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INTRODUCTION

The introduction over a decade ago of fibre bundle
methods to classical field theory seems to allow us now to
develop models of unified fields from more fundamental
principals than ever before. Using a Lagrangian based on
the curvature of a Principal Fibre Bundle (a mathematical 
structure which can combine space-time with gauge-groups),
we can get field equations which are like those of Utiyama^
and others, who began their theoretical developments with
symmetry and invariance assumptions. The advantage of the
fibre bundle method is that these assumptions already
appear in the geometry of Principle Fibre Bundles.

The fibre bundle formulation also provides extras like 
a natural inclusion of scalar fields.

It is already known^ that the non-linearity of the 
Yang-Mills type field equations can lead to short-range 
effects 1 These field equations have essentially Coulomb 
type solutions under spherical symmetry conditions, as when 
two particles are far apart, but when the particles come 
close together the spherical symmetry is broken, and the

^Ryoyu Utiyama, Physical Review 101. 1597 (1956) 
^Hendricus G. Loos, Nuclear Physics 22, 677 (1965)



non-linearity of the field equations asserts itself.
In this paper we show, using Abelian models which 

sidestep the non-linear aspects of the field equations, 
that the scalar fields predicted by the fibre-bundle 
method can also produce short range effects.

After developing the field equations in section 1, 
where the scalar fields are seen as the space-time depen­
dent components of the group metric, we will compare our 
field equations for U(l) with the field equations of

•5 h,Ehlers^ and of Gordon , who treated the index of refraction 
as a function of position and velocity. The similarity 
between the effects of their index of refraction and our 
scalar fields suggests that the scalar fields might affect 
the speed of propogation of the gauge fields, and could 
thus shorten their range.

In the one-dimensional case, unfortunately, trying 
to force the scalar field to shorten the range of its 
corresponding gauge field also forces the scalar field to 
become infinite at large distances. This can be seen at the 
end of section IC where we look at the Yukawa potential and 
see what is required to produce the same effect from a 
Coulomb field with the addition of our scalar field.

In section three we begin to develop a rather

^Jurgen Ehlers, Z. Naturforschg. 22a. 1328 (196?) 
Gordon, Ann. Fhys. %2, 421 (1923)
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simplistic model from two static charges and a sphere^ 
which will fail for the one-dimensional gauges and then 
revive when we move up to a two-dimensional gauge. In the 
one-dimensional case, we will put one of the charges at the 
center of the sphere and assign the sphere a different 
electrostatic permitivity from that of the rest of the 
universe, as though the particle inside was producing a 
field which altered the permitivity of the vacuum. (When 
the electromagnetic permeability is constant, this 
corresponds to altering the index of refraction.) To
produce the Yukawa potential, the permitivity only had to
be infinite at infinity. Here, to produce the effects 
we're after, the permitivity must be infinite everywhere 
except inside the sphere.

Using a two-dimensional Abelian gauge group in 
sections IV and Y, we find that,, for.certain particles, 
the l/r^ forces of the gauge fields can vanish outside of 
the sphere and reappear inside. So, after failing in 
the case of U(l), this same simplistic model of two 
particles and a sphere goes on to demonstrate the desired
short range effects of the scalar fields.



I.
FIELD EQUATIONS

In this section we will develop the field equations 
for interacting gravitational, gauge, and scalar fields.
The gravitational field is represented by a space-time 
metric ĝ ^̂  = the gauge fields by vector potentials
A^(x), and the scalar fields by g^yx) (the components of a 
metric on the gauge group). Latin indices, which run from 
1 to k, refer to space-time components, and Greek indices, 
which run from 1 to N, refer to Lie group components, where 
the dimension of the Lie group is N. The space-time metric 
g^^(x) has the same structure here as in general relativity. 
The A^(x) are analagous to the vector potentials of Electri­
city and Magnetism except that we have a set of N such fields, 
as indicated by the superscript. Because these fields can 
interact with each other, their field equations are compli­
cated by non-linear terms involving the Lie Algebra’s 

structure constants. The terms A^(x) = Â ^̂  bj "̂ â b
correspond to the ..electromagnetic field tensor. (Unless 
stated otherwise, the summation convention is assumed 
throughout. Symmetric and anti-symmetric permutation sums 
are indicated by round and square brackets respectively.)
The free field Lagrangian for the gauge fields is

Lgauge = ^w^^ab^cd^^°®^'^*



This equation la the siapiost generalization of and ia

found automatically in our Lagrangian for the interacting 
fields.

If gravity were present by itself, the gravitational 
field g^^(x) would satisfy the vacuum Einstein equations

^ab “ ^ab " ^ ®ab^ * *hich come from the Lagrangian 
density R , where R => is the Ricci curvature
scalar, by means of the method of variations* This equation 

also appears in our interacting Lagrangian equation.
The terms g^(x) represent a set of scalar fields 

which we'll ultimately use to shorten the range of the 

gauge fields. These g^(x) are space-time dependent, but 
transform as symmetric two-index tensors with respect to 

changes of the basis of the Lie Algebra,

The Lagrangian we will be using comes from a genera­

lization of the gravitational Lagrangian density in that it 

comes from the Ricci curvature scalar of a metric on a 
space with dimension 4 + N, where N is the dimension of the 

gauge group. This space contains the usual space-time 
manifold and the inner space associated with the internal 

degrees of freedom of the gauge fields.
If we let le^l be the basis for the space-time manifold, 

and let i be the Lie Algebra basis, the metric for the 

bundle will operate on the e^ like the space-time metric, 

and on the 5̂  like the group metric.



The curvature tensor for the bundle is complicated by 
structure constants C^^e^ = Ce^.e^], where the indices run 
from 1 to and [e^3 is the basis of the bundle. The 
curvature for the bundle is then^

^bundle
_ pC  ̂ pC pD pC pD pC pE \
" ® ^^A3,C " • AC,B ^DC^B “ ^DB^AC " ^AE^CB^ ’

and the connection coefficients are given by

i 6^ ( S dB,C  ̂ ^DC,B ” &BC,D
' ^ ^BC*

6
* Sce^DB * ®BE^DC^ " ^ ^BC

As explained in appendix B, the Lagrangian density 
for the bundle is

-i 3‘‘’‘ I ■
but it will be easier to work with if we apply a conformai 
transformation to change the to ̂ -£5^
Transforming the space-time metric by j = e^°g^j gives us

IzlL- L -  'fjs  ̂  ̂-z^ ' ^

where - 1^ = -ST the

^Charles W. Misner, Kip S. Thorne, and John Archibald 
Wheeler, Gravitation (San Francisco; W. H- Freeman, 1970),
P- 277. __________

^see also Y. M. Cho, Journal of Mathematical Physics I6.
2029 (1975) .

7L. P, Eisenhart, Riemannian Geometry. (London, Prince­
ton University Press, 1926), pp. 89-90.



space-time curvature scalar in terms of Also, the
covarient derivatives are now taken with respect to the new 
metric.

By choosing we get

C " /"ÿr lâtT ^ £,0̂  -i ̂

The next transformation is performed on the group 
metric I = (g)*^ggg, = (g)“^g°^, and £ = g^~T'K
Here, g denotes the determinant of the group metric. The 
scalar field terms of the intermediate Lagrangian, when 
combined with -6Â 0 gives usj

■ f%S.4 ! S--‘

‘ -5 u-fii’%  ( ^ t u ‘‘

■ * i’U  uc,i i j."'

Note that
The Lagrangian from which we will take our field equa­

tions is :

1=2' Z  -- Ĵ Tr Î5.r / j
(i^ r  t- - 4 ‘i  ) r ‘]

The fields we are looking for should extremizei 

J = J'y jCdx^A.. ,Adx^.
We can find these fields by looking at the variation of J in 

V while requiring that the variation be zero on the boundary 
of V. Let X =  +(5*̂  . Then:

# I
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1-3, 6J a a + 6
The generalized form of Stokes' theorem says that for 

a (P+-1)-dimensional volume V with a closed p-dimensional 
boundary 3V and with a p-form a defined throughout V, the 
integral of the (p+l)-form da over the interior of V is 
equal to the integral of the p-form a over the boundary 3V, 

Thus the integral of V*(T dx^A...Adx^ over V is equal to 
the integral of C'cLS" over 3Y, where dS" is the (^-l)-dimen­
sional surface element on 3V. (For instance, for t = const- 
ant, dS = t dx dx dx-̂  with the sign choosen so that dS is 
oriented outwards.)

But, since i /yÊ^^d^x = &J^yCf(dS)g, and the variation 
on 3V is zero, the last term in 1-3 will be zero automatic­
ally. It thus contributes no information about which fields 
will give an extremum for J.

The last term of our transformed Lagrangian, as a total 
divergence, will thus not affect the field equations and 
will be ignored from now on. Also, the metrics we will be 
using, or solving for, will be the barred ones in this last 
Lagrangian; so, as we solve for the field equations, the bars 
will be dropped.

We will begin with the field equations for the 
space-time metric. These we will get from,

O  -irf

Evaluation of the individual terms gives,



"i Jc./) 
i/^Tr ' - i ^  3<J if'

c<:«; - i  f V )  y "

Plugging these in gives our field equations, 
iC

' 9 ' '

- t K f

 ̂ ^ i t t '  r'̂ 9'*) *É;r/;r<:V/ }f̂ Â *z\,ÿ 2
These can be grouped into the Einstein tensor, a 

cosmological term, and the stress energy tensors for the 
gauge field and the scalar field respectively.

f ? "  ^  ,1 -  -

Next we will consider the gauge fields.

We want the variation here to be in terms of iA^.

This will give us:

* V  3 “ J ;
If is an antisymmetric tensor, then since any

â-C bdtensor , we can get M^^N^^g g =
Because is antisymmetric, we won't

need to use the antisymmetry brackets on c and d.
The first terra is a total divergence and, by reasoning
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similar to that given earlier, may be deleted in the 
following.

This leaves I

( 7 > - -

If sources were present, these would appear in the
field equations as a group-space-time source density 
vector jJ.

