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INTRODUCTION

Let A be a finite dimensional abelian Lie algebra 
over the algebraically closed field k of characteristic 
zero. It is a classical result that the injective hull 
E^(k) of the 1-dimensional trivial A-module k is 
isomorphic to the k-algebra k[Xi,...,X^] of polynomials 
in n indeterminates where n is the k-dimension of A . 
The representation of A in E^^k) is defined by sending 
the basis element e^ of A to the partial derivative 
with respect to the indeterminate X^ (1 < i < n) and 
extending linearly to all of A . We generalize this result 
to finite dimensional nilpotent Lie algebras N . We show 
that the injective hull E^(kj of the 1-dimensional trivial 
N-module k is isomorphic to k[Xi,...,X^] where n is 
the k-dimension of N . The representation of N in E^[k) 
is defined by sending the basis elements of N to first- 
order partial differential operators with polynomial 
coefficients whose degrees are bounded above by the integer 
d-1 where d is the index of nilpotency of N . We then 
extend by linearity to all of N .

We say that a finite dimensional Lie algebra L is 
nilpotent-by-finite if L is the semi-direct product
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N XI H of a nilpotent Lie algebra N and an arbitrary Lie 
algebra H (both N and H are necessarily finite 
dimensional). We prove that the injective hull E^(k) 
of the 1-dimensional trivial L-module k is isomorphic 
to the tensor product over k of the injective hulls 
Eĵ (k) and E^(k) , where the latter modules are equipped 
with suitable L-module structures. In particular, if L 
is nilpotent-by-abelian then we can construct the repre­
sentations of N and H in E^(k) and E^(k) respec­
tively by the result mentioned above. We show that in this 
case E^(k) is also a polynomial algebra over k in the 
number of indeterminates equal to the dimension of L . 
Furthermore, L is represented in E^(k) by derivations. 
We shall give several examples of these representations for 
various solvable and nilpotent Lie algebras.

A left module V for a k-algebra A is said to be 
locally finite dimensional (locally finite) if the k-dimen­
sion of Av is finite for each element v in V . We 
prove that E^(V) is a locally finite U(N)-module where 
U(N) is the universal enveloping algebra of a finite 
dimensional nilpotent Lie algebra N , and V is a locally 
finite N-module. It follows immediately by the preceding 
paragraph that the injective hull E^(k) will be locally 
finite if L is nilpotent-by-abelian since the tensor 
product of two locally finite modules is again locally 
finite. Furthermore, we obtain this result for any finite
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dimensional solvable Lie algebra L . Finally, we use the 
local finiteness of E^(k) to prove that E^(V) is 
locally finite for any locally finite Lie module V over 
a finite dimensional solvable Lie algebra L . This result
has been obtained independently by Stephen Donkin
[Do, p. 3, 1.1.1]. Donkin adapts an argument given by 
K. A. Brown which shows that the injective hull of a
locally finite kG-module is locally finite when G is a
polycyclic-by-finite group. In fact, it is claimed in
[Do, p. 37] that if V is a locally finite Lie module for
a finite dimensional Lie algebra L over a field of
characteristic zero, then E^[V) is locally finite if and
only if L is solvable.

This dissertation was prepared under the supervision 
of Professor Andy R. Magid, whose help and encouragement 
are gratefully acknowledged.
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0. PRELIMINARIES

All Lie algebras considered in this paper are finite 
dimensional over an algebraically closed field k of 
characteristic zero. All unadorned tensor products ®  will 
be taken over k .

(0.1) Given any Lie algebra L there is a pair (U,i) 
consisting of an associative k-algebra with identity and a 
Lie algebra homomorphism i : L U (U has a Lie algebra 
structure given by [uj,U2] = UiUa - U2U1 , Ui,U2 & U).
This pair satisfies the following universal property: given
any Lie algebra homomorphism f : L ->■ A where A is an 
associative k-algebra with identity, there is a unique 
algebra homomorphism F : U -»■ A which maps 1 onto 1 and 
makes the following diagram commute.

L — ^  A

It follows from the universal property that U is unique 
up to isomorphism, and U is generated by the image i(L) 
U is called the universal enveloping algebra of L and 
will be denoted by U(L) [J, p. 152].

vxi



(0.2) We will give a brief outline of the construction 
of U(L) for any Lie algebra L . Let T(L) denote the 
tensor algebra of the k-vector space L . Recall that 
T(L) = kl ®  Tj (L) ©  T2 (L) ®  ... ©  (L) ©  ... where
Tj (L) = L and (L) = L ®  L ®  . .. ®  L , j times. We 
have the usual vector space operations in T(L) , and 
T(L) has a multiplication indicated by ®  and defined by

®  ... ®  X ) ®  (ŷ  ®  ... ®  y ]

(p ®  yi ®  ... _= x^ ®  ... ®  X ®  y^ ®  ... ®  y .

We then extend this operation linearly to all of T(L) .
Let I be the two-sided ideal in T(L) generated 

by all the elements of the form x ®  y - y ®  x - [x,y] , 
x,y e L . Set U(L) = T(L)/I , and let i be the restric­
tion to Lj = L of the canonical projection of T(L) onto 
U(L) . We have

i(x) ®  i(y) - i(y) ®  i(x) - i([x,y])

( x ® y  - y ®  X - [x,y]) + I
= 1 = 0  (inU(L)).

