number of elemental areas (or number of time
-		steps in the jth region)
t	=	time
τ	=	variable of time
Δt	=	time step
Wj	=	width of the jth region of the porous medium
t _D	=	dimensionless time
ξD	=	dimensional distance
v _D	=	$\frac{dt_D}{dt_D}$ = dimensionless velocity
Lj	=	length of the jth region of the porous medium
x	=	fraction of injected steam that is water
λj	=	ratio of heat capacity of cap and base rock to
		that of the jth region of the reservoir
ž _j (t)	=	discontinuous distance function defined only
		for the period $t_{j-1} < t < t_j$ and not defined
		outside this interval
^z j ^(t)	=	step-wise continuous distance function defined
		for all time $t > 0$, but equal to zero outside
		the time interval $t_{j-1} < t < t_j$.
		$z_{j}(t) = \{H(t - t_{j-1}) - H(t - t_{j})\}\xi_{j}(t)$

ξ _i (t)	=	continuous	distance	function	with	time
z(t)	=	$\sum_{j=1}^{N} \{H(t -$	t _{j-1}) - H	$H(t - t_j)$	}ξ _j (t))

Subscripts

+	=	downstream face of the condensation front
-	8	upstream face of the condensation front
W	8	water
st	=	steam
0	=	oil
j	=	denotes the region
ΔA	=	elemental area
cb	=	cap and base rock (overburden and underburden)
D	=	dimensionless

APPENDIX A

DERIVATIONS OF H_{b,L}, G_b,L, H_{b,L}, G_{b,L}

APPENDIX A

DERIVATIONS OF H_{b,L}, G_{b,L}, H_{b,L} AND G_{b,L}

 $H_{b,L}$ is defined as

$$\frac{1}{2\pi} \int_{S_{L}} \frac{\partial}{\partial n_{L}} \left(\ln \frac{1}{r_{b,L}} \right) dS_{L}$$

$$\frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b,L}} \right) = \frac{\partial}{\partial \hat{r}_{b,L}} \left(\ln \frac{1}{r_{b,L}} \right) \cos \alpha$$

Since

$$\frac{\partial}{\partial n}(\ln u) = \frac{1}{u} \frac{\partial u}{\partial n}$$

then

$$\frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b,L}} \right) = -\frac{1}{r_{b,L}} \cos \alpha = \frac{-d_{b,L}}{r_{b,L}^2}$$
(A-1)

١

Therefore,

$$H_{b,L} = -\frac{1}{2\pi} \int_{S_{L}} \frac{d_{b,L}}{r_{b,L}^{2}} dS_{L}$$
 (A-2)

where $d_{b,L}$ is the perpendicular distance from a point (x_b, y_b) to the line Ax + By + C = 0 and is given as:

$$d_{b,L} = \frac{Ax_b + By_b + C}{\pm \sqrt{A^2 + B^2}}$$
 (A-3)

where the appropriate sign is chosen so as to make $d_{b,L}$ always positive.

The equation of the line joining the points (x_1,y_1) and (x_2,y_2) is:

$$\left(\frac{y_2 - y_1}{x_2 - x_1} \right) x - y + \left[y_1 - x_1 \left(\frac{y_2 - y_1}{x_2 - x_1} \right) \right] = 0$$

Therefore,

$$A = \frac{y_2 - y_1}{x_2 - x_1}$$

$$B = -1$$

$$C = y_1 - x_1 \left(\frac{y_2 - y_1}{x_2 - x_1} \right)$$

$$\frac{d_{b,L}}{\frac{y_2 - y_1}{x_2 - x_1} x_b - y_b + y_1 - x_1 \left(\frac{y_2 - y_1}{x_2 - x_1} \right)}{\frac{y_2 - y_1}{x_2 - x_1} x_b - y_b + y_1 - x_1 \left(\frac{y_2 - y_1}{x_2 - x_1} \right)}$$
(A-4)

In order that $d_{b,L}$ is always positive, the following convention is used:

If the numerator, $(Ax_b + By_b + C) < 0$, then use $-\sqrt{A^2 + B^2}$ as the denominator.

If the numerator, $(Ax_b + By_b + C) > 0$, then use $+\sqrt{A^2 + B^2}$ as the denominator.

G_{b,L} is defined as

$$\frac{1}{2\pi} \int_{S_{L}} \ln \frac{1}{r_{b,L}} dS_{L}$$
(A-5)

 ${H'_{x}}_{b,L}$ is defined as

$$\int_{S_{L}} \frac{\partial}{\partial x} \left[\frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b,L}} \right) \right] dS_{L}$$

which is evaluated as follows:

$$\frac{\partial}{\partial x} \left[\frac{\partial}{\partial n} \left(\ln \frac{1}{r_{b,L}} \right) \right] = \frac{\partial}{\partial x} \left(\frac{d_{b,L}}{r_{b,L}^{2}} \right) = - \left[d_{b,L} \frac{\partial}{\partial x} \left(\frac{1}{r_{b,L}^{2}} \right) + \frac{1}{r_{b,L}^{2}} \frac{\partial}{\partial x} (d_{b,L}) \right]$$
$$= \left[-d_{b,L} \frac{2(x_{b} - x_{L})}{r_{b,L}^{4}} + \frac{A}{r_{b,L}^{2} \pm \sqrt{A^{2} + 1}} \right]$$

Therefore,

$$\{H'_{x}\}_{b,L} = \int_{S_{L}} \left[\frac{-d_{b,L} \cdot 2(x_{b} - x_{L})}{r_{b,L}^{4}} + \frac{A}{r_{b,L}^{2} \pm \sqrt{A^{2} + 1}} \right] dS_{L} (A-6)$$

Similarly,
$$\{H_{y}^{\prime}\}_{b,L} = \int_{S_{L}} \left[\frac{-d_{b,L} \cdot 2(y_{b} - y_{L})}{r_{b,L}^{4}} + \frac{A}{r_{b,L}^{2} \pm \sqrt{A^{2} + 1}} \right] dS_{L} \quad (A-7)$$

 $\{G'_x\}_{b,L}$ is defined as

$$\int_{S_{L}} \frac{\partial}{\partial x} \left(\ln \frac{1}{r_{b,L}} \right) dS_{L}$$

and is given as follows:

$$\frac{\partial}{\partial x} \left(\ln \frac{1}{r_{b,L}} \right) \text{ is given}$$

$$\frac{-(x_{b} - x_{L})}{r_{b,L}^{2}} \cdot \cdot \cdot \left\{ G_{x}^{\prime} \right\}_{b,L} = - \int_{S_{L}} \frac{(x_{b} - x_{L})}{r_{b,L}^{2}} dS_{L} \quad (A-8)$$

Similarly,

$$\{G'_{y}\}_{b,L} = -\int_{S_{L}} \frac{y_{b} - y_{L}}{r_{b,L}^{2}} dS_{L}$$
 (A-9)

The integrals in Equations (A-2) through (A-9) are evaluated by applying the quadrature formula given in Section IX.1 Equation (IX.1.1).

APPENDIX B

EVALUATION OF TERMS UNDER THE INTEGRAL SIGNS OF THE HEAT BALANCE

APPENDIX B

EVALUATION OF THE TERMS UNDER THE INTEGRAL SIGNS

The average saturation within any arbitrary region from ${\bf x}_{\rm a}$ to ${\bf x}_{\rm b}$ is:

$$\tilde{S}(t) = \frac{1}{x_b - x_a} \int_{x_a}^{x_b} S(x,t) dx$$
 (b-1)

Since S(x,t) is continuous within each region behind the steam front but discontinuous at the interfaces between the regions, the average saturation in all regions behind

FIGURE B-1

the steam front can be obtained by applying Equation (B-1) to every region behind the front and taking the average of these averages.

Let

$$\overline{\overline{S}}(t) = \frac{\sum_{k=1}^{j} S_{k}(t)}{j}$$
(B-2)

Rewrite B-1 as

٠

$$\overline{S}(t)(x_b - x_a) = \int_{x_a}^{x_b} S(x,t) dx$$

and differentiate both sides to obtain

$$\overline{S}(t) \frac{\partial}{\partial t} (x_b - x_a) + (x_b - x_a) \frac{\partial}{\partial t} \overline{S}(t) = \frac{\partial}{\partial t} \int_{x_a}^{x_b} S(x,t) dx$$
(B-3)

Apply Leibnitz's theorem to the RHS of Equation (B-3) to obtain

$$\frac{\partial}{\partial t} \int_{x_{a}}^{x_{b}} S(x,t) dx = \int_{x_{a}}^{x_{b}} \frac{\partial}{\partial t} S(x,t) dx + S(x_{b},t) \frac{\partial x_{b}}{\partial t}$$
$$- S(x_{a},t) \frac{\partial x_{a}}{\partial t} \qquad (B-4)$$

Equation B-4 is substituted into B-4 to give

$$\overline{S}(t) \frac{\partial}{\partial t} (x_b - x_a) + (x_b - x_a) \frac{\partial}{\partial t} \overline{S}(t) = \int_{x_a}^{x_b} \frac{\partial}{\partial t} S(x,t) dx$$
$$+ S(x_b,t) \frac{\partial x_b}{\partial t} - S(x_a,t) \frac{\partial x_a}{\partial t} \qquad (B-5)$$

Now if both x_b and x_a are constants, Equation B-5 reduces to:

$$(x_b - x_a) \frac{\partial}{\partial t} \overline{S}(t) = \int_{x_a}^{x_b} \frac{\partial}{\partial t} S(x,t) dx$$
 (B-6)

For all regions behind the steam front except the region containing the steam front, the limits x_a and x_b are constants. Therefore, Equation B-6 is applied to as many such regions. For the region containing the condensation front, the limit x_a is a constant, but x_b is the location of the condensation front $\xi(t)$ which is a function of time. Therefore, Equation B-5 becomes:

$$\overline{S}(t)V(t) + [\xi(t) - x_a] \frac{\partial}{\partial t} \overline{S}(t) - S(\xi, t)V(t)$$
$$= \int_{x_a}^{\xi(t)} \frac{\partial}{\partial t} S(x, t) dx \qquad (B-7)$$

APPENDIX C

•

TEMPERATURE DISTRIBUTION IN THE CAP AND BASE ROCK

APPENDIX C

TEMPERATURE DISTRIBUTION IN THE CAP AND BASE ROCK

A general heat balance on any medium is (Van Poolen, Spillete):

$$\frac{\partial}{\partial t} (MT) + \nabla \cdot (\rho_f c_f T) V = \nabla \cdot \hat{k} \nabla T \qquad (C-1)$$

For the cap or base rock, there are no fluids,

$$\therefore M = \rho_{cb}c_{cb}$$
$$\rho_{f}c_{f} = \rho_{o}c_{o} + \rho_{w}c_{w}$$

for an oil water system

$$V = 0 =$$
 velocity of the fluids

Thus, Equation (C-1) becomes:

$$\rho_{cb}c_{cb}\frac{\partial T}{\partial t} = \nabla \cdot \hat{k}\nabla T \qquad (C-2)$$

For a one-dimensional medium in the z-direction

$$\frac{\partial T}{\partial t} = \frac{\hat{k}}{\rho_{cb}c_{cb}} \frac{\partial^2 T}{\partial z^2}$$
(C-3)

Defining $\alpha = \frac{k}{\rho_{cb}c_{cb}}$, then

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$
(C-4)

The equation describing the temperature distribution in the overburden or underburden is:

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$
(C-5)

Subject to:

$$T(z,0) = T_{i}$$
 when $t = 0$ (C-6)

$$T(0,t) = T_{st}$$
 at $z = 0, t > 0$ (C-7)

$$T(\infty,t) = T_i$$
 at $z = \infty, t > 0$ (C-8)

Define $\theta(z,t)$ as

$$\frac{T(z,t) - T_{i}}{T_{st} - T_{i}}$$

Thus, the differential equation becomes:

$$\frac{\partial^2 \theta}{\partial z^2} = \frac{1}{\alpha} \frac{\partial \theta}{\partial t}$$
(C-9)

subject to:

$$\theta(z,0) = 0 \tag{C-10}$$

$$\theta(0,t) = 1 \tag{C-11}$$

$$\theta(\infty, t) = 0 \tag{C-12}$$

The solution to Equation (C-4) with its boundary conditions (Equations C-5 to C-6) are obtainable from standard texts such as Carslaw and Jaeger.⁵⁸ It is given as:

$$\theta(z,t) = \operatorname{erfc}\left(\frac{z}{\sqrt{4\alpha t}}\right)$$
 (C-13)

Differentiating (C-13) with respect to z gives

$$\frac{d}{dz} \theta(z,t) = \frac{d}{dz} \left[\operatorname{erfc} \left(\frac{z}{\sqrt{4\alpha t}} \right) \right]$$

$$= \frac{d}{dz} \left[-\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{z}{\sqrt{4\alpha t}}} e^{-t^{2}} dt \right] = -\frac{2}{\sqrt{\pi}} \left[-e^{-\left(\frac{z}{\sqrt{4\alpha t}} \right)^{2}} \frac{1}{\sqrt{4\alpha t}} \right]$$

$$\frac{d}{dz} \theta(z,t) = -\frac{1}{\sqrt{\pi\alpha t}} e^{-\left(\frac{z}{\sqrt{4\alpha t}} \right)^{2}} \qquad (C-14)$$

Since

$$\frac{dT(z,t)}{dz} = (T_{st} - T_{i}) \frac{d\theta(z,t)}{dz}$$

$$\frac{dT(z,t)}{dz}\Big|_{z=0} = -\frac{T_{st} - T_{i}}{\sqrt{\pi\alpha t}} \qquad (C-15)$$

For an area that received heat initially at time τ ,

$$\left. \frac{dT(z,t)}{dz} \right|_{z=0} = - \frac{T_{st} - T_{i}}{\sqrt{\pi\alpha(t-\tau)}}$$
(C-16)

APPENDIX D

LAPLACE TRANSFORM OF A SECTIONALLY CONTINUOUS FUNCTION

APPENDIX D

LAPLACE TRANSFORM OF A SECTIONALLY CONTINUOUS FUNCTION

For a function $\xi_D(t_D)$ which is sectionally continuous and continuously differentiable in the domain t > 0:

$$\xi_{D}(\tau_{D}) = \sum_{j=1}^{N} \xi_{D_{j}}(\tau_{D}), \quad t_{D_{j-1}} < \tau_{D} < t_{D_{j}}$$

where the functions $\xi_{D_j}(\tau_D)$ are continuous in the domain $t_{D_j-1} < \tau_D < t_{D_j}$. At the points t_j for $j = 1, \dots, N$, $\xi_D(\tau_D)$ has finite steps. Incorporating the Heaviside unit step function,

$$\xi_{D}(\tau_{D}) = \sum_{j=1}^{N} \{H(t_{D} - t_{D_{j-1}}) - H(t_{D} - t_{D_{j}})\} \xi_{D_{j}}(\tau_{D})$$

The generalized derivative of this function is:

$$V_{D}(\tau_{D}) = \frac{d\xi_{D}(\tau_{D})}{d\tau_{D}} = \sum_{j=1}^{N} \{ [H(t_{D} - t_{D_{j-1}}) - H(t_{D} - t_{D_{j}})] \}$$

$$= \sum_{j=1}^{N} \{ [H(t_{D} - t_{D_{j-1}}) - \delta(t_{D} - t_{D_{j}})] \} = \sum_{j=1}^{N} \{ [H(t_{D} - t_{D_{j-1}}) - H(t_{D} - t_{D_{j}})] V_{D_{j}}(\tau_{D}) \}$$

$$= \sum_{j=1}^{N} \{ [H(t_{D} - t_{D_{j-1}}) - H(t_{D} - t_{D_{j}})] V_{D_{j}}(\tau_{D}) \}$$

$$= \sum_{j=1}^{N} \{ [H(t_{D} - t_{D_{j-1}}) - \xi_{D_{j}}(\tau_{D_{j}}) \} \}$$

$$= \sum_{j=1}^{N} \{ [H(t_{D} - t_{D_{j-1}}) - \xi_{D_{j}}(\tau_{D_{j}}) \} \}$$

$$= \sum_{j=1}^{N} \{ [H(t_{D} - t_{D_{j-1}}) - \xi_{D_{j}}(\tau_{D_{j}}) \} \}$$

$$= \sum_{j=1}^{N} \{ [H(t_{D} - t_{D_{j-1}}) - \xi_{D_{j}}(\tau_{D_{j}}) \} \}$$

where H is the Heaviside unit step function

 $\boldsymbol{\delta}$ is the Dirac delta function.

The Laplace transform of any function $\boldsymbol{v}_D(\boldsymbol{t}_D)$ is defined as

$$\pounds \{ v_{D}(t_{D}) \} = \int_{0}^{\infty} v_{D}(t_{D}) e^{-st_{D}} dt_{D}$$

that is,

$$\begin{split} \pounds \{ V_{D}(\tau_{D}) \} &= \sum_{j=1}^{N} \left\{ \begin{bmatrix} \int_{t_{D_{j-1}}}^{t_{D_{j}}} V_{D_{j}}(\tau_{D}) e^{-s\tau_{D}} d\tau_{D} \\ t_{D_{j-1}} \end{bmatrix} + \xi_{D_{j}}(\tau_{D_{j-1}}) e^{-s\tau_{D_{j-1}}} - \xi_{D_{j}}(\tau_{D_{j}}) e^{-s\tau_{D_{j}}} \\ - \xi_{0}(0) \end{split} \right\} \end{split}$$

Integrate by parts. Let

$$u = e^{-s\tau_{D}}$$

$$dv = V_{D_{j}}(\tau_{D})$$

$$\pounds\{V_{D}(\tau_{D})\} = \sum_{j=1}^{N} \left[e^{-s\tau_{D}} \xi_{D_{j}}(\tau_{D}) \right|_{t_{D_{j-1}}}^{t_{D_{j}}} + s \int_{t_{D_{j-1}}}^{t_{D_{j}}} \xi_{D_{j}}(\tau_{D}) \\
\times e^{-s\tau_{D}} d\tau_{D} + \xi_{D_{j}}(\tau_{D_{j-1}}) e^{-s\tau_{D_{j-1}}} - \xi_{D_{j}}(\tau_{D_{j}}) e^{-s\tau_{D_{j}}} \right] - \xi_{0}(0)$$

$$= \sum_{j=1}^{N} \left[e^{-s\tau_{D_{j}}} \xi_{D_{j}}(\tau_{D_{j}}) - e^{-s\tau_{D_{j-1}}} \xi_{D_{j}}(\tau_{D_{j-1}}) + \xi_{D_{j}}(\tau_{D_{j-1}}) \right] \\
\times e^{-s\tau_{D_{j-1}}} - \xi_{D_{j}}(\tau_{D_{j}}) e^{-s\tau_{D_{j}}} + sZ(s) \right] - \xi_{0}(0)$$

Since

$$\sum_{j=1}^{N} \int_{t_{D_{j-1}}}^{t_{D_{j}}} \xi_{D_{j}}(\tau_{D}) e^{-s\tau_{D}} d\tau_{D} = Z_{D}(s) = \pounds \{\xi_{D_{j}}(\tau_{D})\}$$

Thus,

$$\mathcal{L}\left\{V_{D}(\tau_{D})\right\} = sZ_{D}(s) - \xi_{0}(0)$$

where

•

$$Z_{D}(s) = \sum_{j=1}^{N} \int_{\tau_{D_{j-1}}}^{\tau_{D_{j}}} \xi_{D_{j}}(\tau_{D}) e^{-s\tau_{D}} d\tau_{D}$$

APPENDIX E

COMPUTER IMPLEMENTATION OF BOUNDARY ELEMENT METHOD OF STREAMLINE SIMULATION

APPENDIX E

COMPUTER IMPLEMENTATION OF BOUNDARY ELEMENT METHOD OF STREAMLINE SIMULATION

A package of computer programs has been written in FORTRAN to perform all the calculations necessary to generate the streamlines and calculate the dimensions of the streamtubes using the Boundary Element Method. The program can handle:

1. Single homogeneous porous medium with or without sources and sinks.

2. A two-region piecewise homogeneous porous medium with or without sources and sinks.

The boundary conditions can be either:

1. sealed

. .

2. constant pressure

3. combination of (1) and (2)

and consists of a main program that calls the following 15 subroutines.

1. INPUT

2. CONVRS

3. MATRIX

4. INTE

- 5. INLO
- 6. SOURCE
- 7. LOWVEL
- 8. ASEMBL
- 9. SLNPD
- 10. SPLIT
- 11. INTER
- 12. OUTPUT
- 13. BDRY
- 14. STRM
- 15. COMPAT

Subroutines INPUT, INTE, SLNPD, INTER and INLO are modifications of the subroutines INPUT, INTE, SLNPD, INTER, and INLO published in reference 12.

Subroutine INPUT reads all the input data required, such as the coordinates of the ends of the boundary segments, the coordinates and strengths of the sources and sinks, the boundary conditions, etc.

Subroutine MATRIX performs the integrations to determine the values of $H_{b,L}$ and $G_{b,L}$ which make up the elements of the [H] and [G] matrices. It does this by calling two other subroutines, INTE and INLO. Subroutine INTE calculates the values $H_{b,L}$ and $\tilde{G}_{n,L}$ (that is, $H_{b,L}$ and $G_{b,L}$ when $L \neq b$), while subroutine INLO calculates $H_{b,b}$ and $G_{b,b}$. $\tilde{H}_{b,L}$ and $\tilde{G}_{b,L}$ form the off-diagonal elements of the [H] and [G] matrices while $H_{b,b}$ and $G_{b,b}$ form the diagonal elements. Both subroutines are modified from reference 12. Subroutine MATRIX also calls the subroutine SOURCE to calculate the contributions of the sources and sinks, and rearranges the [H] and [G] matrices according to the prescribed boundary conditions such that all the elements of [H] and [G] corresponding to unknown boundary conditions are put in the matrix [G]. Finally, it calculates the $[H'_x]$, $[G'_x]$, $[H'_y]$ and $[G'_y]$ matrices required to calculate the velocities in the x and y directions at interior points.

Subroutine ASEMBL is called for a piecewise homogeneous reservoir having two regions. It arranges the new [G] matrices for both regions (obtained from routine MATRIX) into a single matrix [A]. The arrangement is such that continuity and compatibility conditions at the common interface between the two regions are accounted for.

Subroutine SLNPD solves the resulting [A] matrix in double precision using a Gaussian elimination procedure that allows for row interchange in case of zero pivot elements. After solution, subroutine SPLIT divides the solution vector into the two vectors representing the boundary potentials and gradients for each region.

Subroutine INTER uses these vectors to determine the potential at internal points. It calls both subroutine INTE and subroutine INLO to supply the [H] and [G] matrices needed.

Subroutine OUTPUT is called to give a printed output of the calculated values.

Subroutine BDRY plots the boundaries of the reservoir system.

Subroutine STRM generates the streamlines and plots them. It also calculates the lengths and widths of the streamtubes. It calls the following subroutines: (a) subroutine LOWVEL to calculate the veloctiy near the lowest producer; (b) subroutine INTE and subroutine INLO. The steps of operations used by subroutine STRM can be summarized as follows:

a. Define a capture radius (say 20 times the wellbore radius) and calculate the velocity at this radius for the lowest producer.

b. For each injector, calculate the number of streamlines emanating from it. The starting points for each streamline are spaced evenly on the wellbore radius.

c. Calculate the velocity vectors and the next position. Check to see if the new position is less than a half element length away from any boundary. If the boundary is not an interface, stop the streamline. If it is an interface, calculate the point where the streamline is assumed to cross the interface. This point is obtained as the point of intersection of the normal from the last streamline point to the nearest boundary segment. If the point is not near any boundary, the length and width of the streamline at this point are calculated. The point is plotted and the next position calculated and step (c) repeated for all streamlines and all wells. Subroutine COMPAT continues the generation of the streamlines after they cross into adjacent regions. The procedure followed by subroutine COMPAT is similar to that of subroutine STRM except that the starting point is on the interface boundary. The next streamline position away from the interface boundary was calculated using the procedure outlined in Section VIII.4.

In what follows, a listing of the flow charts for all the important subroutines is given.

FLOW CHART FOR MAIN PROGRAM OF ELEMENT METHOD OF STREAMLINE SIMULATION

FLOW CHART FOR SUBROUTINE INPUT

.

~

...

FLOW CHART FOR SUBROUTINE COMPAT

APPENDIX F

COMPUTER IMPLEMENTATION OF STEAMFLOOD RECOVERY CALCULATION

APPENDIX F

COMPUTER PROGRAM FOR STEAMFLOOD RECOVERY CALCULATION

The steamflood recovery program requires as part of its input data, the dimensions of the streamtubes which are obtained from the output of the streamline/streamtube program. Briefly, it performs the following operations:

- 1. Reads the input data under the following format:
 - a. initial and fixed values
 - b. fluid properties
 - c. properties of the cap and base rock
 - d. reservoir rock properties
 - e. initial and residual fluid saturations
 - f. streamtube dimensions from streamline program

2. Calculates the sweep out time for each of the permeability zones in the streamtube.

3. Calculates the recovery from each streamtube, well, and field for any time period. It prints out the results and plots them.

A listing of the flow chart follows.

FLOW CHART FOR STEAMFLOOD RECOVERY CALCULATION

APPENDIX G

RESULTS OF STREAMLINE MODELLING OF SHIELLS CANYON FIELD AS A SINGLE HOMOGENEOUS RESERVOIR ANALYSIS AS A SINGLE HOMOGENEOUS RESERVOIR

SEALED OUTER BOUNDARY

BY: D. T. NUMBERE, UNIVERSITY OF OKLAHCMA, JAN., 1982

REGION 1.0

DATA

NUMBER OF BOUNDARY ELEMENTS= 60 NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 0 NUMBER OF SOURCES AND SINKS= 13 NUMBER OF INTERFACE NODES= 0

۰.

PERMEABILITY(MD) = 140.0000

THICKNESS(FT)= 160.0000

PORO SI TY= 0.2050

SCALE: 1 INCH = 738.46FEET

POINT	X(INCH)	Y(INCH)
1	0.1000	0.1500
2	0.2500	0.2000
3	0.4000	0.2500
4	0.5500	0.2800
5	0.6500	0.3000
6	0.7000	0.3250
7	0.7500	0.3300
8	0.8000	0.3400
9	0.8500	0.3500
10	0.9000	0.4000
1 i	1.0000	0.4500
12	1.1000	0.5250
13	1 •2500	0.6000
14	1.4000	0.6500
15	1.5500	0.6800
16	1.6500	0.6900
17	1.7000	0.7000
18	1.7500	0.7100
19	1.8000	0.7200
20	1.8500	0.7250
21	1.9000	0.7300
22	1.9500	0.7350
23	2.1000	0.7450
24	2.2500	0.7500
25	2.4000	0.7500
26	2.6000	0.7400
27	2.7500	0.7300
28	2.9000	0.7250
29	3.1600	1.0000
30	3.0600	1.2500
31	2.9500	1.5500
32	2.7500	1.6500
33	2.4000	1.8200
34	2.2500	1.8000
35	2.1000	1.7500
36	2.0500	1.7450
37	2.0000	1.7250
38	1.9500	1.7100
39	1.8500	1.0900
40	1.7500	1.6100
41	1.6500	1.0100
42	1.5000	1.5500
43	1.3500	1 • 4800

THE COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS

	44	1.2500	1.4400	
	45	1.2000	1.4000	
	46	1.1500	1.3800	
	47	1.0500	1.3250	
	48	0.9500	1.2600	
	49	0.9000	1.2500	
	50	0.8500	1.2000	
	51	0.8000	1.1700	
	52	0.7500	1.1500	
	53	0.6500	1.0800	
	54	0.5500	1.0200	
	55	0.5000	0.9900	
	56	0 •4500	0.9500	
	57	0.4000	0.9200	
••••	58	0.3000	0.8500	
	59	0.1000	0.7300	
	60	0.1000	0.5000	

BOUNDARY	
CONDITIONS	

43	42	41	40	39	38	37	36	35	34	ы С	ы с 22	и () - С	0 10	28	27	26	N 51	24	23	22	21	20		18	17	ເກ	14	13	12		10,	۱۵	b ·	7	6	n 4	Þ ۱	ŋ V	س د	NODE
-		1	1	1	1	1	1		jan	، مر		- +	• ••	1				، سو		jarð.	, 14	, .)	, .			1	11	1	, ,		- 1	1		- • •		-	4 P-	• •••	CODE
0.0	0.0	0.0	0•0	0.0	0.0	0•0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0	0		0-0							PRESCRIBED VALUE

.

44	1	0.0	
45	1	0.0	
46	1	0.0	
47	1	0.0	
48	1	0.0	
49	1	0.0	
50	1	0.0	
51	1	0.0	
52	1	0.0	
53	1	0.0	
54	1	0•0	
55	1	0.0	
56	1	0.0	
57	1	0.0	
58	1	0.0	
59 [°]	1	0.0	
60	1	0.0	

COURDINATES OF SOURCES AND SINKS AND THEIR STRENGTHS

X(INCH)	Y(INCH)	RATE(BBL/D)
0.4500	0.5500	-69.1000
0.5000	0.8000	-69.1000
0.7500	0.4000	-69.1000
0.9000	1.1500	-69.1000
1.0000	0.8000	560.0000
1.2500	1.2000	-69 • 1000
1.3500	1.0000	-69.1000
1.9000	0.9500	200.0000
1.8000	1.3500	-69 • 1000
2.0500	1.5500	-69.1000
2.1500	1.2500	-69.1000
2.3500	1.0500	69.1000
2.5750	1.3000	-69.1000

THE AVERAGE RADIUS OF THE WELLS(INCH) IS= 0.500 THE CHARACTERISTIC PRESSURE(PSI) IS= 85.0000

0.4250E+00	0.4750E+00	0-53505+00	0.7000E+00	0.7750E000	0.8750E+00	0. 9250E+00	0.1000E+01	0-1175E+01	0.1225E+01	0.1425E+01	0 • 15752+01	0.1700E+01	0.1900E+01	0 • 1 975E+01	0.2075E+01	0.2175E+01	0 • 2325E+01	0.28502+01	0.3005E+01	0.3030E+01	0. 2825E+01	0.2675E+01	0.23250+01	0.2175E+01	0-1925E+01	0+1875E+01	0.1775E+01 0.1825E+01	0.1725E+01	0-1600E+01	0 • 1475E+01	0.1175E+01	0.1050E+01	0.8750E+00	0.8250E+00	0.7250E+00	0.6750E+00	0-4750E+00	0+3250E+00	0.1750E+00	X(INCH)			
0.9350E+00	0.9700E+00	0.1050E+01	0.1115E+01	0.1160E+01	0-1185E+01	0.1255E+01	0.1292E+01	0.13902401	0.1420E+01	0.1515E+01	0.1580E+01	0.1630E+01	0.1700E+01	0.1717E+01	0.1747E+01 0.1735E+01	0.1775E+01	0.1819E+01	0.1735E401	0.1400E+01	0.8625E+00 0.1125E+01	0.7275E+00	0.7350E+00	0.7500E+00	0.7475E+00	0.7325E+00 0.7400F+00	0.7275E+00	0.7225E+00	0.7050E+00	0.6850E+00	0.6650E+00	0.5625E+00	0.4875E+00	0.3750E+00	0.3450E+00	0.3275E+00	0.3125E+00	0-26502+00	0.2250E+00	0.17502+00	Y(INCH)	BOUNDARY NODES	RESULTS	
0.8569E+02	0.8610E+02	0.8648F402	0.8714E+02	0 • 8677E+02	0 • 8572E+ 02	0.8565E+02	0.8510E+02	0.8350E+02	0.8296E+02	0.8143E+02	0.8013E+02	0.7900E+02	0.7748E+02	0.7699E+02	0.7673E+02	0.7637E+02	0.7614E+02	0.7579E+02	0.7582E+02	0.7619E+02	0.7623E+02	0.7642E+02	0.7791E+02	0.7540E+02	0.8243E+02 0.8129E+02	0. 8283E+ 02	0.8315E+02	0.8370E+ 02	0.8446E+02 0.8338E+02	0.8565E+02	0.8772F+02	0.8940E+02	0.8697E+02	0.8643E+02	0.8565E+02	0 • 8556 E+ 02	0.854E+02	0.8510E+02	0.8469E+02	PRESSURE (PSI)			
0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	•••	0.0	0.0	0.0	0.0	0.0	000	0.0		0.0	000	•••	0.0	0.0	0.0	000	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0 • 0 • 7	0.0		0.0	0.0	NORMAL GRADIENT			

*******************	0.1000E+00	0.1000E+00	0.2000E+00	0.3500E+00
************	0.3250E+00	0.6150E+00	0.79002+00	0.8850E+00
*****************	0.4464E+02	0 • 4469 2+02	0.4476E+02	0• 4501 E+ D2
***********	0.0	0.0	0.0	•

-

204

NUMBER OF STREAMLINES= 3

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.5381E+03	0.4518E+02	0.2800E+02
2	0.4250E+03	0.2375E+02	0.2800E+02
3	0.6881E+03	0.7951E+02	0.2800E+02

PRODUCER NUMBER 2

NUMBER OF STREAMLINES= 2

STREAMLINE	NUMBER	TOTAL	LENGTH	AVERAGE	WIDTH	INJ.	RATE

1	0.4414E+03	0.2776E+02	0.2800E+02
2	0•3447E+03	0.1918E+02	0.2800E+02

PRODUCER NUMBER 3

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.3348E+03	0.1806E+02	0.2800E+02
2	Q+3848E+03	0.2176E+02	0.2800E+02

.

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•2697E+03	0.1351E+02	0.2800E+02
2	0.2697E+03	0 .1 488E+02	0.2800E+02

PRODUCER NUMBER 6

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.3598E+03	0.1589E+02	0.2800E+02
2	0.3381E+03	0.1426E+02	0.2800E+02

PRODUCER NUMBER 7

.

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•2947E+03	0.1269E+02	0.2800E+02
2	0.2881E+03	0.1196E+02	0.28002+02

.

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.8098E+03	0.2941E+C2	0.28002+02
2	0.7598E+03	0.2863E+02	0.2800E+02

PRODUCER NUMBER 10

NUMBER OF STREAMLINES= 5

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WICTH	INJ. RATE
1	0.1120E+04	0.3876E+02	0.2800E+02
2	0.9500E+03	0.3434E+02	0.2800E+02
З	0.5881E+03	0.1561E+02	0.1000E+02
4	0.5697E+03	0.1231E+02	0.1000E+02
5	0.5980E+03	0.1378E+02	0.1000E+02

PRODUCER NUMBER 11

NUMBER OF STREAMLINES= 4

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•2664E+03	0.6268E+01	0.1000E+02
2	0.2914E+03	0.6742E+01	0.1000E+02
3	0.3783E+03	0.8902E+01	0.1000E+02
4	0.2881E+03	0.6459E+01	0.1000E+02

.

NUMBER OF STREAMLINES= 5

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.4631E+03	0.1018E+02	0.1000E+02
2	0.3697E+03	0.8221E+01	0.1000E+02
3	0.3316E+03	0.7526E+01	0.1000E+02
4	0.3348E+03	0.7388E+01	0.1000E+02
5	0.4033E+03	0.1092E+02	0.1000E+02

PRODUCER NUMBER 13

NUMBER OF STREAMLINES = 5

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0 .7164E+0 3	0.2242E+02	0.1000E+02
2	0.9033E+03	0.3443E+02	0.1000E+02
3	0.7131E+03	0.1976E+02	0.1000E+02
4	0.5381E+03	0.1560E+02	0.1000E+02
5	0.6066E+03	0.2223E+02	0.1000E+02

APPENDIX H

RESULTS OF STEAMFLOOD PREDICTION OF SHIELLS CANYON FIELD AS A HOMOGENEOUS RESERVOIR WITH SEALED OUTER BOUNDARY

.

,

APPENDIX H

STEAMFLOOD PREDICTION OF SHIELLS CANYON(203) FIELD METHOD: STREAMLINE/STREAMTUBE METHOD USING (BEM)TECHNIQUE ANALYSIS AS A SINGLE HOMOGENOUS RESERVOIR HOUNDARY CONDITION: SEALED OUTER BOUNDARY PRUDUCTION RATES: EQUAL RATES ASSIGNED TO ALL PRODUCERS IN ENTIRE REGION

BY: D. T. NUMBERE, UNIVERSITY OF OKLAHOMA, 1982

DATA

TOTAL NUMBER OF PRODUCERS=	11
STEAM TEMPERATURE (DEG. F)=	430.0000
STEAM QUALITY=	0.7000
CONVERGENCE LIMIT=	0.0010
RESERVOIR THICKNESS (FT)=	160.0000
STEAM PRESSURE (PSI)=	344 • COOO
INITIAL RESERVOIR TEMPERATURE(DEG F)=	105.0000

	FLUID PROPER	TIES	
	WATER	DIL	STEAM
DENSITY(LB/CU FT) AT STD. TEMP.	62 • 4000	55.0000	
DENSITY(LB/CU FT) AT STEAM TEMP	. 52.3800	48.7000	0.7431
SPECIFIC HEAT(BTU/LB *F)	1.0000	0.4880	1.0000
LATENT HEAT(BTU/LB)			789.5100

PROPERTIES OF THE CAP AND BASE ROCK

DENSITY(LB/CU. FT)	149.0000
SPECIFIC HEAT(BTU/LB-*F)	0.2130
THERM. COND.(BTU/HR-FT-*F)	1.1000

210

RESERVOIR ROCK PROPERTIES

	REGION 1	PEGION 2
	0.2050	0.1000
DEN.(IB/CU FT)	165.0000	165-0000
SPEC . HEAT (BTU/LB*F)	0.2000	0.2000
PERMEABILITY (MD)	140.0000	70.0000

INITIAL FLUID SATURATIONS

	REGION 1	REGION 2
WATER	0.5500	0.5500
OIL	0.4500	0.4500
STEAM	0.0	0.0

AVERAGE RESIDUAL SATURATIONS BEHIND THE FRONT

	REGION 1	REGION 2
	میں ہیں، میں میں میں ہیں، میں کرد میں کرد	
WATER	0.5800	0.5800
OIL	0.1800	0.1800
STEAM	0.2400	0.2400

INPUT DATA FROM STREAMLINE PROGRAM

			REGIO	IN 1		RE	GION 2	
WELL NO.	S/L NO.	CODE	LENGTH	WIDTH	RATE	LENGTH	WIDTH	RATE
1	1.	1	538.10	45.18	28.00	0.0	0.0	0.0
1	2	1	425.00	23.75	28.00	0.0	0.0	0.0
1	3	1	685.10	79.51	28.00	0.0	0.0	0.0
2	1	1	441.40	27.76	28.00	0.0	0.0	0.0
2	2	1	344.70	19.18	28.00	0.0	0.0	0.0
З	1	1	334.80	18.06	28.00	0.0	0.0	0.0
3	2	1	384.80	21.76	28.00	0.0	0.0	0.0
4	1	1	269.70	13.51	28.00	0.0	0.0	0.0
4	2	1	269.70	14.88	28.00	0.0	0.0	0.0
5	1	1	359.80	15.89	28.00	0.0	0.0	0.0
5	2	1	338.10	14.26	28.00	0.0	0.0	0.0
6	1	1	294.70	12.69	28.00	0.0	0.0	0.0
6	2	1	288.10	11.96	28.00	0.0	0.0	0.0
7	1	1	809.80	29.41	28.00	0.0	0.0	0.0
7	2	1	759.80	28.63	28.00	0.0	0.0	0.0
8	1	1	112.00	38.76	28.00	0.0	0.0	0.0
8	2	1	950.00	34.34	28.00	0.0	0.0	0.0
8	З	1	588.10	15.61	10.00	0.0	0.0	0.0
8	4	1	569.70	12.31	10.00	0.0	0.0	0.0
8	5	1	598.00	13.78	10.00	0.0	0.0	0.0
9	1	1	266.40	6.27	10.00	0.0	0.0	0.0
9	2	1	291.40	6.74	10.00	0.0	0.0	0.0
9	3	1	378.30	8.90	10.00	0.0	0.0	0.0
9	4	1	288.10	6.46	10.00	0.0	0.0	0.0
10	1	1	463.10	10.18	10.00	0.0	0.0	0.0
10	2	1	369.70	8.22	10.00	0.0	0.0	0.0
10	3	1	331.60	7.53	10.00	0.0	0.0	0.0
10	4	1	334.80	7.39	10.00	0.0	0.0	0.0
10	5	1	403.30	10.92	10.00	0.0	0.0	0.0
11	1	1	716.40	22.42	10.00	0.0	0.0	0.0
11	2	1	903.30	34.43	10.00	0.0	0.0	0.0
11	3	1	713.10	19.76	10.00	0.0	0.0	0.0
11	4	1	538.10	15.60	10.00	0.0	0.0	0.0
11	5	1	606.60	22.23	10.00	0.0	0.0	0.0

.