The scalar field equations will come from:

-iirT-rC.tC.1. - f p  a :, Af, s

* ^  ^   ̂ Y  Ÿ  *
So that we can get everything in terms of ̂ (6^^)'

” ^  3‘VV-3'it

- r w r 3 ’'"/..«3v''
- <3-/1

Again, the total divergence terms won't contribute to the
field equations, so we have;

= J T n U p C i s ^ ^ . - f Y ^ -

There was considerable change in the form of the
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scalar field tonao of the Lagrangian under the conformai 
transformations, while the form of the gauge fields remains 
essentially the same. For this reason we will use the 
gauge field equations in this paper to investigate the 
scalar field-gauge field interactions.

Also, although conformai transformations have been
g

used in scalar-tensor theories , this appears to be its 
first use in connection with fibre bundle methods to avoid 
some scalar-tensor problems^ caused by the scalar term fë' 
in the original Lagrangian density I-l.

Û
See, for instance, J. 0 'Hanlon and B. C. J. lupper,

Nuovo Cimento 14B, I90 (1973) and 1 (1973)
9

(1968)
^See P. G. Bergmann, Int. Joum. Theor. Phys. _1, 25



II.
U(l) AND THE OPTICAL METRIC

Beginning with this section, we will concentrate on 
the gauge fields and how they may be influenced by the 
scalar fields.

In order to compare our field equations with those of 
Ehlers^ and of Gordon^, we will choose the group U(l), 
which is one-dimensional and whose metric is just a scalar 
g. Here from section one.

Now, let's raise the indices on the A and then make it a 
density by bringing the vT-ĝ'r], inside the parenthesis.

( 3  B sr'

In Gordon's paper we find the standard electromagnetic 
field equations for fields in matter:

a )  ‘  ^

c)

where the F. . correspond to the E and B fields and the H. .
X  J  X  J

correspond to the D and H fields, and the u^ is the 
four-velocity: u^ = dxV/-ds^.

The second equations we can rewrite with densities:

12
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so that we get:

»■> I 7 .
Multiplying the fourth equation by u^, taking into 

consideration the third equation, and noting that u^u^ = -1, 
we get:

or, by rearrainging: 

e) A/y “ 0 (
Let's redefine our metric in terms of <f,y«, and the 

four-velocity u^ as follows:
k*Y - — (c^- i ̂

given one, we can get the other from the requirement
f T h e  index of refraction n for the medium is 

equal to so that we can substitute n^into this new
metric, called the "optical" metric. Equation (e) can be 
rewritten so that the indices of H are raised and both 
sides are multiplied by /-ggj in preparation for use in the 
field equation (b). 

e' ) ' ffr I f
Because of the antisymmetry of F, we can add the zero terra 
(£y«.-l)^u^u^u^u^^^ to (e*) without changing the value of the 
right hand side while arriving at ^

1 2  1If we consider the special case u =u =u/=0, we get:
-7 = det(7: J  = det(g. . (1— ^)u u^).

J- d 1  d °  O
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That is,
J - ’ ’ •• • ^ • 3

g 30 ■ • ■ J
Evaluating the determinant of the matrix givesi

- y  - ~ ( I - ^sr y
-  -  ^ » T

or

Putting this together with (e’) gives us :
I T ^  r.y

Returning now to (b')i

*  'Pr' s* .

Following Gordon's convention, indices raised by the 
optical metric will be indicated in the next equation by 
parenthesis around the indices. Also, this raised F will 
be combined with to give a tensor density.

h  ( I F  T ""'0 => s'-

If we identify the in our field equation with this
T 'o r ^ ), then it would seem we should identify our scalar
field g, the group metric, with This would make g, in

Ifl
essence, n/jj.. For those cases where jl is not a function of 

position, g would be a multiple of n, and where 6 is not a 
function of position, g would be a multiple of 1/n. Under 
this identification g is related to the relative speed of 
the propogation of the gauge field. Although this
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technique won’t necessarily give us a weak or strong force 
model, perhaps by progressively slowing down the propogation 
of the gauge fields, the influence of these fields would be 
shortened in a position-dependent index-of-refraction model.

Let’s go to an even simpler model by looking at the 
static case (without the optical metric) in a flat space. 
Here the source free electrostatic field equation for the 
electric potential is :

V  '(&V 9>) O  .

Our field equations in the. static case and flat space 
develops as follows.

where ] indicates the matrix of the quantity inside.
Thus, V  cp

-^1 3, O

using the definition B. = 6 . .,,9.A. (i, j,k run from l-*3 and1 IjK J iw
is the Levi-Civeta tensor), and = tf>.

0 *

Since the forces due to B in the electrostatic case 
are zero, we’ll drop the B ’s from A^^. We get then:

[/)“7
-y

, ab,and (gA ).^ becomes:

■* i  V "  f 5 V f )  = ^  •
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Here we would identify g with a multiple of Aith 
^  constant, c becomes a multiple of n^, so that g would 
again be identified with a function of the index of 
refraction.

This section has shown us that in the one dimensional 
case our scalar field appears analagous to a function of 
the index of refraction, and in perhaps the simplest case, 
the scalar field appears analagous to the permitivity; so 
the question of whether or not g can shorten the range of 
the gauge field will become, for the next two sections, the 
simpler question of whether or not the permitivity can 
shorten the range of the electrostatic potential.

First, let’s look at a classic example of an 
electrostatic potential with shortened range: the Yukawa
type y= A — . Although this is usually derived from applying 
static and spherical symmetry conditions to (plus
requiring that f vanish at infinity), we can at least plug 
this potential into our field equations and see what the 
corresponding & would need to be.

The equation
V *  6 “ O

becomes

 ̂ r T   ̂ =<2)
From this we get:

j f  ( -  r  -  r - )  -I- f  ^
and then:



£  *
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«<t- f  1

Probably the beat roaoon for going on to other 
modela is that this l must become infinite for large r.
This is like assuming that the default value of £- is 
infinite and that our scalar field scources must then pull 
6 down somehow to finite values. In the next section, this 
type of problem is even more dramatic.



III.
1-DIMENSIONAL MODEL

A relatively simple model from electrostatics is two 
charges, one of which is at the center of a sphere with a 
permitivity different from the rest of the universe. (The
effect of a second sphere, centered at the other charge,
will be discussed later.)

The sphere K (kügel) with
radius k and permitivity is |
centered at the origin. A charge :

is at the origin, and on the !
positive z-axis, a distance C from 
the origin, is the second charge Qg.
The distance from to an arbitrary 
point p will be denoted r, and the
distance from to the same point 'i ___________________ ;
p will be denoted r^. The angle 6 is that between the 
positive z-axis and the line from the origin to p. The 
default value of the permitivity is

Although the fields have been worked out in several 
classic texts^^ the methods will be important for our next 
model.

K

J

See, for instance, Julius Adams Stratton, Electro­
magnetic Theory. (New York, McGraw-Hill, 19^1), p204.

18
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In source free regions where the permitivity is 
constant, the field equation is :
HI-1 — L. <p " 0
In spherical polar coordinates, the solutions may bo 
written in terms of Legendre’s polynomials. Making the 
usual separation of radial and angular parts, we will look 
at the whole equation for then at the radial part, and
finally at the angular solutions. First; ^  =R(r)Y(:9,p).

From this we get:

ig-3 i h  = - jLi±7 k  A' '/ 7 " ^
The radial equa.tion; 

ni-4 FF r r' ^ R = 0

will have solutions which are regular at -5=0, â = ,  
where Y will have its singularities, if x> = n(n+l) with n 
a real integer. We can write this solution as; 
m - 5  R(r) = a^r* + b y r " + \

Next, letting = X(^)W^?), and using x = cos-5,
we get:

and

m - 7  X n  k  ^J) = X
By requiring that W(y>+2'rr) = W(y), and since 

W = (constant) e^^^'^is the solution to equation 6, we find 
that /T must be a real integer m. Because of the axial 
symmetry of our model, we have m = 0. The equation for the



'S function becomes,

m-a k  ^   ̂  ̂ *■ =  o .
The solutions of this equation are Legendre functions of 
the first and second kind. However, only P^, the Legendre 
functions of the first kind, are finite at x = *1.

The first part of the solutions of 7^ may be written, 
for this model:
ni-9 -̂2-.,) P

lYe will want to be finite for r-^ and regular around and 
through r = 0. This implies that outside of K, the 
coeffiecients of the r^ will be zero, and that inside of K, 
the coefficients of the will be zero.

Thus far, we haven't considered the effect of the two 
sources. Let's begin by considering a single point source 
and spherically symmetric permitivity. v/e'll go out a 
distance r and integrate -& ^ , the charge density, over
the volume within r. This gives us the charge Q at the 
center, and by Stake's theorem we can transform the 
integral of - & 7^ over a sphere to an integral over a 
spherical surface of radius r.
LZ-10 Q  — dir - J' V ̂  ) • Jr * ^  y j Vrzr -
This equation gives us the familiar potential for a point 
charge:

Q
HE-ll Ç) H'tn 6 r

The potential inside of K can now be written as:

M z l i  f- ■=
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and the potential outside of K,

M zU. ** V-rr c.r; " ^  '**" r^' ^  -
Depending on whether r is greater or less than S, l/rg 

can be expressed as one of two series of Legendre poly­
nomials. From the equation

I I
IE-14
we gets

IE-16’ ■■ r
-----------^ W l  *  ( r / f ) i

where x = cos ̂
For r greater (less) than  ̂the expression III-15 (-15*) 

contains the generating function for Legendre Polynomials: 
IK-16 /r7~prZ~T3TT' “ v̂:-o <:<« 2̂ 3j }a) ^ 1 .

This rewriting of l/rg will help us to use the 
boundary conditions at 3K to evaluate the coefficients an
and b_. Those conditons are: n
IE-17 p* = at r = k,
IK-18 a, at r = k.

The first condition is just the continuity of the 
potential. The second condition can be seen from 
integrating ~V*{eV^) over the volume of a small "pillbox’* 
at the boundary between two dielectrics. Half of the 
pillbox is in one of the dielectrics, half is in the other, 
and the flatsides are parallel to the boundary surface.