Hence, i([x,y]] = i(x) ®  i(y) - i(y) ®  i(x) = [i(x),i(y)] 
in U(L) ; thus i : L U(L) is a Lie algebra homomorphism. 
The pair (U(L),i) is a universal enveloping algebra for 
L [J, p. 156, Theorem 2].
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(0.3) Let J be a linearly ordered set and suppose that 
{6j I j G J} is a basis for L . Since U(L) is generated 
by i(L) , U(L) is spanned by 1 and the products 
i(ej^)...i(ej^) , ... ,j^ e J . In fact, U(L) is
spanned by 1 and the products i(ej^)...i(ej^) , where 
jj < ... < , since we may rearrange the order of the
factors by using the formula

i(6q) i(ep) = iCe^) iCe^) + i([eq,ep]) .
The Poincare-Birkhoff-Witt Theorem states that U(L) has
as basis over k 1 and the products i(e- )...i(e. ) ,J 1 J r

< ... < jp [J, p. 159, Theorem 3].
A consequence of this theorem is the fact that 

i : L -»■ U(L) is injective [J, p. 160, Corollary 1]. Hence 
we can and will identify L with i(L) in U(L) .

(0.4) A Lie module V over a Lie algebra L is a k-vector 
space together with a Lie algebra homomorphism 
p : L gl(V) , where gl(V) is the endomorphism ring
Endĵ (V) equipped with a Lie algebra structure given by 
[A,B] = AB - BA , where AB is the usual multiplication of 
A and B in End^(V) . If x e L and v s V we shall 
often write x.v or xv for p(x)(v) . The homomorphism 
p is called a representation of L in V .

(0.5) Given a representation p : L gl(V) , there is a
unique algebra homomorphism a : U(L) -> Endĵ (V) such that
ajL = p . Hence V has a unique U(L)-module structure
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determined by p . Conversely, if V is a U(L)-module, 
then there is a representation (i.e. an algebra homomor­
phism) a : U(L) + End^(V) , and a restricted to L
defines a representation of L in V . Hence V is
also an L-module. Thus the notions of an L-module and a 
U(L)-module essentially coincide. In this paper, we will 
write L-module for U(L)-module, Hom^( , ) for 
Homu^L)( » ) > and module will always mean left-module.

Definition 0.6 [HS, p. 36]. Let R be any ring with 1 
and let M and N be R-raodules. An injective R-module 
homomorphism y : M -> N is called essential if for any
submodule H of N , H 7̂ 0 implies that H n y(M)  ̂0 .
If M is regarded as a submodule of N , then N is called
an essential extension of M .

(0.7) It is easy to see that N is an essential extension
of M if and only if for any n e N , n  ̂ 0 , there exists
some r e R such that rn s M , rn  ̂ 0 [HS, p. 37, 9.1].

(0.8) Given any R-module M there is an injective R-module 
E containing M such that every injective R-module F
containing M contains an isomorphic copy of E . This
property defines E up to isomorphism and E is called
the injective hull (injective envelope) of M [HS, p. 36].

(0.9) If M is a submodule of the injective module F ,
then there is a maximal essential extension E of M
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contained in F . Any such maximal essential extension E 
is an injective R-module isomorphic to the injective hull 
of M [HS, p. 37, 9.2].

(0.10) If V is an L-module then the injective hull of
V will be denoted by E^(V) .

We shall need the following facts:

(0.11) Let R be a left Noetherian ring with 1 . Then
(i) A direct limit of injective R-modules is

injective.
(ii) A direct sum of injective R-modules is 

injective [Ma, p. 512, 1.2].

Definition 0.12. Let L be a Lie algebra over k and 
let I be an ideal (two-sided ideal) in U(L) . We say
that I is a cofinite ideal if the k-dimension of U(L)/I
is finite.

Proposition 0.13. Let V be a finitely generated L-module 
such that IM = 0 for the cofinite ideal I in U(L) .
Then V is finite dimensional over k .
Proof:

Since V is annihilated by I , V may be considered
as an R = U(L)/I-module. Let yi,...,v^ be a set of
generators for V over U(L) . Then Vi,...,v^ also form 
a set of generators for V over R . We have a surjective 
homomorphism :

xi



TT : RVj ©  RVg ©  . . . ®  Rv^ -> V
n

(r,v,, ... r.v. .

The cyclic modules Rv̂  ̂ are clearly finite dimensional 
since the algebra R is finite dimensional and RVĵ  is 
the image of the homomorphism

TT̂ : R -> RVĵ  Cl ^ i ^ n)
1 -> Vj .

Thus RVj ©  ... ©  Rv^ is finite dimensional and we conclude 
that V is also finite dimensional.

Xll



THE STRUCTURE OF INJECTIVE HULLS 
OF LIE MODULES

CHAPTER I

INJECTIVE HULLS OVER NILPOTENT LIE ALGEBRAS

The main result of this chapter is a description 
of the representation of a nilpotent Lie algebra N in the 
injective hull of the 1-dimensional trivial N-module k .
The representation space is the k-algebra of polynomials 
k[Xj, ... ,X̂ ] , n = k-dimension of N, and the action of 
N on this space is given by k-derivations. We begin by 
exhibiting the module structure for the injective hull of 
the 1-dimensional trivial A-module in the case where A is 
a 1-dimensional Lie algebra. Indeed, this example provided 
the motivation to generalize to the nilpotent case.

Proposition 1.1. Let A be a 1-dimensional Lie algebra 
over k with basis e , and let k[X] be the k-algebra of 
polynomials in the indeterminate X . Then k[X] with the 
A-module structure given by (ae).p(X) = p(X) , a s k ,  
p(X] s k[X] , is isomorphic to the injective hull, E.[k) ,



of the 1-dimensional trivial A-module k .
Proof:

Let p : A -> gl(k[X]) be the corresponding repre­
sentation of A given by p(e) = ^  and extending 
linearly to all of A . Then p extends uniquely to a 
representation of the universal enveloping algebra 
a : U(A) End(k[X]) . Since U(A) may be identified
with the k-algebra of polynomials in the basis element e ,
a is uniquely defined by a(f(e)) = f , i.e. if
fCe) = a^e^ + ... + ag e U(A) , then 

d d^f(^) = a^ — - + ... + â jl , where 1 is the identity 
dX

map on k[X] . We note that k[X] , with the U(A)-module 
structure given by a , is an essential extension of k . 
Namely, if p(X) is any nonzero polynomial in k[X] of 
degree n , then o(e^)(p(X)] = a^n! ^ 0 , where a^ is 
the leading coefficient of p(X) .