CALCULATED BREAKTHROUGH TIMES(HOURS) FOR EACH STREAMTUBE

PROD.	ND. STREAMLINE ND.	CODE	ENDTIME(1)	ENDTIME(2)
1	1	1	15868.5625	0.0
1	2	1	6144.6992	0.0
1	3	1	39442.2148	0.0
2	1	1	7555.3711	0.0
2	2	1	3929.7900	0.0
З	1	1	3578.2664	0.0
З	2	1	5040.6680	0.0
4	1	1	2110.3652	0.0
4	2	1	2332.9001	0.0
5	1	1	3374.3901	0.0
5	2	1	2823.9495	0.0
6	1	1	2163+1919	0.0
6	2	1	1991.6033	0.0
7	1	1	15514.1211	0.0
7	2	1	14048.2070	0.0
8	1	1	2531.5093	0.0
8	2	1	21971.1758	0.0
8	3	1	16871.8437	0.0
8	4	1	12564.0469	0.0
8	5	1	14984.0547	0.0
9	1	1	2734.8716	0.0
9	2	1	3240.8657	0.0
9	З	1	5716.1836	0.0
9	4	1	3062.2073	0.0
10	1	1	8182.2500	0.0
10	2	1	5127.8672	0.0
10	3	1	4165.2852	0.0
10	4	1	4126.5156	0.0
10	5	1	7606.9062	0.0
11	1	1	31527.6133	0.0
11	2	1	67928.6875	0.0
11	3	1	27188.5703	0.0
11	4	1	15291.1250	0.0
11	5	1	25876.1133	0.0

REAL TIME(HCURS)= 6000.0000

DIMENSIONLESS TIME= 0.0325

WELL	STR/L	NO. OF	REGIDNS	RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1		•	0	15575+05		
1	2	1	0	1557E+05		
1	2	1	0	15575405		
1	3	1	0	•1557E+05	0.46705105	
2				15575.05	U • 46 7 0E÷ 05	
2	1	1	0	·1557E+05		
2	2	1	0	•1043E+05		
-			-		0.25998+05	
3	1	1	0	•9537E+04		
3	2	1	0	•1321E+05		
	-				0•2274E+05	
4	1	1	0	•5747E+04		
4	2	1	0	•6330E+04		
					0•1208E+05	
5	1	1	0	•9017E+04		
5	2	1	0	•7604E+04		
					0•1662E+05	
6	1	1	0	•5898E+04		
6	2	1	0	•5435E+04		
					0.1133E+05	
7	1	1	0	.1557E+05		
7	2	1	0	.1557E+05		
					0.3113E+05	
8	1	1	0	.6847E+04		
8	2	1	0	.1557E+05		
8	3	1	0	.5560E+04		
8	4	1	0	•5560E+04		
8	5	1	0	•5560E+04		
					0.3909E+05	
9	1	1	0	•2634E+04		
ġ	2	1	0	-3099E+04		
ġ	3	-	0	•5311E+04		
ģ	4	-	0	-2935E+04		
-	-	-	Ŭ	12/002/04	0.1398F+05	
10	1	1	n	•5560E+04		
10	•	1	0	-4794E+04		
10	-	1	0	.30365404		
10	<u>ح</u>	1	0	.39015+04		
10	5	1	0	.55605404		
Ĩ	5	•	0	+ JJUVE TV 4	0.27765+05	
11	1	1	^	-55605104	0.20 /027 00	
11	2	1	. 0	• JJOUETU4		
11	~ 7		0	• 330UL +U4		
	5	1	0	• 330UE +U4		
11	4 E	· 1	0	• 330 UE +04		
11	5	T	0	+330UE+04	A A7047.45	
					U . 21 GUL+ UD	

REAL TIME(HCURS)= 12000.0000

DIMENSIONLESS TIME= 0.0650

WELL	STR/L	NO. OF	REGIONS RECUVERY	WELL TOTAL	RESERVOIR	TOTAL
			0.000000.000			
1	1	1	0.29692+05			
1	2	1	0.15928+05			
1	3	1	0.29691+05	0.75305405		
~				0.7530E+05		
2	1	1	0.19332+05			
2	2	1	0.1043E+05	0.003554.05		
7		1	0-05375+04	0.29/32705		
3	2	1	0.13215+05			
2	2	1	0013212703	0-22745+05		
4	1	1	0.57475+04	0.22,42,03		
4	•	1	0.63305+04			
•	-	•		0-1208F+05		
5	1	1	0.9017F+04			
5	2	- 1	0.7604F+04			
•	-	•		0-1662E+05		
6	1	1	0.5898F+04			
6	2	- 1	0.54355+04			
-	—	-		0.1133E+05		
7	1	1	0.2969E+05			
7	2	1	0.2969E+05			
				0°5938E+02		
8	1	1	0•6847E+04			
8	2	1	0.2969E+05			
8	З	1	0.1060E+05			
8	4	1	0.1060E+05			
8	5	1	0.1060E+05			
				0.6835E+05		
9	1	1	0•2634E+04			
9	2	1	0.3099E+04			
9	3	1	0•5311E+04			
ÿ	4	1	0•2935E+04			
				0.1398E+05		
10	1	1	0•7436E+04			
10	2	1	0.4794E+04			
10	3	1	0•3936E+04			
10	4	1	0•3901E+04			
10	5	1	0•6946E+04			
				0.2701E+05		
11	1	1	0.1060E+05			
11	2	1	0.1060E+05			
11	3	1	0.1060E+05			
11	4	1	0.1060E+05			
11	5	1	0.1060E+05			
				0.53026+05		

REAL TIME(HCURS) = 18000.0000

DIMENSIONLESS TIME= 0.0975

WELL	STR/L	ND. UF REGIO	INS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1	0.3834E+05		
1	2	1	0.1592E+05		
1	З	1	0.4299E+05		
				0.9726E+05	
2	1	1	0.1933E+05		
2	2	1	0.1043E+05		
_	_	-		0.2975F+05	
3	1	1	0.9537E+04		
Ĵ	2	1	0.1321E+05		
•	-	-		0.2274F+05	
4	1	1	0.5747E+04		
4	2	-	0.6330E+04		
•	-	-		0.1208E+05	
5	1	1	0.9017F+04	0012002.00	
5	2	-	0.76045+04		
•	-	•	0010012.01	0+1662E+05	
6	1	1	0.58985+04	0010022000	
6	2	1	0.5435E+04		
U	-	•	0.040000.004	0-11336+05	
7	ĩ	1	0.37565+05	0011222403	
7	2	•	0.3431E+05		
•	-	•	0104012000	0.71875+05	
н	1	1	0.6847F+04	0011072103	
8	2	1	0.42995+05		
a		-	0.14485+05		
я	<u>с</u>	1	0.1106E+05		
a a	5	• 1	0.13005+05		
0	5	1	0.13005.403	0.88365405	
a	1	1	0-26345+04	0.00362+03	
9	•	1	0.30005+04		
9 C	2	1	0.53115404		
9	5	1	0.20355404		
9	-	1	0029032704	0.13095405	
10	1	1	0.74365+04	VIIJSCETUJ	
10	•	1	0 47045404		
10	2	1	0.30365+04		
10	3	1	0.39302404		
10	4	1	0.59012+04		
τu	5	L	. V .0940ETV4	0-27015+05	
11	1	1	0.15755105	U CI UICT UD	
11	1	1	0.15355405		
1 1	~	1	0 1675C +05		
11	د 4	1	0 13045:05		
11	4 E	1	0 15755 4C+UD		
11	p	L	0+10305+00		
				U . (400E+VD	

0.4657E+06

REAL TIME(HOURS)= 24000.0000

DIMENSIONLESS TIME= 0.1300

WELL	STR/L	NŪ•	OF	REGIONS	RECOVERY	WELL TOTAL	RESERVOIR	TOTAL
•				0	70745 105			
1	1		1	0	• JOJ4E +US			
1	~		1	0	•1592E+05			
Ŧ	3		1	U	•5569E+05			
-				-		0.10996+06		
2	1		1	0	•1933E+05			
2	2		1	0	•1043E+05			
				_		0.2975E+05		
3	1		1	0	•9537E+04			
3	2		1	0	•1321E+05			
						0•2274E+05		
4	1		1	0	•5747E+04			
4	2		1	0	•6330E+04			
						0.1208E+05		
5	1		1	0	•9017E+04			
5	2		1	0	•7604E+04			
						0.1662E+05		
6	1		1	0	•5898E+04			
6	2		1	0	•5435E+04			
						0.1133E+05		
7	1		1	0	•3756E+05			
7	2		1	0	•3431E+05			
						0.7187E+05		
8	1		1	0	•6847E+04			
8	2		1	0	•5145E+05			
8	3		1	0	•1448E+05			
8	4		1	0	·1106E+05			
8	5		1	0	.1300E+05			
						0.9684E+05		
9	1		1	0	2634E+04			
9	2		1	0	.3099E+04			
9	3		1	0.	•5311E+04			
ģ	4		1	0	2935E+04			
-	·		•	·		0.1398F+05		
10	1		1	0.	-7436F+04			
10	2		1	0	4794E+04			
10	3		1	0	3936E+04			
10	4		1	0.	39015+04			
10	5		1	0	-60462+04			
10	3		+	Ū		0.27015+05		
11	1		1	0.	1989F+05	ASCIATEIA2 .		
11	•		1		.10005175			
4.4	~ ~		1	0	1000E±05			
11	5		1	0.	•1309E7U3			
1 1			1	0.	10805405			
• •	5		Ŧ	0.	1707E103	0 00705+05		
						V #7217ETU3		

0.5050E+06

217

REAL TIME(HOURS) = 30000.0000

DIMENSIONLESS TIME= 0.1625

WELL	STR/L	NU. OF REGIONS	RECUVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1 0	•3834E+05		
1	2	1 0	+1592E+05		
1	3	1 0	•6789E+05		
				0.1222E+06	
2	1	1 0	•1933E+05		
2	2	1 0	.1043E+05		
				0.2975E+05	
З	1	1 0	•9537E+04		
З	2	1 0	.1321E+05		
				0.2274E+05	
4	1	1 0	•5747E+04		
4	2	1 0	•6330E+04		
				0.1208E+05	
5	1	1 0	•9017E+04		
5	2	1 C	•7604E+04		
				0.1662E+05	
6	1	1 0	•5898E+04		
б	2	1 0	•5435E+04		
				0.1133E+05	
7	1	1 0	•3756E+05		
7	2	1 0	.3431E+05		
				0.7187E+05	
8	1	1 0	•6847E+04		
8	2	1 0	•5145E+05		
8	З	1 0	•1448E+05		
8	4	1 0	•1106E+05		
8	5	1 0	•1300E+05		
				0.9684E+05	
9	1	1 0	.2634E+04		
9	2	1 0	•3099E+04		
9	3	1 0	•5311E+04		
9	4	1 0	•2935E+04		
				0•1398E+05	
10	1	1 0	•7436E+04		
10	2	1 0	•4794E+04		
10	3	1 0	•3936E+04		
10	4	1 0	•3901E+04		
10	5	1 0	•6946E+04		
				0.2701E+05	
11	1	1 0	•2425E+05		
11	2	1 0	•2425E+05		
11	3	1 0	•2222E+05		
11	4	1 0	•1324E+05		
11	5	1 0	•2127E+05		
				0.1052E+06	

0.5296E+06

218

PREDICTED RECOVERY

TIME (DAYS)	RECOVERY(BBLS)
62.5000	0 . 1697E+05
125.0000	0.3120E+05
187.5000	0.40790+05
250.0000	0.4830E+05
312.5000	0.5455E+05
375.0000	0.5967E+05
437.5000	0.6456E+05
500.0000	0.69382+05
562.5000	0.7399E+05
625.0000	0.7808E+05
687.5000	0.8089E+05
750.0000	0.8293E+05
812.5000	0.84502+05
875.0000	0.86852+05
937.5000	0.8858E+05
1000.0000	0.8993E+05
1062 .50 00	0.91270+05
1125.0000	0.9245E+05
1187.5000	0.93406+05
1250.0000	0.94326+05

219

e 1

APPENDIX I

RESULTS OF STREAMLINE MODELLING OF SHIELLS CANYON FIELD AS A HOMOGENEOUS RESERVOIR HAVING A PART OF THE BOUNDARY AT CONSTANT PRESSURE WHILE THE REMAINDER IS SEALED BOUNDARY ELEMENT MODELLING OF SHIELLS CANYON (203) FIELD

ANALYSIS AS A SINGLE HOMOGENEOUS RESERVOIR

PART OF THE BOUNDARY AT CONSTANT PRESSURE, THE REMAINDER SEALED

BY: D. T. NUMBERE, UN IVERSITY OF OKLAHOMA, JAN., 1982

REGION 1.0

DATA

NUMBER OF EOUNDARY ELEMENTS= 60 NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 0 NUMBER OF SOURCES AND SINKS= 13 NUMBER OF INTERFACE NODES= 0 PERMEABILITY(MD)= 140.0000

•••

THICKNESS(FT) = 160.0000

PORUS ITY = 0.2050

SCALE: 1 INCH = 738.46FEET

1.4800	1.3500	4 i
1.5500	1-5000	42
1.6100	1.6500	41
1.6500	1.7500	40
1.6900	1.8500	39
1.7100	1.9500	38
1.7250	2.0000	37
1.7450	2.0500	36
1.7500	2 •1000	35
1.8000	2.2500	34
1.8200	2.4000	یں ا
1.6500	2.7500	32
1.5500	2 •9500	31
1.2500	3.0600	10 0
1.0000	3 • 1 600	29
0.7250	2.9000	28
0.7300	2.7500	27
0.7400	2.6000	26
0.7500	2 •4 000	25 5
0.7500	2.2500	24
0.7450	2.1000	23
0.7350	1.9500	22
0.7300	0006.1	21
0.7250	1.8500	20
0.7200	1.8000	19
0.7100	1.7500	18
0.7000	1.7000	17
0.6900	1.6500	16
0.6800	1.5500	15
0.6500	1 • 4000	14
0.6000	1.2500	13
0.5250	1 • 1000	12
0.4500	1.0000	11
0.4000	0006*0	10
0.3500	0.8500	9
0.3400	0008.0	8
0.3300	0.7500	7
0.3250	0.7000	6
0.3000	0.6500	თ
0.2800	0.5500	4
0.2500	0-4000	ω
0.2000	0.2500	N
0.1500	0.1000	1
Y(INCH)	X(INCH)	PCINT

THE COURDINATES OF THE EXTREME POINTS OF THE EQUNDARY ELEMENTS

44	1.2500	1.4400
45	1.2000	1.4000
46	1.1500	1.3800
47	1.0500	1.3250
48	0.9500	1.2600
49	0.9000	1.2500
50	0.8500	1.2000
51	0.8000	1.1700
52	0.7500	1.1500
53	0.6500	1.0800
54	0.5500	1.0200
55	0.5000	0.9900
56	C. 4500	0.9500
57	0.4000	0.9200
58	0.3000	0.8500
59	0.1000	0.7300
60	0.1000	0.5000

BOUNDARY CONDITIONS

NODE	CODE	PRESCRIBED VALUE
1	1	0.0
2	1	0.0
3	1	0.0
4	1	0.0
5	1	0.0
6	1	0.0
7	1	0.0
8	1	0.0
9	1	0.0
10	1	0.0
11	1	0.0
12	1	0.0
13	1	0.0
14	1	0.0
15	1	0.0
16	1	0.0
17	1	0.0
18	1	0.0
19	1	0.0
20	1	0.0
21	1	0.0
22	1	0.0
23	1	0.0
24	1	0.0
25	1	0.0
26	1	0.0
27	1	0.0
28	1	0.0
29	1	0.0
30	1	0.0
31	1	0.0
32	1	0.0
33	1	0.0
34	1	0.0
35	1	0.0
36	1	0.0
37	1	0.0
38	1	0.0
39	1	0.0
40	1	0.0
41	1	0.0
42	1	0.0
43	1	0.0

44	1	0.0
45	1	0.0
46	1	0.0
47	1	0.0
48	1	0.0
49	1	0.0
50	1	0.0
51	1	0.0
52	1	0.0
53	1	0.0
54	1	0.0
55	1	0.0
56	1	0.0
57	1	0.0
58	1	0.0
59	0	0.8500000E+02
60	0	0.8500000E+02

COORDINATES OF SOURCES AND SINKS AND THEIR STRENGTHS

X(INCH)	Y(INCH)	RATE(BBL/D)
0.4500	0.5500	-69 • 1000
0.5000	0.8000	-69.1000
0.7500	0.4000	-69.1000
0.9000	1.1500	-69 • 1000
1.0000	0.8000	560.0000
1.2500	1.2000	-69.1000
1.3500	1.0000	-69.1000
1.9000	0.9500	200.0000
1.8000	1.3500	-69.1000
2.0500	1.5500	-69.1000
2.1500	1.2500	-69.1000
2.3500	1.0500	-69.1000
2.5750	1.3000	-69.1000

•

THE AVERAGE RADIUS OF THE WELLS(INCH) IS= 0.500 THE CHARACTERISTIC PRESSURE(PSI) IS= 85.0000

225

RESULTS	

BOUNDARY NODES

50E +00 0.1750E +00 0.4445E +02 0.0 50E +00 0.23550E +00 0.4475E +02 0.0 50E +00 0.3275E +00 0.4520E +02 0.0 50E +00 0.3275E +00 0.4520E +02 0.0 50E +00 0.3275E +00 0.4520E +02 0.0 50E +00 0.3350E +00 0.4520E +02 0.0 50E +00 0.3450E +00 0.4520E +00 0.4520E +02 0.0 50E +00 0.3450E +00 0.4520E +00 0.4520E +02 0.0 50E +01 0.3450E +00 0.4520E +00 0.4520E +02 0.0 50E +01 0.3450E +00 0.4520E +00 0.4520E +02 0.0 50E +01 0.4500E +00 0.450E +02 0.0 0.0 50E +01 0.4500E +00 0.4400E +02 0.0 0.0 0.0 50E +01 0.4500E +02 0.400E +02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(NCH)	Y(INCH)	PRESSURE (PSI)	NORMAL GRADIENT
F + 00 0.2556F + 00 0.4772F + 02 0.0 $F + 00$ 0.2256F + 00 0.4472F + 02 0.0 $F + 00$ 0.3275E + 00 0.4517F + 02 0.0 $F + 00$ 0.3275E + 00 0.4527F + 02 0.0 $F + 00$ 0.3275E + 00 0.4557F + 02 0.0 $F + 00$ 0.3356F + 00 0.4557F + 02 0.0 $F + 00$ 0.3756F + 00 0.4567F + 02 0.0 $F + 00$ 0.4775F + 02 0.0 0.4697F + 02 0.0 $F + 01$ 0.4775F + 02 0.4937F + 02 0.0 0.0 $F + 01$ 0.4755F + 00 0.4737F + 02 0.0 0.0 $F + 01$ 0.4567F + 02 0.0 0.4737F + 02 0.0 $F + 01$ 0.4737F + 02 0.0 0.4737F + 02 0.0 $F + 01$ 0.7735F + 00 0.4237F + 02 0.0 0.0 $F + 01$ 0.7735F + 00 0.4237F + 02 0.0 0.0 $F + 01$ 0.7735F + 02 0.0 0.0 0.0	E+00	0.1750E+00	0•4448E+02	a • o
F = 00000000000000000000000000000000000	E+ 00	0.2250E+00	0 4472E+ 02	0
6400 0.31256.00 0.42576.02 0.0 6400 0.31256.00 0.43576.02 0.0 6401 0.31256.00 0.43576.02 0.0 6401 0.31256.00 0.43576.02 0.0 6401 0.31256.00 0.45516.402 0.0 6401 0.45556.00 0.45576.402 0.0 6401 0.45556.00 0.45576.402 0.0 6401 0.45556.00 0.45576.402 0.0 6401 0.45556.00 0.45576.402 0.0 6401 0.55556.00 0.45576.402 0.0 6401 0.45576.402 0.45576.402 0.0 6401 0.45576.403 0.45566.402 0.0 6401 0.45566.403 0.45566.402 0.0 6401 0.75566.403 0.45566.402 0.0 6401 0.77566.403 0.45566.402 0.0 6401 0.77566.403 0.45566.402 0.0 6401 0.775756.403 0.45566.402 0.45566.402	E + 00	0.2050E+00 0.2000E400	0 - 442754 UZ D - 45105402	
FF00 0.43735E+00 0.43621E+02 0.0 FF01 0.4356E+00 0.4462F+02 0.0 FF01 0.4356E+00 0.4463E+02 0.0 FF01 0.4356E+00 0.4463E+02 0.0 FF01 0.4356E+00 0.4403E+02 0.0 FF01 0.6556E+00 0.4403E+02 0.0 FF01 0.6556E+00 0.4403E+02 0.0 FF01 0.6556E+00 0.4423F+02 0.0 FF01 0.6556E+00 0.4423F+02 0.0 FF01 0.6556E+00 0.423F+02 0.0 FF01 0.7356E+00 0.7356F+02 0.0 FF01 <td0< td=""><td>00+U</td><td>0.31256+00</td><td>0.4520E+02</td><td>0</td></td0<>	00+U	0.31256+00	0.4520E+02	0
-0.0 $0.4551 E + 0.2$ 0.0 $E + 0.0$ $0.4551 E + 0.2$ 0.0 $E + 0.0$ $0.4575 E + 0.02$ 0.0 $E + 0.0$ $0.4575 E + 0.2$ 0.0 $E + 0.0$ $0.4575 E + 0.2$ 0.0 $E + 0.0$ $0.755 E + 0.02$ 0.0 $E + 0.0$ $0.7725 E + 0.02$ 0.0 $E + 0.0$ $0.7727 E + 0.02$ 0.0 $E + 0.0$ $0.7727 E + 0.02$ 0.0 $E + 0.0$ $0.7727 E + 0.02$ 0.0 $E + 0.0$ $0.7737 E + 0.2$	E + 00	0.3275E+00	0.4527E+02	0*0
	00+u	0.3350E+00	0.4551E+02	0.0
E+01 0.4735E+00 0.4733E+02 0.0 E+01 0.6250E+00 0.4733E+02 0.0 E+01 0.6250E+00 0.4933E+02 0.0 E+01 0.6550E+00 0.4333E+02 0.0 E+01 0.6550E+00 0.4333E+02 0.0 E+01 0.6550E+00 0.4333E+02 0.0 E+01 0.7325E+00 0.4333E+02 0.0 E+01 0.77275E+00 0.4335E+02 0.0 E+01 0.77275E+00 0.4335E+02 0.0 E+01 0.7737E+02 0.4305E+02 0.0 E+01 0.7737E+00 0.4305E+02 0.0 E+01 0.7737E+00 0.4305E+02 0.0 E+01 0.7735E+00 0.4305E+02 0.0 E+01 0.7735E+01 0.7355E+02 0.0 E+01 0.7735E+01 0.7355E+02 0.0 E+01 0.7735E+01 0.7355E+02 0.0 E+01 0.7735E+01 0.7355E+02 0.0 E+01	E + 00	0.3750E400	0.444055402	
1 + 61 $0 + 4875E + 02$ $0 + 623E + 02$ $0 + 0$ $1 + 01$ $0 - 6556E + 00$ $0 + 4237E + 02$ $0 + 0$ $1 + 01$ $0 - 6556E + 00$ $0 + 4237E + 02$ $0 + 0$ $1 + 01$ $0 - 6556E + 00$ $0 - 4734E + 02$ $0 + 0$ $1 + 01$ $0 - 6556E + 00$ $0 - 4366E + 02$ $0 - 0$ $1 + 01$ $0 - 7325E + 02$ $0 - 0$ $0 - 0$ $1 + 01$ $0 - 7325E + 00$ $0 - 4366E + 02$ $0 - 0$ $1 + 01$ $0 - 7225E + 00$ $0 - 4246 + 02$ $0 - 0$ $1 + 01$ $0 - 7225E + 00$ $0 - 4246 + 02$ $0 - 0$ $1 + 01$ $0 - 7235E + 00$ $0 - 4246 + 02$ $0 - 0$ $1 + 01$ $0 - 7235E + 00$ $0 - 7356 + 102$ $0 - 0$ $1 + 01$ $0 - 7235E + 00$ $0 - 7356 + 102$ $0 - 0$ $1 + 01$ $0 - 7356 + 102$ $0 - 0$ $0 - 0$ $1 + 01$ $0 - 7356 + 102$ $0 - 0$ $0 - 3561 E + 02$ $0 - 0$ $1 + 01$ $0 - 73756 + 102$ $0 - 0$ <th< td=""><td></td><td>0.4250E+00</td><td>0+4793 E+02</td><td>0.0</td></th<>		0.4250E+00	0+4793 E+02	0.0
E + 01 0.56255 + 00 0.4928 + 02 0.0 E + 01 0.6505 + 00 0.4928 + 02 0.0 E + 01 0.6505 + 00 0.4325 + 02 0.0 E + 01 0.6505 + 00 0.4325 + 02 0.0 E + 01 0.7150 + 00 0.4335 + 02 0.0 E + 01 0.7155 + 00 0.4335 + 02 0.0 E + 01 0.7755 + 00 0.4335 + 02 0.0 E + 01 0.7755 + 00 0.4234 + 02 0.0 E + 01 0.7755 + 00 0.4234 + 02 0.0 E + 01 0.7755 + 00 0.4234 + 02 0.0 E + 01 0.7456 + 02 0.4355 + 02 0.0 E + 01 0.7755 + 01 0.7355 + 02 0.0 E + 01 0.7755 + 01 0.7555 + 02 0.0 E + 01 0.7755 + 01 0.7555 + 02 0.0 E + 01 0.77556 + 01 0.7555 + 02 0.0 E + 01 0.7175 + 01 0.7555 + 02 0.0 E + 01 0.17555 + 01 0.7555 + 02 <td>E+01</td> <td>0.4875E+00</td> <td>0• 4903E+ 02</td> <td>0*0</td>	E+01	0.4875E+00	0• 4903E+ 02	0*0
E+01 0.0650E+00 0.4575E+02 0.00 E+01 0.6650E+00 0.4305E+02 0.00 E+01 0.7150E+00 0.4305E+02 0.00 E+01 0.7150E+00 0.4305E+02 0.00 E+01 0.7755E+00 0.4305E+02 0.00 E+01 0.7755E+00 0.4277E+02 0.00 E+01 0.7755E+00 0.42775E+02 0.00 E+01 0.7755E+00 0.42775E+02 0.00 E+01 0.7755E+00 0.42775E+02 0.00 E+01 0.77556+00 0.42775E+02 0.00 E+01 0.77556+00 0.75556+02 0.00 E+01 0.77556+00 0.75556+02 0.00 E+01 0.77556+01 0.75556+02 0.00 E+01 0.77556+01 0.75556+02 0.00 E+01 0.77556+01 0.77556+02 0.00 E+01 0.17556+01 0.77556+02 0.00 E+01 0.17556+01 0.77556+02 0.00	E+01	0.5625E+00	0.4923E+02	0.0
E Occusion Oc		0.64505400	0 4 4 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 4 5	
E+01 0.65950E+00 0.4350E+02 0.0 E+01 0.7755E+00 0.4335E+02 0.0 E+01 0.77255E+00 0.4335E+02 0.0 E+01 0.77255E+00 0.4335E+02 0.0 E+01 0.77355E+00 0.4234E+02 0.0 E+01 0.77405E+00 0.4234E+02 0.0 E+01 0.77355E+00 0.4234E+02 0.0 E+01 0.77355E+00 0.4234E+02 0.0 E+01 0.77355E+00 0.37555E+02 0.0 E+01 0.77355E+00 0.37555E+02 0.0 E+01 0.77355E+01 0.35555 0.0 E+01 0.11000000 0.35561E+02 0.0 E+01 0.1101000000 0.35561E+02 0.0 E+01 0.1101000000 0.35561E+02 0.0 E+01 0.110100000 0.35561E+02 0.0 E+01 0.110100000 0.35561E+02 0.0 E+01 0.110100000 0.35561E+02 0.0	E+01	0.6850E+00	0 4408E+02	0.0
E+01 $0.77656+00$ $0.43325+02$ 0.0 E+01 $0.77756+00$ $0.43355+02$ 0.0 E+01 $0.77256+00$ $0.42776+02$ 0.0 E+01 $0.77256+00$ $0.42566+02$ 0.0 E+01 $0.77506+00$ $0.43566+02$ 0.0 E+01 $0.77506+00$ $0.43566+02$ 0.0 E+01 $0.77506+00$ $0.43566+02$ 0.0 E+01 $0.77506+00$ $0.35566+02$ 0.0 E+01 $0.77506+00$ $0.35566+02$ 0.0 E+01 $0.77556+00$ $0.35566+02$ 0.0 E+01 $0.173560+00$ $0.35566+02$ 0.0 E+01 $0.14066+01$ $0.35566+02$ 0.0 E+01 $0.117356+01$ $0.35566+02$ 0.0 E+01 $0.117366+01$ $0.37766+02$ 0.0 E+01 $0.117366+01$ $0.35566+02$ 0.0 E+01 $0.117366+01$ $0.35566+02$ 0.0 E+01 $0.117366+01$ $0.35566+02$ 0.0 E+01 $0.117366+01$ $0.15766+02$ 0.0 E+01 $0.117366+01$ $0.17566+02$ 0.0 E+01 $0.117366+01$ $0.125266+02$ 0.0 E+01 $0.117366+01$ $0.125266+02$ 0.0 E+01 $0.125266+01$ $0.12566+02$ 0.0 </td <td>E+01</td> <td>0.6950E+00</td> <td>0. 4360E+ 02</td> <td>0•0</td>	E+01	0.6950E+00	0. 4360E+ 02	0•0
100 $1255E+00$ $0.4277E+002$ 0.0 $2+01$ $0.7725E+000$ $0.4277E+022$ 0.0 $2+01$ $0.7727E+000$ $0.4277E+022$ 0.0 $2+01$ $0.7727E+000$ $0.4277E+022$ 0.0 $2+01$ $0.7750E+000$ $0.409E+022$ 0.0 $2+01$ $0.7750E+000$ $0.3757E+022$ 0.0 $2+01$ $0.7750E+000$ $0.3757E+022$ 0.0 $2+01$ $0.7750E+000$ $0.3557E+022$ 0.0 $2+01$ $0.7750E+010$ $0.7355E+022$ 0.0 $2+01$ $0.77275E+010$ $0.3557E+022$ 0.0 $2+01$ $0.17275E+010$ $0.3554E+022$ 0.0 $2+01$ $0.1777E+011$ $0.3554E+022$ 0.0 $2+01$ $0.1777E+011$ $0.3554E+022$ 0.0 $2+01$ $0.1777E+011$ $0.3555E+022$ 0.0 $2+011$ $0.1777E+012$ $0.1777E+022$ 0.0 $2+011$ $0.1777E+012$ $0.1777E+022$ 0.0 </td <td>E+01</td> <td>0.7050E+00</td> <td>0.4332E+02</td> <td>0.0</td>	E+01	0.7050E+00	0.4332E+02	0.0
E+01 0.7225E+00 0.4244E+02 0.0 E+01 0.7735E+00 0.4244E+02 0.0 E+01 0.7735E+00 0.4244E+02 0.0 E+01 0.7735E+00 0.4244E+02 0.0 E+01 0.7735E+00 0.4244E+02 0.0 E+01 0.7755E+00 0.4244E+02 0.0 E+01 0.7755E+00 0.4244E+02 0.0 0.7556E+00 0.7556E+02 0.0 0.0 E+01 0.77556E+00 0.4244E+02 0.0 0.1255E+01 0.7556E+02 0.0 0.0 E+01 0.11255E+01 0.3541E+02 0.0 0.1755E+01 0.1755E+02 0.0 0.0 E+01 0.1775E+01 0.35541E+02 0.0 0.1775E+01 0.1775E+01 0.35541E+02 0.0 0.1775E+01 0.1775E+01 0.1775E+02 0.0 0.1775E+01 0.1775E+01 0.3554E+02 0.0 0.1775E+01 0.1775E+02 0.0 0.0 <td< td=""><td>E+01</td><td>0.7150E+00</td><td>0 • 4 305 E + 02</td><td>0.0</td></td<>	E+01	0.7150E+00	0 • 4 305 E + 02	0.0
2 0.173566+00 0.40906+02 0.0 2 0.73066+00 0.40906+02 0.0 2 0.74066+00 0.37526402 0.0 2 0.75066+00 0.37526402 0.0 2 0.75066+00 0.37526402 0.0 2 0.75566+00 0.37526402 0.0 2 0.75566+00 0.35636+02 0.0 0.77566+00 0.355364+02 0.0 0.0 0.75766+00 0.355364+02 0.0 0.0 0.73566+01 0.73566+02 0.256366 0.0 0.71756+01 0.15766+01 0.356364+02 0.0 0.11756+01 0.17556+01 0.355616+02 0.0 0.11756+01 0.17756+02 0.0 0.0 0.11756+01 0.17756+02 0.0 0.0 0.11756+01 0.1776+02 0.0 0.0 0.11756+01 0.1776+02 0.0 0.0 0.11756+01 0.15766+02 0.0 0.0 0.11756+01 <t< td=""><td>10+01</td><td>0.7225E+00</td><td>0•4277E+02</td><td></td></t<>	10+01	0.7225E+00	0•4277E+02	
E+01 0.74056+00 0.39016+02 0.0 E+01 0.745600 0.39016+02 0.0 E+01 0.745600 0.35616+02 0.0 E+01 0.775006+00 0.35616+02 0.0 E+01 0.775006+00 0.35616+02 0.0 E+01 0.77506+00 0.35616+02 0.0 0.77506+00 0.35616+02 0.0 0.0 0.77506+01 0.35616+02 0.0 0.0 0.1256+01 0.1256+01 0.35616+02 0.0 0.11256+01 0.11256+01 0.35616+02 0.0 0.11256+01 0.11256+01 0.35566+02 0.0 0.111256+01 0.11776+01 0.35566+02 0.0 0.117756+01 0.17756+02 0.0 0.0 0.117756+01 0.17756+02 0.0 0.0 0.117756+01 0.17756+02 0.0 0.0 0.117756+01 0.17756+02 0.0 0.0 0.117756+01 0.17756+02 0.0 0.0 <t< td=""><td></td><td>0.73256400</td><td>0 4 204 6 4 02</td><td></td></t<>		0.73256400	0 4 204 6 4 02	
E+01 0.74755+00 0.35015+02 0.0 E+01 0.75005+00 0.35525+02 0.0 E+01 0.75505+00 0.35555+02 0.0 E+01 0.77555+00 0.35565+02 0.0 E+01 0.77555+00 0.35565+02 0.0 E+01 0.112555+01 0.35565+02 0.0 E+01 0.110055+01 0.35565+02 0.0 E+01 0.110055+01 0.35565+02 0.0 0.110055+01 0.35565+02 0.0 0.0 E+01 0.110105+01 0.35595+02 0.0 E+01 0.117555+01 0.35595+02 0.0 E+01 0.117555+01 0.35595+02 0.0 E+01 0.11775+01 0.35595+02 0.0 E+01 0.11775+01 0.35595+02 0.0 E+01 0.11775+01 0.35595+02 0.0 E+01 0.17755+02 0.0 0.0 E+01 0.1775+02 0.0 0.0 E+01 0.11	E+01	0-7400E+00	0• 4 090E+ 02	0.0
$\xi + 01$ $0.7500\xi + 00$ $0.3752\xi + 02$ 0.0 $\xi + 01$ $0.77550\xi + 00$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.77550\xi + 00$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.77550\xi + 00$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.1125\xi + 01$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.1125\xi + 01$ $0.3553\xi + 02$ 0.0 $\xi + 01$ $0.1125\xi + 01$ $0.3553\xi + 02$ 0.0 $\xi + 01$ $0.173\xi + 01$ $0.3553\xi + 02$ 0.0 $\xi + 01$ $0.173\xi + 01$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.3559\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.3555\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.3555\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.3776\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.375\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 01$ $0.375\xi + 02$ 0.0 $\xi + 01$ $0.177\xi + 02$ 0.0 $0.355\xi + 02$ 0.0 $\xi + 01$ $0.116\xi + 02$ $0.165\xi + 02$ 0.0 $\xi + 01$ $0.116\xi + 02$ 0.0 0.0 $\xi + $	E+01	0.7475E+00	0.3901E+02	0.0
E+01 $0.7450E+00$ $0.3550E+02$ 0.0 $E+01$ $0.7755E+00$ $0.3561E+02$ 0.0 $E+01$ $0.1125E+01$ $0.3554E+02$ 0.0 $E+01$ $0.11735E+01$ $0.3554E+02$ 0.0 $E+01$ $0.1735E+01$ $0.3556E+02$ 0.0 $E+01$ $0.1735E+01$ $0.3556E+02$ 0.0 $E+01$ $0.1775E+01$ $0.3559E+02$ 0.0 $E+01$ $0.1775E+01$ $0.379E+02$ 0.0 $E+01$ $0.1775E+01$ $0.3559E+02$ 0.0 $E+01$ $0.1775E+01$ $0.379E+02$ 0.0 $E+01$ $0.1775E+01$ $0.379E+02$ 0.0 $E+01$ $0.1775E+01$ $0.379E+02$ 0.0 $E+01$ $0.1167E+01$ $0.1352E+02$ 0.0 $E+01$ $0.1255E+01$ $0.453E+02$ 0.0 $E+00$ $0.1185E+01$ $0.453E+02$ 0.0 $E+00$ $0.1185E+01$ $0.453E+02$ 0.0 $E+00$ $0.1185E+01$ <td< td=""><td>E + 01</td><td>0.7500E+00</td><td>0.3752E+02</td><td>0•0</td></td<>	E + 01	0.7500E+00	0.3752E+02	0•0
0.7356E+00 $0.3563E+02$ 0.0 $E+01$ $0.775E+00$ $0.3563E+02$ 0.0 $E+01$ $0.1125E+010$ $0.3563E+02$ 0.0 $E+01$ $0.1125E+010$ $0.3563E+02$ 0.0 $E+01$ $0.1125E+010$ $0.3563E+02$ 0.0 $E+01$ $0.1125E+011$ $0.3564E+02$ 0.0 $E+01$ $0.1775E+011$ $0.3559E+02$ 0.0 $E+01$ $0.1775E+011$ $0.3559E+02$ 0.0 $E+01$ $0.1777E+011$ $0.3555E+02$ 0.0 $E+01$ $0.1670E+011$ $0.3555E+02$ 0.0 $E+01$ $0.1670E+011$ $0.3555E+02$ 0.0 $E+01$ $0.1670E+011$ $0.1255E+02$ 0.0 $E+01$	E+01	0.7450E+00	0. 3650E+ 02	0.0
E+01 $0.7276E+00$ $0.3588E+02$ 0.0 $E+01$ $0.1400E+01$ $0.3561E+02$ 0.0 $E+01$ $0.1400E+01$ $0.3561E+02$ 0.0 $E+01$ $0.1400E+01$ $0.3561E+02$ 0.0 $E+01$ $0.1756E+01$ $0.3560E+02$ 0.0 $E+01$ $0.1775E+01$ $0.3556E+02$ 0.0 $E+01$ $0.1776E+01$ $0.3556E+02$ 0.0 $E+01$ $0.1776E+01$ $0.3796E+02$ 0.0 $E+01$ $0.1776E+01$ $0.3556E+02$ 0.0 $E+01$ $0.1590E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1590E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1590E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1590E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1252E+01$ $0.473E+02$ 0.0 $E+00$ $0.11155E+01$ $0.453EE+02$ 0.0 $E+00$ $0.1056E+0$	E+01	0 .7350E+00	0.3603E+02	0.0
E+010.86255 + 000.3571E + 020.0 $E+01$ 0.1125E + 010.3551E + 020.0 $E+01$ 0.11735E + 010.3551E + 020.0 $E+01$ 0.1735E + 010.3556 + 020.0 $E+01$ 0.1775E + 010.3579E + 020.0 $E+01$ 0.1775E + 010.3779E + 020.0 $E+01$ 0.1775E + 010.3779E + 020.0 $E+01$ 0.1775E + 010.3555E + 020.0 $E+01$ 0.1775E + 010.3779E + 020.0 $E+01$ 0.1735E + 010.3659E + 020.0 $E+01$ 0.1650E + 010.3659E + 020.0 $E+01$ 0.1515E + 010.3659E + 020.0 $E+01$ 0.1515E + 010.4313E + 020.0 $E+01$ 0.1352E + 010.4318E + 020.0 $E+00$ 0.1185E + 010.4373E + 020.0 $E+00$ 0.1185E + 010.4578E + 020.0 <trr></trr>	10+U	0.7275E+00	0.3584E+02	0.0
E+01 0.1400E+01 0.3543E+02 0.0 E+01 0.1735E+01 0.3540E+02 0.0 E+01 0.1735E+01 0.3550E+02 0.0 E+01 0.1747E+01 0.3559E+02 0.0 E+01 0.1747E+01 0.3559E+02 0.0 E+01 0.1747E+01 0.3559E+02 0.0 0.1747E+01 0.3555E+02 0.0 0.0 E+01 0.17775E+01 0.3555E+02 0.0 0.1777E+01 0.3709E+02 0.0 0.0 E+01 0.17775E+01 0.3555E+02 0.0 E+01 0.17775E+01 0.3555E+02 0.0 E+01 0.1550E+01 0.3765E+02 0.0 E+01 0.1550E+01 0.3575E+02 0.0 0.1550E+01 0.1650E+01 0.4259E+02 0.0 0.1420E+01 0.1440E+02 0.4259E+02 0.0 E+01 0.1450E+01 0.4259E+02 0.0 0.1420E+01 0.1450E+02 0.0 0.0 0.1450E+01 0.1450E+02 0.0 0.0 0.1450E+01 <t< td=""><td>E+01 F +01</td><td>0.8625E400 0.1125E401</td><td>0•3561E+02</td><td></td></t<>	E+01 F +01	0.8625E400 0.1125E401	0•3561E+02	
E+01 $01600E+01$ $03540E+02$ 0.0 $E+01$ $0173EE+01$ $03559E+02$ 0.0 $E+01$ $0177EE+01$ $03559E+02$ 0.0 $E+01$ $0177EE+01$ $03559E+02$ 0.0 $E+01$ $0177E+01$ $03559E+02$ 0.0 $E+01$ $0177E+01$ $03559E+02$ 0.0 $E+01$ $0177E+01$ $03559E+02$ 0.0 $E+01$ $01776E+01$ $03559E+02$ 0.0 $E+01$ $01770E+01$ $03559E+02$ 0.0 $E+01$ $0170E+01$ $03559E+02$ 0.0 $E+01$ $0170E+01$ $03559E+02$ 0.0 $E+01$ $01518E+01$ $03559E+02$ 0.0 $E+01$ $01530E+01$ $035578E+02$ 0.0 $E+01$ $01532E+01$ $04313E+02$ 0.0 $E+01$ $01352E+01$ $04313E+02$ 0.0 $E+01$ $01252E+01$ $04538E+02$ 0.0 $E+00$ $01252E+01$ $04538E+02$ 0.0 $E+00$ $01166E+01$ $04538E+02$ 0.0 $E+00$ $01165E+01$ $04538E+02$ 0.0 $E+00$ $01055E+01$ $04538E+02$ 0.0 $E+00$ $01056E+01$ $04538E+02$ 0.0 <	E+01	0.1400E+01	0.3543E+02	0
E+01 $0.1735E+01$ $0.3560E+02$ 0.0 $E+01$ $0.1810E+01$ $0.3579E+02$ 0.0 $E+01$ $0.1775E+01$ $0.3579E+02$ 0.0 $E+01$ $0.1777E+01$ $0.3569E+02$ 0.0 $E+01$ $0.1777E+01$ $0.3563E+02$ 0.0 $E+01$ $0.1777E+01$ $0.3563E+02$ 0.0 $E+01$ $0.1777E+01$ $0.3563E+02$ 0.0 $E+01$ $0.1777E+01$ $0.3776E+02$ 0.0 $E+01$ $0.1777E+01$ $0.3776E+02$ 0.0 $E+01$ $0.1670E+01$ $0.3776E+02$ 0.0 $E+01$ $0.1670E+01$ $0.3776E+02$ 0.0 $E+01$ $0.1670E+01$ $0.3776E+02$ 0.0 $E+01$ $0.1630E+01$ $0.3776E+02$ 0.0 $E+01$ $0.1630E+01$ $0.3776E+02$ 0.0 $E+01$ $0.1630E+01$ $0.4131E+02$ 0.0 $E+01$ $0.1352E+01$ $0.4381E+02$ 0.0 $E+00$ $0.1225E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1160E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1166E+01$ $0.4535E+02$ 0.0 $E+00$ $0.11115E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4536E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4536E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4536E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4536E+02$ 0.0	E+01	0.1600E401	0.3540E+02	0.0
E+01 $01810E+01$ $03579E+02$ 0.0 $E+01$ $01775E+01$ $03599E+02$ 0.0 $E+01$ $01775E+01$ $03559E+02$ 0.0 $E+01$ $01735E+01$ $03559E+02$ 0.0 $E+01$ $01530E+01$ $03579E+02$ 0.0 $E+01$ $01530E+01$ $03576E+02$ 0.0 $E+01$ $01530E+01$ $03576E+02$ 0.0 $E+01$ $01535E+01$ $03576E+02$ 0.0 $E+01$ $01332E+01$ $04539E+02$ 0.0 $E+01$ $01225E+01$ $04535E+02$ 0.0 $E+00$ $01235E+01$ $04535E+02$ 0.0 $E+00$ $01116E+01$ $04535E+02$ 0.0 $E+00$ $01116E+01$ $04535E+02$ 0.0 $E+00$ $01005E+01$ $04535E+02$ 0.0 $E+00$ $01005E+01$ $04574E+02$ 0.0 $E+00$ $01005E+01$ $04534E+02$ 0.0	E+01	0+1735E+01	0 • 3560 E + 0 2	. 0•0
E+01 $0.1775E+01$ $0.3599E+02$ 0.0 $E+01$ $0.1747E+01$ $0.3525E+02$ 0.0 $E+01$ $0.1735E+01$ $0.3535E+02$ 0.0 $E+01$ $0.1735E+01$ $0.3535E+02$ 0.0 $E+01$ $0.1735E+01$ $0.3579E+02$ 0.0 $E+01$ $0.1735E+01$ $0.3779E+02$ 0.0 $E+01$ $0.1536E+01$ $0.3778E+02$ 0.0 $E+01$ $0.1536E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1556E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1556E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1536E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1536E+01$ $0.3576E+02$ 0.0 $E+01$ $0.1535E+01$ $0.4381E+02$ 0.0 $E+01$ $0.1352E+01$ $0.4735E+02$ 0.0 $E+00$ $0.1225E+01$ $0.4535E+02$ 0.0 $E+00$ $0.11116E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4536E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4536E+02$ 0.0 $E+00$ $0.0056+01$ $0.4536E+02$ 0.0	E+01	0.1810E+01	0.3579E+02	0.0
E + 01 $0.1777 E + 01$ $0.52525 + 02$ 0.0 $E + 01$ $0.1735 E + 01$ $0.355 E + 02$ 0.0 $E + 01$ $0.1735 E + 01$ $0.355 E + 02$ 0.0 $E + 01$ $0.1670 E + 01$ $0.355 E + 02$ 0.0 $E + 01$ $0.1650 E + 01$ $0.356 E + 02$ 0.0 $E + 01$ $0.1650 E + 01$ $0.356 E + 02$ 0.0 $E + 01$ $0.1650 E + 01$ $0.356 E + 02$ 0.0 $E + 01$ $0.1650 E + 01$ $0.356 E + 02$ 0.0 $E + 01$ $0.1515 E + 01$ $0.356 E + 02$ 0.0 $E + 01$ $0.1420 E + 01$ $0.4104 E + 02$ 0.0 $E + 01$ $0.1352 E + 01$ $0.42359 E + 02$ 0.0 $E + 01$ $0.1352 E + 01$ $0.4331 E + 02$ 0.0 $E + 01$ $0.1255 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1255 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1156 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1156 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1156 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1156 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1156 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1005 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1005 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1005 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$ $0.1005 E + 01$ $0.4535 E + 02$ 0.0 $E + 00$	E+01	0.1775E+01	0 • 35995+02	000
C_{1} C_{2} <	10+U	0.1747E+01 0.173EE+01	0 - 50255 - 02	
E+01 $0.1700E+01$ $0.3709E+02$ 0.0 $E+01$ $0.1670E+01$ $0.3778E+02$ 0.0 $E+01$ $0.1630E+01$ $0.3562E+02$ 0.0 $E+01$ $0.1515E+01$ $0.3562E+02$ 0.0 $E+01$ $0.1515E+01$ $0.3562E+02$ 0.0 $E+01$ $0.1515E+01$ $0.3778E+02$ 0.0 $E+01$ $0.1515E+01$ $0.3562E+02$ 0.0 $E+01$ $0.11420E+01$ $0.4259E+02$ 0.0 $E+01$ $0.11322E+01$ $0.4313E+02$ 0.0 $E+01$ $0.1225E+01$ $0.4733E+02$ 0.0 $E+00$ $0.1225E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1160E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1225E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1160E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1160E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1160E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4535E+02$ 0.0 $E+00$ $0.1005E+01$ $0.4535E+02$ 0.0 $E+00$ $0.005700E+00$ $0.4534E+02$ 0.0	E+01	0.1717E+01	0 = 3659 E + 02	0
$\varepsilon + 01$ $01670 \varepsilon + 01$ $03778 \varepsilon + 02$ 00 $\varepsilon + 01$ $01630 \varepsilon + 01$ $03862 \varepsilon + 02$ 00 $\varepsilon + 01$ $01515 \varepsilon + 01$ $03862 \varepsilon + 02$ 00 $\varepsilon + 01$ $01515 \varepsilon + 01$ $03862 \varepsilon + 02$ 00 $\varepsilon + 01$ $01515 \varepsilon + 01$ $03862 \varepsilon + 02$ 00 $\varepsilon + 01$ $01515 \varepsilon + 01$ $04259 \varepsilon + 02$ 00 $\varepsilon + 01$ $01390 \varepsilon + 01$ $04313 \varepsilon + 02$ 00 $\varepsilon + 01$ $01392 \varepsilon + 01$ $04313 \varepsilon + 02$ 00 $\varepsilon + 01$ $01392 \varepsilon + 01$ $04331 \varepsilon + 02$ 00 $\varepsilon + 01$ $01255 \varepsilon + 01$ $04535 \varepsilon + 02$ 00 $\varepsilon + 00$ $01255 \varepsilon + 01$ $04535 \varepsilon + 02$ 00 $\varepsilon + 00$ $01160 \varepsilon + 01$ $04535 \varepsilon + 02$ 00 $\varepsilon + 00$ $011165 \varepsilon + 01$ $04535 \varepsilon + 02$ 00 $\varepsilon + 00$ $011165 \varepsilon + 01$ $04535 \varepsilon + 02$ 00 $\varepsilon + 00$ $01055 \varepsilon + 01$ $04535 \varepsilon + 02$ 00 $\varepsilon + 00$ $01055 \varepsilon + 01$ $04574 \varepsilon + 02$ 00 $\varepsilon + 00$ $09350 \varepsilon + 00$ $04534 \varepsilon + 02$ 00	E+01	0.1700E+01	0.3709E+02	0.0
E + 01 $0.1630E + 01$ $0.3852E + 02$ 0.00 $E + 01$ $0.1530E + 01$ $0.3574E + 02$ 0.00 $E + 01$ $0.1515E + 01$ $0.3674E + 02$ 0.00 $E + 01$ $0.1420E + 01$ $0.4259E + 02$ 0.00 $E + 01$ $0.1420E + 01$ $0.4313E + 02$ 0.00 $E + 01$ $0.1352E + 01$ $0.4313E + 02$ 0.00 $E + 01$ $0.1352E + 01$ $0.4313E + 02$ 0.00 $E + 01$ $0.1352E + 01$ $0.473E + 02$ 0.00 $E + 01$ $0.1255E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.1160E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.1160E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.1160E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.1050E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.1050E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.1050E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.0050E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.0050E + 01$ $0.453E + 02$ 0.00 $E + 00$ $0.9350E + 00$ $0.453A E + 02$ 0.00	E+01	0.1670E+01	0.3778E+02	0.0
E + 01 $0.41595E + 01$ $0.4104E + 02$ 0.0 $E + 01$ $0.11515E + 01$ $0.4104E + 02$ 0.0 $E + 01$ $0.1420E + 01$ $0.4259E + 02$ 0.0 $E + 01$ $0.1332E + 01$ $0.4313E + 02$ 0.0 $E + 01$ $0.1352E + 01$ $0.4313E + 02$ 0.0 $E + 01$ $0.1352E + 01$ $0.4313E + 02$ 0.0 $E + 01$ $0.1352E + 01$ $0.4335E + 02$ 0.0 $E + 01$ $0.1255E + 01$ $0.473E + 02$ 0.0 $E + 00$ $0.1165E + 01$ $0.4535E + 02$ 0.0 $E + 00$ $0.11165E + 01$ $0.4535E + 02$ 0.0 $E + 00$ $0.11165E + 01$ $0.4535E + 02$ 0.0 $E + 00$ $0.1055E + 01$ $0.4535E + 02$ 0.0 $E + 00$ $0.1055E + 01$ $0.4535E + 02$ 0.0 $E + 00$ $0.1055E + 01$ $0.4535E + 02$ 0.0 $E + 00$ $0.1055E + 01$ $0.4535E + 02$ 0.0 $E + 00$ $0.9350E + 00$ $0.4534E + 02$ 0.0	E + 01	0.1630E+01		
E+01 0.4259E+02 0.0 E+01 0.1420E+01 0.4259E+02 0.0 E+01 0.1352E+01 0.4313E+02 0.0 E+01 0.1352E+01 0.4313E+02 0.0 E+01 0.1352E+01 0.473E+02 0.0 E+01 0.1255E+01 0.473E+02 0.0 E+00 0.1225E+01 0.4535E+02 0.0 E+00 0.1225E+01 0.4535E+02 0.0 E+00 0.1156E+01 0.4535E+02 0.0 E+00 0.11165E+01 0.4575E+02 0.0 E+00 0.11165E+01 0.4575E+02 0.0 E+00 0.1056E+01 0.4575E+02 0.0 E+00 0.1056E+01 0.4575E+02 0.0 E+00 0.1056E+01 0.4575E+02 0.0 E+00 0.1056E+01 0.4575E+02 0.0 E+00 0.4576E+02 0.0 0.0 E+00 0.4574E+02 0.0 0.0 E+00 0.4534E+02 0.0 0.0	10+u	0.15156401	0 - 35 / 45 T UZ 0 - 4 1 045 + 0 2	
E+01 0.1420E+01 0.4259E+02 0.0 E+01 0.1390E+01 0.4313E+02 0.0 E+01 0.1352E+01 0.4381E+02 0.0 E+01 0.1352E+01 0.473E+02 0.0 E+01 0.1255E+01 0.473E+02 0.0 E+00 0.1255E+01 0.453E+02 0.0 E+00 0.1225E+01 0.453E+02 0.0 E+00 0.11165E+01 0.453E+02 0.0 E+00 0.11165E+01 0.457E+02 0.0 E+00 0.1056E+01 0.457E+02 0.0 E+00 0.1056E+01 0.457E+02 0.0 E+00 0.1056E+01 0.457E+02 0.0 E+00 0.1056E+01 0.457E+02 0.0 E+00 0.0056E+01 0.457E+02 0.0 E+00 0.0056E+01 0.457E+02 0.0 E+00 0.0570E+00 0.4574E+02 0.0	10+U	0.1460E+01	0.420BE+02	0.0
E+01 0.1390E+01 0.4313E+02 0.0 E+01 0.1352E+01 0.4381E+02 0.0 E+01 0.1255E+01 0.473E+02 0.0 E+00 0.1255E+01 0.4525E+02 0.0 E+00 0.1225E+01 0.4535E+02 0.0 E+00 0.1165E+01 0.4535E+02 0.0 E+00 0.11165E+01 0.4575E+02 0.0 E+00 0.11165E+01 0.4575E+02 0.0 E+00 0.11165E+01 0.4575E+02 0.0 E+00 0.1056E+01 0.4577E+02 0.0 E+00 0.1056E+01 0.4577E+02 0.0 E+00 0.1056E+01 0.4577E+02 0.0 E+00 0.10056E+01 0.4577E+02 0.0 E+00 0.0056E+01 0.4577E+02 0.0 E+00 0.9350E+00 0.4574E+02 0.0	E+01	0.1420E+01	0. 4259E+ 02	0.0
E+C1 0.1352E+01 0.4381E+02 0.0 E+01 0.1292E+01 0.473E+02 0.0 E+00 0.1292E+01 0.4525E+02 0.0 E+00 0.1255E+01 0.4535E+02 0.0 E+00 0.1225E+01 0.4535E+02 0.0 E+00 0.1165E+01 0.4535E+02 0.0 E+00 0.11165E+01 0.4577E+02 0.0 E+00 0.1056E+01 0.4577E+02 0.0 E+00 0.1056E+01 0.4557E+02 0.0 E+00 0.1056E+01 0.4577E+02 0.0 E+00 0.1056E+01 0.4577E+02 0.0 E+00 0.05706E+00 0.4574E+02 0.0	E+ 01	0.1390E+01	0.4313E+02	0.0
E+01 0.1292E+01 0.473E+02 0.0 E+00 0.1255E+01 0.4525E+02 0.0 E+00 0.1255E+01 0.4535E+02 0.0 E+00 0.1165E+01 0.4535E+02 0.0 E+00 0.11165E+01 0.4535E+02 0.0 E+00 0.11165E+01 0.4575E+02 0.0 E+00 0.11155E+01 0.4575E+02 0.0 E+00 0.1055E+01 0.4575E+02 0.0 E+00 0.1055E+01 0.4575E+02 0.0 E+00 0.0055E+01 0.4574E+02 0.0 E+00 0.9350E+00 0.4574E+02 0.0	E+01	0.1352E+01	0.4381 E+02	0.0
E+00 0.1255E+01 0.4525E+02 0.0 E+00 0.1225E+01 0.4535E+02 0.0 E+00 0.1165E+01 0.4535E+02 0.0 E+00 0.11165E+01 0.4535E+02 0.0 E+00 0.11165E+01 0.4535E+02 0.0 E+00 0.11165E+01 0.4575E+02 0.0 E+00 0.1055E+01 0.4575E+02 0.0 E+00 0.1055E+01 0.4575E+02 0.0 E+00 0.97005E+01 0.4574E+02 0.0 E+00 0.9350E+00 0.4534E+02 0.0	E+01	0.1292E+01	0.4473E+02	0.0
E + 00 0.1225E+01 0.4535E+02 0.0 E + 00 0.1165E+01 0.4568E+02 0.0 E + 00 0.1116E+01 0.4678E+02 0.0 E + 00 0.1156E+01 0.4678E+02 0.0 E + 00 0.1056E+01 0.4657E+02 0.0 E + 00 0.1056E+01 0.4657E+02 0.0 E + 00 0.1056E+01 0.4657E+02 0.0 E + 00 0.9706E+01 0.4574E+02 0.0 E + 00 0.9350E+01 0.4534E+02 0.0	11 + 00	0.1255E+01	0.4525E+02	0.0
E+00 0.11655+01 0.456415+02 0.0 E+00 0.111565+01 0.46575+02 0.0 E+00 0.101055+01 0.46595+02 0.0 E+00 0.10055+01 0.46595+02 0.0 E+00 0.10055+01 0.46595+02 0.0 E+00 0.97005+00 0.45745+02 0.0 E+00 0.93505+01 0.45345+02 0.0	E + 00	0.1225E+01	0.45355402	
C = 00 0.1115C=01 0.4677E+02 0.0 E = 00 0.1050E+01 0.4659E+02 0.0 E = 00 0.1050E+01 0.4659E+02 0.0 E = 00 0.1056E+01 0.4611E+02 0.0 E = 00 0.1056E+01 0.4611E+02 0.0 E = 00 0.9700E+00 0.4574E+02 0.0 E = 00 0.9700E+00 0.4574E+02 0.0 E = 00 0.9700E+00 0.4574E+02 0.0	00+U0	0.11856+01	0.4248857.02	
E+00 0.1050E+01 0.4659E+02 0.0 E+00 0.1005E+01 0.4611E+02 0.0 E+00 0.9700E+00 0.4574E+02 0.0 E+00 0.9350E+00 0.4534E+02 0.0		0.1155401	0.46775+02	
E+00 0.1005E+01 0.4611E+02 0.0 E+00 0.9700E+00 0.4574E+02 0.0 E+00 0.9350E+00 0.4534E+02 0.0	E+00	0.1050E+01	0.4659E+02	0.0
E+00 0.9700E+00 0.4574E+02 0.0 E+00 0.9350E+00 0.4534E+02 0.0	E + 00	0+1005E+01	0.4611E+02	0.0
E+00 0.9350E+00 0.4534E+02 0.0	E+00	0+9700E+00	0.4574E+02	0.0
	E + 00	0°9350E+00	0 - 4534E+02	

