
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DEEP LEARNING APPROACHES IN PROBLEMS IN

VARIOUS-DIMENSIONAL DATA

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

Lei Yang
Norman, Oklahoma

2017

DEEP LEARNING APPROACHES IN PROBLEMS IN
VARIOUS-DIMENSIONAL DATA

A DISSERTATION APPROVED FOR THE
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Samuel Cheng, Chair

Dr. Pramode Verma

Dr. William Ray

Dr. Cliff Chan

Dr. Bin Zheng

c© Copyright by Lei Yang 2017
All rights reserved.

Acknowledgements

First of all, I wish to express my greatest gratitude to my advisor, Prof. Samuel

Cheng, for his guidance, unconditional support, and for being an excellent mentor

during my Ph.D study. I am grateful for having had the opportunity to work

with him.

I am forever grateful to everyone who has made my time in graduate school

at the University of Oklahoma. I appreciate my internship days at MD Anderson

Cancer Center, Department of Biomedical Informatics at University of California

San Diego, and SAIC-USA research department. My thanks go to Prof. Jingfei

Ma, Prof. Shuang Wang, Prof. Xiaoqian Jiang, Dr. Rakesh Gupta, Dr. Jerry Yu

and Mike Xie, for offering the great opportunities for me to enlarge my vision.

I would like to thank my wife Yang and my parents, for all the love, patience

and understanding. This thesis is dedicated to them with my sincere gratitude.

iv

Table of Contents

1 Introduction 1
1.1 Learning Representation . 2
1.2 Data and Deep Learning . 3
1.3 Overview of Chapters . 4

2 Deep Neural Network 7
2.1 Brief History of Neural Networks and Applications 8
2.2 Biological Inspiration . 10
2.3 Perceptron . 11

2.3.1 Sigmoid Neuron . 12
2.4 Architecture of Feedforward Neural Network 14

2.4.1 Training Single Layer with Gradient Descent 16
2.4.2 Stochastic Gradient Descent 17
2.4.3 Back-propagation . 18

2.5 Limitations of Training Deep Network using Back-Propagation . . 22
2.5.1 Local Minimum . 22
2.5.2 Vanishing Gradient . 22

2.6 Summary . 26

3 Pain Data Management, a Case Study 27
3.1 The Pain State Prediction Problem 28
3.2 Data Representation and Restricted Boltzmann Machine 31

3.2.1 Markov Random Field . 32
3.2.2 Learning in MRF . 32

3.3 Restricted Boltzmann Machines (RBM) 36
3.4 Comparison between RBM and Linear Models 39

3.4.1 Methods . 41
3.4.2 Experimental Results . 47
3.4.3 Summary . 49

4 Deep Neural Networks for Text Detection 50
4.1 Convolutional Neural Network . 50

4.1.1 Convolutional Layer . 51

v

4.2 The Text Localization Problem 52
4.2.1 Challenges . 53
4.2.2 Overview of methods . 54
4.2.3 Related work . 56
4.2.4 Region Based Methods . 59

4.3 ConvNet Approaches . 61
4.3.1 ConvNet in sliding windows 61
4.3.2 Region Proposal Methods 61
4.3.3 Text localization: Bottom-up and Top-down cues 64

4.4 Experiments . 68
4.4.1 Datasets . 69
4.4.2 Training and Implementation Details 69
4.4.3 Quantitative Evaluation 70

4.5 Conclusions . 72

5 Object Detection in LIDAR-based Point Clouds 74
5.1 Autonomous Driving and Sensors 75

5.1.1 Point Cloud and Velodyne LIDAR 77
5.2 Point Cloud Projection . 79
5.3 3D Volume Representation . 83

5.3.1 Occupancy Grid Maps . 84
5.3.2 3D Convolutional Neural Networks 87

5.4 Experiments and summary . 90

6 Summary and Contributions 94
6.0.1 Publications . 96

vi

List of Figures

2.1 A standard perceptron . 11

2.2 Decision boundary in 2-dimensional parameters space 12

2.3 The shapes of Sigmoid and Step function 13

2.4 The architecture of a standard feedforward neuron network 15

2.5 The architecture of a cyclic neuron network 15

2.6 Gradient descent optimization on the surface of cost function . . . 19

2.7 An example on local minimum on 1-d data 23

2.8 Illustration of the derivatives of sigmoid and tanh functions 24

2.9 Illustration of ReLU and leaky ReLU activation functions 25

3.1 An example of MRF and clique 33

3.2 Graphical model of a RBM . 37

3.3 An comparison of LDA and PCA 40

3.4 Illustration of discriminant RBM 41

3.5 Comparison of RBM, LDA, and PCA in pain state prediction . . 45

3.6 ROC curve of RBM, LDA, and PCA 47

4.1 Illustration of LeNet5 . 51

4.2 An example of Convolutional layer 52

4.3 Two examples illustration of the texts in wild scene 53

vii

4.4 Illustration of conventional sliding windows approach 55

4.5 A pictorial representation of categories of various methods 58

4.6 An overview of the text localization paradigms of our framework . 59

4.7 An example of the SWT used for text detection 60

4.8 Example of selective search applied in the text image 62

4.9 Top 100 proposed region boxes . 63

4.10 Performances of edge methods . 64

4.11 GBVS saliency maps . 65

4.12 The annotation of the texts bounding boxes 67

4.13 Our text localization network . 68

4.14 More text localization results . 73

5.1 Example of LIDAR point cloud 76

5.2 Example of 3D data . 78

5.3 Illustration of top-down view . 80

5.4 Illustration of front view cylinder coordinate 81

5.5 Experiments with 64-layer front-view 82

5.6 Experiments with 16-layer front-view 82

5.7 Illustration of grid states . 85

5.8 Surface of grid map . 86

5.9 Comparison of 2D and 3D convolutions 88

5.10 The illustration of 2D Conv layer 88

5.11 Proposed 3D network architectures 89

5.12 Training loss and top-1 accuracy on ShapeNet 3D data. 91

5.13 Car detection results demo using Velodyne VLP-16. 92

viii

List of Tables

3.1 Number of Data Items for Selected Individuals 42

3.2 Classification results . 48

4.1 Text localization accuracy performance comparison 71

5.1 Specifications of 2 popular Velodyne LIDARs 78

ix

Chapter 1

Introduction

Machine learning lies at the heart of a broad range of application fields, it help us

solve many specific problems of practical and commercial interests, such as spam

filter [1], gene selection [2], credit risk assessment [3], face detection and recog-

nition [4] and even enable autonomous driving vehicle [5]. It is often observed

that the raw inputs of these applications are characterized with recorded facts,

such as pixel intensity value in images and videos. However, much of the raw

data is unstructured and need to be transformed to a set of new features. One

hypothesis is that different representations can entangle and hide more or less

the different explanatory factors of variation behind the data [6], an appropriate

feature will help uncover the associated degree of information form that data. As

a result, a good feature should be able to disentangle the factors of variation that

inherently explain the structure of the distribution [7].

Due to the above mentioned reasons, feature engineering, which focuses on

transforming raw data into features that better represent the underlying problem

to the model [8], has become an vital part of machine learning for a long time. In

general, there are two major types of feature engineering: the automatic extrac-

1

tion and handcraft designing approaches. The former one are typically used in

feature selection. For example, to address the problem of curse of dimensionality

which tends to overfit the training data in high dimensional spaces, PCA and its

variants [9, 10, 11] were proposed to used as dimensionality reduction for feature

extraction. PCA learns a linear transformation f(x) = W Tx + b of input x,

which leads to a group of orthogonal decorrelated features. On the other hand,

handcrafting feature engineering turn our inputs into something the algorithm

can understand produces substantial performance gains. For instance, the His-

togram of Oriented Gradients (HOG) [8] and Scale Invariant Feature Transform

(SIFT) [12] are popular feature engineering algorithms developed specifically for

the computer vision domain. However, most feature engineering require profes-

sional data science experience, specific domain knowledge, trial-and-error with

substantial effort, and generally is time-consuming. Moreover, feature crafting is

not a technique we can apply universally and expect to get good result. Most crit-

ically, given a real-world problem, it is often not clear what the optimal feature

representation should be manually designed.

1.1 Learning Representation

In some cases, hidden information inside the data (or instance) is more useful.

Hence, a great deal of research has focused on learning good feature representa-

tions from the data in supervised or unsupervised manner. For instance, K-means

clustering was used as an form of unsupervised representation learning: it begins

with k arbitrary centroids c(k) and adjust these centroids from input data. It is

extremely fast and has no hyper-parameters to tune except the model structure

itself. These two properties make it appealing in practice. Sparse coding [13] is

2

another widely used technique, it find succinct representations of data in which

each of the components of the representation is only rarely significantly active. In

general, feature learning is often a very attractive alternative to manually crafted

feature.

Traditionally, the majority of existing methods have been applied to learn

relatively shallow (one or two layers) representations, which results in a limited

expressive power. From the theoretical standpoint, universal approximation the-

orem [14] suggests that a model with deeper layer can be exponentially more

efficient than shallow model. Therefore, there is a desire to investigate deeper

representations.

1.2 Data and Deep Learning

Recent researches have shift the attention of feature learning to the deep layers

and non-linearity of data representations. As we discussed earlier, the hidden

information in data is more useful than raw feature most time. Deep learning is

exactly such a hierarchical feature learning module, and the hierarchical represen-

tations is one of the major advantages over classical shallow feature engineering.

Deep learning exploring the hidden multiple layers of highly non-linear represen-

tations, each layer in a multi-layer neural network can be seen as a representation

of the input through a learned weights, the higher layer parameters formed by

the composition of lower ones.

Although we have discussed the importance of data representation individu-

ally, we do not suggest that they are the sole source of improving the performance

of model. Rather, it is likely that they are highly interconnected with the clas-

sifier we employ in the model. From this standpoint, deep learning is indeed

3

advanced in which we can jointly learn the features along with the classifier.

More specifically, by adding a classification layer, we jointly combine the learn-

ing and prediction tasks in a single forward-passing network. On the other hand,

non-linearity is another appealing property. For the past decades, a large number

of studies have demonstrated that data representations obtained from stacking

up non-linear feature extractors often yield better learning results.

Besides the theoretical justifications, one of the important reasons for the

popularity of deep learning is the exponential growth of both available data and

computational power. When it comes to making progress on the accuracy result,

most researchers are mainly concerned with design more elegant and sophisticated

model. In modern times, however, we are overwhelmed with data, the alternative

path may be just collect more data. For example, ImageNet [15] containing the

1000 categories and 1.2 million high-resolution images and has become one of the

most important benchmark in computer vision. As a result, the vast majority of

image recognition works [16, 17, 18] directly benefit from this enriched datasets

and usually train their models with a pre-trained parameters based on ImageNet.

At the same time, the emergence of graphics processing units (GPU) enable us

design much deeper layers network. The gradient calculation on a GPU runs

much faster compare to the CPU. In summary, the limitation due to the memory

resources and computation power has been significantly improved.

1.3 Overview of Chapters

This thesis develop efficient deep learning based methods for a series of tasks. I

believe these problems to be inherently worth developing because of their con-

nections to problems of practical importance. In particular, we predict the state

4

of pain data, address the problem of visually locating two-dimensional text ob-

jects in natural scenes, and deal with LIDAR-based point cloud car detection in

autonomous driving respectively. We now provide an overview of the methods

and results which are considered by subsequent thesis chapters. The introductory

paragraphs of each chapter provide more detailed outlines.

Chapter 2: Deep Neural Network

We begin by briefly reviewing the background of general Forward Neural Network

and the concepts of gradient based learning and back-propagation. This chapter

end with the limitations which traditional neural network suffers from.

Chapter 3: Pain Data Management, a Case Study

In this chapter, We first introduce the terminology and concepts of Restricted

Boltzmann Machines, and provides detailed training method used extensively in

later chapters. Turning to pain management issue, we using discriminant RBM

to jointly predict the pain state and compare the performances with linear dimen-

sionality reduction approaches. We conclude by validating RBM’s performance

in 4 customized patients data.

Chapter 4: Deep Neural Network for Text Detection

The fourth chapter applies the variant of Convolutional Neural Network to visu-

ally detect text object in wild scene. We begin with a detailed explain of Con-

vNet. The sliding windows based method is arguably the most popular method

in object detection, thus, we discussed the ConvNet applied in sliding-windows

fashion, underlying the improved detection accuracy due to the better learned

5

representation. In order to speed up localization, we take a look at popular

saliency models and incorporate this concept into the ConvNet.

Chapter 5: 3D Object Detection in LIDAR-based Point Clouds

This chapter focuses on methods for robustly learn 3D object appearance models.

In particular, we devote to LIDAR based point cloud object detection used in

autonomous driving system. Considering the challenges of directly using 3D

data, we first project 3D point clouds into 2D image plane: top-down bird view

and front view cylinder plane. Then we propose two potential 3D models to

addressing 3D objects detection for future investigations.

6

Chapter 2

Deep Neural Network

What magical trick makes us

intelligent? The trick is that

there is no trick.

Marvin Minsky

Deep learning based methods play an important role in various computational

fields and also enjoy tense commercial attention. For example, AlphaGo’s victory

over Lee Sedol [19] is a very impressive achievement among a great deal of other

successful applications. But there is no magic in deep learning, no fancy novel

conceptions with respect to the ”old” neural network. Shallow and deep are only

distinguished by the depth of network.

Traditionally, to solve a classification problem, one first designs an appropri-

ately efficient feature and classifier which can learns a mapping between features

and a predefined set of classes. If we cannot explicitly specify the rules how we

design the feature, then we cannot solve the problem. Neural network extends

what we can do with the training data even when we are unable to state precisely

what the feature should be.

7

Our aim in this chapter is to describe the fundamental structure of neural

network. As the building blocks of neural network, we first introduce two basic

neurons: perceptron and sigmoid neuron. Once a network is constructed with

these neurons, we’ll equip it with back-propagation or gradient-based learning

rules. Vanishing gradient [20] arise when using neural network on real world

problems. We review this problem from the viewpoint of activation functions

and discussed about the saturation of activation functions. To grasp a basic

understanding and appreciation the strength and limitation of neural network,

we’ll begin with a brief review of history of neural network.

2.1 Brief History of Neural Networks and Ap-

plications

In recent years, deep neural networks have won almost all contests in machine

learning. The key paradigm of artificial neural network is the novel structure of

the information processing system. It is composed of a large number of highly

interconnected processing elements (neurons) working together to solve specific

problems.

The first step toward neural network trace back to the 1940’s when McCulloch

and Pitts introduced their first computing model of a neuron [21]. The model

had two inputs and one output, the weight for each input was equal, and the

output was binary. In the 1950’s, Rosenblatt’s work [22] first introduced a two-

layer network, the perceptron, which used trial-and-error to randomly change

the weights in order to achieve learning. It was built in hardware and the oldest

NN still in use today. In the 1960’s, it seemed that perceptrons could solve any

8

problem. However, although the perceptron was successful in classifying certain

patterns, it had a number of disadvantages. For example, one of the limitations

is that the perceptron is a single node, it could only be able to solve the linearly

separable problems (linear separable problem). Consequently, such limitation

leads to the decline of the field of neural networks.

In the following decades, neural network earned the popularity in the 1980s

due to the introduction of back-propagation algorithm [23]. Back-propagation

using stochastic gradient descent for learning functions mapping low-dimensional

dense vectors to other low-dimensional dense vectors. Unfortunately, it lost favour

in machine learning community after 1990’s. There is no clear understanding of

why deeper models were not preferred by the computer research community. One

direct cause might be the deeper models failed proving as capable as high expecta-

tions. Another potential reason may due to the universal approximation theorem

[14] which states shallow layer is able to model any functions. Furthermore, the

training difficulties and hurdles due to small training data, limited computation

power and vanishing gradient problem together forced computer practitioners

focus on more elegant shallow models such as kernel methods [24].

In 2006, an impressive layer-by-layer pretrained method proposed by famous

cognitive psychologist and computer scientist Geoffrey Hinton [25]. His work

renewed interests in deeper network by providing a new way to initialize their

weights before the training process and demonstrated exceptional results. Along

with the improvement on training mechanisms [26] and better choice of ReLU

non-linearity [27] and new model regularization strategies such as dropout layer

[28], deep learning has made a tremendous impact in a wide range of computer

fields. For instance, in computer vision community, the researchers using deep

learning techniques achieved previously unattainable performance on many tasks

9

such as image classification, objects detection, object localization, object track-

ing, pose estimation, image segmentation and image captioning [29, 17, 30, 31].