The pillbox is to be thin enough so that the area of the 

edge is negligible relative to the area of the sides.
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From the field equation, this 
integral gives the charge enclosed, 
which is zero, and by applying 
Stokes Theorem, we find that this 
is equal to the area of the sides 
times their respective normals 
dotted with ( - « where the
appropriate permitivity and potential is used. The equa­
tion is I
3 H -  19 m O

“  - e_7f.') ] .

From this we get:
HI-20 r) • 7 'n 0 V<p_

at the boundary.
Applying III-I7, and noting that r = k is less than ^,

m-21 I f
= r .

Applying 111-18":

e. ] j

We next identify the coefficients of the Legendre 
polynomials, beginning with n = 0, then n - 1.

III-21 <X.

III-24 -  £ &
'« It’ -

g ,4?, kjL
From III-24 we find that b = Q./4ne and this gives
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U3 = (G2/4^CgC)+(Qi/4nk)(Y - “ )• For n z 1 wc have
III-25 _ai_JLL *. 3 °a„kr

k . " "

III-26 .?.-.Q̂  k""' -  Lf. = na. kr"€
*v TC r " '

Treating this as two equations with two unknowns we find: 

III-27 Q, a.n»f
o . „  =x —

l î I z Z g  ^  ^  „

*’ Vtc 4̂  ' " (' +- fn-')Go
Let’s find the forces now on Q^, Qg, and K, beginning 

with Q^.
Using r -*• 0, we find that the field at the origin is,

neglecting the field of Q^j

This times Qĵ would seem to be the force on particle one. 
But when we look at the force on Qg we find a non-symmetry. 
Finding the field at the position of Qg, neglecting its 
self-field, and multiplying by Qg»

F . —  , Ao.’r̂ .-o k/"
*•. ». ( V'rr* ,( • , .  a-e.) •,().*,r 3 t,)

The force on K is that on a dielectric sphere near a point
charge, which turns out to be the terms in III-30
and can not solve the problem of non-symmetry.

A somewhat more grueling way to find the forces 

involved is to first find the field energy and then take
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the negative of the derivative with respect to the separa­
tion Through the octopole term:

III-3I - r [- ^  t  " h  " 7^ ^ ̂  ^  ^ ]
* Ô i: ' r* r

III-32 - :L&i ̂ 7̂ - J r' ;
^  ÿ  ̂ A j

with = 7E3F? ?n(c°sf)'
The field energy density is ^{-yf)*i-7p), which must 

be integrated over three regions when we consider that the 
region outside of K must be broken up into k < r < f and 
 ̂< r in order to deal with 1/r^.

Beginning with r < k, let's let U_ denote the field 
energy inside K and U^_ the self-field energy of within 
K. Then:

III-Ti U_ = Y  J

^  ^ [ o . r  i.r-’P,'.

In converting from ,9 to cos^ we find
r ‘

A  i.CÛ-0 J  ) iP —  J  A  ( <.0-v ) <P (cC-KJ ’j )

so we'll use the simpler notation of x = cos^.
The radial portion of U_ will be:

I I I ^
The angular portion requires rewriting terms of the 

kind (l-x^)P^P^ with expressions.
The following table will be useful for evaluating the 

angular parts of the energy in the other regions.
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TABLE 1

(l-x^)P‘(x) = ^(Po-Pg) 
(l-X^)P^(x) = ^^Pi-Pg) 
(l-xZ)P^(x) =^?2-P^)

p; = 0

?2 = 3Pl 
P] = SPz+Po

Using this table we can tabulate the expressions we 
will substitute in the angular portion of III-33. 

l-x2)P;Pj = f(P<,P„-?2P„) 

l-x^)P'P* = Z^PgPi-PgPi) 
l-x^jpp- = ICSPoPz+P.Po-SPzPz-PzP.) 
l-x^)P'P' = |(3PiPi-3P3pi)
1-x 2)P'P3 = |(5p^p^.5p^p^*p^p_^.f^p^)

l-x2)P3P3 = ̂  5?2P2-5P„?2>P2P,-P4?„)
Orthogonality will rid us of all but a few of these 

terms, so that the angular portion becomes 1
^£oi~T ^ -i 1 ;

Combining 111-34 and -35 and plugging in the 
expressions for the a^i
IIX-36 U_ = t ^ ^  7

" 4-^ r  f e A ^ " f e A z J   ̂7 pfeAi.) ]
The energy outside of K will include the energy of 

the self-field of . This expression for the self-energy 
of Qg outside of K will be a function of but it will be 
more convenient to use the total self-energy of Qg in a 
uniform space with permitivity minus the self-energy of
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Qg within a sphere of radius k, positioned like K is with 
respect to Q^, and with a peraitivity If we denote the
self-energy of Q2 outside of K by Ug», the "total self—  
energy" mentioned by Ug, and the self-energy within r = k 
with by U2_, then

Before breaking down according to whether r is
greater or less than the equation for is:
III-18 I* ff-̂ ‘3  f- ? “ ^  ̂7? "k

6 Q. A i _ P  a_ J.
r ’ jr r;

P  p  7  • "4 ^  ^  t
, A i L  1 . p ' i  i

’ 7 J  r' *<T4, r' ‘ <1

: . T  i ' -H'rrt, r '

 ̂ ^  ^  ^'1 ' ]  j -
The term U^^is the self-energy of outside of K and comes 

2from the b„ term in the radial part of . The b b terms o + n m
will not be affected by r < r > ̂  , since they do not 
involve 1/^2» and can be evaluated separately. To the 
radial portion they contribute:
III-39 ^ .. [' l‘r'd. J* I ' r*' ^I

< f i* It b' 3 S. }

and to the angular portion:

-p‘- ?

Although dependent on Qg and XII-39 and -40 represent the
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self-energy of K for r > k. The next parts to bo evaluated, 
then, are those involving the interactions of the 
self-field of and the self-field of K induced by .
The radial portions of this are:

■ fand

îzî=Ji2  ^ ;•

* r  17? • ' ifr !

The interaction between the self-fields of Q. and
is contained in the radial portion in the tera:

7T£„ f_. /j 7^ P/ 7-
= b.

The angular portions are:

fIî-44 / , * / - ■ ' > ^ Î * . J=.

and

- f . P .

- ®4f ? - A  ft - #  Ti-7
The remaining  ̂dependent term to be evaluated is:

niziè %. - f/f .'-f-'.

Bringing together III-36, -39, -40, -41, -42, -43, -44,



and -45, and using III-28 for the b^, we find, up to the 
quadropole term,
111-47 %  - %+ »

=  Uj, + *•
Q. Oi

— • TJ.̂  T U,

Q. Q x

5y taking the negative of the derivative of t̂his with 
respect to  ̂we get the force between Q- .̂nd [K.Q^j :

III-48 ^ f# ' & * : )  ' r-VAffe-J /
This agrees with the force cn -otind earlier. More 

importantly, it agrees with a requirement in our model 
that K be tied to Q^. By taking the derivative with 
respect to C we have effectively tied the motion of K to 
the motion of and if K is to represent a scalar-field 
produced somehow by the particle then K must move when 

does. The introduction of K has not affected the 
part of the force, though, which was something we had been 
looking for in order to shorten the range.

The introduction of a second sphere Kg around Qg will 
change the force, but only in terms of the interaction of

Kg with and K£ with Kji. For  ̂large with respect to k^ 
and kg, the interaction between Kg and would essentially
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be like that between and . To check the magnitude of 
the interaction between K^and Kg, lot's first find the 
effective dipole induced on by Qg. The force on due 
to a dipole at the origin and aligned with Qg is

F -
implying, from III-48:

n “ -
To the lowest order, the force between and Pg (the 
sphere-sphere force) will bei

 ̂ 1 _ 2  ^ ) M *■ «?■ J

with the assumption here that and Kg are essentially the 
same.

Since the dipole part of K^ can induce a dipole part 
of Kg which can interact with we need the dipole p' 
induced on a K by a dipole p aligned toward K and at a 
distance t from the center. Starting with p = qd, two 
charges q and -q a distance d apart, the field outside of K 
is I _ 1 } r<i_ __ 4'-' p', .V

  _ ^
The part of this which would be due to the dipole induced
by p is

r>m  fv —......

r ' * *  J

■ - 3J g ___________  _  _ J ____

so that

^  é.-»-a.£o
The force that p^ induced by p^ exerts on is
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s
'  /  >«’ « * V  a» • «,) \ a. Q. 3 H* <'*••‘'0*--■ *..x4.A~ îYc.-ar.) y " ” 4̂r,. f' «.«at.-*

These sphere-sphere interactions and induced-induced 
dipole interactions are weaker than even the quadropole 
term of the sphere-charge interaction.

The introduction of the second sphere, then, while 
improving the model conceptually, because it makes both 
particles act as sources of scalar fields, does not affect

p
the 1/f portion of the force and therefore does not 
significantly improve the model.

At this point, if we want the l/ç ̂  portion of the 
force to be zero because of when  ̂ is larger than k^+kg, 
then must jump to infinity at the boundary. 5y using 
a series of spheres we might have been able to get the 
type of profile needed for the scalar fields in more 
complex models, but the need for an infinite value in the 
permitivity in order to shorten the range of the gauge 
fields seems inherent with the one-dimensional groups.

Still, this particular model of point sources and 
spherical discontinuities will prove useful in the next 
section where we consider the two-dimensional Abelian 
group, and, because of our exercise with the model in this 
section, we will be ready to face the gymnastics to come 
in the next section.



IV.
2-DIt-ÎEHSIONAL MODEL

Before we can develop the model of two point sources 
and a sphere for the case of the two-dimensional Abelian 
gauge group, we need to look at the field itself. The 
gauge field equations in the Abelian case are;

since the structure constants are zero. If we look at the 
static case with the winkowskian metric, signature -+++, 
this becomes;

ivz2 - z P f ' )  -
The vector potentials are zero since all possible sources 
are stationary. In dealing with sources here, the source 
density will be denoted by = 2 J°.