.

.

.

Ť.

0.3500E+00 0.8850E+00 0.8537E+02 0.0 0.2000E+00 0.7900E+00 0.8509E+02 0.0 0.1000E+00 0.6150E+00 0.8500E+02 -0.4122E-03 0.1000E+00 0.3250E+00 0.8500E+02 0.2567E-03

'n

•

NUMBER OF STREAMLINES= 3

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•5414E+03	0•4584E+02	0.2800E+02
2	0.4250E+03	0.2367E+02	0.2800E+02
3	0.6783E+03	0.7369E+02	0.2800E+02
2 3	0•4250E+03 0•6783E+03	0.2367E+02 0.7369E+02	0.2800

PRODUCER NUMBER 2

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•4414E+03	0 •2762E +02	0.2800E+02
2	0.3447E+03	0.1914E+02	0.2800E+02

PRODUCER NUMBER 3

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.3381E+03	0.1806E+02	0.2800E+02
2	0.3848E+03	0.2162E+02	0.2800E+02

NUMBER OF STREAMLINES = 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.2697E+03	0.1351E+C2	0.2800E+02
2	0.2697E+03	0.1491E+02	0.2800E+02

PRODUCER NUMBER 6

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.3598E+03	0.1591E+02	0•2800E+02
2	0•3381E+03	0.1426E+02	0.2800E+02

PRODUCER NUMBER 7

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•2947E+03	0.1270E+02	0.2800E+02
2	0.2881E+03	0.1196E+02	0.2800E+02

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.8098E+03	0.2943E+02	0.2800E+02
2	0.7598E+03	0.2867E+02	0.2800E+02

PRODUCER NUMBER 10

NUMBER OF STREAMLINES= 5

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WICTH	INJ. RATE
1	0.1120E+04	0.3869E+02	0.2800E+02
2	0.9500E+03	0.3438E+02	0.2800E+02
3	0.5881E+03	0.1555E+C2	0.1000E+02
4	0.5697E+03	0.1231E+02	0.1000E+02
5	0.5980E+03	0.1379E+02	0.1000E+02

PRODUCER NUMBER 11

.

NUMBER OF STREAMLINES= 4

TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
0•2664E+03	0•6270E+01	0.1000E+02
0.2914E+03	0.6746E+01	0.1000E+02
0.3783E+03	0.8922E+01	0.1000E+02
0.2881E+03	0.6459E+01	0.1000E+02
	TOTAL LENGTH 0.2664E+03 0.2914E+03 0.3783E+03 0.2881E+03	TOTAL LENGTH AVERAGE WIDTH 0.2664E+03 0.6270E+01 0.2914E+03 0.6746E+01 0.3783E+03 0.8922E+01 0.2881E+03 0.6459E+01

230

NUMBER OF STREAMLINES= 5

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•4631E+03	0.1017E+02	0.1000E+02
2	0.3697E+03	0.8223E+01	0.1000E+02
3	0.3316E+03	0.7528E+01	0.1000E+02
4	0.3348E+03	0.7392E+01	0.1000E+02
5	0.4033E+03	0.1097E+02	0.1000E+02

PRODUCER NUMBER 13

.

NUMBER OF STREAMLINES= 5

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.7164E+03	0.2247E+02	0.10002+02
2	0.9033E+03	0•3484E+02	0.1000E+02
3	0.7131E+03	0.1981E+02	0.1000E+02
4	0.5381E+03	0.1561E+02	0.1000E+02
5	0.6066E+03	0.2234E+02	0.1000E+02

APPENDIX J

RESULTS OF STEAMFLOOD PREDICTION OF SHIELLS CANYON FIELD AS A HOMOGENEOUS RESERVOIR. PART OF ITS BOUNDARY AT CONSTANT PRESSURE, THE REMAINDER SEALED
APPENDIX J

STEAMFLOED PREDICTION OF SHIELLS CANYON(203) FIELD METHOD: STREAMLINE/STREAMTUBE METHOD USING (BEM)TECHNIQUE ANALYSIS AS A SINGLE HOMCGENCUS RESERVOIR BOUNDARY CONDITION: PART OF THE BOUNDARY AT CONSTANT PRESSURE, THE REMAINDER IS SEALED. PRODUCTION RATES: ASSIGNED EQUAL IN ENTIRE REGION BY: D. T. NUMBERE, UNIVERSITY OF OKLAHOMA, 1982

DATA

TOTAL NUMBER OF PRODUCERS=	11
STEAM TEMPERATURE (DEG. F)=	430.0000
STEAM QUALITY=	0.7000
CONVERGENCE LIMIT=	0.0010
RESERVOIR THICKNESS (FT)=	160.0000
STEAM PRESSURE (PSI)=	344 •0000
INITIAL RESERVOIR TEMPERATURE(DEG F)=	105.0000

FLUID PROPERTIES

	WATER	OIL	STEAM
DENSITY(LB/CU FT) AT STD. TEMP.	62.4000	55.0000	
DENSITY(LB/CU FT) AT STEAM TEMP.	52.3800	48.7000	0.7431
SPECIFIC HEAT(BTU/LB *F)	1.0000	0.4380	1.0000
LATENT HEAT(BTU/LB)			789.51 00

PROPERTIES OF THE CAP AND BASE ROCK

DENSITY(LB/CU. FT)	145.0000
SPECIFIC HEAT(BTU/LB-+F)	0.2130
THERM. COND.(BTU/HR-FT-*F)	1.1000

	RESERVCIR ROO	CK PROPERTIES
	REGION 1	REGION 2
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
POROSITY	0.2050	0.1800
DEN.(LB/CU FT)	165.0000	165.0000
SPEC. HEAT(BTU/LB*F)	0.2000	0.2000
PERMEABILITY (MD)	140.0000	70.0000

## INITIAL FLUID SATURATIONS

. وقد الله: حيان الله: عليه الله: وقد الله: الله عليه الله: عليه عليه حيلة عليه الله: الله: الله: حيلة عليه الله: حيله الله:

	REGION 1	REGION 2
WATER	0.5500	0.5500
UIL	0.4500	0.4500
STEAM	0.0	0.0

AVERAGE RESIDUAL SATURATIONS BEHIND THE FRONT

	REGION 1	REGICN 2
WATER	0.5800	0.5800
OIL	0.1800	0.1800
STEAM	0.2400	0.2400

# INPUT DATA FROM STREAMLINE PROGRAM

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

			REGICN 1			REGION 2		
WELL NO.	S/L NO.	CODE	LENGTH	WIDTH	RATE	LENGTH	WIDTH	RATE
1	1	1	541.40	45.84	28.00	0.0	0•0	0.0
1	2	1	425.00	23.67	28.00	0.0	0.0	0.0
1	3	1	678.30	73.69	28.00	0.0	0.0	0.0
2	1	1	441.40	27.62	28.00	0.0	0.0	0.0
2	2	1	344.70	19.14	28.00	0.0	0.0	0.0
3	1	1	338.10	18.06	28.00	0.0	0.0	0.0
3	2	1	384.80	21.62	28.00	0.0	0.0	0.0
4	1	1	269.70	13.51	28.00	0.0	0.0	0.0
4	2	1	269.70	14.91	28.00	0.0	0.0	0.0
5	1	1	359.80	15.91	28.00	0.0	0.0	0.0
5	2	1	338.10	14.26	28.00	0.0	0.0	0.0
6	1	1	294.70	12.70	28.00	0.0	0.0	0.0
6	2	1	288.10	11.96	28.00	0.0	0.0	0.0
7	1	1	809.80	29.43	28.00	0.0	0.0	0.0
7	2	1	759-80	28.67	28.00	0•0	0.0	0.0
8	1	1	1120.00	38.69	28.00	0.0	0.0	0.0
8	2	1	950.00	34.38	28.00	0.0	0.0	0.0
8	3	1	588.10	15.55	10.00	0.0	0.0	0.0
8	4	1	569.70	12.31	10.00	0.0	0.0	0.0
8	5	1	598.00	13.79	10.00	0.0	0.0	0.0
9	1	1	266.40	6.27	10.00	0.0	0.0	0.0
9	2	1	291.40	6.75	10.00	0.0	0.0	0.0
9	З	1	378.30	8.92	10.00	0.0	0.0	0.0
9	4	1	288.10	6.46	10.00	0.0	0.0	0.0
10	1	1	463.10	10.17	10.00	0.0	0.0	0.0
10	2	1	369.70	8.22	10.00	0.0	0.0	0.0
10	3	1	331.60	7.53	10.00	0.0	0.0	0.0
10	4	1	334.80	7.39	10.00	0.0	0.0	0.0
10	5	1	403.30	10.97	10.00	0.0	0.0	0.0
11	1	1	716.40	22.47	10.00	0.0	0.0	0.0
11	2	1	903.30	34.84	10.00	0.0	0.0	0.0
11	3	1	713.10	19.81	10.00	0.0	0.0	0.0
11	4	1	538.10	15.61	10.00	0.0	0.0	0.0
11	5	1	606.60	22.34	10.00	0.0	0.0	0.0

PROD. NO.	STREAMLINE NO.	CODE	ENDT IME(1)	ENDTIME(2)
1	1	1	16232.3555	0.0
1	2	1	6122 • 6797	0.0
1	3	1	35560.2891	0.0
2	1	1	7514.6562	0.0
2	2	1	3921.2864	0.0
3	1	1	3615.2166	0.0
3	2	1	500ó.4922	0.0
4	1	1	2110.3652	0.0
4	2	1	2337.7622	0.0
5	1	1	3378.9150	0.0
5	2	1	2823.9495	0.0
6	1	1	2169.8333	0.0
6	2	1	1991.6033	0.0
7	1	1	15525.5352	0.0
7	2	1	14069.7266	0.0
8	1	1	30226.8555	0.0
8	2	1	21999.7695	0.0
8	З	1	16800.4453	0.0
8	4	1	12564.0469	0.0
8	5	1	14995.8437	0.0
9	1	1	2735.7625	0.0
9	2	1	3243.0010	0.0
9	3	1	5729.8828	0.0
9	4	1	3062.2073	0.0
10	1	1	8173.4727	0.0
10	2	1	5129.1250	0.0
10	3	1	4166.4844	0.0
10	4	1	4128.8320	0.0
10	5	1	7644.0664	0.0
11	1	1	31607.5586	0.0
11	2	1	68893.5000	0.0
11	3	1	27266-1172	0.0
11	4	1	15301.9453	0.0
11	5	1	26020.0859	0.0

CALCULATED BREAKTHROUGH TIMES(HOURS) FOR EACH STREAMTUBE

REAL TIME(HCURS)= 6000.0000

DIMENSIONLESS TIME= 0.0325

WELL	STR/L	NO. OF	REGIONS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1	0.1557E+05		
1	2	1	0.1557E+05		
1	3	1	0.1557E+05		
				0.4670E+05	
2	1	1	0.1557E+05		
2	2	1	0.1041E+05		
				0.2597E+05	
З	1	1	0.9631E+04		
З	2	1	0.1312E+05		
				0.2275E+05	
4	1	1	0.5747E+04		
4	2	1	0.6342E+04		
-	-	-		0-1209E+05	
5	1	1	0.9029F+04		
5	2	- 1	0.7604E+04		
-	-	-		0-16635+05	
6	1	1	0 + 590 36 + 0.4		
6	2	- 1	0.54355+04		
U	-	-	0001002104	0.11346+05	
7	1	1	0.15575+05	0011342.03	
7	2	1	0.15575+05		
•	-	-	0013572103	0.31136+05	
я	1	1	0.15575+05	0001102:00	
8	2	1	0 -1557E+05		
a	7	1	0.55605+04		
8	4	1	0.55606404		
8	5	1	0.55605404		
U	5	1	0.0000000404	0 47816405	
o	1	•	0-26345+04	0.47812+03	
9	2	1	0 31 005+04		
9 6		1	0 53335+04		
ອ ບ	5	1	0 20355+04		
9	4	1	0.29332404	0 13005+05	
10	1	1	0.55605404	0.13992+05	
10	•	1	0.47055404		
10	2	1	0 30375404		
10	5	1	0.39372+04		
10	- 4 E	1	0.59032+04		
10	5	X	0.55602+04	0 03755105	
1 1	1	•	0 66405104	U • 2 3 / 3ET US	
1 3	1 2	1	U • 350UE + U4		
11	2	ž ,	0.550UE+04		
11	5				
1)	4	1			
11	5	Ŧ	U.350UE+U4	0.07005.05	
				U . 27 80E+ 05	

0.2800E+06

REAL TIME(HCURS)= 12000.0000

DIMENSIONLESS TIME= 0.0650

WELL	STR/L	NO. 0F	REGIONS RECOVERY	WELL TOTAL	RESERVOIR	TOTAL
1	1	1	0.2969E+05			
1	2	1	0.1587E+05			
1	3	1	0.2969E+05			
				0.7525E+05		
2	1	1	0•1923E+05			
2	2	1	0.1041E+05			
-				0•2963E+05		
3	1	1	0.9631E+04			
3	2	1	0.13122+05	A AA 7554 AS		
•				0.22758+05		
4	. ↓ 2	1	0.62425+04			
-	6	-	0.03422+04	0.1209F+05		
5	1	1	0-9029F+04	0012032103		
5	2	1	0.7004E+04			
-	_	-		0.1663E+05		
ü	1	1	0.5903E+04			
6	2	1	0.5435E+04			
				0.1134E+05		
7	1	1	0.2969E+05			
7	2	1	0.2969E+05			
				0.5938E+05		
8	1	1	0.2969E+05			
8	2	1	0.2969E+05			
8	3	1	0.1060E+05			
8	4	1	0.1060E+05			
8	5	1	0.1060E+05			
~			0.0.745.000	0.9119E+05		
9	1	1	0.31005404			
9	2	1	0.53235+04			
q	4	1	0.29355+04			
-	•	•	0.29332104	0.1399F+05		
10	1	1	0.7428E+04			
10	2	1	0.4795E+04			
10	3	1	0.3937E+04			
10	4	1	0.3903E+04			
10	5	1	0.6978E+04			
				0.2704E+05		
11	1	1	0.1060E+05			
11	2	1	0.1060E+05			
11	3	1	0.1060E+05			
11	4	1	0.1060E+05			
11	5	1	0.1060E+05			
				0.5302E+05		

.

0.4123E+06

238

REAL TIME(HEURS)= 18000.0000

DIMENSIONLESS TIME= 0.0975

WELL	STR/L	NO. OF	REGIONS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
•					
,	1		0 301 45 405		
1	1	1	0.15875405		
1	~ ~	1	0.15872+05		
1	3	1	0.42992+05	0.0005105	
2	•		0 10035405	0.9800E+05	
2	1	1	0.19232403		
2	2	1	0.10412+05	0 00675105	
7	1	1	0.96315404	0.29C3E+ 05	
ר ד	2	1	0.1312E+05		
5	L	*	0.13122+03	0.22755+05	
4	1	1	0.57475+04		
4	2	1	0.63426+04		
	-	•	0000422.04	0.1209F+05	
5	1	1	0,90295+04	0012032000	
5	2	1	0-76045+04		
5	-	•	0010042104	0-16635+05	
6	1	1	0.59036+04	0010032103	
6	2	1	0.54355+04		
Ŭ	-	-	0004002404	0.11.34F+05	
7	1	1	0.3759F+05	0011042100	
7	2	-	0.3436E+05		
		-		0.7155F+05	
8	1	1	0.4299E+05		
8	2	1	0.4299E+05		
8	3	1	0 •1442E+05		
8	4	1	0.1196E+05		
8	5	1	0.1301E+05		
		_		0.1245E+06	
9	1	1	0.2634E+04		
Э	2	1	0.3100E+04		
9	3	1	0.5323E+04		
9	4	1	0.2935E+04		
				0.1399E+05	
10	1	1	0 •7428E+04		
10	2	1	0.4795E+04		
10	3	1	0.39375+04		
10	4	1	0.3903E+04		
10	5	1	0.6978E+04		
				0.2704E+05	
11	1	1	0.1535E+05		
11	2	1	0.1535E+05		
11	3	1	0.1535E+05		
11	4	1	0.1325E+05		
11	5	1	0.1535E+05		
				0.7466E+05	

0.50205+06

· .

REAL TIME(HOURS)= 24000.0000

DIMENSIONLESS TIME= 0.1300

WELL	STR/L	NO. OF	REGIONS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1	0.3914E+05		
1	2	1	0.1587E+05		
1	3	1	0.5569E+05		
				0.1107E+06	
2	1	1	0.1923E+05		
2	2	1	0.10412+05		
				0.2963E+05	
З	1	1	0.90312+04		
З	2	1	0.1312E+05		
				0 • 22 75E+ 05	
4	1	1	0•5747E+04		
4	2	1	0.6342E+04		
				0.1209E+05	
5	1	1	0.9029E+04		
5	2	1	0.7604E+04		
				0.1663E+05	
6	1	1	0.59036+04		
6	2	1	0•5435E+04		
				0.1134E+05	
7	1	1	0.3759E+05		
7	2	1	0•3436E+05		
				0.7195E+05	
8	1	1	0.5569E+05		
8	2	1	0.5151E+05		
8	З	1	0.1442E+05		
8	4	1	0.1106E+05		
8	5	1	0.1301E+05		
				0.1457E+06	
9	1	1	0•2634E+04		
9	2	1	0.3100E+04		
9	3	1	0.5323E+04		
9	4	1	0.2935E+04		
				0•1399E+05	
10	1	1	0 .7 428E+04		
10	2	1	0•4795E+04		
10	3	1	0.3937E+04		
10	4	1	0.3903E+04		
10	5	1	0.6978E+04		
		-	_	0.2704E+05	
11	1	1	0.1989E+05		
11	2	1	0+1989E+05		
11	3	1	0.1989E+05		
11	4	1	0.1325E+05		
11	5	1	0.1989E+05		
				0.9280E+05	

240

0.5546E+06

REAL TIME(HOURS) = 30000.0000

DIMENSIONLESS TIME= 0.1625

1	1	1	0.3914E+05		
1	2	1	0 •1587E+05		
1	3	1	0.6789E+05		
~				0.1229E+06	
2	1	1	0.1923E+05		
2	2	1	0.10412+05		
-				0•2963E+05	
3	1	1	0•9631E+04		
3	2	1	0•1312E+05	• • • • • • • •	
	•			0.2275E+05	
4	1		0.57472+04		
4	2	1	0±6342E+04		
E	•	•	0 00005104	0.1209E+05	
5	1	1	0.50292+04	e	
5	2	1	0.7504E+04		
~				U.1663E+05	
o ć	1	1	0.59032+04		
0	2	1	0.54352+04		
7	1	•	37605105	0.11346+05	
7		, 1	0.3/392403		
1	E.	1	•3430E +03	0 71055105	
0		,	67805405	0.71956+05	
о 9		1	0.61616+05		
ي 2	2	1 0	J.J.J.J.J.E.+05		
8	<u>с</u>	1	0.11065405		
8		1	0 13015405		
C	5	1	0.12015-02	0 15705+06	
Q	1	1	1.26345404	0.13/92+00	
- - -	2	1	0.3100E+04		
á	3	1 0	0.53235+04		
- G	4	1	0.2935E+04		
•		-	00002.04	0-13CGE+05	
10	1	1 6	0.7428F+04	0010332.03	
10	2	1 (0.4795E+04		
10	3		0.39376+04		
10	4	1	0.3903E+04		
10	5	1 (0.6978E+04		
	-	-		0.2704F+05	
11	1	1 (•2425E+05		
11	2	1	•2425E+05		
11	З	-1	•2228E+05		
11	4	1 0	•1325E+05		
11	5	1	.2137E+05		
				0.1054E+06	

0.5916E+06

PREDICTED RECOVERY

TIME (DAYS)	RECOVERY(BBLS)
62.5000	0.1697E+05
125.0000	0.3142E+05
187.5000	0.4171E+05
250.0000	0.4986E+05
312.5000	0.5674E+05
375.0000	0.62490+05
437.5000	0.6800E+05
500.0000	0.7343E+05
562.5000	0.7865E+05
625.0000	0.8334E+05
687.5000	0.8689E+05
750.0000	0.8950E+05
812.5000	0.92 05E+05
875.0000	0.9456E+05
937.5000	0.9687E+05
1000.0000	0.9877E+05
1062.5000	0.1007E+06
1125.0000	0.1024E+06
1187.5000	0.1039E+06
1250.0000	0.1054E+06

.

.

.

APPENDIX K

RESULTS OF STREAMLINE MODELLING OF SHIELLS CANYON FIELD AS A PIECEWISE HOMOGENEOUS RESERVOIR WITH SEALED OUTER BOUNDARY ANALYSIS AS A PIECEWISE-HOMOGENEOUS RESERVIOR

SEALED OUTER BOUNDARY

BY: D. T. NUMBERE, UNIVERSITY OF OKLAHCMA, 1981

REGION 1.0

DATA

NUMBER OF BOUNDARY ELEMENTS= 43 NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 0 NUMBER OF SOURCES AND SINKS= 7 NUMBER OF INTERFACE NODES= 10

PERMEABILITY(MD) = 140.0000

THICKNESS(FT)= 160.0000

PURO SI TY= 0.2050

SCALE: 1 INCH = 738.46FEET

•	THE	COORDINATES	OF	THE	EXTREME	POINTS	OF	THE	BUNNDARY	ELEMENTS

PUINT	X(INCH)	Y(INCH)
1	1.5000	1.5500
2	1.3500	1.4800
3	1.2500	1.4400
4	1.2000	1.4000
5	1.1500	1.3800
6	1.0500	1.3250
7	0.9500	1.2600
8	0.9000	1.2500
9	0.8500	1.2000
10	0.8000	1.1700
11	0.7500	1.1500
12	0.6500	1.0800
13	0.5500	1.0200
14	0.5000	0.9900
15	0.4500	0.9500
16	0.4000	0.9200
17	0.3000	0.8500
18	0.1000	0.7300
19	0.1000	0.5000
20	0.1000	0.1500
21	0.2500	0.2000
2 2	0 •40 00	0.2500
23	0.5500	0.2800
24	0.6500	0.3000
25	0.7000	0.3250
26	0.7500	0.3300
27	0.8000	0.3400
28	0.8500	0.3500
29	0.9000	0.4000
30	1.0000	0.4500
31	1.1000	0.5250
32	1.2500	0.6000
33	1.4000	0.6500
34	1.5500	0.6800
35	1.5500	0.7500
36	1.5400	0.8500
37	1.5000	0.9500
38	1.5000	1.0500
39	1 • 4800	1.1500
40	1.4600	1.2500
41	1.4000	1.3500
42	1 •4800	1.4500
43	1.5000	1.5000

.

.

.

BOUNDARY CONDITIONS

.

NODE	CUDE	PRESCRIBED	VALUE
1	1	00	
2	· 1	0.0	
З	1	0.0	
4	1	0.0	
5	1	0.0	
6	1	0.0	
7	1	0.0	
8	1	0.0	
9	1	0.0	
10	1	0.0	
11	1	0.0	
12	1	0.0	
13	1	0.0	
14	1	0.0	
15	1	0.0	
16	1	0.0	
17	1	0.0	
18	1	0.0	
19	1	0.0	
20	1	0.0	
21	1	0.0	
22	1	0.0	
23	1	0.0	
24	1	0.0	
25	1	0•0	
26	1	0•0	
27	1	0.0	
28	1	0.0	
29	1	0.0	
30	1	0.0	
31	1	0 • 0	
32	1	0.0	
33	1	0.0	
34	2	0.0	
35	2	0.0	
36	2	0.0	
37	2	0.0	
38	2	0.0	
39	2	0.0	
40	2	0.0	
41	2	0.0	
42	2	0.0	
43	2	0.0	

COURDINATES OF SOURCES AND SINKS AND THEIR STRENGTHS

X(INCH)	Y(INCH)	RATE(BEL/D)
0.4500	0.5500	-69 • 1000
0.5000	0.8000	-69.1000
0.7500	0.4000	-69.1000
0.9000	1.1500	-69 • 1000
1.0000	0.8000	560.0000
1.2500	1.2000	-69.1000
1.3500	1.0000	-69.1000

THE AVERAGE RADIUS OF THE WELLS(INCH) IS= 0.500 THE CHARACTERISTIC PRESSURE(PSI) IS= 85.0000 REGION 2.0

DATA

NUMBER OF BOUNDARY ELEMENTS= 37 NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 0 NUMBER OF SOURCES AND SINKS= 6 NUMBER OF INTERFACE NODES= 10

PERMEABILITY(MD)= 70.0000

THICKNESS(FT) = 160.0000

POROSITY= 0.2050

SCALE: 1 INCH = 738.46FEET

POINT	X(INCH)	Y(INCH)
1	1 •5000	1.5500
2	1.5000	1.5000
3	1.4800	1.4500
4	1.4600	1.3500
5	1.4600	1.2500
б	1.4800	1.1500
7	1.5000	1.0500
8	1.5000	0.9500
9	1.5400	0.8500
10	1.5500	0.7500
11	1.5500	0.6800
12	1.6500	0.6900
13	1.7000	0.7000
14	1.7500	0.7100
15	1 .8000	0.7200
16	1.8500	0.7250
17	1.9000	0.7300
18	1.9500	0.7350
19	2.1000	0.7450
20	2.2500	0.7500
21	2.4000	0.7500
22	2.6000	0.7400
23	2.7500	0.7300
24	2.9000	0.7250
25	3.1600	1.0000
26	3.0600	1.2500
27	2.9500	1.5500
28	2.7500	1.6500
29	2.4000	1.8200
30	2.2500	1.8000
31	2.1000	1.7500
32	2.0500	1.7450
33	2.0000	1.7250
34	1.9500	1.7100
35	1.8500	1.6900
36	1.7500	1.6500
37	1.6500	1.6100

THE COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS

NODE	CODE	PRESCRIBED	VALUE
1	2	0.0	THEVE
2	2	0.0	
3	2	0.0	
ŭ	2	0.0	
5	2	0.0	
6	2	0.0	
7	2	0.0	
8	2	0.0	
Ğ	2	0.0	
10	2	0.0	
11	1	0.0	
12	-	0.0	
13	-	0.0	
14	-	0.0	
15	1	0.0	
16	1	0.0	
17	1	0.0	
18	1	0.0	
19	1	0.0	
20	1	0.0	
21	1	0.0	
22	1	0.0	
23	1	0.0	
24	1	0.0	
25	1	0.0	
26	1	0.0	
27	1	0.0	
28	1	0.0	
29	1	0.0	
30	1	0.0	
31	1	0.0	
32	1	0.0	
3 3	1	0.0	
34	1	0.0	
35	1	0.0	
36	1	0.0	
37	· 1	0.0	

BOUNDARY CONDITIONS

COORDINATES OF SOURCES AND SINKS AND THEIR STRENGTHS

X(INCH)	Y(INCH)	RATE(BEL/D)
1.9000	0.9500	200.0000
1.8000	1.3500	-69.1000
2.0500	1.5500	-69.1000
2.1500	1.2500	-69.1000
2.3500	1.0500	-69.1000
2.5750	1.3000	-69.1000

THE AVERAGE RADIUS OF THE WELLS(INCH) IS= 0.500 THE CHARACTERISTIC PRESSURE(PSI) IS= 85.0000

	BOUNDARY NODES		
X (I NCH)	Y (INCH)	PRESSURE (PSI)	NDRMAL GRADIENT
0-14255401	0.15156+01		Ċ
U•13UUE+U1	0 • 1 4 6 0 E + 0 1	-0.5464E+02	0.0
0 • 1 2 2 5 5 + 01	0.1420E+01	-0 • 5398E+02	0•0
0.1175E+01	0+1390E+01	-0.5335E+02	0.0
0.1100E+01	0.1352E+01	-0.5260E+02	0.0
0. 1000E+01	0.1292E+01	-0.5159E+02	0.0
0.9250E+00	0.1255E+01	-0.5107E+02	0.0
0. 875 0E 4 00	0.1225E+01	-0•5091E+02	0 • 0
0.8250E+00	0.1185E+01	-0.5035E+02	0.0
0.7750E+00	0.1160E+01	-0.4576E+02	0.0
0° 7000E+00	0.1115E+01	-0.4942E+02	0 • 0
0 • 60 00 E + 00	0.1050E+01	-0.4958E+02	0.0
0.5250E+00	0.1005E+01	-0.5004E+02	0.0
0.4750E+00	0.9700E+00	-0.5041E+02	0 • 0
0.4250E+00	0*9350E+00	- 0• 5080E+ 02	0.0
0•35006+00	0 •8850E+00	-0.5113E+02	0•0
0.2000E+00	0.7900E+00	-0.5137E+02	0•0
0.1000E+00	0.6150E+00	-0-5143E+02	0.0
0.1000E+00	0•3250E+00	-0.5139E+02	0•0
0.1750E+00	0.1750E+00	-0.5119E+02	0.0
0.3250E+00	0.2250E+00	-0.5141E+02	0.0
0• 4750E+ 00	0.2650E+00	-0.5127E+02	0•0
0.6000E+00	0.2900E+00	-0.5104E+02	0.0
0• 675 0E+ 00	0.3125E+00	-0.5092E+02	0.0
0•7250E+00	0•3275E+00	-0.5087E+02	0 • 0
0.7750E+00	0.3350E+00	-0.5064E+02	0.0
0.8250E+00	0.3450E+00	-0 • 5009 E+02	0.0
0.8750E+00	0.3750E+00	-0.4556E+02	0.0
0 • 95 00E +00	0.4250E+00	-0.4820E+02	0.0
0. 1050E+01	0.4875E+00	-0.4710E+02	0•0
0.1175E+01	0.5625E+00	- 0. 4686E+ 02	0*0
0.1325E+01	0 •6250E+00	-0.4866E+02	0.0
0 • 1475E + 01	0° 6650E+00	-0.5054E+02	0•0
0.1550E+01	0.7150E+00	-0.5120E+02	-0.8409E-02
0•1545E+01	0•8000E+00	-0.5147E+02	-0.7983E-02
0.1520E+01	0*9000000000000000000000000000000000000	-0.5197E+02	-0.8892E-02
0.1500E+01	0.1000E+01	-0.5283E+02	-0.4986E-02
0.1490E+01	0.1100E+01	-0.5365E+02	-0.82976-02
0 • 1470E+01	0.1200E+01	- 0• 5434E+ 02	-0.9221E-02
0.1460E+01	0.1300E+01	-0.5503E+02	-0.9038E-02
0. 1470E+01	0.1400E+01	-0.5580E+D2	-0.9774E-02
0 • 14 90E + 01	0.1475E+01	- 0. 5652E+ 02	-0.1061E-01
0.1500E+01	0.1525E+01	-0.5741E+02	-0.1380E-01
*************	** ************	************	**********

252

RESULTS

•

RESULTS

BOUNDARY NODES

X(INCH)	Y(INCH)	PRESSURE (PSI)	NORMAL GRADIENT
0.1500E+01	0.1525E+01	-0.5741E+02	0.2760E-01
0.1490E+01	0.1475E+01	-0.5652E+02	0.2121E-01
0.1470E+01	0.1400E+01	-0.5580E+02	0.1955E-01
0.1460E+01	0.1300E+01	-0. 5503E+02	0.1808E-01
0.1470E+01	0.1200E+01	√ -0.5434E+02	0.1844E-01
0.1490E+01	0.1100E+01	-0. 5365E+02	0.1659E-01
0.1500E+01	0.1000E+01	-0.5283E+02	0.9972E-02
0.1520E+01	0.9000E+00	-0.5197E+02	0.1778E-01
0.15452+01	0.8000E+00	-0.5147E+02	0.1597E-01
0.1550E+01	0.7150E+00	-0.5120E+02	0.16828-01
0.1600E+01	0.6850E+00	-0.5169E+02	0.0
0.1675E+01	0.6950E+00	-0.5239E+02	0.0
0.1725E+01	0.7050E+00	-0.5283E+02	0.0
0.1775E+01	0.7150E+00	-0.5326E+02	0.0
0.1825E+01	0.7225E+00	-0. 5374E+02	0.0
0=1875E+01	0.7275E+00	-0.5431E+02	0.0
0.1925E+01	0.7325E+00	-0.5507E+02	0.0
0.2025E+01	0•7400E+00	-0.5723E+02	0.0
0.2175E+01	0.7475E+00	-0.6092E+02	0.0
0 • 2325E+01	0.7500E+00	-0.6386E+02	0.0
0.2500E+01	0.7450E+00	-0.6587E+02	0.0
0.2675E+01	0.7350E+00	-0.6679E+02	0.0
0.2825E+01	0°452400	-0.6714E+02	0.0
0.3030E+01	0.8625E+00	-0.6741E+02	0.0
0.3110E+01	0.1125E+01	-0.6763E+02	0.0
0.3005E+01	0.1400E+01	-0.6795E+02	0.0
0.2850E+01	0.1600E+01	-0.6800E+02	0.0
0.2575E+01	0.1735E+01	-0.6759E+02	0.0
0.2325E+01	0.1810E+01	-0.6705E+02	0.0
0.2175E+01	0+1775E+01	-0.6675E+02	0.0
0.2075E+01	0.1747E+01	-0.6637E+02	0.0
0.2025E+01	0.1735E+01	-0.6602E+02	0.0
0.1975E+01	0.1717E+01	-0•6551E+02	0.0
0.1900E+01	0.1700E+01	-0.6445E+02	0.0
0.1800E+01	0.1670E+01	-0.6301E+02	0.0
0+1700E+01	0.1630E+01	-0.6123E+02	0.0
0 • 15 75E + 01	0.1580E+01	-0.5877E+02	0.0
* ** ** * ** * ** ** * * * * * * * * * *	********	******	* * * * * * * * * * * * * * * * * * * *

,

NUMBER OF STREAMLINES= 3

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.5533E+03	0 •5142E+02	0.2800E+02
2	0.4250E+03	0.2374E+02	0.2800E+02
3	0.6697E+03	0.7554E+02	0.2800E+02

PRODUCER NUMBER 2

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•4447E+03	0 • 2874E + C2	0+2800E+02
2	0.3447E+03	0.1926E+02	0.2800E+02

PRODUCER NUMBER 3

NUMBER OF STREAMLINES= 2

STREAMLINE	NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1		0.3381E+03	0 - 1804E +02	0.2800E+02
2		0.3881E+03	0.2164E+02	0.2800E+02

.