To complete the proof we must show that k[X] is 
an injective U(A)-module. Since U(A) is a principal ideal
domain, it suffices to show that k[X] is a divisible
U(A)-module [HS, p. 31, 7.1]. Thus let p(X) e k[X]
and f(e) e U(A) be given. We will show that there exists
some q[X) in k [X] satisfying a (f(e)) (q(X)) = p(X) .
It suffices to show that the differential operator 
F = f i s  a surjective endomorphism of k[X] . Since 
F is clearly k-linear, we show by induction that X^ lies 
in the image of F for all integers n > 0 . Suppose



F = — m (̂,1 and let j be the least integer
such that aj  ̂ 0 , 0 < j < m .  Then F ((a^j! ) " =  1 .
Assume now that all polynomials o£ degree less than 
n lie in the image of F . Then
F^nl (aj ( n + j ) = X^ + r(X) , where r(X) is in 
k[X] and has degree strictly less than n . By induction, 
there exists some s(X) in k[X] such that 
F(sCX)] = r(X) . Thus F n! (â  (n+j) - s(X)J = x" .
Hence F is surjective. Thus k[X] is a divisible, and 
hence injective UCA)-module. Since k[X] is also an 
essential extension of k , k[X] is isomorphic to the 
injective hull of k .

Remark 1.2. Note that the representation of A in [1.1) 
is faithful. We will see later that the representation of 
N in E^[k) is faithful when the Lie algebra N is 
nilpotent.

The following lemmas will be used to prove a 
structure theorem for the injective hull E^(k) where N 
is a nilpotent Lie algebra. In particular. Lemma 1.4 is 
of independent interest and will be extended to solvable 
Lie algebras.

Definition 1.3. Let R be a ring and I a two-sided ideal 
in R . I has the weak Artin-Rees property (weak AR 
property) if for any finitely generated left R-module V 
and submodule W of V there exists some positive integer



n such that I^V nW s IW [P, pp. 485-486].

Lemma 1.4. Let N be a nilpotent Lie algebra over the 
field k and let V be a locally finite N-module. Then 
Eĵ (V) is locally finite.
Proof :

We first assume that the k-dimension of V is 
finite. Let I be the kernel of the structure map 
U(N) -> End(V) , where U(N) is the universal enveloping 
algebra of N . Then I is a two-sided cofinite ideal 
in U(N) with the weak AR property [Me, p. 497, 4.2].
Let S be any finite subset of Eĵ (V) and form the 
finitely generated submodule M which is generated by V 
and the subset S . Since I has the weak AR property, 
there is an integer n such that I^M n V s IV = 0 . Thus 
M is finite dimensional because l” is also a cofinite 
ideal in U(N] [D, p. 82, 2.5.1], and hence every finite 
subset of E^(V) is contained in a finite dimensional 
submodule of E^(V) . Thus E^(V) is locally finite.

Now suppose V is locally finite. Any finitely 
generated submodule of V is finite dimensional.
Since V is a direct limit of its finitely generated sub- 
modules, we have that V = TV. where each V- is finiteI. 1 1
dimensional. Now the inclusions Vj for i < j
induce injective maps E^(V^) -> E^CVj) . To see this, 
consider the diagram below, where f̂  ̂ is the composite 
V  ̂-»■ Vj ->■ E^[Vj) and g is inclusion.



ü 1 ,r- F
E^(Vj) "ij

The injectivity of %CVj) implies the existence of the 
map and furthermore, kerCF^j) n g(V^) = 0 because
f.j is injective. But E^(V^) is an essential extension 
of and hence ker(F^j) = 0 . Thus the E^(V^)
together with the induced injective maps F̂ j define a 
directed system and dir lim  ̂ . Clearly
I Eĵ (V̂ ) is an essential extension of V . We claim that
% Ejj(V̂ ) is an injective N-module. But this follows from
the fact that U[Nj is Noetherian and (0.11). Thus 
I is an injective N-module which is an essential
extension of V and hence is isomorphic to Eĵ (k) . It is
now clear that E^(V) is locally finite since each E^(V^)
is locally finite by the previous paragraph.

Lemma 1.5. Let N be a nilpotent Lie algebra over the field
k , and suppose that V is a finite dimensional essential 
extension of k . Then
(i) The representation p : N gl(V) defined by

p(x)Cv) = XV , where x is in N and v is in V ,
is a n ^  representation, i.e. p(x) is a nilpotent
endomorphism of V for every x in N .

(ii) There is a positive integer d such that I^V = 0 
where I denotes the augmentation ideal of U(N) .



Proof:
(i) V = V q ©  where Vq and are submodules

of V such that for every x in N , p(x) | Vq is
nilpotent and p(x] | is an automorphism [J, p. 39, 4]. 
Suppose 0 7* V is an element in . Since V is
essential over k , there exists some u in U(N) such 
that uv is a nonzero element in k . Now uv lies in
Vj , but for all x in N we have 0 = x(uv) = pCx)(uv) ,
contradicting the definition of Vj . Thus V% = 0 .

