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ABSTRACT

The need for an understanding of the polarization interaction 

is discussed, and a procedure for calculating the electron-H2 polarization 

potential based on a molecular structure code formulation of the problem 

is developed. Li our treatm ent, nonadiabatic effects are approximated by 

a  cutoff procedure which involves the numerical computation of certain 

integrals. Polarization potentials in which various multipole contributions 

were retained are presented. Scattering results in which the polarization 

interaction is represented by our calculated potentials are found to be in 

excellent agreement with a variety of recent experimental measurements. 

The possibility of extending this ab initio treatm ent of the polarization 

potential to include other electron-molecule systems is discussed.
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CHAPTER I  

INTRODUCTION

The study of the quantum realm has led to the development of 

a very powerful branch of science known as collision physics. Here, where 

quantum phenomena can be observed only indirectly, measurements are 

usually performed by scattering a beam of projectiles off a target, and from 

an analysis of the scattering data, deducing something about the structure 

of the target and the nature of the interactions involved. Scattering theory 

is the theoretical tool used to  analyze the experimental results.

Scattering theory can also be used to predict collision results, 

thereby testing our knowledge of the physics involved and providing theoreti

cal guidance where the  experimental results are uncertain or non-existent. 

This interplay between theory and experiment is especially prominent in 

the field of low-energy electron-molecule scattering and has proved quite 

beneficial to both.

We will use scattering theory to  investigate the physics of the po

larization potential for the electron-Hg system. A comparison of our results 

with various experimental measurements and other theoretical treatments 

will be made. But first, we would like to  sketch the development of 

the scattering equations in a body-fixed reference frame. Here we choose
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the origin of coordinates at the molecular center-of-mass and pick the z- 

direction to  lie along the internuclear axis. We make the Born-Oppenheimer 

approximation^ for the molecular wavefunctions, and in addition, we make 

the fixed-nuclei approximation^ by freezing the position of the nuclei for 

the duration of the collision. (A very complete development of the  theory 

of low-energy electron-molecule collisions can be found in reference 3.)

A  theoretical formulation of the low-energy electron-molecule 

scattering problem usually begins with the non-relativistic time-indepen

dent Schrodinger equation

(1.1)

where E  is the to ta l energy of the system and the system Hamiltonian Û 

is given as

+  (1.2)

Here, Mo is the target Hamiltonian, while the second and third terms in 

Eq. (1 .2) are the kinetic energy of the projectile and the electron-molecule 

interaction potential energy, respectively. Unless otherwise stated, atomic 

units* are used throughout. For the electron-H2 system, Ve—m is written 

as

which is just the sum of the Coulomb interactions between the scattering

*In atomic units =  me =  Cq =  1. The unit of energy is 

=  lE h  =  2 R y  —  27.212 eV. The unit of distance is the first 

Bohr radius (c q ) =  1 Bohr =  0.52918 X 10“ ^®m.



electron and the target molecule. The coordinates of the nuclei are denoted 

by îta i those of the bound (molecular) electrons by T*,-, and the coordinates 

of the scattering electron by 7.

The next step is to expand the system wavefunction in a

complete set of target eigenfunctions viz.

T } R a) Ra) (14)
n

The right-hand-side of Eq. (1.4) consists of a completely antisymmetrized 

sum over discrete states (and an integral over the continuum states) in 

which the explicit spin dependence has been suppressed. Due to our use of 

the Born-Oppenheimer and fixed-nuclei approximations, the wavefunctions 

in Eq. (1.4) have only a parametric dependence on the nuclear coordinates. 

The are solutions of the (electronic) time-independent Schrodinger equa

tion for the target

[I/o — e„]0„(rj ; Ra) =  0 (1.5)

where e,» is the electronic energy for the n*  ̂ molecular state.

To continue, we substitute Eq. (1.4) into the time-independent 

Schrodinger equation. If we multiply on the left by 4>n*(fi')Ra), integrate 

(sum) over the bound electronic spatial (spin) coordinates, and rearrange 

terms, we are left w ith the famous coupled-equations

(Vj +  =  2 +  W„„.(7)]F„.(7) (1.6)
T

where A:^/2 =  (E  — e„) is the scattering energy. The “direct” matrix 

elements are given by

Vnn>Ç) =  j  K * Ç i ) V e — m ^ n ' Ç i ) ^ i  ( 1 7 )



and the nonlocal exchange m atrix elements Wnn'ij) are operators which 

“pnir the scattering function under an integral and “eject” a bound func

tion in its place.

Since Eq. (1 .6 ) is an infinite set of coupled integro-differential 

equations, the problem as formulated is somewhat intractable. However, 

by retaining only the most important terms in the sum, Eq. (1.6) can be 

greatly simplified. For our study, we will be interested in collisions where 

the scattering energy is O O  eV and the target is initially—and finally—in 

the ground electronic state.* Therefore, we truncate th e  siim in Eq. (1 .6 ) 

to  include only the first term,** viz.

(v? -  21F '‘(7) +  y “ (?)l +  k̂ )Fo(7) =  0 (1.8)

where F®^(r) =  Vbo(r) and y®®(r) Fo(r) =  Woo(r)Fo(r). Some of the 

consequences of this approximation will be discussed in the next chapter.

The static potential energy, V®^(r), is seen to  be the electron- 

molecule interaction potential energy Ve—m “averaged” over the ground 

electronic state of the molecule. This quantity can be efficiently calculated 

a t the near-Hartree-Fock level of accuracy by existing computer codes.^’® 

The nonlocal energy-dependent exchange interaction is due to the quantum 

mechanical requirement th a t the system wavefunction be antisymmetric 

under pairwise exchange of identical fermions. Careful studies have shown

*A scattering energy >^11.86  eV is required to  electronically ex

cite the ground-state Eg molecule.

**This is known as the static-exchange approximation.
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th a t it is possible to  include the effects of exchange in an approximate 

(though accurate) way by the use of a local energy-dependent model ex

change potential [see Appendix 1 and references therein]. The use of a 

local model exchange potential leads to  a considerable simplification of Eq.

(1 .8 ), although it is currently possible to  include the exchange effects in an 

essentially exact fashion for reasonably simple systems.®~^° In this study, 

we have used both exact and approximate treatm ents of exchange: we 

generate the model exchange potentials with program EXLAM;^^ calcula

tions in which exchange is treated exactly utilize program ITERSEX.^

In  order to  solve the scattering equation, we incorporate one more 

expansion, namely

Fo{r) =  E  7  (>■) J'A?) (1.9)

where the U ^ \ r )  are radial scattering functions and the Y^ {r )  are the 

well known spherical harmonics.* Now by substituting Eq. (1.9) into Eq.

(1 .8 ), multiplying on the left by / d f  and rearranging terms we 

arrive a t the radial coupled-equations

+  Hi] U ^ \ r )  =  2 E  l47>(r) V j,r \r )  (1.10) 

w ith the m atrix elements v [ ^ \ r )  defined by

y P i r )  =  j  dr Y f * { r )  [F"*(?) +  F^^(7)]y^(f ). (1 .11)

*We use the Condon-Shortley phase convention for the y ^ ( r) .  

See chapter 1 of reference 12 for definitions and tables.
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Due to the cylindrical symmetry (about the internuclear axis) of 

the static and exchange interactions as well as our use of the fixed-nuclei 

approximation, the radial equations are not coupled in m. In  fact, these 

equations separate according to the irreducible representations^^ of the 

electron plus molecule point group, D qoA : , S« , H u , IIj , . . .  These

“representations” are defined by the particular values of t  and m, e.g. ,

Eg : w  =  0; £ =  0 ,2 ,4 , . . . (1.12a)

Stf : 77i =  0; £ =  1,3 ,5 , . . . (1.126)

Hu : Î7Î =  1; £ = 1 ,3 ,5 , . . . (1 .12c)

Hg : m  =  \) £ =  2,4 ,6 , . . . (1.12d)

The values of t  and m  represent the orbital angular momentum of the pro

jectile electron and its projection along the internuclear axis, respectively.

To summarize, we have introduced some of the basics of the scat

tering problem as well as the  static and exchange interactions. However, 

one might well guess tha t in a thesis purporting to deal w ith the physics 

of the polarization interaction, something is missing. We will introduce the 

“missing” interaction in Chapter n  and give a brief survey of its develop

ment and use in electron-atom and electron-molecule collisions. The basic 

theory underlying our approach to the polarization interaction will be 

developed in Chapter HI. We will also describe the manner in which our 

calculations are carried out and a comparison of our results with other 

theoretical treatm ents will be presented. In Chapter IV we will test our 

polarization potential by using it (together with accurate treatm ents of the

6



static and exchange interactions) to calculate scattering results. Again, we 

will compare our results with those obtained from various experimental 

measurements as well as with other theoretical results. Finally, in Chapter 

V  we will summarize our findings, present some conclusions, and suggest 

some future directions for this research.



CHAPTER H

A BRIEF INTRODUCTION TO THE POLARIZATION POTENTIAL 

IN ELECTRON-ATOM AND ELECTRON-MOLECULE COLLISIONS

2.1 Introduction

In this chapter we will first motivate the need for terms beyond 

the static-exchange approximation [Eq. (1 .8 )]. We will then introduce the 

polarization interaction and briefiy survey some of the developments regard

ing the use of this interaction in electron-atom and electron-molecule col

lisions. To begin with, we should examine our use of the static-exchange 

approximation; th a t is, we need to investigate the consequences of truncat

ing the right-hand-side of Eq. (1.6) (when n =  0) to include just the first 

term. If the results obtained with this approximation accurately reproduce 

experimental measurements, or better yet, if we can show tha t the remain

ing closed-channel (energetically inaccessible) term s make a negligible con

tribution to the scattering equation, then the static-exchange approxima

tion is valid and we need not introduce any further complications. For elec

trons scattered from ions or strongly polar molecules, the static-exchange 

approximation does indeed yield reasonably accurate results; however, for 

the vast majority of cases involving low-energy electron-atom or electron- 

molecule collisions, it is necessary to somehow take into account the addi

tional terms in Eq. (1.6).

8



2.2 The Effects of Closed Channels: Electron-H Scattering, an Example

For the  next few sections we will consider the case of electron- 

H scattering. We have picked this system as an example because of its 

simplicity, the fact th a t the hydrogen atom target wavefunctions are well 

known analytical functions, and because of the  large body of research 

devoted to  electron-H collisions. In this chapter, we will assume replace

ment of the electron-molecule expressions in Chap. I  by the appropriate 

electron-atom forms (e.g. , the electron-atom equivalent of Eq. (1.2) is f/ =  

^ 0 — Ve—a where i/o is the hydrogen atom Hamiltonian and Vg—a

is the electron-atom interaction potential energy).

We would like to  briefly discuss some results which were flrst 

worked out by Castillejo et al. In what follows, we restrict our treatm ent 

to  large values of r (where the short-range exchange terms in Eq. (1.6) 

can be ignored) and we require th a t the scattering energy be insufficient to 

excite the hydrogen atom out of its ground-state. Under these assumptions, 

the boundary conditions on the scattering functions can be w ritten as

+  (2 .1a)

TFnij) ----->  0  , for n j ^ Q ,  (2.16)
r-*oo

where / ( f )  is the  scattering amplitude. We are interested in the asymptotic 

form of the scattering functions because we extract the scattering informa

tion in the asymptotic region. The target wavefunctions are given as

ÿ . (n ) =  ^  P « t{ r i)Y T  Oi) (2.2)

where the Pne(Ti) are the radial wavefunctions of the hydrogen atom.



To investigate the asymptotic behaviour of the coupling matrix 

elements, we utilize a  Legendre polynomial expansion of the elec-

tron-atom interaction potential energy Ve—a

oo \
(2.3)

with cos6 =  r • Ti and r<  (r> )  is the lesser (greater) of ( r ,n ) .  Using the 

above Castillejo et al. showed th a t the coupling m atrix elements y»„/(r) 

defined by

Vnn\r) =  {Mn)\Ve-a\<f>n'{ri))dr^ (2.4)

go to  zero asymptotically a t least as fast as r~~^. Now, from the boundary 

conditions listed in Eq. (2.1) we see th a t (asymptotically) the only important 

terms on the right-hand-side of Eq. (1.6) are those which couple to  the 

ground state. Therefore, Eq. (1.6) can be rewritten as

[V? +  kl]F„(r) =  2V„o(7)Fo(7) (2.5)

for r “large” and n 7^ 0 . For n or n' corresponding to a bound state, 

Vnn'(r) vanishes exponentially. Thus, we can rearrange Eq. (1.6 ) for the 

open channel to  give

V ?i^o(?)------------------------------------------------------- (2 .6 )

This last result allows us to derive

F « {r)~  , for n j ^ O ,  (2.7)
(fo — fn)
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which we substitute into the asymptotic form of Eq. (1.6) for the open 

channel Fo(r) leaving

[V? +  *§1 %  (?) =  2Voo(?)Fo(?) -  2 2  . (2 .8 )

For large values of r, we have

\Von> W  .  . ûd
n'jléO

where ad is defined by

(2.9)
-  0̂ 2r4

2 ^  |{Poi(ri)[ri|Pn>i(ri))dril^
'  -  k U   ̂ '

We can use the above results to write a simplified version of Eq. (2 .8 ) which 

is valid in the asymptotic region, viz.