2.2 Biological Inspiration

Our brain extracts multiple levels of representations from sensory inputs [32].

Typically, animal are able to solve extremely difficult learning problems. Our

brains are made up of billions of neurons, that send electrical signals to one an-

other. The rate of firing tells us how ”activated” a neuron is. A single neuron

might have multiple incoming neurons, these incoming neurons are firing at dif-

ferent rates (i.e., have different activations). Based on how much these incoming

neurons are firing, and how strong the neural connections are, our main neu-

ron will decide how strongly it wants to fire. Learning in the brain happens by

neurons becoming connected to other neurons, and the strengths of connections

adapting over time.

To a certain extent, some artificial neural networks are models of biological

neural networks and some are not, but historically, much of the inspiration for the

artificial NNs came from biology and human cognition. It appears that artificial

neural network are mimic biological network, for example, the primitive features

learned by visual neural network are similar to those found in early visual pro-

cessing stages of human visual system, such as edges or corners. However, it is

important to note that the real biological world is much more complicated than

this and our goal isn’t to build a brain. From this point of view, deep learning is

only loosely based on how the brain works. At the same time, it is observed that

artificial neural network can help to better understand biological neural networks

[33].

10

2.3 Perceptron

The perceptron sometimes called single-layer neural network, it is typically used

for classification, Figure 2.1 is a graphical illustration of a perceptron with n

inputs.

Figure 2.1: A perceptron with n inputs x1, x2, ...xn

Perceptron learns a binary classifier by defining a function that maps its input

x(x1, x2, ..., xn) to a binary output value. Let’s w(w1, w2, ..., wj) be a vector of

real-valued parameters or weights which denote the importance of the respective

inputs to the output. The neuron’s output, 0 or 1, is determined by whether the

weighted sum wjxj is less than or greater than a threshold value. The threshold

is a real number and another parameter of neuron. More precisely, it can be

represented as follows:

output(x) =

0 if

n∑
j=1

wjxj ≤ threshold

1 else

(2.1)

We can also show the decision boundary graphically with respect to 2 dimensional

parameter spaces (Figure 2.2). The decision boundary defined as: w · x + b = 0,

where b is bias and b = −threshold. The network output will be 1 for the region

above and to the right of the decision boundary. The graph shows the perceptron

11

is simply linearly separate the inputs into 2 categories.

Figure 2.2: Decision boundary in 2-dimensional parameters space

Notice that a small change in the parameters of any single perceptron in the

network can sometimes cause the output of that perceptron to completely flip

from 0 to 1 or from 1 to 0. Furthermore, the decision boundary between the

categories is linear. These properties make the perceptron network could solve

only a limited category of problems. Fortunately, this issue can be solved by

introducing a new type of artificial neuron called sigmoid neuron.

2.3.1 Sigmoid Neuron

Sigmoid neurons are similar to perceptrons, but modified so that small changes

in their weights and biases cause only a small change in their output. Similar

with Figure 2.1, the sigmoid neuron has the same inputs, but instead of being

just 0 or 1, these inputs can also take any values between 0 and 1. Similarly,

the output is σ(w · x + b) instead of 0 or 1, where σ is an activation function or

transfer function and is defined by:

σ(z) ≡ 1

1 + e−z
(2.2)

12

More precisely,

σ(x,w, b) ≡ 1

1 + e
−

∑
j
wjxj−b

(2.3)

The exact form of σ isn’t so important - what really matters is the shape of

the function when plotted in Figure 2.3. If we substitute σ function with a step

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.8

1.0

(a)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

(b)

Figure 2.3: The shapes of Sigmoid and Step function: (a) Sigmoid function, (b)
Step function

function, then the sigmoid neuron would be a perceptron. From this perspective,

Sigmoid function is a smoothed out perceptron. The smoothness of σ means that

small changes ∆wj in the weights and ∆b in the bias will produce a small change

∆output in the output from the neuron. We get:

∆output ≈
∑
j

∂output

∂wj
∆wj +

∂output

∂b
∆b (2.4)

∆output is linear function of the changes ∆wj and ∆b in the weights and biases.

Non-linear Transfer Functions

Sigmoid function is the standard way to model a neuron’s output f as a function

of its input x. In addition to the historical reason, there are a number of nice

13

characteristics: it’s smooth, continuous, and monotonically increasing. More

importantly, the exponential function has nice properties when it is differentiated.

More precisely:

σ′(x) = σ(x)(1− σ(x)) (2.5)

This property leads to faster computation. Note that sigmoid function squash the

input to the range of (0, 1), thus, it can be interpreted as probability in certain

extent. Another common choice for activation f(x) is the hyperbolic tangent

function, which has the form: tanh(x) = ex−e−x

ex+e−x . The tanh squashes a real-

valued number to the range [−1, 1]. In practice, the tanh non-linearity is slightly

superior to the sigmoid nonlinearity due to its output is ”zero-centered”. In fact,

almost any non-linear real-valued differentiable (almost everywhere) function can

be used as an activation function in neural nets.

2.4 Architecture of Feedforward Neural Network

With many of these simple, connected sigmoid neuron, we can construct a stan-

dard feedforward neural network (FNN). FNN is a network where connections

between the units only pass forward and do not form a directed cycle. There

may be some shortcut connections between distant layers. In FNN, the output

from one layer is used as input to the next layer, the information moves in only

forward. Figure 2.4 is a four-layer network with two hidden layers, one input

layer and one output layer.

In principle, FNN has the power of a universal approximation, i.e. it can

realize an arbitrary mapping of one vector space onto another vector space [34].

As an alternative to standard FNN architecture, cyclic neural networks (Fig-

14

Figure 2.4: The architecture of a standard feedforward neuron network

ure 2.5) such as Recurrent neural networks (RNNs) and its variant Long Short-

Term Memory (LSTM) are widely-used in a number of fields [35, 30, 36, 37] and

have been demonstrated great success. This network contain cyclic connections

that make them a more powerful tool to model sequence data (e.g., video) than

FNNS. To a certain extent, they are the deepest of all networks. We restrict our

attention to the FNNs throughout this thesis.

Figure 2.5: The architecture of a cyclic neuron network

15

2.4.1 Training Single Layer with Gradient Descent

Computational effort needed for finding the correct combination of parameters.

In order to adjusting the weight and bias coefficients in a network, the vast

majority of strategies use supervised learning. We will use error-correction learn-

ing which compare the network output to the ground truth output value, and

using that error to direct the training. Consider a FNN with n training set

{(x1, a1), (x2, a2), · · · , (xn, an)}, Let’s define the mean squared error cost func-

tion:

C(x, a) =
1

2n

∑
x

‖y(x)− a‖2 (2.6)

Here, y(x,w, b) = wx + b is the output vectors from the network which cor-

responding the input vectors x, and the sum is over all training inputs. The

optimization of cost function will be addressed by gradient descent method.

The gradient descent algorithm has a variety of uses in various fields [38, 39]. It

works by taking the gradient of the parameter space to find the path of steepest

descent. The essential step is computing the partial derivative. Mathematically,

we iteratively applying the update rule in k − th step:

wk+1 = wk − η
∂C

∂wk
(2.7)

bk+1 = bk − η
∂C

∂bk
(2.8)

Where η is a real-valued hyperparameter called learning rate. It is a common

parameter and determines how much the weights can change in response to an

observed error on the training set. η has a significant effects on the network’s gen-

eralization accuracy as well as the training speed. Much effort has been devoted

to automatically tuning the η value [40].

16

The gradient of the cost function always shows in the direction of the steepest

ascent of the function (Figure 2.6). Thus, theoretically we can start with a

random parameter initialization. It is important to note that there is no guarantee

the gradient descent will find a global minimum for problems with non-convex

loss function. We can use method such as simulated annealing [41] to help find

the true global minimum although that may take a very long time to finish the

process. There is another problem from the perspective of efficiency, from the

form of Equation 2.6, the cost function is an average over cost of individual

training examples. Therefore, when the number of training inputs is large the

process can be very time-consuming, and this learning strategy thus inefficient.

2.4.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an iterative optimization algorithm and

can be used to accelerate learning process. The basic idea is quite simple: we

re-write the Equation 2.6 as:

C(w, b) =
1

2n

∑
x

Cx (2.9)

Where Cx is the individual cost for an sample x. SGD estimates the gradient ∇C

by computing ∇Cx for a small number of randomly chosen training samples. By

averaging over this small sample it turns out that we can quickly get a good esti-

mate of the true gradient ∇C, and this helps speed up learning. More precisely,

suppose we randomly picking out a small number m out of N training inputs.

We’ll label them x1, x2, ..., xm, and refer them as a mini-batch. The stochastic

17

gradient descent rule is as follows:

wk+1 = wk −
η

m

m−1∑
j=0

∂Cxj
∂wk

(2.10)

bk+1 = bk −
η

m

m−1∑
j=0

∂Cxj
∂bk

(2.11)

Where the sums
m−1∑
j=0

∂Cxj

∂wk
and

m−1∑
j=0

∂Cxj

∂wk
are over all the training examples xj in

one mini-batch. Then we pick out another randomly chosen mini-batch and train

with them, until we’ve exhausted updating all the N training inputs to complete

one epoch of training. In practice, SGD has been shown to be effective for a

variety of problems.

2.4.3 Back-propagation

Deep architecture by default contains multiple layers. The back-propagation

was the first computationally efficient model of how neural networks could learn

multiple layers of representation. It was developed and redeveloped multiple

times in a various fields [23, 42].

Ultimately, back-propagation computing the partial derivatives ∂C
∂wl

jk
and ∂C

∂blj
,

where wljk means the weight from k-th neuron in (l− 1) layer to j-th neuron in l

layer, blj denotes the bias for jth neuron in l layer. Intuitively, we will encounter

a difficulty when we keep calculating errors in the hidden layers. It is impossible

to compute the error signal for hidden neurons directly, because output values of

these neurons are unknown. The idea is to propagate error back to all neurons.

For the hidden layer i, the next layer k1, each unit computes weighted sum of its

1For the simplicity, we do not consider the biases in calculating the partial derivative with
respect to the weights.

18

w
h

10

5

0

5

10

wo

10 5 0 5 10
0
50
100
150
200
250
300
350

Figure 2.6: Gradient descent optimization on the surface of cost function

19

inputs:

aj =
∑
i

wjizi (2.12)

where zi is activation of a unit that sends a connection to unit j and wji is

the weight associated with the connection. Transformed by nonlinear activation

function

zj = f(aj) (2.13)

Using chain rule for partial derivatives, we have:

∂C

∂wji
=
∂C

∂aj

∂aj
∂wji

(2.14)

We define δj = ∂C
∂aj

, and Equation 2.12 suggests
∂aj
∂wji

= zi. Assuming the k − th

layer is the output layer and the network output is yk and corresponding ground

truth is tk, the term δk is straightforward:

C =
1

2

∑
k

(yk − tk)2 (2.15)

Due to yk = ak, using the definition of δ, we have:

δk = yk − tk (2.16)

For hidden unit j, by chain rule,

δj =
∂C

∂aj
=
∑
k

∂C

∂ak

∂ak
∂aj

(2.17)

From ak =
∑

j wkjf(aj) , we obtain ∂ak
∂aj

=
∑

k wkjf
′(aj). Using the definition of

20

δk, we get the back-propagation formula for error derivatives at j layer:

δj = f ′(aj)
∑
k

wkjδk (2.18)

From the above formulas, the value of δ for a particular hidden unit can be

obtained by propagating the δ backward from units with higher layer in the

network. The partial derivative with respect to bias is comparatively easy. The

output for every neuron is that: aj =
∑
i

wjizi+bj, using chain rule, ∂C
∂bj

= ∂C
∂aj

= δj.

For each training example, the standard back-propagation algorithm can be

performed by two steps:

Step 1, Forward propagation

• Initialize the network with random weights and biases.

• Feed in an example x to the network and forward propagate through net-

work using: aj =
∑

j wjizi and zj = f(aj).

Step 2, Back-propagation of error

• Evaluate the error δk for all output neurons using: δk = yk − tk.

• Back-propagate the δ using δj = f ′(aj)
∑

k wkjδk to obtain δj for each hid-

den neuron.

• Update the weights by: ∂C
∂wji

= δjzi.

• Repeat with other examples until the network converges on the target out-

put.

21

2.5 Limitations of Training Deep Network using

Back-Propagation

Many researchers reported positive experimental results with typically one or two

hidden layers, but training deeper networks consistently yielded poor results2.

Training a deep network is difficult in general because the problem is highly non-

linear and non-convex. In particular, there are two most well-known problems

that arise in back-propagation learning process: local minimum and vanishing

gradient.

2.5.1 Local Minimum

Gradient descent can get trapped in local minimum due to the cost functions

have many local minimum (Figure 2.7). Hence, training tends to converge to a

local minimum. To overcome the local minimum problems, many methods have

been proposed. A widely used one is to train a neural network more than once,

starting with a random set of weights [43]. Consequently, this strategy leads to

more expensive computational cost by nature.

The learning rate is another factor to effect local minimum. Momentum [44]

is a technique that can help the network alleviate this problem. Again, there is

no guarantee we can converge to the global minimum in neural network.

2.5.2 Vanishing Gradient

Another issue the learning process suffered from when training a neural network

is vanishing gradient problem. In particular, features in earlier layers could not

2convolutional network is one notable exception

22

Figure 2.7: An example on local minimum on 1-d data. The back-propagation
will find the local minimum instead of global minimum with the certain initialized
value.

be learned because no learning signal reached these layers. Furthermore, this

problem becomes worse as the architecture of network goes deeper. Notice that

almost all the gradient-based learning methods suffer from this problem.

The direct cause is intuitive, back-propagation learn a parameter’s value by

understanding how a small change in the parameter’s value will affect the net-

work’s output. If a change in the parameter’s value causes very small change

in the network’s output - the network just can’t learn the parameter effectively,

which is a problem. The gradients of the network’s output with respect to the pa-

rameters in the early layers become extremely small. Activation functions make

great effects on this problem.

Discussion: Saturation Property of Activation Functions

Recent researches [45] have been demonstrated that the logistic sigmoid acti-

vation (or tanh function) is unsuited for training deep networks with random

initialization because of the issue of saturation. Consider an activation function

f(x) and its derivative. If f(x)→∞When x→∞ (x← −∞), then f is defined

to be a right (left) non-saturation. An activation function is said to non-saturate

23

if it both left and right non-saturates [46]. Otherwise, the function is considered

as a saturate function.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

saturatesaturate

Sigmoid activation function

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

Derivative of sigmoid

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

saturate

saturate

Tanh activation function

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

Derivative of tanh

Figure 2.8: Illustration of the derivatives of sigmoid and tanh functions, both of
them are saturate on the left and right side.

Sigmoid activation function is a saturate function, and it maps the real number

line onto a ”small” range of [0, 1] (Figure 2.8). As a result, there are large regions

of the input space which are mapped to an extremely small range. In these regions

of the input space, even a large change in the input will produce a small change

in the output - hence the gradient is small.

There are other benefits from non-saturating nonlinearity in addition to ap-

plication in the vanishing gradient problem. When it comes to training time with

gradient descent, these saturating nonlinearities are much slower than the non-

saturating nonlinearity such as Rectified Linear Units (ReLU). ReLU (Figure 2.9)

is defined as f(x) = max(0, x) and it’s fast because the derivation simply involve

thresholding at 0. Many works demonstrated model with ReLU units converge

24

faster than saturate functions. For example, deep convolutional neural networks

with ReLUs train much longer than their equivalents with tanh units [27]. How-

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

ReLU function

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Leaky ReLU function

Figure 2.9: Illustration of ReLU and leaky ReLU activation functions.

ever, ReLU can ’dying’3 during optimization because the derivative is 0 whenever

the unit is not active. This could lead to cases where a unit never activates as a

gradient-based optimization algorithm will not adjust the weights of a unit that

never activates initially. Leaky ReLU (Figure 2.9) was an alternative to fix the

’dying’ issue by allows for a small, non-zero gradient when the unit is saturated

and not active [47]. Instead of the function being zero when x < 0, a leaky ReLU

will instead have a small negative slope, more precisely:

LeakyReLU(x) =

ax if x < 0

x else

(2.19)

where a is a small constant and a default value would be 0.01.

3Neurons are not activated regardless of inputs.