In order to simplify the notation: g without letter
subscripts will denote the group metric operating on the 
group part of what follows it. (There may be a +,- or 1,2 
subscript used to indicate position rather than components.) 
The determinant of g will be denoted by /«. The potential 
will be treated like a two-dimensional vector in the group 
space, and the sources will be treated likewise. That is :

iv-3 r  - i p j

—  Q '  L q .)
Since, with rare exception, the greek letter subscripts

31
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won't bo uaed to indicate group components for awhile, the 
components of g for this two-dimensional Abelian case will 
be given as

I
Applying this notation we see, for those regions where g is 
constant,

“  - ‘ ' irr.) ’ s ' ( - J - s y
Going to spherical coordinates, we can write part of 

the solution of f  as

in almost the same way as in the last section (pages 18, 
19), except that we define the a^ and as two-component 
group vectors:
IV-8 /c,\ / A

and the homogeneous solution of 6 is 
IV-7' ^

If we have a source Q at the origin, the solution for 
the potential is, using essentially the same methods as in 
the last section,

_ a" 4
^  -  V' Tt  r

being careful only to remember that these are matrices and 

not scalars. The force then between Q at the center and
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another charge P at a distance r is 

(  3 r  J  '  -C ^ - r r  t- 'yW
Wo will also need a boundary condition corresponding 

to III-20. Let's begin with two regions, characterised by 
and g_, and the boundary between them. The field 

equation is
IV-10 - r* Cj ) - 0

Remember that g is an n x n 
matrix and is a column 
matrix with entries
j = 1......  where n is the
dimension of the Abelian 
group. Now let's consider a
small pill box whose sides are parallel to the boundary, 
whose curved edge is very small compared to the area A of 
the sides, and which is placed at the boundary so that one 
side is in the g^ region and the other side is in the g_ 
region. If we integrate - over this volume, we'll
get zero. By Stoke's theorem:
iv-11 J *  Y  • C  ̂  ^  y) J  V- = - J' ^  y  ̂  • J  ^

pillbox surface
This surface integral can be written as

When we take into consideration that this is equal to zero,
A Aand that = -n_, then we get the boundary conditions

II-JJ 'iL - " 4
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When expanded, IV-I3 is equivalent, in our two-dimensional 
case, to the two equations»

\ ^ Æ  ^ ' (z  ̂/L )
The additional conditions we will want y to satisfy 

for our model are;
a) y> is continuous everywhere except possibly at the 

sources,
b) (j} is zero at infinity,
c) neglecting the source at the origin, cp is finite 

through the origin.
Our model is labeled by.
P the point source at the origin
Q the point source at a distance  ̂ along the z-axis
K the sphere (kiigel) of radius k around P 
g^ the group metric value outside of K
g_ the group metric value inside of K
F  the position vector from P
F, the position vector from Q
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By condition (b) and equations IV-7 and -9 :

n  - ^
By condition (c) and equations IV-7 and -9«

■Hr.A5  ̂ ^
At r = k WQ require by condition (a)i 
IV-16 y. - r-
and by IV-I31

n=iz 3 ^f? r- - s- It- r
Since k < we will replace l/r^ at r = k by

jr - P
•X S

Using IY-I6 on -14 and -15 we get 
IV-I9  ̂•>// ] (co-v j)

= r ? A-/:
Using IV-17
iv-20

By equating the coefficients of the Legendre polynomials 
we get

(for n = 0)
IV-21 3S' " 3*'

-  T? - -
(for n > 0)

IV-24 g » te-' _ fM,/) 6_ _ ,
(•>’*' t"':
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From IV-22 wo find

lïr2i b. -

Combining this with IV-21 gives

IXziâ ^  - ^_[ *- V /  vfs]
The equations for n - 1  may be more easily dealt with 

when rewritten
ajt*""I'-23' d*- ”

IV-24' Yi Cl
Q y, 4 ""' 
y-TT r”"

Multiplying IV-23' by , dividing IV-24' by (n+1), 
and adding the two will give us the following equation for

S L M 2 ( O i-
d* à ~ rrr i  ) =

Solving for gives us

IV-28 + »/)

L - %/-
Individually then

"A - ■V-TT

IV-29 c„ - f [Q , ^  - %.»-) 7
■V'Ti-f ^ »/Î. 1 - a,r.'̂)7

Multiplying IV-23’ by g_, dividing IV-24' by n, and 
adding gives us
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_ r____________________________________________________________•eŝy/'* r . - . --.»•.
I ^ r  & ) JL%.-< v f  ’■- X " - . ' r r - { C r y K

.̂r. -r.^.n f/0 . ) j ^  j 
I /<A/f^y- - y./t- - i - » r yu, J j lia.

..k""
• -(■rnujC.^ - 5  7, 71 ) 7

jJn(/i. -*<./l ♦r.r.)- <'»wjf>,-x̂ --̂ 7'.r.) )('-.ti - n-J H
-7,/’!) >’Ç ^ / 4 *  j /

Individually then
IV- 32 ^ Ôf»<'/*■-*■>< -. «-nro/ « c f a-.iii-..r. - T.. 7  7

IV-33 o . -''.y\-c--)(>-.-*. ?

To find the force belrrfeen Q and [Pi'r.j let's use the 
field energy method again. First, we'll need the 
stress-energy tensor for the gauge fields.

C. - -  A& r / " }
In our case, the energy density is

1I=1S ~oo " = i
The energy of the fields will be the integral of this over
all space. The components of - 7^ are

IV-36 -r ^  97 = 3IT— / " J for k < r < ^

for r > C
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■"■- z** p,'j“ /— 4." - —  ]'* " »"”'' -' for r > ?

lïzJà = g"f_Zf- = S-"[:i^. - I.. ” '‘.'-"'K(-~^)] 

^  h  = ^  z ;  p.' I "  «

As was done last time, the terms through n = 3 will be 
carried through the process of finding the energy, which 
will then be expressed in terms through n = 2.

The radial part for k < r < C is:

^  f_‘ I

where g(A,B) = g A" 3'̂  (brackets are used when A or 5
‘‘r

contain parenthesis).
If g is the metric for a region, A and B are vectors 

in this region, and given a basis S for the vector space, 
the inner product can be determined from matrices. 

g(g-h.g-^B) = Lg-^A]|Lg]sLg‘^B]s

= U]|Lg-'|LgjsLg-^]sLB]s 
= U]|[g-i]sCB]3
= g'l(A,B)
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ofwhere the brackets indicate the matrix representation 
the quantity with repect to the basis S.

Applying this to IV-40 we get

; : Y * . o  " c'6̂ , 6 ) j

l f ~  * P  '*' p '  j
For r > f, the radial part is

+ fj(-. ■ 4) J, (̂4. ' y  - ̂  y, (̂4 ' W j

^  f " - L  Jr XiQ.C'j j I. . l l X  I f  ^ I
r-TT '> L r *  3r"' s r ‘‘ 7 r  '  /

The angular part for k < r < f is

4-

For r > ̂ the angular part is
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IV-^  j) lit

 ̂y. f J }

The terms containing g^^tb^.bg) are the part of the 
self energy of P which is outside of K. Their sum will be 
denoted U(P,+). Likewise, the terms containing g~^(Q,Q) 
are the part of the self energy of Q which is outside of 
K, and their sum will be denoted by U(Q,+). This last term, 
though, will again be replaced by

U(Q, everywhere, g^) - U(Q,-,g+) 
where the first term is the self energy of Q in a space 
with uniform metric and the second is the part of the 
self energy of Q inside K using g^ instead of g_.

Putting together IV-40, -41, -42, and -43

-  U  (  y- Z C C û ,  es/ar^^ks-rs J ^ ̂  J ~  Li { C ^ ~ ,  )

y. ^ ^  .6) . ^ ,̂'(̂ 4,"I)

The first integral here is the self energy of the induced 
field of K outside of K, the second is the interaction 
between Q and P, and the third is the interaction between 
Q and the induced field of K outside of K.
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Inside, the radial portion is 
IV-45 r' r A;  m '^  X. /, h r . ) ■ X  A

and the angular portion is

■ C  V  (' ' fe >■ ■ V- k  A

■ X Xf ^  '''̂ .Y-.
which combine to give

S-Trrc/V

The last part to find before we get the total energy 
is U(Q,-,g+). This we can do by integrating the field 
energy density of Q over K, using g^ instead of g_. Using 
f  = g^^a/^TTg,

^ ('<5 , - .  J . )  '  /„' I T - p /

= Ù t { f >  ^   ̂^ }

The total field energy, then, is
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IV~U9 zy - *■ ti Ç C ̂  ̂̂ y

- - ff: ' #; /
' f  j.'Y^' '’•)

!  f f ,  ;,"(■=• ‘0  J

The following is a table evaluating the g(A,B) terms 
in IV-49. The subscripts 1 and 2 represent - and +, 
respectively, from the previous notation. In addition, 
the following abbreviations are used.

* ■>'1 r  ; - - /J. -, - n  ■»', 5 7

^ ^ ̂ 1. - f ?;)7 
J /'s. ■n'̂ 0 

~ "Tüy-C 7 (T riy, - /y
C„ = cy, - %. % - J

— c - 7; - -M f / _7
^ *̂ 0 = y7.

