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INTRODUCTION

The introduction over a decade ago of fibre bundle
methods to classical field theory seems to allow us now to
develop models of unified fields from more fundamental
principals than ever before. Using a Lagrangian based on

the curvature of a Principal Pibre Bundle (a mathematical
structure which can combine space-time with gauge-groups),

we can get field equations which are like those of Utiyama1
and others, who began their theoretical develorments with
symmetry and invariance assumptions. The advantage of the
fibre bundle method is that these assumptions alreacy
appear in the geometry of Principle Fibre Bundles.

The fibre bundle formulation also provides extras like
a natural inclusion of scalar fields.

It is already known?

that the non-linearity of the
Yang-Mills type field equations can lead to short-range
effects: These field equations have essentially Coulomb
type solutions under spherical symmetry conditions, as when
two particles are far apart, but when the particles come

close together the spherical symmetry is broken, and the

lRyoyu Utiyama, Physical Review 101, 1597 (1956)
ZHendricus G. Loos, Nuclear Physics 72, 677 (1965)



non-linearity of the fleld equations asserts itself.

In this paper we show, using Abelian models which
sidestep the non-linear aspects of the field equations,
that the scalar filelds predicted by the fibre-bundle
method can also produce short range effects.

After developing the field equations in section 1,
where the scalar fields are seen as the space-time depen-
dent components of the group metric, we will compare our
field equations for U(1) with the field equations of
Ehlers> and of Gordonb. who treated the index of refraction
as a function of position and velocity. The similarity
between.the effects of their index of refraction and our
scalar fields suggests that the scalar fields mignht affect
the speed of propogation of the gauge fields, and could
thus shorten their range.

In the one-dimensional case, unfortunately, trying
to force the scalar field to shorten the range of its
corresponding gauge field also forces the scalar field to
become infinite at large distances. This can be seen at the
end of sBection II where we look at the Yukawa potential and
see what is required to produce the sarme effect from a
Coulomb field with the addition of our scalar field.

In section three we begin to develop a rather

3Jurgen Ehlers, 2. Naturforschg. 22a, 1328 (1967)
“w. Gordon, Ann. Fhys. 72, 421 (1923)



simplistic model from two static charges and a Sphcqu
which will fail for the one-dimensional gauges and then
revive when we move up to a two-dimensional gauge. In the
one-dimensional case, we will put one of the charges at the
center of the sthere and assign the sphere a different
electrostatic permitivity from that of the rest of the
universe, as though the particle inside was producing a
field which altered the permitivity of the vacuum. (When
the electromagnetic permeability is constant, this
corresronds to altering the index of refraction.) To
produce the Yukawa potential, the permitivity only had to
pe infinite at infinity. EKere, to produce the effects
we're after, the permitivity must be infinite everywhere
except inside the sphere.

Using a two-dimensional Abelian gauge group in
sections IV and V, we find that,. for.certain particles,
the l/r2 forces of the gauge fields can vanish outside of
the sphere and reappear inside. So, after failing in
the case of U(1l), this same simplistic model of two
particles and a sphere goes on to demonstrate the desired

short range effects of the scalar fields.



I.

FIELD EQUATIONS

In this section we will develop the field equations
for interacting gravitational, gauge, and scalar fields.
The gravitational field is represented by a space-time
metric Bap = ab(x), the gauge fields by vector potentials

A;(x), and the scalar fields by g, ,(x) (the components of a

-,
metric on the gauge group). Latinﬂindices, which run from

1 to 4, refer to space-time components, ané Greek indices,
which run from 1 to N, refer to Lie group components, where
the dimension of the Lie group is N. The space-time metric
gab(x) has the same structure here as in general relativity.
The A;(x) are analagous to the vector potentials of Electri-
city and Magnetism except that we have a set of N such fields,
as indicated by the superscript. Because these fields can
interact with each other, their field equations are compli-
cated by non-linear terms involving the Lie Algebra's
structure constants. The terms A;;(x) = Afa.b] ﬂ’Ag ;
correspond to the .electromagnetic field tensor. (Unless
stated otherwise, the summation convention is assumed
-throughout. Symmetric and anti-symmetric permutation sums

are indicated by round and square brackets respectively.)

The free field Lagrangian for the gauge fields is

bd
Lgauge = - g.‘/ bA’d g*e

n



This equation i3 the simplest generalization of Lo

found automatically in our Lagrangian for the interacting
flelds,

If gravity were present by itself, the gravitational
field gab(x) would satisfy the vacuun Einstein equatlons
G,p = Ryy - + g,,R = 0, which come from the Lagrangian
density {-g'R, where R = gabRab is the Ricci curvature
scalar, by means of the method of variations. This equation
also appears in our interacting Lagrangian equation.

The terms g‘ﬁ(x) represent a set of scalar fields
which we'll ultimately use to shorten the range of the
gauge fields. These gﬁd(x) are space-time dependent, but
transform as symmetric two-index tensors with respect to

changes of the basis of the Lie Algebra,

The Lagrangian we will be using comes from a2 genera-
lization of the gravitational Lagrangian density in that it
comes from the Ricci curvature scalar of a metric on a
space with dimension 4 + N, where N is the dimension of the
gauge group. This space contains the usual space-time
manifold and the inner space associated with the internal
degrees of freedom of the gauge fields.

If we let {ei} be the basis for the space-time manifold,
and let {{,} be the Lie Algebra basis, the metric for the

bundle will operate on the e; like the space-time metric,

and on the b, like the group metric.



The curvature tensor for the bundle is complicated by
structure constants CgceA = [eB.eC]. where the indices run
from 1 to Le¢N and [eA) is the basis of the bundle. The

curvature for the bundle is then5

_ AB.C
Ryundle = 'R ACB
B c c C D _ CE
(r AB ¢ - Tic,B rDcrfx)a - IppTac = Taeleca!

and the connection coefficients are given by

A
=8

The = % gAD(gns.c * &pc,p ~ BgC,D

E E
* &gCpp * Epefrc) - % CBC’

As explained in appendix B, the Lagrangian density6
for the bundle is

e L g Ret g7 < w7 2 ASAL 59"
..5" «Ly ,41§

g 74,:7,4-77flg }—3;: {f;_‘_’:JG(;j/t )3 ]

but it will be easier to work with if we arply a conformal

transformation to change the /-gSTVgG RST toJ-EST EST'7
Transforming the space-time metric by Eij © e?‘dgij gives us
I-1': [« y%e""-a, fe*[R, »6 2 20 b ol-g g"/’CE‘,C;
W _ Ly rls ab
- " it AL 8 T T e s g
- 1y, g, “"g.,,.z f

where A,0 = gab(d

alg

J

a .0 4,0 g bg G.b, and RST is the

5Charles ¥W. Misner, Kip S. Thorne, and John Archibald
Wheeler, Gravitation (San Francisco: W. H. Freeman, 1970),
pP. 277. ’

6see also Y. M. Cho, Journal of Mathematical Physics 16,
2029 (1975).

7L. P, Eisenhart, Riemannian Geometry, (London, FPrince-
ton University Press, 1926), pp. 89-90,.




space-time curvature scalar in terms of E; g Also, the
covarient derivatives are now taken with respect to the new
metric.
By choosing e?9 - Jg—c we get
I-1"1 £ = Fi,',. [z,. +be,.a--é.4,o--4/§?f’dcs"v C; -{I—G';,/,A;,q‘j iulu
"z 9'["17]“7".&3/‘,5 PR R (7“’3%4}(7“}

The next transformation is performed on the group
N+2

metric: Bqp = (g)+%ga5. gaa = (g)-égaﬁ' and g = g( 2 7.
Here, g denotes the determinant of the group metric. The
scalar field terms of the intermediate Lagrangian, when
combined with -6510 gives us:
LG 3 e o] - 2 e s 704 5§ s £
= "';'{3"7'4{]%@776,; * i;d’dj%~ 37:27:,6 [

I EONG —SAEE-E ot o Eiy

[J __'__1\ b § «
silm PP v aly

| €
Note that (“E 64,0 = [TEg76a™ (i(1n @) ),y = 2VEspe® —8) ,

The Lagrangian from which we will take our field equa-

tions is:

120 Ls g (R -4 2703 Cly = 2. AS AL 27 5Y
A N ,’_’_‘.‘ 4 o ~ [} «, -
tr (v g 'i'k 3 ” 3--94,5)3-6} *tz 5?;'1 {E:(J 'i?.«/a,-.)g- ‘]

The fields we are looking for should extremize:
J=Jy .Cdxo/\.../\dxu.

We can find these fields by looking at the variation of J in

V while requiring that the variation be zero on the boundary

V4
of V. Let L=4L + Y " Then:
[



L L

I-% 8J = 8 [yLd'x + & fvc"‘pd X.

The generalized form of Stokes® theorem says that for
a (p*l)-dimensional volume V with a closed p-dimensional
boundary 3V and with a p-form a defined throughout V, the
integral of the (p*l)-form da over the interior of V is
equal to the integral of the p-form a over the boundary 3V.

Thus the integral of Vv-C deA...Adxu over V is equal to
the integral of ¢-d§ over 3V, where d3 is the (4-1)-dimen-
sional surface element on 3V. (For instance, for t = const-
ant, d3 = % dx1 dx2 dx3 with the sign choosen so that dS 1is
oriented outwards.)

But, since 6JVC?Bd4x = 8J;v63(d5)3. and the variation
on 3V is zero, the last term in I-3 will be zero automatic-
ally, It thus contributes no information atout which fields
will give an extremum for J.

The last term of our transformed Lagrangian, as a total
divergence, will thus not affect the field equations and
will.be ignored from now on. Also, the metrics we will be
using, or solving for, will be the barred ones in this last
Lagrangian; so, as we solve for the field equations, the bars
will be dropped.

We will begin with the field equations for the
space~-time metric. These we will get from:

V(37 R) =4 g7 ¢, 0l 80177 - (3.0 AL ALy § (5, g*9")

+3 Gz T8 ¢ 5 gs) 505557 9*¢)

Evaluation of the individual terms gives:



‘<'{‘§:r"‘e:r) - /:Ez"’a‘b(s:‘s:-i}d'gcd)sg‘ﬁ

5{-'3; - "i'[:JT; Jed Jad
Loy e I N G HEF aw) Fh

ac fd

g g9 = g (yeets] 5 1) i

Plugging these in gives our fleld equations.

S L .7 * 2
‘3 'rg_.l'[G'd*‘iJ#Cz-r CK/JJJ
= Joal® Ao AL 3"’ ”e,« AL g g*J
* #L(u'a,(i‘l‘ 7 3 3“)"@,..’7“ J.J 71‘)3 3d>]}

These can be grouped into the Einstein tensor, a
cosmological term, and the stress energy tensors for the

gauge field and the scalar field respectively.

5L
—:6 = ‘g‘r { Gg‘ + C..B - Tet - Tos }

3 Jau.an gCalar

Next we will consider the gauge flields.
ac_§d - ac Ve
g 34 3G 6 (ALAL) = -algT gus g3 HAL AL
¥e want the variation here to be in terms of SA*.
‘S(ﬁf/:dj*i K2 c.Ao')’(sg[c)JJ + %Cfllq J
A =
(sag),, (5A7)
This will give us:
- - ac_bd A= A - o« ac bJ
2'{('/—3-;T 3-1,43 d /q.q, Sﬁ[c ),}J (v/:-:r 7.94'4..53 d )}y Sﬁf},
3ot Gus §V GRS C AL A} ]
If Mab is an antisymmetric tensor, then since any
- ac_bd _
tensor N = N(cd)+NLcd]‘ we can get Wachdg =4
ac bd
Mabﬁp

need to use the antisymmetry brackets on ¢ and d.

Because A;b is antisymmetric, we won't

The first term is a total divergence and, by reasoning
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similar to that given earlier, may be deleted in the
following.