25

2.6 Summary

We briefly introduce the most fundamental building blocks for constructing a

neural network. We will touch the first and most widely studied deep model:

Deep Belief Net (DBN). DBN is proposed by Hinton [25], obtained by training

and stacking several layers of Restricted Boltzmann Machines (RBM) in a greedy

manner. Once this stack of RBMs is trained, it can be used to initialize a multi-

layer NN for classification. RBM computing the conditional posterior over the

stochastic hidden layers is intractable. Learning and inference is more tractable

in single layer RBM but it suffers from lack of representational power. Therefore,

energy based models are used to give RBM a representation. We will describe

energy-based model, RBM, together with DBN in detail in the following chapter.

26

Chapter 3

Pain Data Management, a Case

Study

At the end of last chapter, we discussed the hurdles the traditional back-propagation

faced when train a deep FNN. Much researches have been devoted to overcome

these limitations [48]. The breakthrough was achieved in 2006 when paper [25]

proposed an effective layer-wised unsupervised strategy to train a Deep Belief

Network (DBN). The whole network is created by stacking several layers of Re-

stricted Boltzmann Machines (RBM) [49] in a greedy manner.

RBM is a generative approach to model an input distribution, and regained

the popularity since the breakthrough in DBN. Since 2006, RBMs have been

particularly successful in classification problems such as model human motion

[50], phone recognition [51]. Our emphasis in this chapter will be the inference

of pain state using discriminant RBM.

Pain management is inherently worth investigating. It is common and is

reported by more than half of hospitalized patients [52]. Accurately assessing

pain for those who cannot make self-report of pain, such as minimally responsive

27

or severely brain-injured patients, is challenging. In this chapter, we attempted

to address this challenge by answering the following questions: (1) if the pain has

dependency structures in electronic signals and if so, (2) how to apply this pattern

in predicting the state of pain. To this end, we have been investigating and

comparing the performance of several machine learning techniques. In particular,

we first adopted different strategies, in which the collected original -dimensional

numerical data was converted into binary data. Pain states are represented in

binary format and bound with above binary features to construct -dimensional

data. We then modeled the joint distribution over all variables in this data

using the RBM. The experimental results show that RBM is able to model the

distribution of our binary pain data. In addition, we show that discriminant

RBM can be used in classification task, and the initial result is competitive with

respect to other classifier such as support vector machine (SVM) using PCA

representation and LDA discriminant method.

3.1 The Pain State Prediction Problem

Pain management is very important on patient care, and more than half of hos-

pitalized patients have reported pain. In America, chronic pain affects about

100 million people [53]. Pain and its associated problems are among the leading

public health problems in the US [54]. Although pain assessment guidelines are

available, pain management are still deemed insufficient as reported by many

patients and health professionals [55]. Pain management relies on the ability to

accurately assess when, how and to what extent a patient is experiencing a pain.

As a subjective phenomenon, the severity of the perceived pain may vary signif-

icantly among different patients. Thus a patient’s self-report is usually treated

28

as the most reliable pain measurement [56]. Various non-physiological factors

such as emotional state, environmental and socioeconomic contexts [57, 58, 59]

may also have an impact on pain assessment, which makes it a non-trivial task

to accurately assess pain.

The multidimensional pain theory [60], proposed by Melzack, categorizes pain

based on non-observable (i.e., subjective), and observable (i.e., objective) indica-

tors. For example, patient’s self-reports of pain that include sensory, emotional,

and cognitive components of pain are subjective information, which can serve as

non-observable indicators. Nurses often assess and document this information.

Observable indicators include the physiological and behavioural components of

pain, which are usually captured and documented in critical care settings through

continuous monitoring. The behavioural components are actively applied in be-

havioural observational pain scales. The physiological signals should also help

healthcare professionals better perform the pain assessment. Although many

studies have attempted to associate physiologic signals and pain, few practical

and reliable methods of using physiological components in pain assessment is

available. In this study, we attempted to assess the probability of pain presence

based on other physiological data. This approach can particularly be useful for

caring minimally responsive patients who cannot make self-report of pain.

A great deal of effort has been made to analyze pain. Recently, there has been

increasing interest in exploring the task of predicting pain state using machine

learning techniques. Generally, the task of prediction requires discovering (learn-

ing) patterns in training data. A good data model to represent the distribution of

training data is critical in this process. [61] has successfully done using the elec-

tronic flow-sheet data of ICU patients collected for a limited time interval. These

time series data were projected into a lower-dimensional subspace, and a num-

29

ber of data vectors (within a time window size) were represented (reconstructed)

with some linear combinations of principal components (PCs). The magnitude

of residual between original and reconstructed data can be used to measure the

level of pain. In this previous study, we did not utilize any label (i.e., documented

pain presence) from the data. We could interpolate the missing data by consider-

ing the time information when the recorded labels are incomplete. On the other

hand, ignoring all the labels may result in loss of significant information. The

overall approach of the study we report here is different from that of the previous

one in that: (1) we focus on learning from the labeled data, (2) we treat our data

as non-temporal rather than temporal data, and (3) we focus on investigating the

relationships between activation of pain and the normal/abnormal state of vari-

ous electronic signals. Consequently, the problem we need to solve is transformed

into a supervised learning and classification problem.

In machine learning, linear methods [62] are fast and robust which success-

fully avoid the over-fitting problem with its simple model. In addition, they are

guaranteed to produce a global optimum. However, their performance are often

limited in addressing the real problem data which generally no linear boundary

exist. In this study, we employ an alternative non-linear model restricted Boltz-

mann machine, to represent the original data v with lower-dimensional h. We

trained RBM with the labeled data and feature vectors in a supervised manner.

Both the feature and the labels are visible units in the model. Moreover, using

the nature of this model, discriminant RBM can be used in the classification. The

probability of unknown label class can be calculated through free energy when a

new input was fed into RBM. In the rest of this chapter, we will present the pro-

posed framework of our new pain prediction algorithm called PATTERN: Pain

Assessment for paTients who can’t TEll using Restricted Boltzmann machiNe.

30

3.2 Data Representation and Restricted Boltz-

mann Machine

The success of a classification algorithm highly depends on the choice of repre-

sentation for data. One hypothesis is that different representations can more or

less entangle and hide the different explanatory factors of variation behind the

data [63, 6]. An attractive alternative is to estimate the parametric distribution,

which explains the data best, for example, Gaussian Model and Gaussian Mixture

Models. Another concern is the high data dimensionality. Higher dimensional

data can provide richer and more detailed information than lower dimensional

one simply because they provide more dimensional candidates; at the same time,

learning from the high dimensional data often suffer from over-fitting problem.

In other words, with an insufficient number of data points in the training set, we

tend to memorize each data point rather than learn from it. To avoid over-fitting,

some classical approaches typically project the data into lower-dimensional space,

such as principal components analysis (PCA). Recently, using RBMs to model

the data have been reported in a large variety of learning problems [64, 65, 66].

Theoretically, the capacity of RBMs has been demonstrated that it can provide

a powerful means to represent data [67].

Boltzmann machines are important bridges between neural networks and

probabilistic undirected graphical models and could be one way of implementing

feedback in neural networks. In particular, it is also known as Markov random

fields. Thus, we first give a brief introduction of Markov Random Field.

31

3.2.1 Markov Random Field

Probabilistic graphical models are an intuitive way of representing and visualiz-

ing the conditional dependence relationships between many variables in a joint

distribution. There are two kinds of graphical models: those based on directed

graphs and those based on undirected graphs. Our focus will be the latter one.

Markov Random Field (MRF) [68] is undirected graphical model. A graph

is G = (ν, ε) is a collection of vertices, ν = {x1, x2, · · ·xN} and ε is a set of

undirected edges. Two nodes xi, xj is neighbor if (xi, xj) ∈ ε. A clique is a

set of random variables c, in which all nodes are neighbors of each other. A

clique is maximal if it cannot be extended any larger in that graph. For example,

Figure 3.1 illustrate an example of MRF, there are 6 random variables on the

graph, the corresponding maximal cliques are grouped in the right circles. MRF

is this undirected graph with each edge denotes certain conditional dependency

between variables and satisfy Markov property, where Markov property suggests

that given its neighborhood, a node is independent on the rest of the nodes in the

graph. In other words, the joint distribution of X is determined entirely by the

local conditional distribution, and the local distribution of node can be denote

as:

p(xi|xν\i) = p(xi|neighbor(i)) (3.1)

3.2.2 Learning in MRF

Unsupervised learning means learning an unknown distribution q based on sam-

ple data. Training corresponds to finding the parameter θ that maximize the

likelihood L given the training data x = x1, x2, · · · , xn. More precisely, L(θ|x) =

32

A

D

C

F

E

B

A,D

B,D

C,D,E

C,E,F

Figure 3.1: An example of MRF and clique, left (with blue cir-
cles) shows MRF graph, with nodes ν = {A,B,C,D,E, F} and ε =
{(A,D), (B,D), (C,D), (C,E), (C,F), (D,E), (E,F)}. Right (with red circles)
identify the maximal cliques {(A,D), (B,D), (C,D,E), (C,E, F)}.

n∏
i=1

p(xi|θ). Maximizing the likelihood is the same as maximizing the log-likelihood

given by:

logL(θ|x) = log
n∏
i=1

p(xi|θ) =
n∑
i=1

log p(xi|θ) (3.2)

The local distribution function p(x) can be constructed by Gibbs distribution.

p(x) =
1

Z

∏
φc(xc) (3.3)

where xc is each maximal clique in the MRF. The normalizing factor Z is called

partition function by analogy with physical systems.

Z =
∑
x

∏
φc(xc) (3.4)

The φ(xx) is usually written as:

φc(xc) = e
1
T
F (xc) (3.5)

33

We define the potential of a clique as a function that associates a real number

with each configuration of the clique.

This is also referred as Energy Based Models (EBMs) [69]. EBM tend to

create an analogy with the thermodynamic systems and the concept of energy

is defined as the objective to be minimized. Learning corresponds to finding an

energy function so that associates lower energies (higher probabilities) to correct

values of the remaining variables, and higher energies (lower probabilities) to

incorrect values. Energy based probabilistic models define a probability distribu-

tion through an energy function, as follows:

p(x) =
e−E(x)

Z
(3.6)

To learn a EBM, we are given a set of training samples. In order to find

the best energy function, we need to define a loss (cost) function L(θ,D), where

θ is parameter, and D is dataset. The learning problem is simply to find the

θ that minimize the loss. An EBM can be learnt by performing (stochastic)

gradient descent on the empirical negative log-likelihood of the training data.

For example, if we are talking about logistic regression. It is very common to use

the negative log-likelihood as the loss function. More precisely, the loss function

can be defined as:

L(θ,D) =
1

N

∑
x(i)∈D

log p(x(i)) (3.7)

We will iteratively compute the parameter:

θ′ = θ − ∂ log p(x)

∂θ
(3.8)

In many situations, we do not observe the sample x fully, or we want to intro-

34

duce some non-observed factors or variables to enrich the representation power

of model. We consider an observed (visible) part x and a hidden part h. We can

then write:

P (x) =
∑
h

P (x, h) =
∑
h

e−E(x,h)

Z
(3.9)

In such cases, to map this formulation to one similar to Equation 3.6, we introduce

the notation of free energy, defined as follows:

F (x) = − log
∑
h

e−E(x,h) (3.10)

which allows us to write:

P (x) =
e−F (x)

Z
(3.11)

The data negative log-likelihood gradient then has a particularly interesting form:

− ∂ log p(x)

∂θ
=
∂F (x)

∂θ
−
∑
x̂

p(x̂)
∂F (x̂)

∂θ
(3.12)

It is usually difficult to determine this gradient analytically, as it involves the

computation of Ep[
∂F (x)
∂θ

]. We are computing an expectation over all possible

configurations of the input x (under the distribution P formed by the model).

The calculation grows exponentially as function of length of input.

The first step in making this computation tractable is to estimate the expectation

using a fixed number of model samples. Recall that statistical sampling can be

applied to any expectation, if x(s) ∼ P (x), we have:

∫
f(x)P (x) dx ≈ 1

S

S∑
s=1

f(x(s)) (3.13)

35

Using statistical sampling, the gradient can then be written as:

− ∂ log p(x(i))

∂θ
≈ ∂F (x)

∂θ
− 1

N

∑
x̂∈N

∂F (x̂)

∂θ
(3.14)

With the above formula, we almost have a practical, stochastic algorithm for

learning EBM. The problem here is we want to generate random draws x̂ elements

of N from a target distribution P .

3.3 Restricted Boltzmann Machines (RBM)

Boltzmann Machines (BM) is a special case of MRF, it has been proposed in

the 1980s [70]. Everything of BM is defined in terms of energies of joint config-

urations of the visible and hidden units. RBM (Figure 3.2) further restrict BMs

to those without visible-visible and hidden-hidden connections. Connections be-

tween neurons are bidirectional and symmetric. This means that information

flows in both directions during the training and during the usage of the network.

RBM is the most popular building block for deep architecture and has been used

as generative models of many different types of data [25, 71, 64, 51]. A graphical

depiction of an RBM is shown below. A joint configuration, (v, h) of the visible

and hidden units has an energy E(v, h) given by [72]:

E(v, h) = −b′v − c′h− h′Wv = −
m∑
j=1

bjvj −
n∑
i=1

cihi −
n∑
i=1

m∑
j=1

wijhivj (3.15)

The definition is based on product of expert model proposed by Hinton [73] and

motivated by Hopfield network [72]. where W represents the weights connecting

hidden and visible units and b, c are offsets (biases) of the visible and hidden layers

36

Figure 3.2: Graphical model of a RBM with m visible units and n hidden units

respectively. In other words, the network assigns a potential function E(v, h) to

every possible pair of a visible and a hidden vector. The free energy turns into:

F (v) = −b′v −
∑
i

log
∑
hi

ehi(ci+Wiv) (3.16)

Because of no direct connections between the same layer in RBMs, visible and

hidden units are conditionally independent given one-another. Using this prop-

erty, we can write:

p(h|v) =
n∏
i=1

p(hi|v)

p(v|h) =
m∏
j=1

p(vi|h)

(3.17)

37

Where the marginal distribution over v is:

p(v) =
∑
h

p(v, h) =
1

Z

∑
h

e−E(v,h) =
1

Z

∑
h1

∑
h2

· · ·
∑
hn

e

m∑
j=1

bjvj
n∏
i=1

e
hi(ci+

m∑
j=1

wijvj)

=
1

Z
e

m∑
j=1

bjvj ∑
h1

e
h1(c1+

m∑
j=1

w1jvj)∑
h2

e
h2(c2+

m∑
j=2

w1jvj)∑
h3

e
h3(c3+

m∑
j=3

w1jvj)

=
1

Z
e

m∑
j=1

bjvj
n∏
i=1

∑
hi

e
hi(ci+

m∑
j=1

wijvj)

=
1

Z

m∏
j=1

ebjvj
n∏
i=1

(
1 + e

hi(ci+
m∑

j=1
wijvj)

)
(3.18)

Parameter Learning in RBM

When applying RBM in classification, typically the hidden and visible units are

binary, where vj and hi ∈ {0, 1}. The probabilistic of unit state are defined as:

p(hi = 1|v) = σ(ci +
m∑
j=1

wijvj)

p(vi = 1|h) = σ(bj +
n∑
i=1

wijhi)

(3.19)

The model is defined by its conditional probabilities. The task is to find the

weight matrix that best explains the visible data for a given number of hidden

units. The free energy of an RBM with binary units further simplifies to:

F (v|W, b) = −b′v −
∑
i

log (1 + e1+Wiv) (3.20)

RBMs are usually trained using a much faster method called k-step contrastive

divergence (CD-k) [73]. This requires a certain amount of practical experience

38

to decide how to set the values of numerical meta-parameters such as learning

rate, the weight-cost, the initial values of the weights, the number of hidden units

and the size of each mini-batch. RBMs can be stacked and trained in a greedy

manner to form DBN. DBNs are graphical models which learn to extract a deep

hierarchical representation of the training data. They model the joint distribution

between observed vector x and the l hidden layers hk as follows:

P (x, h(1), h(2), .., h(l)) = (
l−2∏
k=0

P (hk|hk+1))P (h(l−1), hl) (3.21)

where x = h0, P (hk|hk+1) is a conditional distribution for the visible units con-

ditioned on the hidden units of the RBM at level k, and P (h(l−1), hl) is the

visible-hidden joint distribution in the top-level RBM.

3.4 Comparison between RBM and Linear Mod-

els

To demonstrate the representation performance of RBM in our experiments, it

is worthwhile to compare our method to linear models. We now briefly turn

to the discussion of two commonly used techniques, namely, PCA and linear

discriminant analysis (LDA). Both of them are linear transformation methods

and attempt to represent the data with lower dimensions. We refer the reader

to references for more details [9, 74], PCA method finds a subspace, where basis

vectors correspond to the maximum-variance directions in the original space.