( 0 . 0 ^  =  yZZ[ -  "3- -+- 0 /  J

4) = T/, Pz?, - y.C-p,q̂ f T^Q,)  ̂oc, p Q, J

(̂7, 4, ) ~ - n  k r p/:Trt,
[Q.’£/./4y - y,ŷ „] ■>■ a,Q̂  1/^‘̂r. -%. (8.^4*) f. J 
+ ̂ -7 £-'>'» =(m f Of, 3„ J J
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** “ •’* ̂   ̂  ̂ «■ (f>t̂ <ŷ 4̂»

* >’<'>’»-OC**»y-, -/S. «■■ - ■2-r, y, )'}*■ )
/L' - 5.r. X̂ /dL r i.‘J

/ / /

<*• Æ <9, o* Li, <<H ~ ’L " BL, f " "**. J 
^ Q i  y :  ̂ J ]

^ ■'('â .â j =«. {n* l'y (s.r,Tiy (̂ yi_/Ù 7c

 ̂ '■/A‘<. -̂ T-. y,')7‘)

4 5. C.Gi f̂i. ^ C, - y, (c„i>^ - - .>’) - *./€„ 7 
- C  C,J i ’ - =.% ^ - cc, 2?„‘ 7 7

From this we get
■ 2̂ ( C ^3 ^ l C   ̂Q  ̂  t / a r  u ^  n g r c. , a  ̂  )

—  LA  ̂  C, - A  ) - -X A ÇJ

'TT

^■reuii ^

■r? C r . A Q . *  -  a . r , g . C , ^ ^ , Q . * -  ■ _  r  O '  ,S] . CZ,[ Z ,S.

y   ̂ t a-^x J I «̂-j. L̂.'. •''̂*1 ̂ a tv,̂ . j>, - iy.-.J ;J
->^(A,.B.)  .  3 . < .  j j  ,  c :  r . 3 y . ; , .  « .  3 , ]  1  F e y  A. A.'

j'! — --------

“ ̂  ̂ * 9*:̂  y**AQ.Gj C 3/̂1.̂ f-J— J

*-Qfc  E^/'3k^ -  6  ^  0( J5, f  "&%, 3 ,  J J  ^  J ^ g?,*~ [ A  C .* ~ ^ ?: / 3 C ,  f  <y. /3 J

* ŝ Q,<̂ [̂ ̂ k̂C, - 7', t CfV,) ̂ c(, d J>,j f [a '̂ 7 J
/ ^ ,  f  a L < , y ,  -  a . ? ;  - y ) 7 ^  J J

f  p -  Q . * - a y .  0 . 0 ,  * w .  (0 *  7 r  G>,*f A  ^ U - ^ %  , i J  .< <g. g »

I L Z O y . ,  J S.0 L

r,(A,^.3F)*s-^y] *■ â i-s-yy * ;S^3j 7 /a A /»r
Ky/i, * - H ’r^y,'>7 J  io\_

23
/"•
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- .c y. /?7 «■ zo.c^t ■ r. A. u, -
/.̂ Cy.r r. V

/« 7 - (Z& - fO T«« o, »• dt, ÀJ,* J J ̂ tt j* 1̂o.'[ A

" ̂ y >3 Ĉ f *v, ̂  */ y fZ. Oi (T* [ 1̂. < ̂ * " "% » C> .> » *"r 1
/". *■ /4 "<, - "Z V, "̂,) J
> o / a - y ^ P .  f w.-ci'J ] J

(In calculations with numbers, we would try to carry one or 
two more orders of magnitude than required for our answer, 
and then drop them at the end. The k’̂/ç'̂  term, therefore, 
now goes into Limbo with its predecessor from section three.)

From the field energy we can now find the force 
between Q and (PiK):

iizis ^ u  ■ j. I ■ p  f, ^ f, I

where f^ denotes the coefficient of 1/^^ in 49, Now that

we have the form of the force for our model, we can. look for 
conditions in the model which would make the force zero. 
Let's go on then to our concluding section.



V.
CONCLUSION

As we found in section three, the part of the
force is dependent on the medium between the spheres, but 
one of our stated goals is to create a model with a 1/C^ 
term that vanishes outside K (the kugel or sphere) but 
not inside. Borrowing from electrostatics, we'll quantize 
gauge field sources, then see what combinations of charges 
and metrics cause the !/(' term of F to vanish. To 
simplify the process, we’ll use tl and 0 as the source 
values^\

first, we’ll label the particles predicted by these 
values.

Q: 0 !" 0 r+ii r_ii ^ i l '■-ii r.ii
r -  n  r  
-11

+1 1-1 0 ! 01 L-iJ L ' V +1 !
T-

. _ J  L

n

V-1
From section four, the 1/g' terra is

If we choose gg we can set up the following
table of null/non-null forces F^ between the particles.

lllf
they will be related by  ________________   _̂________
for the equality and inequality cases, if they exist, will 
be related by a group space transformation involving that 
constant.

If the and Q~ chosen magnitudes are not equal, then 
ill be related by a constant. The necessary metrics
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The position on the table is marked with a 0 if is null
and left blank otherwise.

# -i
• 1
a jtf
1

a k*k-c.'c d’J'

We see from the chart that c-type particles have 
shortened ranges in interacting with other c-types. The 
same is true of the d-types.

As to whether or not any combination of a, g , and y 
can make all of the pairings null, from V-1 we see that the 
force will be null if the numerator is. The conditions 
which must be satisfied are listed here.

Interacting Particles Numerator = 0
a a a
a a 
a^b*
a+b-
+ *a c
+ -a c
a*d*
a*d"
a a
a-b+
a’b”
a"c*
a 0

-a

-Y
+Y
-Y^a

+Y-0
-Y-a
Y+a

a
Y

-Y
Y-a
-Y+a
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Interacting Particles Numerator
+a

a d -Y+a

b*b* B

b+b" -B
b+c+ B-Y
b^c" -B+Y
b+d+ B+Y
b+d- -B-Y
b"b" B
bTc* -B+Y
b‘c“ B-Y

b"d+ -B-Y
b"d" B+Y
c*c* b-2y+a
c'*’c“ -S+2Y-a

c^d^ B-a

c+d- -B + Œ

c'c" B-2y+a

c-d+ -B+a

c-d+ B-a

d+d+ B+2Y+a
d+d- -B-2Y-a

d“d“ B+2y+a
The only numbers for a, 6, and y which make all of 

these expressions zero is a=B=y=0, the trivial solution.
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But that violates det(g)/0.
If we look at the c-types by thenselves, the 

expression to be satisfied is b-2Y?Q50. For the d-types, 
the expression is B+2Y+a=0. To satisfy both requirements,
Y must be null, and we get h=-a. To get both of the c-types 
and d-types to cancel their terms we also need &=c.
Thus, w e again g e t  c = B = y = 0 .

If we choose y=Q and 6=-a, allowing F^ to be zero for 
the c-type and d-type interactions separately, but drop 
the B=û requirement for c-type, d-type interactions, then 
we run into the problem that two particles that don't 
interact with each other can still interact with a third 
particle, e.g. two c-type particles and a d-type. This 
non-transitivity of the forces becomes a questionable 
alternative to the unacceptable null metric.

Rather than try to hold on to all of the particles 
that seemed possible, let's just work with the c-type 
particles and g^ = fo , since either the c-type or the 
d-type by itself would give us the desired cancellation 
of the 1/(Ĵ  term because of g2*

Now, since we only want to shorten the range of the 
l/S^ force, not eliminate it entirely, we should look 
within K at what can give us a non-null l/^' force inside.
As shown in the figure here, 
we'll make C smaller than k, 
bringing Q inside K and close
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to F. For this setting the fields will be given by 

^ ^ r. r- r<kj'f' ~

I.y.- S’),

Ye can now set up our boundary conditions at r = k and 
solve for the and b^.

' s . (i- ̂  "-'“-‘'ii

( r . k )

Identifying the coefficients of P^(cos5), for n=0:

=. - [ ’ 3:' - J

b =
H  TV

and for n^l:

- ^ n n r r "  +  C s . n r 3 ) ^ J  G.

Lr̂ n) 'TT

Using P^(l)=l and our symmetry, the force on Q is 
given by

- I7

The portion of the force due to the presence of the sphere 
is gi(Q,-Zna^*"l), and is of the order gZn-l/kZn+l^

Thus, if ^ « k  and the l/(^ force between Q and P is non-zero, 
we can essentially ignore the sphere and treat the interac-
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tion as though our environment is a uniform universe with 

g " gi'
Let's let be a small change from gg. That is

S '

where cr, ^ o ,  and 5 are small displacements from the vacuum 
value. The force between Q and P is essentially

F = 4 ^ S Ox  ̂(T T̂Q.J 4

= - I -P.Q. - S(P.G.  ̂P̂ o.)  ̂<r
since //, =^«.=-1 and (from F outside) is null. The energy 
is essentially

E. =  - 77;^ C. - S (P,c^ i- 71 cj - ^ ?iG. ]

For the various c-type interactions we get the force 
values

c*c*i - s-s* C-)

c * c " :  -  ^ 7 ^ . ( - / >  -  5 .S  -  C7-)

C C~ : -  —!—  / / 3 - 2 - â - r o - )jx I / /
The self-energy-density for any charge P is

rf q / o ’ ' £ _  - Z -  J F  \  , - I  /  _  p  - p  \- 3r V't:/' J “ A. J- I /

Since we want a positive self-energy-density, (^-2S+3-) must 
be negative. As long as this quantity is strictly 
negative for r «  k, the forces will be repulsive for c*c* 
and c“c” interactions, and attractive for c^c” interactions, 
and the self-energy-densities of the term will be 
positive.
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Using the d-types instead of the c-types, the quantity 
should be negative to insure a positive sclf- 

-energy-density, and the interaction forces,
d^ - f * C/) * 2. d - r )

d*d" - - <r )

d d - * er)

will then follow the repulsive-attractive pattern of the 
c-type particles. So using either the c-type or d-type 
particles exclusively, we now have a scalar-field, 
gauge-field model with a 1/^^ force that vanishes at large 
separation, reappears at small separation, and avoids the 
non-transitive forces.

But, with or without the non-transitive-force problem, 
this new model shows that the scalar fields predicted by 
the fibre bundle method can themselves produce significant 
short range effects for their attendant gauge fields.
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APPENDIX A

THE SYMMETRY ARGUMENT

This appendix looks at R. Utiyama's I955 paper which 
showed how to start with innerspace symmetries (or 
invariances) and come up with gauge-fields associated with 
those symmetries. This segment will, for the most part, 
follow the development in Utiyama's paper, with some 
notational changes to maintain consistency within this 
paper.

Let's begin with a system of fields which is 
invarient under some transformation group which depends on 
parameters c', é ..., e”. That is, given a Lagrangian 
L(Q^,Q*_) and its action integral I = J L d^x where fl is& /I
some arbitrary four-dimensional domain, we start with the 
invariance of the action integral under the transformation! 
A-ll Q^— vQ^+ Q*

5Q* = T*
€ = infinitesimal parameter (*=!,...,n)
T^g » constant coefficient 

and this transformation is assumed to be a Lie group 
depending on the n parameters e”” with structure constants 
f/r defined by *

5k
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couple of properties of those structure constants will be
J  wo get.