This leaves:

RS [V P VP PR LR N

If sources were present, these would appear in the
field equations as a group-space-time source density

vector {2.
S L / [
Taz - = i g

The scalar field equations will come from:
',.-3;’. C:; 1 S(gd/d) - r-_-"g;r n:b /qf: ?At b 5(3‘/63
“dsr #5“6 S(mz Le b + 3 g 3‘/%6)
So that we can get everythlng in terms of é(gﬂd)'
g 53 = - 37734 §(q,)
b) /:'E;r Il-;m) 9“ (Lg) (34-'3) - /'_g-”:.—(:sz)(L'3>,u Lg:a]:‘ g‘b
'S ab o,
- xmm 3 ‘/~’*a>w-a 4 8900+ {2, 5" )e 97 55,0 1.4
x.(mz) 8 ('z"a)d-g J’,g‘sgd/ﬂ
c) ’(;E'?“[“? de§ags * 95 9ue0 ]
sl i il nF PV bt it PR B 3" < (379 };:‘:’-;d
+ 15 9 0an i L g0 ¢ 5B g5 Sa-ph
b b aal S RO S I
Again, the total divergence terms won't contribute to the

field equations, so we have:

‘i;%ﬂ = Faa il 94°(¥ §x1, 3“‘3 - Ty (gl §7Y - ;'Lf_d/f“-)jsb

~[5C5Ch 9249 ]- [ﬁ..s/luj; g 7
-5 5% an 5092001 + L 9% gl 9% 1 3

There was considerable change in the form of the
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scalar field terms of the Lagrangian under the conformal
transformations, while the form of the gauge fields remains
essentially the same. For this reason we will use the
gauge field equations in this paper to investigate the
scalar field-gauge field interactions.

Also, although conformal transformations have been

8

used in scalar-tensor theories~, this appears to be its

first use in connection with fibre bundle methods to avoid
9

some scalar-tensor problems’ caused by the scalar term [g

in the original Lagrangian density I-1.

8See, for instance, J. O'Hanlon and B. C. J. Tupper,
Nuovo Cimento 14B, 190 (1973) and 17B, 1 (1973)

9

See P. G. Bergmann, Int. Journ. Theor. Phys. 1, 25
(1968)



II.
U(1) AND THE OPTICAL NETRIC

Beginning with this section, we will concentrate on
the gauge flelds and how they may be influenced by the
scalar fields.

In order to compare our field equations with those of
Ehlers3 and of Gordonu, we will choose the group U(1),
which 1s one-dimensional and whose metric is just a scalar

c .
¢ = 31J° from section one.

g. Here ¢
bd _ <

Fga (g A 3" = g @
Now, let's raise the indices on the A and then make it a
density by bringing the J-gST inside the parenthesis.

b o .
(jA-).L,:V'gn"':—s'

In Gordon's paper we find the standard electromagnetic

field equations for fields in matter:

a) ‘j'--*JAL"':;,.‘j‘ ]
— ok
b) /.',",. W« (V-gsr H*") = st
c) # uk = e Fie wk
d) ux"}h "u/Fm *“FZJ /“'(”' J/t"u Her W, H:.J

where the Fij correspond to the E and B fields and the Hij
correspond to the D and H fields, and the ui is the
four-velocity: ui = dxi Y=ds2,

The second equations we can rewrite with densities:

RE et
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so that we get:
’ . .
b*) %& ( ﬁ “) -9
Multiplying the fourth equation by ui. taking into
consideration the third equation, and noting that uiui = -1,
we gett
-/k' r u] F;Lu‘ —ukf.tu:.f"{-'?k* l(z;'/:‘u-‘ - th‘;‘u‘)}
or, by rearrainging:
K - .k
e) '“'H‘J = F‘l + (c,«.-:) (u.‘F;ku —qu-mu)
Let's redefine our metric in terms of € Mo and the

four-velocity ul as follows:

75’!2 g‘&-(ﬁ/u"‘l) ‘u.‘u.k
4
Tt g (1)

given one, we can get the other from the requirement

7”@;' S;. The index of refraction n for the medium is
equal to ﬁ?_i so that we can substitute n2into this new
metric, called the "optical" metric. Equation (e) can be
rewritten so that the indices of H are raised and both
sides are multiplied by =85 in preparation for use in the
field equation (b).

e') AV e fgn L5797 g v u-n gt Bt -l g B k) |
Because of the antisymmetry of F, we can add the zero term
ij k1l

(9u-1)2u u'u"uE, to (e') without changing the value of the

right hand side while arriving at J-gST7ik7Jlel.
If we consider the special case u1=u2=u3=0. we get:

- - 1
-7 = det(7ij) = det(gij + (1 “*)uouo).
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That i3, .
foor (1= Zwse g,
dat : .

d 20 T das
Evaluating the determinant of the matrix gives:
/ ')
=7 e =95 = (I=52) fur § Hene
=G g g

or

_dar
Ep
Putting this together with (e') gives us:
td- _é_ - ke ;/
A ,//‘ V-v 27" Fuy
Returning now to (b'):
9 ¢ ? . 7 K 4
3—;7(;5 i) = 5—;/(/5//.'.}-7 H’)=;—;:(;/;‘-_\F—‘r—r"7’ f;‘,)
= Ve V7 st

b 4K -3

Following Gordon's convention, indices raised by the
optical metric will be indicated in the next equation by
parenthesis around the indices. Also, this raised F will
be combined with ¥7 to give a tensor density.

527(\65‘ ]F'qu{) a v@: S st

If we identify the A'Y in our field equation with this
3:’061 then it would seem we should identify our scalar
field g, the group metric, WithJé%: This would make g, in
essence, nﬁu. For those cases where/i is not a function of
position, g would be a multiple of n, and where € is not a
function of position, g would be a multiple of 1/n. Under

this identification g is related to the relative speed of

the propogation of the gauge field. Although this



15

technique won't necessarily give us a weak or strong force
model, perhaps by progrescively slowing down the propogation
of the gauge flelds, the influence of these fields would be
shortened in a posltion-dependent index-of-refraction model.

Let's go to an even simpler model by looking at the
static case (without the optical metric) in a flat space.
Here the source free electrostatic field equation for the
electric potential is:

V(eVg) =~ 0.

Qur field equations in the static case and flat sgace

develops as follows.

(4] =g gad) =[4"1lAu]ls]

where[ ] indicates the matrix of the quantity inside.

Thus, 0 | V¢ ]
Al L o (2,4,-3,4) (34, %4
Aul= 2 Vo | 3, o (332 =% 43)
L '-B 3, o i
using the definition Bi = CijkajAk (1, j+k run from 1+3 and
£ijk is the Levi-Civeta tensor), and Ay = .

Since the forces due to B in the electrostatic case
are zero, we'll drop the B's from Aab' We get then:

0 Y&
abl] _ 1
1] - £,

O

and (gAab)=b becomes:

~aVe(3Vre) =0
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Here we would ldentify g with a multiple of e, +#ith
M constant, £ becomes a multiple of n?, so that g would
again be identified with a function of the index of
refraction.

This section has shown us that in the one dimensional
case our scalar field appears analagous to a function of
the index of refraction, and in perhaps the simplest case,
the scalar field appears analagous to the permitivity; so
the question of whether or not g can shorten the range of
the gauge field will become, for thre next two sections, the
simpler question of whether or not the permitivity can
shorten the range of the electrostatic potential.

First, let's look at a classic example of an
electrostatic potential with shortened range: the Yukawa
type 7=zl€;T Although this is usually derived from arplying
static and spherical symmetry conditions to (a- 5?‘°(plus
requiring that ¢ vanish at infinity), we can at least plug
this potential into our field eguations and see what the
corresponding & would need to be.

The equation

Vele vp)aevip + (ve)e(vg) = O

becomes
1

c-;,r—;f7+( )<%—‘7’)=0
From this we get:
(-2-%)+ Fe =0

and then:



1?7

e-(r

£ - £
° ar+1

Probably the best reason for going on to other
models is that this ¢ must become infinite for large r.
This ls like assuming that the default value of & is

infinite and that our scalar fleld scources must then pull

€ down somehow to finite values. In the next section, this

type of problem is even more dramatic.



III.
1-DIMENSIONAL HODEL

A relatively simple model from electrostatics is two
charges, one of which is at the center of a sphere with a
permitivity different from the rest of the universe. (The
effect of a second sphere, centered at the other charge,

will be discussed later.)

The sphere K (kiigel) with z
radius k and permitivity € is E
centered at the origin. A charge i Q‘T‘ﬁ_ é
Q, is at the origin, and on the | SLV f,
positive z-axis, a distance { from i‘F |
the origin, is the second charge Qz.f (;j7§\~ JE
The distance from Q¢ to an arbitrary' S
i X K

point p will be denoted r, and the

distance from Q2 to the same point

P will be denoted r,. The angle 6 is that between the
positive z-axis and the line from the origin to p. The
default value of the permitivity is €o°

Although the fields have Been worked out in several

classic téxtslq the methods will be important for our next

model,

10See, for instance, Julius Adams Stratton, Electro-
magnetic Theory, (New York, McGraw-Hill, 1941), p20&.

18
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In source free regions where the permitivity is
constant, the field equation is:

I -1 -eV'p =0

In spherical polar coordinates, the solutions may be

written in terms of Legendre's polynomials. Making the
usual seperation of radial and angular parts, we will look
at the whole equation for th, then at the radial part, and
finally at the angular solutions. First: f9=R(r)Y(9.7).
L2 vy = fncl®e g 5l s o] - mim Fpiene o

From this we get:

13 iR 1r ? . 2 - 2 -
T-3 golnale-ylas SGE$50) e 5071 =~
The radial equation:

I -k L (r &ZRY) - xR

r

]
(]

will have soluticns which are regular at 9= 0, J=m,
where Y will have its singularities, if = = n(n+1) with n
a real integer. We can write this solution as:
-5 R(r) = anrn + bn/rn+1.

Next, letting Y(#.f) = X(J)W(), and using x = cos’,
we get:

19 _
-6 Wﬁﬁw“ A

and
Ioa y 2 fed =
II-7 (K.-f- Y s [(l-x) % XJ) a=-2*) = A
By requiring that W(p+2w) = W(f). and since

tiX#is the solution to equation 6, we find

W = (constant) e
that (X must be a real integer m. Because of the axial

Symmetry of our model, we have m = 0, The equation for the



$ function becormes,
I -3 LY EX] o wm-x =0,

The solutions of this equation are Legendre functions of
the first and second kind. However, only Pn' the Legendre
functions of the first kind, are finite at x = 1,

The first part of the solutions of v3r may be written,

for this model:

00 n b
m-9 Zolo (aur™e =2,) P (wnb)
He will want @ to be finite for r—= and regular around and
through r = 0. This implies that outside of K, the

n

coeffiecients of the r will be zero, and that inside of X,

-n-1 will be zero.

the cceificients of the r
Thus far, we haven't considered the effect of the two
sources. Let's begin by considering a single point source
and spherically symmetric permitivity. W#e'll go out a
distance r and integrate -eVEoz/a, the charge density, over
the volume within r. This gives us the charge Q at the
center, and by Stoke's theorem we can transform the
integral of -év? over a sphere to an integral over a
spherical surface of radius r.
m-10 Q = gz-av*wavéj;sz-w,c)-@- B e

This equation gives us the familiar potential for a point

charge:
Q
Z-11 P = imer

The potential inside of K can now be written as:

G, 0 n
II-12 @ = - Z a«,r ,’-3(;,,_,5’)

4= I €& azo




and the potential outside of K,

Q e 6.,
L-13 #0 = dmen * Tree o T(eon d).

Depending on whether r is greater or less than ¢, l/r2
can be expressed as one of two series of Legendre poly-

nomials. From the equation
] {

mm-th [y T s et
we get:
{
H-15 rv1e C3/ed =23
o-15° !

SV e (r/2Y = 2Lr/¢d%
where x = cos ¥,

For r greater (less) than §{ the expression III-15 (-15")

contains the generating function for Legendre Polynomials:
! co

M-16 /7+t1—5~/t‘x = Zn-o ’th(&ovzg), /,t/fl.

This rewriting of l/r2 will help us to use the
boundary conditions at 3K to evaluate the coefficients a,

and bn‘ Those conditons are:

II-17 P. = Fo at r = k,
II-18 g, -32: . = éog-; [ at r = k.

The first condition is just the continuity of the
potential. The second condition can be seen from
integrating -V+(¢Vgp) over the volume of a small "pillbox"
at the boundary between two dielectrics. Half of the
pillbox is in one of the dielectrics, half is in the other,
and the flatsides are parallel to the boundary surface.

The pillbox is to be thin enough so that the area of the

edge is negligible relative to the area of the sides.
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From the field equation, this
integral gives the charge enclosed,
which is zero, and by applying
Stokes Theorem, we find that this
is equal to the area of the sides

times their respective normals

dotted with (-eth). where the
appropriate permitivity and potential is used. The equa-
tion is:
II-19 Al e(-evg)le dAldel-c 75 )] =o0
= Al A - (CeTp) - A(-67¢)].
From this we get:

II-20 SNV« € heVa

at the btoundary.

Applying I1II-17, and noting that r = k is less than ¢,

' - - - b,
Ir-21 e [ AR D) el B )

£.2 E,(u.f;)[_ﬁr_ XL b
"t‘. (I" k-.‘

= Q o -
= m - }:"_o a,k P, (cow 9).