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.2730E+03	0.1335E+02	0•2800E+02
2	0•2664E+03	0.1458E+02	0.2800E+02

PRODUCER NUMBER 6

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.3664E+03	0.1561E+02	0.2800E+02

PRODUCER NUMBER 7

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.2881E+03	0.1253E+02	0.2800E+02
2	0.2947E+03	0.1203E+02	0.2800E+02

,

,

.

.

NUMBER OF STREAMLINES 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•4523E+03	0•5838E+02	0.2800E+02
1	0.2164E+03	0.2901E+02	0.2800E+02
2	0.4779E+03	0.5484E+C2	0.2800E+02
2	0.2816E+03	0.4460E+02	0.28005+02

PRODUCER NUMBER 3

NUMBER OF STREAMLINES= 3

STREAMLINE NUME	ER TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.6447E+03	0.2909E+02	0.1000E+02
2	0.5881E+03	0.1317E+02	0.1000E+02
3	0.6164E+03	0.1461E+02	0.1000E+02
1	0.3765E+03	0.5957E+02	0.2800E+02
1	0.5348E+03	0.4241E+02	0.2800E+02

PRODUCER NUMBER 4

NUMBER OF STREAMLINES= 4

NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
	0•2664E+03	0•6362E+01	0.1000E+02
	0.2881E+03	0.6823E+01	0.1000E+02
	0.3664E+03	0.8241E+01	0.1000E+02
	0.2881E+03	0.6602E+01	0.1000E+02
	NUMBER	NUMBER TOTAL LENGTH 0.2664E+03 0.2881E+03 0.3664E+03 0.2881E+03	NUMBER TOTAL LENGTH AVERAGE WIDTH 0.2664E+03 0.6362E+01 0.2881E+03 0.6823E+01 0.3664E+03 0.8241E+01 0.2881E+03 0.6602E+01

e

··

NUMBER OF STREAMLINES= 5

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•4750E+03	0.1096E+02	0.10002+02
2	0.3848E+03	0.8447E+01	0.1000E+02
3	0.3348E+03	0.7668E+01	0.1000E+02
4	0.3316E+03	0.7443E+01	0.1000E+02
5	0.3881E+03	0.9796E+01	0-1000E+02

PRODUCER NUMBER 6

NUMBER OF STREAMLINES= 5

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.7033E+03	0.2170E+02	0.1000E+02
2	0.8447E+03	0.2877E+02	0.1000E+02
3	0.7197E+03	0.1975E+02	0.1000E+02
4	0.5381E+03	0.1590E+02	0.1000E+02
5	0.5914E+03	0.2104E+02	0.1000E+02
1 2 3 4 5	0.7033E+03 0.8447E+03 0.7197E+03 0.5381E+03 0.5914E+03	0.2170E+02 0.2877E+02 0.1975E+02 0.1590E+02 0.2104E+02	0.1000E+02 0.1000E+02 0.1000E+02 0.1000E+02 0.1000E+02

NO STREAMLINE FROM REGION 2 CROSSES INTO REGION 1

257

٠

APPENDIX L

STEAMFLOOD PREDICTION OF SHIELLS CANYON FIELD ANALYSED AS A PIECEWISE HOMOGENEOUS RESERVOIR HAVING SEALED BOUNDARY

APPENDIX L

. •

STEAMFLUED PREDICTION OF SHIELLS CANYON(203) FIELD METHOD: STREAMLINE/STREAMTUBE METHOD USING (BEM)TECHNIQUE ANALYSIS AS A PIECE-WISE HEMOGENEOUS RESERVEIR HAVING TWO REGIONS OF UNEQUAL PERMEABILITY BOUNDARY CONDITION: SEALED OUTER BOUNDARY PRODUCTION RATES: ASSIGNED EQUAL IN ENTIRE REGION BY: D. T. NUMBERE, MARCH 1982

DATA

TOTAL NUMBER OF PRODUCERS=	11
STEAM TEMPERATURE (DEG. F)=	430.0000
STEAM QUALITY=	0.7000
CONVERGENCE LIMIT=	0.0010
FESERVOIR THICKNESS (FT)=	160.0000
STÉAN PRESSURE (PSI)=	344.0000
INITIAL RESERVUIR TEMPERATURE(DEG F)=	105.0000

FLUID PROPERTIES

	WATER	OIL	STEAM
DERSITY(LB/CU FT) AT STD. TEMP.	62.4000	55.0000	
DENSITY(LB/CU FT) AT STEAM TEMP.	52.3800	48.7000	0.7431
SPECIFIC HEAT(BTU/LB *F)	1.0000	0.4860	1.0000
LATENT HEAT (ET U/LB)			789.5100

PROPERTIES OF THE CAP AND BASE ROCK

DENSITY (LB/CU. FT)	149.0000	
SPECIFIC HEAT(BTU/LB-*F)	0.2130	
THERM. COND.(BTU/HR-FT-*F)	1.1000	

.

	RESERVCIR RUCK	PROPERTIES
	، هنه های رمد برده میرد این شام استر برد برد هی هی باین هم هم این هم ا	
	REGION 1	REGION 2
POPOSITY	0.2050	0.1800
DEN.(LEZCU FT)	165.0000	165.0000
SPEC. HEAT(BTU/LB*F)	0.2000	0.2000
PEFMEABILITY (MD)	140.0000	70.0000

INITIAL FLUID SATURATIONS

REGION 1 PEGION 2 WATER 0.5500 0.5500 UIL 0.4500 0.4500 STEAM 0.0 0.0

AVERAGE RESIDUAL SATURATIONS BEHIND THE FRONT

	REGION 1	REGION 2
•		
WATER	0.5800	0.5800
OIL	0.1800	0.1300
STEAM	0.2400	0.2400

-

INPUT DATA FROM STREAMLINE PRUGRAM

WELL NU. S/L NO. CODE LENGTH WIDTH RATE LENGTH WIDTH 1 1 1 553.30 51.42 28.00 0.0 0.0 0.0 1 2 1 425.00 23.74 28.00 0.0 0.0 0.0 1 3 1 669.70 75.54 28.00 0.0 0.0 0.0 2 1 1 444.70 28.74 28.00 0.0 0.0 0.0 2 2 1 344.70 19.26 28.00 0.0 0.0 0.0 3 1 1 338.10 21.64 28.00 0.0 0.0 0.0 3 2 1 388.10 21.64 28.00 0.0 0.0 0.0 4 1 1 273.00 13.35 28.00 0.0 0.0 0.0 4 2 1 266.40 14.58 28.00 0.0 0.0 0.0 5 1 1 346.80 13.71 28.00	PATE 0.0 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0
6 2 1 294.70 12.03 28.00 0.0 0.0 7 1 2 452.30 58.38 23.00 216.40 29.01 7 2 2 477.90 54.84 28.00 281.60 44.60 3 1 2 376.50 59.57 28.00 534.80 42.41 3 2 1 644.70 29.05 10.00 0.0 0.0	0.0
7 1 2 452.30 58.38 23.00 216.40 29.01 7 2 2 477.90 54.84 28.00 281.60 44.60 3 1 2 376.50 59.57 28.00 534.80 42.41 3 2 1 644.70 29.05 10.00 0.0 0.0	0.0
7 2 2 477.90 54.84 28.00 281.60 44.60 3 1 2 376.50 59.57 28.00 534.80 42.41 3 2 1 644.70 29.09 10.00 0.0 0.0	28.00
3 1 2 376.50 59.57 28.00 534.80 42.41 3 2 1 644.70 29.09 10.00 0.0 0.0	28.00
3 2 1 644.70 29.09 10.00 0.0 0.0	28.00
	0.0
3 3 1 588.10 13.17 10.00 0.0 0.0	0.0
8 4 1 616.40 14.61 10.00 0.0 0.0	0.0
9 1 1 266.40 6.36 10.00 9.0 0.0	0.0
9 2 1 288.10 6.82 10.00 0.0 0.0	0 • C
9 3 1 366.40 8.24 10.00 0.0 0.0	0.0
9 4 1 288.10 6.60 10.00 0.0 0.0	0.0
10 1 1 475.00 10.96 10.00 0.0 0.0	0.0
10 2 1 384.80 8.45 10.00 0.0 0.0	0.0
10 3 1 334.80 7.67 10.00 0.0 0.0	0.0
10 4 1 331.60 7.44 10.00 0.0 0.0	0.0
10 5 1 388.10 9.80 10.00 0.0 0.0	0.0
11 1 1 703.30 21.70 10.00 0.0 0.0	0.0
11 2 1 844.70 28.77 10.00 0.0 0.0	0.0
11 3 1 719.70 19.75 10.00 0.0 0.0	0.0
11 4 1 538.10 15.90 10.00 0.0 0.0	0.0
11 5 1 591.40 21.04 10.00 0.0 0.0	0.0

.

261

PROD. NO.	STREAMLINE NO.	CODE	ENDTIME(1)	ENDTIME(2)
1	1	1	18872.6953	0.0
1	2	1	6142.0391	0.0
1	3	1	36053.1523	0.0
2	1	1	7903.7891	0.0
2	2	1	3947.0635	0.0
3	1	1	3611.0315	0.0
3	2	1	5056.8008	0.0
4	1	1	2110.9402	0.0
4	2	1	2255.1360	0.0
5	1	1	3375.7742	0.0
5	2	1	2682.9524	0.0
6	1	1	2090.1030	0.0
Ű	2	1	2051.3933	0.0
7	1	2	17379.4336	21095.7500
7	2	2	17236.3633	24932.4414
Ë	1	2	14525.8516	29210.0820
8	2	1	37627.2305	0.0
3	3	1	14001.4336	0.0
3	4	1	16518.7578	0.0
9	1	1	2777.7727	0.0
)	2	1	3242.8152	0.0
9	3	1	5092.4102	0.0
4	4	1	3133.0645	0.0
10	1	1	9101.8555	0.0
10	2	i	5505.5273	0.0
10	3	1	4291.3516	0.0
10	4	1	4117.0391	0.0
10	5	1	6502.2969	0.0
11	1	1	29753.0977	0.0
11	2	1	50784.7969	0.0
11	3	1	27456.6445	0.0
11	4	1	15614.1445	0.0
11	5	1	23645.6953	0.0

CALCULATED BREAKTHPOUGH TIMES(HOURS) FOR EACH STREAMTUBE

REAL TIME(HOURS)= 6000.0000

DIMENSIONLESS TIME= 0.0325

WELL	STRZL	ND. OF REGIO	INS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1	0.1557E+05		
1	2	1	0.1557E+05		
1	3	1	0.15575+05		
-	•	-		0-467CE+05	
2	1	1	0.1557F+05		
2	2	1	0.1047E+05		
-		-		0.26948+05	
3	1	1	0.9620F+04		
3	2	1	0.13255+05		
•	-	-	0010202,00	0.22875+05	
4	1	1	0.57486+04	00022072000	
4	2	1	0.61260+04		
•	-	-	0001202.0,	0-11876+05	
65	1	1	0.90215404	JULIO 12100	
£) £,	2	1	0.72405+04		
v	-	•		0-16265+05	
6	1	1	0.56945404	0.10202,05	
6	2	1	0.55928+04		
0	•	•	00000000	0.11295405	
7	1	2	0.15578+05	0.11222.03	
7	2	2	0.15570+05		
•	•.	E.	0	0-31175+05	
2	1	2	0.15575+05	0.51122105	
3	2	1	0.55605+04		
a	<u>د</u> ۲	1	0.550002404		
с. С	<u>م</u>	1	0.55605+04		
0	-	•	0.0000000404	0-322554-05	
G	1	1	0.26735404	0.32232,03	
Ģ	2	1	0-31005+04		
ú	- -7	1	0.47625+04		
ģ	4	1	0.30005+04		
•	-	•	0.0000.104	0 13545+05	
10	1	1	0.55605404	0+13542+05	
10	2	1	0.51275404		
10		1	0.40405404		
10	<i>.</i>	1	0 32075+04		
10	4 5	1	0 55405+04		
10	.,	1	0.00000000	0.04105105	
1 1	1	1	0 55405404	0.24192+05	• •
11	•	1			
1 2	د. ح	1			
11	ت ۸	1			
11	ч Б	. ⊥	0.55605404		
* 1	5	*	0.0000000404	0.27805+05	

0.26395+06

REAL TIME(HOURS)= 12000.0000

		DII	MENSIONLE	SS TIME=	0.0650		
WELL	STRZE	ND. OF	REGIONS	RECOVERY	WELL TOTAL	RESERVOIR	TOTAL
1	1	1	0	•2969E+05			
1	2	1	0	•1591E+05			
1	3	1	0	•2969E+05			
					0.7529E+05		
2	1	1	0	≈2016E+05			
2	2	1	0	•1047E+05			
					0.30632+05		
3	1	1	0	•9520E+04			
ن	2	1	0	•1325E+05			
					0•2287E+05		
4	1	1	0	•5743E+04			
4	2	1	0	•6126E+04			
<i>r</i> -			0	C001:000	0.11876+05		
5	1	1	0	• 9021L+04			
5	2	1	0	●7240E+04	0 16 26 5+ 05		
÷.	1	1	0	55045104	0.10202+05		
С - А	1	1	0	-56994E+04			
C	٤.	1	0		0.11295+05		
7	1	2	0	-20605+05	0.11292.03		
7	2	2	0	•2969E+05			
•	-	E	Ū		0.5938F+05		
ى	1	2	0	•2969E+05			
5	2	1	0	•1060E+05			
3	3	1	0	.1060F+05			
5	4	1	0	.1060E+05			
					0.61500+05		
9	1	1	0	•2673E+04			
9	2	1	0	•3100E+04			
ò	З	1	0	•4762E+04			
9	4	1	0	•3000E+04			
					0±1354E+05		
10	1	1	0	•8211E+04			
10	2	1	0	•5127E+04			
10	3	1	0	•4049E+04			
10	4	1	C	•3893E+04			
10	5	1	0	•5996E+04			
		•		10. 35.05	0.2728E+05		
11	1	1	0	•1050E+05			
11	2	1	0	10600405			
11	с И	1	0	10605+05			
11	4	1	0	-1060E+05			
	0	1	0		0.53020+05		
					· · · · · · · · · · · · ·		

0.3829E+06

264

PEAL TIME(HOURS) = 18000.0000

DIMENSIONLESS TIME= 0.0975

#ELL	STRZE	NO. OF	REGIONS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1	0.42998+05		
1	2	1	0.15915+05		
1	3	1	0.4299E+05		
				0.10192+06	
2	1	1	0.2016E+05		
2	2	1	0.1047E+05		
		_		0.3063F+05	
۲.	1	1	0.9620E+04		
3	2	1	0 • 1325E +0 5		
		-		0.2287E+05	
4	1	1	0.57485+04		
4	2	1	0.6126F+04		
	_	-		0.1187F+05	
5	1	1	0.90215+04		
5	2	1	0.7240F+0.4		
-	-	-		0-16265+05	
ι	1	1	0.5694F+04	0000000000	
i.	- 2	1	0.5592E+04		
•.•	2	-		0-11295+05	
7	1	2	0-42835+05		
7	2	2	0 -42795+05		
	-			0.85625+05	
ĸ	1	2	0.42075+05		
8	2	1	0.15355+05		
5	3	1	0.12225+05		
ь. 5	4	1	0.14205+05		
.,	,	•	0014202103	0.83845+05	
4	1	1	0.26735+04		
- - 9	2	1	0.31000+04		
- G	3	- 1	0.4762E+04		
ģ	4	1	0.30005+04		
	,	-		0-13545+05	
10	1	1	0.82115+04		
10	2	1	0.5127E+04		
10		- 1	0.40495+04		
10	4	- 1	0.38936+04		
10	5	- 1	0.59965+04		
	÷	•	0.000000000	0.2728F+05	
11	1	1	0.1535E+05	0.27201+03	
11	2	1	0.15355+05		
11	- 3	- 1	0.15355405		
11	4	1	0,13498+05		
11	5	- 1	0.15355±05		
	-	•		0.74910+05	

0.4800E+06

REAL TIME(HEURS)= 24000.0000

VILL STR/L NUL OF REGIONS RECUVERY VELL TOTAL RESERVOIP TOTAL 1 1 1 0.4487E405 0.1164E405 1 2 1 0.1591E405 0.1164E406 2 1 1 0.2016E405 0.1164E405 3 1 0.1047E405 0.3063E405 0.3063E405 3 1 1 0.99620E404 0.3063E405 3 2 1 0.1325E405 0.2287E405 4 1 1 0.9921E404 0.1187E405 5 1 1 0.9021E404 0.1187E405 6 1 1 0.9021E404 0.1125E405 6 1 1 0.5034E404 0.1125E405 6 1 1 0.5034E405 0.1125E405 7 1 2 0.5335E405 0.1043E406 7 1 2 0.5332E405 0.1043E406 9 1 1 0.2030E404 0.11354E405 9 1 1 0.3000E404 0.11354E405 9 1 1 0.30303E404 0.11354E405 9 1 1 0.30393E404 0.2722EE405 10 2			DIMENSIONLE	SS TIME=	0.1300	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WELL	STRZL	NC. OF REGIONS	RECOVERY	WELL TOTAL	RESERVOIP TOTAL
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1 0	-4487E+05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	1 0	-1591E+05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	1 0	•15569E+05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	0		000000000	0.11655+06	
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\$	2	1	1 0	-2016E+05	0011002.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	2	1 0	-10478+05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	• •	•••••	0.30630+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3	1	1 0	-962 0E +04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	1 0	-1325E+05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	-			0.22875+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	1 0	•5748E+04		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	2	1 0	-6126F+04		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	•••		COLLCE . CA	0.1187E+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.	1	1 0	-9021E+04	0.116161000	
$\begin{array}{c cccccc} 0.16261404 \\ 0.16262405 \\ \hline \\ 0.16262405 \\ \hline \\ 0.11252405 \\ \hline \\ 0.11252405 \\ \hline \\ 0.11252405 \\ \hline \\ 0.10432406 \\ \hline \\ 0.1043406 \\ \hline \\ 0.104406 \\ \hline \\ 0.10460 \\ \hline \\ \hline \\ 0.10406 \\ \hline \\ 0.1040 \\ \hline \\ \hline \\ 0.1040 \\ \hline \\ 0.1040 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.1040 \\ \hline \\ $	5	2	1 0	·7240E+04		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ű	6-			0.16265+05	
$ \begin{array}{c} \begin{array}{c} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	F.	1	1 0	-56945+04	0.10202.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	2	1 0	-5502E±04		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	2	1 0	• JJ 72L 704	0.11268+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3	2 0	-5034E+05	0011252.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2	2 0	•5395E+05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	••			0+10430+06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	в	1	2 O	•5323E+05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	1 9	•1989E+05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	3	1 0	·1222E+05		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a	4	1 0	•1420E+05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-				0.9954F+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ģ	1	1 0	•2673E+04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	2	1 0	-3100E+04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	3	1 0	•4762E+04		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	4	1 0	.3000E+04		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		·			0.13546+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1	1 0	-8211E+04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2	1 0	-5127E+04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	3	1 0	•4049E+04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	4	1 0	• 389 3E + 0.4		
0.2728E+05 $11 1 0.1989E+05$ $11 2 1 0.1989E+05$ $11 3 1 0.1989E+05$ $11 3 1 0.1989E+05$ $11 4 1 0.1349E+05$ $11 5 1 0.1963E+05$ $0.9278E+05$	10	5	1 0	-5996E+04		
11 1 0.1989E+05 11 2 1 0.1989E+05 11 3 1 0.1989E+05 11 4 1 0.1349E+05 11 5 1 0.1963E+05 0.9278E+05 0.9278E+05	- •	-	- •		0.2728F+05	
11 2 1 0.1989E+05 11 3 1 0.1989E+05 11 4 1 0.1349E+05 11 5 1 0.1963E+05 0.9278E+05 0.9278E+05	11	1	1 0	•1989E+05		
11 3 1 0.1989E+05 11 4 1 0.1349E+05 11 5 1 0.1963E+05 0.9278E+05	11	2	1 0	•1989E+05		
11 4 1 0.1349E+05 11 5 1 0.1963E+05 0.9278E+05	11	3	1 0	·1989E+05		
11 5 1 0.1963E+05 0.9278E+05	11	4	1 0	•1349E+05		
0•9278E+05	11	5	1 0	.1963E+05		
					0 • 92 78E+ 05	

0.54682+06

REAL TIME(HOURS)= 30000.0000

DIMENSIONLESS TIME= 0.1625

WELL	STP/L	NO. OF REGIONS	RECOVERY	WELL TOTAL	RESERVOIP TOTAL
1	1	1 0	0.4487E+05		
1	2	1 (0.1591E.+05		
1	3	1 0	0.6789E+05		
	-			0.1287E+06	
2	1	1 0	0.2016E+05		
2	2	1 (0•1047E+05		
				0.3063E+05	
3	1	1 0	•9620E+04		
د	2	1 0	•1325E+05		
				0•2287E+05	
4	1	1 0	0•5748E+04		
4	2	1 0	0•6126E+04		
				0•1187E+05	
5	1	1 0	0•9021E+04		
5	2	1 0	0.7240E+04		
				0.16262+05	
<i>t</i> ,	1	1 ()•5694E+04		
Ğ	2	1 ()•3592E+04		
				0.1129E+05	
7	1	2 0)•5034E+05		
7	2	2. (0•5873E+05		
				0.1091E+06	
5	1	2. 0	•66 78E+05		
Ü	2	1 0	0.2425E+05		
8	З	1 (•1222E+05		
8	4	1 0	•1420E+05		
				0•1174E+06	
Э	1	1 (•2673E+04		
9	2	1 (0•3100 ⊑+ 04		
9	З	1 0	0.4762E+04		
ò	4	1 (0.3000E+04		
				0.13542+05	
10	1	1 (0.8211E+04		
10	2	1 (0•5127E+04		
10	3	1 ()•4049E+04		
10	4	1 (0.3893E+04		
10	5	1 ().5996E+04		
				0.27282+05	
11	1	1 (0.2407E+05		
11	2	1 (0•2425E+05		
11	3	1 (0.2242C+05		
11	4	1 (0.1349E+05		
11	5	1 (0.1963E+05		
				0.1039E+06	

0.59285+06

PREDICTED RECOVERY

TIME(DAYS)	RECOVERY (BBLS)
62.5000	0.16245+05
125.0000	0-29885+05
187.5000	0.39535+05
250.0000	0.47002+05
312.5000	0.5309E+05
375.0000	0.58478+05
437.5000	0.6338E+05
500.0000	0.6819E+05
562.5000	0.72942+05
625.0000	0.77460+05
687.5000	0.8167E+05
750.0000	0.85480+05
812.5000	0.8893E+05
875.0000	0.9201E +05
937.5000	0.9490E+05
1000.0000	0.97380+05
1062.5000	0.1001E+06
1125.0000	0.1019E.+00
1187.5000	0.10350+06
1250.0000	0.10561+06

..-
APPENDIX M

RESULTS OF STREAMLINE MODELLING OF SHIELLS CANYON FIELD AS A PIECEWISE HOMOGENEOUS RESERVOIR. PART OF ITS BOUNDARY AT CONSTANT PRESSURE, THE REMAINDER

SEALED

· .

APPENDIX M

BOUNDARY ELEMENT MODELLING OF SHIELLS CANYON(203) FIELD

ANALYSIS AS A PIECEWISE-HOMOGENEOUS RESERVIOR

PART OF THE BOUNDARY AT CONSTANT PRESSURE, THE REMAINDER SEALED BY: D. T. NUMBERE, UNIVERSITY OF OKLAHOMA, 1982

REGION 1.0

DATA

NUMBER OF EDUNDARY ELEMENTS= 43 NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 0 NUMBER OF SOURCES AND SINKS= 7 NUMBER OF INTERFACE NODES= 10

PERMEABILITY(MD)= 140.0000

THICKNESS(FT) = 160.0000

PORDSITY= 0.2050

SCALE: 1 INCH = 738.46FEET

THE CDC	RDINATES	OF	THE	EXTREME	POINTS	OF	THE	ECUNDARY	ELEMENTS
---------	----------	----	-----	---------	--------	----	-----	----------	----------

POINT	X(INCH)	Y(INCH)
1	1.5000	1.5500
2	1.3500	1.4800
3	1.2500	1.4400
4	1.2000	1.4000
5	1.1500	1.3800
6	1.0500	1.3250
7	0.9500	1.2600
8	0.9000	1.2500
9	0.8500	1.2000
10	0.8000	1.1700
11	0.7500	1.1500
12	0.6500	1.0800
13	0.5500	1.0200
14	0.5000	0.9900
15	0.4500	0.9500
16	0.4000	0.9200
17	0.3000	0.8500
18	0.1000	0.7300
19	0.1000	0.5000
20	0.1000	0.1500
21	0.2500	0.2000
22	0•4000	0.2500
23	0.5500	0.2800
24	0.6500	0.3000
25	0.7000	0.3250
26	0.7500	0.3300
27	0.8000	0.3400
28	0.8500	0.3500
29	0.9000	0.4000
30	1.0000	0.4500
31	1 -1000	0.5250
32	1.2500	0.6000
33	1.4000	0.6500
34	1.5500	0.6800
35	1.5500	0.7500
36	1.5400	0.8500
37	1.5000	0.9500
38	1.5000	1.0500
39	1.4800	1.1500
40	1.4600	1.2500
41	1.4600	1.3500
42	1.4800	1.4500
43	1.5000	1.5000

BOUNDARY CONDITIONS

NODE	CODE	PRESCRIBED VALUE
1	1	0.0
2	1	0.0
3	1	0.0
4	1	0.0
5	1	0.0
6	1	0.0
7	1	0 • 0
8	1	0.0
9	1	0.0
10	1	0.0
11	1	0.0
12	1	0.0
13	1	0 • 0
14	1	0.0
15	1	0.0
16	1	0.0
17	1	0.0
18	0	0.85000COE+02
19	0	0.8500000E+02
20	1	0.0
21	1	0.0
22	1	0.0
23	1	0.0
24	1	0.0
25	1	0.0
26	1	0.0
27	1	0.0
28	1	0.0
29	1	0.0
30	1	0.0
31	1	0.0
32	1	0.0
33	1	0.0
34	2	0.0
35	2	0.0
36	2	0.0
37	2	0.0
38	2	0.0
39	2	0.0
40	2	0.0
41	2	0.0
42	2	0.0
43	2	0.0

COORDINATES OF SOURCES AND SINKS AND THEIR STRENGTHS

· ·

X (INCH)	Y(INCH)	RATE(BBL/D)
0.4500	0.5500	-69.1000
0.5000	0.8000	-69.1000
0.7500	0.4000	-69.1000
0.9000	1.1500	-69.1000
1.0000	0.8000	560.0000
1.2500	1.2000	-69.1000
1.3500	1.0000	-69.1000

THE AVERAGE RADIUS OF THE WELLS(INCH) IS= 0.500 THE CHARACTERISTIC PRESSURE(PSI) IS= 85.0000

1

DATA

.

NUMBER OF BOUNDARY ELEMENTS= 37 NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED= 0 NUMBER OF SOURCES AND SINKS= 6 NUMBER OF INTERFACE NODES= 10

PERMEABILITY(MD) = 70.0000

THICKNESS(FT) = 160.0000

PORDSITY= 0.2050

SCALE: 1 INCH = 738.46FEET

POINT	X(INCH)	Y(INCH)
1	1.5000	1.5500
2	1.5000	1.5000
3	1.4800	1.4500
4	1.4600	1.3500
5	1.4600	1.2500
6	1.4800	1.1500
7	1.5000	1.0500
8	1.5000	0.9500
9	1.5400	0.8500
10	1.5500	0.7500
11	1.5500	0.6800
12	1.6500	0.6900
13	1.7000	0.7000
14	1.7500	0.7100
15	1.8000	0.7200
16	1.8500	0.7250
17	1.9000	0.7300
18	1.9500	0.7350
19	2.1000	0.7450
20	2.2500	0.7500
21	2.4000	0.7500
22	2.6000	0.7400
23	2.7500	0.7300
24	2.9000	0.7250
25	3.1600	1.0000
26	3.0600	1.2500
27	2.9500	1.5500
2 8	2.7500	1.6500
29	2.4000	1.8200
30	2.2500	1.8000
31	2.1000	1.7500
32	2.0500	1.7450
33	2.0000	1.7250
34	1.9500	1.7100
35	1.8500	1.6900
36	1.7500	1.6500
37	1.6500	1.6100

. .

× . .

BOUNDARY CONDITIONS

•

NODE	CODE	PRESCRIBED VALUE
1	2	0.0
2	2	0.0
3	2	0.0
4	2	0.0
5	2	0.0
6	2	0.0
7	2	0.0
8	2	0.0
9	2	0.0
10	2	0.0
11	1	0.0
12	1	0.0
13	1	0.0
14	1	0.0
15	1	0.0
16	ì	0.0
17	1	0.0
18	1	0.0
19	1	0.0
20	1	0.0
21	1	0.0
22	1	0.0
23	1	0.0
24	1	0.0
25	1	0.0
26	1	0.0
27	1	0.0
28	1	0.0
29	1	0.0
30	1	0.0
31	1	0.0
32	1	0.0
33	1	0.0
34	1	0.0
35	1	0.0
36	1	0.0
37	1	0.0

COORDINATES OF SOURCES AND SINKS AND THEIR STRENGTHS

.

X (1)	існ)	Y(INCH))		RATE(BEL/D)		
1.9	0000	0.9500	5		200.0000		
1.8	8000	1.3500)		-69 • 1000		
2.0	500	1.5500)		-69.1000		
2.1	500	1.2500)		-69.1000		
2.3	500	1.0500)		-69.1000		
2.5	5750	1.3000)		-69.1000		
THE	AVEDACE	DADTUS	ne	тне	WELLS(TNCH)	15=	0.5

THE AVERAGE RADIUS OF THE WELLS(INCH) IS= 0.500 THE CHARACTERISTIC PRESSURE(PSI) IS= 85.0000

RESULTS

BOUNDARY NODES

X(INCH)	Y(INCH)	PRESSURE (PSI)	NORMAL GRADIENT
0.1425E+01	0.1515E+01	0.8076E+02	0.0
0.1300E+01	0.1460E+01	0.8205E+02	0.0
0.1225E+01	0.1420E+01	0.8266E+02	0.0
0.1175E+01	0.1390E+01	0.8327E+02	0.0
0.1100E+01	0.1352E+01	0.8402E+02	0.0
C. 1000E+01	0.1292E+01	0.8501E+02	0.0
0.9250E+00	0.1255E+01	0.8560E+02	0.0
0.8750E+00	0.1225E+01	0.8568E+02	0.0
0.8250E+00	0.1185E+01	0.8623E+02	0.0
0.7750E+00	0.1160E+01	0. 8675E+02	0.0
0.7000E+00	0.1115E+01	0.8713E+02	0.0
0.6000E+00	0.1050E+01	0.8695E+02	0.0
0.5250E+00	0.1005E+01	0.8648E+02	0.0
0.4750E+00	0.9700E+00	0.8610E+02	0.0
0.4250E+00	0.9350E+00	0.8569E+02	0 • 0
0.3500E+00	0.8850E+00	0.8537E+02	0.0
0.2000E+00	0.7900E+00	0.8509E+02	0.0
0.1000E+00	0.6150E+00	0.8500E+02	-0.3533E-03
0.1000E+00	0.3250E+00	0.8500E+02	0.3379E-03
0.1750E+00	0.1750E+00	0•8468E+02	0.0
0.3250E+00	0.2250E+00	0.8510E+02	0.0
0.4750E+00	0.2650E+00	0.8524E+02	0.0
0.6000E+00	0.2900E+00	0.8548E+02	0.0
0.6750E+00	0.3125E+00	0.8557E+02	0.0
0.7250E+00	0.3275E+00	0.8565E+02	0.0
0.7750E+00	0.3350E+00	0. 8590E+02	0.0
0.8250E+00	0.3450E+00	0.8645E+02	0.0
0.8750E+00	0+3750E+00	0.8700E+02	0.0
0.9500E+00	0.4250E+00	0. 8834E+ 02	0.0
0.1050E+01	0.4875E+00	0.8946E+02	0.0
0+1175E+01	0.5625E+00	0.8972E+02	0.0
0.1325E+01	0.6250E+00	0. 8794E+02	0.0
0.1475E+01	0.6650E+00	0.8608E+02	0.0
0.1550E+01	0.7150E+00	0.8560E+02	-0.1048E-01
0.1545E+01	0+8000E+00	0.8519E+02	-0.6458E-02
0.1520E+01	0.9000E+00	0.8469E+02	-0.8446E-02
0.1500E+01	0.1000E+01	0.8383E+02	-0.4569E-02
0.1490E+01	0.1100E+01	0.8302E+02	-0.7717E-02
0.1470E+01	0.1200E+01	0.8234E+02	-0.8584E-02
0.1460E+01	0.1300E+01	0.8167E+02	-0.8253E-02
0 • 1 4 70E + 01	0.1400E+01	0.8094E+02	-0.7529E-02
0.1490E+01	0.1475E+01	0.8047E+02	-0.6497E-02
0.1500E+01	0.1525E+01	0.8102E+02	-0.2877E-01
***	*****	*****	* * * * * * * * * * * * * * * * * * * *

RESULTS

BOUNDARY NODES

X(INCH)	Y(INCH)	PRESSURE (PSI)	NORMAL GRADIENT
0.1500E+01	0.1525E+01	0.8102E+02	0.5754E-01
0.1490E+01	0.1475E+01	0.8047E+02	0.1299E-01
0.1470E+01	0-1400E+01	0.8094E+02	0.1506E-01
0.1460E+01	0.1300E+01	0.8167E+02	0.1651E-01
0.1470E+01	0.1200E+01	0.8234E+02	0.1717E-01
0.1490E+01	0.1100E+01	0.8302E+02	0.1543E-01
0.1500E+01	0.1000E+01	0.8383E+02	0.9137E-02
0.1520E+01	0.9000E+00	0.8469E+02	0.1689E-01
0.1545E+01	0.8000E+00	0.8519E+02	0.1292E-01
0.1550E+01	0.7150E+00	0.8560E+02	0.2096E-01
0.1600E+01	0.6850E+00	0.8512E+02	0.0
0.1675E+01	0.6950E+00	0.8438E+02	0.0
0.1725E+01	0.7050E+00	0.8395E+02	0.0
0.1775E+01	0•7150E+00	0.8353E+02	0.0
0.1825E+01	0.7225E+00	0.8306E+02	0.0
0.1875E+01	0.7275E+00	0.8251E+02	0.0
0.1925E+01	0.7325E+00	0.8177E+02	0.0
0.2025E+01	0.7400E+00	0.7962E+02	0.0
0.2175E+01	0 +7475E+00	0.7595E+02	0.0
0•2325E+01	0.7500E+00	0.7303E+02	0.0
0.2500E+01	0.7450E+00	0.7103E+02	0.0
0.26752+01	0.7350E+00	0.7012E+02	0.0
0.2825E+01	0.7275E+00	0.6975E+02	0.0
0.3030E+01	0.8625E+00	0.6950E+02	0.0
0.3110E+01	0.1125E+01	0.6931E+02	0.0
0.3005E+01	0.1400E+01	0.6897E+02	0 • 0
0.2850E+01	0.1600E+01	0.6892E+02	0.0
0.2575E+01	0.1735E+01	0.6933E+02	0.0
0•2325E+01	0.1810E+01	0.6975E+02	0.0
0.2175E+01	0.1775E+01	0.7019E+02	0.0
0.2075E+01	0.1747E+01	0.7075E+02	0.0
0.2025E+01	0.1735E+01	0.7096E+02	0.0
0.1975E+01	0.1717E+01	0.7149E+02	0.0
0.1900E+01	0.1700E+01	0.7255E+02	0.0
0.1800E+01	0.1670E+01	0.7403E+02	0.0
0.1700E+01	0.1630E+01	0.7589E+02	0.0
0.1575E+01	0.1580E+01	0.7864E+02	0.0
· ***** ** ****************************	*****	*****	* * * * * * * * * * * * * * * * * * * *

1	0.3381E+03	0.1795E+02	0.28002+02
2	0.3816E+03	0 •2111E+02	0.2800E+02

NUMBER OF STREAMLINES = 3

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•5533E+03	0•4991E+02	0.2800E+02
2	0.4250E+03	0 •2343E+02	0.2800E+02
3	0.6566E+03	0.6611E+02	0.2800E+02

PRODUCER NUMBER 2

•

.

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•4447E+03	0.2795E+02	0.2800E+02
2	0.3447E+03	0.1906E+02	0.28002+02

PRODUCER NUMBER 3

NUMBER OF STREAMLINES = 2

STREAMLINE NUMBER 1	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE

•			
1	0.3381E+03	0.1795E+02	0.2800E+02
2	0.3816E+03	0.2111E+02	0.2800E+02

•••

NUMBER OF STREAMLINES= 2

STREAMLINE	NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1		0.2697E+03	0.1331E+02	0.2800E+02
2		0.2697E+03	0.1475E+02	0.2800E+02

PRODUCER NUMBER 6

NUMBER OF STREAMLINES= 2

STREAMLINE NUMBER	TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•3664E+03	0.1586E+02	0.2600E+02
2	0.3316E+03	0.1379E+02	0.2800E+02

PRODUCER NUMBER 7

-

NUMBER OF STREAMLINES = 2

STREAMLINE I	NUMBER	T OT AL	LENGT H	AVERAGE	WIDTH	INJ.	RATE
1		0.291	4E+03	0.1262	E+02	0.280	00E + 02
2		0.294	7E+03	0.1212	E+02	0.280)0E+02

...