A-2* /  ̂

useful in our developments. From T ,T^ = - T,,I
. -r I"-

From the Jacobi identity ,T̂ jj , T^,T^ 1
r t

[t ]] . 0 we get,

/-5 //r * 1(1 ' f j -  f
Since I is invarient under A-1 and the domain is 

arbitrary I
A^. 5L = " 0.

3  q A  a  B

where the last equality is an identity. This leads to
8L_mA
3Q-

B _ 3L mA
3 QVm

Since the are independent, their coefficients must each 
be null. If we begin with each of these coefficients 
being null, we also have sufficient conditions for the 
invariance of I under the transformation group G.

Let's see what happens when we let the become 
functions of position, and require that I also be invarient 
under these extended conditions. The transformation laws 
become.
A-1' I 5Q^ = T^ge/*(x)Q®

T^_ = constant 
a B
e^(x) = infinitesimal arbitrary function. 

Now we get an extra term in 6Li
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aq aO'm ^S'm

The first two terms on the right hand side are the terms 
we had in A-5» and that identity must still hold, so <5 L 
becomes

4Q'm

Let's introduce a new field, A'^(x), J = to try to
get back to 5 L = 0.

Our new Lagrangian will be denoted L'(Q*,Q*^,A'^), 
and our transformations will be 
A-6: fQ* =

6A'J = Û ĵ A'̂ <:̂ (x) + 
where the U and C are constants to be determined later.
The action integral I* for this new Lagrangian is to be 
invariant under A-6.

There are five questions which can now be answered*
1) What kind of field, A(x), is introduced on account of 
the invariance? 2) How does A(x) transform under G’, the 
extended Lie group of transformations which depends on the 
functions e^(x)? 3) What is the form of the interaction
between the fields A and Q? 4) How can we determine the 
new Lagrangian, L'(Q,A), from the original one, L(Q)? 5)
What kind of field equations are allowable for A?

As with A-4 for L(Q^,Q^^), for L'(Q^,q)^,A“ )̂ we have
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A-7i 6 L' - =0
3Q^ 3Q.^ JA'J

Cl

Using A-6 and the independence of the and we get
from A-7»

and

‘ = “

From A-9 we see that M must equal 4n in order to determine 
uniquely the A '‘̂-dependence of L'. Also, must be 
nonsingular. Its inverse, is defined byi

If we define A^ as C"^^jA'^, then
3L’  ̂aj/ i K  _
JA'J 3A^ 9A'J 3A^ a a

This lets us rewrite A-9 as

Azil:  ̂U d  = q.B ,3qA a B bJ  ̂qA g A'_

Notice that this is — — r when we define the function VoQ^
3V ^

by ^

A=10. V^Q* - ot^ - . Qî  . :^gQ%.
Our new field should only show up in L* through this Vĝ Q̂ . 
The transformation property of this A^ is 
A=U. SA^ =
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r
a

= sr^LtA:)/' » c.-“-a
It turna out that thio new function , io eaoicr to deal
with than the U and C functions.

From the requirement L* ,A;“) = L"(Q*,VLQ*) we geta a a
Lkl 3L"
nA "3Q

aL*
SQtg

4L'

3Q' 

3L"

a L"
VQ const  ̂̂ a^

B
Q const

3L"
9A .J

Q const 

Q const
A-8 now becomes 
A-12: / 9L”

(77
a L"

VQ ' V
3L"

A'*ldA*m +.B”
3L"

= /3L"
9Q VQ

1 , [jL"J / v y
a L" Q®A

QI ' v y

m. J

= 0
Since we want this new Lagrangian to be identical to the 
old one when A vanishes, we have L"(Q'^,V^Q^) = L(Q"̂ ,Vĝ Q̂ ) 
where in the old Lagrangian is replaced by V^Q^- 
Because A-5 still holds, the first two terms on the right 
hand side of A-12 must combine to give zero. The
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remaining term gives us
A - 1 3 i L "

which implies that 6|̂ . From this we can get:

« V y  = ’m] ' ‘

- t a ^ ' M v y

using to cancel and collect some
terms.

The next step is to look at the free-field Lagrangian 
for A, Invariance under A-ll gives us, by
way of

n ' °

and the independence of the e and

‘‘a> * ( < b ^ '  ^ <^-b> ’ ^ ‘ab>
3*a,b

must be null, and

’à ' - ' " '  ' ■ "3. £L f D

A rii‘ .  I S . a‘ : 0

AzlZ. !ib_ ^ iio_ ^ g
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A-1? comes from the coefficient of the «'.J* . Sincemn
the contraction of a symmetric tensor with an anti-symmetric
is automatically null, we can only say that the symmetric 

4L
portion of —  must be null. So if ^ does show up in 
Lq , it must be through the combination:

^m^n “ n̂̂ ra*
Thus, from A-16 we get

which implies that A* and A^ ^ appear in only through 
the particular combination

4 ^ '  C n  = 4m.n: ' ( A %  - A % )
60 that we get, looking at the coefficients of in <5L̂  = 0, 

3L.

mn
” 4&C^n)j = 0

= i ̂  - 4" }
3 L.
3 F mn

This, by virtue of A-3, can be shortened to,

mn
9 L,

f -P.: = 03 Y  mn '

Since we want to have the same form as L^, we get the 
relations :
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-■’A

L
A

<? Fm,n A conot mn
aL.

A const

iA
X

 ̂ o
conot P const A const

Since Â |\̂  ohows up in only through P^, we can 
substitute aL^/aP^^ for in A-16' to get

9 LI

3 A;
which gives us 

9L 
3A

3L'
9F.nm

_o
'm

= 0
F const

This implies that is a function of F by itself and must
satisfy A-19.

The transformation property of FJl ismn
sF__ = amCfrrs'A: + - a . + f/i)mn n n" vn'y m 'm'

-èf>;

-(//,.'A“ » .4)a; -  ̂srjj

- - K " -

-  i  [‘< ^ n  - f A  * Ç fA >1
= M : /

* 4: ) 1

/5
m

[ A[m,n] • ^4? (A^A^ - 4 i ^ l )  j
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A-20,

where uot hao been made of A-2 and A-].
If we look at + L(Q,yQ), we can got the

variation! 
A-21: i>Ln

1A

3L,'TB A

0L;p  ̂ aL^
m’ ’ — Z-'\.n

m m,n
3L„

-5Q f <L.
SAm

3L„
•6A.

3 An,m
^ A ^

m
^  A  ^  L m5qA +  L
5Q^m 3An,m

a

3xm

Since the e*Xx), and their derivatives, should vanish at 
the boundary of fl, when we integrate A-21 over D  the 
divergence drops out. But the integration of A-21 over fl 
is the variance of the action integral, which is zero, and 
since fl is arbitrary, A-21 must be zero everywhere. We 
thus get the identity from A-2li 
A-22: [S Ln
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In the case of electromagnetics, we want the 
Lagrangian to be invarient under the phase transition:
6Q* " and 6Q*^ » where «. is a real constant.
If wo replace «. with the function %(x), we should get a 
vector field A^^x) with the transformation property

(Since there is only one parameter, the 
structure constants are null.) The new Lagrangian L ’ has 
the form L' » LCq .V̂ jQ. Q*. (V̂ jQ)*) where 
The free field Lagrangian L^ contains A^ in the form of

^mn “ ^ [m,n] *
For rotation in isotopic spin space, the transformations

are :
b 21 7.., y y ^

and
& yL " ^ y  4'b 4.

where the Zy are the isotopic spin matrices. By replacing 
the with e‘̂(x) we introduce the fields (with ̂  = 1,2,3; 
m=l,2,3,4) which show up in the Lagrangian through

- - - V X -
With the defined by p X» ' ̂ can get

- a - Bn*;), which is the usual
form for Yang-Mills fields.



APPENDIX B

THE FIBRE BUNDLE METHOD

We'll begin this section on the fibre bundle method 
with some notation conventions. Let's start with h as a 
differentiable mapping from a differentiable manifold K 
to a differentiable manifold N.

h J K N
At p in M we have the tangent space, denoted Tp(K), 

and the corresponding tangent space T^^p^fN) at h(p). The 
space of all vectors tangent to M is denoted simply T(M). 
These are related by the induced mapping h*i Tp(M)-*T^^p^(N), 
defined by " %p(g'h), where g is a real-valued
function on N and is a tangent vector in T^fM), and h* 
is called the linear differential of h. The dual to the 
tangent space at p is denoted T*(M), and the relation 
between the dual spaces is given by h*i T*(N)—♦T*(M), 
defined by h*^(X) = d^h*X), where oeT*(N) and XeT(M). In 
summary;

M   -» N p — »h(p)
T(M) — T(N) X-f---- k (h*X)g = X(g.h)
T*(M) 4 —  T*(N) h*w(X)=t<h*X)< wY

where f is a function on M, g is a function on N, XeT(M),

64



65

YcT(N), w(T"(N).
Let M be a HoucdorlT topological njace with a 

denumcrablc b.'ir.ic and be an n-d imen;: i onal nuclidean 
space. K is a differentiable rranifold^ if there ex i: ts an 
indexed collection of pairs an open subset of

W^-> K a homeomorphism of >V̂ to an open subset 
of M, satisfying:
a) for each mcM there exists Ksuch that m(U^,
b) for every and ̂  with Û /1 7^̂*'/.. restricted to

(1̂/1 ) is a differentiable mapping of this set
back into E^.

c) completeness: if y : W-’-U is a homeomorphism of an
open subset W of E^ to an open subset U of x such that
for any «< for which ^ the restriction of 7"
to and the restriction of to y~^(UnU^)
are differentiable mappings, then there exists an 
index y? such that (W,y) =
A mapping : U-^V, for U open in E^ and V open in E^ 

is differentiable on U if for all functions g, differentiable 
on V/, open in E^, the composite function g»f is differentiable

on f-l(W).