The principle behind is that a large variance usually has an important structure

to consider. In practice, we keep only the largest components to reduce the

dimensions. When data was projected into this lower-dimensional space, we then

39

fed them into some classifiers (we use supported vector machine (SVM) in our

experiment). In theory, however, PCA is not optimal for classification under

some conditions, because it ignores the class discrimination. The discriminant

dimensions could be simply discarded. A theoretically better method to find

discriminant direction is LDA. It provides a linear boundary, which is generated

by fitting class condition densities to the data. In a two-dimensional example

shown in Figure 3.3, PCA prefer the direction which shown in red dotted line

(the PCA boundary shown in red solid line) because it has the largest variance

in the components directions. While LDA (in purple color) find the direction,

which corresponds to the class discriminant direction. In this case, LDA should

outperform PCA.

−15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

LDA boundary

PCA boundary
direction

PCA principal
direction

Figure 3.3: An comparison of LDA and PCA in 2-dimensional data.

40

3.4.1 Methods

In our study, we utilized the data from 7,384 patients, which include 937,461 flow-

sheet entries in total. Based on our previous study [61] we selected data items

that are documented in continuous numerical values with sufficient frequencies.

We synchronized the time series data by using MATLAB.

Classification using Discriminant RBM

We addressed the task of classification using RBM with two approaches. The first

one is straightforward: we directly fed the hidden vectors into another classifier.

Note that RBMs provide no guarantee that the generated hidden variables will

ultimately be useful for the supervised task. In other words, if we are handling the

task of 2-class classification and set the number of hidden units as 1, this hidden

unit usually has no connection with our labels. The second more interesting

approach is discriminant RBM, which utilizes the nature of model to compute

the probability. We assume that a test set Dtest = {vi} = {(xi, ci)} consists of

Hidden

Units

Visible

Units
Pulse Urine

Output

Blood

Pressure

Pain

Figure 3.4: Pain label c is included in the visible layer. The black color denotes
the state “on”, while the blue color denotes the state “off”.

41

Table 3.1: Number of Data Items for Selected Individuals.

Patient ID Number of Data Items
7137 22
4822 28
1245 28
6563 24

an input features vector xi and a target class ci ∈ {0, 1} (see Figure 3.4). The

probabilities of two visible vector v01 = (x1, c1 = 0) and v11 = (x1, c1 = 1) can

be directly computed from their free energies F (v01) and F (v11). As shown in the

equation 3.22, we can further obtain the probabilities p(v01) and p(v11) using the

chain rule to cancel the unknown constant Z.

p(c1 = 0|x1)
p(c1 = 1|x1)

=
p(c1 = 0, x1)

p(c1 = 1, x1)
=
p(v01)

p(v11)
(3.22)

Predicting pain state

In a supervised experiment, we would expect the number of labeled data points

(i.e., training data) to be large. To keep the training data as large as possible, we

only selected the features whose time interval was larger than the time interval of

pain labels (i.e., documented pain). Four individuals (Table 3.1) with the number

of recorded labels larger than 1000 were used in the experiment. None of the 4

patients had all 78 assessment items available.

Number of available data items for the 4 patients varied from 22 to 28 (Table

3.1).

In classification tasks it is necessary to perform pre-processing of the data

before applying the algorithm. In our experiment, we converted the numerical

data t into binary data x . It is worth mentioning that the binary representa-

tion may be inappropriate in many real problems, although their interpretation

42

(“normal” and “abnormal”) makes sense in our medical electronic data. Another

important step is personalization, since the indication of a “normal” state varies

among different individuals. We assumed the probability distribution of status

measurement to be a Gaussian. We fit the numerical feature into this Gaussian

probability distribution function, (xi = 1) ∼ N (ti|µ, σ2) , where p(xi = 1) rep-

resents the probability of current feature is abnormal. The mean and variance

can be directly calculated from the samples. With this procedure, the resulting

feature vectors are well-suited to the standard binary RBM. In this experiment,

we convert non-binary probability into binary value by setting threshold = 0.5.

Since LDA allows only the numberofclasses − 1 dimension to be used, there is

no parameter to be set in our 2-class task. For PCA, the size of the reduced

dimension was selected as k = 4, which can cover most energy of the original

data. In our experiment, we considered RBM as a non-parametric model and

allowed the number of hidden variables to vary by the data [75]. As we have a

trade-off to make: while a larger number of hidden units usually give a more pow-

erful representation of distribution it also exaggerates the over-fitting problem.

Therefore, the number of hidden units was adjusted between 15 and 30.

43

Non−pain

Pain

L
D

A

Predicted pain/non−pain events with different methods for patient #7137

True pain prediction False pain prediction True non−pain prediction False non−pain prediction

Non−pain

Pain
P

C
A

Non−pain

Pain

R
B

M

Non−pain

Pain

03
−2

3−
17

 1
7:

21

03
−2

4−
17

 0
8:

22

03
−2

4−
17

 2
3:

23

03
−2

5−
17

 1
4:

24

03
−2

6−
17

 0
5:

26

03
−2

6−
17

 2
0:

27

03
−2

7−
17

 1
1:

28

03
−2

8−
17

 0
2:

30

03
−2

8−
17

 1
7:

31

03
−2

9−
17

 0
8:

32

03
−2

9−
17

 2
3:

34

03
−3

0−
17

 1
4:

35

03
−3

1−
17

 0
5:

36

03
−3

1−
17

 2
0:

38

04
−0

1−
17

 1
1:

39

04
−0

2−
17

 0
2:

40

04
−0

2−
17

 1
7:

42

04
−0

3−
17

 0
8:

43

04
−0

3−
17

 2
3:

44

04
−0

4−
17

 1
4:

46G
ro

u
n
d
 T

ru
th

(a) Patient ID 7137

Non−pain

Pain

L
D

A

Predicted pain/non−pain events with different methods for patient #4822

True pain prediction False pain prediction True non−pain prediction False non−pain prediction

Non−pain

Pain

P
C

A

Non−pain

Pain

R
B

M

Non−pain

Pain

03
−0

2−
18

 0
4:

32

03
−0

3−
18

 0
5:

56

03
−0

4−
18

 0
7:

20

03
−0

5−
18

 0
8:

45

03
−0

6−
18

 1
0:

09

03
−0

7−
18

 1
1:

33

03
−0

8−
18

 1
2:

58

03
−0

9−
18

 1
4:

22

03
−1

0−
18

 1
5:

46

03
−1

1−
18

 1
7:

11

03
−1

2−
18

 1
8:

35

03
−1

3−
18

 2
0:

00

03
−1

4−
18

 2
1:

24

03
−1

5−
18

 2
2:

48

03
−1

7−
18

 0
0:

13

03
−1

8−
18

 0
1:

37

03
−1

9−
18

 0
3:

01

03
−2

0−
18

 0
4:

26

03
−2

1−
18

 0
5:

50

03
−2

2−
18

 0
7:

15G
ro

u
n
d
 T

ru
th

(b) Patient ID 4822

44

Non−pain

Pain

L
D

A

Predicted pain/non−pain events with different methods for patient #1245

True pain prediction False pain prediction True non−pain prediction False non−pain prediction

Non−pain

Pain

P
C

A

Non−pain

Pain

R
B

M

Non−pain

Pain

08
−2

5−
17

 0
3:

23

08
−2

5−
17

 2
2:

00

08
−2

6−
17

 1
6:

37

08
−2

7−
17

 1
1:

14

08
−2

8−
17

 0
5:

51

08
−2

9−
17

 0
0:

28

08
−2

9−
17

 1
9:

05

08
−3

0−
17

 1
3:

43

08
−3

1−
17

 0
8:

20

09
−0

1−
17

 0
2:

57

09
−0

1−
17

 2
1:

34

09
−0

2−
17

 1
6:

11

09
−0

3−
17

 1
0:

48

09
−0

4−
17

 0
5:

26

09
−0

5−
17

 0
0:

03

09
−0

5−
17

 1
8:

40

09
−0

6−
17

 1
3:

17

09
−0

7−
17

 0
7:

54

09
−0

8−
17

 0
2:

31

09
−0

8−
17

 2
1:

09G
ro

u
n
d
 T

ru
th

(c) Patient ID 1245

Non−pain

Pain

L
D

A

Predicted pain/non−pain events with different methods for patient #6563

True pain prediction False pain prediction True non−pain prediction False non−pain prediction

Non−pain

Pain

P
C

A

Non−pain

Pain

R
B

M

Non−pain

Pain

03
−0

4−
18

 0
0:

50

03
−0

4−
18

 2
0:

54

03
−0

5−
18

 1
6:

58

03
−0

6−
18

 1
3:

03

03
−0

7−
18

 0
9:

07

03
−0

8−
18

 0
5:

12

03
−0

9−
18

 0
1:

16

03
−0

9−
18

 2
1:

21

03
−1

0−
18

 1
7:

25

03
−1

1−
18

 1
3:

30

03
−1

2−
18

 0
9:

34

03
−1

3−
18

 0
5:

39

03
−1

4−
18

 0
1:

43

03
−1

4−
18

 2
1:

48

03
−1

5−
18

 1
7:

52

03
−1

6−
18

 1
3:

57

03
−1

7−
18

 1
0:

01

03
−1

8−
18

 0
6:

06

03
−1

9−
18

 0
2:

10

03
−1

9−
18

 2
2:

15G
ro

u
n
d
 T

ru
th

(d) Patient ID 6563

Figure 3.5: Comparison of RBM, LDA, and PCA in pain state prediction. (a),
(b), (c) and (d) are the predicted pain labels using their optimum threshold from
patients (with IDs 7137, 4822, 1245, and 6563). Artificial timestamps are used
for patient privacy.

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve of Patient #7137

RBM with AUC = 0.73255

PCA with AUC = 0.65541

LDA with AUC = 0.65316

(a) Patient ID 7137

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve of Patient #4822

RBM with AUC = 0.76017

PCA with AUC = 0.67942

LDA with AUC = 0.67122

(b) Patient ID 4822

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve of Patient #1245

RBM with AUC = 0.8813

PCA with AUC = 0.76504

LDA with AUC = 0.82033

(c) Patient ID 1245

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve of Patient #6563

RBM with AUC = 0.78594

PCA with AUC = 0.71721

LDA with AUC = 0.69893

(d) Patient ID 6563

Figure 3.6: Comparison of RBM, LDA, and PCA in classification. ((a), (b), (c)
and (d) are the ROC curves (with IDs 7137, 4822, 1245, and 6563).

3.4.2 Experimental Results

With regard to the classification performance, we first examined the Receiver

Operating Characteristic (ROC) curves for each model and calculated the area

47

Table 3.2: Classification results using discriminant RBM, PCA with SVM, and
LDA.

Patient ID Model AUC Sensitivity Specificity Accuracy

7137
RBM 0.73255 0.7143 0.6286 0.6714

PCA + SVM 0.65541 0.8143 0.4714 0.6429
LDA 0.65316 0.8 0.4858 0.6429

4822
RBM 0.76017 0.7037 0.6885 0.6932

PCA + SVM 0.67729 0.6667 0.6557 0.625
LDA 0.67122 0.7037 0.5902 0.6591

1245
RBM 0.8813 0.8667 0.8049 0.8214

PCA + SVM 0.76504 0.8667 0.7317 0.7679
LDA 0.82033 0.0.8 0.7561 0.7679

6563
RBM 0.78594 0.7692 0.6721 0.7011

PCA + SVM 0.71721 0.5769 0.6885 0.6552
LDA 0.69893 0.7308 0.6393 0.6667

under the curve (AUC) by varying the classification threshold (Figure 3.6). The

ROC curve is a plot of true positive rate on the vertical axis against false positive

rate on the horizontal axis. Sensitivity, specificity and accuracy were used as the

criterion of classification performance with the optimum boundary. True positive

(TP), true negative (TN), false positive (FP) and false negative (FN) are defined

as the true pain prediction, true non-pain prediction, false pain prediction and

false non-pain prediction. Then we have the following: Sensitivity = TP
(TP+FN)

,

Specificity = TN
(TN+FP)

and Accuracy = RN+TP
(TP+TN+FN+FP)

.

Table 3.2 suggests that the performance of PCA and LDA is quite similar.

Even though intuitive choice will prefer LDA than PCA, there is no guarantee

that LDA will outperform PCA, especially when the size of training data is not

sufficiently large. This observation is also reported in [76]. With carefully setting

parameters, discriminant RBM can achieve better accuracy in all 4 experiments.

48

3.4.3 Summary

Our experiments show that the RBM classification is competitive to methods

of LDA and SVM using PCA. The AUC was improved and the predicted pain

labels using RBM outperforms the LDA and PCA using the optimum threshold,

respectively. However, we notice that most results of AUC are still in a fair level

(where the value of AUC is smaller than 0.8). Some insights into this limitation

can be concluded as follows: (1) we have not given any consideration to the

temporal data. Ignoring time will result in significant loss of information. We

carried out the experiments by using the training data in the first half of time

series, and made pain prediction with the test data, which corresponds to the

second half of the time series, the detection rate of all methods turned out to be

very poor. (2) Currently, we adopted the fundamental binary RBM. An obvious

observation is that binary representation may be insufficient to represent states

very well. For example, the value of blood pressure higher or lower than mean

value may give totally different contributions to the pain response. In order to

enrich the representation power, we will incorporate the Softmax visible units to

the model in our future work. (3) Most importantly, training of RBM expects

the number of training data to be large. However, our experiment was done with

a relatively small dataset. To this end, we will try to learn a model using a bigger

dataset, and fine-tune the parameters only using the specific individual data in

future work to minimize data loss.

49

Chapter 4

Deep Neural Networks for Text

Detection

4.1 Convolutional Neural Network

Before 2006, the vast majority of network had less than 3 hidden layers. One

remarkable exception were Convolutional neural networks (ConvNets) [77] which

typically are able to train multiple layers of hidden units with back-propagation.

A good example is the classic LeNet [78] which proposed by Lecun in 1990s

and has been successfully applied to hand-written digit recognition for several

decades.

Similarly, ConvNet was inspired from biological visual cortex. A variety of

ConvNets have enjoyed a series of successes in many problems related to object

classification and recognition [79]. Coupled with the rapid advancements in GPU

(graphics processing units) computation, it is now a standard way to train much

larger and more powerful ConvNets that achieve state-of-the-art performance on

standard benchmarks.

50

Figure 4.1: LeNet5, a 5-layer ConvNet which was first proposed by [78] in 1998.

Concretely, a ConvNet is just a multilayer, hierarchical neural network. A

basic ConvNet, such as the one in Figure 4.1, consists of applying multiple layers

of learned convolution kernels together with element-wise nonlinearities, often

followed by a spatial pooling (subsampling). Regular FNNs are both computa-

tionally intensive and memory intensive, making them extremely hard to deploy

and train on the system. ConvNet address this limitations by involving Convo-

lution layer and dramatically decrease the number of parameters.

4.1.1 Convolutional Layer

Convolutional (Conv) layer is the essential part of ConvNet. It aims to using

spatial information between the pixels of an image, in other words, it take ad-

vantage of the property of heavy correlation between nearby pixels in the image.

The concept of receptive field was proposed to capture this correlation. Mathe-

matically1, given a filter size (f, f), the value at position (x, y) in layer l on the

feature map v after the Conv layer is given by:

vlxy =

f−1∑
p=0

f−1∑
q=0

wpqv
l−1
(x+p)(y+q) (4.1)

1Notice that the equation is correlation rather than convolution. Correlation is almost the
same with convolution except that convolution is associative. From the point view of learning
parameter, there is no difference between the two operations.

51

Figure 4.2: An example of Convolutional layer.

Conv layer offers a number of advantages over regular fully connected layer.

First, the forward propagation is easier because the regular FNN is over-parametrized

and Conv layer requires much less number of parameters, thus avoiding waste of

computation. For example, for an input feature map 100×100 and the same size

output feature map, there are 108 weight parameters. Conversely, it we using 64

filters with each size 3 × 3 2, there are only 3 × 3 × 64 = 576 parameters. As a

result, Conv layer reduce the number of parameters by an order of magnitude.

4.2 The Text Localization Problem

A large number of research has been done on Optical Character Recognition

(OCR) [80]. Many commercial OCR systems are able to achieve the high detec-

2small filter sizes are sufficiently good for image application

52

tion accuracy. However, OCR generally focused more on specific scanned docu-

ments with clean background rather than arbitrary image formats with random

background and surrounding. This disadvantage limit the practical application

of OCR.