[V? -  2(F"(7) -  | | )  +  Ag]%(7) =  0 . (2.11)

So far our analysis shows th a t including the closed channels

gives rise to  an additional term  in the scattering equation which varies

aqrmptotically like r~ ^. This is a very important result and we will discuss 

it further in the next section.

2.3 The Asymptotic Polarization Potential via Time Independent 

Perturbation Theory

In the previous section we were concerned with the consequences 

of including the closed channels or virtual excitations in Eq. (1.6). We will 

take a  more “physical” approach in this section. The static-exchange

11



approximation is equivalent to  truncating the expansion of the system 

wavefunction in Eq, (1.4) to  include only the first term. For the elec- 

tron-H system this gives

=  ^ ( 7 )  0o(7i) (2.12)

which is just the antisymmetrized product of the scattering function and 

the ground-state wavefunction of the hydrogen atom. But we know th a t 

the atom will distort in the  presence of a perturbing electric field, e.g. , the 

field of the scattering electron. This “polarization” of the target charge 

density gives an additional contribution to the system energy E, which is 

known (not surprisingly) as the polarization potential.

To investigate this phenomenon we will fix  the position of the 

scattering electron a t a large distance from the target atom and utilize 

time independent perturbation theory (see Chapter 4 of reference 1) to 

calculate a correction to the system energy. We begin by writing the system 

Hamiltonian as

H = )(o - i -V e -a  (2.13)

where }(o is the Hamiltonian for the hydrogen atom. Here we will treat V^—a 

as the perturbation. Now, using Eq. (2.4) to  define the  m atrix elements 

T^»f(r), we can write the perturbed hydrogen atom wavefunctions correct 

to  first-order as

(2.14)

From these perturbed wavefunctions, we can calculate the energy correct

12



to  second-order, viz.

Æ =  eo +  Voo(7) +  T  C i î l f i î ! !  (2.15)

where we make the following identifications for the terms on the right- 

hand-side of Eq. (2.15): the first term is the ground-state energy of the 

unperturbed hydrogen atom; the second term is the first-order correction 

to  the energy which we recognize as the static potential and the

third term  (which is due to  the induced distortion of the target) is the 

second-order correction to the energy which we will call the polarization 

potential yp°^(r). A  quick comparison with the previous section reveals 

th a t the correction represented by FP°^(r) is exactly the same result th a t 

we obtained by including the closed channels. Thus we can use Eq. (2.9) 

to  immediately write

~  (2-16)

where otd is known as the dipole polarizability. For the hydrogen atom 

ad =  4.50® ; Castillejo et al. found th a t 65.8% of this value comes from 

the 2p states, an additional 15.6% comes from all the  rest of the discrete 

(bound) states, and the remaining 18.6% comes from the continuum states.

Now we have the very interesting result th a t — at least for large 

values of r — the more intuitive approach utilizing a  polarization potential 

accounts for the effects of closed channels. In fact, most treatments which 

go beyond the static-exchange approximation do so by incorporating a po

larization potential of some sort. However, we have only derived V P°\r) 

for a stationary electron at large distances from the target. In the next
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section we will look at some of the implications associated with these as

sumptions and discuss some means for going beyond them.

2.4 The Importance of Being Nonadiabatic

We have found that the long-range form of yp°*(r) for a station

ary electron is given by Eq. (2.16). However, the scattering electron is 

certainly not stationary and it is not always “far” from the target. In this 

section we will examine the correction introduced when we take the motion 

of the scattering electron into account. First, we will look at the large-r 

region, and then we will briefly discuss some of the methods which have 

been developed to extend the polarization potential into the small-r region.

The polarization potential derived in the previous section will be 

correct whenever the adiabatic approximation is valid. In this approxima

tion, the target is assumed to respond adiabatically to the motion of the 

projectile electron; th a t is, the molecular charge cloud is assumed to im

mediately readjust to  thé instantaneous position of the scattering electron. 

For slow (low-energy) collisions, one might expect the adiabatic approxima

tion to be good, or alternatively, tha t the nonadiabatic corrections will be 

small. To see whether or not this is so, we can use the perturbed target 

wavefunctions in Eq. (2.14) to calculate nonadiabatic correction terms in 

the limit of large r.

First, we renormalize the ^o (ri;r) of Eq. (2.14); this step is 

important, and if not performed, we will miss the lowest-order correction. 

Now, if we take the kinetic energy operator of the projectile electron, 

— , as a perturbation on the system Hamiltonian in Eq. (2.13), we
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can write the “first-order” nonadiabatic correction as

1
A”* in =  (%  ( n .  r)l -  -  VJ ( r„  r))d7, (2.17)

where the overbar indicates renormalization. We can write

'P’aCn.r) =  (2.18)

where the r-dependent normalization has the asymptotic form

W ) ~ l - ~  (2.19)

with Pi defined by

( 6 . - 6 , ) =  •

Notice th a t the (f>n^i) and €n in Eq. (2 .20) are the unperturbed hydrogen 

atom wavefunctions and energies.

By substituting the above results back into Eq. (2.17) and keeping 

terms to lowest order, we can write the “first nonadiabatic correction” as

(2.21)

which is independent of the scattering energy. Combining this result with 

Eq. (2.16) we can write

(2-22)

From Eq. (2 ,2 0 ) we can see th a t Pi is a positive quantity; therefore 

the nonadiabatic correction acts to cancel some of the adiabatic polariza

tion potential. However, there are higher-order terms in both the adiabatic
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polarization potential and the nonadiabatic correction which are not negligible. 

In  fact, Drachman^^.has recently shown th a t the asymptotic form of the po

larization potential correct through is given by

+  +  ^  (2.23)

where the numerical values (in atomic units) of the coefficients in Eq. (2.23) 

are given as; ad =  4.5; =  15; =  43/8; 7  =  319/48; and Ô —  213/2.

We note tha t this potential is energy-dependent since k^/2  is the scattering 

energy. To ensure elastic collisions, we require th a t ftg <  0.75 Ry. For 

the purpose of illustration we assume th a t the higher-order terms represent 

an energy- and r-dependent correction to the dipole polarizability; we can 

rewrite Eq. (2.23) as

(2.24)

with ad{k l , r) defined by

, r ) ^  a , -  % + 2 4 # g )  _  ^  (2 25)

In Table 1 we present calculated values of ad{k^ , r) for three 

values of Aq and r. We should mention th a t Eq. (2.23) and hence Eq. (2.25) 

are valid only in the  limit of large r; our use of these expressions for the 

particular values of r in Table 1 involves some approximation. At any 

rate, it appears th a t the nonadiabatic corrections are small for r ^  15 ao, 

therefore the adiabatic approximation, Eq. (2.16), is valid in this region.
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Table 1.

Values of the “corrected” hydrogen atom dipole polarizability 

o^d{ko, r) in units of a®.

10.0 15.0 20.0

0.00 4.2 4.4 4.4

0.30 3.7 4.2 4.3

0.75 3.0 3.9 4.1

For a local exchange potential, we can write the to tal scattering 

potential as

V(r) =  V^%r) +  +  y P ° \r) . (2.26)

To use this potential in scattering calculations we must be able to accurately 

calculate when the scattering electron is near the target. Although

the adiabatic approximation is valid in the large-r region, as the scattering 

electron approaches the target it experiences more of the attractive static- 

exchange potential, thereby gaining a “local kinetic energy” comparable to 

th a t of the bound electron. The approximation th a t the target relaxes adia

batically in the field of a stationary scattering electron becomes less valid
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as the distance between the projectile electron and the target decreases.^® 

Thus the nonadiabatic effects must somehow be included when the scat

tering electron is near the target. The number of divers and wonderful 

schemes th a t have been employed in previous investigations testifies to  the 

diflicuity of this problem. However, we shall briefly list some of the major 

categories of treatments.

One can attack the  coupled-equations directly by attem pting to 

include a tractable number of additional states specifically chosen as to 

allow for polarization. This is the basic idea behind pseudostate trea t

ments.

A  large class of reasonably successful treatments based on the 

polarized orbital method of Temkin^® and Temkin and Lamkin^° has been 

reviewed by Drachman and Temkin^^ and by C a lla w a y T h e se  treatm ents 

utilize the perturbed target wavefunctions discussed previously and usually 

Include nonadiabatic effects in an approximate way.

I t  is also possible to  calculate an approximate correction to  the 

adiabatic polarization potential [as in Eq. (2.17)] for all values of r. Callaway 

et al. utilized polarization potentials generated in this fashion to  perform 

scattering calculations for electron-H and electron-He collisions. Their 

study concluded th a t this method of treating the polarization interac

tion worked well for the electron-He system, but over corrected for the 

electron-H system (the hydrogen atom is approximately three times more 

“polarizable” than  the helium atom). This method is also difficult to extend 

to more complicated systems. (For further discussion of polarization poten-
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tials and their use in electron-atom scattering, see Chapter 5 of reference 

24.)

2.5 The Polarization Potential for Electron-Molecule Collisions

In the previous sections we have introduced some of the physics 

of polarization potentials which occur in electron-atom collisions. This 

was done to take advantage of the  relative simplicity of electron-atom sys

tems, and because most of the techniques used to  calculate electron-mole- 

cule polarization potentials have their basis (sic ) in work done on elec

tron-atom systems. Due to their aspherical nature, the electron-molecule 

interaction potential is somewhat more complicated than  the correspond

ing electron-atom potential. For example, the simple scalar polarizability 

of Eq, (2.16) becomes a tensor of rank 2 for the general electron-molecule 

case. Fortunately, for homonuclear-diatomic molecules we can represent 

the polarizability by a ||, the parallel polarizability, and aj_, the perpen

dicular polarizability. The quantities aj| and aj_ represent the “distort- 

ability” of the molecule in a  uniform electric field oriented along—or per

pendicular to—the internuclear axis, respectively.

The asymptotic form of the adiabatic polarization potential [c/., 

Eq. (2.16)] can be written as

where f^(cos^) is a Legendre polynomial and Q is the angle from the 

internuclear axis to the scattering electron in our body-fixed reference frame 

of Chapter I. The spherical polarizability qq is given by
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« 0  =  I  (2a_L +  a||] (2.28)

■while the  nonspherical polarizability 0 2  is ^ven  by

« 2 = 1  lû|l -  aj_] • (2.29)

As was the case in the previous section, nonadiabatic effects must be 

included when the projectile is near the target.

Polarization effects have often been represented by a semi-em

pirical approximation based on the known asymptotic form in Eq. (2.27). 

The semi-empirical potential takes the form

VP»>(7) =  C ( r ) ( : ^  -  2 2 ^ ^ )  (2.30)

where C(r) is usually written as

C (f) =  1 -  exp(-(;J^)P). (2.31)
• c

This potential mocks nonadiabatic effects by cutting off the asymptotic 

form of the adiabatic polarization potential for values of r  ^  rc . The cutoff 

radius r<. is an adjustable param eter which can be “tuned” to bring cal

culated cross sections into agreement with some experimentally-determined 

feature of the scattering {e.g. , a shape resonance). Alternatively, Tc may 

be chosen to coincide with the approximate radius of the molecular charge 

cloud. Some of the inaccuracies associated with the semi-empirical poten

tial were demonstrated by Morrison and Hay^® and Truhlar et al. Their

studies utilized molecular structure codes to calculate accurate ah initio
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(though, fully adiabatic) polarization, potentials. Although the ab initio 

treatments were accurate over a larger region of space than the  semi- 

empirical potential, neglect of the nonadiabatic effects led to unphysically 

strong potentials near the  target.

Polarization potentials including approximate nonadiabatic effects 

have been generated by Lane and Henryk® and Hara.^® In order to obtain 

the proper asymptotic behaviour, both of these potentials had to be scaled, 

thereby introducing some uncertainty into the short- and intermediate- 

range regions.® More recently, S c h n e id e r,u s in g  a pseudostate approach, 

and Klonover and Kaldor,®^ using a second-order optical potential, have 

calculated scattering results in which nonadiabatic effects were included at 

various levels of approximation. Very recently, Schneider and Collins®^ 

have reported some preliminary calculations in which an optical potential 

approach was used to include nonadiabatic effects.

In the next chapter we will (finally) develop our treatm ent of the 

polarization interaction potential and present the results of some calcula

tions.
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CHAPTER m

A PARAMETER-FREE NONADIABATIC POLARIZATION 

POTENTIAL FO R ELECTRON-Ha SCATTERING

3.1 Introduction

In the previous chapter we introduced the need for terms beyond 

the static-exchange approximation and showed th a t an approach based on 

our intuitive ideas about how the target should distort in the presence of a 

charged particle could account for these terms. We also discussed the need 

to  include nonadiabatic effects in the polarization potential. Finally, we 

briefly introduced some of the methods that have been used to go beyond 

the static-exchange approximation for electron-atom and electron-molecule 

collisions.

In this chapter we will present our treatm ent of the polarization 

interaction for e-H2 collisions. To begin with, we will discuss the use of 

molecular structure codes to calculate adiabatic polarization potentials. 

Then we will introduce a procedure which allows us to include approximate 

nonadiabatic effects in our structure code calculations. We will describe 

some of the numerical techniques used to implement this nonadiabatic 

procedure. Polarization potentials obtained from this treatm ent will be 

presented and a comparison w ith the results of other calculations will be 

made.
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3.2 On the Use of Structure Codes to Calculate the 

Adiabatic Polarization Potential

In this section we will discuss the use of a molecular structure 

code to calculate the adiabatic polarization potential {cf., references 26 and 

27). Central to  this approach is the idea of treating the scattering electron 

as an additional (bogus) nucleus of charge — e. The additional nucleus is 

fixed a t position & with respect to the origin of coordinates (see Figure 1) 

and the energy of this system is calculated by a molecular structure code. 