^See Louis Auslander and Robert £. MacKenzie, Introduc­
tion jW Differentiable Manifolds. (New York, Dover, 1977), Chap. 2.
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A vector Is defined in terns of the directional 
derivative; Given a differentiable curve ui(-l,l)-*M which 
passes through p = u(0), and f, a locally differentiable 
function, then the vector X tangent to the curve u(t) is 
defined by

Xp(f) - f(u(t))l^,Q. t < (-1,1).
The set of differentiable curves through p are associated 
with the vectors tangent to K at p and vice versa. Given 
the basis £u^} from a coordinate chart p« Wot),
we define a natural basis for these tangent vectors as 
i =» l,...,n, defined by ^.(u^ ) = 6/, so that X = Zf'-^, .

The set of tangent vectors at p is an n-diraensional
vector space denoted Tp(M). The space of linear functions 
tjpiTp(M)-*R is the dual space T*(M). A l-form is an 
assignment of duals, or covectors, at each point of M.
Given the definition of a total differential of h as 
dh(X) = X'h, and a local neighborhood coordinatized with u^, 
a local basis for T*(M) can be developed from the total 
differentials of the u^, allowing us to write any 1-form 
u) (locally) asEf^du*". As with the vectors, we assume that 
all of the vectors and forms are differentiable unless 
stated otherwise.

The exterior algebra over T*(M) is denoted AT*(M).
For the 1-forms •<, a n d , their wedge product is defined by

tx-A/S ( X , y )  =  -  ‘x ( y ' ) y 3 ( x ) .

For y a p-form and S a q-forra, yAS = (-l)P^i/i7. A p-form,
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using tho local baoio du^, can bo expressed ao

1̂ .1... c/ X /I . ■ . /\ <i ÎC

Tho notation for the last term needs to be modified a
little in order to use the summation convention. One way 
is to use vertical lines to enclose the subscripts to 
indicate that the summation, as in A, ,du‘'... du'"’, is

■••‘.I

restricted to <•, < >-,< •••<(.„.
If we use the n o t a t i o n t o  denote the set of 

r-forms on M,i£f(K) being the set of functions on M, and 
j9(M)s , the exterior differentiation can be
characterized by*
a) d is an R-linear mapping ofJ0(M) into itself such that 

d{£f)s £)^*^

b) for fej&°, df is the total differential
c) if tu 9 ^  and ^ , then d(o/i«) = dwAt + (-1) ̂ Adw
d) d^ = 0.
In a local coordinate system, if <<> = Z. f ,du‘'A.. .Adu*', 
then dcj = I. df . , du""A.. .Adu‘‘".

If we are looking at values in an arbitrary vector 
space V, rather than just R, as we will be with Lie-algebra- 
-valued forms, then we define a V-valued r-form cj on % as 
an assignment to each p « M of a skew-symmetric r-linear 
mapping of Tp(M)x...xTp(M), r-tiraes, into V, Given a basis 

( e o f  V, we can express w as where the are
the usual r-forms on M. The exterior derivative is now
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defined by du = Zd w e .L *
A Lie group can bo described as a group which ic at 

tho same time a differentiable manifold and for which the 
group operation AiGxOG, defined by A(a,b) = a"^b, is a 
differentiable map. We could also say, more by way of 
example, that it is a continuous group in which one can 
introduce an n-dimensional co-ordinate system ('with the 
identity element at the origin, and with the multiplication 
law given by analytical functions. For instance, given 
X, y, and z in G with coordinates and
respectively, the equation for z = xy can be written as 

= f*(̂ ,)̂ ) where the f** are n analytic functions of the 
2n variables

Let’s look for a moment at some differentiable curves 
through the origin, curves whose coordinates depend 
differentiably, on a parameter l and chosen so that x(0) = e, 
the identity of G. If x(c) is a subgroup of G, we say that 

generates a one-parameter subgroup,g(&) of G. For 
instance, rotations about the z-axis form a one-parameter 
subgroup, and 6 can be chosen to be ê, sinr?, or any other 
appropriate function of the angle. If t=d, then 
g(&)g(^) = g(6+6), and all one-parameter subgroups can be 
expressed (or re-expressed, with a suitable parameter) in 
this standard form.

Let g(&) be a one-parameter subgroup in this standard 
form. Since g(6) c G, there exists g”^(e) such that gg"l=e,
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and oinco this io in standard form, {£.) = g(-&). Since
gg”  ̂ io a constant, its derivative is null, so

This gives uo 

^  ^  " -Gd^G.
Using g(0) = e and g"^(6) = g(-£), we find that

= ^im[j(g(c)g(-£-f)-g(c)g(-£.)J
= l}m[y(g(-S)-g(0)]

When we put this back together with B-1 we get the 
differential equation*

Mzi i f  “ ®G-
Combining B-2 with the initial condition g(0) = e, and 
defining the exponential function by the power series, 
we get the familiar exponential form for the translations 
generated by that is*

g(£) = exp[ea].
If we look now at the left translations of the elements 

of Tg(Q), denoted L^*(A) where A e Tg(G) and is the 
linear differential induced by the left translation of G 
by a £ G, we get a left invarient vector field on G, This 
vector field is the Lie algebra of G, denoted (S'. Although 
the products of elements A, B in are not necessarily in 

their commutator [A,bJ = AB-BA is. Given a basis 
on (5*, this closure property for the commutator implies that
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t

These C a r e  called the structure constants of the Lie 
algebra. We also have (T» which is the set of forms w for 
which L̂ tij = cj. For k • S’ and w w( A) is a constant on 
G.

The linear differentials of inner automorphisms of the 
form Int^(g) = aga"^ give us the automorphisms of S' called 
Ad . Thus, Ad (A)f = A(f»Int ), for a c G, A a ̂  and f ad a  d
function on G. Applied to b « G, [Ad^(A)fJb = A(f(aba"^)).

Let a be an. element of a Lie group G and p be an 
element of the n-dimensional differentiable manifold ?.
Let R^(p) = H(p,a) represent the differentiable mapping 
R:PxG-*F (i.e. G acts on P on the right). R^(p) can also be
denoted pa. Let M denote the equivalence space of P under
G, i.e. if ua = V for some a « G, then ua and v are
considered the same element, or are mapped to the same
element of M. «e will denote this action with mr, called 
the canonical projection, so that for u and v = ua, two
points in P related by a, x ='^(u) = ?r(v) is their
projected image in M.

2P will be a differentiable principal fibre bundle over
M with group G if:

^See Y. M. Cho, J. Math. Phys. 2029 (1975).
M. Daniel and 0. M. Viallet, Reviews of Modern Physics 
175 (1980), and S. Kobayashi and K. Nomizu, Foundations of 
Differential Geometry. Vol. I (London, Interscience 
Publishers, I963)
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a)

b)
c)

G acte freely on P to the right* ua =< u <=> q = e, the 
identity of G.
IT is differentiable.
P is locally trivial* given p c M, there is a 
neighborhood of p such that ) is isomorphic
to U^xG. This is true if there exists a diffeo- 
raorphism ĵ*'Jc“^(U^)-»U^xG where Ĵ (u) = (m^u),y(u)) for 
all u e with )-̂ G a mapping (not
necessarily unique) satisfying ^(ua) = yL(u)a.

M is called the base space, G the structure group, P the 
bundle space, or G bundle, over M, and tc the projection. 
7r“^(x), for X e M, is diffeomorphic to G and is called the 
fibre over x.

The first pair of examples starts with the circle, Ŝ , 
for M and the interval (-1,1) for the fibres. Locally, 
this will look like the cross product of two intervals, but 
there are two possible global structures* the cylinder and 
the Mobius strip.
The cylinder is 
isomorphic to the 
cross product of 
the circle and the

S X C-oO

o b 4 *i- Î
Strip C ~ ? '

interval (-1,1), but the MSbius strip is not isomorphic to
any cross product. Thus, although they look alike locally,
they are very different globally.

The next pair takes M to be the circle again, but the
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fibre is also a circle, instead of an interval. Locally, 
for a neighborhood , will look like a tube or 

cylinder. When we try to put things together globally, we 
again got two possible surfaces. The simpler is the torus, 
which is isomorphic to S^xS^. Here, the second 
represents the fibre, and since the continuous group U(l) 
can be thought of as a circle, we could look at the torus 
as S^xU(l), The other figure can't exist in three space. 
It's sometimes referred to as the Klein Bottle or Klein 
Jar. Suppose we take
a tube, assign 
directions to the 
edges of each end, as
shown, and then try to bring the openings together so that 
the directions match. Figure (a) goes together rather 
nicely to make the torus, but figure (b) will require 
passing one end through the wall (if you're stuck in three 
space) and then 
lining it up with 
the other end, as 
shown in figure (c).

The next concept is that of a cross-section. A 
global cross-section is a differentiable mapping of the 
base space M into the bundle space P in such a way that 
fr»<r is the identity map on M. A local cross-section over a 
neighborhood 11*̂ is defined the same way» dT and

DD
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Tcĉ  ic the identity map on U^. A convenient notation for 
trivial croDO-oectiono ic given by using the from part 
three of the definition of the principle fibre bundle.
Given the definition %  = uLj^Cu)}"^, whore £%t(u)J"^ ic 
the inverse of the image of u in G under %, turns out 
to be independent of u. Suppose v is another point in the 
fibre through u. Then there is an a in G such that v = ua. 
Now

iiith this notation, ^  (x) ) = (x,e), so that <Tĵ (Û )
corresponds to U^x[e^ under the diffeomorphism 
U^xG. We could also express the trivial cross-sections as 

= {(x,a)/ a is constant^, where we confuse the 
difference between ?c"̂ (Uĝ ) and U^xG.

These cross-sections also have transition functions 
in the areas where their neighborhoods overlap. That is, 
given or over and over T^, with / 0, there
exists ^ .t (U/I U-)-*G, such that

(x) = ^ ( x ) ^ ( x )
for X in (l̂ n ).