Applying III-18':
m-22 3 { _:'om,..p)[_‘b- & s-_u] }

Yme, (" k"

- e f__ra,_ F L7 ma k"“'a(my)]
) Yrc e k* "

We next identify the coefficients of the Legendre

polynomials, beginning with n = 0, thenn 2 1,
Q. b Q.

IITI-2 Tme, T ¥ kR T gmer * %o
III-24 ce, 2w - S
. ™ R,

From II1I-24 we find that b, = Ql/uneo and this gives



us a_ = (Q,/lbme ¢)+(Q /unk)(l - 1). Por n 2 1 we have:
o] 2 o} 1 €, €3
III-25 Qy k™, ba 4 o, k"
"f?[“. gn.l h‘.‘
III‘26 A O\- k-"-l —_— {n ~) bn 6, = na, b’"-,e
o e {nvl k‘no:, H

Treating this as two equations with two unknowns we find:

I11-27 a, PR
X = rel
T f nc, + (meide,
III-28 b _ 8_2_._ klnl €, -€, n
n e 5"” €, ne +n=)E,

Let's find the forces now on Qs Qo and K, beginning
with Ql'

Using r = 0, we find that the field at the origin is,
neglecting the field of Qqs .
I1I-29 E 2a 3

H $* €, + &,
This times Q would seem to be the force on particle one.

But when we look at the force on Q2 we find a non-symmetry.
Finding the field at the position of Q neglecting its
self-field, and multiplying by Q!

111-30 F a0 Qie-eyzi 20, (=) k5

=
2 Hw e (" Hme(er2e,)(? '4,,,’(3_4‘,3‘.) 4 .

The force on K is that on a dielectric sphere near a point

charge, which turns out to be the kn/'§n+2

terms in III-30
and can not solve the problem of non-symmetry.
A somewhat more grueling way to find the forces

involved is to first find the field energy and then take



24

the negative of the derivative with respect to the sepera-

tion {. Through the octopole termi:

a Q. 3t ¢ 2b b wh ]

III-131 Ve = r[-q;-;:—s;‘r;q:".*,,'e.--;;:*ar,, 3
AL . Q 2 _t b. ’ b / _‘u ’

B F )R s A AN AR

-

a

-~

7
Q,
111_32 'Vﬂ = ;[;—;?'—;, - a,n -:La‘va - Ja,rﬂT’_‘]
' . / k PO
+§:("""'l9)[4."2" Q;"’PA‘*‘“J"?}

3
acos?¥

The field energy density is %(-Vf)-(-Vp). which must

with P; = Pn(cos3).
be integrated over three regions when we consider that the
region outside of K must be broken up into k < r < { and
§ < r in order to deal with 1/r,.
Beginning with r < k, let's let U_ denote the field

energy inside K and Ul- the self-field energy of Q, within

K. Then:
€. (& - A T
111-33 U = Z—L".lﬂiwgo'rdﬁdy 2[74::_;’-‘—&'?' ~larR-3a,r ?3]

- g [ar 2+ aart B oy ] "
In convertiﬁg from ¥ to cos/ we find
foA(mJ)a;y/& = /_:/A(c.o-vud> d (o)

so we'll use the simpler notation of x = cos,

The radial portion of U_ will be:
III-34 U, r vze,[‘a"—;“f‘/i]»*- -{-“3_:-_,’-_;2-* "“"‘84'—/?" ]

The angular portion requires rewriting terms of the
kind (l-xz)PﬁP' with PlPk expressions.

The following table will be useful for evaluating the

angular parts of the energy in the other regions.



TABLE 1
P: =0
(l-xz)Pi(x) 2 %‘Po'Pz) P} = F,
2.0, o
(1-x )Pz(x) ] 3(P1-P3) PZ = 3?1
2\ 0. 1 V- oep .
(1-x )P3(x).~7%Pz-Pu) Py = 5P,*P,

‘Using this table we can tabulate the expressions we
will substitute in the angular portion of III-33.
(1-x%)P:Ps = %(POPO-PZPO)
(1-x°)P3P5 = 2(P_P,~P,P,)
(1-x)P{Py = £(5P P,+P P -5P,P,-P,P )
(1-x%)P3Py = %(3P1P1-3P3P1)
(1-x2)PéP5 = %(5P1P2-5P392+P1P0-P3P0)
(1-x2)P5P3==%%5P2P2-5PuPZ+P2PO-PuPO)
Orthogonality will rid us of all but a few of these
terms, so that the angular portion becomes:
2 12k . 24k 2

3
III-359 ms,{zqi @+ TT Mt Y3 A
Combining III-34 and -35 and pluggzing in the

expressions for the an!
.7

III1-36 U = U, +7r€[%¥f“f+ %5;;‘;' %f‘“;]

The energy U, outside of K will include the energy of
the self-field of QZ. This expression for the self-energy
of Q, outside of K will be a function of {, but it will be
more convenient to use the total self-energy of Qs in a

uniform space with permitivity €, minus the self-energy of



Q, within a sphere of radius k, positioned like K is with
respect to Qz' and with a peraltivity €0 If we denote the
self-energy of Q, outside of K by UZ+' the "total self--
energy"” mentioned by UZ' and the self-energy within r = k
with € by U, , then
111-37 L(Lf - 2’{2_ - Z’LZ_

Before breaking U, down according to whether r is

greater or less than §, the equation for U, is:

- i
- £ 28 ke 2 L 4G b 2
I1I- 28 U = 273! f. .[,r'd" Jx [ A O TS Yoo, P n e n
A ]
o Q. b_ 2 [ ‘ﬂl _b‘ 2 1 7% kLN
T ime, MR -4«'.r‘p'2—57‘."r-p'2 « 7 RA
1Lt [ 23y b o022 2G, b ‘3L
RALAN.2 By — - = = — 22 o pPa
M [FR4 ] ORY 1‘)[1-"4. re [P n ’411, P

Y. 26 _, b b P
ediibopra L b oap 2 L 22 20p
e, » T

? L 3 b

L d -
fbomige L 2hh pepe b P,'P']} - U, -2(2 + U,

The ternm U1+is the self-energy of < outside of K and comes
from the bg term in the radial gart of U,. The bnbm terms
#ill not be affected by r < §, r >¢{, since they do not
involve 1/r2. and can be evaluated seperztely. To the

radial portion they contribute:

- % 16} wby
111-33 ””-f'f.""”*{:é‘ AR e AR TR n7J
5° 12 by :‘L‘":.él

and to the angular portion:

-4 ./" g AR TR R N - LY P Y
€, x "’d“l‘,‘.(lu‘) ,-7.3 r et 2R v%e LA MY Y r7 A *’.r (]
v b ug 4r 24 b
-vrs-[',—;,"o;j’_zll.;’—;:,’

Although dependent on Q, and §, III-39 and =40 represent the
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gself-energy of X for r > k. The next parts to be evaluated,
then, are those involving the interactions of the
self-field of Qs and the self-field of K induced by Q,.

The radial portions of this are:

ve b 1 6Q. 4, 2 . raQ b, 3.° o}
= S1a b L 68 4 2 -8 4 22
M_l. f j ‘J"![ Yo, v’ ¢ "? e, ¢° ‘) F: Tree, s “ [
& ™o, 3k, 34
gLt [pefe
and
H
- ‘re ra, 4 re . ae, b 2
e N L - RS i =

The interaction between the self-fields of C‘l and QZ

is contained in the radial portion in the tera:

tor” a2 be 3
I1I-43 e, | fs Fdedr Tob OB
G, b,
§
The angular portions are:
- ’ 2 ¢ > P - ’
III-44 e, [ f Jrdx :-z):;;;,- ‘ e 7-"5-’1";.7 A ]I... = 7,
S, ¥ho12b, _ 2446
- is;"’:p 7§"}
and
- o Q b
ITI-4 —ru,f_,f‘a-a.#:.[;:g.ft.::?'-"_'—:-(5&.1:)][-;7’.(;3-2)

The remaining ¢ dependent term to be evaluated is:

HIS e Lo ([F 55 S5

_t t= x1) ' - f’P"‘_

( b _Fr ?‘ ]]ﬁv- “
7

47“ [4{* IC ‘.,—L&.,;r

Bringing together II1-36, -39, -40, =41, =42, -43, -44,



and -45, and using III-28 for the bn' we find, up to the
quadropole term,
II1I-47 U= U, + U_

= u, + u - u

s |-
. Q. 0,
‘-1":6.

{____ (e o0, ) 5e, -2, \] _53 f:_ -,)(Jc.‘-"r j
-mc. GG rae) 1 g0 |5 -3¢ J
0y

_os ¢k, Kk
Hrce, £(1§~ 5—;0}
= uz 1 u,

. Q. Ga
“Mtcﬁ'
ot

{ EO—AAL + é.-el )
*1-:-( Aiv e, ~2€. ¢* \ze - 2e,

By taking the negative of the derivative of this with

-

s

respect to { we get the force between QZ and {K.Ql]x

) P
I1I-48 FeoEon e [ Y s

qrwe,§ are e,

This agrees with the force c¢cn Q, found earlier. Xore
importantly, it agrees with a requirement in our model
that K be tied to Q;. By taking the derivative with
respect to { we have effectively tied the motion of K to
the motion of Qys and if K is to represent a scalar-field
produced somehow by the particle Ql then K must move when
Q, does, The introduction of K has not affected the 1/g‘2
part of the force, though, which was something we had been
looking for in order to shorten the range.

The introduction of a second sthere KZ around Q, will
change the force, but only in terms of the interaction of

K, with Qi and K with K;. For ¢ large with respect to ky

and k2' the interaction between Kz and Q1 would essentially
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be like that between K; and Q,. To check the magnitude of

the interaction between K.and Kz. let's first find the

1
effective dipole induced on 5y by QZ’ The force on Q2 due

to a dipole at the origin and aligned with Q, is

. . Q1 2Lp
ILI‘-L‘-Q F = e <, gj

implying, from III-48;
ax k(e =€)

III-50 fo’ a - gz (6,'*-'1.6'.)
To the lowest order, the force between Py and P (the

sphere-sphere force) will be:
R - mEe) - - BT
with the assumption here that Ky and KZ are essentially the
same.

Since the dipole part of K, can induce a dipole part
of Kz which can interact with Ql we need the dipole p'
induced on a K by a dipole p aligned toward X and at a
distance ¢ from the center. Starting with p = qd, two

charges q and -q a distance d apart, the field outside of K

7. mRewd) L

is1 R r<d
o ) - —
?* - "7!'6. o Hx s e ng, (et Eznu_{.c‘?w[mlg)
“Z pee nF, (web) 5:’.
orre ¢

¢ am——

——— - . r————

The part of this which would be due to the dipole induced

by p is

10’ _ réeed | 1e? 9
e €, rt 4T e, € +2.€, r.xgj coo

so that
/ = 122}0 (eo—él)
* T3 €.+ e,

The force that pé induced by p, exerts on Q is
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Y » \Y
o] -~ L} e.-6, \_' Qe & (ﬂg'ex) 0. G :5 (€, 0 R
Fe o d, ?('ST PR Yo $'(¢.r 26 T e, 7 (6 26

These sphere-sphere interactions and induced-induced
dipole interactions are weaker than even the quadropole
term of the sphere-charge interaction.

| The introduction of the second sphere, then, while
improving the model conceptually, because it makes both
particles act as sources of scalar fields, does not affect
the 1/;'2 portionof the force and therefore does not
significantly improve the model.

At this point, if we want the 1/'g2 portion of the
force to be zero because of €, when § is larger than k1+k2,
then €y nmust jump to infinity at the boundary. 3y using
a series of stheres we might have been able to get the
type of profile needed for the scalar fields in more
complex models, but the need for an infinite value in the
permitivity in order to shorten the range of the gauge
fields seems inherent with the one-dimensional groups.

Still, this particular mocdel of point sources and
spherical discontinuities will prove useful in the next
section where we consider the two-dimensional Abelian
group, and, because of our exercise with the model in this
section, we will be ready to face the gymnastics to come

in the next section.



Iv.
2-DIMENSICONAL »ODEL

Before we can develop the model of two point sources
and a sphere for the case of the two-dimensional Abelian
gauge group, we need to look at the field itself. The

gauge fleld equations in the Abelian case are:

< ac_bd _ =C
-1 (g, A 08 8 )q = %

since the structure constants are zero. If we look at the
static case with the minkowskian metric, signature -+++,

this becomes:

-_— O

Iv-2 ‘iV'(j.WVf"J' J g
The vector potentials are zero since all possible sources
are stationary. 1In dealing with sources here, the source
density will be denoted by /s =2 gf.