For our calculation we use the POLYATOM®® computer programs. These 

codes perform analytic restricted-Hartree-Fock calculations. To endow the 

jargon in the  previous sentence with a little more meaning, we will briefly 

describe these calculations for the isolated H2 molecule.

• We begin by writing the ground-state electronic H2 wavefunction 

as a single Slater determinant (see Chapter 8  of reference 1), viz.

(f>o (?t ; -R) =
y/2

(3.1)
tpo (?i ; R ) Qi ^0 (ÿ*i ; R )  A

^0  (j*2 ; R ) ot2 ipo (^2 ; R )  A
where the a  (/?) are spin up (down) functions and the tpo are molecular

orbitals for the ground-state configuration. Our goal is to find the molecular

orbitals which minimize the system energy E q {R)

(R) =  { (5-i : R )  |io| 00 (7i ; R )  U ,  +  v „(r ) (3.2)

where )(q is the complete electronic Hamiltonian for the molecule and Vn{R) 

is the potential energy of the nucleus-nucleus interactions

=  =  1  (3.3)
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The molecular orbitals satisfy the Hartree-Fock equations

Uh f  i ’o =  0̂ ^0 (3.4)

■where eo is the orbital energy and the Hartree-Fock Hamiltonian for bound

electron 1 is written as

(1) =  )> c( i )+ Wo (% ; R) I I  ÿ o p 2 ; R) )à?, ■ (3.5)
FI — ^2|

Here, j/o (1) is defined by

^ o ( l ) =  — ------------ 1-------------------• (3.6)- V p
2 ‘ | ? , - S |

Since the molecular orbitals are normalized {{ipol'tpo} =  1), we can rearrange 

Eq. (3.4) and multiply on the left by f  d f i  leaving

{ M n ] R ) \ i l H F { l ) - 6o |A (^ i;^ ))d?i =  0 . (3.7)

To solve this equation we will use a linear combination of atomic orbitals to 

form the molecular orbitals: This approach was introduced by Roothaan®^ 

and is known as the LCAO.-MO method (see Chapter 15 of reference 1 and 

Chapter 25 of reference 12). Thus we write

M

M n ; R ) = y ,  Ct(R)vdn) (3.8)
k=l ■

where the rjk are a basis of “atomic” functions and the C* are coefficients

which we have to determine. For a given set of basis functions, we can find

the Ck which minimize the energy by the linear variational method (see 

Chapter 4 of reference 1).
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First, we substitute the molecular orbital of Eq. (3.8) into Eq.

(3.7) leaving

2 ]  2 2  -  £oS«l =  0 (3.9)
t  k

where the Hamiltonian m atrix elements are defined by

Htk  =  (»?Æ)li//F(l)lJ?fc(j^l))(iri (3.10)

and the overlap m atrix elements are defined by

Sik =  {Vt{n)\Vhiri))dTi (3.11)

To minimize the  energy with respect to  the linear coefficients, we take 

onto both sides of Eq. (3.9) leaving

C*i{R)[Hek — ^o% ] =  0 (3.12)
t

Using the Hermiticity of the Hamiltonian matrix {Hck =  H kâ),  we can 

rewrite Eq. (3.12) as

2 2  C t(R )W u  -  £oSk] =  0  (3.13)
t

These are known as the secular equations. Now, given a set of basis func

tions, POLYATOM solves the secular equations for the Q  and calculates

the variationally minimized energy E q{R).

H we introduce the scattering electron as an additional nucleus 

at S', we can write the energy of this system as

< ( C , f l )  =  { (6 j '( r i ;C '; f l ) |i ( ' |^ J ’f t :  C ; f l ) ) , 7, +  y 'J C ,B ) .  (3.14)
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Using the i/o and y„ of Eq. (3.2) and Eq. (3.3) we can write

i/o =  i/o -)-----------— 4---------- — (3.15)
|?i — ô \  |?2 — ^1

and

V'„(C,R)  =  V ,(R )  -  — 1—  -  — 1— . (3.16)
\ l - 0 \  ; ë - D |

The electronic wavefunction (pQ is formed from the distorted (polarized) 

orbitals
M

(7, ; C  ; R ) =  ; ^  C l t f i ,  R)% (7i) (3.17)
t  =  l

where we have used the same set of basis functions as in Eq. (3.8). The 

are found by solving

E  C f(C , R W 't e  -  =  0 (3.18)
t

where

— {VkÇl)\i HFi^)\Vi(jl))dri (3.19)

and, using the i /^ jr ( l)  of Eq. (3.5), we have

i ig f .( i )  =  W i )  +  — (3. 20)
|?i -  5 |

Therefore, the only difference between Eq. (3.18) and Eq. (3.13) is a term  

in the  Hamiltonian matrix. For a given k  and i  we write

— ^ k i  =  {»?*(?!) 1 I %(^i))d?i • (3.21)
|? i -  0\

This term is responsible for the being different from the C^.
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Now, we define the adiabatic polarization potential as the differ

ence in the system energy due to distortions induced in the target by a 

projectile electron fixed at Û, therefore we can write

R )  =  E ^ { 0 ,  R )  -  R )  (3.22)

where E q{G,R)  is defined by

E ^ {C ,R )  =  (0o(7i,i?)lill0o(7i;f?))dr. +  n ( S , - R ) .  (3.23)

Here, are the same as in Eq. (3.14). The target wavefunction 0o

is formed from the uniistorted orbitals in Eq. (3.8), th a t is, the <f>o in Eq. 

(3.23) is just the ground-state wavefunction for the isolated Eg molecule.

An interesting result can be obtained if we “rearrange” Eq. (3.23) 

slightly. Since F ^ (C , R)  does not depend on the bound-electron coordinates 

f i ,  we can “pull” V ‘„{C, R )  inside the matrix element in Eq. (3.23). Using 

Uq and as given in Eqs. (3.15-3.16) and replacing Ô with 7, we can 

write

«'o +  v'„(7, fi) =  So +  n - m  +  v„(fi) (3.24)

with Ve—m given by Eq. (1.3). Thus, we are left with

B "(r ,  f i )  =  fi»(fi) +  y « ‘(7) (3.25)

which we recognize {cf., section 2.3) as the system energy correct to  first- 

order in However, E q is obtained by a variational treatm ent and

— in some sense — contains higher than  second-order terms in We

will return to this point in a later section.
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In this section we have shown how the adiabatic polarization po

tential can be calculated by nsing a molecular structure program (POLY

ATOM) to  solve for the relevant quantities on the right-hand-side of Eq. 

(3.22). These codes are very eEcient, and provided a suficiently flexible 

set of basis functions is used, very accurate results are possible. In the 

next section we will examine a procedure which allows for the inclusion of 

approximate nonadiabatic effects in this formulation.

8.3 The Inclusion of Nonadiabatic Effects

In this section we will introduce a cutoff procedure which includes 

nonadiabatic effects in an approximate way; afterwards, we will discuss 

some of the details involved in the implementation of this procedure. In 

one of his early studies on electron-atom scattering,^® Temkin suggested 

th a t the scattering-bound electron interaction should be set to zero via 

a step-function whenever the scattering electron was inside the radius of 

the bound electron. For r  <  r i , this effectively cut off the interaction 

responsible for distorting the atomic orbitals and led to a weaker polariza

tion potential near the target. Physically, this seems to say that once the 

scattering electron experiences approximately the  same potential as the 

bound electron we should stop allowing the target to  relax adiabatically. 

This is consistent with our argument in section 2.4 where we maintained 

th a t nonadiabatic effects would be most important when the “local kinetic 

energy” of the scattering electron was comparable to  th a t of the bound 

electrons, and the target charge cloud could no longer “follow” the instan

taneous field of the projectile. The cutoff procedure has been used with
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considerable success for various electron-atom systems (see references 21  

and 22).

Lane and Henryk® used a linear variational approach to  calculate 

electron-Hg polarization potentials. Their method involved the use of a 

trial function of the form

^o (^ i;n ^eq  ) =  0o(7*; jReq jReq )[%! +  X2]°‘[Zl +  (3.26)

where J?eq denotes the  equilibrium internuclear separation and 0o(7»; JReq) 

is the isolated ground-state H2 wavefunction of Joy and Parr.®® The energy 

of the  electron-H2 system was minimized w ith respect to  the Ca,^ and the  

equivalent of Eq. (3.22) was used to  calculate the polarization potential. 

Hara^® calculated electron-Hg polarization potentials in a two-center for

mulation by using a variation-perturbation approach. A standard linear 

variational treatm ent was used to form the secular equations which were 

then expanded in orders of Ve—m, and only terms of first- and second- 

order were retained. In addition, Hara included only the dipole contribu

tion to the polarization potential. We will discuss the dipole approxima

tion later. Both Lane and Henry and Hara calculated polarization poten

tials which utilized the Temkin cutoff (non-penetrating) procedure to  ap

proximate nonadiabatic effects. In order to  obtmn the proper asymptotic 

behaviour, both of these potentials had to be scaled, thereby introducing 

some uncertainty into the short- and intermediate-range regions. The dis

agreement with the  known long-range values was probably due to  a lack of 

flexibility in the trial functions used in these treatments.
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In our study of the polarization interaction, approximate nonadia

batic effects are included by the non-penetrating (cutoff) procedure described 

above. The actual implementation of this procedure affects the calculation 

of the integrals on the right-hand-side of Eq. (3.21), viz.

I Î— I . (3 .27)
|7 i -  5 |

The “atomic” basis functions which appear in these integrals need not 

be true solutions of an atomic Hamiltonian but are usually chosen for 

flexibility and ease of computation. The POLYATOM codes utilize basis 

sets of nucleus-centered Cartesian Gaussian-type-orbitals. A given member 

of the basis can consist of a linear combination of Gaussian “primitives” 

contracted into a single basis function. For a Gaussian primitive on nucleus 

A  we have the general form

=  N ,„ (= :a ) ‘'  (v a ) '  (« y i)' (3 .2 8 )

where Ngrs is a normalization constant, at  is the exponential coefficient, 

and the remaining terms are deflned in Table 2. We can write a similar 

expression for a primitive on nucleus B. The particular values of qrs define 

the “type” of Gaussian function, e.g. ,

Ç =  r  =  6 =  0; 6-type function (3.29a)

Ç =  1, r =  6 =  0; Pa;-type function (3.29b)

r  =  1, Ç =  6 =  0; Py-type function (3.29c)

6 =  1, Ç =  r  =  0; Pz-type function (3.29d)
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These are the only types of functions which we will use for our electron-Eg 

calculations. In Table 3 we list the relationships between the various types 

of functions used and linear combinations of spherical harmonics. These 

relationships are very useful in the actual evaluation of integrals.

Table 2

Definitions of the terms appearing in Gaussian primitives 

(c ./, Figure 1).

For a Gaussian primitive on nucleus A

ZA =  X \ —  A x  =  x \  =  r \  s in ^ i  c o s ^ i  

y A =  y i — Ay =  yi =  n  sin^i sin(6i 

ZA =  Z i — Az =  ri cos 01 +  |Az|

4-Ag +  2n|A z|cos^i

For a Gaussian primitive on nucleus B

xb  =  Xi — Bx =  x i  — ri s i n c o s 0 i  

y s  =  yi — By =  yi =  ri sin0i sin^i 

zg =  — Bz =  ri cos 01 — \Bz\

r |  =  r? +  -  2ri|B^l cos 0i
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Table 3

Relationships between the types of basis functions used and the spherical 

harmonics. (For a more extensive table see p. 6 of reference 12.)

Notation Coordinates Spherical Harmonics

S 1 V 4 F y g (n )

Px Xi =  r i  sin 6i cos \ / ¥ [ y r ' ( n ) - y i f t ) i n

Py yi =  ri sin^i sin^i v / ^ [ y r ’( n ) + y i f t ) ] n

Pz zi  =  n  cos $i ^ / ¥ y ° ^ h ) r l
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The POLYATOM codes use analytic forms®® to  evaluate the in

tegrals in Eq.(3.27). Unfortunately, the cutoff procedure restricts the radial 

component of the integrals such th a t these analytic forms are no longer 

valid. Instead, we have chosen to evaluate these integrals numerically by 

a method which we will now describe. To incorporate the non-penetrating 

procedure we employ the following expansion

_ 1  n < c  (s-so.)

in  -  \^0 , r i > C  (3.306)

which effectively cuts off the scattering-bound electron interaction for >

C. The Gaussian primitives are expanded in a series of spherical harmonics, 

viz.

< îf t)  = E  È 7 - 4 ( n ) Y H h )  (3.31)

where the a\ are given as

a{ in )  =  n  J  dfI Y (ri)* r){7i). (3.32)

Analytic expressions for these coefficients can be derived by methods dis

cussed in Appendix 2. Now, substituting the expansions in Eqs.(3.30 and 

3.31) into Eq.(3.27) and using the Gaunt formula for the integral over three 

spherical harmonics (see Chapter 1 of reference 12) we have
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k

{C)
\4ir{2i+ l ) { 2 k - ^ l ) Ÿ^^

2X + 1  J
•c/ \  i  k \ r  \  i k \  1 f  

VO 0 0 /  \ j - i  -  j e JC^Jo
• dri a f  (r i)  a j  ( n ) |  (3.33)

The Wigner 3-J coefficients vanish unless

X +  î +  A =  even integer (3.34a)

| î - A | < X < z  +  A (3.346)

and the sums in Eq.(3.33) are further restricted by the allowed values of i 

and j  for the expansion coefficients a{. The remaining radial integrals in 

Eq.(3.33) will be evaluated numerically.