'1In order to develop the concept of a connection*', 
we'll begin by developing the idea of vertical vectors in

-I

^See Y. M. Cho, J. Math. Phys. 16, 2029 (1975).
M. Daniel and G, M. Viallet, Reviews of Modern Physics 
175 (1980), as well as A, Trautman, Rep. Math. Phys. 1, 29
(1970),
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Ty(P) for each u in P. Lot •» the
differentiable curve through u induced by A in The 
tangent at u of this curve is called the fundamental 
vector C(A), in T^(P), associated with A. Given a function 
f on P, then

= fr . f f ,
in accordance with our original definition of vectors. 
Because all of the points of u^ are generated from u by the 
curve exp[tAjin G, all of the points of u^ lie in the 
fibre through u, so thatjr(A) is tangent to the fibre. The 
set of all such fundamental vectors, Ĝ , is isomorphic to 
(S and forms a special subspace of T^(P) called the verticle 
subspace. Note that ?r̂ (Z(A) ) = 0, and an alternate 
definition for G^ could be the space of all vectors Z for 
which = 0 (i.e. the kemal of T%:Ty(Py+T^^y^(M)).

A connection r on P can now be defined as a choice of 
a supplementary set of vectors in Ty(P) such that

a) T^(P) = 9„ ®  G„

b) V  =
c) depends differentiably on u.

This Bubspace is called the horizontal subspace of T^(P).
A Lie-algebra-valued one-form u may now be defined as 

the pull back of £(A) to A. If we apply R* to o>, we get a 
shift by means of Ad .. Note that

a-l
E(A)j

and
CH.. = (A)Ĵ  / -
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The tangente of the curvea Int ^[exp tA] and [exp tAj are
a

related by the linear differential of Int (i.e. Ad _j).
a" a"

Thus,
f . f

giving us
B-3 o = A c/̂, CJ.
Since w(X) » 0 for X in Q^, this relation is trivially true 
for Q^, GO B-3 is true for all of Ty(P). This w is 
called the connection form for the connection F.

This connection form also gives an alternate 
definition of as the kernel of o iT̂ (P)-̂ <K

Once we are given the connection form o, we can use 
a local cross-section to obtain a 1-form a>̂ = <t * cj

on with values in (2". Given the basis {x̂ } on and 
the basis [e^J on (S’, we can write, for X = in T(U^),
«^(X) - =
A) The w are real-valued functions (for real-<K yt’
-valued vector spaces (&). These may be considered
the gauge-fields corresponding to the connection form co.
The connection form has the advantage of being defined for 
all of P, while 6^^, which is dependent on the cross- 
-section ô , is defined only locally for nontrivial fibre 
bundles. The choice of a cross-section here corresponds
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to a choice of gauge.
Given the crooB-Goctions and and thoir 

transition function Û -̂ G, the transformations for the
is

where d̂  ̂is the exterior derivative on M.
For example, given the trivial bundle R^xG, let <r, 

and be related by g in G, and to be the connection form.
<̂1 “ <7 CO*. - 0% ''feu)

and tô  <• fK (w,") + f' <J ̂  .
Writing as A_̂  dx‘, we find

This will give us
• I A

9%'
which is the gauge transformation formula for gauge 
potentials^. If the group G is the one for isospin space,
this could be written:

?. * f  f. 9 *• 9" A  J .
To better see the relationship between the connection 

form and the gauge potentials, let's look at U*, a 
neighborhood of x on the circle, and P can be either the 
torus S^xU(l) or the Klein Jar, since we will be looking

^See Y. M. Cho, J. Math. Phys. 16, 2029 (1975). and 
M. Daniel and C. M. Viallet, Reviews of Modern Physics 52, 
175 (1980).



77

horc at just tho local proportioo. Let be a croao- 
-Qoction mapping into Lot X bo a tangent vector
at X, and «^«X bo tho corresponding tangent vector to 
at crjix).

J" .

X

M - S'
We can identify points on 7r”^(U^) with their counterparts 
(x,a) in U^xG, since and U^xG are equivalent by
the definition of a fibre bundle. Using tc and where

was chosen in the construction of P, we can identify p 
with (‘«'(p) .^<(p) ). has a basis u^ and G has a basis (C 
so we can use the product basis x^ = [u^ for A = l,...,n;

for A = n+l,...,n+m with /i = A-nj, where n and m are 
the dimensions of M and G respectively. Notice that <^«(x) 
could have both a vertical and a horizontal component, so 
that we can use the expression

= hor @2*  ̂ + vert
where hor(Y) and vert(Y) are the horizontal and vertical 
components of a vector Y in T(P). If we now apply w to

we lose the horizontal part and find a vector A in 
<&■ for which vert (r[*(x) = E(A).

The lift of a vector X in T^(M) to u in is that
element of whose image under is X. The lift of X 
will be denoted X.

For u * (x), the lift of 9 2 to u is horizontal,^ ^ 3 X
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but as we’ve seen, 9̂ ) might not be. In fact, if wo 
consider the local expression of the connection

= Â d̂x*" a (A^^^e^)dx^, where (ê J is a basis of #, 
then = [A^^dx^JS^ ■ . This means
that the vertical part of is, in essence, the connec­
tion coefficient. If we subtract f (A^^) from <7i*(9a.) we 
will get a horizontal vector, since - Z(A^^)) ■ 0.
However, the lift of a vector is unique, so

In comparing this with the covarient derivative,*69= 
we can see that corresponds to 9̂ 1̂  when we identify 

and Z(A_̂ )̂ with and A^^ respectively^. Looking 
back at our notation for the trivial cross-section = 
uyTj,̂ (u), and the result that c^(U^) « U^x [ej , the figure 
for ?c"^(U^) could have been drawn:

Z(A) - Her
t  A  ^ CJ .

" T T  (X)

and we can then justify identifying ĉ *(3a.) with 3̂  and : 
J(A^^) with A^^. Although = 3^ -A^^ doesn’t look 
horizontal according to this picture, remember that 
’’horizontal” is defined by the connection V, not by the 
tangents of o^(U^).

If we take the commutator of the covarient derivatives.

^See M, Daniel and C, M. Viallet, Reviews of Modern 
Physics j2, 1?5 (1980)
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wc get tho gauge field ,
c , uD,j - - [('. /L, - .;}

When we expreee the Â, in terme of coordinates in
<5, and using^ a. ■ -Ĉ \ , then the commutator
becomes

' - [( ̂ ^   ̂'L. ̂  }

' - (C9. ^  J ^
" - r  ^ 9

n C  A .  ^  / *

Overlooking the cross-section dependence indicated by «; 
our is the same object we found in Utiyama’s work, and 
when we develop our Lagrangian from the curvature of the 
principle fibre bundle, we will see that the gauge fields 
are present only in terms of the F ̂ .

A. b

First we will establish a basis for our principle 
fibre bundle, with M as space-time, and G as our transfor­
mation group. For this calculation of R, let's use the 
horizontal lift basis for T(P), i.e. 2̂  = for A=l,2,3,4j 
and for A=4+l,...,4+m, withyi=A-4j, where m is the 
dimension of G.

The metric on ̂  will be the bi-invarient form ̂
«X ^ /t 
/yy ^ ̂  c

where f is a function of space-time. If is semi-simple.

‘’See Ï. U. Cho , J. Math Phys 16, 2029 (1975)
7 A. right-invarient form based on the Cartan-Killing 

form was used in Y. M. Cho and P. G. 0. Freund, Phys. Rev. 
Di2, 1711 (1975)* See alsoi A. Trautman, Czech. J. Phys. 
B 29. 107 (1979) and L. N. Chang, K. I. Macrae, and F. 
Mansouri, Phys. Rev. D IJ, 235 (1976)
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ao with U(l)xSU(2), then the metric can bo conoiderod a 
combination of oubordinato parto, each with ito own f. For 
example, with U(l)xSU(2), tho metric can be written

A  ! o  o  c  o . n «* <*
o  * o n A 

a 31I

where A and B are functions of space-time. For the 
Abelian groups, since the commutators are null, each 
component of is an arbitrary function of space-time.

The metric for P should preserve the actions of the 
space-time and group metrics, while making the vertical and 
horizontal parts orthogonal. When we use the horizontal 
lift basis, these requirements give us the metric

; o

and its inverse

o :3

The connection coefficients are given by
A .AD

8

r DO^C X>CjB 'sCj-D ■y c*" 1- - r ̂

where Cg^e^ = [eg,e^] for the basis of P. For the
horizontal lift basis, these structure constants are

%ee C.W, Misner, K.S. Thorne, and J.A. Wheeler, 
Gravitation. (San Francisco, W. H. Freeman, 1973)» P* 3^^
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00 that the only nonnull C o  are of tho form C ̂ and C . 
This gives UQi

'/3Y " -

” Jc
T  « i-
r Y  = -Z 9̂ a, h

r  - - É

. r A

Note that and rJ' are antisymmetric, while the rest are
will be left as is. 

lote that 
symmetric.

The formula for R is?
R  -
- ' r’-n* - '» r= - r/, c =„ }

Plugging in terms and collecting and cancelling gives us
- # f'cl- 9'r - j r '  # F- 6
' T - S^a,- gyl'R ]

The action integral is^®
I " y c/v. /\... Acjv.^*^

I /T R  o/% c/’"!

= f ̂ âTr/â" ft

^Misner, Thorne, and Wheeler, p. 277
^°Cf. Ï. M. Cho. J. Math. Phys. U, 2029 (1975) and 

P. M. Morse and H. Feshbach, Methods of Theoretical Physics. 
(New York, McGraw-Hill, 1953). p.275
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where dx’/l.. .Adx"'is the volume element, which is equal
to v9’dx'...dx.., and Z’' “ with tho
determinant of tho space-time metric and g the determinant 
of the group metric. d \  and d"̂ f are the ST and group 
volume elements. By using the /^g^\g’in = /f'R, we can 
write -C in the form^^

z: = /IP /j" %.r - ^

- f  c :' rs"

- h ‘ f'}
In conclusion, this Lagrangian density contains the 

F demanded by the symmetry arguments of Utiyaraa, although 
they are derived here from geometric argumentsi and we also 
have an explicit Lagrangian, rather than just the restric­
tions which Utiyama's symmetry arguments placed on the 
Lagrangian. In addition the method has given us the g^^ as 
scalar fields. From here we can develop the field equations 
as in section one.

^^Cf. Ï. M. Cho, J. Math. Phys. 16. 2029 (1975) and 
Y. M. Cho and P. G. 0. Freund, Phys. Rev. D 1?11 (1975).