In order to simplify the notation: g without letter
subscripts will denote the group metric operating on the
group part of what follows it. (There may be a +,- or 1,2
subscript used to indicate position rather than components.)
The determinant of g will be denoted by «. The potential
will be treated like a two-dimensional vector in the group
space, and the sources will be treated likewise. That is:
Iv-3 # = (5)

m o a-(g)

Since, with rare exception, the greek letter subscripts

31
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won't be used to indicate group components for awhile, the
components of g for this two-dimensional Abelian case will
be given as
IV-9 - 4
[3"/’] NES

V4
Applying this notation we see, for those regions where g is
constant,

IV-6 7? <,

“Vip - _(v’;a) ) 3-l(‘J sz) o

Going to spherical coordinates, we can write part of

the solution of ¢ as

IV-7

— .0 > 5"
jj” = Z_n-O(an'ﬁ * ::: ) /?.(cmxg)

in almost the same way as in the last section (pages 18,
19), except that we define the a, and bn as two-component
group vectors:

IV-8 Cw\ fa
o a"=(¢/~) é":(;")

and the homogeneous solution of 6 is

v-7° o =2 [(g7a) "+ (576) T ] R (e 8)

If we have a source Q at the origin, the solution for
the potential is, using essentially the same methods as in
the last section, ;' Q
-9 P = Ymr
being careful only <o remember that these are matrices and

not scalars. The force then between Q at the center and
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another charge P at a distance r is

L2 sy, L ARR (Rl s RE) - w (RG)
J < G

We will also need a boundary condition corresponding
to III-20. Let's begin with two regions, characterised by
g, and g_. and the boundary between them. The field
equation is

IV-10 —v-(g7V9) - 0

Remember that g is an nxn
e e e 4 7;_

matrix and Y is a column

matrix with entries vg',

§=1,...,n, where n is the

dimension of the Abelian

Qg
'

group. Now let's consider a

small pill box whose sides are parallel to the boundary,

whose curved edge is very small compared to the area A of

the sides, and wnich is placed at the boundary so that one

side is in the g, region and the other side is in the g_

region., If we integrate -Y+(sVs) over this volume, we'll

get zero. By Stoke's theorem:

Iv-11 [ =vCgvp)dv = - [ 37p dZ
pillbox surface

This surface integral can be written as

Iv-12 §. VR A+ g VB =R A » (negligiele)

When we take into consideration that this is equal to zero,

and that ﬁ+ = -ﬁ_. then we get the boundary conditions

IvV-13 b g ve 4 9.V
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When expanded, IV-13 i5 equivalent, in our two-dimensional

case, to the two equations:
IV-173°
IV-13"

,:-(«"V%"f‘}"_ Vy_\‘.> - »:-(»-«_Vu/'_.. 4 V;,‘)_)

AN

Ae(nVm e Avet) - Ae(zvg - @ va’)
The additional conditions we will want & to satisfy

for our model are:

a)

b)

c)

¢ is continuous everywhere except possibly at the

sources,

yyis 2zero at infinity,

neglecting the source at the origin, ¢ is finite

through the origin.

Our model is labeled by:

P
Q

o oe ;>

l\;"l

the
the
the
the
the
the

the

point source at the origin

point source at a distance { along the z-axis
spnere (kligel) of radius k around P

group metric value outside of K

group metric value inside of K

position vector from P

position vector from Q
z

QJ -
n

b
-~
~
O
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By condition (b) and equations IV-? and -9:
Q - 5

-z ? 9
i n " yre nTe L e n (e )

By condition (c¢) and equations IV-7 and -9:

IV-14

-

4 -
Wol5  gop " gar *Eee a7 R

At r = k we require by condition (a):

IV-16 Ll

and by IV-13:

IV-17 A -32’-; Pe = 2. .327 P

Since k < {, we will replace l/r2 at r = k by
‘(“

Iv-18 S = - =
—————— /; - Z veao P.. (C"" 3;) g-wu

Using IV-16 on =14 and =15 we get

r - . -t
_ ~f9l0 k 3. b.
IV"IQ A‘.“-al e gn—l + ;("” Pn \,C"—-’ l)’)
P - - - K™ P o
- -——’fﬂf-'l -* L,q-_y g_ C"—v ” {‘ -

Using IV-17

; Wmes
Lad Q » /2 (nol)b- ‘]
- R R -
IV 20 (2] Dg,/ﬂ_ {nu R.'”L_}
P - L o
= - m—i e Ln-: » c‘n" ‘n (C"_' "C/\'

By equating the coefficients of the Legendre polynomials

we get
(for n = 0)
- Q - ba -t 7: -t
Iv-zl .?o J_/_-,-‘-—E - 3; T - ‘9... ‘/"t‘l -~ j_ a..
IV-22 - I N
(for n > 0)
-~ {Q k" b, - »
M 7 [qu- {nei + k_ml] = ;—' % ke
Iv-24 QGnk™ b

‘7/"’!: ¢nol —-F{
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From IV-22 we find

Iv-25 b o~ o
Combining this with 1IV-21 gives

- Q gy P
Iv-26 a, = 7-[9. img T (e TF- )m]

The equations for n =21 may be more easily dealt with

when rewritten

Iv-23" e q BT =g b = Z" _Q kT

"/’R' S-'no-l

IV-24" ma k7 s (e b, = Qzil
E— - " Yo ¢

Multiplying IV-23*' by g,, dividing IV-24' by (n+l),
and adding the two will give us the following equation for
a s

- Q 271«1\
N (g e d) e o e (AE)

c
Solving for a, = <}€> gives us
n

Lv_-z_s Cr+l)(Amn i)
a.~ C e i, + R IDYC AN oL =27 )T
n . -
P L % N “
” _ "I’It gnv-l
A7 = 7;./d- °‘4-/3- - BT _-;,"Ll-

Individually then

IV-29 ¢, = ed(2ned[Q(Aem=2n + ZEM) + Oy (0% =% )]
- ;""[(,.,,,)‘/u‘_rﬂ}u_ tnlmen(d,p v B =2y, 7)]

IV=30 o = £2enN(Bne)[Q (87 -%A)+ O (b ~%n7 + ZE7)T
n wel
Yre § [(m\l)"/(‘v")(_ +n(re) (x4 G = A% )7

Multiplying IV-23' by g_, dividing IV-24' by n, and

adding gives us
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L X X

. ot - . a k&
IV-31 6, = (9.2 - (B 1) ’(-;.3» f 2) 5% T
{ nt [; s (2 7]}
ClmeYu fn,,,,.(.,.,@'/a /9. -2z ) LnR A AL - 77-(:;);:
S (=,
N /7 %A ..4-77 /a_ Y (™
- _r}’lwvl

L(”,J/‘.fw/ on(uq(-v /[34 =22,731
{F(/‘- V- R IENCWTPILA L B EAD (e - z-)]} [GI )
(Ameld (8,7, =7,7.) S ZR KA LI CID ARLY RS XD -

Individually then

IV-32 £ = AL QIR B A AN D VA TR Y RN N A YRR IR S |

Y yx $ " Lemeryut, w0k b (e (oA e = A v N D

I _22 o a =37l [(aeei(Av -7 3] 0 Qulwim e 22 fme o, e, ¥ T ]
dw

! -~
o (7 [1-.':):14, ¢ n:,‘_ AT D IR R A 4 p]

To find the force between Q and [F,~j let's use the
field energy method again. First, we'll need the
stress-energy tensor for the gauge fields.

3 cd « /_,J L4 P4 ce ¢/lf
Iv- 4 7:& = ;4’3 {L/; 'Z):.x'//v‘; - ,?.:.6 /4‘:",/40),, ; i j

In our case, the energy density is

- of / ' o« : ar o
W35 T, =g, [ 14 0ptve®- 52 Vptered) = 3 5., VRTVP
The energy of the fields will be the integral of this over

all space. The components of - Ve are

IV-36 s =X Pled) gl [Efrr ) tmen by for k<r«< ¢
? "nap 5 V'r gm/ ”

ne2

=Z.~E.G~")i:'[§;i: + b]—"—? for r > ¢

PPN ned



IV-3? L2 4 L2 s pi,fas 8] fork <r - &
v3P e ~ ~ et - d* [wm ;u“ -
frommmy -

V38 -f2 =g [ B - 27 na i Rlems)]

IV._ A_L_ . V== ’ - ve
'__3'2-‘}7"‘323?9-‘,. Z,E‘?_Q"V‘

As was done last time, the terms through n = 3 will be
carried through the process of finding the energy, which

will then be expressed in terms througnh n = 2.

The radial part for ¥ < r <« § is:

. I4 . ! § z r
IV-40 [,“/‘;ﬂj’ %.ﬁ,f—;?;]ra‘ra’x - '.'r(?'f-l f r‘ov-a!z( "’T,Z."’ 47
+E$£?:I(€7s‘-+%s" ”:: 41;)J*P[3*r’i‘ ;:5(’2 ?:(r" ‘:?)]

B[R - 328) £ (4 - 28)] ]

where g(A,B) = 555A‘B’ (brackets are used when A or 3
contain parenthesis).

If g is the metric for a regicn, A and B are vectors
in this region, and given a basis S for the vector space,
the inner product can be determined from matrices.
le'aTlesle 3]s
(ARl Blalsle LB
(A1Ie-134(81
g 1(a,B)

1}

g(g'lA.g'lB)

1]
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where the brackets indicate the matrix representation of

the quantity with repect to the basis S
Applying this

Iv-bor f’n
- Iy

to IV-4O we get
frogrn)oen = [Lan S gl )
&f A rar —4.(6 b)'.— 7 ( "‘)*'

- Lrlﬁra’r{

5S¢ ‘4. (6 G)' J j‘u(l’--a) "'7:_ 3. (:' }

ﬂ'(g,g)}

e

b -1 __r_:_ " 9:-.
*-/;r-:r-dr?'Co'Q>[("ET —E—;—-}

For r > {, the radial part is

V41 ./-'"‘/;“n';‘_ 52;?" R %ﬁ)r’drdx = va: 2=

+fs_°.2u-dr - 9. (.,,b)o-__”_'j (é *';—r— ;"(J é)j

+£2xr&‘ Ji,ﬁﬁm\ 25:@“*—-ﬂ@ U
T O et
The angular part for k < r < { is
IV-42 ‘ff_g dr 37(4,0 3;4 _ﬁ%& - %%?;.}
+ j_ Rreror |1 [ 2 g0 o ACDRECPRODN
+ 4;Q"’J'[ ;+(6,,6, + — ;?(6,.,,34— % ,,,}
For r >3¢

the angular part is
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V-4 - EX SIS ST ¥ o
__—-1 j; ""J" -1<t4 c){lr' ‘.5,-.

o
. J; Tk [0 A 5 @) - B (e ]

. f; 1?:(’"‘[33‘;; 2(5:8)r 2 gla k) - 15 9T (4,6)]

The terms containing g:l(bo.bo) are the part of the
self energy of P which is outside of K. Their sum will be
denoted U(P,#). Likewise, the terms containing g:l(Q.Q)
are the part of the self energy of Q which is outside of
K, and their sum will be denoted by U(Q.,+). This last term,
though, will again be replaced by

u(Q, everywhere, g ) - U(Q,-,g,)
where the first term is the self energy of Q in a space
with uniform metric g, and +he second is the part of the
self energy of Q inside K usirg g, instead of g_.

Putting together IV-40, =41, =42, and -43

IV=-44 2,('_ - Z,((P +3* Z(.(Q) cvcrr;f.ahc:r ;9. o= Uia,-,
f Q.vro/f[*?(c b\v- —5( ,L).,. ;_'J:'/é,b_’_/'lf

[T x5 em)
+£Jf[%s5,(a.é>+_i.§ L(ok)r I g @) ]

The first integral here is the self energy of the induced
field of K outside of K, the second is the interaction
between Q and P, and the third is the interaction between

Q and the induced field of K outside of K.
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Inside, the radial portion is

Iv-Ls f'f‘“: (',‘.L?’-‘- 71'?’-) tdedx - f&.. sie ‘?.'(P' )
-3 o - e - ’ - .