NUMBER OF STREAMLINES= 9

STREAMLINE NUMBE	R TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•4513E+03	0.6006E+02	0.2800E+02
1	0.2164E+03	0.3008E+02	0.2800E+02
2	0•4784E+03	0.5833E+02	0.2800E+02
2	0.2480E+03	0.3138E+02	0.2800E+02

PRODUCER NUMBER 3

NUMBER OF STREAMLINES= 3

STREAMLINE NUMB	ER TOTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.5914E+03	0.1337E+02	0.1000E+02
2	0.6197E+03	0.1481E+02	0.10002+02
1	0•3764E+03	0.6182E+02	0.28002+02
1	0•5414E+03	0.4388E+02	0.2800E+02

PRODUCER NUMBER 4

.

NUMBER OF STREAMLINES= 4

STREAMLINE N	IUMBER TOTAL	LENGTH AVE	RAGE WIDTH	INJ.	RATE
1	0.266	54E+03 04	•6399E+01	0.100	0E+02
2	0.288	31E+03 0	•6867E+01	0.100	0E+02
3	0.363	31E+03 0-	•8268E+01	0.100	0E+02
4	0.288	31E+03 0	•6640E+01	0.100	0E+02
1 2 3 4	0 • 266 0 • 288 0 • 363 0 • 288	54E+03 0 31E+03 0 31E+03 0 31E+03 0	•6399E+01 •6867E+01 •8268E+01 •6640E+01	0.100 0.100 0.100 0.100	0E+02 0E+02 0E+02

NUMBER OF STREAMLINES = 5

STREAMLINE NUMBER	TUTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0•4783E+03	0.1111E+02	0.10002+02
2	0.3848E+03	0.8507E+01	0.1000E+02
3	0.3348E+03	0.7707E+01	0.1000E+02
4	0.3316E+03	0.7468E+01	0.1000E+02
5	0.3848E+03	0.9714E+01	0.1000E+02

PRODUCER NUMBER 6

۰.

NUMBER OF STREAMLINES= 5

STREAMLINE NUMBER	TGTAL LENGTH	AVERAGE WIDTH	INJ. RATE
1	0.7033E+03	0.2165E+02	0.1000E+02
2	0.8348E+03	0.2773E+02	0.1000E+02
3	0.7197E+03	0.1985E+02	0.1000E+02
4	0.5381E+03	0.1601E+02	0.1000E+02
5	0.5914E+03	0.2086E+02	0.1000E+02

25

NO STREAMLINE FROM REGION 2 CROSSES INTO REGION 1

APPENDIX N

RESULTS OF STEAMFLOOD PREDICTION FOR SHIELLS CANYON FIELD AS A PIECEWISE HOMOGENEOUS RESERVOIR. PART OF ITS BOUNDARY AT CONSTANT PRESSURE, THE REMAINDER SEALED

APPENDIX N

STEAMFLOOD PREDICTION OF SHIELLS CANYON(203) FIELD METHOD: STREAMLINE/STREAMTUBE METHOD USING (EEM)TECHNIQUE ANALYSIS AS A PIECE-WISE HOMOGENEOUS RESERVOIR HAVING TWO REGIONS OF UNEQUAL PERMEABILITY BOUNDARY CONDITION: PART OF THE BOUNDARY AT CONSTANT PRESSURE, THE REMAINDER IS SEALED. PRODUCTION RATES: ASSIGNED EQUAL IN ENTIRE REGION

DATA

11
430.0000
0.7000
0.0010
160.0000
344.0000
105.0000

FLUID PROPERTIES

	WATER	OIL	STEAM
			~~ <i>~~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DENSITY(LB/CU FT) AT STD. TEMP.	62.4000	55.0000	
DENSITY(LB/CU FT) AT STEAM TEMP.	52.3800	48.7000	0.7431
SPECIFIC HEAT(BTU/LB *F)	1.0000	0.4880	1.0000
LATENT HEAT (ETU/LB)			789.5100

PROPERTIES OF THE CAP AND BASE ROCK

DENSITY(LB/CU. FT)	149.0000
SPECIFIC HEAT(BTU/LB-*F)	0.2130
THERM. COND. (BTU/HR-FT-*F)	1.1000

RESERVCIR ROCK PROPERTIES

	REGION 1	REGION 2
POROSITY	0.2050	0.1800
DEN.(LB/CU FT)	165.0000	165.0000
SPEC. HEAT(BTU/LB*F)	0.2000	0.2000
PERMEABILITY (MD)	140.0000	70.0000

INITIAL FLUID SATURATIONS

	REGION 1	REGIUN 2
WATER	0.5500	0.5500
OIL	0.4500	0.4500
STEAM	0.0	0.0

AVERAGE RESIDUAL SATURATIONS BEHIND THE FRONT

	REGION 1	REGION 2
WATED	0-5800	0.5800
DIL	0.1800	0.1800
STEAM	0.2400	0.2400

-

..

.

INPUT DATA FROM STREAMLINE PROGRAM

-

-

				REGICN 1			REGION 2	
WELL NU.	S/L NÛ.	CUDE	LENGTH	WIDTH	RATE	LENGTH	WIDTH	RATE
1	1	1	553.30	49.91	28.00	0.0	0.0	0.0
1	2	1	425.00	23.40	28.00	0.0	0.0	0.0
1	3	1	656.60	66.11	28.00	0.0	0.0	0.0
2	1	1	444.70	27.95	28.00	0.0	0.0	0.0
2	2	1	344.70	19.06	28.00	0.0	0.0	0.0
З	1	1	338.10	17.95	28.00	0.0	0.0	0.0
З	2	1	381.60	21.11	28.00	0.0	0.0	0.0
4	1	1	269.70	13.31	28.00	0.0	0.0	0.0
4	2	1	269.70	14.75	28.00	0.0	0.0	0.0
5	1	1	366.40	15.86	28.00	0.0	0.0	0.0
5	2	1	331.60	13.79	28.00	0.0	0.0	0.0
6	1	1	291.40	12.62	28.00	0.0	0.0	0.0
6	2	1	294.70	12.12	28.00	0.0	0.0	0.0
7	1	2	451.30	60.06	28.00	216.40	30.08	28.00
7	2	2	478.40	58.33	28.00	248.00	31.38	28.00
8	1	2	376.40	61.82	28.00	541.40	43.88	28.00
8	2	1	591.40	13.37	10.00	0.0	0.0	0.0
8	З	1	619.70	14.81	10.00	0.0	0.0	0.0
9	1	1	266.40	6.40	10.00	0.0	0.0	0.0
9	2	1	288.10	6.87	10.00	0.0	0.0	0.0
9	3	1	363.10	8.27	10.00	0.0	0.0	0.0
9	4	1	288.10	6.64	10.00	0.0	0.0	0.0
10	1	1	478.30	11.11	10.00	0.0	0.0	0.0
10	2	1	384.80	8.51	10.00	0.0	0.0	0.0
10	3	1	334.80	7.71	10.00	0.0	0.0	0.0
10	4	1	331.60	7.47	10.00	0.0	0.0	0.0
10	5	1	384.80	9.71	10.00	0.0	0.0	0.0
11	1	1	703.30	21.65	10.00	0.0	0.0	0.0
11	2	1	834.80	27.73	10.00	0.0	0.0	0.0
11	З	1	719.70	19.85	10.00	0.0	0.0	0.0
11	4	1	538.10	16.01	10.00	0.0	0.0	0.0
11	5	1	591.40	20.86	10.00	0.0	0.0	0.0

.

....

PRUD. ND.	STREAMLINE ND.	CCDE	ENDTIME(1)	ENDTIME(2)
1	1	1	18260.6484	0.0
1	2	1	6048.5781	0.0
1	3	1	30286.2461	0.0
2	1	1	7671.5547	0.0
2	2	1	3904.0466	0.0
3	1	1	3592.2112	0.0
3	2	1	4838.9414	0.0
4	1	1	2078.0183	0.0
4	2	1	2311.8730	0.0
5	1	1	3432.4089	0.0
5	2	1	2672.3630	0.0
E	1	1	2130.7292	0.0
6	2	1	2067-1299	0.0
7	1	2	17888.3867	21748.8750
7	2	2	18472.7227	23131.5273
8	1	2	15123.5234	30573.1289
8	2	1	14321.5000	0.0
8	3	1	16866.7812	0.0
9	1	1	2794.5066	0.0
9	2	1	3264.7048	0.0
9	3	1	5061.4687	0.0
9	4	1	3151.8491	0.0
10	1	1	9305.1289	0.0
10	2	1	5547.0469	0.0
10	3	1	4314.2812	0.0
10	4	1	4131.6172	0.0
10	5	1	6386.0742	0.0
11	1	1	29675.5391	0.0
11	2	1	47986.7930	0.0
11	З	1	27613.4141	0.0
11	4	1	15732.7773	0.0
11	5	1	23419.4766	0.0

.

.

CALCULATED BREAKTHROUGH TIMES(HOURS) FOR EACH STREAMTUBE

REAL TIME(HOURS)= 6000.0000

DIMENSIONLESS TIME= 0.0325

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WELL	STR/L	NU. OF	REGIONS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	0•1557E+05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	1	0.1557E+05		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	3	1	0.1557E+05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					0.4670E+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	1	0.1557E+05		
3 1 1 0+2593E+05 3 2 1 0+1271E+05 4 1 1 0+5652E+04 4 1 1 0+56274E+04 4 2 1 0+56274E+04 5 1 1 0+563E+04 5 1 1 0+9165E+04 6 1 1 0+563E+04 6 1 1 0+563E+04 6 1 1 0+563E+04 6 1 1 0+563E+04 7 1 2 0+1557E+05 8 1 2 0+1557E+05 8 1 0+26689E+05 9 1 1 0+26689E+05 9 1 1 0+26689E+05 9 1 1 0+2669E+05 9 1 1 0+2669E+05 9 1 1 0+2669E+05 9 1 1 0+2669E+05 10 1 1 0+310E+04 10 <t< td=""><td>2</td><td>2</td><td>1</td><td>0.1036E+05</td><td></td><td></td></t<>	2	2	1	0.1036E+05		
3 1 1 0.96372E404 3 2 1 0.1271E405 4 1 1 0.5662E404 4 2 1 0.6274E404 4 2 1 0.6274E404 5 1 1 0.9165E404 5 1 1 0.9165E404 6 1 1 0.9165E404 6 1 1 0.9165E404 6 1 1 0.9163E404 6 1 1 0.9163E404 6 1 1 0.9163E404 7 1 2 0.1557E405 7 1 2 0.91557E405 8 1 2 0.91557E405 8 1 2 0.91567E404 9 3 1 0.92669E404 9 2 1 0.92669E404 9 3 1 0.4735E404 9 3 1 0.4070E404 10 1 1 0.93017E404					0.2593E+05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	З	1	1	0.9572E+04		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	2	1	0.1271E+05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					0.2228E+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	1	0.5662E+04		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	2	1	0.6274E+04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.1194E+05	
5 2 1 0.7212E+04 0.163EE+05 6 1 1 0.5600E+04 0.1143E+05 7 1 2 0.1557E+05 0.3113E+05 7 2 2 0.1557E+05 0.3113E+05 8 1 2 0.1557E+05 0.3113E+05 8 1 2 0.1557E+05 0.3113E+05 8 1 2 0.1557E+05 0.2669E+05 9 1 1 0.4735E+04 0.2669E+05 9 1 0.3017E+04 0.1356E+05 9 1 0.4735E+04 0.1356E+05 9 1 0.4735E+04 0.1356E+05 10 1 0.4070E+04 0.1356E+05 10 1 0.4070E+04 0.2426E+05 11 1 0.45560E+04 0.2426E+05 11 1 0.45560E+04 0.2426E+05 11 1 0.45560E+04 0.2780E+05	5	1	1	0.9165E+04		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2	1	0.7212E+04		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	_		0.1638E+05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1	1	0.5800E+04		
0.1143E+05 7 1 2 0.1557E+05 7 2 2 0.1557E+05 8 1 2 0.1557E+05 8 2 1 0.5560E+04 8 3 1 0.5560E+04 9 1 1 0.2669E+05 9 1 1 0.3120E+04 9 3 1 0.4735E+04 9 4 1 0.3017E+04 0.1356E+05 10 1 1 0.5560E+04 10 2 1 0.5163E+04 10 3 1 0.4070E+04 10 4 1 0.3906E+04 10 5 1 0.5560E+04 11 1 1 0.5560E+04 11 2 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 11 5 1 0.5560E+04 10 0.2780E+05	6	2	1	0.5633E+04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		-		0.1143E+05	
7 2 2 0.1557E+05 8 1 2 0.1557E+05 8 2 1 0.5560E+04 8 3 1 0.5560E+04 8 3 1 0.5560E+04 9 1 1 0.2669E+05 9 1 1 0.2669E+04 9 2 1 0.3120E+04 9 3 1 0.4735E+04 9 4 1 0.3017E+04 9 4 1 0.4735E+04 9 4 1 0.4070E+04 10 1 1 0.4070E+04 10 3 1 0.4070E+04 10 3 1 0.4070E+04 10 4 1 0.3906E+04 11 1 0.5560E+04 11 1 0.5560E+04 11 3 1 0.4560E+04 11 3 1 0.5560E+04 11 5 1 0.5560E+04 11 5	7	1	2	0.1557E+05		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2	2	0.1557E+05		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.3113E+05	
8 2 1 0.5560E+04 8 3 1 0.5560E+04 9 3 1 0.2669E+05 9 1 1 0.2669E+05 9 2 1 0.3120E+04 9 3 1 0.4735E+04 10 2 1 0.5163E+04 10 2 1 0.5163E+04 10 3 1 0.4070E+04 10 5 1 0.5560E+04 11 1 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04	8	1	2	0.1557E+05		
8 3 1 0.5560E+04 9 1 1 0.2669E+05 9 1 0.3120E+04 9 9 3 1 0.4735E+04 9 9 3 1 0.4735E+04 9 9 4 1 0.3017E+04 0.1356E+05 10 1 1 0.5560E+04 0.1356E+05 10 2 1 0.5163E+04 0.1356E+05 10 3 1 0.4070E+04 0.4070E+04 10 3 1 0.4070E+04 0.2426E+05 11 1 1 0.5560E+04 0.2426E+05 11 1 0.5560E+04 0.2426E+05 11 1 0.5560E+04 0.2426E+05 11 1 0.5560E+04 0.2780E+05	8	2	1	0.5560E+04		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	З	1	0 •5560E+04		
9 1 1 0.2689E+04 9 2 1 0.3120E+04 9 3 1 0.4735E+04 9 4 1 0.3017E+04 9 4 1 0.3017E+04 0.1356E+05 10 1 0.5560E+04 10 2 1 0.5163E+04 10 3 1 0.4070E+04 10 3 1 0.4070E+04 10 4 1 0.3906E+04 10 5 1 0.5560E+04 11 1 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 11 5 1 0.5560E+04 11 5 1 0.5560E+04 11 5 1 0.5560E+04					0.2669E+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	1	0.2689E+04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	2	1	0.3120E+04		
9 4 1 0.3017E+04 0.1356E+05 10 1 1 0.5560E+04 10 2 1 0.5163E+04 10 3 1 0.4070E+04 10 4 1 0.3906E+04 10 5 1 0.5560E+04 10 5 1 0.5560E+04 11 1 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 11 5 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05	9	З	1	0•4735E+04		
0.1356E+05 10 1 1 0.5560E+04 10 2 1 0.5163E+04 10 3 1 0.4070E+04 10 4 1 0.3906E+04 10 5 1 0.5560E+04 0.2426E+05 11 1 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05	9	4	1	0.3017E+04		
10 1 1 0.5560E+04 10 2 1 0.5163E+04 10 3 1 0.4070E+04 10 4 1 0.3906E+04 10 5 1 0.5560E+04 10 5 1 0.5560E+04 11 1 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05					0.1356E+05	
10 2 1 0.5163E+04 10 3 1 0.4070E+04 10 4 1 0.3906E+04 10 5 1 0.5560E+04 0.2426E+05 11 1 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05	10	1	1	0.5560E+04		
10 3 1 0.4070E+04 10 4 1 0.3906E+04 10 5 1 0.5560E+04 0.2426E+05 11 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05	10	2	1	0.5163E+04		
10 4 1 0.3906E+04 10 5 1 0.5560E+04 0.2426E+05 11 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05 0.2780E+05	10	3	1	0.4070E+04		
10 5 1 0.5560E+04 0.2426E+05 11 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05 0.2780E+05	10	4	1	0.3906E+04		
0.2426E+05 11 1 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05	10	5	1	0.5560E+04		
11 1 0.5560E+04 11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05					0.2426E+05	
11 2 1 0.5560E+04 11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05	11	1	1	0.5560E+04	.00	
11 3 1 0.5560E+04 11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05	11	2	1	0.5560E+04		
11 4 1 0.5560E+04 11 5 1 0.5560E+04 0.2780E+05	11	3	1	0.5560E+04		
11 5 1 0.5560E+04 0.2780E+05	11	4	1	0•5560E+04		
0.2780E+05	11	5	1	0.5560E+04		
					0.2780E+05	

-

0.2581E+06

288

REAL TIME(HEURS)= 12000.0000

DIMENSIONLESS TIME= 0.0650

WELL	STR/L	NO. OF REC	JIONS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1	0•2969E+05		
1	2	1	0.1569E+05		
1	3	1	0.2969E+05		
	-	-		0.7506E+05	
2	1	1	0.1960F+05	0000002000	
2	2	1	0.1036E+05		
	_	-		0.29976+05	
3	1	1	0.95725+04	0023372.00	
3	2	1	0.1271E+05		
-	-	-		0-22286+05	
4	1	1	0.56625+04	0022202,00	
4	2	1	0.62745+04		
•	-	•	0002742104	0.11945+05	
5	1	1	0-61655404	0011942000	
5	.▲ 	1	0-72125404		
5	2	•	0872122404	0.16395+05	
6	1	1	0.58005+04	0010322103	
6	2	1	0-56335+04		
Ŭ	-	•	0.000000004	0.11435+05	
7	1	2	0.2969F+05	0.11432403	
7	- 2	2	0.29695+05		
,	2	2	0022092103	0.59385+05	
8	1	2	0.29695+05	0.00000000	
8	2	1	0 • 1060E+05		
8	-	-	0.10605+05		
•	Ū	-	0010002.00	0.50506+05	
g	1	1	0.2089F+04		
9	2	- 1	0.31205+04		
9	- 3	-	0.47355+04		
ģ	4	1	0.3017E+04		
2	-	-	0000000	0.1356F+05	
10	1	1	0.8381E+04	0112002103	
10	2	1	0.51635+04		
10	3	- 1	0.40705+04		
10	4	- 1	0-39066+04		
10	5	1	0.58965+04		
	-	•		0.2742F+05	
11	1	1	0.1060F+05		
11	2	1	0.1060E+05		
11	3	1	0.1060E+05		
11	4	1	0.1060E+05		
11	5	1	0.1060E+05		
	-	-		0.5302E+05	

•

0.3713E+06

REAL TIME(HOURS)= 18000.0000

		DI	MENSIONLE	SS TIME=	0.0975		
WELL	STR/L	NO. OF	REGIONS	RECOVERY	WELL TOTAL	RESERVOIR	TOTAL
1	1	1	C	•4299E+05			
1	2	1	0	.1569E+05			
1	3	1	0	.4299E+05			
-					0.1017E+06		
2	1	1	0	.1960E+05			
2	2	1	0	•1036E+05			
					0.2997E+05		
3	1	1	0	•9572E+04			
3	2	1	0	.1271E+05			
					0.2228E+05		
4	1	1	0	•5662E+04			
4	2	1	0	•6274E+04			
					0.1194E+05		
5	1	1	0	•9165E+04			
5	2	1	0	•7212E+04			
					0.1638E+05		
6	1	1	0	•5800E+04			
ú	2	1	0	•5633E+04			
					0•1143E+05		
7	1	2	0	•4296E+05			
7	2	2	0	•4299E+05			
					0.8595E+05		
8	1	2	0	•4223E+05			
8	2	1	0	•1247E+05			
8	3	1	0	•1448E+05			
					0+6918E+05		
9	1	1	0	•2689E+04			
9	2	1	0	•3120E+04			
9	3	1	0	•4735E+04			
9	4	1	0	•3017E+04	0 17565105		
1.0				00015104	0.1350E+05		
10	1	1	0	-8381E+04			
10	2	1	0	• 31 0 3 E + 0 4			
10	3	1	0	340702404			
10	4	1	0	-5900E+04			
10	5	1	Ŭ	•3090ET04	0.27425+05		
11	1	1	^	.15355+05	5421 72CT 05		
11	•	1	0	1535E±0E			
31	<u>ت</u> ۲	1	0	1535F+05			
11	4	- 1	0	1359E+05			
11	5	1	0	15358405			
	5	1	U				

0.7500E+05

•

.

0.4648E+06

.

REAL TIME(HEURS)= 24000.0000

DIMENSIONLESS TIME= 0.1300

WELL	STR/L	ND. OF REGIONS	RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1	0.4355E±05		
1	2	1	0.1569E+05		
1	-	1	0.55695+05		
•	5	*	000000000	0.1149E+06	
2	1	1	0.1960F+05		
2	•	± 1	0 10365405		
4	2	•	0.10302+03	0.20076+05	
~	•	•	0 05705+04	0.29912+03	
2	1	1	0 10715405		
ు	2	1	0.12/12+05	0.00085405	
				0.22262+03	
4	1	1	0.5002E+04		
4	2	L	0.02742404		
-				0.1194E+05	
5	1	1	0.9165E+04		
5	2	1	0•7212E+04		
_		_		0.1638E+05	
6	1	1	0.5800E+04		
6	2	1	0.5633E+04		
				0•1143E+05	
7	1	2	0.5176E+05		
7	2	2	0.5479E+05		
				0•1066E+06	
8	1	2	0•5339E+05		
8	2	1	0.1247E+05		
8	3	1	0•1448E+05		
				0•8034E+05	
9	1	1	0•2689E+04		
9	2	1	0.3120E+04		
9	З	1	0.4735E+04		
9	4	1	0.3017E+04		
				0 • 1356E+ 05	
10	1	1	0.8381E+04		
10	2	1	0.5163E+04		
10	З	1	0.4070E+04		
10	4	1	0.3906E+04		
10	5	1	0.5896E+04		
				0.2742E+05	
11	1	1	0.1989E+05		
11	2	1	0.1989E+05		
11	3	1	0.1989E+05		
11	4	1	0.1359E+05		
11	5	1	0.1946E+05		
-				0.9271E+05	

-

REAL TIME(HOURS)= 30000.0000

DIMENSIONLESS TIME= 0.1625

WELL	STR/L	ND. UF	REGIONS RECOVERY	WELL TOTAL	RESERVOIR TOTAL
1	1	1	0.4355E+05		
1	2	1	0.1569E+05		
1	З	1	0.6789E+05		
				0.12715+06	
2	1	1	0.1960E+05		
2	2	1	0.1036F+05		
	-	-		0.29975+05	
з	1	1	0.9572E+04		
3	2	1	0.1271E+05		
-	-	-	5012112100	0.22285+05	
4	1	1	0-5662E+04	00022202000	
4	2	1	0.62745+04		
-	-	•	0002142104	0.11945+05	
5	1	1	0.61655404	0021942.03	
5	2	1	0-72125+04		
5	2	-	0 • 7 2 1 2 2 + 0 4	0 16795405	
Ë	•	1	0 54005404	0.10362405	
د د	1	1			
0	2	1	0.56332+04	0 11475405	
7	,	2	0 51 765 105	0+1143E+05	
7	1	~	0.51762+05		
1	2	2	0.54792+05		
				0.10EEE+06	
8	1	2	0.6412E+05		
8	2	1	0.1247E+05		
8	ۍ	1	0.1448E+05		
0				0.9106E+05	
9	1	1	0.2689E+04		
9	2	1	0.3120E+04		
9	3	1	0.4735E+04		
9	4	1	0.3017E+04		
				0 °13 26E+02	
10	1	1	0.8381E+04		
10	2	1	0•5163E+04		
10	3	1	0.4070E+04		
10	4	1	0.3906E+04		
10	5	1	0.5896E+04		
				0.2742E+05	
11	1	1	0.2402E+05		
11	2	1	0.2425E+05		
11	3	1	0.2253E+05		
11	4	1	0.1359E+05		
11	5	1	0.1946E+05		
				0.1038E+06	

•

292

--

0.5616E+06

PREDICTED RECOVERY

.

TIME(DAYS) RECOVERY(BBLS)

62.5000	0.1598E+05
125.0000	0.2940E+05
187.5000	0.3882E+05
250.0000	0.4596E+05
312.50 00	0.5177E+05
375.0000	0.5682E+05
437.5000	0.6153E+05
500.0000	0.6613E+05
562.5000	0.7066E+05
625.0000	0.7503E+05
687.5000	0.7906E+05
750.0000	0.8277E+05
812.5000	0.8580E+05
875.0000	0.8868E+05
937-5000	0.9160E+05
1000.0000	0.9394E+05
1062.5000	0.9557E+05
1125.0000	0.9718E+05
1187.5000	0.9866E+05
1250.0000	0.1000 2+0 6

APPENDIX O

.

.

LISTING OF COMPUTER PROGRAMS

.

-

19/2	
------	--

.

	C*************************************
	C PROGRAM FOR THE SOLUTION OF TWO DIMENSIONAL POTENTIAL
	C PROBLEMS BY THE BOUNDARY ELEMENT METHOD. APPLICABLE TO
	C HOMOGENEOUS AS WELL AS 2-REGION PIECEWISE HOMOGENEOUS RESERVOIR
	C NEUMANN AND DIRICHLET CONDITIONS SPECIFIED ON THE BOUNDARIES
	C ************************************
0001	DIMENSION X1(120), Y1(120), XM1(120), YM1(120)
0002	DIMENSIUN F11(120), DF11(120), KUDE1(120), CX1(120)
0003	D1MENSION SOLI(120) +H(120+120) +A(120+120) +B(120)
0004	DIMENSION G1(120,120),CY1(120),SUM1(120),CX2(120)
0005	DIMENSION RU(120), X2(120), Y2(120), F12(120), DF12(120)
0006	DIMENSION CY2(120), SUL2(120), XSS1(120), YSS1(120)
0007	DIMENSION X552(120), Y552(120), Q552(120), SUM2(120)
0008	DIMENSION $XM2(120), YM2(120), XII(120), YII(120)$
0009	DIMENSION QSSI(120),KODE2(120),DYBLE1(120)
0010	DIMENSION DGDX1(120).DGDY1(120).DHDX1(120).DHDY1(120)
0011	DIMENSION AQSS2(120),DXBLE1(120),DXBLE2(120),DISMID(120)
0012	DIMENSIUN UGDX2(120), DGDY2(120), DHDX2(120), DHDY2(120)
0013	DIMENSION VT1(120), YI2(120), DYBLE2(120), H2(120, 120)
0014	DIMENSION $VX2(120)$, $VY2(120)$, $VT2(120)$, $VX1(120)$, $VY1(120)$
0015	DIMENSION G2(120,120),XI2(120)
0016	DIMENSION DPHIDX(120), DPHIDY(120), VLCP1(120), VLCP2(120)
0017	DIMENSION DPDX(120), DPDY(120), X01(120), Y01(120), X02(120)
0018	DIMENSIUN ANSLI(120) ANSL2(120) YO2(120) AI(120,120)
0019	$D_{1}MENSION AQSS1(120) + (120) + INFO(18) + D_{1}S1(120) + ELMNT1(120)$
0020	DIMENSION SINK(120), STRML(120), STRMW(120), AVWIDT(120)
0021	DIMENSION MM(120), $A2(120)$, LENTH(120, 120), WIDTH(120, 120)
0022	DIMENSION ATETAI (120) , ATETA2 (120) , ADFI1 (120) , ADFI2 (120)
0023	DIMENSIUN XIF(120), YIF(120), ELMNT2(120), VEL1(120)
0024	DIMENSION VEL2(120), BETA(120), FIPLOT(120), DFIPLT(120)
0025	DIMENSION $QSSSI(120)$, $QSSS2(120)$
0026	DIMENSION XAVEI(120), XAVE2(120), VAVE1(120), VAVE2(120)
0027	DIMENSION ULDL1(120), ULDL2(120), ULDW1(120), ULDW2(120)
0028	COMMON / BEKI/LEC, IMP, VICSIM, PI
0029	CUMMUN / DEKZ/DISFAC, VICFAC, DENFAC, IRFAC, KAIEF, SCALE
0030	
0031	INTEGER ITTLE(18), ITTLE1(18), ITTLE2(18), ITTLE3(18)
	······································
	C DISEAC=CONVERSION EDON (ET) TO (N)
	C TREAC=CONVERSION FROM (ND) TO (SO N)
	C PATEE=CONVERSION FROM (BBI/DAY) TO (CU, M/SEC)
	C SCALE=SCALE FACTOR OF THE FIELD
	C DEESSE-DEESSURE CONVERSION FROM (IRE/SO IN) TO (NEWTON/SO M)
	C DDDESE=DDESSUDE CONVERSION FROM (DB/SG IN)/ET)
	C TO ((NEWTON/SO N)/M)
	C NTR=TOTAL NUMBER OF REGIONS
00.32	NTR=2
0033	LEC=5
00.34	
0035	PI=3.1415926
0036	VICSTM=1 +0
	C
0037	- DISFAC=•3048

FORTRAN IV G1	RELEASE 2	0	MAIN	DATE = 82098	19/2
0038		VICFAC=0.001			
0039		TRFAC=9.869E	-16		
0040		RATEF=1.8401	E-6		
0041		SCALE=738.46	 i		
0042		PRESSE=6894	76		
0042		DPRESE=PRESS	FIDISEAC		
0043		PUPEAC=1.0			
0044	r				
0045	C	COUNT-0.			
0045			CASCALE		
0040	<u>r</u>	SULFAC-DISFA	ICT JUNLE		
	C WRITE	HEADINGS UK	11162		
0.0.4 T	L		~ ~ ~		
0047	100	WRITE(IMP)IU			
0048	100	FURMAI (1719/			
	C REAL	THE NAME UP	INE JUB		
0049		READ(LEC+150			
0050		READ (LEC 150	JTITLE1		
0051		READ(LEC:150)TITLE2		
00 52		READ(LEC,150)T ITLE3		
0053	150	FORMAT(18A4)			
0054		WRITE(IMP,25	O)TITLE		
0055		WRITE(IMP+25	0)TITLE1		
0056		WRITE(IMP,25	0) TI TLE2		
0057		WRITE(IMP,25	0)TITLE3		
0058	250	FORMAT(/15X,	18A4)		
	С				
	C READ	INPUT DATA F	OR FIRST REGI	ON	
	С				
0059	7	COUNT=COUNT+	1.		
0060		WRITE(IMP,15	3)COUNT		
0061	153	FORMAT (//.30	X, 'REGION', F4	•1 • / }	
	С				
0062		CALL INPUT (C	X1,CY1,X1,Y1,	KODE1,FI1,XSS1,YSS1,QSS1,	NSS1 .
	3	NI +NIF +L1 +T1	.THICK1.POR1.	RI1.TOPP1)	
	C				
	CCUN	VERT TO SI UN	ITS		
	C				
0063		CALL CONVRS(CX1.CY1.X1.Y1	,KODE1,FI1,XSS1,YSS1,QSS1	NSS1.
	3	NI,LI,TI,THI	CK1, POR1, RI1,	TOPP1)	
	C				
	C CALCU	LATE THE ELEM	ENTS OF THE H	AND G MATRICES AND ARRAN	GE
	C THEM	SO AS TO PUT	ALL UNKNOWNS	IN G AND KNOWNS IN H.	
	C THE E	LEMENTS OF H	AND THE SOURC	E VECTOR FORM THE RHS VEC	TOR DEI
	C				
0064		CALL MATRX(X	1. Y1. XM1. YM1.	G1, H1, FI1, DFI1, KODE1, XSS1	•
	3	YSS1,QSS1,NS	S1.IJ1.NIF.SU	M1,T1,N1,L1,CX1,CY1)	
	С				
	C.IF T	HERE ARE TWO	REGIONS REPEA	T THE ABOVE STEPS FOR SEC	OND
	C • • REG I	ON			
	C				
0065	-	IF (NTR .LT.	2)GD TD 155		
0066		COUNT=COUNT+	1.		
0067		WRITE(IMP.)5	4) COUNT		
0068	154	FORMAT (1H1-/	Z. 30X. PREGION	••F4•1•/)	
	6				
0069	~	CALL INPUTIC	X2 .C Y2 . X2 . Y2 -	KODE2 . F12 . XSS2 . YSS2 . QSS2 .	NSS2.
	s	N2 NIF 1 2.72	THICK 2. POP2-	R12.TOPP2)	
	· ·				

•

t.

FORTRAN IV G1	RELEASE 2	• 0	MAIN	DATI	E = 82098	19/2
	с					
0070	ε	CALL CONVRS (CX N2,L2,T2,THICK	2, CY2, X2, Y2, H 2, POR2, RI2, T((ODE 2, FI2) DPP2)	,XSS2,YSS2,	QSS2,NSS2,
0071	ε	CALL MAT RX (X2, YSS2,QSS2,NSS2	Y2 • XM2 • YM2 • G •I J2 •NIF • SUM2	2, H2,FI2,I 2,T2,N2,L2	DFI2,KODE2, 2,CX2,CY2)	xss2,
	C					
	C ASSEME C COMPAT C THE RE C VECTOR CNOTE C ZERO C	BLE THE G MATRI IBILITY ON THE IS (B) NOW CONS R (SUM) DUE TO EIF THE BOUN	CES(CONSIDER) INTERFACE) ISTS OF THE S THE SOURCE/S DARY IS COMFL	ING CONTIN INTO THE (SUM OF THE INK TERMS LETELY CL(NUITY AND GLOBAL MATH E DFI VECTO OSED: DFI W	RIX (A) DR AND THE Yould Equal
0072	ε	CALL ASEMBL(G1 NOM, NNI, NNM, T1	G2,DFI1,DFI2 T2)	2. N1 . N2 . A	•B•NAA•NIF•	NNN,
0073	c	GD TD 156				
	C STORE C SOLVE	THE A MATRIX AN AND CHECK THE	ND B VECTOR F SOLUTION FOR	DR FUTURE	E CHECK OF Nedus Singl	THE SOLUTIO
0074	155	DO 158 I=1.N1				
0075		A2(I)=DF I1(I)				
0076		DO 157 J=1.N1				
0077		A1(I, J) = G1(I, J))			
0078	157	CONTINUE				
0079	158	CONTINUE				
0080		N2=0				
0081		CALL SLNFD(G1.	DF I1, D, N1, N2,	(LN		
0082		WRITE(IMP,159)				
0083	159	FORMAT (1 H1.///	20 X. CHECK INC	THE SOLL	JTION',//,	
	3	9X. TRHS VECTOR	.10X, VALUE	FROM SOLU	JTION VECTO)R*•//)
0084		DU 162 I=1,NJ				
0085		F(1)=0.				
0086		DU 161 J=1,NJ				
0087		F(I)=F(I)+(A1(I))	[, J) *DF I 1(J)))		
0088	161	CONTINUE				
0089		WRITE(IMP,163)	A2(I),F(I)			
0090	163	FORMAT (5X, E14.	3,14X,E14.3)			
0091	162	CONTINUE				
0092	<i>c</i>	GD TU 164				
	C SOLVE	AND CHECK THE	SOLUTION IF	A 2-REGIO	ON COMPOSIT	E
00 93	156	DO 76 I=1,NAA				
0094		A2(I) = B(I)				
0095		DD 75 J=1,NAA				
0096		A1(I,J) = A(I,J)				
0097	75	CONTINUE				
0098	76	CONTINUE				
	C					
	C SOLVE	THE SYSTEM				
	С					
0099		CALL SLNPD(A,B	D.N1.N2.NJ)			
	С					
	C CHECK	THE SOLUTION				
	С					
01 00		WRITE(IMP,108)				
0101	108	FORMAT(1H1,///	20X, CHECKING	G THE SOLU	JTION VECTO)R*//,

.

.

FORTRAN IV G1	RELEASE 2.0	MA IN	DATE = 82098	19/2
	3	X, TRHS VECTOR	OM SOLUTION VECTOR	
0102	(0 72 I=1,NAA		
0103	f	(I)=0.		
0104	C	D 73 J=1,NAA		
01 05	1	(I)=F(I)+(A1(I,J)*B(J))		
0106	73 (ONTINUE		
0107		RITE(IMP.74)A2(I).F(I)		
0108	74	DRMAT (5X.E14.3.13X.E14.3)		
01.09	72 (ONTINUE		
	· - ·			
		HE SOLUTION VECTOR INTO ITS	COMPONENT PEGTONAL VALUES	2
	C		COM DALAT ALGIDAAL VALUES	,
0110		ALL COLTT/NIL NO ANTE ANNI NOM	NNT NNM NAA KODEL KODED	
0110	· · · ·	TI ETO DELL'ALINETO EL TI TON	NNI I NNMI NAAI KUDEI I KUDEZI	
^1 · ·	6 I 16 Å			
0110	104 (
0112	-	F(NIR • 61• 1)60 10 108		
				~ 1
	C REURDE	R THE FI AND DEL ARRATS BY P	UTTING ALL PUTENTIALS IN	F1
	C AND AL	L DERIVATIVES IN DEI		
	C			
0113	C	D 169 $I=1,N1$		
0114	1	F(KODE1(I))20,20,10		
0115	10 (H=FI1(I)		
0116	E	I1(I)=DFI1(I)		
0117	ſ	FI1(I)=CH		
0118	20 0	ONTINUE		
0119	169 C	ONTINUE		
0120	168 C	DNTINUE		
	С			
	C PRINT	OUT THE BOUNDARY VALUES AND	COMPUTE THE POTENTIAL	
	C VALUES	AT DESIGNATED INTERNAL POIN	TS IF ANY FOR THE FIRST R	EGI
	C			
0121	C	ALL OUTPUT(X1,Y1,XM1,YM1,FI1	DFII,CX1,CY1,SOL1,N1,	
	(ع	SS1,YSS1,L1,NSS1,QSS1,TOPP1,	THICK1.T1.QSSS1)	
	с		·	
0122	1	F(L1 .LE. 0)GO TO 173		
	с			
	C COMPUT	E THE POTENTIAL VALUES AT IN	TERNAL POINTS FOR	
	C THE FI	RST REGION		
	c			
0123	Č C	ALL INTER(FI1.DFI1.L1.NI.CX1	• CY1•X1•Y1•	
	8	SS1.YSS1.0SS1.NSS1.SOL1)		
	c ,			
01.24	173 1	F(NTR .1T. 2)60 TO 165		
V1 6. T				
		OUT THE BOUNDARY VALUES FOR	THE SECOND PECTON AND	
	C COMPUT	E THE DOTENTIAL VALUES AT DE	STENATED INTERNAL DOINTS	
		- THE POILHTIAL VALUES AT DE	JIONALD INLERNAL PRINTS	
	C IC ANI	•		
0125		ALL CUITOUT (Y2 . Y2 . VH2 . VH2 . ET2	DE12.CV2.CV2.C01.2.N2.	
0125		REL UUIPUI (A29129AM291M29F12	$\frac{1}{1} \frac{1}{1} \frac{1}$	
	<i>c i i</i>	3369 T 3369L 6 9N 336 9N 336 9 T UPP2 9	INICR29129433323	
	C _			
0126	1	F(L2 •LE• 0)GC +0 165		
	C			
	C COMPUTE	THE POTENTIAL VALUES AT INT	ERNAL POINTS FOR THE	
	C SECOND	REGION		
	c			
0127	Ċ	ALL INTER(FI2,DFI2,L2,N2,CX2	•CY2•X2•Y2•	

-

FGRTRAN IV G1	RELEASE 2	• 0	MAIN	DATE = 82098
	E C PLOT	XSS2,YSS2,QSS Boundaries and	2,NSS2,SOL2) WELL LOCATIONS	
0128 0129	165	CONT INUE CALL BDRY (X1.	Y1,XSS1,YSS1,NSS1	•QSSS1•N1)
0130 0131		IF(NTR •LT• 2 CALL BDRY(X2,)GD TO 166 Y2,XSS2,YSS2,NSS2	,QSSS2,N2)
	C C GENER	ATE THE STREAM	LINES	
	С			
0132	166	CONTINUE		
0133	3 5 5	CALL STRM(NSS N1.T1.KODE1.II ATETA1.ADFI1.	1 •QSS1 •F I1 • DF I1 •X P2 • XO2 • YO2 • XM1 • YM ELMNT1 • THICK1 • POR	1,Y1,XSS1,YSS1, 1,AQSS2,ANSL2,MM, 1,RI1,QSSS1,
01 34	<i>c</i>	IF(NTR .LT. 2)GD TD 873	
0135	Ľ	16/102 .15. 0	100 TO 878	
0135	3	CALL COMPAT(N N2.T2.KODE2.I	552,Q552,F12,DF12 P2,X02,Y02,XM2,YM	,X2,Y2,X5 5 2,Y552, 2.Aqss2.Ansl2.MM.
	3	ATETA1, ADFI1,	ELMNT1, THICK2, POR	2,RI2,T1,
0137	c v	GO TO 872		
0178	(979	WOTTE/ 1ND. 971	1	
0130	871	FORMAT(/5X.IN	7 O STREAMLINE FROM	REGION 1 CROSSES!.
••••	3	INTO REGION	2',/)	
0140	872 C	CALL PLOT(0.0	•0•0•3)	
0141	•	CALL STRM(NSS	2.QSS 2.F12.DF12.X	2, Y2, XSS2, YSS2,
	ۍ ۲	ATETA2.ADEI2.	219 XUI9 TUI9 XM29 14. 21 MNT2, THICK2, DDD	2, AUSSI, ANSLI, MM +
	3	OLDL2.OLDW2)		
	c			
0142		IF(IP1 .LE. 0)GD TO 879	
0143		CALL COMPAT(N	SS1,QSS1,FI1,DFI1	,X1,Y1,XSS1,YSS1,
	3	N1,T1,KODE1,I	P1.X01.Y01,XM1.YM	1, AQSS1, ANSL1, MM,
	3	ATETA2, ADFI2,	ELMNT2, THICK1, POR	1.RI1.T2.
0144	ε	GO TO 873		
	с			
0145	879	WRITE(IMP,874)	
0146	874	FORMAT (/5X, N	O STREAMLINE FROM	REGION 2 CROSSES .
	3	• INTO REGION	1*/)	
0147	873	CALL PLOT (0.0	, 0. 0, 999)	
0148	79	STOP		
0149		ENU		

.

19/2

. .

.