Localization and recognition of text from natural scene has been one of the

important focuses in the field of computer vision. Understanding text usually

conveys valuable information and has a wide variety of applications. For example,

the self driving car can detect and understand the traffic signs (e.g. ”Stop”, ”One

way”) to navigating the street; the online search engine can automatically read

the annotation of video and thus allow fast retrieval by query terms [81]. (Figure

4.3).

(a) (b)

Figure 4.3: Two examples illustration of the texts in wild scene. (a) Two stop
signs in parking lot. (b) Breaking news subtitle in video.

4.2.1 Challenges

Text localization in scene image is particularly difficult and still an active area of

research for a number of reasons. First and most importantly, the basic problem

of knowing what is text or character is difficult. Much effort was devoted to

the development of representing text feature. Various assumptions and empirical

rules (features) [82, 83] were proposed to represent text. However, most hand-

53

engineered features are actually very common in natural scenes. For example,

considerable non-text objects (such as leafs, bars, walls) are composed of similar

small shapes as well as strokes with texts. Secondly, some approaches detect

characters and group them together. The problem is that there could be a very

large number of characters. For example, there are over 50,000 Chinese char-

acters. Thirdly, compare to regular object detection such as car detection, the

aspect ratio could not be fixed in advance due to the text-line varies. Moreover,

scene image often suffering from inconsistent lighting, occlusions, orientations and

noise. Hence, a robust system should be able to tolerate these extreme situations.

In general, the common text recognition strategy involves text localization

which determine whether or not the input image contains any text, if does then

localize candidate regions; the recognition step attempts to recognize the text

depicted within the regions, or potentially reject the bounding box as a false

positive detection. In this thesis, we focus on the first step. In particular, we

tackle the task of the text localization in real world scene images, as opposed to

extracting text from scanned documents.

4.2.2 Overview of methods

The design of feature which be able to represent text pattern is critical in this

task. ConvNets [84] have been successfully used to achieved remarkable results

in a variety of image recognition problems [29, 85]. Various ConvNets have been

employed in the text localization by [86, 87, 88]. Their commonly-used pipelines

(Figure 4.4) mainly involve running sliding (generally rectangular) window de-

tector over input image with a number of scales to generate a text/non-text

confidence map, and integrating the responses with the candidate spacings by

54

post-processing like non-maximal suppression (NMS) and beam search. The re-

ported results show [86, 88, 81] that ConvNets performs well even in the extreme

situations. Unfortunately, another critical challenge arises on side of practical

applications. Localizing text in an image is potentially a computationally infea-

sible task as generally any of the 2N subsets can correspond to text (where N is

the number of pixels for a square image).

Figure 4.4: Illustration of conventional sliding windows localization of text using
the ConvNet based detector. From left to right: input image, saliency map gen-
erated using text/non-text classifier, bounding box results after post processing.

Recently, region proposal was combined with ConvNet method in text lo-

calization [89] to avoid exhaustive search through images. The work achieved

exceptionally impressive results, and the accuracy is closely approaching human-

level performance. While the computation time was decreased dramatically, it

still cost about 6 seconds with the existence of single GPU. The reason is that

they first over-segment the image and as a result they generate a large number

of candidate regions in order to maintain a high recall. In other words, region

proposals take equal computation effort through the image; most computation

efforts are devoted to eliminate the non-text candidates. Motivated by the ob-

servation that the human visual system can collect enough information with a

single glance of an image, we employed one-pass ConvNet to assist localizing the

55

text candidate regions.

Contributions: In contrast to previous works that typically concentrate on

improving the text detection accuracy, and driven by the demand for real-time,

our work aims at efficiently and effectively localize the text under extreme envi-

ronment. To achieve these, our main contributions are presented as follows: 1)

We directly track text as an object rather than detect characters and group them

together. In the processing of grouping, the majority of existing methods require

a fixed-sized lexicon dictionary which reduce the generality of their models. Our

approach does not need the lexicon information. 2) Our pre-trained ConvNet

automatically output the coordinates of text bounding boxes associated scores.

The detections are performed in the manner of single-shot forward passing. We

significantly improved the computation efficiency by a large margin. 3) We utilize

the ConvNet to represent whole scene image rather than text-only features, and

encode the contextual spatial information into localization. To the best of our

knowledge, this is the first work reported in the literature of text spotting using

one-shot ConvNet.

4.2.3 Related work

Overall, text localization methods usually fall into two primary paradigms: region

based and sliding windows detector based. Region based approaches [82, 83, 90]

extract character candidates from images, and then group characters into word

regions. The intuition behind this is the assumption of characters from the same

language have similar properties (color, size, intensity, stroke-width, etc.). These

approaches are attractive because it’s a general language model and invariant

to the scale. Note however that there is no universally rules can differentiate

56

text in all scene images. While most of these existing approaches are able to

detect text well with clean background (e.g. only text in the image), they usually

failed in the presence of blurring, significant variations and complex background

[82]. Another dominant approach is sliding windows detector based methods

[91, 92]. The majority of existing methods train a character/non-character clas-

sifier based on manually designed features, such as SIFT [93], and HOG [94].

Then these methods scan through the image at a number of scales. Recently, the

ConvNet has caught significant attention in both academic and industrial com-

munities. Through introducing more intermediate neural layers, a deep network

model can have higher representing power and can be trained to automatically

extract features of an object. [86] first trained ConvNet character/non-character

classifiers. However, in doing so, the exhaustive search based detector was far too

slow for real-time applications. Nevertheless, ConvNet detector achieved higher

recognition rates than most region based methods.

Character and text (word) based approaches. It is important to note

that both of the aforementioned paradigms address the text localization by em-

ploying the same mechanism: localizing characters, and subsequently grouping

these into words. Both models, however, do not capture the structure of text in

the real world. Intuitively, a lone character can be a very ambiguous object, and

often impossible to distinguish them from the rest of the image.

In order to reduce the number of windows, and thus be able to apply more

advanced classification, the method of bounding-box proposals was formed. More

recent work by Jaderberg [89] employed this method in text detection for the

first time. In their pipeline, more than 107 regions were first proposed using

Edgebox [95], and then this number was decreased to 104 by filtering with random

forest (RF). For each region, bounding box regression and text recognition were

57

Figure 4.5: A pictorial representation of categories of various methods and our
approach

performed to assist localization. This work offers a balance between efficiency

and performance. However, there are two sources of inefficiency: (i) redundancy,

the number of candidate regions is usually in the order of millions, which leads

to computation resources spent in the following filtering step; (ii) intolerant to

deteriorate image. Edgebox heavily relies on the edge detection performance,

which is notably sensitive to the low image quality.

Our approach belong to text-based (Figure 4.5). We take a further step based

on [89] and address both of its two inefficiencies. Our intuition lies behind the

human visual system. Human beings can easily localize the text regions in terms

of a glance. It would be desirable to make this process working in ConvNet. We

were inspired from the work [96], [97], [98] in object detection and proposed to

locating the text region through one-pass ConvNet rather than proposing a large

number of candidate regions, as schematically illustrated by Figure 4.6. This

conceptually straightforward approach outperforms previous methods from the

viewpoint of computation efficiency by a large margin, while the accuracy is not

58

Figure 4.6: An overview of the text localization paradigms of our framework (top)
and region proposals based framework [89] (bottom).

much decreased3.

4.2.4 Region Based Methods

Text data can be analysed at different levels of representation. For example, text

data can easily be treated as a group of words (SWT).

SWT

Epshtein [82] proposed the SWT (stroke width transform) for text detection. The

SWT is an image operator which assigns a stroke width to each pixel of an image.

The stroke width is determined by shooting rays on edges in the direction of the

gradient. If the ray hits an edge with the same gradient direction modulo 180

degrees, the length of the ray determines the stroke width of the underlying pixels.

Pixels which are adjacent to each other belong to the same character if their

stroke width is similar. Hence, connected components are formed by segmenting

the stroke width map. Adjacent connected components are grouped to words if

3The localization accuracy could be refined with the similar post recognition step which
employed in [89].

59

the median stroke width ratio of two connected components does not exceed 2,

the height ratio of the two components is smaller than 2 and distance and average

color difference are within Thresholds learned from the training set. In addition,

SWT is able to applied to many languages and fonts without training. Conversely,

the performance of SWT decrease drastically under complex background. A SWT

based text detection can be given by Figure 4.7.

(a) (b)

(c) (d)

Figure 4.7: An example of the SWT used for text detection of an image (a). The
SWT assigns every pixel the value of the width of the stroke it belongs to (b).
Text and characters tend to be regions of uniform stroke width, so the variance
of each connected component can be computed (c). Regions of low variance are
likely to be characters, and can be grouped for word detection (d).

60

4.3 ConvNet Approaches

In this section, we rethink text localization from the perspective of computation

efficiency. Given an image I, we are asked to find all the regions contain text in

a efficient manner. At the end of the previous section, we talked about potential

benefits from the region proposals. Below, we first provide a brief overview of

the Edgebox method.

4.3.1 ConvNet in sliding windows

As an alternative strategy for text detection, many previous work uses sliding

window methods to find text in an image. Sliding window based methods operate

in a manner similar to generic object detection – that is taking a small window

of interest within the full image, and classifying whether or not text is contained

within that window. This window is then translated across the entire image, and

at different scales, to detect text at all possible positions and scales. The output

is a pixel wise text/no-text classifier, creating a text saliency map. The text

saliency map is then generally thresholded to generate bounding box predictions

for text localization.

4.3.2 Region Proposal Methods

Region proposal algorithms build on low-level features, and then create a set of

hypotheses (candidate regions) based on their own defined ”objectness”. For all

reported proposal methods, there is a trade-off between computational tractabil-

ity and high detection quality. [99] evaluated ten detection proposal methods,

among which SelectiveSearch [100] and EdgeBox (Fig 4.9) outperformed all other

methods by a wide margin in ground truth recall and overlap ratio. We will then

61

give a brief introduction of these two methods:

Selective Search

Selective Search first applies superpixel segmentation [101], and then performs

bottom-up hierarchical grouping of regions by combining neighbouring ones iter-

atively. Selective search using 4 sub-similarities which represent the similarities

from the viewpoint of color histogram, gradient derivation of orientations, size

fraction and the measurement of fitness. Therefore, it can produce completely

general object candidates with no limitations. In addition, Selective Search re-

quires no learning process and can even detect the text not placed in horizontal

line (Figure 4.8).

(a) (b)

Figure 4.8: Example of selective search applied in the text image.

Edgebox

Edge boxes [95] utilize object boundary information which obtained from struc-

tured decision forests [102, 103]. The bounding boxes which have fewer contours

62

Figure 4.9: Top 100 proposed region boxes. (Note that the number of windows
are restricted for illustration)

straggling the boundary of the box are considered more likely to be objects (Fig-

ure 4.9). They first compute the edge response map using Structured Edge detec-

tor, and perform NMS orthogonal to the edge responses. A candidate bounding

box b is assigned a score sb based upon the number of edges wholly contained by

b, the boxes are then sorted by the score.

Since region proposals generators are primarily used to reduce the computa-

tional cost of the detector, they should be significantly faster than the detector

itself. Under our hardware setting of CPU 2.4GHZ, the Selective Search takes

about 2 seconds to compute proposals for a typical 500× 300 image. While the

Edgebox method only runs 250ms. From this perspective, Edgebox provide the

best compromise in speed versus quality.

The state-of-art work first generate a number of objectness score using Edge-

box. Unfortunately, because the score assigned is not related to the text, we have

to handle every proposals. According to [89], more than 99% of the boxes are

false-positives and have to be eliminated with further steps. Although the step

of Edgebox is typically fast, the filtering stage, however, requires an expensive

process of classifying due to millions of candidates.

Another serious downside which also happened on the region based methods

is that the edge performance on extreme situations. The performance will dras-

tically decline in the case of blurring and bad image resolution. For example, in

63

Figure 4.10: Both performances of structured edges (used in Edgebox) and canny
edges(used in SWT and Extreme Region) are declined in the case of blurring)

Figure 4.10, structured edges appear to ignore the text structure, where canny

detector preserve too much details. The former simply leads to the disappearing

of text objects, where the latter produces too much candidate regions. Both of

them result in failure of text localization.

4.3.3 Text localization: Bottom-up and Top-down cues

The region proposals improve the computation efficiency by generating millions

of boxes instead of billions in conventional sliding windows manner. Our fun-

damental hypothesis is that the text region proposal step could ultimately be

skipped. In other words, we search the (small number of) text regions instead of

filtering (large number of) non-text regions. One reasonable strategy that may be

used is to mimic how visual system spot texts and only focus on selected regions.

One promising potential solution relies on one much broader concept of saliency

map. Saliency maps which are designed for predicting which regions are likely to

attract human attention, has continued to be an active research area in computer

vision for past decades.

As a general observation, texts in real world are intentionally designed to

attract attention, and consequently can be considered in the scope of significant

object. Traditionally, the approaches are divided into two categories: bottom-up

64

Figure 4.11: GBVS saliency maps calculated on SVT [86] dataset. The red
rectangle indicates the ground truth text regions. The left appears to help text
localization, the middle produces too much regions, and the right selects non-text
regions

model and top-down model.

Bottom-up model works without any previous assumptions of the content

of processed images, and models the unconscious visual processing in early vision

and is mainly driven by hand-crafted low-level (multi-scale) cues (e.g., orienta-

tion, contrast and color). Given a feature map M , our goal is to compute an

activation map A such that M(i, j) is somehow unusual in its neighbourhood will

correspond to high values of activation A. Various models [104, 105, 106] were

proposed to solve it according to some criterion. A typical scheme defined as

A(i, j) = −log(p(i, j)), where p(i, j) = Pr(M(i, j)|neighborhood). We compute

the saliency activation map (Figure 4.11) using [106] due to its reliability and ef-

ficiency. Naively, it might seem that the bottom-up saliency map will shrink the

search region. However, the benefit is limited, since the computation of saliency

relies on find all ’surprise’ objects without taking into account the specific text

appearance. More critically, with this saliency map using the ”winner take all”

policy, texts can simply be ignored.

Top-down ConvNet forward search

Top-down methods take advantage of data-specific information as prior knowl-

edge, and are usually task-driven and learning-based. Saliency problem were

65

converted to a detection and regression problem. Fundamentally, we are using

ConvNet to integrate these two tasks into one output layer. The text regions

are represented as multiple bounding boxes as convention. In localization, we

carry out one time forward-passing through the pre-trained network. Generally,

in the training of ConvNets, we model the problem as classification. Instead, we

model the prediction of text regions. More specifically, we treat the task of text

localization as a regression problem.

Training objectives bounding box regression

We train a ConvNet to attempt to predict all text regions and their confidence

scores. Given a training set of M pairs {(Ii, bi)}, where each element Ii is a

training scene image, and each bi denotes the corresponding text label. The

label b is composed of 4 coordinate informations {x, y,H,W}4. (x, y) denotes

the normalized coordinates of center relative to the bounds of the sub-region, W

and H indicate the width and height relative to the whole image respectively.

First consider only one text region included, we need to learn the parameters

that minimize the L2 error: arg min
M∑
i=1

ξi , where the loss function is:

ξi =
M∑
i=1

||g(Ii;w)−bi||2 =
M∑
i=1

(xi−x̂i)2+(yi−ŷi)2+(Hi−Ĥi)
2+(Wi−Ŵi)

2 (4.2)

where the g is ConvNet forward passing and w is the network parameter. When

the problem extends to multiple regions. Intuitively, we breaks down input image

into a d × d sub-regions, and extend the label into {l, x, y,H,W}. If the center

of a text (word) falls into a sub-region, that cell is responsible for detecting that

4We use the same structure of bounding box as [107] and [96].

66

Figure 4.12: The annotation of the texts bounding boxes and corresponding
responsible training sub-regions

object and we assign l = 1, otherwise, we assign the indicator l = 0. Because a

particular sub-window may contain multiple texts, we set the number of bounding

boxes as N = 2. In this case, we define the scoring function:

ξi =
M∑
i=1

d2∑
j=1

lij(bi − b̂i)2 (4.3)

ConvNet architecture

In general, the ConvNets served in the task of text localization typically contain

a small number of hidden layers [89, 81, 86] due to the comparatively small size

of texts. Note that our training data is entire scene image rather than text,

we adopted the GoogleNet [108], which is a generic ConvNet architecture and

achieved outstanding performance in image recognition tasks. We derive our

scene text model from the [96]. Our network consists of stack of Conv layers

followed by fully connected (fc) layers. The Conv layers are interspersed with

maxpooling layers at various stages. The contextural features extracted from the

Conv layers are fed into two fc layers. The output of the second fc layer is fed into

67

Figure 4.13: Our ConvNet model replaces traditional classifiers such as softmax.
It takes as the whole input image features and outputs multi-dimentional data

the output layer, which performs text detection and regression. A description of

the architecture can be found in Figure 4.13. The ConvNet weights are optimized

using back-propagation using the open-source darknet framework [96].