A t this point we should mention something about the “great 

multipole mystery”. We have used a multipole expansion of the scattering- 

bound electron interaction potential [Eq.(3.30)] where X labels the  multipole 

components, e.^, , X =  0 is the monopole term, X =  1 is the dipole term, 

and X =  2 is the quadrupole term. In principle there are an infinite number

of these terms which should be included; in practice we need only include

enough terms to  converge our integral to  some specified accuracy. However, 

a number of earlier investigations^^’̂ ^’®̂ have found th a t retention of the 

monopole term often leads to “unphysically” strong potentials.
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As  a  correction, some treatm ents simply exclude the monopole (X =  0) 

contribution while others keep only the dipole (X =  1) contribution to 

the polarization potential. In section 3.5 we present polarization potentials 

calculated with various multipole contributions. To see whether or not the 

monopole term will give rise to a problem in our treatm ent, consider the 

following. We can replace Ô with f  and use Eq.(3.24) to rewrite Eqs.(3.14 

and 3.23) as

<  (n  R )  =  (7j; f ;  +  V.-™  +  y„(fl)|0r(?i; T; (3.35)

and

jEJ' (?, R )  =  (ÿo(?i; R ) \ h  +  Ve-m +  R )U u  ■ (3.36)

In the non-penetrating approximation, we can make the following multipole 

expansion of Ve—m [Eq.(1.3)]

n
(3.37)

where is the lesser of (r, §•) and i?>  is the greater of (r, ^ ) .  We are 

only interested in the monopole (n =  0) term  here, which we can write as

^ e —m • (3.38)

The first term  on the right-hand-side is from the scattering-bound electron 

interaction and the second term is due to the interaction between the scat

tering electron and the nuclei. For the equilibrium internuclear separation 

of H2, R  — 1.4co and i?>  =  r  for r>0.7ao. Thus, the monopole com

ponent of the electron-molecule interaction potential vanishes for r>0.7an 

and should make no contribution to the polarization potential. However,
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as we shall show in section 3.5, including the X =  0 term  in Eq.(3.33) 

has a very significant (and unwanted) effect on the polarization potential. 

The reason for this “mishandling” of the monopole term  is due to the way 

th a t the structure code calculates the system energy and our use of the 

cutoff procedure in evaluating the integrals of Eq.(3.33). For the isolated 

Eg molecule, the ground-state energy can be w ritten as (see Chapter 25 of 

reference 12)

£ j( f l)  =  2 (^„(?i;B)lS’«F(l)l<fo(?i;R ))„. +  y„(B) (3.39)

which is equivalent to Eq.(3.2). The POLYATOM codes actually calculate 

the system energy based on Eq.(3.39) rather than the form given in Eq.(3.2). 

We can also write

E ^{7 ,R ) =  2 {< (? i;f;R )|j/'„ f.(l) |,( .J’(7i;7;R))di.. +  V 'JT .R )  (3.40) 

and

E ^{7 ,R )  =  2 (ÿ „ (? i;R ) |if '„ p ( l) l« f i;R ))d î. +  V'J^7,R). (3.41)

The terms involving in Eq.(3.40) can be written as

2(ÿf(?i; 7; R ) | _ l _ | ^ P ( ? j ;  f; R ) )„ ^  L -------------------------(3.42)
r i - n  | ? + f i / 2 |  \ 7 -  Ti/2\

and for Eq.(3.41) we have

2 ( * ( 5 ' i ; i î ) l i 7 ^ l î ( ' o ( i ' i ; i J ) ) d 7 . ---------------- ^ -------------------------V -  •
1̂ 1 -  n  , \ 7 + R / 2 \  I? -  ft/21

ÏÏ we substitute the  multipole expansion of Eq.(3.37) into Eqs.(3.42 and

3.43) and keep only the monopole term, we are left with
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I -  I ^  (3.44)

and

{ M n ; R ) \ l \ U n ; n ) U r ^ - . (3.45)

Although =  (^ol^o) =  1, in our cutoff procedure-we have restricted

the radial integrals such th a t we are left with

rl  d r i\ ij^{71 ;7 ;R ) f j  -  ^  (3.46)

for Eq.(3.44) and

K/ (3.47)

for Eq.(3.45). Since the integrals in these equations are not in general 

unity, the monopole terms in this formulation do not cancel when J2> =  

r. To remedy this situation, we remove the monopole component of the 

scattering-bound electron interaction in and add it to  V ’J ? ,R )

for all values of r in Eqs.(3.40 and 3.41). This rearrangement is certainly 

valid for r >  § ,  and in order to  avoid a significant discontinuity in the 

polarization potential, we do the same for r <  ^  as well. Now, — 

E q — E ^ ,  therefore the net effect of our machinations is to remove the 

monopole contribution to This procedure can be readily implemented 

by requiring that X >  0 in Eq.(3.33).
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3.4 Numerical Procedures

In  this section we will discuss some of the computational details 

involved in implementing the non-penetrating procedure of the  previous 

section. To begin with, it was necessary to  modify the POLYATOM codes 

so th a t the integrals of Eq.(3.33) would be used instead of the regular 

analytic forms. This was accomplished by including some additional op

tions in subroutine VINTS which are controlled by the value of an input 

parameter NPOPT (for non-penetrating option). The options correspond

ing to the particular values of this parameter are the following:

N P O P T =  0 Normal operation of the structure code.

N P O P T =  1 Normal operation of the structure code plus 

the production of a disk (or tape) file 

containing a list of the parameters which 

uniquely specifies each of the integrals 

involving the  bogus nucleus [cf., Eq.(3.27)]. 

N P O P T =  2 The structure code reads a file of

evaluated integrals corresponding to the 

file produced when NPOPT =  1. These values 

are substituted for those normally calculated 

in VINTS.

Since we are trying to  calculate a better-than-adiabatic (BTA) 

polarization potential by using the cutoff procedure described in the previous 

section, we need a code to evaluate the modified integrals involved in our ap

proximation. Such a code (BTAINTS by name) has been developed and 

tested during the course of this study. Essentially, this program
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reads the file produced by POLYATOM when NPOPT =  1 and evaluates 

the  integrals one a t a time using Eq.(3.33); the evaluated integrals are then 

written into a disk (or tape) file for subsequent use in POLYATOM when 

NPOPT =  2.

The file produced by POLYATOM when NPOPT =  1 contains 

all of the information necessary to specify the two Gaussian primitives 

and rjiji) for each integral involving the bogus nucleus. This information 

includes which of the  real nuclei the primitive is centered on and the 

location of th a t nucleus. Due to the way POLYATOM discards integrals 

which are zero by symmetry, the particular list of integrals produced will 

depend on the point group to which the nuclear framework (including the 

bogus nucleus) belongs. For the electron-Eg system, we need only consider 

the following point groups:

C'eût; W hen the scattering electron is located

along the internuclear axis.

C2v W hen the scattering electron is located

along a perpendicular bisector of the 

internuclear axis.

Ce W hen the scattering electron is located

anywhere else.

Also, for a given internuclear separation R ,  the list of integrals to be 

evaluated is produced only once for each point group.

The sums over i and k  in Eq.(3.33) are truncated at the values 

IMAX and KMAX, respectively. These values (usually IMAX =  KMAX) 

are chosen such th a t the system energy E q is converged to some specified
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tolerance. For a given pair of primitives, all of the  required expansion 

coefficients aj and are generated and stored for use in the radial in

tegrals which are then performed by a fixed step-size trapezoidal quadra

ture  scheme. If the scattering electron is sufficiently far from the target, 

the integrals calculated from Eq.(3.33) should approach the values obtained 

from the analytic forms used in POLYATOM. In Table 4 we show the con

vergence properties of E q w ith respect to IMAX and the step-size RSTEP 

used in the trapezoidal quadratures. For these calculations, the scattering 

electron was fixed at =  lO.Oao and the equilibrium internuclear separa

tion i? =  1.4oo was used. Additional convergence studies for smaller values 

of C  indicate tha t one should choose a value of RSTEP which requires a t 

least 25-30 steps in the trapezoidal quadratures. The value of IMAX for 

a given calculation depends on which multipoles are included; e.g. , IMAX 

=  16 is necessary if the monopole term in Eq.(3.33) is included, whereas 

IMAX =  12 is sufficient if no monopole contribution is allowed.
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Table 4.

Convergence characteristics of E^{C , R )  [in Hartrees] with respect to IMAX 

and RSTEP. Here, the scattering electron is fixed at Cz =  lO.Oco and 

the equilibrium internuclear separation R  =  1.4ao is used. The value 

obtained when the analytic integrals in POLYATOM are used is E q — 

—1.133694792Ea.

IM A X \RSTEP(ao)

0.4 0.2 0.1

-1.133658147 -1.133696309 —1.133695047

-1.133657861 -1.133696123 -1.133694856

— 1.133657775 -1.133696072 1.133694805

-1.133696060 —1.133694794

-1.133696057 1.133694791
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All of our calculations involving the polarization potential have 

been performed in double-precision on an IBM 370/158 computer. In the 

BTAINTS code we have exploited the axial symmetry of the electron-H2 

interaction potential so tha t only real quantities are handled numerically. 

This is accomplished by restricting the position of the scattering electron 

to  the za-plane {^c  =  0, see Figure 1). Currently, the BTAINTS code 

can perform integrals for 5- and p-type Gaussian primitives. However, it 

should be straightforward to augment the program so th a t it can handle 

(f-type functions as well. It should also be possible to  make the BTAINTS 

code more efficient; most of the computer time used in calculating the 

polarization potential is spent in this program.

3.5 Calculation of the Polarization Potential

In this section we will describe the general procedure involved 

in calculating a polarization potential and then present the various poten

tials. The first step is to obtain a good set of basis functions for the Hg 

target. We sta rt with a [5S2P/3S2P] set of Gaussian basis functions. The 

exponents and contraction coefficients for this basis set are those given 

by Huzinaga.®® This set is augmented with diffuse s- and p-type Gaussian 

functions to form a [6S3P/4S3P] basis set. The diffuse Gaussians give the 

target wavefunction added flexibility; i.e., they allow for greater distortion 

of the target charge cloud. The exponents for the diffuse functions were 

obtained by continuing the sequence of exponents in the original set as a 

geometric series. A  list of the exponents and contraction coefficients for 

the [6S3P/4S3P] basis set is given in Table 5.
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Table 5

Exponents and contraction coefficients for the [6S3P/4S3P] Gaussian basis 

set used in calculating the polarization potential.

• * GAUSSIAN FUNCTION SPECIFICATIONS * *
NUMBER OF PRIMITIVE GAUSSIANS » 30
NUMBER OF BASIS FUNCTIONS = 26
GAUSSIAN FUNCTION COMPONENT CENTER TYPE EXPONENT COEFFICIENT

1 1 1 HI S 33.6444000 0.0253740
2 1 2 HI S 5.0579600 0.1896830
3 1 3 HI s 1.1468000 0.8529300
4 2 I HI s 0.3211440 1.0000000
5 3 1 HI s 0.1013090 1.0000000
6 4 1 HI s 0.0300000 1.0000000
7 5 1 HI X 1.1142000 1.0000000
8 6 1 HI X 0.2592000 1.0000000
9 7 1 HI X 0.0600000 1.0000000

1£T 8 1 HI V 1.1142000 1.0000000
11 9 1 HI V 0.2592000 1.0000000

. 12 10 1 HI Y 0.0600000 1.0000000
13 11 1 HI z 1.1142000 1.0000000
14 12 1 HI z 0.2592000 1.0000000
15 13 1 HI z 0.0600000 1.0000000
16 14 1 H2 s 33.6444000 0.0253740
17 14 H2 s 5.0579600 0.1896830
18 14 H2 s 1.1468000 0.8529300
19 15 1 H2 s 0.3211440 1.0000000
20 16 1 H2 s 0.1013090 1.0000000
21 17 1 H2 s 0.0300000 1.0000000
22 18 I H2 X 1.1142000 1.0000000
23 19 1 H2 X 0.2592000 1.0000000
24 20 H2 X 0.0600000 1.0000000
25 21 1 H2 Y 1.1142000 1.0000000
26 22 H2 Y 0.2592000 1.0000000
27 23 1 H2 Y 0.0600000 1.0000000
28 24 1 H2 Z 1.1142000 1.0000000
29 25 1 H2 z 0.2592000 1.0000000
30 26 1 H2 z 0.0600000 1.0000000
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Now, using our augmented basis we obtain the energy of the 

unperturbed molecule E q{R) and the coefficients Ck{R) of Eq.(3.8). These 

coefficients will be used in the calculation of E q {C, R )  when the scattering 

electron is introduced as an additional nucleus. For R  =  I A oq, we obtain 

E q =  —1.13295% using the augmented basis set. This can be compared 

with the Hartree-Fock limit value, E q =  —1.13363%, calculated by Kolos 

and Roothaan®® and the  very accurate configuration-interaction (Cl) value 

of Kolos and Wolniewicz"*® E^ =  —1.17447%.