(ii) Let 0 = Vq s s ... s = V be a compo­
sition series for V . Since the factor modules V-/V. ,1 1-1
are finite dimensional simple modules, they are 1-dimen­
sional [D, p. 13, 1.3.13], Suppose that for x in N , 
p(x)(v^) = av^ (modulo )̂, where Vĵ ® is a coset
representative for a basis of , 1 < i < d , and
a e k . Since p is nil by (i), a’̂v. = p(x)^(v^) = 0
(modulo _^); hence a = 0 . Thus for any x in N ,
xV^ = p(x)(V^) s , 1 < i < d , and hence
I^V s V = 0 .

Lemma 1.6. Let I be the augmentation ideal in the
universal enveloping algebra U(N) of the nilpotent Lie
algebra N over the field k . Then (j (U(N)/I^)* may

n>0
be identified with the submodule of U.(N)* consisting of those 
linear functionals which vanish on some power of the 
ideal I .



Proof:
The surjections U(N)/l’’"-» , m >  n , give

rise to the injective maps : (UCN)/I^)* ->■ (U(N)/I^}* , 
and the modules (U(N)/l'̂ )* together with the homomor- 
phisms fĵ form a direct system of N-modules. Since the 
f^ are injective, the direct limit
dir lim (U(N)/l")* = U (UCNj/I*)* , and hence the latter

n>0
set is an N-module. If f is an element of U(N) such 
that f(I^) = 0 , then f induces a linear functional î
in [UCN)/I^)* . Conversely, if g is in (U(N)/I^)*
we may define a linear functional g in U(N)* by
g(I^) = 0 and g(u) = g(u+ for u in U(N) . This
correspondence is clearly an N-module isomorphism and allows 
us to identify (U(N)/I^)* with those functionals in U(N)* 
which vanish on .

Theorem 1.7. Let N be a nilpotent Lie algebra over the
field k . Then E.,(k) = dir lim (U(N)/l”)* = U (U(N)/I^)*

n>0
Proof :

First of all, we show that (U(N)/I^)* is an 
essential extension of k (which we identify with k* 
under the usual isomorphism) for every positive integer n . 
We will make the identifications guaranteed by (1.6). Let

“kf be a nonzero linear functional in U(N) which vanishes 
on . Choose an integer m , 1 < m < n , such that
f(Î ') = 0 and f(l"* )̂ 7̂ 0 . Hence there is some u in 

 ̂ such that £(u) ^ 0 . Now U(N)* is an N-module by



the action = -£(xw) , where x is in N ,
£ is in U(N)* , w is in U(N) , and the product xw
is taken in U(N) . This action extends uniquely to an
action o£ U(N) on U(N)* : (w.£)(v) = £(w^v) , where

Tw and V are in U(N) and w -> w is the unique anti-
Tautomorphism of U(N) such that x = x for all elements

X in N [D, p. 73, 2.2.18]. Thus the functional u.f
is nonzero and [u.f)(v) = 0 for all v in I since 

s in l"̂
(U(N)/I)* = k* = k .
u^v lies in . Hence u.f is an element in

Next we observe that U(N)* is an injective 
N-module. If M is any N-module, then

Homĵ ,[M,UCN)*) = Homj^[M,Homĵ (UCN) ,k)
= Horn, (U(N) ®  M,k)

^ N
= Hom^(M,k)

where the second line follows from adjo'nt associativity
[HS, p. Ill, Exercise 7.3], and the third line follows
from the natural isomorphism U(N) ®  M = M . Since

N
Hom^C ,k) is an exact functor on N-modules so is 
Hom^( ,U(N)*) and hence U(N)* is injective.

Thus we have the following inclusions:

k = k* Ç U [U(N)/I^)* s U(N)* . 
n>0

Since U(N)* is injective and contains an isomorphic copy



o f k , U(N)* contains a submodule isomorphic to Eĵ (k)
[HS, p. 38, 9.3]. Hence U c E_(ky , if we

n^O
identify E^(k) with its image in U(N)* under the
isomorphism, because by our I'irst argument,
U (U(N)/I^)* is an essential extension of k and 
n>0
Ejj(k) is the maximal essential extension of k contained
inside of U(N)* . By (1.4), E^(k) is locally finite,
and hence by (1.5), if f is an element of E^(k) there
is a positive integer n such that I^.f = 0 . But this
implies that f vanishes on , and hence
f G U (U(N)/I^)* . Thus the result follows. 

n>0
In order to make explicit calculations of the 

injective hull Eĵ (k) when N is a nilpotent Lie algebra, 
we will need the following results on the dual of the 
universal enveloping algebra of an arbitrary Lie algebra.
The relevant facts will be summarized here for a finite 
dimensional Lie algebra. However, these facts may be 
extended to the case where the Lie algebra is of arbitrary 
dimension over a field k of characteristic zero 
[Bl, pp. 118-119].

Let L be a finite dimensional Lie algebra over the 
field k of characteristic zero, and suppose that

••• »®n  ̂basis for L over k . The diagonal
map L -»■ L X L given by x ->■ (x,x) induces a Lie algebra 
homomorphism L •> U(L) ®  U(L) given by x ^ x®l + 1 ®x  , 
and hence induces an algebra homomorphism (in fact, a unique
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algebra homomorphism) U(L) -»■ U(L) ®  U(L) called the 
coproduct of U(L) . The coproduct c together with the 
augmentation map e : U(L) -> k give U(L) the structure 
of a cocommutative bialgebra [B, p. 115]. Thus the dual 
U(L)* is an algebra with the multiplication given as 
follows: if f and g are elements in U(L)* and u
is in U(L) , then fg(u) = f ®  g(cCu)) . In order to 
elucidate the structure of this algebra, we choose the 
following basis for U(L) : for v = (vi,...,v^) any
n-tuple of nonnegative integers define
®v “ ' Then {e^ | v e N} is a
basis over k for U(L) by the Poincare-Birkhoff-Witt 
Theorem. The following lemma shows that the value of the 
coproduct c on ê  has a particularly simple expression.