Discussion: back-propagation text search

Another potential model is back-propagation weakly text localization [109]. Let

us consider an image I and a class c, the back-propagation saliency map can

be represented as the gradient of class score Sc(I) with respect to the image:

gc(I) = ∂Sc(I)
∂I

. Intuitively, the pixels that are closely related to the text affect

changes in Sc more, which means that nearby regions of pixels would have high

values in saliency map. However, this model assumes that the most part of image

is text object. This strong assumption may not hold for most of scene images.

In practice this model would have to come in a pipeline that first segments the

image into pieces that only help which contain individual text objects.

4.4 Experiments

In order to compare the performance of our approach against standard bench-

marks and state-of-the-art, we evaluated our method on two commonly used

benchmark datasets.

68

4.4.1 Datasets

We evaluate our methods for text localization on two public datasets: (i) IC-

DAR03 robust text locating and (ii) Street View Text (SVT) datasets. Both of

them have bounding box annotations.

International Conference of Document Analysis and Recognition (ICDAR)

including multiple datasets, labelled by year. The ICDAR03 dataset consists of

432 images in total, and 251 images are used for test. The dataset has word and

character bounding box annotations.

The Street View Text (SVT) dataset [91] contains 647 words and 3796 letters

in 249 images taken from Google Street View. The dataset is more challenging

because most of the images come from business signs and exhibit a high degree of

variability in appearance and resolution. In addition, due to the limited number

of scene images which contains text in the training process, we collected a new

scene text training dataset which contains 1000 street view images along with

the annotations.

4.4.2 Training and Implementation Details

We pre-train our ConvNet layers on the training dataset. The ConvNet consists

of 22 layers – 15 Conv layers, 5 pooling layers, and 2 fully connected layers lay-

ers. Each layer contains learnable parameters and a linear transformation. The

dropout procedure is used to randomly zeroing a proportion of the parameters,

and we set the proportion as 0.5. The network takes an image which is resized

to 448× 448. We use the momentum of 0.9 and a decay of 0.0005. The outputs

predicting a sub-regions size 11× 11. Our ConvNet is trained on entire scene im-

ages from ICDAR03, SVT and our collected 1000 training sets. Various methods

69

augmented their datasets with synthetic text training examples in order to im-

prove model performance [86, 81]. Note that, however, due to the relatively small

training set, and [110] shows features can be transferred from general to specific

by the last layer of the network. We copied the pretrained parameters trained on

ImageNet [15] challenge as our initial weights to improving performance. Error

bac-prorogation was applied to update the new parameters.

4.4.3 Quantitative Evaluation

To evaluate the performance, we followed the standard evaluation protocol (pre-

cision, recall and F-measure) previously used in ICDAR03 [111]. A localization

result is considered to be correct (true positive) if the overlap ratio between the

ground-truth and the detected text above 0.5. The overlap ratio between two

rectangular bounding boxes b1 and b2 is defined as the ratio of intersection over

union (IoU): b1∩b2
b1∪b2 . The definitions of precision and recall are: precision = |TP |

|E| ,

recall = |TP |
|T | , where |T | and |E| are the number of ground-truth and estimated

bounding boxes, |TP | indicates the number of true positive. The harmonic F-

score f combine the precision and recall and denotes as f = 2∗precision∗recall
precision+recall

. Since

the focus of this work is solely on text detection, we did not using the feedback

from recognition step to assist detection accuracy.

Experimental results comparisons are shown in Table 4.1. As can be seen, our

method achieved 0.92 and 0.89 precision, 0.67 and 0.53 recall on ICDAR03 and

SVT respectively. The precision is significantly higher than most baselines and

comparable with the region propose based methods [89]. Our recall is notably

less than [89] due to the bounding box failed to catch the small texts. It is worth

noting that [89] builds on an extremely large dictionary (contains 90M training

70

Table 4.1: Text localization accuracy performance comparison on the ICDAR03
and SVT (P denotes precision, R denotes recall and f represents the F-score)

ICDAR03 SVT
Algorithm P R F P R F
Sliding windows + ConvNet +
Beam Search[86] 0.72 0.51 0.59 0.54 0.30 0.38
Region proposal + ConvNet +
recognition assist [89] 0.96 0.85 0.90 0.85 0.68 0.76
SWT [82] 0.73 0.60 0.66 - - -
Bandlet SWT [112] 0.76 0.66 0.71 - - -
MSER [83] 0.59 0.55 0.57 - - -
Our approach 0.92 0.67 0.78 0.89 0.53 0.66

data and 90k words) to enhance the performance; in contrast, our model is only

trained with thousands of training images. Furthermore, note that although

a small lexicon was provided in SVT, we did not utilize this information, this

feature allows our method well-suited to the practical application since specialized

lexicons are not readily available.

The method involved was implemented on a machine with an Intel i7-4770

(3.4 GHZ) CPU. When run on single GPU (Tesla C2075), the cost of localization

on a typical SVT image and ICDAR is approximately 0.10 second per frame.

Since we first resized the image, the size of image has no significant effects on the

calculation time. With removing the step of region proposal and consequently

avoiding a large number of filtering processes, our approach outperforms previous

methods by a wide margin, it is approximately 50 times faster than [89], and or-

ders of magnitude faster than the conventional [86]. For region based approaches,

we observed that there is a considerable efficiency difference. They spent less than

1 second when handle very clean and small image, but cost more than 60 seconds

when deal with complicated SVT images. The complexity of background has

71

critical impact on the process of their post-processing. Correspondingly, [82] and

[83] tends to introduce more false positives when address the challenging SVT,

and consequently cost much more time to eliminates the no-text regions. This

confirms that the manually designed features are difficult to address complex

situations. Figure 4.14 shows more results from our approach.

4.5 Conclusions

In this work, we tackled the text localization problem based on ConvNet. Our

model combines the text detection and region regression into one ConvNet, and

offers a practical way to speed up text localization. We presented results on

two text benchmarks ICDAR03 and SVT. Our results show that the efficiency

in terms of computation cost were improved by a wide margin. Our approach

requires only one ConvNet forward passing, in spite of the simplicity, however, it

roughly 50 times faster than [89] and accelerates the [86] by orders of magnitude.

We limit ourselves to modeling English texts and digital numbers, the methods

should be able to be extended to a multilingual localizer. There are a number

of limitations in our approach, first, the scene image I must be resized. This

is problematic for text images, because the aspect ratio is an important cue in

text detection. Second, we simply treat text as regular object, the ConvNet is

difficult to determine the correct text boundary without lexicon information when

two texts are close. Our plans for future work include investigation the role of

scene resized sub-regions and the refinement of bounding boxes.

72

Figure 4.14: Our fast search approach results on SVT and ICDAR datasets.

73

Chapter 5

Object Detection in

LIDAR-based Point Clouds

In recent years, 3D object detection becoming a fundamental task for various

challenged application domains such as scene understanding, robot navigation

and autonomous driving [113, 114, 115, 5]. For example, the autonomous driving

system has to plan the path, drive to the free space and avoid other vehicles on

the highway, it’s critical to be able to predict accurate vehicle’s 3D localization,

orientation and distance.

ConvNet and other deep learning techniques have been achieved human-level

performances in 2D images from previous chapters introduction. While the 2D

object detection approaches are very useful in many applications such as Internet-

based image retrieval and recognition, it is much less popular in 3D applications.

Recent approaches have extended and employed ConvNet in video classification

[116, 117, 118] to recognize human actions and detect abnormal events. In their

works, video data was addressed as 3D tensor with one temporal dimension was

incorporated into a sequence of spatial images. In the majority of these works,

74

the input to the network is a stack of consecutive video frames, so the model

is expected to implicitly learn spatio-temporal motion-dependent features in the

hierarchical layers. Previous ConvNets have demonstrated good performance

upon video datasets, note that most of them consider the sequence as a segmented

object, and thus only simple classification task was devoted to.

Although it’s beneficial to a number of tasks, 3D data investigation is much

less investigated and among the greatest challenges in computer vision. One of

the reasons is it’s hard to collect large amounts of data. In modern times, it’s

much easier to capture 3D data, such as Stereo Imager, Google project Tango,

Microsoft Kinect, Intel RealSense, all lead to a renewed interests in 3D object

recognition. In this thesis, we emphasis on a special 3D data point: LIDAR-

based point clouds. More precisely, we address the problem of vehicle detection

with only data from LIDAR sensors (Figure. 5.1 show a 3D environment with

vehicles labeled from KITTI1). The ConvNet is performed on an 300× 300× 40

occupancy grid, each voxel (volume pixel) covering a small patch of 0.1×0.1×0.1.

We present a simple yet efficient model to fusion the multiple layers of top-down

view data. In this chapter, we present a simple yet efficient model to fusion the

2D and 3D Conv layer into a ConvNet. Experiments show that the fusion yields

significantly better performance than the projection-based method.

5.1 Autonomous Driving and Sensors

On average, more than a million people are killed in road crashes each year [119],

and most of the traffic accidents can be avoid by being more careful2. At the same

1A benchmark datasets gathered of urban street scenes in German.
2This is particularly true given that 39 percent of the crash fatalities in 2011 involved alcohol

use by one of the drivers

75

Figure 5.1: The LIDAR point cloud data from KITTI dataset, the vehicles are
labeled with red bounding boxes.

time, we are getting closer and closer to allowing robotic or vehicle to interact

with the real world. Autonomous driving cars have the potential to significantly

enhance the traffic safety and thus change our transportation. Besides, some of

the benefits of this task include energy and pollution consumption reduction.

The research on the intelligent vehicle have made progresses for several decades

[120, 121, 122, 123]. In recent years, many high-tech companies leading the charge

in this task. For example, Google has endeavor to promote autonomous driving

for almost a decade [124]. Tesla, Audi and Toyota also unveiled their autonomous

driving vehicle prototype.

To perform fully (or partially with the assistance of driver3) autonomous

driving, a autonomous system needs to equip with a basic set of capabilities.

More specificity, it must be able to avoid obstacles, detect where are the traffic

lights and road signs, perceive the surroundings accurately and quickly, and most

importantly find the free space to plan path for future steps. To this end, the

advanced sensors to gather information about the environment is critical.

3for example, an emergency intervention to avoid a collision

76

Each sensor has its own strengths and weakness. Range sensors are heavily

used in obstacle avoidance, mapping and navigate safely through environments.

Stereo Imager are able to provide depth information. While image capture de-

vice is arguably the best sensor to mount in the vehicle. For example, NVIDIA

cooperated with Audi released a demo on CES 2017, the vehicle count only on vi-

sion sensor to control the car without human intervention involved in the driver’s

seat. It has become increasingly clear, however, that a purely vision sensor-

enabled vehicle cannot adequately and safely address the problem of road scene

understanding. Indeed, image is a rich cue to object detections, however, from

the application standpoint, unless there is a reason to believe that the obstacles

in the scene, it’s a necessary to incorporate multi-sensors in the autonomous driv-

ing system. Therefore, the most popular sensor modalities for object detection

deployed in the robotics community are the combination of cameras and lasers.

5.1.1 Point Cloud and Velodyne LIDAR

There are two categories of sensors: passive and active sensors. Different with

passive sensor, such as camera (without flash) which measure the reflected light.

LIDAR is an active sensor. It measures distance using laser light. The light

reflected from the measured surface is analysed and the data stored as a cloud of

points. For this reason, one of the key advantages of active sensor is being able

to collect imagery night and day, as well as through clouds and various weather

conditions. Most importantly, LIDAR is able to produce a 3-dimensional map of

surface coordinates in a scene, and can reveal underlying structural information in

great detail. At the same time, the laser scan formed is a collection of points in the

3D space, and is sometimes referred to as a “ point cloud ”. However, compared

77

(a) Chair 3D data from Model-
Net10

(b) Car LIDAR data from

Figure 5.2: The example of a regular CAD data and a sparse LIDAR data.

Table 5.1: Specifications of 2 popular Velodyne LIDARs.

Key Features HDL-64E VLP-16
number of channels 64 16

range 120m 100m
number of points per second 2.2 Million 300, 000

Horizontal FOV4 360◦ 360◦

Vertical FOV 26.9◦ 30◦

Accuracy < 2 cm ∼ 3 cm
Horizontal Resolution ∼ 0.08− 0.35◦ ∼ 0.1− 0.4◦

Vertical Resolution ∼ 0.4◦ 2◦

with vision methods, laser data is inherently highly sparse. For example, a given

car object (Figure 5.2b) contain only less than 100 point clouds, but a CAD chair

may contain more than 200, 000 points.

Our project use Velodyne LIDAR. The resolution of Velodyne LIDAR scan-

ners can be very good, achieving an accuracy of a few mini-meter at 100m range.

Velodyne LIDAR (Table 5.1) capable of a full 360◦ horizontal view which making

it more informed about the environment than a human driver.

78

5.2 Point Cloud Projection

Since a 2D image is a projection of the 3D world and 2D image recognition is

well-investigated. Intuitively, one potential approach is projecting 3D data into

lower dimensional image planes. From the standpoint of view angle, we have to

options: top down view and front view.

Top Down View

For any given LIDAR 3D data, we target at the effective rage of the 3D space

[−15, 15] meters in x-axis, [0, 30] meters in y-axis, and [−2, 2] meters in vertical

direction (z-axis). Given these range, the points which located outside this cube

bounding box are then being removed. For all the preserved data, we encode

the 3D data by top-down bird’s view with pixel resolution of 0.1 meter, resulting

in a 300 × 300 × 40 volume. The top down image can be simply generated by

eliminating the z-axis.

Using region proposal network approaches such as Faster-rcnn [18], we are

able to produce the 2-D vehicle bounding box, then the 3D bounding boxes can

be back-projected using a pre-defined z value. Top-down view detection is shown

to be sufficient for detecting objects with a limited ranges (Figure 5.3). The

problem is that we have to customize the range of z, in other words, the vehicle

will be occluded if there exists other objects on the top of the car. This limited

the algorithm can not work on general situation.

Front View Cylinder Plane

An alternative to top-down view is front-view image plane [125]. In front view, a

coordinate vector in the spherical coordinate system is defined as m = (r, θ, φ)T ,

79

(a) (b)

Figure 5.3: Illustration of top-down view Velodyne VLP-16 projection and de-
tection bounding boxes.

where r is the distance range, θ is azimuth or horizontal angle, and φ the elevation

component (Figure 5.4). The coordinates are constrained so that r ≥ 0,−π <

θ ≤ π, and −π/2 < φ ≤ π/2. A point in Cartesian coordinates is represented by

p = (x, y, z)T . The transformation from the spherical to the Cartesian coordinate

system is given by: p = rv. where v is a unit direction vector defined as:

v =

sinθcosφ

sinφ

cosθcosφ

 (5.1)

80

x

y

z

x− y top down plane

φ

θ

r

z1

Figure 5.4: An illustration of front view cylinder coordinate and panel of top-
down view.

The transformation from Cartesian to spherical coordinate system is given by:

m =

r

θ

φ

 =

√
x2 + y2 + z2

arctan(y/x)

arcsin(z/
√
x2 + y2 + z2)

 (5.2)

Similar with [125], we define the image location variables:

p =

⌊
θ

∆θ

⌋
and q =

⌊
φ

∆φ

⌋

Then our front-view image can be generated by fill the element at (p, q) with

2-channel data (r, z). Elements in positions where no points are projected into

are filled with (r, z) = (0, 0).

81

(a)

(b)

Figure 5.5: Car detection experiments with faster-rcnn approach with 64 beams
front-view image.

Different with [125] which employs fully ConvNets based method [126], we

apply the faster-rcnn’s strategy in the front view car detection and achieved

the similar performance with [125] reported on KITTI datasets (Figure 5.5).

However, the problem raised when we simulate the VLP-16 data by down-sampled

the 64-beams into 16-beams, there is no obvious vehicle pattern shown in the

down-sampled image (Figure 5.6).

(a)

(b)

82

Figure 5.6: Car detection experiments with faster-rcnn approach with down-
sampled 16-layer front-view image.