A  better indication of how “good” our basis is for the calculation 

of polarization potentials can be obtained by calculating the polarizabilities 

o r | |  and aj_.  To calculate 0 || we place the scattering electron far from the 

target along the z-axis {C =  %MO.Oao), then 0 || is given as

a i  =  - i V ^ \ C ^ , R ) - C \ .  (3.48)

For Qj_ we place the scattering electron far from the target along the z-asis 

(C =  C'-tMO.Oflo), w ith a_i_ given as

aj_ =  - 2 y P ° \ % , R ) - C ^ .  (3.49)

In Table 6 we present calculated values of a || and o;j_ for various values of C  

and R .  For comparison, we include the C l results of Rychlewski.^^ Because 

the field of the scattering electron is directed radially from the charge 

instead of uniformly along the x- or z-axis, the calculated polarizabilities 

have a C-dependence. As the scattering electron is placed farther away 

the molecule “sees” a more nearly uniform field, and the calculated polar

izabilities approach their true C-independent values.^^
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Table 6.

Calculated values of a|| and a  j_ (in a®) for various values of C  and R .  The 

values of are listed in parentheses below the corresponding values of 

0!||. The column labeled C l contains the configuration-interaction results 

of Rychlewski.'*^

i2(co) C{ao)

10.0 15.0 20.0 30.0 Cl

1.2 5.266 5.212 5.189 5.171 5.152

(3.851) (3.865) (3.867) (3.867) (3.947)

1.4 6.635 6.558 6.525 6.499 6.387

(4.512) (4.534) (4.539) (4.541) (4.579)

1.8 10.172 10.022 9.957 9.906 9.332

(5.955) (6.002) (6.014) (6.020) (5.879)
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In order to  avoid confusion, we will establish some nomenclature 

for the various polarization potentials. Potentials calculated in the adiaba

tic approximation are referred to  as adiabatic (AD) or penetrating (P). Any 

potential which is calculated using the modified integrals of Eq.(3.33) will 

contain a BTA in its name. The various BTA. potentials depend on which 

multipole contributions are retained. We have calculated the following 

cases:

Name of potential Values of X retained in Eq.(3.33)

BTA X =  0 -  32

BTAD X =  1

BTADP2 X =  l - 3

BTADP23 X =  1 -  24
Other calculations which employ the cutoff procedure will be referred to  as

non-penetrating (NP) along with whatever other descriptive qualifiers seem 

appropriate; e.g. , we will refer to the scaled non-penetrating calculation 

of Lane and Henryk® as the SNP potential and the scaled non-penetrating 

dipole treatm ent of Hara^® as the SNPD potential.

For the  electron-Eg system we assume th a t (for a given R )  the 

polarization potential can be written as

=  e r V )  +  vl% )P2{zos e) (3.50)

where is given by

= I  + ^r'(<-)i (3.51)

46



and is given by

«i°'W =  I  IT^fV) -  1"ïV)] • (3.52)

Provided Eq.(3.50) is valid, -we need only calculate V |° V )  =  V ^ ° \C z ,R )  

and y ^ '( r )  =  V ^ ° \C x ,R )—here, we are again using ? and Ô as inter

changeable labels for the position of the scattering electron. The polariza

tion potentials VJ|°V) and V ^^(r) are calculated on a mesh of 23 r-values 

for 0< r< 10 .0ao . For use in scattering calculations, we need the polariza

tion potential on a much denser mesh of r-values. These values are provided 

via a cubic-spline fit of the 23 calculated values. Once we have VJj°V) and 

on the appropriate r-mesh, vg°^(r) and are generated using

Eqs. (3.51 and 3.52).

To test the  validity of Eq. (3.50), direct calculations of Vp°^(C, R )  

for 6c =  f  were compared to the predicted values. We find agreement to 

within 5% for r <  l.Oco, and within 2% for r >  1.5co for the BTA poten

tial. Lane and Henry^^ found similar agreement for their SNP potential.

For the BTAD potential, we find agreement to within 0.2% for all values 

of r considered.

For r >  lO.Oao, we use a simple fit based on the long-range form 

of the adiabatic potential, viz. ,

" r V ) =  ^  (3.53)

and

+  62)2 (®-54)
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with û!o and «2  given by Eqs. (2.28 and 2.29). The value of b depends on 

the particular potential being fit, e.g. , b =  l.Ooo for the BTAD potential 

when i? =  1.4ao.

In  Figures 2 and 3 we present various V |° '(r)  [$ — 0] and 

(r) [ff =  g.]; unless otherwise specified, all of these results are for R  =  

1.4ao. Included in these figures are the AD, BTA, BTADP23, and BTAD po

tentials. The most striking feature in these figures is the difference between 

the BTA potential and the other two potentials in which nonadiabatic 

effects have been included. This difference is due to the (improper) inclusion 

of the monopole contribution and is similar to the findings of Weatherford 

et al. In fact, we see th a t the BTA potential is more attractive than the 

full AD potential for r ^  L2ao-

In Figures 4 and 5 we present the BTAD, BTADP2, and BTADP23 

potentials. These results show tha t — a t least for the electron-H2 system — 

the polarization potential converges rapidly in X [cf., Eq. (3.33)] and is 

reasonably well represented by keeping only the dipole (X =  1) contribu

tion. To see how these differences affect %/g°̂ (r) and v^°\r), we show results 

for the BTAD and BTADP23 potentials in Figure 6. Inclusion of the higher 

multipoles makes very little difference for vg°^(r), although a more substan

tive difference is noted for v^°*(r)-

A  comparison of our AD and BTAD potentials with the SNPD 

calculations of Hara^® is shown in Figures 7 and 8. By spline-fitting 

Hara’s V |° V )  ^tnd V ^^(r) potentials and using Eqs. (3.51 and 3.52) we 

can compare results for z;§°^(r) and These comparisons are shown
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in Figures 9 and 10. Some of the small-r repulsion in Hara’s results is due 

to  “overshoot” in the cubic-spline fit.

In order to  explicitly calculate vibrational excitation cross sec

tions, one needs to know how the potentials depend on internuclear separa

tion. In Figures 11 and 12 we show BTAD potentials for R  =  1.2oo, R  =  

1.4oo, and R  =  I.Soq. All of these potentials were calculated with the 

[6S3P/4S3P] basis set of Table 5.

In section 3.3 we mentioned th a t our variational calculations 

included higher than  second-order terms in Ve—m- If our polarization po

tentials were calculated to second-order in Ve—m, changing the sign of the 

projectile’s charge would make no difference. However, in our structure 

code treatm ent we find tha t replacing the electron by a positron results in 

a considerably different polarization potential. Adiabatic potentials for the 

electron (AD) and positron (ADPOS) cases are presented in Figures 13-16. 

We also show the first three coeflttcients in a spherical harmonic [F ^ ( f i) ]  

expansion of the AD and ADPOS polarized orbitals in Figures 17-19. These 

results were obtained when the bogus nucleus (electron or positron) was 

located at Cz =  2.5ao; for these orbitals, M  =  0. For comparison, we 

show the expansion coefilcients of the unperturbed (NEUTRAL) orbital.

Finally, for use in other scattering calculations, an analytic fit to 

the R  =  1.4co BTAD potential was performed, viz. ,

< \ r )  =
“  exp(—(rr)^ '^ ) j  f  <  IOcq (3.55c)

r >  lOao (3.556)
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where bo =  —2.036ao, ro =  2.79ao, and the spherical polarizability ao =  

5.2o§;

( /M r)

r  2(rjq^'ii}4 -ff)2 ( l  — e x p (— (c!V)®'^)) r  <  4co  

=  2 T 7 5 t 6 h ^  4 o o  <  r <

(3.56a)

^ i [ r % r W  4 a o < r <  lOao (3.566)

r  >  lOao (3.56c)

with bi =  —1.82ao, T\ — 2.42oo> 62 =  0.08365Og, r2 =  0.767cq, and the 

nonspherical polarizability Og =  1.32ag. Our spherical and nonspherical 

polarizabilities were obtained from the values of 0!|| and aj_ when C  =  

20.0ao and R  =  1.4ao (see Table 6). The corresponding experimentally 

determined values are cxq =  5.44ag and ag =  1.37a^. A comparison 

of the analytic fit with the  numerical potential is shown in Figure 20.

In the next chapter we will test our potentials in scattering cal

culations.
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0 4

Figure 1. The coordinates used for the electron-Sg system. Here, the 

positions of the nuclei are represented by A, È ,  and (for the  bogus nucleus) 

0] fy  is the coordinate of a bound electron.
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Figure 2. Polarization potentials obtained when the scattering electron is 

located along the z-axis {9 =  0). The following potentials are shown:

— , BTAD; +  , BTADP23; D , AD; x  , BTA.
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Figure 3. Polarization potentials obtained when the scattering electron is 

located along the z-asis (Û =  ir/2); curves labelled as in Figure 2.
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Figure 4. Polarization potentials for  ̂=  0. The curves shown include the

BTAD ( — ), BTADP2 ( A ), and BTADP23 ( +  ) potentials.
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Figure 5. Polarization potentials for 6 =  îr/2; symbols as in Figure 4.
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Figure 6. The spherical (lower curves) and non-spherical (upper curves)

components of the BTAD ( — ) and BTADP23 ( +  ) polarization potentials.
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Figure 7. Polarization potentials for ô — 0. The  following potentials are

presented: — , BTAD; +  > SNPD; □ , AD,
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Figure 8. Polarization potentials for 0 =  tt/2; symbols as in Figure 7.
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Figure 9. The spherical component of the BTAD ( — ) and SNPD ( +  ) 

polarization potentials.
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Figure 10. The non-spherical components of the BTAD ( — ) and SNPD 

( +  ) potentials.
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Figure 11. The spherical component of the  BTAD polarization potential 

for the following internuclear separations: A , j R = 1 . 2 a o J  — , R  =

1.4 Uo; - j - , jR =  1.8 Go.
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Figure 12. The noil-spherical component of the BTAD polarization poten

tial; curves labelled as in Figure II.
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Figure 13. Adiabatic polarization potentials for  ̂=  0. The curves presented

are the AD ( □ ) and ADPOS ( -}- ) potentials.
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Figure 14. Adiabatic polarization potentials for 6 =  tt/2; the symbols used

are the same as in Figure 13.
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Figure 15. The spherical components of the AD ( □ ) and ADPOS ( -p ) 

polarization potential.
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Figure 16. The non-spherical components of the AD (□) and ADPOS (+ )  

polarization potentials.

66



oCO
MOEXP L=0

•-

LT

O(O

C\J

o

y.oo 6.00 
n (BOHR)

12.0010.008 .002 .00.00

Figure 17. The L  =  0 molecular orbital expansion (MOEXP) coefficients 

from a spherical harmonic (T ^ ( r i ) )  expansion of the  following orbitals; 

— , NEUTRAL; A , AD; +  , ADPOS. For th e  AD(ADPOS) curves 

the scattering electron (positron) was located at == 2.5 cq-

67



o
MOEXP L=l

Ô1

f

O o,
2 : •

o
oA

8*. 002'. 00 12.0010.006.00 
r  (BOHR)

0.00

Figure 18. The L  =  1 expansion coefficients; curves labelled as in Fig. 17.
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Figure 19. The L  — 2 expansion coefficients; curves labelled as in Fi
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Figure 20. The spherical (lower curves) and non-spherical (upper curves)

components of the BTAD ( — ) and ANALYTIC FIT ( A) potentials.
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CHAPTER IV 

ELECTRON S  SCATTERING RESULTS 

In the previous chapter we presented various polarization poten

tials in which approximate nonadiabatic effects were included. In this 

chapter we will te s t our treatm ent of the polarization interaction in scat

tering calculations; om scattering results will be compared to experimental 

measurements and other theoretical values.

Two basic types of scattering calculation have been performed. 

The first type uses the body-frame fixed-nuclei (BF) formulation described 

in Chapter I. In the  second type of calculation, the rotation of the nuclear 

framework (for fixed R )  is explicitly taken into account by a laboratory- 

frame close-coupling (LF) formulation.®’̂ ® A numerical procedure based on 

an integral-equations algorithm^®’̂  ̂ is used to solve the relevant scattering 

equations in both  formulations.

To determine cross sections for electron-Eg collisions, we calcu

lated an ab initio static potential^’® using the near-Hartree-Fock Eg 

wavefunction of Feldt and Morrison.^® The Feldt and Morrison wavefunc- 

tion is derived from the unaugmented [5S2P/3S2P] set'*’ of Gaussian basis

^The exponents for the p-type functions in this set are larger by a 

factor of 2 than  the ones in the basis set used for the polarization potential.
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functions th a t v e  started with for the polarization calculation {cf., section 

3.5). This same Eg wavefunction was used to incorporate approximate 

exchange effects via the tuned free-electron-gas model-exchange potential 

(see Appendix I  and references therein); a  value of 2.27 eV was determined 

for the “tuned ionization potential” .

The static and exchange potentials are expanded in a Legendre 

polynomial series, viz. ,

g < ^ "^ H r)P x (c o s0 )  (4.1)
x=o

with Xmax =  8. Thus, the static model exchange polarization (SMEP) 

potential can he written as

v{7) =  y®*(7) - f  y « '( r )  +  (4 .2 )

where V®* and V®® are given by Eq.(4.1) and is given by Eq.(3.50).