FORTRAN IV GI	RELEASE 2.0	INPUT	DATE = 82098	19/2
0001	SL & NI	BROUTINE INPUT(CX,CY,X,Y,KOE F,L,T,THICK,POR,RI,TOPP))E,FI,XSS,YSS,QSS,NSS,N	1•
	C ** * * * * * * *	******	*********	*****
	C			
0002	CO	MMON /BLK1/LEC,IMP.VICSTM,PI		
0003	CC	MMON /BLK2/DISFAC,VICFAC,DEN	IFAC, TRFAC, RATEF, SCALE	
0004	DI	MENSION $CX(120) \cdot CY(120) \cdot X(12)$	20) • Y (120) • KODE (120)	
0005	C III	MENSION FI(120), XSS(120), YSS	6(120),QS5(120)	
	C THIS SU	BROUTINE READS ALL THE INPUT	DATA FOR A REGION	
	C N=THE N	UMBER OF BOUNDARY ELEMENTS=N	UMBER OF NODES	
	C L=THE N	UMBER OF INTERNAL POINTS WHE	RE THE FUNCTION IS	
		TEU TAL NUMBER OF COURCES AND SI		
		TAL NUMBER OF SUURCES AND SI		
		E STRENGHIS UP THE SUURCES A		
		ABTITY	NUDES	
		ADILITY		
	C READ BA	SIC PARAMETERS		
	С			
0006	RE	AD(LEC,200)N,L,NSS,NIF		
0007	200 FO	RMAT (4 I5)		
8000	WR	ITE(IMP,300) N, L, NSS, NIF		
0009	300 FU	RMAT(/,30X,*DATA*//8X,*NUMBE	R OF BOUNDARY ELEMENTS	,=• ,
	£ I3	/8X • NUMBER OF INTERNAL POIN	ITS WHERE THE FUNCTION	IS '
	• 3	CALCULATED= ,I 3/8X, NUMBER C	F SOURCES AND SINKS= .	15
	۶ / ۶ ۲	X, NUMBER OF INTERFACE NUDES	j= ',13,/)	
	C PEAD	DESEDVOID DOCDEDTIES		
	C	RESERVEIR FRUEERIES		
0010	RE	AD(LEC.109)T.THICK.POR		
0011	109 FO	RMAT(3F10.2)		
0012	- WR	ITE(IMP,107)T,THICK,POR		
0013	107 FO	RMAT(20X, PERMEABILITY(MD)=*	,F10.4,//20X,	
	T • 3	HICKNESS(FT)=',F10.4,//20X,'	POR0 SI TY = • F10 • 4 • //)	
0014	₩R	ITE(IMP,498)SCALE		
0015	498 F0	RMAT(/20X, SCALE: 1 INCH = *	,F7.2, 'FEET',//)	
0016	L IF	(L .LE. 0)GO TO 499		
	С			
	C READ INT	ERNAL POINTS CORDINATES		
0017	DO	1 I=1.L		
0018	1 RE	AD(LEC,400)CX(I),CY(I)		
0019	400 FO	RMAT(2F10+4)		
	C READ AN	D WRITE THE CORDINATES OF TH	E EXTREME POINTS	
	C OF THE	BOUNDARY ELEMENTS INTO ARRAY	'S X AND Y	
0020	499 WR	ITE(IMP,500)		
0021	500 FD	RMAT(1H1,///8X, THE COORDINA	TES OF THE EXTREME POI	NTS',
	£ •	OF THE BOUNDARY ELEMENTS .//	9X, POINT ', 11X, 'X(INCH) * +
	٤ 12	X, "Y(INCH) ",/}		
0022	DO	10 I=1.N		
0023	RE	AD(LEC,600)X(I),Y(I)		
0024	600 FD	RMAT(2F10.4)		
0025	10 WR	ITE(IMP,700)I,X(I),Y(I)		
0026	700 FU	RMAT (9X+I3+2(9X+F10+4))		

~

. . . .

	С		
	С	READ	THE BOUNDARY CONDITIONS INTO FI(I) ACCORDING TO A
	Ċ	PRE-	ASSIGNED CODE . IF THE POTENTIAL (PRESSURE) IS SPECIFIED.
	Ċ	THE I	BOUNDARY IS ASSIGNED A CODE=0. IF THE POTENTIAL GRADIENT
	č	IS S	PECIFIED. IT IS ASSIGNED A CODE=1. IF THE BOUNDARY IS ON
	c	AN TI	NTERFACE BETWEEN TWO REGIONS(BOTH POTENTIAL AND POTENTIAL
	ē	GRAD	IENT ARE UNKNOWN).IT IS ASSIGNED A CODE=2
	č		
0027	Ť		WRITE(IMP.800)
0028		800	EDRMAT (1H) ///14X. BOUNDARY CONDITIONS!//8X. NODE!.6X.
		3	CODE 1.5X. PRESCRIBED VALUET
0029		•	DO = 20 I=1.N
0030			$READ(IEC.900)KCDE(I) \cdot EI(I)$
00 31		900	FORMAT(15-F10-4)
00.32		20	WRITE(IMP.950)].KODE(I).EI(I)
0033		950	EORMAT(8X-13-8X-11-8X-E14-7)
0000	c	950	
	č	DEAD -	THE COOPDINATES AND STRENGTHS OF THE SOURCES AND STAKS
	č		THE COORDINATED AND DIREMAINS OF THE SCORED AND STARS
0034	÷		WRITE(IMP.556)
0035	;	556	FORMAT(1H1.//8X. COORDINATES OF SOURCES AND SINKS!.1X.
		3	IAND THE ID STRENGTHS!.//)
0036		·	WRITE(INP.557)
0037		557	EDRMAT (20X-1X(INCH)1-5X-1Y(INCH)1-7X-1PATE(BBL/D)1-/)
0038		507	$\frac{1}{100} \text{ Add} = 1 \text{ NSS}$
0038			DE 444 03-11000
		777	ENDMAT(3510.4)
0040		555	WDITE/IND.666)YSS/11).VSS/11).OSS/11)
0041		666	WRITE(IMF \$0007755(JJ) \$ \$ 55(JJ) \$ 455(JJ)
0042		000 000	
0043	c	9444 DEAD	THE AVERACE DADING OF THE WELLS AND THE CHARACTERISTIC
		DDEC	THE AVERAGE RADIUS OF THE WELLS AND THE CHARACTERISTIC
	Ċ	PRES	SURE
0044	C		PEAD(1 EC. AAB)DI. TOPD
0045		A A Q	
0045		440	
0040 D047		440	REALISTING SHADING ANEDAGE DADING OF THE WELLSTACHA IS-1
0047	•	*** 7 5	FUNMATIZZON, THE AVERAGE RADIUS OF THE WELLS(INCH) IS=';
0049		G	TTO STALANT THE CHARACTERISTIC PRESSURE(PSIJ 13="\$PIU+4/7)
0040			
0049			

•

ORTRAN IV	GI R	ELEASE	2.0	CONVRS	DATE	= 82098		19/2
0001			SUBI E L.T	ROUTINE CONVRS(CX,CY,X,Y, THICK,POR,RI,TOPP)	KODE,FI,	(55,755,	QSS,NSS,	N., -
		C****	******	** *** ****	*******	******	******	*****
		č					******	*****
0002		•	COM	ADN /BLKI/LEC.IMP.VICSTM.	PI			
0003			COM	ION /BLK2/DISFAC.VICFAC.D	ENFAC.TR	FAC.RATE	E. SCALE	
0004			COM	ADN /BLK3/PRESSE DPRESE P	ORFAC.SC	FAC	JUGALE	
0005			DIM	NSION CX(120).CY(120).X(120) . Y(12	20) .KODE	(120)	
0006			DIM	INSION FI (120) • XSS (120) • Y	55(120).0	355(120)		
		c						
0007		•	T=T	TREAC				
0008			RI	ZI ±DI SFAC				
0009			THI	K=THICK+DI SEAC				
0010			PCR	PCR*PORFAC				
0011			TOP	P=TOPP*PRESSE				
0012			TEC					
0013								
0014			CXC)=CX (I)=DISEAC=SCALE				
0015			CYC)=CY(1)*DISTAC*SCALE				
0016		10	CON	TNUE				
0017		15						
0018		15	X(1)	=X(I)*DISEAC*SCALE				
0010								
0019		20						
0020		<u>د</u> ک	CUN	INCL				
		C AF		WERTING THE PRESSURE AND	DDFSSUD	CPADIE	NTS TO	
		C 51		DIVIDE THEN BY THE CHADA	CTEDIST I	- DDESSU		
		C 3.	01113	DIVIDE THEM BY THE CHARA	CI ER 131 1	, FRE350		
0021		C		0 T=1.N				
0022			16()	ODE(I) -E0, 1)60 TO 30				
0023			= 1/					
0024			60.5					
0024		70	EI(
0025		۵0 ۵0	CONT	TNUE				
0027		40	00.4	0 1=1.NSS				
0028			YSCI	I)=YSS(I)*DISEAC*SCALE		•		
0020			VCC	1)-XSS(1)+DISEAC+SCALE				
0029			100	1)-135(1)+013FAC+3CALL				
0030		~	433	17-455(17+RATEP				
				TE TO DETERMINE THE CTOP				
00 31		CUSE		The TO DETERMINE THE STRET				
0031		~	455	1)=Q55(1)+ ((VIC51M+VICFA)		(*1))		
			LIDE TI	CTRENCTION THE CHARACT	TEDICTIC	DDECCUD	-	
00 70		C DIV	VIUE []	T SIKENGIH DI IHE CHARAC	ICKI211C	PRESSUR	E.	
00 32		F ^	055	11-422(11/10PP				
0033		50	CUN					
0034			REIL	IKN				
0035			END					

. • •

.

.
FORTRAN	I۷	G1	RELEASE	2•0	MATRX	DATE =	82098	19/2
0001				SUB	ROUTINE MATRX(X,Y,XM,YM,G.	H.FI.DFI.	KODE,XSS,YSS	i •
			3	QSS	NSS,IJ.NIF,SUM,T,NºL,CX,C	CY)		
			C****	****	** *** ***********************	********	*******	******
0002			C	COM	MON /BLK1/LEC.IMP.VICSTM.F	21		
0003				DIM	ENSION X(120),Y(120), XM(12	0) . YM(120).G(120,120)	
0004				DIM	ENSION H(120, 120), DYBLEN(1	20)		
0005				DIM	ENSION FI(120),KODE(120),D	FI(120),A	(120,120),B(120)
0006				DIM	ENSION XSS(120),YSS(120),G	SS(120),S	UM(120).51G(120)
0007				DIM	ENSION SUMC(120),CX(120),C	CY (120), DX	BLEN(120)	
8000				DIM	ENSION DGDX(120),DGDY(120)	, DHDX (120),DHDY(120)	
0009			_	DIM	ENSION THETA(120), DIST(120).ELMNT(1)	20)	
			C					
			C THI	S SUB	ROUTINE COMPUTES THE H AND	D G MATRIX	ELEMENTS BY	
				MELH	JD UF GAUSSIAN QUADRATURE	ALUNG THE	BUUNDARY	
			C ELE	MENIS	II IMEN FURMS IME STSIEM	A AX=F	CNTC WHITE	
					ALCULATES ALL THE UFF-DIAG	UNAL ELEM	ENIS WHILE	
			C · IN		ALCOLATES UNLT THE DIAGONA	L ELEMENT	5	
				DHTE	HE NID-DOINT COODDINATES	AND STOPE	TN ADDAV	
				AND VI	A COORDINATES	AND STOKE	TH ARRAT	
					·			
0010			C	X(N	+1)=X(1)			
0011				YEN	(1) = Y(1)			
0012				DO	10 I=1.N			
0013				XM (() = (X(I) + X(I+1))/2			
0014			10	YM (() = (Y(1) + Y(1+1))/2			
			с					
			C COMI	PUTE	THE G AND H MATRICES AND T	HE B VECT	OR	
0015			•	DO :	31 I=1.N			
0016				ĐO	30 J=1,N			
0017				IF(I-J)20,25,20			
0018			20	CAL	_ INTE(XM(I),YM(I),X(J),Y(J).X(J+1).	,Y(J+1),H(I,	J)
			3	, G([,J),DGDX(I),DGDY(I),DHDX(I),DHDY(I)),DIST(J),	
			3	ELM	T(J),THETA(J))			
0019				GO	TO 30			
0020			25	CALI	_ INLO(X(J),Y(J),X(J+1),Y(J+1),G(I,	J))	
0021				H(I	J)=PI			
0022			30	CON	TINUE			
0023			31	CON	INUE			
			CC WR.	ITE P	DRTIONS OF THE MATRICES OB	BTAINED		
			С	WRI	TE(IMP,34)			
			C 34	FO	RMAT(1H1,1X, THE H MATRIX	IS'//)		
			C	NNA:	=1			
			C	NA=	0			
			C 102	NA:	=NA+12			
			C	DO	32 I=1.N			
			C	WRI	[E(IMP,33)(H(I,J), J=NNA,NA			
			C 33	FO	RMAT(1X+12F10+4)			
			C 32	CO	NTINUE			
			C	IF (NA •GE• NJGO TO 101			
			c	NNÁ:	=NNA+12			
			C	GD				
			C 101	C	JNI INUE			
				WRI	ELIMPSOJ	CL (()		
			C 36	FO	(MAI(//,1X, THE G MAIRIX I	31//1		
			C	NNA:	- 1			

0024

0025

0026

0027

0029

00 30

0031

0033

0034

0035

0036

0037

0038

0039

0041

MATRX

. . . .

NA=0 С С 104 NA=NA+12 DO 38 I=1.N С WRITE(IMP,39)(G(I,J),J=NNA,NA) С С 39 FORMAT(1X,12E10.2) С 38 CONTINUE С IF(NA .GE. N)GD TO 103 Ċ NNA=NNA+12 С GO TO 104 С CONT INUE 103 С C ARRANGE THE SYSTEM TO PUT ALL THE UNKNOWNS IN G(I, J) ON THE LHS С I J=0 NEIF=N+NIF D0 51 J=1.N IF (KODE(J) .EQ. 1)GO TO 41 IF(KODE(J) .EQ. 0)GD TO 51 IJ = IJ + 1DO 50 I=1.N CH=H(I,J)G(I .N+IJ)=-CH H(I,J)=0.CONT INUE 50 GO TO 51 40 41 DO 52 I=1.N CH=G(I,J)G(I,J) = -H(I,J)H(I,J) = -CH52 CONT INUE 51 CONTINUE С WRITE(IMP.46) FORMAT(1H1,1X, THE REARRANGED G MATRIX IS'//) С 46 С NNA=1 С NAA=0 С 106 NAA=NAA+12 C DO 48 I=1.N С WRITE(IMP,47)(G(I,J),J=NNA,NAA) С 47 FORMAT(1X, 12E10.2) С 48 CONTINUE С IF(NAA .GE. N)GO TO 105 С NNA=NNA+12 С GO TO 106 С 105 CONT INUE С WRITE(IMF,42) С FURMAT(//,1X, 'THE REARRANGED H MATRIX IS'//) 42 С NNA=1С NAA=0 С 110 NAA=NAA+12 С DO 43 I=1,N С WRITE(IMP,44)(H(I,J),J=NNA,NAA) С 44 FORMAT(1X,12E10.2) С 43 CONTINUE С IF(NAA .GE. N)GD TO 109 С NNA=NNA+12 С GO TO 110 С CONTINUE 109 C

FOR TRAN IV G1 F	RELEASE 2.	0 MATRX	DATE	E = 82098 19/	12
	C CALCUL	ATE THE CONTRIBUTION	S OF THE SOURCES	AND SINKS	
	c				
0042		DO 55 I=1,N			
00 43		SUM (1)= 0 •			
0044		DO 54 JJ=1,NSS			
0045	_	CALL SOURCE (XM(I),YM	(1),XSS(JJ),YSS(JJ),QSS(JJ),NSS,	
	3	BLENT, DXSURS, DYSURS)			
0046	•	SUM(I)=SUM(I)+BLENT			
0047	54	CONTINUE			
0048	55	CONTINUE		•	
	С	WRITE(IMP,56)			
	C 56	FORMAT(//,1X, THE V	ALUES DUE TO SOU	IRCES AND SINKS ARE'/	11
	C	DO 58 I=1.N			
	C	WRITE(IMP,57)SUM(I)			
	C 57	FORMAT(30X,F12.4)			
	C 58	CONTINUE			
	С				
	C COMPL	TE THE R.H.S. VECTOR			
	с				
	С	WRITE(IMP,71)			
	C 71	FORMAT(1H1,//10X, "T	HE RHS WITHOUT E	FFECTS OF ',	
	3 C	SOURCES AND SINKS	//)		
0049		DC 61 I=1.N			
0050		DFI(I)=0.			
0051		DO 60 J=1.N			
0052		$DFI(I) = DFI(I) + H(I_J)$	*FI(J)		
0053	60	CONTINUE			
	С	WRITE(IMP,72)DFI(I)			
	C 72	FORMAT(10X,E14.7)			
0054		DFI(I)=DFI(I)-SUM(I)			
0055	61	CONTINUE			
0056		RETURN			
0057					

.

.

.

				ι		
FURTRAN IN	/ G1	RELEASE 2	2.0	INTE	DATE = 82098	1972
0001			SUBROUT	INE INTE(XP, YP,	X1,Y1,X2,Y2,H,G,DGDX,DGDY,	
		3	DHDX .DH	IDY, DIST, ELMNT, T	HETA)	
		C*****4	*******	******	********	**** ***
0000		Ĺ	DIMENSI	DN YCD(A) YCD(A) - GI(4) - ONE (4)	
0002			COMMON	/BLK1/LEC.IMP.V	ICSTM-PI	
0000		с	00111011			
		G ALL	THE OFF-	DIAGONAL ELEMEN	TS OF MATRICES H AND G ARE	
		C CALC	CULATED B	Y THIS SUBROUTI	NE	
		C DIST	=PERPEND	DICULAR DISTANCE	FROM THE NODE POINT UNDER	
		C CONS	SIDERATIO	IN TO THE BOUNDA	RY ELEMENTS	
			COATION	PRUM THE PUINT	UNDER CUNSIDERATION TO THE	
			GRATION	PCINIS IN THE D	UUNDART ELEMENTS	
0004		C	GI(1)=0	•86113631		
0005			GI(2)=-	GI(1)		
0006			GI(3)=0	• 33998104		
0007			GI (4)=-	·GI(3)		
0008			DME(1)=	0.34785485		
0009			OME (2)=	OME(1)		
0010			UME(3)=	-09214313 -095(3)		
0012			$\Delta X = \{X2 =$	X1)/2		
0013			BX=(X2+	X1)/2		
0014			AY= (Y2-	Y1)/2		
0015			BY=(Y2+	Y1)/2		
0016			ELMNT=S	QRT((X1-X2)**2+	(Y1-Y2)**2)	
0017			IF(AX)1	0,20,10		
0018		10	TA=AY/A	X		
0019			THE TA=A	TAN(TA)		
0020			DISTEAR	ATAPTIPTI ITIATA S (YI EN)	1)/ SURT (1A++2+1+0)	
0022				(TA/SQRT(TA**2+	1.0))	
0023			DDISTY=	(-1.0/SQRT(TA**	2+1.0))	
0024			IF(XLEN	•GT. 0.0)GO TO	30	
0025		36	DDISTX=	-DDISTX		
0026			DDISTY=	-DDISTY		
0027			THETA=-	THETA		
0028		20				
0029		20		(ALEN)		
0031			THETA=P	1/2.0		
0032			DDISTX=	:1 •0		
0033			DDISTY=	•0•0		
0034			IF (ALEN	•GT• 0•0)GO TO	30	
0035			DDISTX=	-DDISTX		
0036			DDISTY=	DDISTY		
0037		70	IHEIA=-	·1 HETA 	2	
0038		30	JF(SIG)	31.32.32		
0040		31	DIST=-D	IST		
0041		~ •	DDI STX=	DDISTX		
0042			DDISTY=	-DDISTY	ν.	
0043			THETA=-	THETA		
0044		32	G=0.			
0045			H=0.			
0046				•		
0041						

,

FORTRAN I	V G1	RELEASE	2.0	INTE	DATE =	82098	19/2
0048			DHD X=0.				
0049			DHDY=0.				
0050			DC 40 I	=1.4			
0051			XCD(1)=	AX*GI(I)+BX			
0052			YC0(I)=	AY*GI(I)+BY			
00 53			RA=SQRT	((XP-XCO(I))**2+()	YP-YCO(1))**2)		
00 54			G=G+ALO	G(1/RA)*DME(I)*SQ	RT(AX**2+AY**2))	
0055			DGDX=DG	DX+(-1.0*(XP-XCD()	I))/RA##2)#OME((I) + SQRT(AX++2	+
		3	AY**2)				
0056			DGDY=DG	DY+(-1.0*(YP-YCD(I))/RA ##2)#OME((I) * SQRT (AX**2	+
		3	AY **2)				
0057			H=H+ (-1	.O*(DIST+OME(I)+S	QRT (AX **2+AY **	2)}/RA**2)	
0058			DHDX=DH	DX+({-1.0)+({(1.0.	/RA++2)+DDISTX)+(DIST*(-2.0)	
		3	*(XP-XC	0(I))/RA**4)))*0M	E([)*SQRT(AX**;	2+A Y * *2)	
0059			DHD Y=D HI	DY+((-1.0)*(((1.0)	/RA##2)#DDISTY)+(DIST*(-2.0)	
		3	*(YP-YC	D(I))/RA**4)))*OM1	E(1)*SQRT(AX**2	2+A Y**2)	
0060		40	CONT INU	E			
0061			RETURN				
0062			END				

•

•

.

19/2

0001	SUBROUTINE INLG(X1.Y1.X2.Y2.G)
	C*************************************
	C
	C THIS SUBROUTINE COMPUTES THE DIAGONAL ELEMENTS OF THE
	C 'G' MATRIX. THE DIAGONAL ELEMENTS OF THE 'H' MATRIX
	C ARE ALL ZERO.
	C
0002	AX=(X2-X1)/2
0003	AY=(Y2-Y1)/2
0004	SR=SQRT (AX* *2 + AY **2)
0005	G=2*SR*(ALDG(1/SR)+1)
0006	ELMNT=SQRT((X1-X2)**2+(Y1-Y2)**2)
0007	RETURN
0008	END

FORTRAN IV GI	RELEASE 2.0	SDURCE	DATE = 82098	19/2
0001	SUBROU	TINE SOURCE (XM. YM. X	SS, YSS, QSS, NSS, BLENT, DXS	URS,
	& DYSURS)		
	C*** ** *******	** *** *** ****************************	* * * * * * * * * * * * * * * * * * * *	*******
0002	COMMON	/BLK1/LEC, IMP, VICST	TM,PI	
0003	DENT=S	QRT((XM-XSS)**2+(YM-	-YSS)**2)	
0064	BLENT=	QSS*ALDG(1.0/DENT)		
0005	DXSURS	=QSS*(-1.0)*(XM-XSS))/DENT**2	
0006	DYSURS	=QSS*(-1.0)*(YM-YSS.)/DENT**2	
0007	RETURN			
0008	END			

5 *****

.

FORTRAN	IV	G1	RELEASE	2.0	ÂSEMBL	DATE = 82098	19/2
0001				SU	ROUTINE ASEMBL(G1.G2.DFI1	DFI2,N1,N2,A,B,NAA,NIF	•
				E NNI	•NOM•NNI •NNM•T1•T2)		
			C****	****	**********	********	****
0000			Ľ	c n	MON / REKIZLEC. IND. VICSTM.	01	
0002				00	MUN / DERI/LEC(IMP)/IC3/M) ENSION 61/120,120),62/120	-120).DET1(120).DET2(12	0)
0003					$ENSION (120, 120), B(120) \\ENSION (120, 120), B(120)$	1207,0F11(1207,0F12(12	07
0004			c	UI .			
			C STO	DE TH	MATRIX G(T.I.) INTO A(T.I.	AND DELLAS INTO BLE	- I)
			C 310				
			C IN L	T T A 1 T 2	F THE ARRAYS		
			c				
0005			•	NA.	=N2 +N1		
0006				NN	=N1-NIF		
0007				ND	F=N2-NIF		
0008				NO	=N1+NIF		
0009				NN	=NIF+1		
0010				NNI	=N2+N IF+1		
0011				DC	6 I=1 •NAA		
0012				DO	7 J=1,NAA		
0013				Α(• J)=0 •0		
0014			7	CO	TINUE		
0015				B())=0.0		
0016			6	CO	TINUE		
			C				
			CASS	EMBLE	GI INTO A		
			C				
0017			806	00	BOI J=1.NUM		
0018					1 = 1 + 1 = 1 + 1 = 1 = 1 = 1 = 1 = 1 =		
0019			800	A ()	9 J J=G1 (1 9 J) T T AULE		
0020			800				
0021			501	00	ROS I=1.NDIE		
0023				00	$804 I = 1 \cdot N$		
0024				AC	•NOM+J)=0.		
0025			804	CO	TINUE	,	
0026			805	CO	TINUE		
0027				DO	808 J=1,N1		
0028			808	в(.)=DFI1(J)		
			С				
			C ASSE	EMBLE	G2 INTO A		
			С				
0029			810	DO	B12 J=1.NNN		
0030				DO	812 I=1,N2		
00.31				A (I	1+I,J)=0.		
0032			812	CO	TINUE		
0033				DO	814 J=1.NIF		
0034				DO	B13 I=1.N2		
0035				A()	1+I, NNN+J) = -G2(I, NNI-J)*(1)	T1/T2)	
0036			813	CON			
0037			814	COL	RIA 1-1 NTE		
0038					010 J=19N1C		
0039					010 1#19N2 141,5014 1)#69/1,505M4-1)		
0040			916		TTNHE TTNHE		
0041			816	C01	T INUF		•
0043			010	DO	B18 J=1.NDIF		
0044				00	B17 I=1.N2		
				50			

. .

.

```
FORTRAN IV G1 RELEASE 2.0
                                                           DATE = 82098
                                         ASEMBL
                          A(N1+I_NCM+J)=G2(I_NIF+J)
 0045
                          CONT INUE
                    817
 0046
                          CONTINUE
 0047
                    818
 0048
                          DO 830 I=1.N2
 0049
                          B(N1+I)=DFI2(I)
                    830
                          CONTINUE
 0050
                  С
                  C
                    WRITE OUT THE FINAL RESULTING MATRIX
                  С
                  С
                    821
                           WRITE(IMP,62)
                           FORMAT(1H1,1X, THE FINAL ASSEMBLED MATRIX IS : ///)
                  С
                     62
                  С
                          NB=1
                  С
                          NBB=0
                  C 740
                          NBB=NBB+12
                  С
                          DO 1101 I=1,NAA
                  С
                          WRITE(IMP,1100)(A(I,J),J=NB,NBB),B(I)
                  C 1100
                          FORMAT (1X,12F9.3,4X,F9.4)
                  C 1101
                           CONTINUE
                  С
                          IF(NB .GE. 48)GO TO 741
                  С
                          NB=NB+12
                 С
                          GO TO 740
                    741
                           CONT INUE
                  С
                          RETURN
 0051
 0052
                          END
```

19/2

FORTRAN IV G1	RELEASE 2	• 0	SLNPD	DATE = 82098	19/2
0001	<i>~</i> ++++++	SUBROUTINE SU	NPD (A, B, D, N, NC,	NJ)	
	C ++++++	*****		~~~~~	*****
0002 0003 0004	C C	COMMON /BLK1/ DIMENSION A() DOUBLE PRECIS	/LEC,IMP,VICSTM 20,120),B(120) 510N AA(120,120)	PI ,BB(120),C	
	C C THIS C GAUS C	IS A SUBROUT	INE THAT CAN SOL	VE THE EQUATIONS BY	
	C B=DR C SO C N=AC C NX=R	IGINALLY IT COLUMN	DATAINS THE RHS TAINS THE VALUES TUNKNOWNS DIMENSION OF MA	COEFFICIENTS. AFTER OF THE SOLUTION VECTOR TRIX 'A'	ŀ.
	c				
0005		NJ=N+NC			
0006	r	NI I=NJ-1			
	C CHANG	E TO DOUBLE PI	RECISION VAR LABL	.ES	
0007	-	DO 11 I=1.NJ			
0008		DO 12 J=1,NJ			
0009		AA(I,J)=A(I,J)	1)		
0010	12	CONTINUE			
0011		BB(I)=B(I)			
0012	11	CONT INUE			
	C C INTE C	RCHANGE ROWS '	O GET NON ZERD	DIAGONAL COEFFICIENT	
0013		DO 100 K=1.N	1		
0014		K 1=K+1			
0015		C=A(K,K)			
0016		IF(DABS(C)-0	.000001)1.1.3		
0017	1	DU 7 J=K1,NJ			
0018		IF (DABS (AA(J	K))-0.000001)7,	7,5	
0019	5	DO 6 L=K,NJ			
0020		C=AA(K,L)			
0021		AA(K,L)=AA(J)	,L)		
0022	6	$AA(J_{PL})=C$			
0023		C=BB(K)			
0024		BB(K)=BB(J)			
0025		BB(J)=C			
0026		C=AA(K,K)			
002 7		GO TO 3			
0028	7	CONTINUE			
0029	8	WRITE(IMP,2)	<		
0030	2	FURMAT (*****	SINGULARITY IN	RUWT+15)	
0031		D=0.			
0032	_	GU TO 300			
	C C DIVI	DE ROW BY DIA	GONAL COEFFICIEN	IT	
0077	с а	(=AA(K-K)			
0030	J				
0034	4	$AA(K_{-1}) = \Delta A(K_{-1})$	J)/C		
0035	*	BB(K)=BB(K)/	· - · · ·		
	с		-		
	~		•		

C ELIMINATE UNKNOWN X(K) FROM ROW 1 C DO 10 I=K1,NJ C=AA(I,K) DU 9 J=K1.NJ O038 DU 9 J=K1.NJ O040 9 AA(I,J)=AA(I,J)-C+AA(K,J) O041 10 BB(I)=BB(I)-C+BB(K) O042 100 CONTINUE C C C C CCMPUTE LAST UNKNOWN C D043 011 BB(NJ)=BE(NJ)/AA(NJ,NJ) C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C D045 DD 200 L=1,N11 C C C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C D045 DD 200 L=1,N11 C C C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C D045 DD 200 L=1,N11 D046 DD 200 J=K1,NJ D049 200 BB(K)=BB(K)-AA(K,J)*BB(J) MRITE(IMP,I307) O051 1307 FORMAT(1H,//22X*THE SOLUTION VECTOR IS'//) O053 WRITE(IMP,1301)BB(I) O054 1301 FORMAT(10X,E14.7) O055 1300 CONTINUE C C C RETURN TO SINGLE PRECISSION VARIABLES C
0037 D0 10 I=K1,NJ 0038 C=AA(I,K) 0039 D0 9 J=K1,NJ 0040 9 AA(I,J)=AA(I,J)-C*AA(K,J) 0041 10 BB(I)=BB(I)-C*BB(K) 0042 100 CONTINUE C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C D0 200 L=1,N11 C D0 200 J=K1,NJ O045 D0 200 J=K1,NJ O046 K1=K+1 O047 K1=K+1 O048 D0 200 J=K1,NJ O051 1307 FORMAT(10,-A4(K,J)*BB(J) 0052 D0 1300 I=1,NJ O053 WRITE(IMP,1301)BB(
0038 C=AA(I,K) 0039 DU 9 J=K1.NJ 0040 9 AA(I,J)=AA(I,J)=C*AA(K,J) 0041 10 BE(I)=BE(I)=C*BB(K) 0042 100 CONTINUE C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C DO 200 L=1.N11 C C O045 DO 200 L=1.N11 O046 K=NJ-L O047 K1=K+1 O048 DO 200 J=K1.NJ O051 1307 FORMAT(1H).//2X.*THE SOLUTION VECTOR IS*//) O052 DO 1300 I=1.NJ <t< td=""></t<>
0039 D0 9 J=K1.NJ 0040 9 AA(I,J)=AA(I,J)-C*AA(K,J) 0041 10 BB(I)=BB(I)-C*BB(K) 0042 100 CONTINUE C C C D0 200 L=1.NI1 C C O045 D0 200 L=1.NI1 O046 K1=K+1 O047 K1=K+1 O048 D0 200 J=K1.NJ O050 WRITE(IMP.1307) O051 1307 FDRMAT(IH.//*.2X.*THE SOLUTION VECTOR IS*//) O052 D0 1300 I=1.NJ WRITE(IMP.1301)BB(I)
0040 9 AA(I,J)=AA(I,J)=C*AA(K,J) 0041 10 BB(I)=BB(I)-C*BB(K) 0042 100 CONTINUE C C C C C C C C C C C C C C C C C C 0043 IO1 BB(NJ)=BE(NJ)/AA(NJ,NJ) C C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C D0 200 L=1,N11 C045 D0 200 L=1,N11 C046 K=NJ=L C047 K1=K+1 D048 D0 200 J=K1+NJ O049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0051 1307 FORMAT(1H1,//22X.*THE SOLUTION VECTOR IS*//) 0052 D0 1300 I=1,NJ 0053 WRITE(IMP+1301)BB(I) 0054 I301 FORMAT(10X=E14.7) 0055 I300 CONTINUE C C C C C C C C C C C C
0041 10 BB(I)=BB(I)-C*BB(K) 0042 100 CONTINUE C C C C C C C C C C C C 0043 IF(DABS(AA(NJ,NJ))-0.000001)14,14,101 0044 101 BB(NJ)=BE(NJ)/AA(NJ,NJ) 0044 101 BB(NJ)=BE(NJ)/AA(NJ,NJ) C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C D0 200 L=1,N11 0045 D0 200 L=1,N11 0046 K=NJ-L 0047 K1=K+1 0048 D0 200 J=K1,NJ 0049 200 BB(K)=AB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,1307) 0051 1307 FORMAT(1H1,//,2X,* THE SOLUTION VECTOR IS*//) 0052 D0 1300 I=1,NJ 0053 WRITE(IMP,1301)BB(I) 0054 1301 FORMAT(10X,E14,7) 0055 1300 CONTINUE C C C C C C C C C C C
0042 100 CONTINUE C C C C C C 0043 IF(DABS(AA(NJ,NJ))-0.000001)14.14.101 0044 101 BB(NJ)=BE(NJ)/AA(NJ,NJ) C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C DD 200 L=1.N11 0045 DD 200 L=1.N11 0046 K=NJ-L V047 K1=K+1 0048 DD 200 J=K1.NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP.1307) 0051 1307 FORMAT(1H1.//.2X.*THE SOLUTION VECTOR IS*//) 0052 DD 1300 I=1.NJ 0053 wRITE(IMP.1301)BB(I) 0054 1301 FORMAT(10X.E14.7) 0055 1300 CONTINUE C C C RETURN TO SINGLE PRECISSION VARIABLES
C C C C C C C C C C C C C C
C C COMPUTE LAST UNKNOWN C IF (DABS(AA(NJ,NJ))-0.000001)14,14,101 0044 101 BB(NJ)=BE(NJ)/AA(NJ,NJ) C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C DD 200 L=1,N11 0045 DD 200 L=1,N11 0046 K1=K+1 0047 K1=K+1 0048 DD 200 J=K1,NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,I307) 0051 1307 FORMAT(1H1.//.2X.*THE SOLUTION VECTOR IS*//) 0052 DD 1300 I=1,NJ 0053 WRITE(IMP,1301)BB(I) 0054 1301 FORMAT(10X.E14.7) 0055 1300 CONTINUE C RETURN TO SINGLE PRECISSION VARIABLES
C COMPUTE LAST UNKNOWN C IF (DABS(AA(NJ,NJ))-0.000001)14.14.101 0044 I01 BB(NJ)=BE(NJ)/AA(NJ,NJ) C C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C 0045 0045 0046 K=NJ-L 0047 K1=K+1 0048 DO 200 L=1.N11 K=NJ-L 0047 K1=K+1 0048 DO 200 J=K1.NJ 0050 WRITE(IMP.1307) 0051 I307 FORMAT(111.//.2X.*THE SOLUTION VECTOR IS*//) 0052 DO I300 I=1.NJ WRITE(IMP.1301)BB(I) 0054 I301 FORMAT(10X.E14.7) 0055 I300 CONTINUE C C
C 0043 0044 101 BB(NJ)=BE(NJ)/AA(NJ,NJ) C C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C 0045 0045 0045 0046 K=NJ-L 0047 K1=K+1 0048 DD 200 J=K1.NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) WRITE(IMP.1307) 0051 1307 FORMAT(1H1.//.ex.*THE SOLUTION VECTOR IS*//) 0052 DD 1300 I=1.NJ 0053 WRITE(IMP.1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 CONTINUE C C RETURN TO SINGLE PRECISSION VARIABLES C
0043 IF (DABS(AA(NJ,NJ))-0.000001) 14,14,101 0044 101 BB(NJ)=BE(NJ)/AA(NJ,NJ) C C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C DD 200 L=1,N11 0045 DD 200 L=1,N11 0046 K=NJ-L 0047 K1=K+1 0048 DD 200 J=K1,NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,1307) 0051 1307 FORMAT(1H1,//,2X,*THE SOLUTION VECTOR IS*//) 0052 DO 1300 I=1,NJ 0053 wRITE(IMP,1301)BB(I) 0054 I301 FORMAT(10X,E14.7) 0055 1300 CONT INUE C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
0044 101 BB(NJ)=BE(NJ)/AA(NJ,NJ) C C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C D0 200 L=1,N11 0045 D0 200 L=1,N11 0046 K=NJ-L 0047 K1=K+1 0048 D0 200 J=K1.NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,1307) 0051 1307 0052 D0 1300 I=1.NJ 0053 wRITE(IMP,1301)BB(I) 0054 1301 0351 1301 0352 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C </td
C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C DD 200 L=1,N11 0046 K=NJ-L 0047 K1=K+1 0048 DD 200 J=K1,NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,1307) 0051 1307 FORMAT(1H1.//.2X.*THE SOLUTION VECTOR IS'//) 0052 DO 1300 I=1.NJ 0053 WRITE(IMP.1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 CONTINUE C C RETURN TO SINGLE PRECISSION VARIABLES C
C APPLY BACK SUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS C 0045 D0 200 L=1,N11 C046 K1=K+1 0047 D0 200 J=K1,NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 WRITE(IMP,I307) 0051 1307 FORMAT(1H1.//.2X.*THE SOLUTION VECTOR IS*//) 0052 D0 1300 I=1.NJ 0053 WRITE(IMP,I301)BB(I) 0054 1301 FORMAT(10X.E14.7) 0055 C C RETURN TO SINGLE PRECISSION VARIABLES C
C 0045 D0 200 L=1,N11 0046 K=NJ-L 0047 K1=K+1 0048 D0 200 J=K1,NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,1307) 0051 1307 FORMAT(1H1,//,2X,'THE SOLUTION VECTOR IS'//) 0052 D0 1300 I=1,NJ 0053 WRITE(IMP,1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 CONTINUE C C RETURN TO SINGLE PRECISSION VARIABLES C
0045 D0 200 L=1,N11 0046 K=NJ-L 0047 K1=K+1 0048 D0 200 J=K1,NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,1307) 0051 1307 FORMAT(1H1.//.2X.*THE SOLUTION VECTOR IS*//) 0052 D0 1300 I=1.NJ 0053 wRITE(IMP.1301)BB(I) 0054 1301 FORMAT(10X.E14.7) 0055 1300 CONTINUE C C
0046 K=NJ-L 0047 K1=K+1 0048 DD 200 J=K1,NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,1307) 0051 1307 FDRMAT(1H1.//.2X,*THE SOLUTION VECTOR IS*//) 0052 DD 1300 I=1.NJ 0053 wRITE(IMP.1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 CONT INUE C C C
0047 K1=K+1 0048 DD 200 J=K1.NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 wRITE(IMP,1307) 0051 1307 FORMAT(1H1.//.2X.*THE SOLUTION VECTOR IS'//) 0052 DD 1300 I=1.NJ 0053 wRITE(IMP.1301)BB(I) 0054 1301 FORMAT(10X.E14.7) 0055 1300 CONT INUE C C C
0048 D0 200 J=K1,NJ 0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 WRITE(IMP,1307) 0051 1307 FORMAT(1H1.//.2X,*THE SOLUTION VECTOR IS*//) 0052 D0 1300 I=1.NJ 0053 WRITE(IMP.1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 CONT INUE C C </td
0049 200 BB(K)=BB(K)-AA(K,J)*BB(J) 0050 WRITE(IMP,1307) 0051 1307 FORMAT(1H1,//,2X,*THE SOLUTION VECTOR IS*//) 0052 D0 1300 I=1,NJ 0053 WRITE(IMP,1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 CONTINUE C C C C C C C C C C C C C C C C C C C C C C C C
0050 WRITE(IMP,1307) 0051 1307 FORMAT(1H1.//.2X., THE SOLUTION VECTOR IS'//) 0052 D0 1300 I=1.NJ 0053 WRITE(IMP.1301)BB(I) 0054 1301 0055 1300 C C
0051 1307 FORMAT(1H1,//,2X,*THE SOLUTION VECTOR IS*//) 0052 D0 1300 I=1,NJ 0053 WRITE(IMP,1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 C
0052 DB 1300 I=1,NJ 0053 WRITE(IMP,1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 CONTINUE C C C C C C C C C C C C
0053 WRITE(IMP,1301)BB(I) 0054 1301 FORMAT(10X,E14.7) 0055 1300 CONTINUE C C C C C C C C C C C C
0054 I301 FORMAT(10X,E14.7) 0055 I300 CONTINUE C C RETURN TO SINGLE PRECISSION VARIABLES C
C C C C RETURN TO SINGLE PRECISSION VARIABLES C
C RETURN TO SINGLE PRECISSION VARIABLES C
C RETORN TO SINGLE PRECISSION VARIABLES
1.
$C \qquad D=1$
C DO 250 I=1,NJ
$C 250 D = D * AA(I \cdot I)$
0059 GD TO 300
0060 14 WRITE(IMP,15)K
0061 15 FURMAT("*****SINGULARITY IN RDW",15)
0062 D=0.
0063 300 RETURN
0064 END

•

. .