5.3 3D Volume Representation

The projective nature of the image forming process means information loss is

inevitable. In order to properly classify a cube or 3D bounding box, sliding win-

dow approach can be intuitively used to score the cuboid objectness. Various

representations have been designed manually or learned from data. For exam-

ple, sliding shapes [127] was proposed as a 3D object detector that runs sliding

windows in 3D to directly classify each 3D window. On the other hand, SIFT

and HOG are extended into SIFT-3D [128] was proposed to slide a 3D detection

window in 3D space. HOG-3D [129]. However, adding a new dimension for mov-

ing the windows significantly enlarges the search spaces, and make this method

infeasible to applying on the project.

Current state-of-the-art methods [130, 131, 132] rely on ConvNets to address

the task of 3D detection. For the data structure, the majority of existing methods

based on two categories of representation: volumetric representation and multi-

view representation. The first one discretized spatially as binary voxels, while

the latter one represent the 3D object as a set of projected 2D pixel images. In

either case, there is a need to lifting from 2D neural net to 3D neural net. We

concentrate on the volumetric representation and using occupancy grid maps to

describe the 3D spatial correlation.

83

5.3.1 Occupancy Grid Maps

Directly using the LIDAR range measurement has a major drawback. First of all,

no free space are modeled, it can not differentiate the free space and unmapped

space. Then, original point clouds store large amounts of measurement points

and hence are not memory-efficient. In addition, features based on point clouds

often require spatial neighbourhood queries, which can quickly become intractable

with large number of points. Therefore probabilistic occupancy grid map was first

proposed to represent the raw LIDAR data by [133]. Note that the appearance of

voxel grid map is uniformed discretization but highly depends on the resolution

of voxel grid in space. Suppose we have 5 measurements, then given different

pre-defined of resolutions, we can have different occupied states (Figure 5.7).

LIDAR measurements are afflicted with uncertainty: typically, the error in

the range measurements is in the order of centimeters. Let zt be a set of mea-

surements, while t = 1, 2, ...T be a sequence of range measurements that either

hit zt = 1 or pass zt = 1 a given voxel with coordinates (i, j, k).

For the most intuitive ”hit and pass through” model. We can define each

voxel as:

ltijk = min(lt−1ijk + zt, 1) (5.3)

To differentiate the free space and unknown space, there are two different

methods to compute the grid: 1) Binary occupancy grid. In this model, each voxel

is assumed to holds a probability value representing the degree of how occupied

that voxel is by an obstacle. The probabilistic estimate of occupancy for each

voxel is computed with log odds for numerical stability. Using the formulation

84

(a) (b)

(c) (d)

Figure 5.7: Illustration of states of grid in 4 resolutions. Blue denotes occupied,
white denotes empty and grey means unknown state

from [134], we update each voxel traversed by the beam as:

ltijk = lt−1ijk + ztlocc + (1− zt)lfree (5.4)

Assuming p(x) denotes the probability of current voxel’s probability being occu-

pied and has range of [0, 1], then the l can be defined as:

l(x) = log
p(x)

1− p(x)
(5.5)

The initial probability of occupancy is set to p0 = 0.5, or l0 = 0.

85

Figure 5.8: An example of KITTI data’s surface of occupancy grid map.

2) Density grid. In this model each voxel stores a single value expressing the

density, corresponding to the probability the voxel would block a sensor beam.

We use the formulation from [135], where we track the Beta parameters αtijk and

βtijk, with a uniform prior α0
ijk = 1 and β0

ijk = 1 . The update for each voxel

affected by the measurement zt:

αtijk = αtijk + zt and βijkt = βtijk + (1− zt) (5.6)

The voxel’s density can be represented as:

µtijk =
αtijk

αtijk + βijkt
(5.7)

It is important to note that our point cloud data is not a sequence of mea-

surements. Thus, we do not differentiate the order of t and t − 1. We turn the

point cloud into 3D voxels through a simple ”hit and pass through” process, and

an example of voxelization can be found on Figure 5.8.

86

5.3.2 3D Convolutional Neural Networks

Inspired by the ability of 2D ConvNet. The 3D convolution is achieved by con-

volving a 3D kernel to the volume formed by stacking multiple contiguous frames

together. Formally, the value at position (x, y, z) with feature map size f × f × f

is given by:

vlxyz =

f−1∑
p=0

f−1∑
q=0

f−1∑
r=0

wpqrv
l−1
(x+p)(y+q)(z+r) (5.8)

Similarly, the 3D (max) pooling layer with a pooling kernel of g × g × g can

be represented as:

vlxyz = max
i,j,k∈{0,1,...,g−1}

vl(gx+i)(gy+j)(gz+k) (5.9)

A comparison of 2D and 3D convolutions is given in Figure 5.9. Note that

3D Conv layer is different with multi-channel image convolution. In RGB image

classification, the channel will be combined with multiple 2D convolutional op-

eration. In contrast, 3D Conv layer perform convolution along 3 different Axes

(Fig 5.10).

Small Object Detection with 3D Models

2D models could not detect small objects such as pedestrian due to their project

nature. A number of works [136, 137, 138] proposed to extract features for re-

trieval and classification of 3D models. However, it also suggests that 3D ConvNet

is more time-consuming to searching 3D sliding windows. In order to address this

87

Figure 5.9: Comparison of 2D and 3D convolutions. In the second row of the
figure, the size of the convolution kernel in the temporal dimension is 3, and the
sets of connections are color-coded so that the shared weights are in the same
color.

Figure 5.10: The illustration of 2D Conv layer, 2D Conv layer on multi-channel
images and 3D Conv layer on 3D data.

88

problem, we extended the region proposal network (RPN) in [18] to 3D RPN. Our

proposed network takes a 3D volume as input and output a set of 3D fixed-scale

bounding boxes with objectness scores. In order to avoiding the problem of using

too many 3D Conv Layers, while still preserving a 3D voxel input, we fuse multi-

ple 2D Conv layers and single 3D layer into a network. In other words, we input

the 3D occupancy grid which preserve more 3D spatial information, and using

multiple 2D Conv layers to achieve the computational efficiency. We generate a

2D top-down image by means of using 3D ConvNet. The underlying idea is quite

simple, we simply insert one 3D Conv layer in the first layer of faster-rcnn. Our

model’s architecture are illustrated in Figure 5.11.

(a)

(b)

Figure 5.11: Proposed 3D network architectures. (a): 3D RPN network. (b):
Mixed 2D and 3D network

We initialized the parameter in the first layer is set as 1 instead of the Gaussian

randomized value, because this is actual equivalent to the top-down 2D image.

The parameters after the first layer are initialized with VGG-16 network that was

pre-trained to perform classification on the ImageNet dataset [5]. The network

89

consists of one 1∗1∗40 fully connected layer and eight 3×3 Conv layers (followed

by ReLU non-linearities) and five 2×2 max-pooling layers and has shown excellent

performance. For the training loss function, we use the same multi-task (log) loss

proposed in [18] and [16]:

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i) (5.10)

where i is the index of an anchor in and pi is the predicted probability of anchor i

being an object. The ground truth label p∗i is 1 if the anchor is positive, and is 0 if

the anchor is negative. ti is a vector representing the coordinates of the predicted

bounding box, t∗i is the labeled region ground truth. Lcls and Lreg are log loss

over two classes and regression loss respectively. Ncls is the mini-batch size and

Nreg denotes the number of anchor locations. The interested reader is referred to

the original paper [18], for detailed discussions of the faster-rcnn paradigm.

5.4 Experiments and summary

Our first goal of experiment is to show that 3D model is able to capture the

3D spatial information. We trained and tested classification experiments for first

8 categories in ShapeNet CAD data [130]. The input layer accepts a fixed-size

volume grid of 30× 30× 30 voxels. The training loss and top-1 testing accuracy

are shown in Figure 5.12. The plot suggests that a 7-layer 3D ConvNet achieve

the classification accuracy above 92% after only 2 epochs training. We then

evaluate our approach on the collected VLP-16 datasets (Figure 5.13). The data

sets consists of 4 captured package videos with of 10 fps frequency. Again, we

only concentrate on the still LIDAR frame, no temporal information is involved

90

Figure 5.12: Training loss and top-1 accuracy on ShapeNet 3D data.

91

Figure 5.13: Car detection results demo using Velodyne VLP-16.

in the experiments.

To evaluate the effectiveness of the 2D models, we prepare the projected data

follow the paradigm we introduced in section 5.2. We report the results of 2D

image-based detection results with KITTI 64 beams data and VLP-16 data. In

KITTI dataset, the 7480 training LIDAR frames was divided into 6000 for train-

ing and 1480 for testing. All methods start from the same pre-trained VGG16

network and the performance measurement metric we used is from benchmark

KITTI: a true positive detection is considered when the IoU overlap between

bounding box and ground truth > 0.7. We set the detection threshold score

as 0.75, and experiment show our top-down view approach (52%/85%) is better

than the front-view method (49%/72%) by precision in both VLP-16 and KITTI

64 data respectively. For the computation cost, we use one NVIDIA GeForce

Titan X GPU in our experiments. Both top-down and front-view image-based

approaches takes around 100 ms (10Hz). For the pedestrian detection, both pro-

jection approaches are failed to detect the pedestrian bounding boxes. The 3D

92

models with small object detection is still on the ongoing stage but the prelim-

inary experiments showing they can generate cube candidates but with a large

number of false detection. In current stage, the critical difficulty is the lack of

training data with pedestrian in a short range. In this chapter, We first introduce

the LIDAR sensor and the sparse point clouds. We then show that projection

based methods can be used to detect vehicles. Next we describe the potentially

promising network in which direct extension from 2D ConvNet to 3D ConvNet

and incorporate 2D and 3D in a network.

93

Chapter 6

Summary and Contributions

We examined the general theme of object classification and detection in the con-

text of three particular tasks with different number of dimensions. The first case

of this thesis addressed pain prediction problem. First of all, we converted the

original collected attributes into binary features, thus avoiding the hard prob-

lem of how to represent highly-diverged attributes of collected data. Generally,

medical data prediction involves explicitly selecting the right set combination of

features, which needs the much effort on trial and error. We employed the dis-

criminative RBM to directly solve the problem of feature selection and prediction

simultaneously. We also observed the discriminative RBM appear to yield bet-

ter accuracy than to the classical PCA and LDA with SVM classifier methods.

To the best of our knowledge, our work is the first one reported to incorporate

discriminate RBM (one-layer DBN) in the pain management research.

The next chapter dealt with the task of 2D text object localization. Chapter 4

first directly applying off-the-shelf ConvNet classifier in sliding window manner.

This, however, significantly increased the computation time. We then employed

the saliency mechanism in ConvNet to quickly localize the text. Driven by the

94

demand for real-time application, our work aims to speed up the localization

and robust detection under extreme environment such as seriously blurring and

degradation. To achieve these, our main contributions are as follows: 1) We

directly track text as an object rather than detect characters and group them

together. In the processing of grouping, the majority of existing methods require

a fixed-sized lexicon dictionary which reduce the generality of their models. Our

approach does not need the lexicon information. 2) Our pre-trained ConvNet

automatically output the coordinates of text bounding boxes associated scores.

The detections are performed in the manner of single-shot forward passing. We

significantly improved the computation efficiency by a large margin. 3) We uti-

lize the ConvNet to represent whole scene image rather than text-only features,

and encode the contextual spatial information into localization. In addition, the

majority of existing text detection method’s performance heavily rely on the com-

plexity of image background. In contrast, the pipeline represented in this thesis

does not have this limitation.

We then turned to object detection in LIDAR. Chapter 5 begins by develop-

ing data projection-based approaches. We first investigated front view projection

and proposed our top-down bird view projection, 2D region-based ConvNet was

then performed on both projections. To fully utilize the rich 3D information, vol-

umetric approaches were received much attention. However, 3D models generally

need much more parameters and thus more computational cost. In this thesis, we

describe two preliminary alternative approach which efficiently extend 2D RPN

to 3D RPN and integrate 2D and 3D ConvNet. Experiments on KITTI and our

collected 16-layer LIDAR data demonstrates that proposed bird view projection

method outperforms the front-view projection, and the 3D model are potentially

able to detect small object with large number of training data.

95

6.0.1 Publications

• L. Yang, J. Hua, M. Bittner, S. Cheng, A Factor Graph Based Method for

Cell Image Tracking and Apoptosis Analysis. IEEE International Sympo-

sium on Biomedical Imaging (ISBI 2014), May, 2014, Beijing, China.

• L. Yang, J. Ma, S. Cheng, J.B. Son, J. Hazle, B. W. Carter, and S. Lin.

Quantitative ADC Measurement Analysis. AAPM2015, work done while

at MD Anderson) – 2015.

• L. Yang, S. Wang, X. Jiang, S. Cheng, and H. Kim. PATTERN: Pain As-

sessment for paTients who can’t TEll using Restricted Boltzmann machiNe.

BMC Informatics and Decision Making.

• L. Yang, S. Cheng, S. Wang and P. K. Verma. Text Search: Towards

Fast Text Localization in Scene Images. IEEE International Symposium

on Multimedia (ISM2016), San Jose, CA, USA.

96

Bibliography

[1] Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., Paliouras, G., Spy-

ropoulos, C.D.: An evaluation of naive bayesian anti-spam filtering. arXiv

preprint cs/0006013 (2000)

[2] Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for can-

cer classification using support vector machines. Machine learning 46(1-3)

(2002) 389–422

[3] Galindo, J., Tamayo, P.: Credit risk assessment using statistical and ma-

chine learning: basic methodology and risk modeling applications. Com-

putational Economics 15(1-2) (2000) 107–143

[4] Viola, P., Jones, M.J.: Robust real-time face detection. International

journal of computer vision 57(2) (2004) 137–154

[5] Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driv-

ing? the kitti vision benchmark suite. In: Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on, IEEE (2012) 3354–3361

[6] Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review

and new perspectives. IEEE transactions on pattern analysis and machine

intelligence 35(8) (2013) 1798–1828

97

[7] Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies

for training deep neural networks. Journal of Machine Learning Research

10(Jan) (2009) 1–40

[8] Domingos, P.: A few useful things to know about machine learning. Com-

munications of the ACM 55(10) (2012) 78–87

[9] Jolliffe, I.: Principal component analysis. Wiley Online Library (2002)

[10] Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component anal-

ysis. In: International Conference on Artificial Neural Networks, Springer

(1997) 583–588

[11] Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and

applications. Neural networks 13(4) (2000) 411–430

[12] Lowe, D.G.: Object recognition from local scale-invariant features. In:

Computer vision, 1999. The proceedings of the seventh IEEE international

conference on. Volume 2., Ieee (1999) 1150–1157

[13] Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis

set: A strategy employed by v1? Vision research 37(23) (1997) 3311–3325

[14] Cybenko, G.: Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems (MCSS) 2(4) (1989) 303–

314

[15] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A

large-scale hierarchical image database. In: Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE (2009) 248–255

98

[16] Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Con-

ference on Computer Vision. (2015) 1440–1448

[17] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image

recognition. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. (2016) 770–778

[18] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time

object detection with region proposal networks. In: Advances in neural

information processing systems. (2015) 91–99

[19] Moyer, C.: How google’s alphago beat a go world champion. The Atlantic,

March 28 (2016)

[20] Hochreiter, S.: The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems 6(02) (1998) 107–116

[21] McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics 5(4) (1943)

115–133

[22] Rosenblatt, F.: The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological review 65(6) (1958)

386

[23] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations

by back-propagating errors. Cognitive modeling 5(3) (1988) 1

[24] Schölkopf, B., Burges, C.J.: Advances in kernel methods: support vector

learning. MIT press (1999)

99

[25] Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep

belief nets. Neural computation 18(7) (2006) 1527–1554

[26] Hinton, G.: A practical guide to training restricted boltzmann machines.

Momentum 9(1) (2010) 926

[27] Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann

machines. In: Proceedings of the 27th international conference on machine

learning (ICML-10). (2010) 807–814

[28] Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov,

R.: Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research 15(1) (2014) 1929–1958

[29] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with

deep convolutional neural networks. In: Advances in neural information

processing systems. (2012) 1097–1105

[30] Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neu-

ral image caption generator. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. (2015) 3156–3164

[31] Toshev, A., Szegedy, C.: Deeppose: Human pose estimation via deep neural

networks. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. (2014) 1653–1660

[32] Grafton, S.T., Hamilton, A.F.d.C.: Evidence for a distributed hierarchy of

action representation in the brain. Human movement science 26(4) (2007)

590–616

100

[33] Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural

networks segment neuronal membranes in electron microscopy images. In:

Advances in neural information processing systems. (2012) 2843–2851

[34] Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-

forward neural networks. Chemometrics and intelligent laboratory systems

39(1) (1997) 43–62

[35] Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Re-

current neural network based language model. In: Interspeech. Volume 2.