In  the  BF formulation we can perform scattering calculations in 

which exchange effects are included exactly.® However, we can not currently 

perform exact static-exchange-polarization (ESEP) calculations in the LF 

formulation. For BF calculations we include five channels per symmetry 

for the E j, E«, E^, E„, and Ag symmetries, but only three channels for 

the symmetry [see Eq.(1.12)]. The total angular momentum 7  in the

LF formulation is restricted to 7 < 4 , and we retain four rotor-states in the

close-coupling expansion.

Using the different formulations and interaction potentials described 

above, we have calculated total (elastic plus rotational-excitation) cross sec

tions. In order to  keep the results of the various treatm ents from getting too
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confused, we shall establish some more nomenclature. The name of a 

given calculation will indicate which of the two scattering formulations was 

employed, whether exact or model exchange was used, and which of the 

various polarization potentials was incorporated; t.g . , SMEP cross sections 

calculated in the LF formulation using the BTAD polarization potential are 

referred to  as LFSMEP(BTAD) results.

In Figure 21 we show BFSMEP(BTAD), BFSMEP(BTADP2), and 

BFSMEP(BTADP23) integrated total cross sections. We find agreement 

between the BFSMEP total cross sections and the corresponding LFSMEP 

results (not shown) to within better than 1% for the lowest scattering 

energies considered (Ei%0.020eV) and to within much better than  \%  for 

larger energies. Since the scattering results obtained with the different 

polarization potentials in Figure 21 are so similar,"'’ we consider only the 

BTAD potential for further scattering calculations.

Total integrated cross sections for very low-energy (E < 0 .5eV) col

lisions are presented in Figure 22. Here, we compare our LFSMEP(BTAD)

^The LFSMEP(BTAD) and LFSMEP(BTADP23) integrated rotational- 

excitation cross sections do no t agree as well as the to tal cross sections in Figure 

21. Also, scattering results obtained with the BTA potential are so thunderously 

bad tha t we do not present them  here.
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and BFESEP(BTAD) results to the measured values of Ferch et al. 

and the LFESEP(SNP) cross sections of Henry and Lane.®® A  modified- 

effective-range theory®^ fit to our LFSMEP(BTAD) total cross sections 

(■which are globally converged to better than 1%) produces a scattering 

length A =  L26ao- This value is in excellent agreement ^ ith  tha t reported 

by Chang,®^ who obtained A  =  1.27± O.Olao by fitting the experimentally- 

determined results of Crompton et al. ®® and those of Ferch et al. Cross 

sections for higher energies are presented in Figures 23 and 24, where 

we compare our results with the measured values of Golden et al. ,®̂  

Dalba et al. ,®® and Jones.®® Also shown in Figure 23 are the following 

theoretical cross sections: the LFESEP(SNP) results of Henry and Lane;®® 

the BFESEP(SNPD) results of Hara;®^ and the BFESEP(DPS)’'’ results of 

Klonover and Kaldor.®^ All of the theoretical results presented in these 

figures were calculated with a fixed internuclear separation; Klonover and 

Kaldor®® have shown tha t explicit integration over R  can lead to a small 

increase in the total cross section and a significant increase in the rotational- 

excitation cross section. The disparity between our LFSMEP(BTAD) and 

BFESEP(BTAD) curves in Figure 24 is almost entirely due to the different 

treatm ents of the  exchange interaction.

In Table 7 we compare our integrated rotational-excitation cross 

sections for j  =  0 to  /  =  2 with those of Henry and Lane®® and with the

^Klonover and Kaldor®^ incorporated nonadiabatic polarization 

effects via a diagrammatic perturbation series (DPS).
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swarm measurements of Crompton et ai. Additional cross sections for this ex

citation are shown in Figure 25. The BFESEP(BTAD) rotational-excitation cross 

sections were calculated in the scaled adiabatic-nuclear-rotation (SANR) ap

proximation of Feldt and Morrison.®® This scaling procedure corrects most of 

the known deficiencies^® in the results obtained from adiabatic-nuclear-rotation 

theory. Rotational-excitation results for /  =  1 to f  =  3 are shown in Figure 

26, where our results are compared with those of Henry and Lane,®® Hara,®^ and 

the experimentally-determined values of Linder and Schmidt.®^

Finally, in Figures 27-30 we present a comparison of our BFESEP(BTAD) 

results with the BFESEP(OPT)^ calculations of Schneider and Collins.®® In their 

preliminary study, these authors have considered only the and symmetries 

for the electron-Hg system. Given the difference in the way polarization (closed- 

channel) effects are included in these calculations, the observed agreement between 

our results and those of Schneider and Collins is particularly gratifying.

^Schneider and Collins have included (in principle) all closed- 

channel effects via an approximate optical (OPT) potential.
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Table 7

Integrated cross sections (in 10~^®cm^) for the y =  0 to  f  =  2 transition 

in e-Hg scattering.

Energy feV) CGM“ HL^ LFSMEP(BTAD)

0.05 0.027 0.024 0.023

0.07 0.053 0.052 0.048

0.10 0.074 0.074 0.069

0.15 0.099 ----- 0.096

0.20 0.120 0.119 0.120

0.30 0.160 0.161 0.169

0.40 0.210 ----- 0.222

' 0.50 0.263 0.254 0.280

“Crompton et ai 

^Henry and Lane®®
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CHAPTER V 

CONCLUSIONS

In this final chapter we will briefly summarize our study and 

then present some conclusions and future directions for this research. We 

began this study by considering ways to  go beyond the static-exchange 

approximation. A physical approach in which a polarization potential is 

used to  include closed-channel effects was selected, and the importance of 

nonadiabatic contributions was investigated. We discussed the use of a 

molecular structure code to calculate polarization potentials and described 

the procedures th a t were developed to  incorporate nonadiabatic effects. 

Polarization potentials which included various multipole contributions were 

presented and compared with each other. Finally, scattering calculations 

in which the polarization interaction was represented by our calculated 

potentials were performed and found to be in very good agreement with a 

variety of recent exprimental measurements.

The observed agreement between our scattering results and the 

experimental measurements indicates th a t, for the calculation of electron- 

Hg total cross sections from 0.02 to 10.0 eV scattering energy, the BTAD 

potential provides a good representation of the polarization interaction. 

Also, since our polarization potential is energy-independent, it appears th a t
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an explicit energy-dependence (c./., section 2.4) is not necessary for the 

low-energy collisions considered here.

In principle, one should retain all of the higher multipole con

tributions to the polarization potential. However, including the additional 

multipoles “costs” more — sometimes considerably more — in terms of 

the computer-time required to  evaluate the modified integrals in program 

BTAINTS. For the electron-H2 system, the BTADP2 potential contains es

sentially all of the important multipole contributions (see Figures 4 and 

5) and for a given value of f  does not require substantially more time 

to compute than  the BTAD potential. Although the total cross sections 

in Figure 21 agree quite well, rotational-excitation cross sections obtained 

when polarization is represented by the BTAD potential can be significantly 

different from those obtained when the BTADP2 potential is used; e.g. , 

we find tha t the 0.5 eV LFSMEP(BTAD) cross section for the /  =  0 to 

j '  =  2 excitation is 1%  smaller than the corresponding LFShIEP(BTADP2) 

result. The rotational-excitation cross sections are also sensitive to the 

way in which the exchange interaction is incorporated (see Figures 25 and 

26) and to explicit inclusion of vibrational effects. Klonover and Kaldor^^ 

have found th a t explicit integration over the i?-dependence can increase 

rotational-excitation cross sections from 8-40% depending on the scattering 

energy. To adequately represent the R-dependence, potentials for several 

values of the internuclear separation must be determined; given these cir

cumstances, the BTAD polarization potential seems to  present the best 

compromise between cost and accuracy.
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The ab initio treatm ent of the polarization interaction th a t we 

have utilized in this study has several advantages. First, our use of a 

molecular structure code allows us to  generate to better than

second-order in Ve—m for all required values of 7 and R . In addition, near- 

Hartree-Fock wavefunctions determined from the same basis set can be used 

to compute all components of the electron-Hg interaction potential, thereby 

assuring internal consistency. Although nonadiabatic effects are included 

in an approximate way, our polarization potentials require no scaling and 

contain no adjustable parameters.

Perhaps the best feature of this treatm ent is its extensibility 

to  more complicated systems. The POLYATOM codes are already quite 

general, and with relatively minor additions to the BTAINTS code, non

adiabatic polarization potentials for larger targets {e.g., Ng) can be gener

ated. The major computational limitation on the  complexity of the system 

considered is the amount of computer-time required by the BTAINTS code; 

this code can probably be made significantly more efOicient. We should point 

out th a t the success of our polarization potentials in determining electron- 

Hg scattering results by no means guarantees th a t similar results will be 

obtained for more complicated systems. However, we also have no reason to 

believe otherwise, and less successful results — or even spectacular failure 

— can still tell us a great deal about the validity of our approximations 

and the underlying physics involved.
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Absfraet. The utility of several model exchange potentials in e-Hz scattering calculations 
from 0 01-1 00 Ryd is investigated. Model potential cross sections and eigenphase sums 
for the ^n,, and e-H z  symmetries are calculated both with ital without 
polarisation. Their validity is assessed from a comparison with results obtained when 
exchange is treated via an exact iterative procedure. To ensure meaningful comparisons, 
the same static and polarisation potentials are used for the model exchange and exact 
exchange calculations. Results obtained with the tuned free-electron-gas exchange poten
tial arc consistently found to have the best overall agreement with exact exchange values. In 
addition, new exact static exchange polarisation results are reported.

1. Introduction

The behaviour of cross sections for low-energy electron-molecule collisions is governed 
by static, polarisation and exchange interactions (Lane 1980). The dominant short- 
range static interaction, which is due to Coulomb forces between the scattering electron 
and the target, can be accurately and efficiently determined (Morrison 1980, Collins et 
al 1980). The long-range induced polarisation, which is a second-order effect arising 
from the distortion of the target by the scattering electron, is usually included in the 
electron-molecule interaction potential via a semi-empirical adiabatic approximation 
based on the known asymptotic form of the polarisation potential. In the last few years 
the approximations inherent in this procedure have been examined and more accurate 
treatments of polarisation proposed (Morrison and Hay 1979, Truhlar et al 1979, 
Klonover and Kaldor 1978, Schneider 1977).

In addition to static and polarisation interactions, any reliable treatment of low- 
energy electron-molecule scattering must incorporate thé quantum-mechanical 
requirement that the system wavefunction be antisymmetric under pairwise electron 
interchange. This requirement gives rise to energy-dependent exchange terms in the 
scattering equations. The non-local character of these terms makes the numerical 
solution of the resulting equations arduous and tends to obscure the physical nature of 
exchange. Although recent advances have widened the range of systems for which the 
exact treatment of exchange is possible (e.g., Collins et al 1980, Morrison and 
Schneider 1977, Levin ct al 1980, Watson e ta l 1980), it still remains very difficult for all 
but the simplest systems. This situation has stimulated attempts to model the effects of 
exchange by including approximate local terms in the interaction potential.
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Two types of model exchange potentials for electron scattering have been investi
gated in recent years. One such potential is based on a semiclassical exchange ( s c e )  
approximation (Riley and Truhlar 1975, Furness and McCarthy 1973); heretofore use 
of this model in electron-molecule collisions (Truhlar and Brandt 1976, Rumble and 
Truhlar 1979, 1980b, Onda and Truhlar 1979a, b, 1980, Siegel et al 1980) has been 
restricted mainly to intermediate-energy scattering (10 0 < E :S  100-0 eV), The other 
class of potentials is based on a free-electron-gas ( p e g )  approximation. Because of the 
admittedly ad hoc nature of these model potentials, extensive systematic studies of their 
validity are essential for an assessment of their applicability for low-energy electron 
scattering. Such studies should initially be carried out in the static exchange (se )  
approximation, where the absence of polarisation effects enables us to focus on 
the influence of exchange. Moreover, comparison with results of calculations in 
which exchange is treated exactly is essential to a meaningful evaluation of the 
models.

The use of model exchange potentials in low-energy collisions ( £ «  lO-OeV) has 
been explored forelectron-atom scattering (Riley and Truhlar 1975,1976, Bransden et 
a l 1976) and for several electron-molecule systems (Morrison and Collins 1978,1980, 
Morrison e ta l  1977, Collins and Norcross 1978, Collins e ta l 1979, Lynch e ta l  1979, 
Rumble and Truhlar 1980a, Hara 1967, Bailie and Darewych 1977). Comparative 
studies of such model potentials include that of Morrison and Collins (1978), in which 
p e g  potentials were used to calculate cross sections for e-N ; scattering in the static 
exchange ( s e )  and static exchange polarisation ( s e p )  models and for e-Hz collisions in 
the SE approximation. These authors considered only the ^ 2 ,  electron-Hz symmetry 
and developed a variant of the usual (Hara 1967) p e g  exchange potential in which the 
introduction of an energy-independent ‘tuning’ parameter led to a model s e  potential 
capable of reproducing exact 2̂ ,  s e  phaseshifts over three decades of energy (0 -01-  
1-00 Ryd). Since the primary emphasis in their study was the e-Nz system, Morrison 
and Collins did not pursue model exchange calculations for other e-Hz symmetries.