Y3

il

+ / g ()r j (Q ’q> - :";/._’VO_”(&‘ ,QJ'D - 9r“:;}‘ (L?',

and the angular portion is

IV-h6 f f "7 ,w %~ i’_sp_) rlderdx

29

k v )
= f 2w dr {g: r'g_"(a,,q,)+ 3’4 rg (=,.2,) + ,L;-"v ryg. (Cwac‘.-)}

4

which combine to give

Wob? 2« [P el (mRD

S r* 7

1.
N
2
]
R)
Q
Y
'\.;_.\
3]
»
R
G
T
33
S
Qo
)
L
L
,a
+
[¢
hY
[}
"“L
~
f\
I\
te
-
S~

The last part to find before we get the total energy
is U(Q.-.g+). This we can do by integrating the field
energy density of Q over K, using g, instead of g_. Using
P = &k,

-~ / £ 2 - 2y 2 40 2 5.7
Wobd 20(0,- g) = [/ [feroron [0 [P - K- 7]

.o ;

L - N . 57 rt fm
of, [ @i mr e n R AR

5-0 {l’
I . zE” | 3k7
S O (@.@ [s;" +s‘s¢‘ ?s’j

The total field energy, then, is

k , ~! r* ] A
- — 2 3
J:Yvr r ?» (O)Q) ;4 . =L+ v j
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The following is a table evaluating the g(4A.B) terms
in IV-49. The subscripts 1 and 2 represent - and +,
respectively, from the previous notation. In addition,

the following abbreviations are used.

3 ’ » -
M-. = £'h//“._ "’l/'z"‘ LD ’("")‘//"A' - A AR Y /AP,

= - . ~ 7
B. = ['ﬁ(/‘,—/{;’_p{‘ - 4%)—(»1»4)(’/4(,_— a,/.:?‘ L s A
¢="(,..= ["’1"7 - %] (Aner)

- N
[/.?, v, - 9_’,/.’,.7 ( Lrm=yry

A=

e
C,,,EC/_?,ot,-'VLZ - :v-l J
Dozl o » =5 ]

& = o, /.:f.'-:.?/-'?.

54-‘(0'(3) =/-“I—=£Aa" - A QO+ Qx‘J

97(,6) 7w g [APa - n(RarR6) « «.RQ, ]

3:4(@’ b,,) = - n k’mol(/a, 4 S-""[n"'/‘, + (rvrl)’/,g‘ > n(‘nn)(a(,/ﬁ, 7%;:,-2’);7)3)‘1
iQ',Elﬂ'-A”-’y’/gﬂ]‘ Q'ta/:.‘i" —71((3»*'4")*“1 -n ]

e Q2 [-% & o+ o« fB,,j}
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AT R N R e o ot
¢ n(wrl)(‘-“,!, o/;,"o'. - 517'.7‘ )71 )
{G"Ld‘ "w‘ A ’Jnf::n Xy ‘-":,-A]
/ ’ 7
P RO,G L5 A b= (B e a ) e B S ]
‘OO: E/.’J:o'l,,. -.;Z'Z "2-“3" - Ny jﬂ‘]]
g "(a,,Q”J = (”,,)' (:zw.-;)’ (/‘./07{' gl-—:z,[ )7:“’ f(ho[):»u
* "(""')(‘(1/‘”; '/-”.d, -4 7’137‘}.’
. i
{C.’ [/.:{ €l - 273 Ca == jd ]
2¢,¢6. o aC. -7 (c.D.~ A.:') - -‘,/J"C., J
/ 4

C:E,-’:‘.“— Ry, = D, o+ =, Dn‘J}

From this we get

L{ = Z,{( p) + Z((C;‘ «vary .unerc,g’ )

3 i [,d‘o.‘ - 27, 2.C0 -y O ,’__[ or [A8,-3% 2], ca [ 15«
¥ 2'//44\, J “A‘L [-’ ""‘-l r 1(‘:/.4'{.’/"1"(: - :‘71‘{ )J
rf“ T3 ."\l

=% (AB) v 34y 27, a3 anB) 7,[ ¢, A

J

s lr AN e 9ay B e22.G, (38 %A, -7 (A3 +%53) .3, 3B ]

Il/t,[/l‘r‘f/t, + (=8 r/d‘xl-!{'r,_z)]z
el (84,4 - 6% xB =B ] ]* 3 [a‘ LA CY -2 AC, rad']
-5

+ 2.Q, GL{A‘&C —7(4’!ﬂ?f C D),q,‘.ép']¢O"[J,A'-17,&D,¢<,I7_,'J]Z
/..Ll[u. r‘/a.,+2(«,/.5,.:.< _Q—ylv,;>]x J

kb i[ Q-2 v, O.Q, 04.0.']“ _Q__[O,'[ﬂ./‘.—f)’.,d']ao,c\ [58. &
20

+ —

"rs ao/‘s

<% (A +3B) + S 4] & G -5 + 4 B, 7] QLA AL
o Ltu, iy r @2 - 8w, =27, 73]
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~iCr Ag e i, 3] e 20 CISI AR =2 (AU, - 25F)
f[[’f/‘t' ? "b(ﬂ./, '/.1'.4,-21'. % >]‘

-L“BLQJ-CfﬁaxﬁlﬂfonAzl..,n}}]* 1;[££Lﬁ£HL
“

3y BC e, B + 20,6 [BXCy~7ludeCD)ou 32,]
/._[_-%,o‘?/“ vé(-(./d’¢/d‘-(, —20’.7’)]:

e Q)[4 &'~ 27 & D, f:.'D.‘l_-}}
J

(In calculations with numbers, we would try to carry one or

two more orders of magnitude than required for our answer,

and then drop them at the end. The k7/§7 term, therefore,

now goes into Limbo with its predecessor from section three.)
From the field energy we can no# find the force

between Q and {P,K}:

) - 2. . a - L& ¢
iv-50 F o= agu'?zf,'s.rfv S"J"

where fn denotes the coefficient of 1/5n in 49. Now that

we have the form of the force for our model, we can look for
conditions in the model which would make the force zero.

Let's go on then to our concluding section.
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CONCLUSION

As we found in section three, the 1/¢‘ part of the
force is dependent on the medium between the spheres, but
one of our stated goals is to create a model with a 1/¢*
term that vanishes outside K (the kigel or sphere) but
not inside. Borrowing from electrostatics, we'll quantize
gauge field sources, then see what combinations of charges
and metrics cause the 1/¢' term of F to vanish. To
simplify the process, we'll use xl1 and 0 as the source

11

values™ .

First, we'll lzbel the particles predicted ty these

values.
Cfo) Fo]l 1] [11 Fend Toal fadd [-f 0|
o) -1 [ o) [op [#1f {-11 [-1; [+1] |0
-+ - = ‘-.TJ - ...! f! = hnd _"," :’ -
a a o) ° c c d d n

From section four, the 1/3" term is

! i
y-1 o= o f mimge LaTRnGarRe)wRa ]

If we choose g, =[;‘/:‘]= [; ﬁ]. we can set up the following

table of null/non-null forces Fo between the particles.

111f the Q, and Q% chosen magnitudes are not equal, then
y

they will be rélated a constant. The necessary metrics
for the equality and inequality cases, if they exist, will
be rglazed by a group space transformation involving that
constant.

ks
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The position on the table is marked with a 0 if Fo iz null

oy

and left blank otherwise. a”

J* o
d” oloj
aa bbb dd

We see from the chart that c-type particles have
shortened ranges in interacting with other c-types. The
same is true of the d-types.

As to whether or not any combination of a, B, and y
can make all of the pairings null, from V-1 we see that the
force will be null if the numerator is. The conditions

which must te satisfied are listed here.

Interacting Particles Numerator = 0

+ +

aa a

4+ -

aa -C

r

a -Y
-

a o Yy
+ -

a c -yra
* -

ac +y=-0
+ .+

ad -y-a
+ . -

ad ytra
a~a”

a~b" Y
a~b~ -y
a~c* y-a

a~c -y+a
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Interacting Farticles Numerator
a"d" +a
ad” -Y*+a
b B
p'b” -B
pTe” B-Y
bt -B+y
b*a* Bry
b*d~ -B~Y
b7b” B
e’ -B+y
bc” g-v
bd* -B-Y
b~d” E+Y
cte” E-2y*a
cte™ -2+2y-c
cTdT E-a
ctd- -E+a
ce” B-2y+a
cma* -B+a
c-a* B-a
a*td* E+2y+a
a*a- -p=-2y-a
da=a~ Br2y+a

The only numbers for a, 6, and y which make all of

these expressions zero is a=B=y=0, the trivial solution.
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But that violates det(g)#0.

If we look at the c-types by themselves, the
expresgsion to be satisfied is p-2yra=0. For the d-tyres,
the expression is p+2y+a=0. To satisfy both reaquirements,
y must be null, and we get p=-a. To get btoth of the c-types
and d-tyczes to cancel their Fo terms we also need f=c.
Thus, we again get c=f=y=0,

If we choose y=0 and p=-a, allowing Fo to ve zero for
the c¢~tyve and d-type interactions seperately, but drop
the B=a requirement for c-type, d-type interactions, then
we run into the problem that two particies that don't
interact with each other can still interact with a third
particle, e.g. two c-tyre particles and a d-type. This
non-transitivity of the forces becomes a2 cuestionable
alternative to the unacceptable null metric.

Rather than try to hold on to all of the rparticles
that seemed possible, let's just worxz with the c-type
particles and g, =& fﬂ. since either the c-type or the
d-tyre by itself would give us the desired cancellation
of the 1/¢" term because of -9

Now, since we only want to shorten the range of the
l/g1 force, not eliminate it entirely, we should look
within K at what can give us a non-null 1/¢' force inside.
As shown in the figure here,

we'll make ¢ smaller than k,

bringing Q inside K and close
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to F. For this setting the {ields will be given by

I Qa .- - <
S e e £” a,r " P(c~¥), r<k
gi?l e 1,’,‘_’: \a LEZ: (
Lo b"._ P >k
gnfa - Zn-o re " Cm‘y)r r

Ne can now set up our boundary conditions at r = k and

solve for the a and b R

I (.__.,z el'e 28 J2emnr] - o7 {z b .(wy)}
) Neck ane d &
< it wai) ba
522 =9 28 > -‘1_.‘ .5 [ na k _;:ﬁ.‘ ]P(u-SJ ’-.Z.OL——"')" P (eow )
Teay 7 e

Identifying the coefficients of Pn(cose). for n=0:
-t _ !P+G[
[3‘3" ﬂ] 47 R
P+0
° 47T
and for n21:

a, = - ﬁ-’-f-’-}-_—_f—"——[(g.,,,g)glg;' + (27‘11‘3)11-] &

’/qf'\’_

[”3‘3:’ J(nr/)il]" 1”2{’1{@ -

b

Using Pn(l)=1 and cur symmetry, the force on Q is
given by

i b £

The portion of the force due to the presence of the sphere
is gl(Q.-Znaé?'l). and an§n'1 is of the order §2P~1/2n*i
Thus, if {<<k and the 1/¢{" force between Q and P is non-zero,

we can essentially ignore the sphere and treat the interac-
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tion as though our environment is a uniform universe with
E ™ &y

Let's let 8, be a small change from 8o That is

_ {+ 0 5
gl - S -fh/o

where o, o, and § are small displacements from the vacuun
value. The force between Q and P is essentially
S g [ RQ - §(Raar Ra)r mRQ.]
= :FL,:’PG-S(?C; Re)«c BRG]
since /q‘/g:-l and F (from F outside) is null. The energy
is essentially

E = - E—Q—L/-?P,C," S(P.C:.*Ec.) o—d‘?‘Q,J

For the various c-tyre interactions we get the force

values

+ + { " - \

cCc 1 < TET (,«-«-5*0")

t .- 1

(o] Cl - _.’._7.:._;;(—/0-02.5—0')

c e - ;;__;x(/_,_ia'ra->

The self-energy-density for any charge F is
("9 R -1_2' P _ 'I(—TJ -P )
5 ir wTr J 7 qr )'— Z J- dmr: ? gt

- 4

“ 5T [PTRE ]
Since we want a positive self-energy-density, 90-2$+r) must
be negative. As long as this quantity is strictly
negative for r << k, the forces will be repulsive for cte?
and ¢”¢” interactions, and attractive for c'c¢” interactions,

and the self-energy-densities of the Tuu term will be
positive.
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Using the d-types instead of the c-types, the quantity
90+2$*¢) should be negative to insure a positive self-

-energy-density, and the interaction forces,

atq" —;;“’—g-;-(/o#.?..‘ivr)
a*ta —Tvé-fr(-ﬁ-z.s-'c')
d"ada” _‘7_;;_?_1(/0¢25+r)

will then follow the repulsive-attractive pattern of the
c-type particles. So using either the c-type or d-tyge
particles exclusively, we now have a scalar-field,
gauge-field model with a 1/{1 force that vanishes at large
separation, reappears at small separation, and avoids the
non-transitive forces.