FURTRAN IV GI	RELEASE 2.0	SPLIT	DATE =	82098 19/2
0001	\$	UBROUTINE SPLIT (N1.N	2, NIF, NNN, NOM, NNI,	NNM . NAA . KODE1 .
	H 3	ODE2.FI1.FI2.DFI1.DF	12,8,T1,T2)	
	C ** * ** ***	******	******	*** * * * * * * * * * * * * * * * * * *
	С			
0002	C	OMMON /BLK1/LEC, IMP,	VICSTM,PI	
0003	E	IMENSION KODE1(120),	KODE2(120),FI1(120),FI2(120)
0004	E	IMENSION DFI1(120),D	FI2(120),B(120)	
	С			
0005	E	0 50 I=1.NI		
0006	1	F(KODE1(I) .EG. 2)GO	TO 50	
0007	2	F(KODE1(I) .EQ. 0)GO	TO 52	
0008	(H=FI1(I)		
0009	C	F11(I)=CH		
0010	I			
0011	(()			
0012	52 E	$F_{11(1)=B(1)}$		
0013	50 C			
0014	54 L			
0015	Ľ	F11(NNN+1)=B(NNN+1)	1 47 9 1	
0016	L	(-12(1) - 0(N) + 1 - 1) + (1)	17 (2)	
0017	ľ	$1 \ge \{1\} = 0 \{ \text{NUM} = 1\}$		
0018	60 6			
0019		DATINCL DIE-N2-NIE		
0020	4) 7	0 - 10 - 1 - 1 - 10 - 10 - 10 - 10 - 10		
0021		E(KODE2(1) = E0 = 2)GO	TO 70	
0022	1	E(KODE2(1)) = E(0, 0)GO	TO 61	
0023	(H=F12(1)	10 01	
0025	F	12(1) = B(N1 + 1)		
0025	r	F12(1)=CH		
0027	(0 TO 70		
0028	61 0	F12(1) = E(N1+1)		
0029	70 0	ONTINUE		
0030	51 0	ONTINUE		
0031	R R	ETURN		
0032	£	ND		
	-			

,

. 🖌

FURTRAN	IV	G1	RELEASE	2•0	INTER	DATE = 82098	19/2
0001				S	JBROUTINE INTER(FI,DFI,	L . N . CX . CY . X . Y .	
			1	с , х	SS,YSS,GSS,NSS,SOL)		
			C****	***1	******	*****	*****
			с				
0002				C	DMMON /ELK1/LEC,IMP,VIC	STM, PI	
0003				c	MMON /BLK2/DISFAC,VICF	AC DENFAC, TRF AC, RATEF, SCALE	
0004				C	MMON / ELK3/PRESSF, DPRE	SF .PORFAC . SCLFAC	
0005				C	MENSION FI(120), DFI(12	0),CX(120),CY(120),X(120)	
0006				C	MENSION Y (120) .D YBLEN	120).ELMNT(120)	
0007				۵	MENSION SOL(120),SUM(1	20), DGDX(120), DGDY(120)	
0008				۵	MENSION DHDX(120),DHDY	(120),SIG(120),DXBLEN(120)	
0009				C	MENSION THETA(120), XSS	(120),YSS(120),QSS(120)	
0010				C	MENSION XIF(120) .YIF(1	20), FIPLOT(120), DIST(120)	
			С				
			С ТН С	IS S	BROUTINE COMPUTES POTE	NTIAL VALUES FOR INTERNAL P	DINTS
0011				C	0 40 K=1.L		
0012				S	0L(K)=0.		
0013				C	3 30 J=1.N		
0014				C	LL INTE(CX(K),CY(K),X(J)+Y{J)+X{J+1}+Y{J+1}+HI,	
			1	6 6	[,DGDX(K),DGDY(K),DHDX(<pre>k),DHDY(K),DIST(J),ELMNT(J)</pre>	•
			i i	E 1	IETA(J))		
0015				Ş)L(K)=SOL(K)+DFI(J)*GI-	·FI(J)*HI	
0016			30	C	INTINUE		
			C CALO	CULA	TE THE VALUES DUE TO SO	URCES AND SINKS AT INTERNAL	PO INT
0017				S	JM (K)=0 •		
0018				0	3 90 JJ=1.NSS		
0019				C	LL SOURCE(CX(K),CY(K),	XSS(JJ),YSS(JJ),QSS(JJ),NSS	1
			ł	6 E	ENT, DXSURS, DYSURS)		
0020				S	JM(K)=SUM(K)+BLENT		
0021			9 0	C	INTINUE		
0022				S	DL(K)=(SDL(K)+SUM(K))/(2.0*PI)	
0023			40	C	DNTINUE		
0024				N.	RITE(IMP,300)		
0025			300	F	RMAT (//,2X, INTERNAL P	OINTS,//11X, X, 18X, Y,	
			ť	G 1	X, POTENTIAL //)		
0026				D	120 K=1.L		
0027				X	IF(K)=CX(K)/SCLFAC		
0028				Y	F(K)=CY(K)/SCLFAC		
002 9				F	IPLOT (K)=SOL(K)/PRESSF		
0030			20	٧	RITE(IMP,400)XIF(K),YIF	(K) FIPLOT(K)	
0031			400	F	JRMAT(3(5X,E14,7))		
0032				F	TURN		
0033				Ē	ND		

- • • • - •

FORTRAN	i IV	61	RELEASE	2.0	OUTPUT	DATE = 82098	19/2
0001				SUBRO	DUTINE OUTPUT(X,Y,XM,Y	M.FI.DFI.CX.CY.SOL.N.XS	S.
			3	YSSI	,NSS,QSS,TOPP,THICK,T	1QSSS)	
			C****	*****	* *** *****	******	******
			С				
0002				COMMO	DN /ELK1/LEC, IMP, VICST	N, PI	
0003				COMMO	DN /BLK2/DISFAC,VICFAC	DENFAC, TRFAC, RATEF, SCAL	_E
0004				COMMO	DN / BLK3/PRESSF.DPRESF	PORFAC, SCLFAC	
0005				DIMEN	NSION XM(120),YM(120),	FI(120), DFI(120), CX(120)
0006				DIMEN	NSION SOL(120).XSS(120)_YSS(120)_XIF(120)	
0007				DIMEN	NSION CY (120) . QSS5 (120),X(120),Y(120),QSS(120))
0008				DIMEN	NSION YIF(120), FIPLOT(120),DFIPLT(120)	
			С				
0009				WRITE	E(IMP,100)		
0010			100	FORM	AT (1H1,80(º≠•)//30X, •R	ESULTS 1/25X, BOUNDARY I	NODES
			3	//11)	<pre><, *X(INCH) *,13X,*Y(INC</pre>	H) +, 10X, +PRESSURE(PSI) +	,7X,
			3	INOR	AL GRADIENT //)		
			с				
0011				DO 10	D I=1.N		
0012				FI(I))=FI(I)*TOPP		
0013				DFI([)=DFI(I)*TOPP		
			С				
			C FOR	SAKE OF	OUTPUT ONLY RETURN T	HE FOLLOWING TO FPS UNIT	rs
0014				XIF()	[]=XM(I)/SQLFAC		
0015				YIF()	[)=YM(I)/SCLFAC		
0016				FIPLO	T(I)=FI(I)/PRESSF		
0017				DFIPL	T(I)=DFI(I)/DPRESF		
0018				WRITE	E(IMP,200)XIF(I),YIF(I),FIPLOT(I),DFIPLT(I)	
0019			200	FORMA	T(4(8X,E12.4))		
0020			10	CONTI	INUE		
0021				DG 30	J=1.NSS		
0022				QSS(.	J)=QSS(J)*TOPP		
			с				
			C DE TE	RMINE 1	THE RATE FROM THE STRE	NGTH	
0023				QSSS	(J)=QSS(J)/(VICSTM*VIC	FAC/(THICK*T))	
6024			30	CONTI	NUE		
0025				WRITE	(IMP,500)		
0026			500	FORM	AT (* *,80(***))		
0027			*	RETUR	ξN		
0028				END			

FURTRAN IV G1	RELEASE 2.	BDRY	DATE	= 82098	19/2
0001		UBROUTINE BORY(X,Y,	(S\$,Y\$5,NS5,QS55,	N)	
	C*** ****	*******	********	*****	****
	С				
0002		OMMON /BLK1/LEC, IMP	VICSTM.PI		
0003		OMMON /BLK2/DISFAC,	ICFAC, DENFAC, TRF	AC,RATEF, SCALE	
0004		COMMON /BLK3/PRESSF,I	PRESF,PORFAC,SCL	.FAC	
0005		IMENSION X(120),Y(12	20) , XSS(120) , YSS(120),QSS(120)	
0006	•	IMENSION QSSS(120)			
	С				
	C SUBROU	INE BORY PLOTS THE	OUNDARY AND WELL	. LOCATIONS	
	С				
0007		ACPLO=2 .0			
0008		11=N+1			
0009		ALL FACTOR (FACPLO)		•	
0010		ALL PLOT (X (N1)/SCLF	\C,Y (N1)/SCLFAC,3		
0011		0 741 $I = 1, N1$			
0012		ALL PLOT(X(I)/SCLFA	, Y (I)/S CLFAC, 2)		
0013	741	ONTIMUE			
0014		0 742 I=1.NSS			
0015		ACPLO=2 .0			
0016		(SSI=XSS(I)/SCLFAC			
0017		SSI=YSS(I)/SCLFAC			
0018		ISSI=QSSS(I)/RATEF			
0019		NI=XSSI *FACPLD			
0020		N2=YSSI #FACPLU			
0021					
0022		ALL FAC TOR (FACPLD)			
0023		ALL NUMBER (PN1-0.15)	PN2-0.15,0.08,QS	51.0.0.21	
0024		$F(QSS(I) \bullet GE \bullet 0 \bullet 0)$	50 TC 744		
0025		ALL SYMBOL (PN1, PN2, 0	08,11,0,-1)		
0026		50 TO 742			
0027	744	ALL SYMBGL(PNI, PN2,	008,10,0,-1)		
0028	742	ONT INUE			
0029		ETURN			
00 30		ND			

FORTRAN IV G1	RELEASE 2.0	STRM	DATE = 82098	1972
0001	SUBROL	ITINE STRM(NSS, QSS, F	I,DFI,X,Y,XSS,YSS,	
	E N,T,KC	DE, IPE, XOE, YOE, XN, Y	AAQSS,ANSL,MM,ATETA,	
	۶ ADFI،E	LMNT.THICK.POR.RI.Q	SSS, OLDL, OLDW)	
	C ************	*********	********	*******
	C			
0002	COMMON	<pre>/ELK1/LEC,IMP,VICS</pre>	ſM,₽I	
0003	COMMON	I /BLK2/DISFAC.VICFA	C.DENFAC, TRF AC, RATEF, SCAL	-E
0004	COMMON	I / BLK3/PRESSF, DPRES	F,PORFAC, SCLFAC	
0005	DIMENS	SION X(120),Y(120),F	I(120), DFI(120), XSS(120)	
0006	DIMENS	ION YSS(120),G(120,	120), DHDY(120), RD(120)	
0007	DIMENS	ION QSS(120).XI(120),YI(120),KGDE(120)	• • •
0008	DIMENS	SION MM(120), VX(120)	•VY(120)•VT(120)•H(120•1	20)
0009	DIMENS	ION DIST (120) • XM(12)	0), YM (120), SUM (120), DISN	[D(120)
0010	DIMENS	ION ANSL (120), DGDX (120 J. DGDY (120 J. DHDX (120 J	
0011	DIMENS	TUN DXBLEN(120),DPD.	(120), DPD1(120), DTBLEN()	[20]
0012	DIMENS	IUN DPHIDX(120), DPH	$(120) \in TDWW(120) \land WWIFT($	20)
0013	DIMENS	TON ADRE/1207 STRAL	(120),15)KMW(120/)AV#10(() (120),15)KH(120,120)	1207
0014	DIMENS	$\frac{100}{200} = \frac{100}{200} = $	(120) (20) (20) (20) (20) (20)	
0015	DIMENS	10N 0333(120) 0033((120) THETA(120) VEL (120)	\
0010	DIMENS	TON YOF (120) - 75TA(1)	(120) + (120) + (120) + (120)	•
0019	DIMENS	TON 01 DI (120) - OI DW (
0019	INTEGE	R SINK		
0020	REAL	ENTH		
0020	C			
	C FACT=THE CON	VERSION FACTOR CHAN	SING (ATM/CM) TO	
	C (NEWTON/SQ N			
0021	FACT=1	•0333E+7		
	C CALCULATE TH	E VELOCITY NEAR THE	LOWEST PRODUCING WELL	
	с			
0022	CALL L	OWVEL (NSS, GSS, FI, DF.	I,X,Y,XSS,YSS,N,T,VLOW,R	Ι,
	& QMNI.F	AD, POR, THICK)		
	С			
	C INITIALIZE	ARRAYS		
	С			
0023	NST=20			
0024	DU 206	I=1+NSS		
0025	SINK (I)=0.0		
0026	206 CONTIN	IVE		
0027	IPE=0			
0028	DU 220	1=1,NS5		
0029	1F (Q55	S(I) LE. D.U) GU H	1 220	
0030	NSL=At	51 (-FLUAII N51)+ 4555	(1)/ GMN1/+0+5/	
0031	IF (NSL	•L1• 10) NSL=10		
0032	IF(NSL	• 61 • 20 J NSL-20		
		E STADTING DOSITION	ON A STREAM INF	
	C CALCOLATE IF	E STARTING FUSITION		
00.33	C 01 210	K=1.NSL		
00.34	ICANT=	:0		
00 35	XI(K)=		(K*2.0*PI)/NSL)	
0036	YI(K)=	YSS(I)+RAD*SIN(1.0+	(K*2.0*PI)/NSL)	
0037	STRML	K)=0.0		
0038	STRMW	K) = (2.0*PI*RI)/NSL		
0039	AVWIDT	(K)=STRML(K)		
0040	FACPLO)= 2 • 0		
0041	CALL F	ACTOR (FACPLO)		
0042	CALL P	LOT(XI(K)/SCLFAC,YI	(K)/SCLFAC,3)	

. . . .

• ••

٠

•

ST RM

19/2

	с	
	C CALCU	LATE THE POTENTIAL AND VELOCITY AT THIS POSITION
	С	
	C IPE I	S THE COUNTER FOR STREAMLINES THAT CROSS INTO NEW REGIONS
	C ICANT	IS THE COUNTER FOR THE NUMBER OF POINTS ON A STREAMLINE
	С	WRITE(IMP,10)
	C 10	FURMAT(6X, "XI", 8X, "YI", 7X, "DPDX", 5X, "DPDY", 5X,
	C \$	DXBLEN*,5X, DYBLEN*,7X, VT*,7X, DT*,7X, DSX*,7X, DSY')
0043	171	ICANT=ICANT+1
0044		IF(ICANT .GT. 100) GD TD 210
0045		VX (K) = 0 •
0046		
0047		
0048		
0049		DPDT(NJ=00
0050		DICHIC J~11N DICHIC J~11N
0051		DISMID(J) = SURI ((XI(K) - XH(J)) + f Z + (II(K) - IH(J)) + e Z)
0052	c	C(K, 1), D(D)(1), D
	<i>с</i>	G(K)J),DGDA(J),DGD1(J),DHDA(J),DHD1(J),DI31(J), ELMAT(1),THETA(1))
0053	G	$ELMNT2=0.5\pm ELMNT(1)$
0055	Const	IECK IE POINT IS NEAR & BOUNDARY. IE SO GO TO 347
		FRWISE FIND THE VELOCITY AT THE CURRENT POSITION
00.54		IF(DISMID(J) ALT. ELMNT2)GD TU 347
0055		GO TO 748
0056	347	IF(ICANT .GT. 1)GO TO 258
0057	••••	WRITE(IMP,259)I
0058	259	FORMAT (/BX, INJECT CR NUMEER', 12, IS TOO CLOSE TO',
	3	* A BOUNDARY * ./)
0059		GD TO 220
0060	258	IF(KODE(J) .GT. 1) GO TO 749
0061		GO TO 210
0062	749	IF(DF1(J) +LT + 0.0)GD TD 348
0063		GO TO 210
0064	748	DPDX(K)=DPDX(K)+DFI(J)*DGDX(J)~FI(J)*DHDX(J)
0065		DPDY(K)=DPDY(K)+DFI(J)*DGDY(J)-FI(J)*DHDY(J)
0066	172	CONTINUE
	С	
	C CALCU	LATE THE CONTRIBUTIONS OF THE SOURCES AND SINKS
	С	
0067		DXBLEN(K)=0.
0068		DYBLEN(K)=0.
0069		DO 54 JJ=1.NSS
0070	_	CALL SDURCE(XI(K),YI(K),XSS(JJ),YS5(JJ),US5(JJ),NSS,
	3	BLENT, DXSURS, DYSURS)
0071		DXBLEN(K)=DXBLEN(K)+DXSURS
0072		DYBLEN(K)=DYBLEN(K)+DYSURS
0073	54	
0074		$DPHIDX(K) = (DPDX(K) + DXBLER(K)) / (2 \cdot 0 + P1) + FAC1$
0075		
0076		$VX(K) = -1 \bullet 0 + (1/V1CSIM+V1CFAC) + 0 PHIDA(K)$
0077		¥TINJ~~10UF(1/VL/)++01UV(K)++0)
0078		¥I {N}~34KI {X}{N}**ETY {N}**E] DT=E0_0+D1/ABE/VT/K}
0079		
0080		
0001		
0002		VIF(K)=X1(K)/SCI FAC
0000		

FORTRAN	IV G1	RELEASE 2.) STRM	DATE = 82098	19/2
0084			IF(K)=YI(K)/SCLFAC		
0085			IF(ICANT .GT. 5)GD TD 300)5	
		C I	IRITE(IMP,11)XIF(K),YIF(K	(),DPDX(K),DPDY(K),DXBLEN(<).
		3 C	DYBLEN(K),VT(K),DT,DSX.)SY	
		C 11	FORMAT(2X, 10E10.3)		
		CCHEC	LIF POINT IS NEAR A PROD	DUCER, IF SO BRANCH TO 333	
		C • • • OTHER	WISE CALCULATE THE LENGT	H AND WIDTH AT THE CURRENT	Г
		CPOSI	ION. PLOT THE CURRENT PO	ISITION	
0086		3005	CONT INUE		
0087		:	F(VT(K) .GT. VLOW) GO TO	333	
0088		111 5	5TRML(K)=STRML(K)+(VT(K)*	DT)	
0089		:	TRMW(K)=STRMW(K)+QSSS(I)	/(NSL *THICK *POR*VT(K))	
0090		4	VWIDT(K)=STRMW(K)/ICANT		
0091		(ALL PLOT (XI (K)/SCLFAC,Y)	(K)/SCLFAC,2)	
		CCALC	LATE NEW POSITION		
0092		1	(I(K)=XI(K)+VX(K)+DT		
0093		•	'I(K)=YI(K)+VY(K)*DT		
0094			(IF(K)=XI(K)/SCLFAC		
0095		•	IF(K)=YI(K)/SCLFAC		
0096		(60 TO 171		
0097		333 1	0 200 LL=1,NSS		
0098		:	F(QSS(LL) .GE. 0.0)GD TO	200	
0099		1	C(LL)=SGRT((XI(K)-XSS(LL	.))**2+(YI(K)-YSS(LL})**2)	
0100		:	F(RAD .GE. RO(LL)) GO TO	208	
0101		200	ONT INUE		
		CPOIN	IS NOT NEAR PRODUCER, E	BUT RATHER, IT IS NEAR INJE	ECTOR
0102		(60 TO 111		
		C IDENTI	Y THE PRODUCER AT WHICH	THE STREAMLINE TERMINATED	
0103		208	SINK(LL)=SINK(LL)+1		
0104		1	AST=SQRT((XI(K)-XSS(LL))	*#2+(YI(K)-YSS(LL))**2)	
0105		i i	LAST=(2.0*PI*RI)/FLOAT()	ISL)	
0106		:	STRMW(K) = STRMW(K)+WLAST		
0107		i i i i i i i i i i i i i i i i i i i	VWIDT(K)=STRMW(K)/(FLOAT	(ICANT)+1.0)	
0108		l	ENTH(LL .SINK(LL))=STRML	(K)+LAST	
0109			VIDTH(LL,SINK(LL))=AVWID		
0110			QSS(LL,SINK(LL))=QSSS(I)	/FLUATINSLJ	
0111			ALL PLOT (XI (K)/SCLFAC+Y)	(K)/SULFAC.2)	
0112		C (
		C DOINT	TO NEAD AN INTEDRACE BO		
		C	IS NEAR AN INTERFACE DO		
0113		348	PE=IPE+1		
0114		2,4	M(IPF) = 1		
0115					
0116			Y=YI(K)		
••••		с			
		CCHECI	FOR HORIZONTAL BOUNDARY	1	
		С			
0117			F(ABS(Y(J+1)-Y(J)) .GT.	0.001)GD TO 244	
0118		243	(I(K)=XI(K)	·	
0119		•	Ί(Κ)=Υ(J)		
01 2 0		2	(DE(IPE)=XI(K)		
0121		•	DE(IPE) =YI(K)		
0122		i	QSS(IPE)=QSSS(I)		
0123		4	NSL(IPE)=NSL		
0124			DFI(IPE)=DFI(J)		
		с			
		C CALCUI	ATE THE ANGLE THE DUTWAR	D NORMAL MAKES WITH THE	

. . . .

FORTRAN IV G	I RELEASE	2.0	STRM	DATE = 82098	19/2
	C X -D	IRECT ION			
	С				
0125) -		
0126		1 (() - 1) + (TJAIEIA(1PE)	= -ATETA(IPE)	
0127			VICFAC+VIC51	M) + UF I (J)	
0128					
0129		CALL PLUI (AI (A	(K)+DICT())	K// SCLFAC (2)	
0130		SIRML(R)-SIRML	.(~)+DISI(J)		
0131		AVHINT / V 1-CTDL	INN / TO33311 //	(NSL+111CR+P0R+41(R//	
0132					
0130			DT(K)		
0135					
0136		EY=EY/SCLEAC			
0137		XIF(K)=XI(K)/S			
0138		YIF(K)=YI(K)/S	CL FAC		
0139	714	GO TO 2121			
	с				
	C CHE	CK FOR VERTICAL	BOUNDARY		
01/0	244	TE (ABS (X (.i+1)-	X(1)) .GT. 0	-001)60 TO 245	
0141	246	XI(K) = X(J)			
0142	210	YI(K) = YI(K)			
0143		XDE(IPE)=XI(K)			
0144		YOE(IPE)=YI(K)			
0145		AQSS(IPE)=QSSS	;(I)		
0146		ANSL (IPE)=NSL			
0147		ADFI(IPE)=DFI((L)		
	C THE1 C THE > C ATE C ATE C X-A> C	TA IS THE ANGLE AAXIS TA IS THE ANGLE AIS	THAT THE BOU	NDARY ELEMENT MAKES WITH	4
0148		ATETA(IPE)=0.0	1		
0149		IF(EX .GT. X()))GO TO 3001		
0150		ATETA(IPE)=-AT	ETA(IPE)		
0151		ADFI(IPE)=-ADF	I(IPE)		
0152	3001	VT(K)=-1.0*(T/	VICFAC*VICST	M)*DF1(J)	
0153		VEL(IPE)=VT(K)			
0154		CALL PLOT(XI(K	()/SCLFAC,YI(K)/SCLFAC,2)	
0155		STRML(K)=STRML	(K)+DIST(J)		
0156		STRMW(K)=STRMW	(K)+QSSS(I)/	(NSL *THICK*POR*VT(K))	
0157		AVWIDT(K)=STRM	W(K)/ICANT		
0158		DLDL(IPE)=STRM			
0159		OLDW(IPE)=AVWI	DT(K)		
0160		EX=EX/SCLFAC			
0161		EY=EY/SCLFAC			
0162					
0103		$T_{1} = T_{1} = T_{1$	JULFAL		
0164	245	V(K) = ((Y(I)) = ((Y(I)))		+1)-Y(;))}*FX-{(Y(.!+1)-)	(1))/
VI 00	2+5 E	(X(J+1)-X(J))	*X(J)+Y(J)-E	<pre>// ((X(J)-X(J+1))/(Y(J+1)))</pre>	(L)Y-(J)
	3)-{{Y{J+1}-Y{J)))/(X(J+1)-X	(J)))	
0166		YI(K)=((X(J)~)	((J+1))/(Y(J+	1)-Y (J)))*X 1 (K)-((X (J }-)	((J+1))/
	3	(Y(J+1)-Y(J)))	TEXTEY		
0167		XUE(IPE)=XI(K)			
0168		YUE(IPE)=YI(K)			

FORTRAN	IV	G1	RELE	ASE	2.0	STRM	DATE = 82098	19/2
			с	x - C	IRECTIO	N		
0125			С		ΔΤΕΤΔ	(10F)=0.5*PI		
0125					10/10	IN IT SYNATETACIDE) ATETA(10E)	
0120					1511		JAIEIA(IFE) TW\+DET/)	
0127							18/4081(3/	
0128					VEL			
0129					CALL		(K//SCLFAC,2)	
0130			•		SIKML	(K) = SIRML(K) + DISI(J)		
0131					SIKMU		/(NSL#IHICK#PUR#VI(K))	
0132					AVWIU	TOTAL STRAWCK // ICANI		
0133					ULDL (
0134						IPE J=AVWIDI(K)		
0135					EX=EX	/SCLFAC		
0136					EYEEY			
01 37					XIF(K	J=XIIKJ/SCLFAC		
0138					Y IF (K	J=T I(K)/SCLFAC		
01 39			-	714	GO TU	2121		
			C.	• • Cł	ECK FOR	VERTICAL BOUNDARY		
			с				<u></u>	
0140				244	IF(AB	S(X(J+1)-X(J))	10 245	
0141				246	XI(K)	=X(J)	and the second	
0142					YI (K)	=YI(K)		
0143					XOE(I	PE)=X ⁷		
0144					YDE(I	PE)=		
0145					AQSS(IPF		
0146					ANSL (I have been a second se		
0147					ADFI (
			С			rran te		•
			С	THE	ETA IS	-		1
			c	THE	X-AX 1	·····		
			C	Alt				k
			C	X-A	XIS A			1
			C					· ·
0148					AL		and a second second Second second	
0149					11			
0150					A			
0151			-	~ ~ •	AD			1
0152			3	001	VIG		······································	1
0153					VEL		· · · · · · · · · · · · · · · · · · ·	
0154					CALL			
0155					SIRM	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		
0156						And the second s		
0157							an a	
0158						IP.		
0159						1PE .		
0160					EX=EX	ACCLEAC		
0161						VSCLPAC		
0162						J-AI(K)/SCLEAL		
0103						2121		
0165				245		={{(x(,)=x(.+1))/{Y(J+1)-Y(J))*EX-[(Y(J+1)-Y(J))/
0105				2-3		(1) - X(1) $(3) + X(1) + Y(1) - (3)$	EY) / (X(J) - X(J+1)) / (Y(J+1))	-Y(J)
				5)-((Y	(l+l)/(((l+l))/((l+l))	X(J)}))	-
0166				·	Y1(K)	={(X(J)-X(J+1))/(Y(J	+1)-Y(J)))*XI(K)-((X(J)-X(J+1))/
~ - ~ ~				8	+L)Y) ;	1)-Y(J))*EX+EY	· · · · · · · ·	
0167					XOE (I	PE) =XI(K)		
0168					YDE (I	PE)=YI(K)		

FORTRAN IV	G1 RELEASE 2	•0	STRM	DATE = 82098	19/2
0169		AQSS(IPE)=QSS	65(I)		
0170		ANSL (IPE)=NSL	-		
0171		ADFI(IPE)=DF	E(J)		
0172		VT(K)=-1.0*[ſ/VICFAC*VIC	STM) *DFI(J)	
	С				
	CADJU	ST FOR STREAM	INES APPROA	CHING FROM THE LEFT	
0173		IF(XI(K) .GT	EX)ADFI(IP	E)=-ADFI(IPE)	
0174		VEL(IPE)=VT(<)		
0175		STRML(K)=STR	ML (K)+(VT (K)	*CT)	
0176		STRMW(K)=STR	AW(K)+QSSS(I)/(NSL*THICK*PDR≑VT(K))	
01 77		AVWIDT(K)=STR	RMW(K)/ICANT		
0178		OLDL(IPE)=ST	SWF(K)		
0179		OLDW(IPE)=AV	fidt(k)		
	C				
	C CALC	ULATE THE ANGL	LE THE DUTWA	RE NORMAL MAKES WITH THE	
	C X-AX	IŞ			
	C				
0180		ZETA(J)=-1.0/	TAN (THETA (J))	
0181		ATETA(IPE)=A	FAN(ZETA(J))		
0182		CALL PLUI (XI)	(K)/SCLFAL+Y	I (K)/SCLFAC (2)	
0183					
0184		YIF(K) = YI(K)	SULFAC		
0185					
0186		ET-ET/SULFAC			
0187					
0188	a	TIF(K)=TI(K)/	SULFAU	V VIETV EV EV	
0189	2121	WRIIE(IMP\$21)	LIJIPE (AIF (A	JETTERSERATET Therefore decining doither A	DE1.
0190	2111	TE 250 7 /04	IDDECED INC	INTERIOR DOINT IST. 2510-31	KL' 9
0101	6	WOT 75/1MD.609	SIVEL (IDE).A	CELLIPE). ATETA(IPE). AGSS(IP)	E)
0191	r	ANSI (TDE)	,		L 8
0192	605	FORMAT (/2X.5)	F1 () _ 4)		
0193	210	CONTINUE			
01 94	220	CONTINUE			
01 34	CWRI	TE OUT THE ANS	SWERS		
0195		DO 440 I=1.N	SS		
0196		IF(QSSS(I) .	GE • 0 • 0) GD	TG 440	
0197		WRITE (IMP,44))I.SINK(I)		
0198	441	FORMAT(1H1./	//15X, PROD	UCER NUMBER ,13,//15X,	
	3	INUMBER OF ST	REAMLINES= .	• 13•//)	
0199		WRITE(IMP.44)	3)		
0200	443	FORMAT (8X, "ST	REAMLINE NU	MBER!, 3X, 'TOTAL LENGTH', 3X,	
	3	AVERAGE WID	[H ' ,6X, ' INJ.	RATE* •//)	
0201		ITEMP=SINK(I)			
0202		IF (ITEMP .LE	• 0) GO TO 4	40	
0203		DO 444 J=1.1	TE MP		
0204		LENTH(I,J)=LE	ENTH(I,J)/DI	SFAC	
0205		WIDTH(I,J)=W	[DTH(I,J)/DI	SFAC	
0206		CQSS(I,J)=CQS	SS (I≠J)/RATE	F	
0207		WRITE(IMP+44	5)J.LENTH(I.	J),WIDTH(I,J),CQSS(I,J)	
0208	445	FORMAT (14X, IS	3,10X,E12.4,	4X,E12.4,5X,E12.4)	
0209	444	CONTINUE			
0210	440	CONTINUE			
0211		RETURN			
0212		END			

_

FORTRAN I	V G1 RELEASE	2.0	LOWVEL	DATE = 8	32098 19/2
0001		SUBROUT INE L	DWVEL (NSS,QSS	FI,DFI,X,Y,XSS	5, YSS,
	3	N+T+VLOV+RI	QMNI, RAD, POR,	THICK)	
	C C****	*****	*****	*****	* ********* *****
0002		COMMON / BLK1	/LEC. IMP.VICS	TM,PI	
0003		COMMON /BLK2	/DISFAC,VICFA	C.DENFAC.TRFAC	RATEF, SCALE
0004		COMMON / BLK3	I/PRESSF, DPRES	F.PORFAC.SCLFAC	2
0005		DIMENSION X	120),Y(120),F	I(120), DFI(120)),XSS(120)
0006		DIMENSION YS	S(120),DXBLEN	(120) .ELMNT(120))
0007		DIMENSION QS	S(120),XI(120),YI(120),DPDX(120).DPDY(120)
0008		DIMENSION V)	((120),VY(120)	.VT(120),A(120,	,120),G(120,120)
0009		DIMENSION DO	DX(120),DGDY(120).DHDX(120),	,DHDY(120)
00 10		DIMENSION DF	HIDX(120), DPH	IDY (120) + VL CP (1	20),DYBLEN(120)
0011		DIMENSION RO	(120),THETA(1	20),SUM(120),DI	(ST(120)
	С				
	С				
0012		NST=20			
0013		FACT=1.0333E	+7		
	C DEF	INE A CAPTURE	RADIUS (RAD)		
0014		RAD=RI*50.0			-
	¢				
	C CALC	ULATE THE VELO	CITY NEAR THE	LOWEST PRODUCT	TION WELL
	с				
0015		QMNI=1.0E+10)		
0016		DO 110 KK=1,	NSS		
0017		IF(QSS(KK)	GT. 0.0) GD T	0 110	
0018		IF(ABS(QSS()	(K)) •GT• AB5 (GMNI))GO TO 110)
0019		QMNI=QSS(KK)			
0020		K=KK			
0021	110	CONT INUE			
0022		VX(K)=0.			
0023		VY(K)=0.			
0024		VT(K)=0.			
0025		DPDX(K)=0.			
0026		DPDY(K)=0			
0027		XI(K)=XSS(K)	+RAD		
0028		YI(K) = YSS(K)	+RAD		
0029		DO 172 J=1,N			
0030	_	CALL INTE(X)	(K)•YI(K)•X(J),Y(J),X(J+1),Y	/(J+1)•A(K•J)•
	3	G(K,J),DGDX(J),DGDY(J),DH	DX(J),DHDY(J),C)151(J)•
	3	ELMNT(J), THE	TA(J))		
0031			(K)+DF1(J)*DG	DX(J)~FI(J)#DHU)X (J)
0032		DPDY(K)=DPDY	(K)+DFI(J)+DG	UT(J) - F1(J) + UNL)
0033	1/2	CUNTINUE			
					CINKE
	C CALC	ULATE THE CUNT	RIBUILUNS UP	THE SOURCES AND	JUNKS
0074	Ľ				
0034		DVDLEN(K)=0			
0035		SUM/KI-0			
0030		DD 54 11-1-N	199		
0037		CALL SOUPCER	133 X T (K) . VT (K) . X	sstut).ysstud).	055(11) NS5
0030	c	BIENT DVALEN			
0030	ۍ		BI EN (N JTUAGHO BI EN (N JTUAGHO	s	
0040			BI EN(K ITDAOOR	- S	
0040	E A		ULLINA JTU I JUK	•	
0041	24		DUX (K) TUY BI EN	(K))/(2-0±01)±0	ACT
0042			PUALEN TOVOLEN	(K))/(2.0±01)±5	ACT
0043		DENTRY SEL	TU IL NJTU I DLE N	11/// 16 0701/70	

.

FORTRAN IV GI	RELEASE 2.	LOWVEL	DATE =	82098 19/2
0044	,	X(K)=-1.0*(T/VICSTM*VICFA	AC) * DPHIDX (K)	
0045	•	Y(K)=-1.0*(T/VICSTM*VICFA	AC)*DPHIDY(K)	
0046	•	LCP(K)=SQRT(VX(K)**2+VY(K	()**2)	
0047	,	LOW=VLCP(K)		
0048		MNI=QMNI/(VICSTM*VICFAC/(THICK#T))	
0049	(MNIW=QMNI/RATEF		
0050	,	ELO=VLO W/DISFAC		,
0051	. 1	RITE(IMP,113)QMNIW,VELD		
0052	113	DRMAT(1H1,///3X, THE RATE	E OF THE LOWES	T PRODUCER(BBL/D)=
	3	12.3/3X, THE VELOCITY NEA	AR THE LOWEST	PRODUCER(FT/SEC)=*
	3	12.3./)		
0053		ETURN		
0054	i	ND		

..

FORTRAN IV	GI RELEASE	2.0	COMPAT	DATE = 82098	19/2
0001		SUBROUTINE C	OMPAT (NSS . QS	•FI.DFI.X.Y.XSS,YSS,N.T.)
	3	KUDE, IPC, XOC	YDC XM,YM,B(SS, BNSL, MMX, BETA, BDFI, EL	.T.
	3	THICK, POR, RI	,TADJ,GLDL,GL	.DW)	
	C*****	*****	******	******	*****
0002		COMMON /BLK1/	/LEC, IMP, VICS	STM,PI	
0003		COMMON /BLK2.	/DISFAC,VICF/	C,DENFAC,TRFAC,RATEF,SCA	AL E
0004		COMMON /BLK3	/PRESSF,DPRES	F,PORFAC,SCLFAC	
0005		DIMENSION X (120),Y(120),I	I(120), DFI(120), XSS(120))
0006		DIMENSION XI	(120), YI (120)	.QSS(120),KDDE(120)	
0007		DIMENSION YS	S(120),G(120,	120),D1SMID(120)	
0008		DIMENSION VX	(120), VY (120)	•VT(120).H(120,120)	
0009		DIMENSION DI	ST(120),XM(12	0) • YM(120) • SUM(120)	
0010		DIMENSION BN	SL (120). DGDX	120), DGDY(120), DHD X(120))
0011		DIMENSION DX	BLEN(120).DP	X(120).DPDY(120).DYBLEN	(120)
0012		DIMENSION DH	DY(120).RO(1)	20) YOC(120) AVWIDT(120)	,
0013		DIMENSION DP	$HIDX(120) \cdot DPI$	(IDY (120) . VL CP (120) . XOC(1	120)
0010		DIMENSION MM	X(120) SINK(1	20) STRML (120) STRMW(120))
0014		DIMENSION BOS	SS(120) - FLMN1	$(120) \rightarrow \text{ENTH}(120, 120)$	
0015			5/120),VIE(14	0).THETA(120).BDE1(120)	
0010		DIMENSION AI	F11207911F114 htu/120.1201	VEL (120) - ELT(120) - DETA(1	201
0017		DIMENSION WIL		VEL(12079EL1(12079BETA(1	.201
0018		DIMENSION OLI	CNTH(120,120)	220);C233(120)120)	
0019		DIMENSION ULI		2 3 10 1 H (1204 1201	
0020		INTEGER SINK			
0021	c	REAL LENIN			
	C • • • • TH] C • • • • I f C • • • • Tf C	IS SUBRDUTINE (THE ADJACENT HEIR STARTING (CALCULATES TH Region into Points are of	E STREAMLINES THAT ORIGI THE REGION UNDER CONSIDE THE INTERFACE BOUNDARY	INATED RATION
0022		FACT=1.0333E	+7		
0023		WRITE(IMP,107	7)THICK,POR		
0024	107 &	FORMAT(1H1,//	/20X, CONTINU F10.4.//20X	<pre>JATION IN ADJACENT REGION PORDSITY='.F10.4.///)</pre>	↓ ,// 20X,
	C				
0025	<i></i>	WRITE(IMP,04			
0026	64	FORMAL (JOX +)	INTERFACE PU	INIS * • //2X • * COURD INATES* •	•
	5	JX, VELUCITY	,2X, BUUNDAI	T CUNDS. + SX + ANGLE +	
	ε	2X. FLUW RATE	E AND NU UF S	RMLNS'//)	
0027		DU 66 1=1,1PC		- - <i>i i</i> - - -	
0028		$BDF1(1) = -1 \cdot 0^{3}$	*(1ADJ/1)*80f		
0029		VEL(1)=-1.0=	(T/(VICSIM#V)	(CFAC))#BUF1(I)#FACI	•
0030		WRITE(IMP,63		.)•VEL(1)•BDF1(1)•BEIA(1)	/ •
	3	BQSS(I), BNSL			
0031	63	FORMAT (7 F10 •4	4)		
0032	66	CONTINUE			
	C C CALCU	LATE THE VELO	CITIES NEAR 1	HE PRODUCING WELLS	
0033	3	CALL LOWVEL(I QMNI,RAD,POR	NSS:QSS:FI:DF THICK)	I,X,Y,XSS,YSS,N,T,VLDW,F	₹1.
	C C INIT	IALIZE ARRAYS			
0074	Ľ	DO 206 1-1 N	<<		
0034		GINKIIN C	ن ن		
0035	00 ($\frac{310011}{000}$			
0036	206 C	CUNI INUE			

COMPAT

• •

	C • • • XI ; C • • • X I F C	YI ARE UNSCALED INTERNAL CALCULATION COORDINATES FYIF ARE SCALED COORDINATES USED UNLY FOR OUTPUT
00 37	·	DO 210 K=1,1PC
0038		ICANT=0
003 9		FACPLU=2.0
0040	•	CALL FACTOR (FACPLO)
0041		CALL PLOT (XUC(K)/SCLFAC, YUC(K)/SCLFAC, 3)
0042		STRML(K)=0.0
0043		STRMW(K)=0.0
0044		AVWIDT(K)=0.0
0045	171	ICANT=ICANT+1
0046		IF(ICANT .GT. 100) GD TD 210
0047		VX (K)=0.
0048		VY(K)=0.
0049		VT (K)=0•
0050		DPDX(K)=0.
0051		DPDY(K)=0.
0052		IF(ICANT .GT. 1)GD TD 501
0053		ANGLE=BETA(K)
0054		VX(K)=VEL(K)*COS(ANGLE)
0055		VY(K)=VEL(K) *S IN(ANGLE)
0056		VT(K)=SQRT(VX(K)**2+VY(K)**2)
0057		STRML(K)=0.0
0058		STRMW(K)=STRMW(K)+BQSS(K)/(BNSL(K)*THICK*POR*VT(K))
0059		AVWIDT(K)=STRMW(K)/ICANT
0060		DT=50.0*RI/ABS(VT(K))
0061		DO 502 L=1,1000
0062		DT0=DT+(L*0.005*DT)
0063		XI(K)=XDC(K)+(VX(K)*DTO)
0064		YI(K)≈YOC(K)+(VY(K)*DTD)
0065		XIF(K)=XI(K)/SCLFAC
0066		YIF(K)=YI(K)/SCLFAC
0067		IF(L .GT. 10)GO TO 503
8300		WRITE(IMP,646)VX(K),VY(K),XIF(K),YIF(K)
0069	646	FORMAT(/2X,4F10.4)
0070	503	CONTINUE
0071		BD1ST=SQRT({XI(K)~XOC(K))*#2+{YI(K)~YOC(K))##2}
0072		IF(BDIST .GT. ELT(K))GD TO 608
0073	502	CONTINUE
0074		WRITE(IMP,609)XIF(K),YIF(K)
0075	609	FURMAT(/2X, POSITION AFTER 100 TRIALS IS , 2F10.4,/)
0076		GO TO 210
0077	608	CONTINUE
0078		CALL PLOT(XI(K)/SCLFAC,YI(K)/SCLFAC,2)
0079		XIF(K)=XI(K)/SCLFAC
0080		YIF(K)=YI(K)/SCLFAC
	С	WRITE(IMP,606)XIF(K);YIF(K)
	C 606	FORMAT(/2X, *XNEW=*,F10.4,5X,*YNEW=*,F10.4,/)
0081	501	DO 172 J=1,N
0082		DISMID(J)=SQRT((XI(K)-XM(J))**2+(YI(K)-YM(J))**2)
0083		CALL INTE(XI(K),YI(K),X(J),Y(J),X(J+1),Y(J+1),H(K,J),
	3	G(K,J),DGDX(J),DGDY(J),DHDX(J),DHDY(J),DIST(J),
	3	ELMNT(J),THETA(J))
00 84		ELMNT 2=0.5*ELMNT(J)
	C.IF P	OINT IS NEAR ANY BOUNDARY. STOP AND START NEW
	C • • STRE	AMLINE

FORTRAN	Ιv	G1	RELEASE 2	•0	COMPAT	DATE = 82098	19/2
0085				IF (DISMI	D(J) .LT. ELMNT2)G	TO 210	
0086			360	DPDX(K) =	DPDX(K)+DFI(J)+DGD	K(J)-FI(J)*DHDX(J)	
0087				$DPDY(\kappa) =$	DPDY (K)+DFI(J)+DGD	((J)-FI(J)*DHDY(J)	
0088			172	CONTINUE			
0000			с				
			C CALCU	LATE THE	CONTRIBUTIONS OF T	E SOURCES AND SINKS	
0089			с	DXBLEN(K)=0 •		
0090				DYBLEN(K)=0.		•
0091				DO 54 JJ	=1.NSS		
0092				CALL SOU	RCE(XI(K),YI(K),XS	ZN. (LL)ZZD. (LL)ZZY. (LL)	S.
			3	BLENT, DX	SURS, DYSURS)		
0093				DXBLEN(K)=DXBLEN(K)+DXSURS		
0094				DYBLEN (K)=DYBLEN (K)+DYSURS		
0095			54	CONTINUE			
0096				DPHIDX(K)=(DPDX(K)+DXBLEN(<pre></pre> <pre><</pre>	
0097				DPHIDY (K)= (DPDY(K) +DYBLEN()	())/(2.0*PI)*FACT	
0098				VX(K) = -1	. O*(T/VICSTM*VICFA	C) * DPHIDX(K)	
0099				VY(K) = -1	.0*(T/VICSTM*VICFA	C) *DPHIDY(K)	-
0100				VT(K)=SQ	RT (VX (K) **2+VY (K)*	k2)	
			CCHE	CK IF POI	NT IS NEAR A PRODU	ER, IF SO BRANCH TO 333	
			COTH	ERWISE CA	LCULATE THE LENGTH	AND WIDTH AT THE CURREN	т
			CPOS	ITION . PL	OT THE CURRENT POS	TION	-
0101				DT=50.0*	RIZABS (VT (K))		
0102				IF(VT(K)	.GT. VLOW) GO TO	333	• •
0103			111	STRML (K)	=STRML (K)+(VT(K)+D	r)	
0104				STRMW(K)	=STRMW (K)+BQSS(IPC	/ (BNSL (IPC) *THI CK*POR*V	т(к))
0105				AVWIDT(K)=STRMW(K)/ICANT		
			CCAL	CULATE NE	W POSITION		
0106				XI (K)=XI	(K)+VX (K)*DT		
0107				YI(K)=YI	(K)+VY(K)*DT		
01 08				CALL PLD	T (XI (K)/SCLFAC,YI (()/SCLFAC.2)	
0109				XIF(K)=X	I(K)/SCLFAC		
0110				YIF(K)=Y	I(K)/SCLFAC		
0111				WRITE(IM	P,332)K,XIF(K),YIF	(K),VX(K),VY(K),VT(K)	
0112			332	FORMAT(6	X,I3,2X,5E10.3)		
0113				GO TO 17	1		
0114			333	DO 200 L	L=1,NSS		
0115				IF(QSS(L	L] «GE• 0•0)GO TC :	200	
0116				RO(LL)=S	GRT ((XI(K)-XSS(LL)))**2+(Y1(K)-YSS(LL))**2)	
0117				IF (RAD .	GE. RU(LL)) GU TU A	20 8	
0118			200	CONTINUE			
0119				GO TO 11	1 DDODUCED AT WHICH '		'n
01.00			CONDEN	CINK(II)	-CINK(11)+1	THE STREAMEINE TERMINATE	U
0120			200	JAST-SOD	- 31 NALLE / TI T// YI/ K) YSS/II)) \$:	K2+(VI(K)-VSS(11))**2)	
0121				LENTH/II	SINK(IL))-STONL(K	AL AST	
0122				LENTRILL WIAST-()	- 0*0 1*01)/8NSI (100)		
0123				STOMW(K)	-CTDMW/V)AWIACT		
0124				AVWIDT/V	-SIRMW(K)//ELOAT()	(CANT)+1-0)	
0125				WINTHULL	-SIRME(RJ/(FLURI)		
0120				DIENTHI	SINK(LL) - AVAIDIN		
0128					LASINK(LL))=DUDU(K		
0120				COSS(11 -	SINK(11))=R099(2)/	BNSL(K)	
0130				CALL PL D	T (XI (K)/SCI FAC.Y 10	()/SCLFAC.2)	
0131			210	CONTINUE			
~ . ~ .			CWR I	TE OUT TH	EANSWERS		
0132				DO 440 I	=1,NSS		