A  study of model exchange potentials for e-Hz scattering by Bailie and Darewych 
(1977) subsequently appeared which contains conclusions markedly different from 
those of Morrison and Collins. However, Bailie and Darewych only reported cal
culations in which a polarisation term was included in the interaction potential. The 
presence of this additional interaction could obscure the role of exchange.

To clarify this situation, we have carried out an extensive study of s c e  and p e g  
model potentials for low-energy e-Hz scattering. We report both s e  and s e p  cal
culations for scattering energies from 0-01-1-00 Ryd. The models are assessed by 
comparison with s e  and s e p  results in which exchange is treated exactly. For consis
tency, the same static and polarisation potentials are used in the exact and model 
exchange calculations.

In § 2 we briefly summarise the collision theory and the model exchange potentials 
considered in the present work. Section 3 contains a discussion of the calculations we 
have performed and the results obtained, including new results for s e p  e-Hz scattering 
in which exchange is treated exactly and the ab initio polarisation potential of Lane and 
Henry (1968) is employed. Our conclusions and final comments about local exchange 
approximations appear in § 4 . Unless otherwise stated, atomic unitst are used 
throughout.

tlnatomicunitsft = me = ao = e = l. The unit of energy is ftV(”ieûo) = l Hartree = 2 R yd=27-212 eV. The 
unit of distance is the first Bohr radius (Uo) = 1 Bohr = 0-52918x 10“ '® m.
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2. Theory

2.1. Static exchange scattering equations

For these calculations we use a body-fixed reference frame in which the f  axis lies along 
the internuclear axis R. We make the Born-Oppenheimer approximation for the 
wavefunction of the molecule. In addition, we make the fixed-nuclei approximation 
(Temkin and Vasavada 1967, Temkin et al 1969, Hara 1967) in which the molecular 
orientation R  and the internuclear separation R  are held fixed for the duration of the 
collision.

In this formulation, we solve the non-relativistic time-independent Schrodinger 
equation for the scattering electron with coordinate r. For e-Hz scattering, this 
equation is (Lane 1980)

(- |V * +  V.,(r)+ V„(r)-|fc=')y(r) = G (2.1)

where Vu(r) is the Coulomb interaction averaged over the ground electronic wave
function of the molecule, y(r) is the spatial scattering function, and is the incident 
scattering energy, Ei„c (in hartrees). The non-local energy-dependent exchange term is 
written as

Vcx(r)y(r) =  -<f,(r) j  < ^ * (r ') j^ y (r ')  dr' (2.2)

with 4>{r') being the doubly occupied bound spatial orbital of the molecule.
In order to solve (2.1) we expand the scattering function y(r) in spherical harmonics 

(all coordinates are referred to the centre of mass of the molecule)

y ( r ) = - f  i  fMYTlx)  (2.3)
T Je*0 m“ —/

where /)(r) is the radial scattering function. Channels are designated by quantum 
numbers representing the scattering electron’s orbital angular momentum (/) and the 
projection of this angular momentum along the internuclear axis (m). The use of (2.3) 
leads to a set of body frame coupled radial equations which (due to neglect of the 
rotational Hamiltonian in this formulation) is uncoupled in m. For a complete 
discussion of this formulation, see Morrison and Collins (1978).

2.2. Free-electron-gas model exchange potentials

In using a model exchange potential we seek to replace the exact non-local, energy- 
dependent exchange term (2.2) with a local energy-dependent approximation. First, 
we consider models based on the f e g  approximation, which are similar to a treatment of 
exchange for bound states proposed by Slater (1951).

We assume that for the purposes of exchange only, we can treat the molecular 
electrons as non-interacting fermions occupying a finite volume ( V) within which they 
experience zero potential. This model leads to the usual Fermi sphere of radius k f  in 
momentum space, where ftp  i s  the Fermi momentum. For Hz, the f e g  bound spatial 
orbital is written as

^(r)= V“‘'"exp(i*F.r). (2.4)
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Initially, we assume that the distortion of the scattering function in the exchange 
term can be ignored, leaving

y(r) = C  exp(i&. r) (2.5)

where C is an arbitrary normalisation constant and k is the wavevector of the scattering 
electron.

We wish to replace the exact exchange term (2.2) by the product of an approximate 
local exchange potential VfEcir)  and the scattering function y(r). To accomplish this 
we substitute (2.4) and (2.5) into (2.2) and then multiply and divide by y*(r)y(r), 
obtaining

VFEo(r) =  j^exp[i(fc - * f )  . (r '-r )]j^ ;^ ^ d f'. (2 .6)

Performing the integration (Morrison and Collins 1978) leaves

V ^ c ir )  =  -(.2/rr)kt:F(v) (2.7)

where

Fiv) 2 4 t/ l l  —ij
(2.8)

and 17 =  k /kr. The Fermi momentum is related to the f e g  density of bound electrons, 
p =  A// V, by

A=F=(3ir^p)'^\ (2.9)

To be consistent with the f e g  approximation care must be exercised in defining the 
energy of the scattering electron. In this model the ionisation continuum begins at an
energy of / f+ z^f where 7f is the f e g  ionisation potential (the energy required to
promote the Fermi electron into the continuum). Thus, we write the energy of the 
scattering electron as

E^ = E inc+ h+ ikF - (2 .10)

At this point we make some simple, physically reasonable modifications to improve 
the model. First, we replace the constant f e g  density p = N /V  by the quantum- 
mechanical charge density p(r) of the molecular ground state, thereby introducing an r 
dependence into the Fermi momentum kf{r) and hence into F(tj).

Second, we replace k in 17 by a local r-dependent momentum x(r). The ‘local 
kinetic energy’ of the scattering electron is jK^{r). Substituting these modifications into 
(2 .10), we obtain

/ c V )  =  2 ( E i n c + / )  +  Æ | ( r )  ( 2 .1 1 )

where I  is the experimentally observed ionisation potential (in hartrees). Using 
77 =  /<(r)/kF(r) in (2.7) and (2.8) we obtain VrBoir). This form is known as the Hara 
r e G  exchange ( h f e g e )  potential (Hara 1967, Morrison and Collins 1978).

Since p(r) and hence kp(r) go to zero as r-»oo, we see that asymptotically 
zK^(r)-»(Finc+7) instead of Fine- Riley and Truhlar (1975) have suggested that one 
should set the ionisation potential to zero in Vfeg, thereby giving &K̂ (r) the correct 
•asymptotic value. The resulting potential is designated the asymptotically adjusted f e g  
exchange ( a a f e g e )  potential.
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Morrison and Collins (1978) have found that by adjusting the value of I  they can 
‘tune’ the f e g  potential for the e-H% system at a single energy (0 04 Ryd) and 
reproduce exact static exchange ( e s e )  cross sections and eigenphase sums in the 
symmetry from 0 01-1 00 Ryd. This form is known as the tuned p e g  exchange ( t f e g e )  
potential.

2.3. The semiclassical exchange potential

A  semiclassical exchange potential has been developed by Riley and Truhlar (1975) 
which is similar to one proposed by Furness and McCarthy (1973). In this model we 
replace the integral in the exchange term (2 .2) by making the approximation

J<^*('’')|7^>'Md'-'-A(r)y(r) (2.12)

where A(r)  is assumed to be a slowly varying amplitude function. Since the bound 
orbital 4> (r') is a slowly varying function, the major contribution to the integral occurs as 
| r - r '|-*0 if the rapid oscillation of y(r') causes significant cancellation elsewhere. 
However, one expects the behaviour of y(r) to be slowly varying for low-energy 
electrons (in the absence of strongly attractive potentials). This is somewhat amel
iorated in that the exchange interaction is most important near the target, where the 
scattering interaction is dominated by the strongly attractive static potential of the 
nuclei. In the region of the strongly attractive potential the local kinetic energy of the 
scattering electron will be large, and in so far as a local wavelength is meaningful, it 
should be short. Near the target y(r) might oscillate rapidly enough to make the s c e  
approximation reasonable even at moderately low scattering energies.

Riley and Truhlar (1975) expand A  (r) in (2.12) in inverse powers of the local kinetic 
energy 5x^(r). This expansion is truncated at the first term by assuming that the local 
kinetic energy is large. The resulting s c e  potential is given by

VscE(f) = l{(Ei„c- V „(r))-[(£ ,„e- (2.13)

where (for closed-shell targets)

^^ = 4irp(r). (2.14)

2.4. The static exchange polarisation interaction potential

For the static exchange polarisation (se p )  interaction potential, V„p(r) =  
V .̂t(r)+ Vex(r)-l- Vpoi(r), we use the ab initio polarisation potential of Lane and Henry 
(1968). This potential (which incorporates some non-adiabatic effects) is given by 
Henry and Lane (1969) as

Vpo,(r) = VS°' (r) +  v r '  (r)F2(cos 6) (2.15)
with

V8”'(r) = 2^ ^ r ; : ^ ^ |^ { l - e x p [ - ( r /1.7)’]} (2.16a)

Vr'(r) =
2p 3 ^ ^ { l - e x p [ - ( r / 2 -0)"]} r> 0 -5 flo  (2.166)

0 r< 0 -5 flo  (2.16c)
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where «o = 5 5 au («2 = 1 38 au) is the spherical (non-spherical) polarisability (Kolos 
and Wolniewicz 1967). For s e p  interactions, Vpoi(r) is added to Vu(r) in (2.1), and if the 
SCE potential is used, Vpoi(r) is added to V„(r) in (2.13) as well (Truhlar and Brandt 
1976, Bransden el al 1976).

3. Calculational procedure and results

3.1. Calculational procedure

The body frame coupled radial scattering equations are solved numerically using an 
integral equations algorithm (Sams and Kouri 1969, Morrison 1979) for the ^2*, Îlg, 
^2u and ̂ FIu electron-molecule symmetries at incident energies from 0 01-1 00 Ryd. In 
these calculations we include three channels per symmetry; e.g. in the 2̂g symmetry the 
1 = 0 ,2  and 4 terms are retained in the partial-wave expansion (2.3). The solution 
matrix is propagated on a variable-step-size r-integration mesh extending to a maxi
mum r of 50 0 flo, where th ; body frame K  matrix is extracted.

To calculate the static and exchange potentials we use the near Hartree-Fock Hz 
wavefunction of Fraga and Ransil (1961) corresponding to the equilibrium internuclear 
separation (1 402 oo), which yields 0 48 ea% for the quadrupole moment (Wolniewicz 
1966). The molecular charge density p(r) is calculated from this wavefunction and 
expanded in a Legendre polynomial series (Morrison 1980). This expansion of p(r) is 
used to calculate the static (Collins et al 1980) and exchange potentials which are also 
expanded, namely,

l̂ua*
V .,(„,(r)= I  VJ""’(r)PA (cos 0). (3.1)À-0

We find Ama% =  4 is sufficient to give total integrated cross sections converged to 
approximately 1% or less.

3.2. Static exchange (s e ) results

For calculations using the h f e g e  potential, the experimentally determined value for the 
ionisation potential, I  =  0 564 Hartree, is used in equation (2.11). As discussed in 
§2.2 , Morrison and Collins (1978) determined a value of 0 071 Hartree for this 
parameter in the t f e g e  model, and /  = 0 is used in the a a f e g e  potential.

Total (elastic plus rotational excitation) integrated cross sections including all four 
e-H z symmetries for the model exchange potentials considered in the present study are 
shown in figure 1 together with the e s e  results of Collins et al (1980). The latter cross 
sections were calculated with the same Hz wavefunction as was used in the present 
calculations. The behaviour of these cross sections (and the eigenphase sums in table 1) 
indicates that the h f e g e  potential is too weak, while the a a f e g e  model is too strong. 
The TFEGE cross sections give the best overall agreement with the e s e  results. The s c e  
potential yields results of reasonable accuracy, but the incorrect qualitative behaviour 
of these cross sections at low energy indicates that this potential is also too strong.

Selected cross sections and eigenphase sums for the three dominant e-Hz sym
metries are given in table 1. For incident energies 25 Ryd, the scattering is 
predominantly s wave in the ^2g symmetry. Therefore, although t f e g e  and s c e  cross 
sections in this energy range for 2̂ u, ^Hu and ^Ilg symmetries are not particularly



M odel exchange potentials for low-energy e-H i collisions 733

5

S
S
2o

0-2 0 1 0 6 
Energy (Ryd)

10

Figure 1. Total, integrated, static exchange cross sections from the following calculations;
 , ESE (Collins et at 1980);------- , s c e ; -------- . t f e g e ; --------------- , a a f e g e ; -----------,
HFEGE. These cross sections include the ^2,, ^17,, and symmetries.

accurate, this has little effect on the total cross section. Differential cross sections 
titr/dO from t f e g e ,  s c e  and e s e  calculations at scattering energies of 0 04 and 
0 16 Ryd are compared in figure 3.

3.3. Static exchange polarisation ( s e p )  results

To evaluate the model exchange potentials in the s e p  approximation, when polarisation 
effects are taken into account, we compare s e p  cross sections determined using model 
potentials with their ‘exact’ s e p  ( e s e p )  counterparts. The latter have been calculated by 
M A  Morrison and L A  Collins (1980 private communication) using the Fraga and 
Ransil static potential described in § 3.1 and the Lane and Henry polarisation potential 
of equations (2.15)-(2.16). The same static and polarisation potentials were used in the 
model exchange calculations. Total integrated cross sections from these various 
calculations are shown in figure 2 and table 2.