(2010) 3

[36] Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venu-

gopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional

networks for visual recognition and description. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. (2015) 2625–

2634

[37] Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidi-

rectional lstm and other neural network architectures. Neural Networks

18(5) (2005) 602–610

[38] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,

Hullender, G.: Learning to rank using gradient descent. In: Proceedings of

the 22nd international conference on Machine learning, ACM (2005) 89–96

[39] Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free approach to

parallelizing stochastic gradient descent. In: Advances in Neural Informa-

tion Processing Systems. (2011) 693–701

101

[40] Vogl, T.P., Mangis, J., Rigler, A., Zink, W., Alkon, D.: Accelerating the

convergence of the back-propagation method. Biological cybernetics 59(4)

(1988) 257–263

[41] Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated

Annealing: Theory and Applications. Springer (1987) 7–15

[42] Griewank, A.: Who invented the reverse mode of differentiation? Op-

timization Stories, Documenta Matematica, Extra Volume ISMP (2012)

(2012) 389–400

[43] Iyer, M.S., Rhinehart, R.R.: A method to determine the required number of

neural-network training repetitions. IEEE Transactions on Neural Networks

10(2) (1999) 427–432

[44] Qian, N.: On the momentum term in gradient descent learning algorithms.

Neural networks 12(1) (1999) 145–151

[45] Mishkin, D., Matas, J.: All you need is a good init. arXiv preprint

arXiv:1511.06422 (2015)

[46] Gulcehre, C., Moczulski, M., Denil, M., Bengio, Y.: Noisy activation func-

tions. arXiv preprint arXiv:1603.00391 (2016)

[47] Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve

neural network acoustic models. In: Proc. ICML. Volume 30. (2013)

[48] Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. Neural Computation

14(10) (2002) 2497–2529

[49] Smolensky, P.: Information processing in dynamical systems: Foundations

of harmony theory. Technical report, DTIC Document (1986)

102

[50] Taylor, G.W., Hinton, G.E., Roweis, S.T.: Modeling human motion using

binary latent variables. Advances in neural information processing systems

19 (2007) 1345

[51] Mohamed, A.r., Hinton, G.: Phone recognition using restricted boltzmann

machines. In: Acoustics Speech and Signal Processing (ICASSP), 2010

IEEE International Conference on, IEEE (2010) 4354–4357

[52] Strohbuecker, B., Mayer, H., Evers, G.C., Sabatowski, R.: Pain prevalence

in hospitalized patients in a german university teaching hospital. Journal

of pain and symptom management 29(5) (2005) 498–506

[53] Simon, L.S.: Relieving pain in america: A blueprint for transforming pre-

vention, care, education, and research. Journal of Pain & Palliative Care

Pharmacotherapy 26(2) (2012) 197–198

[54] Lippe, P.M.: The decade of pain control and research. Pain Medicine 1(4)

(2000) 286–286

[55] Stannard, C., Johnson, M.: Chronic pain management-can we do better?

an interview-based survey in primary care. Current medical research and

opinion 19(8) (2003) 703–706

[56] McCaffery, M.: Patients in pain: What they say, and what they really

mean. Director (Cincinnati, Ohio) 13(2) (2005) 104–106

[57] Cook, K.F., Dunn, W., Griffith, J.W., Morrison, M.T., Tanquary, J.,

Sabata, D., Victorson, D., Carey, L.M., MacDermid, J.C., Dudgeon, B.J.,

et al.: Pain assessment using the nih toolbox. Neurology 80(11 Supplement

3) (2013) S49–S53

103

[58] Godfrey, H.: Understanding pain, part 1: physiology of pain. British

Journal of Nursing 14(16) (2005)

[59] Briggs, E.: Understanding the experience and physiology of pain. Nursing

Standard 25(3) (2010) 35–39

[60] Melzack, R.: From the gate to the neuromatrix. Pain 82 (1999) S121–S126

[61] Wang, S., Jiang, X., Ji, Z., El-Kareh, R., Choi, J., Kim, H.: When you can’t

tell when it hurts: a preliminary algorithm to assess pain in patients who

can’t communicate. In: AMIA Annual Symposium Proceedings. Volume

2013., American Medical Informatics Association (2013) 1429

[62] Bishop, C.M.: Pattern recognition. Machine Learning 128 (2006) 1–58

[63] Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction

and data representation. Neural computation 15(6) (2003) 1373–1396

[64] Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines

for collaborative filtering. In: Proceedings of the 24th international confer-

ence on Machine learning, ACM (2007) 791–798

[65] Krizhevsky, A., Hinton, G.E., et al.: Factored 3-way restricted boltzmann

machines for modeling natural images. In: International conference on

artificial intelligence and statistics. (2010) 621–628

[66] Taylor, G.W., Hinton, G.E.: Factored conditional restricted boltzmann

machines for modeling motion style. In: Proceedings of the 26th annual

international conference on machine learning, ACM (2009) 1025–1032

[67] Fischer, A., Igel, C.: Training restricted boltzmann machines: An intro-

duction. Pattern Recognition 47(1) (2014) 25–39

104

[68] Jordan, M.I., Bishop, C.: An introduction to graphical models (2004)

[69] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on

energy-based learning. Predicting structured data 1 (2006) 0

[70] Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for

boltzmann machines*. Cognitive science 9(1) (1985) 147–169

[71] Hinton, G.E., Salakhutdinov, R.R.: Replicated softmax: an undirected

topic model. In: Advances in neural information processing systems. (2009)

1607–1614

[72] Hopfield, J.J.: Neural networks and physical systems with emergent col-

lective computational abilities. Proceedings of the national academy of

sciences 79(8) (1982) 2554–2558

[73] Hinton, G.: Training products of experts by minimizing contrastive diver-

gence. Neural computation 14(8) (2002) 1771–1800

[74] Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher

discriminant analysis with kernels. In: Neural Networks for Signal Pro-

cessing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society

Workshop., IEEE (1999) 41–48

[75] Larochelle, H., Bengio, Y.: Classification using discriminative restricted

boltzmann machines. In: Proceedings of the 25th international conference

on Machine learning, ACM (2008) 536–543

[76] Mart́ınez, A.M., Kak, A.C.: Pca versus lda. IEEE transactions on pattern

analysis and machine intelligence 23(2) (2001) 228–233

105

[77] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hub-

bard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code

recognition. Neural computation 1(4) (1989) 541–551

[78] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86(11) (1998)

2278–2324

[79] LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and

applications in vision. In: Circuits and Systems (ISCAS), Proceedings of

2010 IEEE International Symposium on, IEEE (2010) 253–256

[80] Nagy, G., Nartker, T.A., Rice, S.V.: Optical character recognition: An

illustrated guide to the frontier. In: Electronic Imaging, International So-

ciety for Optics and Photonics (1999) 58–69

[81] Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep features for text spotting.

In: Computer Vision–ECCV 2014. Springer (2014) 512–528

[82] Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with

stroke width transform. In: Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, IEEE (2010) 2963–2970

[83] Neumann, L., Matas, J.: A method for text localization and recognition

in real-world images. In: Computer Vision–ACCV 2010. Springer (2011)

770–783

[84] LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks 3361(10)

(1995)

106

[85] Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural net-

works for image classification. In: Computer Vision and Pattern Recogni-

tion (CVPR), 2012 IEEE Conference on, IEEE (2012) 3642–3649

[86] Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition

with convolutional neural networks. In: Pattern Recognition (ICPR), 2012

21st International Conference on, IEEE (2012) 3304–3308

[87] Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B., Wang, T.,

Wu, D.J., Ng, A.Y.: Text detection and character recognition in scene

images with unsupervised feature learning. In: Document Analysis and

Recognition (ICDAR), 2011 International Conference on, IEEE (2011) 440–

445

[88] Huang, W., Qiao, Y., Tang, X.: Robust scene text detection with convolu-

tion neural network induced mser trees. In: Computer Vision–ECCV 2014.

Springer (2014) 497–511

[89] Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text

in the wild with convolutional neural networks. International Journal of

Computer Vision 116(1) (2016) 1–20

[90] Subramanian, K., Natarajan, P., Decerbo, M., Castañòn, D.: Character-

stroke detection for text-localization and extraction. In: Document Anal-

ysis and Recognition, 2007. ICDAR 2007. Ninth International Conference

on. Volume 1., IEEE (2007) 33–37

[91] Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In:

Computer Vision (ICCV), 2011 IEEE International Conference on, IEEE

(2011) 1457–1464

107

[92] Mishra, A., Alahari, K., Jawahar, C.: Top-down and bottom-up cues

for scene text recognition. In: Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, IEEE (2012) 2687–2694

[93] Smith, D.L., Field, J., Learned-Miller, E.: Enforcing similarity constraints

with integer programming for better scene text recognition. In: Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE

(2011) 73–80

[94] Yi, C., Yang, X., Tian, Y.: Feature representations for scene text character

recognition: A comparative study. In: Document Analysis and Recognition

(ICDAR), 2013 12th International Conference on, IEEE (2013) 907–911

[95] Zitnick, C.L., Dollár, P.: Edge boxes: Locating object proposals from

edges. In: Computer Vision–ECCV 2014. Springer (2014) 391–405

[96] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once:

Unified, real-time object detection. arXiv preprint arXiv:1506.02640 (2015)

[97] Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection

using deep neural networks. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. (2014) 2147–2154

[98] Redmon, J., Angelova, A.: Real-time grasp detection using convolutional

neural networks. In: Robotics and Automation (ICRA), 2015 IEEE Inter-

national Conference on, IEEE (2015) 1316–1322

[99] Hosang, J., Benenson, R., Schiele, B.: How good are detection proposals,

really? arXiv preprint arXiv:1406.6962 (2014)

108

[100] Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selec-

tive search for object recognition. International journal of computer vision

104(2) (2013) 154–171

[101] Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image seg-

mentation. International journal of computer vision 59(2) (2004) 167–181

[102] Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In:

Proceedings of the IEEE International Conference on Computer Vision.

(2013) 1841–1848

[103] Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE

transactions on pattern analysis and machine intelligence 37(8) (2015)

1558–1570

[104] Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention

for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine

Intelligence (11) (1998) 1254–1259

[105] Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: A

bayesian framework for saliency using natural statistics. Journal of vision

8(7) (2008) 32

[106] Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances

in neural information processing systems. (2006) 545–552

[107] Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies

for accurate object detection and semantic segmentation. In: Computer

Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, IEEE

(2014) 580–587

109

[108] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Er-

han, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. (2015) 1–9

[109] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-

works: Visualising image classification models and saliency maps. arXiv

preprint arXiv:1312.6034 (2013)

[110] Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are fea-

tures in deep neural networks? In: Advances in neural information pro-

cessing systems. (2014) 3320–3328

[111] Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R.: Icdar

2003 robust reading competitions. In: ICDAR. Volume 2003., Citeseer

(2003) 682

[112] Mosleh, A., Bouguila, N., Hamza, A.B.: Image text detection using a

bandlet-based edge detector and stroke width transform. In: BMVC. (2012)

1–12

[113] Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3d scene structure from

a single still image. IEEE transactions on pattern analysis and machine

intelligence 31(5) (2009) 824–840

[114] Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.: 3d traffic scene

understanding from movable platforms. IEEE transactions on pattern anal-

ysis and machine intelligence 36(5) (2014) 1012–1025

110

[115] Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: Rgb-d mapping: Using

depth cameras for dense 3d modeling of indoor environments. In: the 12th

International Symposium on Experimental Robotics (ISER). Volume 20.,

Citeseer (2010) 22–25

[116] Simonyan, K., Zisserman, A.: Two-stream convolutional networks for ac-

tion recognition in videos. In: Advances in neural information processing

systems. (2014) 568–576

[117] Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning

spatiotemporal features with 3d convolutional networks. In: Proceedings

of the IEEE International Conference on Computer Vision. (2015) 4489–

4497

[118] Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T.,

Saenko, K.: Sequence to sequence-video to text. In: Proceedings of the

IEEE International Conference on Computer Vision. (2015) 4534–4542

[119] Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C.,

Oluwatola, O.A.: Autonomous vehicle technology: A guide for policy-

makers. Rand Corporation (2014)

[120] Bishop, R.: A survey of intelligent vehicle applications worldwide. In:

Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE,

IEEE (2000) 25–30

[121] Franke, U., Gavrila, D., Gorzig, S., Lindner, F., Puetzold, F., Wohler, C.:

Autonomous driving goes downtown. IEEE Intelligent Systems and Their

Applications 13(6) (1998) 40–48

111

[122] Okuda, R., Kajiwara, Y., Terashima, K.: A survey of technical trend of

adas and autonomous driving. In: VLSI Technology, Systems and Appli-

cation (VLSI-TSA), Proceedings of Technical Program-2014 International

Symposium on, IEEE (2014) 1–4

[123] Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M.,

Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al.: Autonomous driving

in urban environments: Boss and the urban challenge. Journal of Field

Robotics 25(8) (2008) 425–466

[124] Gomez, L.R.P., Fairfield, N., Szybalski, A., Nemec, P., Urmson, C.: Tran-

sitioning a mixed-mode vehicle to autonomous mode (December 13 2011)

US Patent 8,078,349.

[125] Li, B., Zhang, T., Xia, T.: Vehicle detection from 3d lidar using fully

convolutional network. arXiv preprint arXiv:1608.07916 (2016)

[126] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for se-

mantic segmentation. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. (2015) 3431–3440

[127] Song, S., Xiao, J.: Sliding shapes for 3d object detection in depth images.

In: European conference on computer vision, Springer (2014) 634–651

[128] Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its

application to action recognition. In: Proceedings of the 15th ACM inter-

national conference on Multimedia, ACM (2007) 357–360

112

[129] Klaser, A., Marsza lek, M., Schmid, C.: A spatio-temporal descriptor based

on 3d-gradients. In: BMVC 2008-19th British Machine Vision Conference,

British Machine Vision Association (2008) 275–1

[130] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,

Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-

rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

[131] Brock, A., Lim, T., Ritchie, J., Weston, N.: Generative and discrimina-

tive voxel modeling with convolutional neural networks. arXiv preprint

arXiv:1608.04236 (2016)

[132] Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convo-

lutional neural networks for 3d shape recognition. In: Proceedings of the

IEEE international conference on computer vision. (2015) 945–953

[133] Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In:

Robotics and Automation. Proceedings. 1985 IEEE International Confer-

ence on. Volume 2., IEEE (1985) 116–121

[134] Thrun, S.: Learning occupancy grid maps with forward sensor models.

Autonomous robots 15(2) (2003) 111–127

[135] Tipaldi, G.D., Arras, K.O.: Flirt-interest regions for 2d range data. In:

Robotics and Automation (ICRA), 2010 IEEE International Conference on,

IEEE (2010) 3616–3622

[136] Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for

real-time object recognition. In: Intelligent Robots and Systems (IROS),

2015 IEEE/RSJ International Conference on, IEEE (2015) 922–928

113

[137] Xie, J., Fang, Y., Zhu, F., Wong, E.: Deepshape: Deep learned shape

descriptor for 3d shape matching and retrieval. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. (2015)

1275–1283

[138] Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3d deep

shape descriptor. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. (2015) 2319–2328

114

	Introduction
	Learning Representation
	Data and Deep Learning
	Overview of Chapters

	Deep Neural Network
	Brief History of Neural Networks and Applications
	Biological Inspiration
	Perceptron
	Sigmoid Neuron

	Architecture of Feedforward Neural Network
	Training Single Layer with Gradient Descent
	Stochastic Gradient Descent
	Back-propagation

	Limitations of Training Deep Network using Back-Propagation
	Local Minimum
	Vanishing Gradient

	Summary

	Pain Data Management, a Case Study
	The Pain State Prediction Problem
	Data Representation and Restricted Boltzmann Machine
	Markov Random Field
	Learning in MRF

	Restricted Boltzmann Machines (RBM)
	Comparison between RBM and Linear Models
	Methods
	Experimental Results
	Summary

	Deep Neural Networks for Text Detection
	Convolutional Neural Network
	Convolutional Layer

	The Text Localization Problem
	Challenges
	Overview of methods
	Related work
	Region Based Methods

	ConvNet Approaches
	ConvNet in sliding windows
	Region Proposal Methods
	Text localization: Bottom-up and Top-down cues

	Experiments
	Datasets
	Training and Implementation Details
	Quantitative Evaluation

	Conclusions

	Object Detection in LIDAR-based Point Clouds
	Autonomous Driving and Sensors
	Point Cloud and Velodyne LIDAR

	Point Cloud Projection
	3D Volume Representation
	Occupancy Grid Maps
	3D Convolutional Neural Networks

	Experiments and summary

	Summary and Contributions
	Publications