3ut, with or without the non-transitive-force problem,
this new model shows that the scalar fields predicted by
the fibre bundle method can themselves produce significant

short range effects for their attendant gauge fields.
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APPENDIX A
THE SYMNMETRY ARGUMENT

This appendix looks at R. Utiyama's 1955 paper which
showed how to start with innerspace symmetries (or
invariances) and come up with gauge-fielde associated with
those symmetries. This segment will, for the most part,
follow the development in Utiyama's paper, with some
notational changes to maintain consistency within this
paper.

Let's begin with a system of fields QA which is
invarient under some transformation group which depends on

parameters c¢', ¢% ..., €°. That is, given a Lagrangian

ux where (1 is

L(QA.Qéa) and its action integral I = £1L d
some arbitrary four-dimensional domain, we start with the
invariance of the action integral under the transformation:
A-1: P—he @
st = The" QP
€d= infinitesimal parameter (x=1,...,n)
QSB = constant coefficient
and this transformation is assumed to be a Lie group
depending on the n parameters €~ with structure constants

f;; defined by [Ta'T ]A - TA C A C

I8 = TucTan = Jochen f«/a yB* A

54
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couple of properties of these structure constants will be
useful in our developments. From [?mf?ﬁ] = -[gg,TNJ we get:
A-2y f‘ﬁ;; = - jldzg

From the Jacobil identity [QN.[Td.Ty]]#[fd.
[z [2,.1,]] = 0 we get

S TR S AAECHE S KNI K SR

Since I is invarient under A-1 and the domain is

[TV'T-(.]] *

arbitrary:
A=l 5L = 2osoh 4+ Zogod .o,
aqQ 2Qy,

vhere the last equality is an identity. This leads to

_ 8L A x.B 3L A » B _
A__jl a—_QA-T,uBc Q"+ 3_—Qé T}LBE Q,m = 0.
m

Since the €/ are independent, their coefficients must each
be null., If we begin with each of these coefficients
being null, we also have sufficient conditions for the
invarience of I under the transformation group G.

Let's see what haprens when we let the ¢ become
functions of position, and require that I also be invarient
under these extended conditions. The transformation laws
becomes
A-1': st = TABE"(X)QB

3fB = c;:stant

e/(x) = infinitesimal arbitrary function.

Now we get an extra term in 5L
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' a 3L A B-)‘ BL b ‘../‘ f)L \A bv/‘
ASli 6L = SHEnQies ¢ TaemlQb et e Sl Qt

The first two terms on the right hand side are the terms
we had in A-5, and that identity must still hold, so 6L

becomes

" . 2L TA B_x
A-o"1 § L A ,uBQ “om
ath

Let's introduce a new field, A'J(x). Jd = 1,...,.M, to try to
get back to §L = 0,
. s [ A A 'J
Our new Lagrangian will be denoted L'(Q QoA ),

and our transformations will be

A _ B_x
A-61 §Q" = T:BQ € (x)
|J = J IK » Ja Va
AT = UkA e”(x) + CTLE

where the U and C are constants to be determined later.
The action integral I' for this new Lagrangian is to be
invariant under A-6.

There are five questions which can now be answered:
1) What kind of field, A(x), is introduced on account of
the invariance? 2) How does A(x) transform under G', the
extended Lie group of transformations which depends on the
functions ¢#(x)? 3) What is the form of the interaction
between the fields A and Q? 4) How can we determine the
new Lagrangian, L'(Q,A), from the original one, L(Q)? 5)
What kind of field equations are allowable for A?

As with A-4 for L(QA.Qfa), for L'(QA.Qfa,A'J) we have



A ¥,
-~

. : [ ] {'9 L]
A-71 5L = ‘LEZ&QA * LITSQéa * -—Ii-J-bA’J aQ
I Q 3Q.a JA°

Using A-6 and the independence of the </ and df;. we get

from A-7:

A-8. aaq:\ /‘BQB ' ffilﬁBQ?a + a‘j—i—ggjxy“ = 0
and

s e

From A-9 we see that If must equal 4n in order to determine

Ja

P must be

uniquely the A'J-dependence of L'. Also, C

nonsingular. Its inverse, C'ng. is defined by:

Jao=lu _ o J -1, Jb _ s b

o e "1/1 IJ
If we define Aa as C aJA » then

M
aLlJ - aLo 3Aa - aL'C-lﬂJ.
' M ' M a

dA aAaaA 3Aa

J

This lets us rewrite A-9 as

e Rt L LY ey T,/:BQB + 2o a0
BQ.a 3Ab aQ.a 3Aa
Notice that this is agf i when we define the function VAQA
2V Q
by a
_ A _ A _ Ba=lu ,0d _ 4A _ A B A
A-10s VQQ Qg ?fBA c aJA = Qy gLBQ Aye

Our new field should only show up in L' through this V;QA.
The transformation property of this Ag is

A ambu o J K =1 oJb, ¥
A-11: SAa = C aJUUKA € (X) + C QJC ye'b
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= O VCRCTIA ) e
- }Jb A, v yy
Svuk(Ab)° * C'n

It turns out that this new function S:EA is casier to deal
with than the U and C functions.

From the requirement L'(QA,Qfa.A;) 3 L”(QA.V;QA) we get

AL aL" aL" B .~
e TR emme—— " N ———— -
3QA aQA 3VQB ( T,«AAa)
Q const a Q const
aL' - aL"
A 2 A
aQ'a V;Q Q const

aL' _ _ aL"
JOEA A

A B -1,
(-T/*BQ ¢ aJ)
Q const

A-8 now becomes

A-12: faL" aL" C ,»# B . faL" A B
[SAl "o g.c TAAAm}TfBQ Y A}TaBQ'm
_ [aL" A B.,-1 J ,.K
{BV &|e88 rijUocKA

m* |Q
= [8L"[hA B aL" A B
[?EF Tt Lv ot T"‘BQ'“‘J
VaQ mY |Q
sy J2L" QBAal [[ T JA¢n _ g8n pA ]f
A n “";‘JB m ame”5h
thQ Q e
=0

Since we want this new Lagrangian to be identical to the
old one when A vanishes, we have L"(QA.VEQA) = L(QA.V%QA)
where Qea in the old Lagrangian is replaced by VQQA.
Because A~5 still holds, the first two terms on the right

hand side of A-12 must combine to give zero. The
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remaining term gives us

A-1 ALY 1 B A a8
— Pty 585 - 815] = 0
1 Vet v
which implies that stn =f" 6", From this we can get
ama 4% "m’

-ty 6vQh = hofal e v Pl ] - mh {0 e

i

+ QP IaneT e €T ]

& B D,~
iy Be (x)[a? - 72.a%A7 ]
A0y @
using f« B = TAD B Qf T p to cancel and collect some

terms.
The next step is to look at the free-field Lagrangian

for A, L, (A ’Aa b) Invariance under A-11 gives us, by

way of
3L a1
—26a- 4 —2=6A = 0
’
aAm I hnn
and the independence of the €9, éfé, and ef;b.
3L . 9L 4 -
;:—(f,/.‘. e’ + e ) + aA b(_f.,/g (A Aae'b) + é'ab)
must be null, and
A-15: ’3L 3L
/‘9 aL ;/] a.b
a.b
A-16t 3L° + 3L° )(i
o ERLE n =
3Am 3An m
-17 2L aL,
A-1 ! o + =0

o
3Am'n aAn m
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A-17 comes from the coefficient of the c:;n. Since
the contraction of a symmotric tensor with an anti-symmetric

is automatically null, we can only say that the symmetric

aL
portion of ;K%—‘ must be null. So if A;'n does show up in
m,n ’
Lo' it must be through the combination:

- & a =3
AED , Yﬂ = 3mAn - anAm .
Thus, from A-16 we get

A-16"': aLo aLo A 20
- a1
AL 3A”
m [n,m]

which implies that A; and A; n appear in L_ only through
’

the particular combination

a L, - a W B, _ LB
A-18: Fon = ACm.n] i}*fm(*“m““n AnAm)

so that we get, looking at the coefficients of €* in 6L, = O,

175 1

v, B k4 ) - y_ VR »
2 3F” {%ﬁ A{m,n] 25"5“‘111&” An ' AnfauAm Anfa.vAm

- Af ”A;’l)} =0

mJuy
3L
1 _ o (e, 10,8,8 _ A5\ p7 ¢S _ g7 ope
-2 aF" {f-c/sA[m.n] - Z(AmAn AnAm)[f/‘qc fu:é ftc fx/s]}
mn
This, by virtue of A-3, can be shortened to,
3L
—0_r” A - B a€ a8 _ a€af
A=19: 3 3F7 ft);s {A[mnn] %fes (‘A‘mAn ‘A‘nAm)}
mn
3L
- o A
T 5y Lt 70
mn

Since we want Lé to have the same form as Lo' we get the

relations:



9 J (]
Lo _’Lo]
AN ar”
m,nlA const mn A const
3L AL IL* .
0 - 0 N o) (_fﬁ A)
"’A'( _‘& L,)AaL ‘ A ~5"n
m|T5 const m|(F const mn |A const

Since Aﬁtn shows up in L, only through F;h. we can

2 . A . ~ : - '

gubstitute aLo/Ban for aLo/'aALm'nJ in A-16' to get

BL' aL.

—2 4+ —2 %\ =0

aA"’s aF/d w7 n

m nm

which gives us

3L

__% =0

aAm F const
This implies that Lo is a function of F by itself and must
satisfy A-19.

The transformation property of Fi; is

« A7 54 =< Py - =
am(ﬂ’Ve Ap * e'n) - an(f 2 Ap ¥ &’m)

§F
- - A ra ¥ /f" Y g ¥ » »
3, I(f,we Ay + €A + Ap(RY, e*Ar + €])

Ao maw Ay Fy(r7 v v
-l emay e DAY = AL Ay el ]

fry € (BpAY = aphn) + £y |Anely - ATl -BAE”
- B 7 v A £ v
éAme’n * éAmE'n * éAne’m

- der {(aAl - AATY(ES £D v £ 500

< A7 - A .7 - $ .7 “« r7 L4
fave’Aln g - ke [(A AL = A ADIES 57+ 435,

* 5y ) |

= “ A k4 - 4 S a7 _ § .7
PR PYNEE VAW WY
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A-20; = f3c/F

where use has been made of A-2 and A-3.

If we look at Lp = L + L(Q,VQ)., we can get the

variation:
I L 2L 8L - 3L
A-21, $Lp = T Q" E 8Q, —-g-&Am + —T-—-EA; n
3Q 2Q7 8A aA“ '
(3 -2 /QLT> sqt = /3LT \)\SA
st ax®\ogh \oAm 2%\ v/
AL aL
e - S
3 M SQA Y n
'm n,n
sL §L
= _X_SQA . __2();"; f’Ar‘[’l + e;‘m)
6Q SA;
L 9L
g
Ix 9Q’m aAn.m
N
_SLTSA*SLTdyﬂ 5 /9L N
_——AQ ,,,fa"ﬁ‘m - = €
$Q AT Ix \2A
. i SOV Sy BT QP
avy ? aF" *n aA™
Q nm m

Since the ¢”(x), and their derivatives, should vanish at
the boundary of (1, when we integrate A-21 over () the
divergence drops out. But the integration of A-21 over N2
is the variance of the action integral, which is zero, and
since {l is arbitrary, A-21 must be zero everywhere. We

thus get the identity from A-21:

A-221 o SOV SO S e J SO
sTes —2sQ" + —= £l - — € =0
SQ 8A"‘ 8A°r‘n
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In the case of electromagnetics, we want the
Lagrangian to be invarient under the phase transition:
bQA = ;«QA and bQ'A = -;«Q'A, where « is a real constant.
If we replace « with the function A(x), we should get a
vector field Am(x) with the transformation property
6Am = aA/ax™. (Since there is only one parameter, the
structure constants are null.) The new Lagrangian L' has
the form L' = L(Q,V,Q,Q%,(V,Q)*) where V_a* = o} _-:a_o*.
The free field Lagrangian Lo contains Am in the form of
Fn = A[m.n].

For rotation in isotopic spin space, the transformations

ares

and _

5 }»7’; = —u Il € ¢/b Trbq,
where the 7, are the isotopic spin matrices. By replacing
the ¢ with ¢™(x) we introduce the fields.B;'(with«x=1,2.3;
m=1,2,3,4) which show up in the Lagrangian through

Vm]/'a = yem ":Tfrlb’llb ;'
With the fé; defined by PVT?.i't{]= f;;‘?i' we can get
Foo = (9B -2 B - #£,(BB] - B'B’), which is the usual

form for Yang-Mills fields.