Of the model potentials considered, only the t f e g e p  and s c e p  produce cross 
sections in reasonable agreement with the e s e p  values. These approximate results are 
essentially identical for scattering energies from 0 01 to 1 00 Ryd and are in fair 
agreement with their e s e p  counterparts except for energies near 0 2 Ryd. The peak in 
the cross section at this energy is due primarily to a p-wave enhancement of the 
contribution (Bardsley et al 1966a, b). In contrast to the s e  case, the dominant 
contribution to the s e p  cross sections for energies above 0 09 Ryd arises from the sum 
of the and ^n„ symmetries (cf corresponding entries in tables 1 and 3). Because of
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Table 1. Selected SE cross sections (in no) and eigenphase sums (modulo ir, in parentheses) 
for the three dominant symmetries.

Energy (Ryd) E S E t TFEGE SCE HFEGE AAFEGE

0 0 4 % 53034 54-29 53-20 81-97 41-40
(2-7246) (2-72) (2-72) (2-61) (2-78)
0-6763 1-01 1-71 0-34 3-44

(0-0493) (0-06) (0-08) (0-04) (0-11)
" n „ 0-0095 0-02 0-26 0-02 0-40

(0-0045) (0-01) (0-02) (0-00) (0-03)
00 9 % 47-896 49-71 49-96 68-38 43-14

(2-5267) (2-51) (2-51) (2-38) (2-56)
% 1-9397 2-77 4-37 0-76 7-11

(0-1233) (0-15) (0-18) (0-08) (0-23)
' n „ 0-1386 0-25 0-97 0-01 1-02

(0-0262) (0-03) (0-06) (0-01) (0-06)
0 25 % 35-483 37-03 37-23 42-80 35-33

(2-1679) (2-13) (2-13) (1-99) (2-17)
7-5826 8-13 10-45 2-65 12-60

(0-4084) (0-42) (0-48) (0-24) (0-53)
1-1592 1-16 2-56 0-21 2-09

(0-1155) (0-11) (0-17) (0-05) (0-15)
0-64 % 19-427 19-62 19-63 19-65 19-56

(1-7509) (1-70) (1-71) (1-58) (1-73)
10-453 9-49 10-10 5-84 10-60
(0-8361) (0-78) (0-82) (0-59) (0-84)
2-6449 1-90 2-95 0-83 2-33

(0-2779) (0-23) (0-29) (0-16) (0-26)
1 00 12-481 12-30 12-34 11-89 12-37

(1-5509) (1-50) (1-51) (1-41) (1-52)
8-092 7-47 7-59 5-82 7-85

(0-9591) (0-91) (0-92) (0-77) (0-94)
2-5535 1-79 2-45 1-07 2-01

(0-3481) (0-29) (0-34) (0-23) (0-31)

t  From Collins etal (1980).

th e  im p o r ta n c e  o f  th e s e  s y m m e tr ie s  to  th e  s e p  c ro ss  s e c t io n s ,  th e  e r r o r s  in tro d u c e d  b y  
th e  a p p r o x im a te  t r e a tm e n t  o f  e x c h a n g e  in  th e s e  s y m m e tr ie s  a r e  m o r e  s ig n if ic a n t th a n  in  
t h e  SE a p p r o x im a t io n .

Bailie and Darewych (1977) note similar differences between their model exchange 
cross sections and those of Henry and Lane (1969) and suggest that these differences 
may be due to the neglect of the ‘one-electron exchange terms’ in the model studies (cf 
Riley and Truhlar 1976). However, for e-Ha scattering, these terms are present only in 
the symmetry. As table 3 illustrates, the t f e g e p  and s c e p  results in this symmetry 
agree with the e s e p  cross sections. Therefore, in calculations using these two model 
exchange potentials, the inclusion of the one-electron exchange terms will be unable to 
rectify the inaccuracies in the and symmetries and hence will effect little
improvement in the total cross sections.

This question has been studied by Morrison and Collins (1980) in the s e  approxi
mation using the h f e g e  and a a f e g e  potentials. They explicitly orthogonalised the o-g 
continuum orbital to the lo-g bound molecular orbital. Although their orthogonalised
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Figure 2. Total, integrated, static exchange polarisation cross sections: -------- , e s e p

(Morrison and Collins, private communication); , t f e g e p ; ------------, s c e p . The ab
initio polarisation potential of Lane and Henry (1968) (equations (2.15)-(2.16)) is used 
throughout. These cross sections include the and symmetries.

HFEGE e-H z cross sections in the 2g symmetry are in better agreement with the e s e  
results than are the h f e g e  cross sections, the orthogonalisation procedure cannot 
produce results as accurate as those obtained with the t f e g e  model.

Total (elastic plus rotational-excitation) differential cross sections dcr/dft at 0 04 
and 0 16 Ryd from the t f e g e p  and s c e p  calculations are compared in figure 3 to their 
ESEP counterparts. A  further study at 10 0 eV (not shown) revealed excellent 
agreement among the three treatments of exchange at this energy.

Finally, we note that Bailie and Darewych (1977) also report h f e g e p  and a a f e g e p  
total integrated cross sections using the Lane and Henry polarisation potential of 
equations (2.15)-(2.16) but a different static potential. However, our results for these 
cases (cf table 2) are in substantial disagreement with those of Bailie and Darewych. 
Moreover, their s c e p  cross sections are consistently larger than those of thble 2. The 
less accurate static potential used by Bailie and Darewych (based on the Wang (1928) 
Hz wavefunction) may account for some of this disagreement.

4. Summary and conclusions

We have investigated the utility of several model exchange potentials for e-Hz 
collisions by comparing model exchange and exact exchange results in the s e  and s e p



736 T  L  Gibson and M A  Morrison

0 04 R y d .. 0 04 Ryd_12  -

cP
Co

1
o
V

s
I /
o

120 160120
Scattering ongle Ideg)

Figure 3. Total, differential, static exchange (left) and static exchange polarisation (right)
cross sections to r  th e  following tre a tm e n ts  o f e x c h a n g e :---------- , e x a c t ; -------- , tu n ed  f e g ;
• • • •, semiclassical exchange. For calculations involving polarisation, the Lane and Henry 
(1968) polarisation potential (equations (2.15)-(2.16)) is used. The ^fl,, and 
symmetries are included in these cross sections.

Table 2. Total (elastic plus rotational-excitation) integrated s e p  cross sections (in a5).

Energy (Ryd) ESEPt TFEG EP SCEP HFEGEP AAFEGEP

001 29-132 26-62 25-70 50-41 11-96
0 04 38-839 40-49 42-81 55-78 61-53
009 50-618 60-22 62-23 57-37 100-84
016 63-963 75-82 76-20 57-89 100-15
0 25 68-777 74-95 75-72 56-88 85-05
0 36 63-602 65-48 66-73 52-90 70-10
0 64 46-251 45-51 46-42 39-83 47-03
0-735 41-714 40-77 41-54 36-12 41-96
1-00 32-156 31-12 31-63 28-17 31-82

t  From Morrison and Collins (private communication).

approximations. All important electron-molecule symmetries are included in this 
study. To ensure consistency, the same static and polarisation potentials were used 
throughout and a consistent standard of numerical accuracy was enforced in all 
calculations. By examining corresponding s e  and s e p  cross sections, we can determine 
the extent to which the polarisation interaction alters the effects of various approximate 
treatments of exchange on these cross sections.
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Table 3. Selected SEP cross sections (<to) and eigenphase sums (modulo it, in parentheses) 
for the three dominant symmetries.

Energy (Ryd) E S E P t TFEGEP SCEP HFEGEP AAFEGEP

004 % 33-352 31-53 33-05 52-47 18-91
(2-825) (2-83) (2-83) (2-73) (2-91)

% 4-404 7-47 7-48 2-60 38-73
(0-125) (0-16) (0-16) (0-10) (0-36)
1-026 1-43 2-22 0-65 3-82

(0-046) (0-05) (0-06) (0-04) (0-08)
0 09 % 34-509 33-94 36-06 49-41 27-18

(2-651) (2-65) (2-64) (2-53) (2-71)
X 13-038 22-26 20-38 6-20 65-62

(0-322) (0-42) (0-40) (0-22) (0-77)
2-965 3-92 5-67 1-65 7-91

(0-114) (0-13) (0-15) (0-09) (0-18)
025 % 29-978 30-64 31-72 36-67 28-70

(2-335) (2-32) (2-30) (2-19) (2-36)
% 30-303 35-27 32-47 15-87 43-81

(0-916) (1-02) (0-96) (0-62) (1-23)
8-230 8-74 11-20 4-11 12-21

(0-315) (0-32) (0-36) (0-23) (0-38)
06 4 18-975 19-29 19-41 19-77 19-13

(1-982) (1-95) (1-94) (1-84) (1-98)
17-437 17-44 16-93 14-18 18-10
(1-289) (1-29) (1-25) (1-07) (1-34)
9-185 8-07 9-31 5-31 9-03
(0-562) (0-52) (0-56) (0-43) (0-55)

1 00 % 13-153 13-15 13-18 12-92 13-20
(1-822) (1-78) (1-78) (1-69) (1-80)

% 11-250 11-15 10-91 9-99 11-37
(1-327) (1-31) (1-28) (0-18) (1-34)
6-853 5-89 6-56 4-49 6-27

(0-633) (0-58) (0-62) (0-51) (0-60)

t  Morrison and Collins (private communication).

The best agreement with the e s e  and e s e p  e-Hz cross sections was obtained by using 
the TFEGE potential of Morrison and Collins (1978). Somewhat surprisingly, the s c e  
potential is qualitatively successful for this system except at very low energies, where 
serious deviations from the e s e  cross sections occur.

This work should be seen in the context of other very recent research into the 
applicability of model exchange potentials for electron-molecule scattering. These 
include a study by Morrison and Collins (1980) of the effects of imposing orthogonality 
of continuum and bound orbitals (of the same symmetry) in f e g  exchange calculations 
for e-Hz, e-Nz, e-CO and e-LiH collisions and the earlier studies of this question by 
Collins et al (1979, 1980). In addition, Rumble and Truhlar (1980b) have recently 
reported s e  and s e p  calculations of e-Nz cross sections using the h f e g e  and s c e  
potentials. They find that at 1 0  Ryd the s c e  potential is much too strong. Indeed, like 
the a a f e g e  potential, which was applied to this system by Morrison and Collins (1978), 
the SCE is so attractive that it binds the unoccupied Wg orbital of Nz. The s c e  potential 
is not as disastrously inaccurate for the e-Hz system, as figures 1-3 of the present paper 
illustrate.
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APPENDIX n  

EXPANSION OF GAUSSIAN PRIMITIVES

A  Gaussian primitive centered on nucleus A  is written as

=  N ,r .(* A )’ (ÿA r(2A )‘ e -« '-5  (1)

where Nqre is a  normalization constant, a  is the exponential coe&cient, 

and the remaining terms are defined in Table 2 of Chapter HI. A  similar 

expression can be written for a primitive centered on nucleus B. The types 

of Gaussian primitives used in this study are given in Eq.(3.29). From Table 

2 we write

r){7i) =Nqre [ri sin di cos (ri sin 6i sin (p if  (n  cos $i +  \Az\y
. g— g—o;2ri|A.|cos ^2)

We seek to  expand T]iji) as

oo * .

d(?i)= E  E  r4'(n)n(;i). m
,-=0 j= —i ^

To obtain the expansion coefiScients a{{ri), we utilize the orthonormality 

of the spherical harmonics, viz.,

c ^ (n )  =  ri j  d r iY lO 'iy  rj{ri) (4)
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These integrals can be performed analytically by substituting the appropriate 

linear combination of spherical harmonics from Table 3 for the angular 

factors in Eq.(2) and by replacing g—o'SrilA.Icosgi the following ex

pansion. We start with the well known Rayleigh expansion for a plane wave

oo
=  Y ,{ tY (2 e  +  m (.kn)P t{cos  »i) (5)

( = 0

where jt{kri)  is a spherical Bessel function.®'* The modified spherical Bessel 

functions of the first kind can be written as (for x along the positive real 

axis)

Mi{x) =  (6)

For integral values of i  we have

Mi{x) =  (— i f  ji{ix) =  ( i f  j t  (—ix). (7 )

Now, replacing k  by — «7 in Eq.(5) we are left with

00
iX O 'jiC -n '-O ftC cosdi) (8 )

e=o

which can be rewritten via Eq.(7) as

00
^•yr.co,». _  +  l)M i(7 n )fi(c o s« ,) . (9)

t=Q

Also, since Pt(— cos ^1) =  (—l)^Pg(cos0i), we have

00
e-7 ra  cos H =  ^ ( _ i ) « ( 2£ +  l)M<(7 n)P((cos 0i). (10)

z=o
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By letting 7  =  cx2\Az\, can substitute the expansion in Eq. (10 ) for 

Qfin|/i*|cosJi^ which leaves us with a  series of angular integrals of the 

form

 ̂d r iY {* iT i )Y^{h )P t { cose , )  (11)
/ '

where the  values of X and pi depend on the particular type of Gaussian 

(see Table 3). Finally, we can substitute F^(cos^i) =  (^1) iiito

E q .(ll) leaving

j  df 1 y j(f ,)• rs:(ri)y?(f, ) = + i)(2x + 1)

( - )f  ’ ) fV—fj, pi 0 / \
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