Lemma 1.8. [D, p. 90, 2.7.2] c(e^) =  ̂ *
y + X=v

Proof :
We first observe that

c ( e ^ ^ / v . I )  = v - I

= (e^®l + l®e^)'^i
1
1 î

^i
eVi ® eH

1 1 1

Ui+Xi=Vi®i^/^i- ®  ®i^/^i'
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Hence the result is clear in this case. Finally,

= cCej^e^^ ... e^n/vilvg! ...

= IT I eVi/y.: ®  eCi/X.!
i=l Pi+X.=v.

" I ... eJJVy j I..
u . + X . = v .

X1 _X^ _Xn / , I , ,®  e;ie*2 ... e^n/Xi! . Xn"

' M  ® -

Theorem 1.9. [D, p. 90, 2.7.5] Let (e^,...,e^) be a 
basis for a Lie algebra L over a field k of characteris­
tic zero, and let k[[X^,...,X^]] denote the algebra of 
formal power series over k in the n indeterminates 
Xi,...,Xn . If f G U(L)* , denote the formal power series 

I f(e^)X* by S£ where x'’ = X^^X^^ ... X^^ . Then
veJŜ
f -> S£ is an isomorphism of the algebra U(L)* onto the 
algebra k[[X^,...,X̂ ]̂ .
Proof:

Since the e for all v e form a basis ofV
U(L) , it is clear that s is a k-linear isomorphism of 
U(L]* onto k[[X^,...,X^]] . To see that s is an 
algebra homomorphism let f and g be elements in U(L]^ 
Then,



12

Sf = I £g(e^)X 
veN*

I £®g(c(ej)x'’

I I )g(e^)X*
V+X=v V 

= Î  I  g(e^)x‘
y 6 » ^  X s N ”

= SfSg .

Lemma 1.10. [D, p. 91, 2.7.7] The Lie algebra L in
Theorem 1.9 acts via the left corregular representation
as a Lie algebra of derivations on the algebra U(L)* .
Proof :

Let f and g be elements in U(L)* and let x 
be in L . Then

(x.(fg))(e^) = -Cfg)Cxe^)
= - (f ®  g) (c(xe^))

-(f®g)((x®l + l®x) I e ®e^^
y + X = v

= - I £(xeJgCe.) - I f(e )g(xe.)
y + X = v  ^ ^ y + X = v  ^ *

(Cx.f)g + f(x.g)] (ê )

Thus we have a representation L -> Der (U(L) ] by
(1.10). Furthermore, the image of U (U(L)/I^)* under

n>0
the isomorphism s in (1.9) is contained in k[Xj,...,X^] .
For if f vanishes on for some integer m , then

n
f(e^) = 0 for all v with |v| = % > m , and clearly

i= 1
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from this one sees that s^ is a polynomial. If the Lie
algebra L is nilpotent, then we will show below that the
converse is also true, namely that s maps U (U(L)/I^)*

n>0
onto . Using this isomorphism s , we can
then identify E^(k) with k[X%,...,X^] .

We will first develop some preliminary concepts and 
notation due to M. Vergne [V, pp. 87-88]. Let N be a 
nilpotent Lie algebra with corresponding lower central 
series N = 2 Ng 2 ... 2 = 0 . Recall that

= [NjN^ jîl for all i > 1 . Using the Jacobi identity,
one can easily show that the are ideals in N , and,
by induction on i , one can also show that [N^,Nj] s NU+j
for all pairs i and j . Hence the lower central series
forms a finite filtration on N in the sense that = N 
for i < m and = 0 for i > M ; in fact, in this case
take m = 1 and M = d +1 . Thus the graded vector space 
gr(N) = I ^i^^i+i has the structure of a Lie algebra:
[x + Ni^l,y + Nj^l] = [x,y] + NU+j+i • Let be a
basis of gr(N) consisting of homogeneous elements and 
define to be the degree of homogeneity of , i.e.
X- « N /N . Choose a representative e. in N for 1 a i ' «i+i  ̂ 1
each x^ and call the weight of e^ , wt(e^) = a. .
Then e^,...,e^ form a basis of N . For the sequence
M = {i^,...,ip} of integers from the set {l,2,...,n} we
define the length of M , £(M) = r , and define the weight 
of M , wt(M) = a. + a. + . . . + « .  . We denote by M*ii I2 ij-
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the sequence consisting of the same indices as M but 
rearranged in ascending order. Finally, set

G" G" # # # G" eM 11 l2 Ij-

Lemma 1.11. [V, p. 88, Lemma 3] Let M be a sequence 
of indices from the set {l,2,...,n} . Then 

~  ̂  ̂ with £(A*3 < f(M) and
wtCA*) > wt(M) .
Proof:

We will use induction on £(M) . The case = 1
is trivial. Suppose M = {ii,i2,...,î ) and let î  be 
the smallest index appearing in M . Then

s -1
®M " ®ig®M' ®ii®i2’• ‘ ̂ ®is-t’®is^ ' ” ®is* '‘®ir »

where M' = {î  ,ij,.. . ,ig_j^,ig^2» * * • ’ and * means
delete that term. Now each of the terms in the sum on the
right is of length one less than £(M) , and since
[e. ,e. ] is a sum of basis elements of weight greateris-t Is
than or equal to a. a. , it follows that each ofis-t ig
these terms has weight greater than or equal to wt(M) .
By induction, each of these terms can be expressed as a sum 
of ordered monomials of length less than £(M) and of 
weight greater than or equal to wt(M) . Since ^(M') < £(M) , 
again it follows by induction that ê , = + I Cg^e^*
where f(B*) < ^(M*) and wt(B*) > wt(M') . Hence,

®i ®M' ~ * I Cg&e^ eg* . If we let B ' denote the
sequence whose first term is î  and the following terms
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are just the terms in the sequence B* arranged in the
same order, then ê  e^* = eg, , and we have
Z(B') = ^(B*) + 1 < f(M') + 1 = . Also,
wt(B') = wt(B*) + wtCe- ) > wt(M') + wt(e. ) = wt(M) .Is Is
Thus, by induction, each term ê , can be written as a 
sum of ordered monomials of length less than £(M) and of 
weight greater than or equal to wt(Mj . Thus the result 
follows.