APPENDIX B
THE FIBRE BUNDLE METHCD

We'll begin this section on the fibre bundle method
with some notation conventions. Let's start with h as a
differentiable mapping from a differentiable manifold M
to a differentiable manifold N.

hs M <+ N

At p in M we have the tangent space, denoted Tp(m),
and the corresponding tangent space Th(p)(N) at h(p). The
space of all vectors tangent to M is denoted simply T(M).
These are related by the induced mapping h,: Tp(M)->Th(p)(N).
defined by (h,X)h(p).g = Xp(goh). where g is a real-valued
function on N and Xp is a tangent vector in Tp(M), and h,
is called the linear differential of h. The dual to the
tangent space at p is denoted T;(M), and the relation
between the dual spaces is given by h#*: T*(N)—»T*(M),
defined by h*o(X) = w(h,X), where weT*(N) and XeT(M). In

summary s
M —L— p —h(p)
T(M) —Pap T(N) X- £ — (h,X)g = X(g-h)
T (M) +—22—~ T*(N) h*e(X)=e{h,X) —— oY

where f is a function on M, g is a function on N, XeT(M),

6l



YCT(N), «cT®(N),
Let M be a Houcdorf{f topologicnl ayrace with o

N N . . o .
denumerable banic and £ be an n-dimencionnl BZuclidoean

1 if there exivts an

space. M is a diffcrentiadble ranifold
indexed collection of pairs {(R*.q*)}, Ww an open subset of
En, Nt W~ I a homeomorphism of W, to an open subset Ug
of M, satisfying:
a) for each mcM there exists «such that mcU,,
b) for every « and g with UNU, # 4, 7;11& restricted to
7;4(QJ7QJ) is a differentiable mapping of this set
back into E".
c) completeness: if 7y WU is a homeomoryphism of an
open subset W of E" to an open subset U of i such that
for any « for which UnU, # g the restriction of 7'{)z‘
to 7:1(UnUd) and the restriction of 7:}/ to 7'1(Unu‘)
are differentiable mappings, then there exists an
index # such that (W,?) = (ﬂi,;g).
A mapping P U—~V, for U open in E" and V open in E"
is differentiable on U if for all functions g, differentiable

on W, open in En, the composite function gey is differentiable

L

on ¢'1(w).

R <%~

1See Louis Auslander and Robert E. MacKenzie, Introduc-

gion 3% Differentiable Manifolds, (New York, Dover, 1977),
ap. 2.
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A vector is defined in terms of the directional
derivative: Given a differentiadle curve ui(-1,1)-M which
passes through p = u(0), and £, a locally differentiable
function, then the vector X tangent to the curve u(t) is
defined by

X,(8) = §5 £0u(£)) | g0 t ¢ (-1,1).
The set of differentiable curves through p are associated
with the vectors tangent to M at p and vice versa. Given
the basis {ui] from a coordinate chart (W.,7.) at pCZ*(WoL),
we define a natural basis for these tangent vectors as %;g.
i=1,...,n, defined by %G(u‘) = 8!, so that X = §f‘§§t.

The set of tangentvectoras at p is an n-dimensional
vector space denoted TP(M). The space of linear functions
abep(M)*R is the dual space T;(M). A l-form is an
assignment of duals, or covectors, at each point of M.
Given the definition of a total differential of h as
dh(X) = X-h, and a local neighborhood coordinatized with ui.
a local basis for T;(M) can be developed from the total
differentials of the ui. allowing us to write any 1-form
@ (locally) as £f du“. As with the vectors, we assume that
all of the vectors and forms are differentiable unless
stated otherwise,

The exterior algebra over T;(M) is denoted AT;(M).

For the 1-forms o and #, their wedge product is defined by
owAp (X,Y) = «(X)B(y) - «(V)A(X).
For 7 a p-form and § a g-form, 74§ = (-l)pqsn7. A p~form,
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using the local bagis dul. can be expressed as

. . ‘.
vy o ;L.;" J‘-” . ulu Acct/\!llL' 3".',."'

oy, due du" A A duT

The notation for the last term needs to be modified a
little in order to use the summation convention., One way
is to use vertical lines to enclose the subscripts to
indicate that the summation, as in Akquu“... du™, is
restricted to , <, < ¢,

If we use the notation . (M) to denote the set of
r-forms on M.é?(m) being the set of functions on M, and
H(M):z Z?zof(m). the exterior differentiation can be
characterized by:

a) d is an R-linear mapping of £(M) into itself such that

a(o) s o
b) for fe S°, df is the total differential
c) if w ¢« £F and w¢.p%, then d(wan) = dwtn + (=1)TAdr
a) 4% = o.

In a local coordinate system, if a>=‘Z.<Li;
< lln

gu"/\ .o Adu',
then do =% _ df ., duA...Adu™

If we are looking at values in an arbitrary vector
space V, rather than just R, as we will be with Lie-algebra-
-valued forms, then we define a V-valued r-form «» on ¥ as
an assignment to each p € M of a skew-symmetric r-linear
mapping of TP(M)x...pr(M). r-times, into V. Given a basis
{ei} of V, we can express « as Zwe, , where the o are

the usual r-forms on M. The exterior derivative is now
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defined by dw = {Zdw'e‘ .

A Lie group can be described as a group which ic at
the same time a differentiable manifold and for which the
group operation AiGxG+G, defined by A(a,b) = a'lb. is a
differentiable map. #e could also say, more by way of
example, that it is a continuous group in which one can
introduce an n-dimensional co-ordinate system ¢ with the
identity element at the origin, and with the multiplication
law given by analytical functions. For instance, given
X, Yo and z in G with coordinates <, 7“. and ("
respectively, the equation for z = xy can be written as
3 = f“(§.7) where the £ are n analytic functions of the
2n variables §“.7ﬂ

Let's look for a moment at some differentiable curves
through the origin, curves whose coordinates depend
differentiably.on a parameter & and chosen so that x(0) = e,
the identity of G. If x(e¢) is a subgroup of G, we sgy that
(52)] -
ag)| E£=0

instance, rotations about the z-axis form a one-parameter

generates a one-parameter subgroup,g(e) of G. For

subgroup, and & can be chosen to be g, sind, or any other
appropriate function of the angle. If £=J, then
g(e)elg) = gle+e), and all one-parameter subgroups can be
expressed (or re-expressed, with a suitable parameter) in
this standard form.

Let g(&) be a one-parameter subgroup in this standard

form. Since g(e) & G, there exists g'l(e) such that gg~l=e,
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and since this is in standard form, g'l(c) = g(-2). Since

gg'l is a constant, its derivative is null, so

-1
d dg,-1
6Ie— " “Ge€ -
This gives us

-1
- ae . .
B-1 £ g3

Using g(0) = e and g-lgc) = g(-€), we find that
1 - -1

d E (e+§)-g ()

e " & 11“‘[ 5 |

§+o0

Lin[3(ete)gt-t-0)-ge)gl-e)]

Lin[3(e(-5)-g(0)]
d
'Eflz=o

When we put this back together with B-1 we get the

1

] s -a
differential equation:
B-2 %% = ag.
Combining B-2 with the initial condition g(0) = e, and
defining the exponential function by the power series,
we get the familiar exponential form for the translations
generated by'gf €=0 = 2 that is:

g(e) = explea].

If we look now at the left translations of the elements
of T,(@), denoted La*(A) where A ¢ T_(G) and L,, is the
linear differential induced by the left translation of G
by a ¢ G, we get a left invarient vector field on G. This
vector field is the Lie algebra of G, denoted &. Although
the products of elements A, B in & are not necessarily in

®, their commutator [A,B] = AB-BA is. Given a basis

on &, this closure property for the commutator implies that
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L act,o(./] - C‘k;
These C%k are called the structure constants of the Lie
algebra. We also have ¢* which is the set of forms o for
which L*w=w. For A e &and w «s*. w(A) is a constant on
G.

The linear differentials of inner automorphisms of the
fora Inta(g) = aga"1 give us the automorphisms of & called
Ad . Thus, Ada(A)f a A(f'Inta), for a ¢ G, A ¢e& and f a
function on G. Applied to b « G, [Ad_(A)f]b = A(f(aba™l)).

Let a be an.element of a Lie group G and p be an
element of the n-dimensional differentiable manifold P.
Let Ra(p) = R(p,a) represent the differentiable mapring
R:PxG+»F (i.e. G acts on P on the right). Ra(p) can also be
cdenoted ra. Let i denote the equivalence space of P under
G, i.e. if ua = v for some a ¢ G, then ua and v are
considered the same element, or are mapped to the same
element of M. e will denote this action with #r, called
the canonical projection, so that for u and v = ua, two
roints in P related by a, x =7(u) =m(v) is their
projected image in M.

P will be a differentiable principal fibre bundle® over

M with group G if:

2See Y. M. Cho, J. Math. Phys. 16, 2029 (1975),
M. Daniel and C. M. Viallet, Reviews of Modern Physics 52,
175 (1980), and S. Kobayashi and X. Nomizu, Poundations of
Differential Geometry, Vol. I (London, Interscience
Publishers, 1963)




71

a) G acts freely on P to the right: ua = u € a = ¢, the
identity of G.

b) = is differentiabdble.

c) P is locally trivial: given p ¢ M, there is a ]
neighborhood U, of p such that ﬂ"l(U‘) is isomorphic
to U xG., This is true if there exists a diffeo-
morphism ¢am?1(u*)+u‘xc where #(u) = (=(u),p(u)) for
all u c'm'l(U“), with yauﬂfl(u‘)*c a mapping (not
necessarily unique) satisfying $.(ua) = f.(u)a.

M is called the base space, G the structure group, P the

bundle space, or G bundle, over b, and 7t the projection.
u?l(x), for x 6 M, is diffeomorphic to G and is called the
fibre over x.

The first pair of examples starts with the circle, Sl.
for M and the interval (-1,1) for the fibres. Locally,
this will look like the cross product of two intervals, but

there are two possible global structures: the cylinder and

the Mobius strip.
The cylinder is g
isomorphic to the

cylineer MEbins
cross product of > st e Steip C::::::::)q‘

the circle and the

< (V)

interval (-1,1), but the Mdbius strip is not isomorphic to
any cross product. Thus, although they look alike locally,

they are very different globally.
The next pair takes M to be the circle again, but the
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fibre 15 also a circle, instecad of an interval. Locally,
< 1(U,), for a neighborhood Ug, will look like a tube or
cylinder. When we try to put things together globally, we
again get two possible surfaces. The simpler is the torus,
which is isomorphic to Slxsl. Here, thc second S1
represents the fibre, and since the continuous group U(1)
can be thought of as a circle, we could look at the torus

as Sle(l). The other figure can't exist in three space.

It's sometimes referred to as the Klein Bottle or Klein

Jar. Suppose we take

a tube, assign @ @
(a) (b)

directions to the

edges of each end, as

shown, and then try to bring the openings together so that
the directions match. Figure (a) goes together rather
nicely to make the torus, but figure (b) will require

passing one end through the wall (if you're stuck in three

space) and then

lining it up with ( E;E____:::)
the other end, as @éi::::; ( ?

shown in figure (c). (c)

The next concept is that of a cross-section. A
global cross~-section is a differentiable mapping of the
base space M into the bundle space P in such a way that
weoo is the identity map on M. A local cross-section over a

neighborhood Uy is defined the same way: q:lUé’ﬂ’l(U‘) and
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xd, is the ldentity map on U, . A convenient notation for
trivial cross-gsections ic glven by using the g, from part
three of the definition of the principle fibre bundle.
Given the definition ¢ = u[sp“_(u)]"l. where [?“(u)]-l is
the Inverse of the image of u in G under ¢, oy turns out
to be independent of u. Suppose v is another point in the
fibre through u. Then there is an a in G such that v = ua,
Now

v-[so;(v-.j'- 17 [?,(_(ua)]-’ = “a[ 9’_‘(!&)0-].' ] U-a-'a-'[ﬂ (”-)].'

- u.[gé"(u)]-l

With this notation, ¢ (o3 (x)) = (x,e), so that o (U.)
corresponds to U x{e] under the diffeomorphism ﬂm-'l(u.tb
U,.xG. We could also express the trivial cross-sections as
% = {(x,a)] a is constant}, where we confuse the
difference between 7:'1(11“) and U_xG.