• • •

FORTRAN IV GI	RELEASE 2.0	COMPAT	DATE = 82098	19/2
0133	IF(QS	S(I) .GE. 0.0) GD TD 4	40	
0134	WRITE	E(IMP,441)I,SINK(I)		
0135	441 FORM/	AT (1H1,15X, PRODUCER NO	MBER",I3,///15X,	
	E INUME	BER OF STREAMLINES , 13		
0136	WRITE	E(IMP,443)		
01 37	443 FORM	AT (8X, STREAMLINE NUMBE	R*,3X, TOTAL LENGTH *.3X	•
	& •AVE	AGE WIDTH .6X. INJ. R	ATE • ,///)	
0138	ITEM!	P=SINK(I)		
0139	IF(I)	EMP .LE. 0) GO TO 440		
0140	DO 44	4 J=1,ITE MP		
0141	LENTI	H(I,J)=LENTH(I,J)/DISF	AC	
0142	WIDTI	H(1.J)=WIDTH(I.J)/DISF	AC	
0143	DLEN	[H(I,J)=OLENTH(I,J)/DI	SFAC	
0144	OWID	TH(I,J)=OWIDTH(I,J)/DI	SFAC	
0145	CQSS	(I.J)=CQSS(I.J)/RATEF		
0146	WRITE	E(IMP,445) J.OLENTH(I.J.	(L,I)2203°(L'I)HUD4(
0147	WRITE	E(IMP,445)J,LENTH(I,J)	WIDTH(I,J),CQSS(I,J)	
0148	445 FORM	AT(14X,I3.8X.E12.4.6X)	E12•4•5X•E12•4)	
0149	444 CONT	INUE		
0150	440 CONT	INUE		
0151	272 CONT	INUE		
0152	RETUR	2N		
01 53	END			

• •

FURTRAN IV GI	RELEASE 2.	O	MAIN	DATE = 82085	15/
1000		DIMENSION RL	1 (330. 30) . TTD ((30), TD(10), WR1(30,30)	
0002		DIMENSION RH	DCR(30) . PERM (4	1)•WIDTH(30)•FB(30•30)	
0003		DIMENSION DE	NP (4) - CP (4) - PC	10[4] • AVSAI 6[4] • FALSU • SU] 10[4] • THICKR(4] • I AMDA(4)	
0005		DIMENSION VA	(30.30).VB(30.	-30) • INJECA(30 • 30)	
0006		DIMENSION DE	LTD(30) .R TI ME ((30),RL2(30,30),WR2(30,30)	
0007		DIMENSION DI	ST1(30,30).CUM	AREC(30) . QST(30)	
0008		DIMENSION IN	1050 (30,30) , NS	STLNE(30)+01LREC(30+30)	
0010		DIMENSION TZ	TD1(30.30).DIS	ST2(30,30), CODE(30,30)	
0011		DIMENSION TZ	TD2(30,30),SW	I (30) • SOI (30) • SGI (30)	
0012		DIMENSION US	TRM1(30,30).45	STRM2(30,30),END1(30,30)	
0013		DIMENSION EN	21 (1 21 - TITI 22 ((12) TTTF = (21) TTTF = (21)	
5100		INTEGER TITL	E5(18).TITLE6((18), TITLE7(18)	
0016		REAL LANDA.L	AHDA1 . LAMDA2 .	INJEC, INJEC1, INJEC2, INJEC3	
0017		REAL INJEC4.	INJECA, INJECB		
0018		INTEGER CODE			
	C******	*******	******	*******************	Ħ
	C • • • 08 JE	CTIVE: TO CA	LCULATE DIL RE	COVERY BY STEAMFLOOD ING	
	ה כ		ARI ITY PEGICA	I CONSISI OF CAL CA INC	
	C ******	****		100 100	Ħ
		THE STATEMEN	T FINCTIONS AN	NO SUBDOUTINE EUNCTIONS USED	-
	0				
0019 9100		RT D(A,B)=(2.	0 *SQRT ((A * * 2) * F	*8)/1•77 25)-1•0 *FC(SORT((A**2)*8))	
0021		ZTD(A.B.C)=C	*(VELTD(A,B)+F	7TD (A.B))	
0022	٦	VTD(A.8.D)=D	+VELTD(A.B)		
	C++READ	THE TITLES	FOR THE JOB		
0023	ſ	READ(5 .1 005)	TITLEI		
0024		READ(5,1005)	TITLE2		
0025		READ(5+1005)	TILES		
0026		READ(5,1005)	TITEA		
0028		READ(5,1005)	TITLE6		
0029		READ (5.1 005)	TI ILE7		
0030	1005	FORMAT (18A4)			
0032		WRITE(6.1007)TITLE2		
0033		WRITE (6 . 1007)TITLE3		
0034		WRITE(6,1007	')TITLE4		
0035		WRITE(6, 1007	TITLES		
0036		WRITE(6,1007	TITLE6		
0038	1006	FORMAT (////1	OX,18A4)		
0039	1007	FORMAT (/10X .	184)		
	С•••• Я	EAD AND WRIT	E INITIAL AND	FIXED VALUES	
	C				
0040	עי	READ(5.5)NPR	D.A.TI)	•X•EPS•THICK•NREG	
0042	(WRITE(6.6)NF	ROD, TST, X, EPS,	•THICK • PST •T I	
0043	б	FORMAT(///40	X, DATA ,/39X	, •//6×.	
	ę	TOTAL NUMBE	R OF PRODUCERS	S='•15X•I3•/6X•	

FORTRAN IV GI	RELEASE 2	2 • 0	MAIN	DATE = 82085	157:
	3 5 5	STEAM TEMPERA	TURE (DEG. F)='.1 '='.25X,F10.4,/6X,	4X,F10.4,/6X, CONVERGENCE LIMIT=*,	
	G E	AY. ICTEAN DDES	SUDE (DST)=1.20Y	$E_{33} (11)^{-1} (13)^{+1} (00)^{+1}$	
	6	INITIAL RESER	VOIR TEMPERATURE ($DEG E = 1.4X \cdot E10.4 \cdot //)$	
	c				
	C C	READ AND WRITE	FLUID PROPERTIES		
0044		READ(5,10)DENN	1.DENO1.DENW2.DEN	02	
0045	10	FORMAT (4 F10 .4)			
0046		READ(5,12)CW,C	G,CG		
0047	12	FORMAT(3F10+4)			
	C CALCU C CORRE	ULATE THE CENSIT	Y AND LATENT HEAT	OF STEAM USING	
	С				
0048		AAA=-0.9588			
0049		BBB=-0.08774			
0050		DENST=1.0/(363	•9*(PST**AAA))		
00 51	c	STLAT=1318.0*(P21##BBB)		
0052	L.	WRITE/6.20)DEN	WI . DENO 1. DENW2. DE	NO2-DENST-CH-CO-CG-STI	۸т
0053	20	FORMAT(//AOX.	FILID PROPERTIES!	-/39X	
	3	//.44X. * WATER *	•8X• 'OIL' • EX•' STE	AM * • /4 3X • * • 6X •	
	3	1			
	3	6X, '',/	/.6X, DENSITY (LB/	CU FT) AT STD. TEMP	2X,
	3	F10.4.2X.F10.4	./6X, DENSITY(LB/	CU FT) AT STEAM TEMP."	•1×
	3	F10.4,2X,F10.4	•2X•F10•4•/6X•		
	3	SPECIFIC HEAT	(BTU/LB *F) ,8X,F	10.4.2X.F10.4.3X.F10.4	•/v:
	3	"LATENT HEAT (8	TU/LB)",40X,F10.4	•// 3	
	с С с	READ AND WRITE	THE PROPERTIES OF	THE CAP AND BASE ROCK	
0054	•	READ(5,70)DENC	E, CCE, CBK		
0055	70	FORMAT(3F10.4)			
0056		WRITE(6,72)DEN	CB, CCB, CBK		
0057	72	FORMAT(30X, PR	OPERTIES OF THE C	AP AND BASE ROCK \$,/29X	9
	3			* ,//6X ,	
	3	DENS ITY (LB/CU	• FT J*•		
	ى د	ATHERN COND (SPECIFIC MEAN(BIU	/LD-+F/**F10+4%/6%%	
	c é	THERMS CONDOL	DIV/NK-FI-+FJ-1F1	0.4777	
	Č	READ AND WRITE	RESERVOIR FOCK P	ROPERTIES	
	c				
0058		DC 43 I=1.NREG	i		
0059		READ(5,44)POR(<pre>I),DENR(I),CR(I),</pre>	PERM(I)	
0060	44	FURMAT(4F10+4)			
0061	43	CONTINUE			
0062		WRITE(6,50)			
0063	50	FORMAT(1H1,///	/. 30X, 'RESERVOIR	ROCK PROPERTIES ,/29X,	
	ۍ د			/31X, 'REGIUN 1', /X,	
00.64	G	- "REGIUN 2",/30	D((), 1-1, NDEG), (D	END(1), 1=1, NPEG),	
	5	(CR(T).T=1.NDF	G) . (PFRM(1) . 1=1 . N	REG)	
0065	60	FORMAT(/6X. PO	RDSITY .13X.2(F10	•4,7X),/6X.	
· • • •	3	DEN. (LB/CU FT)*,8X,2(F10.4,7X)	./6X. SPEC. HEAT(BTU/L	B #F
	3	.2X.2(F10.4.7X),/6X, PERMEABILI	TY(MD) . 6X, 2(F10.4, 7X)	.//
	с				

FORTRAN J	IV G1	RELEASE 2	• 0	MAIN	DATE = 82085	15/:
		C READ	AND WRITE	INITIAL FLUID SAT	URATIONS	
0066		C	READ(5,38)(SWI(I),I=1,2)		
0067			READ(5,38)(SOI(I).1=1.2)		
0068			READ(5.38	(SGI(I), I=1, 2)		
0060		38	EODMAT(2E	10-4)		
0029		50	WDITE/A.7	1/541/1).1-1 ND5	G (SOI(I), I-1, NDEC).	
0070		. 8	(SGI(I),I	=1 • NREG)	6/ 1 (301 (1 /) 1 - 1) NREG /)	
0071		39	FORMAT(//	20X, INITIAL FLUI	D SATURATIONS \$,/19X,	
		3	1	ست جنب بي حد بي بين كار كه كه كه بين بيه بي بي كه علم ال	t ,	
		3 8	//,23X,*R	EGION 1'.3X.'REGI	ON 2*,/22X, **,	,1X,
		3	//16¥.1WA	TED1-2/E10-4)-/16	Y. TOTE 1. 27. 2(E10. 4). (16)	Χ.
		v	JONS" HA	/ELC A) ///	~•••••••••••••••••••••••••••••••••••••	~ •
			·SIEAM· JZ	(F10+4)+77)		
		C				
		C	READ AND W	RILE THE AVERAGE	RESIDUAL SATURATIONS AF	TER
		C C	STEAM FLOC	DING FOR EACH REG	ION	
0072			READ(5,82)(AVSATW(1).I=1.2		
0073			READ(5.82)(AVSATO(I),I=1,2		
0074			READ(5.82)(AVSATG(1).1=1.2		
0075		82	FORMAT (2 F	10.4)	-	
0076			WRITE(6.8	4) (AVSATW(I) .I=1.	NREG) . (AVSATO(I) . I=1 .NR	EG),
		3	(AVSATGI I). I=1.NRFG)		
0077		84	FORMAT(//	20X AVERAGE RES	IDUAL SATURATIONS BEHIN	D THE .
0077		2	FRONT!	/19%, !============		
		3			ON 11.3X. PEGION 21./22	× .
		с С	1			
		с С	//16V			Y .
		6	7710A9 * WA		X9-DIL-32X92(FIV+4)1/10	~ •
		с ^с	SILAM +2	(F10+43+77)		
					ON THE STREAM INE ROCCO	A 11
		C	D AND WELL	E INPUT VALUES FR	OM THE STREAMLINE PRUGRI	N IT
0078			BRITE(6.1	8)		
0079		18	FORMAT(1H	1.///20X. INPUT D	ATA FROM STREAMLINE PRO	GRAM',
		3	/19X		*•//32X• *REGION	1
		3	20X. *REGI	ON 21/31X	! ,19X ,!! ,/	/5X.
		3	WELL NO.	1.2X. 15/L NO. 1.2X	+ CODE! + 2X . ! LENG TH ! .	
			2X. WIDTH	-2X - 1RATE - 6X - 1	FNGTH! 2X . WIDTH! 2X . P	ATE!//)
0080		U U		NPPOD		
0000			DEAD(5 13	NET NEINA. DET NA		
0001		17	EODMAT/13		· ·	
0082		15	FURMAI(13			
0083			NIEMP-NSI			
0084				NIEMP		
0085			READ(5,10		NJ 9 BRI (M9NJ 9 USIRMI (M9NJ	
0086		10	FURMAI(15	• 3F 10•4 J		
0087			IF (CODE(M	•K) •EQ• 1)GU TU	131	
0068			READ(5,12	9)RL2(M,K),WR2(M,	к)	
0089		129	FORMAT (2F	10.4)		
0090			QSTRM2(M,	K) = QSTRM1(N,K)		
0091			GD TO 415			
0092		131	RL2(M,K) =	0.0		
0093			WR2(M,K)=	0.0		
0094			QSTRM2(M,	K)=0.0		
0095		415	WRITE(6,1	7)M,K,CODE(M,K),R	L1(M,K).WR1(M.K).QSTRM1([M•K)
		3	RL2(M.K)	WR2(M,K),QSTRM2(M,K)	
0096		17	FORMAT(5X	,15,3X,15,3X,15,3	X, 3F 7.2,4X,3F7.2)	
0097		15	CONTINUE			

FORTRAN IV G1	RELEASE 2	• 0	MAIN	DATE = 82085	15/5
0098	45	CONT INUE			
	С				
	C • • • • • C	ALCULATE TH	E DIMENSIONLES	5 CUNSTANTS	
	С				
0099		WRITE(6,98	3)		
0100	98	FORMAT(1H)		ATED RESULTS ./30X	!
	3		// 10X. 'REG	[ON! .7X. ! LAMDA ! .5X.	
	3	DIMENSION	ESS TIME FACT	R* /10X ** 5X *-	!
	3	3X . !		!.//)	,
0101	-	RHOCB=DEN	B*CCB		
0102		TOFAC=A.O	CRK/(DENCRACCR)	KTHTCK##2)	
0103		DEL TSTETSI	-T I		
0104			.2		
0105		PHOCP(I)=	END[])\$C [])\$(]		C 14 *
0105	r	AVSATWIT	+/ POP(1) ±DENO2:	COXAVEATO(1)+0CN#2+	ENST
	с С	WCTI ATWAN			
01.06	0				
0108	0.4				
0107	94	CONTINUE	•		
0108					
0109		WRITE(0,90)]],LAMDA([],[D]		
0110	96	FURMAI(12)	(=12+0X+10+4+7)	(;E10+4)	
0111	99	CUNTINUE			
	C				
	CINI	TIALIZE ARE	RAYS		
0112		DO 122 M=1	, NPROD		
0113		CUMREC(M)=	•0•0		
0114		NTEMP=NSTI	NE(M)		
0115		DO 123 K=1	, NTE MP		
0116		DILREC(M,	()=(1.0/5.615)*(0.0	
0117		ENDTM1 (M,	()=0•0		
0118		ENDTM2(M,	()=0•0		
	С				
	C CONVE	RT THE INJE	CTION RATE FROM	BARRELS/DAY	
	C (WATE	R EQUIVALEN	IT) TO CUBIC FT	PER HOUR	
	c				
0119		QSTRM1 (M,I	<)=QSTRM1 (N+K)*5	5.615*(64.5/DENST)/24.0	
0120		QSTRM2(M.H	()=QSTRM2(N,K)+	5•615*(64•5/DENST)/24•0	
0121	123	CONT INUE			
0122	122	CONTINUE			
	С				
	CF	OR EACH STR	REAMTUBE, CALCULA	TE THE TIMES TO TRAVERS	E THE
	C • • • • • •	FIRSTND SEC	OND REGIONS AND	STORE IN ENDIMI AND EN	DTM2
	C • • • • •	RESPECTIVEL	.Y		
	CTTD	I=DIMENSION	NLESS TIME VALUE	ES OBTAINED DUR ING ITERA	TION
	C T	DI IS AN IN	ITIAL ARBITRAR	GUESS	
	C	TTDI ARE IN	PROVED ITERATES	5.	
	С				
	CASS	UME AN INIT	TIAL TIME GUESS	CF T=1.0	
0123		TIME=1.0			
0124		TDI=TIME*1	DFAC		
0125		ITER=30			
0126	126	DO 124 M=	NPROD		
0127		NTEMP=NSTI	NE(M)		
0128		DO 125 K=1	INTE NP		
01 29		FA(M.K)=Y	DENST#(STI AT+(CW#DELTST))+(1_0-X)*DENW	2
	F _	*CW*DELTS	·		
01.30		INJECA(M-	()=FA(M.K)#OSTRI	A1(M.K)*THICK/(WR1(M.K)	
~ 1 ~ 4	3	*LAMDA(1)	4 0*CRKADELTST		
	•	- Content + 1.		-	

FORTRAN IV G1	RELEASE 2	• 0	MAIN	DATE = 82085	15/5
0131	3	VA(M,K)=FA() RHOCB*DELTS	I,K)‡QSTRM1(M,H F)	()*LAMDA(1)/(WR1(M+K)*TH	ICK*
	С				
	C SINC	E FORTGCLG CO	DMPILER DOES NO	DT ALLOW ARRAY NAMES IN '	THE
	C STATI	EMENT FUNCTI	ON PARAMETER LI	IST. REASSINGN ARRAYS TO	
	C VARI.	ABLES			
	C				
0132	•		811 <i>3</i> 5878-141		
0135		INJECI-INJEC	-M(M)NJ .K3		
0135	102	TTDI=0.0			
0136		TTDI=RL1(M.	()/VTD(LAMDA1,	IDI,INJEC3)	
	С	00=VTD (LAMD	A1, TDI, INJEC3)		
	С	WRITE (6,723)	FA(M,K),LAMDA	,QSTRM1 (M,K), INJEC1, WR1	(M,K)
	3 C	, INJEC3, TT	01,00		
	C 723	FORMAT (//10)X•*FA(N•K)=*•F	=12•4•/10X• *LAMDA1= *• F10	•4•/10X
	3 C	•QSTRM1=•,	-12.8,/10X, IN.	JEC1= • • F12 • 8 • / 10X • • WR1 (M	•K)=*•
	C E	F12.8,/10X	• INJEC 3= • • F12	•8•/10X••TTDI=••E12•4•/1	OX,
	S S	'00=',F12.	3//)		
0137			DFAC		
0138		$J \cup I I \cup J = I_{0}$. 10.0100 TO 7/	24	
01.39		WRITE(6.505	• 10•0760 10 72 \		
0140	505	FORMAT(//10)	, VELOCITY WIL	A BE ZERO BEFORE TUBE E	ND . //)
0142		GD TD 304			
0143	724	DEL TD(J)=-1	0* (Z TD (LANDA1	TTDI.INJEC1)-RL1(M.K))/	
••••	3	VTD (LANDAL +	TDI, INJEC3)		
0144	725	DELTD(J)=DEI	TD (J)*TDFAC		
0145		TTDI=TTDI+DE	ELTD(J)		
0146		IF (ABS (DELT	(J)/TTDI) .LT	EPS) GO TO 118	
0147	116	CONTINUE			
0148		WRITE(6,117))		
01 49	117	FORMAT (//2X	NO CONVERGEN	CE*//)	
0150		GD TD 304			
0151	118	ENDIMI(M+K)=	TTUL TTUL ANDAS TTO:		
0152	704	12101(M+K)=/	LIULLAMUALITTU.	195 125	
0122	324	IFICODELMEN.	ME TO TRAVERSE	ILS F THE SECOND REGION/ENDT	N2)
0154			ENSTALSTIAT+ (C)	(+)	*C¥*
0107	3	DELTST			
0155	•	INJECB(M.K)	=FB(N,K)+QSTRM	2(M.K)*THICK/(WR2(M,K)*	
	3	LAMDA(2) *4.	*CBK*DELTST)		
0156		VB(M,K)=FB(I	(,K)+QSTRM2(N,I	<)*LAMDA(2)/(WR2(M,K)*	
	3	THI CK*RHCCB	DELTST)		
0157		LAMDA2=LAMD	A(2)		
01 58		INJEC2=INJE	CB(M.K)		
01 59		INJEC4=VE(M	•K)		
0160		TDEL=RL2(M,	K)/VTD(LAMDA2.	TTDI.INJEC43	
0161		TDEL=TDEL+T			
0162		TTDI=ENDTMI	(M,K)+IDEL		
0103		TINI 1-ENUIM.	11898J 1760		
0165		JE (TTDI LT	<u>.</u> . 10.0)60 TO 73	26	
0166		WRITE(6.506)	-	
0167	506	FURMAT (//10)	VELOCITY WIN	L BE ZERO BEFORE TUBE E	ND • / /)
0168		GO TO 304			
0169	726	DELTD(J)=-1	.0+(Z TD (LAMDA 2	TTDI, INJEC2)	
	3	-RL2 (M.K))/	TD (LAMDA2,TTD)	(+INJEC4)	

FORTRAN IV	G1	RELEASE 2	2.0	MAIN	DATE =	82085 15/:
0170		727	TTDI=TTDI+DEL	TD(J)		
0171			IF(ABS(DELTD(J)/TTDI) .	LT. EPS)GO TO 60	63
0172		662	CONTINUE			
0173			WRITE(6,664)			
0174		664	FORMAT(//2X,	NO CONVERG	ENCE ,//)	
0175			GO TO 304			
0176		663	ENDTM2 (M,K)=E	ENDT MI (M.K)	+TTDI	
0177			TZTD2(M,K)=ZT	D (LANDA2 .T	TD1,INJEC2)	
0178		125	CONT INUE			
01 79		124	CONTINUE			
0180			WRITE(6,36)			
0181		36	FORMAT (1 H1///	/10X, "CALC	ULATED BREAKTHR	DUGH TIMES(HOURS)
		3	• FOR EACH ST	REAMTUBE .	2)	
0182			WRITE(6,149)		Ŷ	
0183		149	FURMAT (//.6X.	PROD. ND.	. JX. STREAMLIN	E ND 3X, . CODE .
		3	3X, ENDTIME(1) .,4X, .END	TIME(2) 1/)	
0184			DO 134 M=1,NP	ROD		
0185			NTEMP=NSTLNE	(N)		
0186			DU 135 K=1,NT	EMP		
0187			END1 (M,K)=END	TM1 (M.K.)/T	DFAC	
01 88			END2(M.K)=END	T M2 (M+K)/T	DFAC	
0189		136	WRITE(6,137)M	I.K.CODE(M.	K) .FND1 (M.K) .EN	D2(M,K)
0190		137	FORMAT (4X . 15.1	2X, 15,6X, I	5,4X,2(F10.4,3X))
0191		135	CONTINUE			
0192		134	CONTINUE			
		С				
		C CAL	CULATE THE VEL	OCITY DIST	ANCE, AND DIL RE	COVERY AT
		C • • • VAF	IOUS TIMES			
01 93			READ(5,14)TIM	IE		
0194		14	FORMAT(F10.2)			
0195			CTIME=TIME/20	• 0		
01 96			DO 923 KK=1.2	20		
0197			TIME=CTINE*KK	K		
0198			TIMED=TIME+TD	FAC		
0199			WRITE(6,323)T	IME, TIMED		
0200		323	FORMAT(1H1,//	125X, REAL	. TIME (HOURS) = '	•F10•4•//
		3	25X DIMENSIC	NLESS TIME	=*,F10.4,//2X,*	WELL [®] • 2X °
		3	STREAMLINE .	2X, NO. OF	REGIONS .2X, R	ECOVERY .5X.
		3	*WÉLL TOTAL*	5X, RESERV	OIR TOTAL ///)	
0201			TOTREC(KK)=0	.0		
0202			DO 432 M=1,NF	PRCD		
0203			NTEMP=NSTLNE(.M.)		
0204			CUMREC(M)=0.0			
0205			DO 433 K=1,NT			
0206			IF (TIMED .GT.	ENDINI(M.	K) GU TU 260	
0207			TODEL=TIMED			
0208				NEM#KJ		
0209			DISTI(M,K)=ZI	D (LAMDAI + I	DDEL INJECT	
0210			D1512(M,K)=0			
0211			OILREC(M,K) = (1.0/5.615	#DISTI(M,K)#WRI	(M;K)
		E	<pre>#IMICK#POR(1) Outprovide = 0:0</pre>	F (501(1)-A	VSA1U(1))	
0212			CUMRECIMJ=CUN	KELLMJ+UIL	KCUMJKJ	
0213		c c i	OU IU ///		DECOVEDY IN ETD	ST DECTON
0016			TODEL - THE BRE	ART HRUUGH	RECOVERT IN FIR	JI KEGIUN
UZ14		200		.™∳ NJ ./ N		
U215			DISTICH VIEN	1. My KJ		
0210				.1 (M)KJ /1 //E = = 1 = 1	+DICTI/H.V.+WD+	
0217			UILKEU(M K) = (1.012.0121	₩UISII(M9KJ##R1	し四手代リ

FORTRAN	ΙV	G1	RELEASE 2	•0	MA IN	DATE = 8	2085
			3	*THI CK*P	DR(1)*(SOI(1)-AVS	SATO(1))	
0218				IF(CODE(4,K) .GT. 1.0)GD	TO 602	
0219				DIST2(M.	<)=0.0		
0220				CUMREC (M.	=CUMREC(M)+OILRE	EC (M.K.)	
0221				GO TO 77	7		
0222			602	TEMREC=0	ILREC(N.K)		
0223				IF (TIMED	•GT • ENDTM2(M.K))GO TO 665	
0224				TIME2=TI	HED		
0225				TINIT=EN	DTMI (M.K)		
0226				INJEC2=1	NJECB(M.K)		
0220			CasaCAI	CULATE TH	F RECOVERY FROM	FCOND REGION AN	
			C.o.FIR	ST			
0227				DIST2(M.	<)=ZTD (LAMDA2,TIM	(E2, INJEC2)	
			3	-ZTD (LAMI	A2.TINIT, INJEC2)	
0228				DILREC(M	K) = (1.0/5.615) * 0	IST2(N.K)*WR2(N	•K)
			3	*THICK*P	R(2)*(SOI(2)-AVS	SATD(2))+TEMREC	-
0229			_	CUMREC (M	=CUMREC (M)+0 ILRE	C(M.K)	
0230				GO TO 777	7		
0200			Casa TH	FRE IS BRI	- Fakthrough in the	SECOND REGION	
			CasePER	MFABLL ITY	REGION STREAMTUR	E. CALCULATE RE	COVERY
			CFRU	M BOTH RE	GIONS		
0231			665	TIME2=ENI	TM2(M.K)		
0232				INJEC2=I	NJECB(M.K)		
0233				DIST2(M.	<)=RL2(M,K)		
0234				OILREC (M	K)=(1.0/5.615)*E)IST2(羽,K)*署R2(M	•K)
			દ	*THICK*P	R(2) * (501 (2)-AVS	ATO(2))+TEMREC	
0235				CUMREC (M	=CUMREC(M)+DILRE	C(M.K)	
0236			777	WRITE(6.3	307)M.K.CODE(M.K)	.OILREC(M.K)	
0237			307	FORMAT (1'	5.18.113.6X.E13.4	• • • • • • • • • • • • • • • • • • • •	
0238			433	CONTINUE		•	
0239				TOTRECIK	- <)=TOTREC(KK)+CUN	REC(M)	
0240				WRITE(6.0	571)CUMREC(M)		
0241			671	FORMAT (4	5X.E13.4)		
0242			432	CONTINUE			
0243				WRITE(6.	- 572)TOTREC(KK)		
0244			672	FORMAT (60	X • F13 • A)		
0245			923	CONTINUE			
0246			220	WRITE(6.(575)		
0247			675	FORMAT(1)	-1 •/// •1 7X • PRED I	CTED RECOVERY	//.10%.
02.11			3	TIME(DA)	(S) . 10X . RECOVER	Y(BBLS) 1//)	
0248			•	DO 674 K	(=1.20		
0249				TIME=CTI		.4	
0250				RTIME(KK			
0200			CaseCON	VERT THE T	TIME TO DAYS AND	RECOVERY TO BAR	RELLS
0251				RTIME(KK)	=RTIME(KK)/24.0		
0252				TOTOFCIKE	()=TOTREC(KK)/5, 6	15	
0253				WDITE(A.)	576) PT INE (KK) . TO T	PEC (KK)	
0254			576	EODWAT/OI	(- 5) 0 - 4 - 10Y - 5) 3 - 4		
0255			674	CONTINUE	\;FIV=4;IVA;EIJ=4		
0200			c 0/4	CONTINUE			
			Casa	OT THE CAL	CHI ATED PESHITS		
			C		SAFUTER UPPERS		
0256			C C		(1,0,1,0,-3)		
				OF INTER	AIS OF THE STALE		
				CDV K-TL C	ATA WILL DE HEEP	N FLUI Y TO GENEDATE TH	ESCALE
0257					ATA HILL DE USEL	ID GENERATE IN	- JUALE
0251				NF-2V			
0250					`		
0239				××LEN=4• (J		

FORTRAN IV (GI RELEASE 24	O MAIN	DATE = 82085	15/
0260		CALL SCALE(RTIME .AXLEN.NP	'•K)	
0261		XS=0.0		
0262		YS=0.0		
0263		D=0.0		
0264		CALL AXIS(XS, YS, "TIME(DAY	S) - 10.AXLEN.D.RTIME (21)	•
	3	RTIME(22))		
0265		NP=20		
0266		K=1		
0267		AXLEN=4.0		
0268		CALL SCALE (TOTREC. AXLEN. N	IP.K)	
0269		D=90•0		
0270		CALL AXIS(XS,YS, CUMULATI	VE OIL RECOVERY(BBLS) .23	•
	3	AXLEN, D, TOTREC (21) . TOTREC	(22))	
0271		CALL PLOT (0.0.0.0.3)		
0272		DO 32 K=1,20		
0273		CALL PLOT (RTINE(K)/RTIME (22),TOTREC(K)/TOTREC(22),	2)
0274	32	CONTINUE		
0275		CALL PLOT(0.0,0.0,999)		
0276	304	STÜP		
0277		END		

REFERENCES

- Slichter, C. S.: "Theoretical Investigation of the Motion of Ground Waters", U. S. Geological Survey 19th Annual Report, 1899. Duplicated as U. S. Geological Survey Ground Water Note, 22, 1954.
- Ferris, J. G., Knowles, D. F., Brown, R. H., and Stallman, R. W.: "Theory of Aquifer Tests," U. S. Geological Survey Water-Supply Paper 1536-E, pp. 69-174, 1962.
- Collins, R. E.: "Flow of Homogeneous Fluids Through Porous Media," Petroleum Publishing Company, Tulsa, Oklahoma, 1976.
- Bear, J.: "Dynamics of Fluids in Porous Media," American Elsevier, New York, 1972.
- Earlougher, R. C., Jr.,: "Advances in Well Test Analysis," Monograph Vol. 5, Soc. Pet. Eng. of AIME, Dallas, 1977.
- Doyle, R. E., and Wurl, T. M.: "Stream Channel Concept Applied to Waterflood Performance Calculations for Multi-well, Multi-zone, Three Component Cases," Paper No. SPE 2653, Presented at the 44th Annual Fall Mtg., SPE of AIME, Denver, CO (Sept. 28-Oct. 1), 1969.
- Patton, J. T., Coats, K. H., and Colegrove, G. T.: "Prediction of Polymer Waterflood Performance," Paper No. SPE 2546, presented at the 44th Annual Fall Mtg., SPE of AIME, Denver, CO (Sept. 28-Oct. 1), 1969.
- Chan, Y. L.: "Improved Image-Well Technique for Aquifer Analysis," J. Hydrol., 29, 149-164, 1975.
- LeBlanc, J. L.: "A Streamline Simulation Model for Predicting the Secondary Recovery of Oil," Ph.D. Dissertation, The University of Texas, Austin, 1971.
- 10. Lin, J.: "An Image Well Method for Bounding Arbitrary Reservoir Shapes in the Streamline Model," Ph.D. Dissertation, The University of Texas, Austin, 1972.
- 11. Cruse, T. A., Rizzo, F. J., Editors: "Boundary-Integral Equation Method: Computational Applications in Applied Mechanics," presented at 1975 Applied Mechanics Conference, The Rensselaer Polytechnic Institute, Troy, New York, June 23-25, 1975, sponsored by the Applied Mechanics Division, ASME.
- Brebbia, C. A.: "The Boundary Element Method for Engineers," John Wiley and Sons, New York, 1978.
- Lennon, G. P., Liu, P. L.-F., Liggett, J. A.: "Boundary Integral Equation Solution to Axisymetric Potential Flows, 1, Basic Formulation," Water Resour. Res., Vol. 15, No. 5, 1102, 1106, October 1979.

- 14. Lennon, G. P., Liu, P. L.-F., and Liggett, J. A.: "Boundary Integral Equation Solution to Axisymmetric Potential Flows, 2, Recharge and Well Problems in Porous Media," Water Resour. Res., Vol. 15, No. 5, 1107-1115, October 1979.
- 15. Curran, D. A. S., Cross, M., and Lewis, B. A.: "Solution of Parabolic Differential Equations by the Boundary Element Method Using Discretization in Time," Applied Math. Modelling, Vol. 4, October 1980.
- Brebbia, C. A. (Ed.): "Recent Advances in Boundary Element Methods," Pentech Press, London, 1979.
- 17. Banerjec, P. K.,: "Integral Equation Methods for the Analysis of Piecewise Non-Homogeneous Three-Dimensional Elastic Solids of Arbitrary Shape," Int. Jour. Mech. Sci., 18, 1976, pp. 293-303.
- Jaworski, A. R.: "Boundary Element Method for Heat Conduction in Composite Media," Appl. Math. Modelling, Vol. 5, No. 1, pp. 45-48, February 1981.
- Butterfield, R., and Tomlin, G. R.: "Integral Techniques for Solving Zoned Anisotropic Continuum Problems," in Variational Methods in Engineering, Vol. 11, Edited by C. A. Brebbia and H. Tottenham, Southampton University Press, 1973.
- 20. Tomlin, G. R.: "Numerical Analysis of Continuum Problems in Zoned Anisotropic Media," Ph.D. Dissertation, University of Southampton, Southampton, England, July, 1972.

- 21. Hess, J. L.: "Review of Integral-Equation Techniques for Solving Potential-flow Problems with Complicated Boundaries: Innovative Numerical Analysis for the Applied Engineering Sciences," Proceedings of the Second International Symposium on Innovative Numerical Analysis in Applied Engineering Sciences, University Press of Virginia, Charlottesville, 1980.
- 22. Prats, M.: "A Current Appraisal of Thermal Recovery", SPE 7044 presented at the SPE-AIME 5th Symposium on Improved Methods for Oil Recovery, Tulsa, Oklahoma (April, 1978).
- 23. Lauwerier, H. A.: "The Transport of Heat in an Oil Layer Caused by the Injection of Hot Fluid," Appl. Sci. Res., Sec. A (1955).
- 24. Rubinshtein, L. I.: "The Total Heat Losses in Injection of Hot Liquid into a Stratum," Neft'i Gaz, Vol.
 2, No. 9 (1959).
- 25. Marx, J. W., and Langenheim, R. H.: "Reservoir Heating by Hot Fluid Injection," Trans. AIME 216 (1959).
- 26. Willman, B. T., Valleroy, V. V., Runberg, G. W., Cornelius, A. J., and Powers, L. W.: "Laboratory Studies of Oil Recovery by Steam Injection," Trans. AIME, 222 (1961).
- 27. Ramey, H. J., Jr.: "How to Calculate Heat Transmission in Hot Fluid Injection," Petroleum Engineer, Nov. (1964).

340

- 28. Smith, C. R.: "Mechanics of Secondary Oil Recovery," Reinhold Publishing Corporation, New York, 1966.
- 29. Farouq-Ali, S. M.: "Oil Recovery by Steam Injection," Producers Publishing Company Inc., Bradford, Pennsylvania (1970).
- 30. Van Poollen, H. K.: "Fundamentals of Enhanced Oil Recovery," Pennwell Publishing Company, Tulsa, Oklahoma, 1980.
- 31. Baker, P.E.: "An Experimental Study of Heat Flow in Steam Flooding," Soc. Pet. Eng. Jour. (March, 1969). Trans. AIME, 246 (1969).
- 32. Mandl, G., and Volek, C. W.: "Heat and Mass Transport in Steam-Drive Processes," Trans. AIME, 246 (1969).
- 33. Shutler, N. D., and Boberg, T. C.: "A One-Dimensional Analytical Technique for Predicting Oil Recovery by Steamflooding," Soc. Pet. Eng. Jour., 489-498 (Dec. 1972).
- 34. Neuman, C. H.: "A Mathematical Model of the Steam Drive Process--Applications," Paper No. SPE 4757, SPE of AIME 45th Annual California Regional Meeting, Ventura, Calif. (April 2-4, 1975).
- 35. Van Lookeren, J.: "Calculation Methods for Linear and Radial Steam Flow in Oil Reservoirs," SPE 6788, presented at the 52nd Annual Fall Meeting of SPE of AIME, Oct. 9-12, Denver, Colorado, 1977.

- 36. Huygen, Hans A. H.: "Laboratory Steamfloods in Half of a Five-Spot," Paper No. SPE 6171, SPE of AIME 51st Annual Fall Technical Conference, New Orleans (Oct. 3-6, 1976).
- 37. Gomaa, E. E.: "Simplified Method for Predicting Oil Recovery by Steamflooding," Paper No. SPE 6169, SPE of AIME 51st Annual Fall Technical Conference, New Orleans (Oct. 3-6, 1976).
- 38. Chu, C.: "Pattern Configuration Effect on Steamflood Performance," Paper No. SPE 6728, SPE of AIME 52nd Annual Fall Technical Conference, Denver, Colorado (Oct. 9-12, 1977).
- 39. Atkinson, P. G., and Ramey, H. J., Jr.,: "Problems of Heat Transfer in Porous Media," Paper No. SPE 6792, SPE of AIME 52nd Annual Fall Technical Conference, Denver, Colorado (Oct. 9-12, 1977).
- 40. Rhee, S. W., and Doscher, T. M.: "A Method for Predicting Oil Recovery by Steamflooding Including the Effects of Distillation and Gravity Override," Paper No. SPE 7547, SPE of AIME 53rd Annual Fall Technical Conference, Houston, Texas (Oct. 1-3, 1978).
- Myhill, N. A., and Stegemeier, G. L.: "Steam-Drive Correlation and Prediction," Jour. Pet. Tech., pp. 173-182 (Feb. 1978).
- 42. Cox, D. O.: "Generalizations of the Heat Balance for Thermal Recovery Projects," Paper No. SPE 7080, SPE

of AIME Fifth Symposium on Improved Methods for Oil Recovery, Tulsa, Oklahoma, 1978.

- 43. Spillette, A. G., and Nielsen, R. L.: "Two-dimensional Method for Predicting Hot Water-flood Recovery Behaviour," J. Pet. Tech., June 1968.
- 44. Bird, R. B., Stewart, W. E., Lightfoot, E. N.: "Transport Phenomena," John Wiley and Sons Inc., 1960.
- 45. Crichlow, H. B.: "Modern Reservoir Engineering: A Simulation Approach," Prentice-Hall, Inc., New Jersey, 1977.
- 46. "Theory and Practice of the Testing of Gas Wells,"G. W. Govier, Chairman, Energy Resources Conservation Board, Calgary, Alberta, 1975.
- 47. Greenberg, M. D.: "Application of Green's Function in Science and Engineering," Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1971.
- 48. Tychonov, A. N., Samarski, A. A.: "Partial Differential Equations of Mathematical Physics," Volume 1, Translated by S. Radding, Holden-Day, Inc., 1964.
- 49. Abramowitz, M., Stegun, I. A.: "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1972.
- 50. Konopnicki, D. T., Traverse, E. F., Brown, A., Deibert, A. D.: "Design and Evaluation of the Shiells Canyon Field Steam-Distillation Drive Pilot Project," Jour. Pet. Tech., pp. 546-552, May 1979.

- 51. Banerjee, P. K., Butterfield, R. (eds.): "Developments in Boundary Element Methods--1," Applied Science Publishers, London, 1979.
- 52. Brebbia, C. A., Ferrante, A. J.: "Computational Methods for the Solution of Engineering Problems," Pentech Press, Plymouth, 1978.
- 53. Bettes, P.: "Operation Counts for Boundary Integral and Finite Element Methods," Int. Jour. Num. Meth. Eng., Vol. 17, No. 2, Feb. 1981, pp. 306-308.
- 54. Mukherjee, S., and Morjaria, M.: "Comparison of Boundary Element and Finite Element Methods in the Inelastic Torsion of Prismatic Shafts," Int. Jour. Num. Meth. Eng., Vol. 17, No. 10, Oct. 1981, pp. 1576-1588.
- 55. Shippy, D. J.: Personal communication.
- 56. Hartmann, F.: Personal communication.
- 57. Kellog, O. D.: "Foundations of Potential Theory," Dover, New York, 1929.
- 58. Street, R. L.: "Analysis and Solution of Partial Differential Equations," Brooks/Cole Publishing Co., Monterey, Calif., 1973.
- 59. Carslaw, H. S., and Jaeger, J. C.: "Conduction of Heat in Solids," Oxford University Press, 1959.
- 60. Lewis, J. O.: "Methods for increasing the recovery from oil sands," U.S. Bureau of Mines Bull., 148, 1917.