Corollary 1.12. Let N be a nilpotent Lie algebra. Then
U (U(N)/I^)* is isomorphic to the subalgebra 
n>0
k[Xj,. .. ,Xĵ ] of k[ [Xj ,... ,X̂ ] ] under the isomorphism 
s in (1.9).
Proof:

It suffices to show that s maps U (U(N)/I^)*
n>0

onto k[Xj,...,X^] . Let f = s"i(p) e U(N)* where p is 
in k[X^,...,X^] . Then there exists some positive integer 
m such that f(e ) = 0 for all ordered monomials e with'■V V
&(v) > m . Suppose that the index of nilpotency of N is 
equal to d , i.e. = 0 . Then 1 < wt(e^) < d for
i = l,2,...,n . Furthermore, if wt(M) > dm , then 

 ̂ * I where l ( A * )  < £(M) and
wt(A*) > wt(M) by (1.11). Since d£(A*) > wt (A*) > wt(M)> dm , 
we have that £(A*) > m , and hence f(e^p = 0 , Since

consists of linear combinations of monomials e^ with 
wt(M) > £(M) > dm , it follows that f(I^^) = 0 , whence
f e [j [U(N)/I%)* .

n>0
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We can now identify k[X^,...,X^] with
U (U(N)/I^)* = E^(k) under the isomorphism s and 

n>0 "
define an N-module action in the following way: if e^
is a member of a basis of N and p s k[X^,...,X^] ,
let f = s“^(p) and define e^.p = sCe^.f)
=  ̂ (e^.f)(e )X^ . We then extend this action linearly

V
to all of N . Since N acts via derivations on
k[Xj,...,X^] by (1.10), it suffices to determine the 
polynomials e^.Xj (1 < i,j < n) . These polynomials 
correspond under the isomorphism s to the linear func­
tionals e^.fj where fj is the linear functional in
U(N)* which takes on the value 1 at ej and 0 other­
wise. Thus, e^.Xj =  ̂ (e^.fj)(e^)X^ and we need only to
compute the values (e^.fj)(e^) . By the proof of (1.12), 
we have f\(e^) = 0 whenever wt(v) > d . If Z(v) > d ,
then clearly wt(v) > d , so we need only to compute the
value of e^.fj on standard monomials ê  with
Z C e J  < d-1 .

We now give a series of examples of the computation 
of the representation of N in E^(k) for various 
nilpotent Lie algebras N .

(1.13). Let N be an abelian Lie algebra of dimension n
over the field k . Let e^,...,e^ be a basis of N .
Then with fj in U(N)* defined as above, we have
(e^.fj)(l) = = -ô^j , where is defined to be 1
if i = j and 0 otherwise. Note that the index of
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nilpotency here is 1 so we only had to compute the
values (e^.fj)(e^) for f(v) < 0 , i.e. for e^ = 1 .
Thus we have a representation p : N -> Der(k[X^,...,X^])
with p(e-) = - (1 < i < n) and extending linearly1 i
to all of N . This generalizes (1.1).

(1.14). Let N be a 4-dimensional nilpotent Lie algebra 
over k with basis c^,e2,eg,e^ and nonzero brackets
given by [ e ^ , e ^ ] = ê  = , [e^.e^] = + ê  ,
and ê  is a central element. Note that the index of 
nilpotency of N is 3 . Thus we need only to compute 
the values (e^.fj)(e^) for |v| < 2  . Since ê  is a
central element, e^.fj = 0 for j 1 and
(e^.f^)(l) = -f^(e^) = -1 . It is clear that 
(e^.fj)(e^) = 0 for \ v \  > 1 . Thus e^.Xj = -1 and
e^.Xj = 0 for j = 2,3,4 . If we let
p : N 4- Der(k[Xj,... ,X̂ ]) be the corresponding represen-

g
tation of N , it is now clear that p(ej) = " • In a

g
similar manner, one can show that p(eg) = " • Next
consider e^.fj . For j = 2,4 , we have e^.fj = 0 .
Also, as above, we have (e3.fg)(l) = -1 , and 
(e3.fg)(e^) = 0 for |v| > 1 . Finally,
(eg.fi)(e2) = -21(6362) = -fj(0263 + [03,62]} = -fJ(6263-6 )̂ = 1,
and (e^.f^)(e^) = 0 for all e , ^ e, . Thus,
P(ej = X  ̂ ^3̂  "23Xj 9X3 •

To complete this example, we look at e^.fj . One
can easily check that the only nonzero values are given by
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C e ^ . f i ^ C e g )  = - f i C e ^ e g )  = - f   ̂ ( 626^ + [ e ^  )

= -fiC-Si) = 1 ,
= -fiCe^e^) = -fj (636^+[ê  ,63] )

= -fiC-Gi-eg) = 1 .