These cross-sections also have transition functions
in the areas where their neighborhoods overlap. That is,

given a; over U_ and

o, over 1;6. with UNU, # &, there
exists z/f#s(q‘/lll’)*G, such that
7 (x) = T2 (X) (%)
for x in (ll,,“l)a)-
In order to develop the concept of a connection:’.

we'll begin by developing the idea of vertical vectors in

3see Y. M. Cho, J. Math. Phys. 16, 2029 (1975),
M. Daniel and C. M. Viailet, Reviews of Modern Physics 52,
%'{5 (%980). as well as A. Trautman, Rep. Math. Phys. 1, 29
970),
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Tu(P) for each u in P. Let u, u be the

t " RexthAJ
differentiadble curve through u induced by A in®, The

tangent at u of this curve is called the fundamental
vector £(A), in Tu(P). asgsociated with A. Given a function
f on P, then

I(A)u f = f; f(“'x>/x-o >

in accordance with our original definition of vectors.
Because all of the points of ug are generated from u by the
curve exp[tA)in G, all of the points of u, lie in the
fibre through u, so that X(A) is tangent to the fibre. The
set of all such fundamental vectors, Gu' is isomorphic to
6 and forms a speclal subspace of Tu(P) called the verticle
subspace. Note that m(Z(A)) = 0, and an alternate
definition for G, could be the space of all vectors 2 for
which m,(2) = 0 (i.e. the kernal of ﬂ;xTu(P)+$m(u)(M)).

A connection T"on P can now be defined as a choice >f
a supplementary set of vectors Q, in Tu(P) such that

a) T,(P) =q, ®G,

b) Qa = (Ra)*Qu

c) Q, depends differentiably on u.
This subspace Qu is called the horizontal subspace of Tu(P).

A Lie-algebra-valued one-form «» may now be defined as
the pull back of £(A) to A. If we apply Rg to @, we get a
shift by means of Ad _,. Note that

a

(REw) [2(A)] = w[Raw E(A)]
and

[Ra, Z(A)] f = I(A)Rﬁ,u(f'nd =L R, [R‘,(f,M

ﬁgJQ]'

%20
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J
" J; f<RA'."Lufl.A]A. u) l;.o

- oL
/e f(ﬂxnt‘.[czftAJ u) ’x-o ’
The tangents of the curves Int _lLexp tA] and [exp tA] are
a

related by the linear differential of Int _; (i.e. Ad _,).
a

a
Thus,
[R,,EW] f = L(Ad A) f
giving us
B-3 RY¥w = A o&, W .

Since w(X) = 0 for X in Q" this relation is trivially true
for Q,, so B-3 is true for all of Tu(P). This w is
called the connection form for the connection T.

This connection form also gives an alternate
definition of Q, as the kernal of‘wau(P)~62

Once we are given the connection form o, we can use
a local cross-section o¢;,1U,+P to obtain a 1-form w,=cfow
on U, with values in &. Given the basis {xi} on U_ and

the basis f{e”} on &, we can write, for X = €”§§. in T(U.),

wX) = a (8L) = ((agy‘e"‘g dx?) (e ) = (e e”) 8t =

¢ E'e/. The w &‘ are real-valued functions (for real-
Lip wip

-valued vector spaces &). These «) , may be considered

yt
the gauge-fields corresponding to the connection form w.

The connection form has the advantage of being defined for

all of P, while «3,,, which is dependent on the cross-

-section o, is defined only locally for nontrivial fibre

*!

bundles. The choice of a cross-section here corresponds
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to a cholice of gauge.

Given the cross-sections oy ando;, and thelr

A
transition function g,.q:wq,~c. the transformations for the
q‘is

. -l
W, ® '41Lj,(w4) * 9%, % g o
where dM is the exterior derivative on M.

For example, given the trivial bundle RaxG. let o

and o, be related by g in G, and » be the connection form.

o, - o "(w) Wy« 03" (W)
and w, - AJJ" (w) + g"dg ]
Writing « as A, dx*, we find
' = J ! = J 3'(2
A dx Ad., (A, d%') + g'dg 49, (A7) + 3(.7?3)#
This will give us
- -} -t 9
Ax.-n 3A,,,3*3§-;"3’
which is the gauge transformation formula for gauge

potentialé“. If the group G is the one for isospin space,

this could be written:

—r - -'__‘ -‘a
é" g 'ﬁng *'3 » °

To better see the relationship between the connection
form and the gauge potentials, let's look at Uy, a

neighborhood of x on the circle, and P can be either the

torus S1

. “¥SeeY. M. Cho, J. Math. Phys. 16, 2029 (1975), and
M. Daniel and C. M. Viallet, Reviews of Modern Physics 52,
175 (1980).

xU(1) or the Klein Jar, since we will be looking




77

here at just thoe local properties. Let o, be a cross-
-gection mapping U, into 'rr"l(U_‘). Let X be a tangent vector

at x, and o3 ,X be the corresponding tangent vector to oz (U,)

at o (x). s
1 -
/ - PR E : ‘ont(Un-)
- X -\\‘/—-.vr"(«)
Mm-S < (U,..)

e can identify points on ﬂ;l(U‘) with their counterparts
(x,a) in U _xG, since w?l(U‘) and U ,xG are equivalent by
the definition of a fibre bundle. Using = and g,, where
%« was chosen in the construction of P, we can identify p
with (=(p),p«(p)). U, has a basis ui and G has a basis &4
80 we can use the product basis x* = {ui for A= 1,...,n;
£ for A = n+l,...,n*m with u= A-n}, where n and m are
the dimensions of M and G respectively. Notice that g ,(x)
could have both a vertical and a horizontal component, so
that we can use the expression
r_"*(X) = hor Q*(X) + vert o (X)

where hor(Y) and vert(Y) are the horizontal and vertical
components of a vector Y in T(P). If we now apply w to
o, «(Xx), we lose the horizontal part and find a vector A in
& for which vertag,(x) = £(A).

The 1ift of a vector X in T, (M) to u in'n"l(x) is that
element of Q whose image under 7 is X. The 1lift of X

will be denoted X.
2

For u = o (x), the 1ift of 3 = _7.

to u is horizontal,
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but as we've seen, o ,(8,) might not be. In fact, if we
congider the local expression of the connection «1 wg=
Tp(w) = A‘“.dm:'L a (Aﬁﬁpe’)dx”. where {eﬂfis a basis of &,
then o (3.) = ©(0,43.) = B, = [A ,dx"]3 = A, - This means
that the vertical part of o, ,8, is, in essence, the connec-
tion coefficient. If we subtract L(A_,) from oz,(3,) we
will get a horizontal vector, since w(o; .9, - Z(A_,)) = 0.
However, the 1ift of a vector is unique, so

‘5&,“ -cr:“aq-Z(A o)
In comparing this with the covarient derivative, 8= 3, -A,
we can see that & corresponds to un when we identify
cxnd, and Z(A, ) with 9, and A_, respectivelys. Looking
back at our notation for the trivial cross-section oz, =

ugi}(u). and the result that oz (U,) = q*x{p}. the figure

for'm'l(Ui) could have been drawn:

s R s e
7\:1()() = hor d;,_(X)
where A= w (05,(X)).
¥'rt"(:()

and we can then justify identifying ¢3,(3,) with 3, and
Z(A,,) with A , . Although £ =23, -A , doesn't look
horizontal according to this picture, remember that
"horizontal"” is defined by the connection T not by the
tangents of o (U,).

If we take the commutator of the covarient derivatives,

5See M. Daniel and C. M. Viallet, Reviews of Modern
Physics 52, 175 (1980)
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we get the gauge fleld F_ .,
L0, 0,0 = -{(ual, ~aa)-(A A db = o]

- e b -

in terms of coordinates 2. = g, in

W¥hen we express the A Py

b

S, and using® 3. A" = -’ A, » then the commutator

becomes
[0, B = - [CAAS 8- 4a03) - LAl3 40 3]}
< {Caal- AL+ L ATAL T .
- - F,::L 3,

Overlooking the cross-section dependence indicated by «,
our 5:1 is the same object we found in Utiyama's work, and
when we develop our Lagrangian from the curvature of the
principle fibre bundle, we will see that the gauge fields
are present only in terms of the F:’.

First we will establish a basis for our principle
fibre bundle, with M as space-time, and G as our transfor-
mation group. For this calculation of R, let's use the
horizontal 1ift basis for T(P), i.e. 3, = 3, for A=1,2,3,4;

and for A=4+1,...,4+nm, with/AzA-b}. where m is the

q“
dimension of G.
The metric on & will be the bi-invarient form7
ol
3/*» = 3(9 ’9") = fc/u-/f Cfot-
where f is a function of space-time. If & is semi-simple,

6

See Y. M. Cho, J. Math Phys 16, 2029 (1975)

7. right-invarient form based on the Cartan-Killing
form was used in Y. M., Cho and P. G. 0. Freund, Phys. Rev.
D12, 1711 (1975), See also:r A. Trautman, Czech. J. Phys.
B29, 107 (1979) and L. N, Chang, K. I. Macrae, and F.
Mansouri, Phys. Rev, D 13, 235 (1976)
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as with U(1)xSU(2), then the metric can be considered a
combination of subordinate parts, each with ito own f. For
example, with U(1)xSU(2), the metric can be written

Alocos
o B ?e
[O:OF a]
O o 0D

where A and B are functions of space-time. For the
Abellian groups, since the commutators are null, each
component of g,., is an arvitrary function of space-time,
The metric for P should preserve the actions of the
space~time and group metrics, while making the vertical and
horizontal parts orthogonal. When we use the horizontal

1ift basis, these requirements give us the metric

A

and its inverse

[+ 5 }

The connection coefficients are given by8

e
T
O 1 p°
k.
b -
0
N N

A - AD (4 £ N A
ch - L7 Lyms,c * 7pe,8 " ”pe,p *+ %eCon * e C.‘DC. J'icpc »

A = .
where Cp.e, = [ep,e,] for the vasis {e,} of P. For the

horizontal 1lift basis, these structure constanis are
L3.,2,] =~ C, 2
[a/‘-l aa_j = O

[aa.) ab] = - Fa:‘l: a/u = Cnf.‘La/“ ’

QSee C.W, Misner, K.S. Thorne, and J.A. Wheeler,
Gravitation, (San Francisco, . W. H. Freeman,. 1973), p. 314
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so that the only nonnull C's are of the form gj, and C;l'

This gives us:

N
Ty = O,
— -
e " 287 dpmaa
T‘:‘, o 14.' F_:‘b
o - - als
/3 z 4 34/,- b
L ac 2
T ew = -2 3 gap F b
— a
* | wb

Tz will be left as is.
Note that i3 and Tij are antisymmetric, while the rest are
symmetric.

The formula for R is9.

c
R = 7ADRA::B
AB c _ c < P yme D _ — ¢ c
B {rw,c Facs " T2e Tan = Toe Mac = Tae CcB}

Plugging in terms and collecting ard cancelling gives us
' o~ “ v F ' a < —
R = R’*"T!'ﬁ/dcx?cl‘y'r _;j‘jd;at/a,-“"’- Figo/
‘ ab >
+ 5 g g‘/dg s[ﬁ-t'r,aglas,b -5,(/0,“_378,L]
- 2 ab dﬂ ~ L -l ab
z4 [9 j@&ajw z g'”lg jﬁma];b
The action integral 1g10
I - J R g r Adum™
= S vv RJw I

= Jrgg R

Misner, Thorne, and Wheeler, p. 277

10c¢, v, M. Cho, J. Math. Phys. 16, 2029 (1975) and
P. M. Morse and H. Feshbach, Methods of Theoretical Physics,
(New York, McGraw-Hill, 1953), p.275
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where dx A...Adx" " is the volume element, which is equal

to v7dx'...dx™"", and /7'm V-ggpig, with -ggp the

determinant of the space-time metric and g the determinant

of the group metric.

dux and d™/ are the ST and group

—— g

volume elements. By using the /:ESTVE in £ = /+'R, we can

write £ in the form11
L= ST

-..'- o dﬂ s
WA gt g Cas Can
Lo D v P -~ =+ e bd

b (j" r:—— .J’(/‘J f ab rct,' g g

TG T 9 gy gerng s Jesngoae ]
a— — ‘(/‘.( Py

G {'3:1‘@_'9 J“‘/jva' ? }

In conclusion, this Lagrangian density contains the

F‘:;demanded by the symmetry arguments of Utiyama, although

they are derived here

from geometric arguments; and we also

have an explicit Lagrangian, rather than just the restric-

tions which Utiyama's symmetry arguments placed on the

Lagrangian., In addition the method has given us the g«f as

scalar fields. From here we can develop the field equations

as in section one.

e, Y. M. Cho, J. Math. Phys. 16, 2029 (1975) and
Y, M. Cho and P. G. 0. Freund, Phys. Rev. D 12, 1711 (1975).