(e§/2!) = -f^Ce^e|/2)
=  ■ ■ 2 ^ 1 ( 6 3 6 ^ 6 3  + [ 6 4 , ^ 3 ]  6 3 )

=  - 2 ^ 1 ( 2 3 ( 2 3 6 4 + [ 6 ^ , 6 3 ] )  ■  6 1 6 3  -  6 3 6 3 )

=  ■  ® 3®1  ■  ® 3®2  ■  ® 1®3  ■  ® 2 ® 3 ^

=  - i f l ( 6 | 6 ^  -  2 6 1 6 3  -  2 6 2 6 3  -  [ 6 3 , 6 2 ] )

=-|fl(6|6  ̂ - 26163 - 26263 + 61)

= 4 ,

(6^.£23(63) = -£2(6^63) = -(2(^364+[64,63])
= -£2(-61-62) = 1 ,

(e,.£,)(!) = -1 .

Thus, p(e^) = (%2 + X3 - Y^§) + X
We summariz6:

p : N ->■ D6r(k[X^,... ,X̂ ]]

- 3I:

3
J 33X2 3X̂

62 3Xg

3 " 2 3 X 1  3 X 3

%  * C*2 * 3̂ - W 7   ̂ - âlj

We then extend linearly to all o£ N .
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Cl.15). Let n(3,k) denote the nilpotent Lie algebra of 
strictly upper triangular 3x3 matrices over k . 
n(3,k) has a basis consisting of the matrices ê j 
(.1 < i < j < 3) where ê  ̂ is the 3x3 matrix having 
a 1 in the (i,j) position and zeros elsewhere. The 

only nonzero commutator is [®i2>®23  ̂ ~ ®13 * The index 
of nilpotency is 2 so one only needs to determine the 
values for |v| < 1 . If we choose
®13*®12’®23 the ordered basis, then the representation 
has the following form:

p : n(3,k) -v Der(k[Xj,. .. ,X̂ ])

®13

®12 + - 9%^

623 ^  .

Again we extend linearly to all of nC3,k) .

(1.16). Let n(4,k) have as ordered basis ,e2ĵ ,e ̂ 3 ,
®3ii»®23»®i2 * The index of nilpotency is 3 and we have

n (4,1c) + Der(k[Xj,

® lit ~y 9
' ^

3®24 -> 3X2
3

®13 -> 3X3

^34 Y 3’'35x7
3
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^ Y 3 3
23  4 3 X 2  '  3^5

®12 (-%2 + ^4^5)9%- - ^5g|- - a r  '

Again, we extend linearly to all of n(4,k) .
In all of the examples above, the degree of the 

polynomial coefficients of the various partial derivatives 
are bounded above by the integer d-1 where d is the 
index of nilpotency. Also notice that each of these 
representations of the nilpotent Lie algebra N are 
faithful.



CHAPTER II

A STRUCTURE THEOREM FOR E^Ck)
WHEN L IS NILPOTENT-BY-FINITE

In this chapter we consider Lie algebras L which 
are the semi-direct product NXI H of nilpotent Lie 
algebras N by arbitrary (finite dimensional) Lie algebras 
H . We are assuming that N is an H-module such that H 
acts as a Lie algebra of derivations on N . We identify 
N with a nilpotent ideal of L and H with a subalgebra 
of L [J, p. 18]. The goal of this chapter is to describe 
the structure of the injective hull of the 1-dimensional 
trivial L-module E^(k) in terms of the injective hulls 
E^Ck) and E^(k) .

Proposition 2.1. Let L be an arbitrary finite dimensional
Lie algebra over k with universal enveloping algebra
U(L) . If K is a subalgebra of L and U(K) is the
universal enveloping algebra of K , then any injective 
L-module is also an injective K-module.
Proof :

U(L) is a free right U(K)-module [D, p. 71, 2.2.7],
21
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so the functor M ->• U(L) ®  M is exact on left K-modules.
UCK)

If E is any injective L-module, then P Hom^(P,E) is
an exact functor on left L-raodules P . Hence the
composite functor M ->• Horn, fU(L) ®  M,E] = Hom^(M,E)

 ̂ U(K)
[HS, p. Ill, exercise 7.3] is exact on left K-modules.
Thus E is an injective K-module.

Remark 2.2. (2.1) implies that E^(k) is an injective
K-module and hence contains a submodule isomorphic to 
Eĵ (k) [HS, p. 38, 9.3].

Now assume that L = N X  H where N is a nilpotent 
ideal in L and H is a subalgebra of L . In order to
prove our structure theorem for E^(k) , we will need to
show that the ideal in U(L) generated by N has the weak 
AR property. The following results will allow us to 
establish this fact.

Lemma 2.3. Let R be a k-algebra containing 1 which is 
generated by a finite dimensional Lie subalgebra H and a 
left Noetherian subalgebra S containing the same 1 as
R and satisfying [H,S] ç S . Then R is left Noetherian. 
Proof:

We first observe that any element of R can be 
written as a finite sum of terms Sjh^^Sg ... ,
where either s- e S or is omitted, and {h- ,...,h. } is1 d
any subset of a basis h^,...,h^ of H . We define the
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number of inversions of an s^ in this term to be the 
number of h’s preceding ŝ  , and we define the number 
of inversions in a term of the above type to be the sum of 
the inversions of the s^'s appearing in the term [com­
pare Me, pp. 488-489].

We show that any term s.h. ... s,h. s,., can be1 ii d. 1 a+l
written as a sum of terms of the form sh- h. ... h. ,31 32 3e
where s s s and {h. ,...,h. } is a subset of the basis3 1 3 e
for H . We induct on the number of inversions appearing 
in a term and on the number d of h's appearing in a
term. For d = 1 , the term is either s^h^^ , in which
case we are done, or s^h^^Sg . By hypothesis,
[h^^.Sg] = s' e S ; hence s^h^^Sg = s^Sgh^^ + s^s' , and 
the terms on the right are in the desired form. Suppose 
now that the result holds for all terms with the same 
number of h's but fewer inversions, and for all terms 
with fewer than d h's . Again, by hypothesis,
[hi^,Sd+il = s' e S ; hence,

^i^ii^2 ••• Sd^id^d+l " ^i^ii®2 ••• ^id_i^d^d+l^i(i

+ s^h^^Sg ... ^s^s' .

The first term on the right has fewer inversions than the 
left-hand side, and the second term on the right has less 
than d h's . By induction, these terms can be rewritten 
as a finite sum of terms in the desired form. Hence the 
term on the left can also be expressed in this form.
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Next, given any term sh- ...h. , by using the
J Je

switching process employed in the Poincaré-Birkho££-Witt
Theorem [J, pp. 157-159], we may express this term as a
sum o£ ordered monomials in the hj,...,h^ with
coe££icients on the le£t in S . Note, however, that this
expression is not necessarily unique.

We de£ine a £iltration on R in the fallowing way:
Rp = 0 £or any negative integer p ; = S ; and
R„ = sums o£ ordered monomials in h,,...,h„ with p i ’ n
coe££icients on the le£t in S whose total degree in the 
h's is less than or equal to the positive integer p . By 
the above paragraph, R = U R > and clearly f) R = 0 .

p P p P
Since R ^  = 0 , the induced topology on R is discrete
(hence complete) and Hausdor££. I£ shj^...h^^ « Rp
and s'h^i...h^n. e R then 1 n q
sh^i...hn^snii%..hi% = ss'h^i*ii...h^n*in modulo lower 1 n 1 n 1 n
degree terms, since switching s' with the h's does not
introduce any new h's , and rearranging the h's does not
increase the total degree [compare J, p. 157, 1]. Thus
R„R^ £ R. and R is a £iltered ring, p q p+q

We can now make use o£ the associated graded algebra 
gr(R) = I Rp/Rp  ̂ . Given any two basis elements of H , 
say hĵ  and hj , we have

(h-+Ro)(hj+Ro) - (h.+Ro)(h-+Ro) = [h-,h.]+Ri = R̂  . 

Also, given s e S = R ^ / R , and an h^ , we have
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(hi+Ro) (s+R_i) - (s+R_j^)(h^+Ro) = [h^,s] + Rg = Rg , 
because [h^,s] e S = . Thus gr(R) is isomorphic to
the algebra over S generated by the central elements 
h^ + R^ (1 < i < n) . If /l'-'-'/n indeterminates
which commute with S and with each other, then gr(R) 
is a homomorphic image of the polynomial algebra over S ,
S[y^,... ,yĵ ] • Thus gr(R) is left Noetherian because 
S[yi,...,y^] is left Noetherian by the Hilbert Basis 
Theorem [L, pp. 70-71]. This implies that R is left 
Noetherian [B2, p. 42, Corollary 2].

Remark 2.4. If, in Lemma 2.3, S is right Noetherian,
then the same proof shows that R is right Noetherian.

We shall need some additional notions related to 
the weak AR property for ideals in a ring R . Following 
the terminology given in Passman [P, p. 488], we say that 
an ideal I in a ring R with 1 is polycentral of 
height t if there exists a finite series of ideals in R

I = Ig a Î  2 ... a Î  = 0

such that for each j , 0 < j < t-1 , Ij/Ij+^ is a
centrally generated ideal of R/Ij+^ . Given such an ideal 
I , we define R(I) = R(I: Iq ,I^,..• ,Î ) to be the subring 
of the polynomial ring R[Z] generated by R and 
IjZ, IjZ2,...,IjZ2^ for j = 0,1,...,t . The following 
two lemmas show the relation between polycentral ideals in
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a left Cresp. right) Noetherian ring and the weak AR 
property.

Lemma 2.5. [P, p. 489, 2.6] Let R be a left (resp.
right) Noetherian ring, and let I be a polycentral 
ideal of height t with corresponding central series
I = Ig 2 Ij 2 ... 2 = 0 . Then S.(I ; Iq ,I ̂ ,... ,1̂ )
is left (resp. right) Noetherian. ,

Lemma 2.6. [P, p. 491, 2.7] Let R be a ring as in
(2.5), and let I = 2 2 ... 2 = 0 be a chain of
ideals in R . If R(I) = R(I : Iq ,1̂ ,. . . ,1̂ ) is left
(resp. right) Noetherian, then I has the weak AR property.

The next proposition is essentially a theorem of 
Roseblade [P, p. 492, 2.9]. Roseblade’s theorem deals with 
a ring R with 1 which is generated by a right Noetherian 
subring S with the same 1 as R and by a polycyclic- 
by-finite group of units G such that the action of G on

p
S by conjugation stabilizes S , i.e. S = S where
SG = jx’^sx I X e G , s e s| . Here we are replacing R 
by a k-algebra with 1 , S by a subalgebra with the same 
1 as R , and G by a finite dimensional Lie subalgebra 
H such that the commutator in R of an element in H with 
an element in S lies in S . This result will be useful 
in proving the structure theorem for E^(k) where L is 
the semi-direct product N XI H as described above.



27

Proposition 2.7. Let R be a k-algebra containing 1 
which is generated as a ring by a finite dimensional Lie 
sub-algebra H and a left Noetherian subalgebra S
containing the same 1 as R and satisfying [H,S] s S .
Suppose that I is a polycentral ideal in S such that 
[H,I] s i .  If V is a finitely generated left R-module 
and if U is a sub-module, then there exists an integer
d such that I^V n U s lU . Furthermore, RI = IR has
the weak AR property.
Proof:

We will follow the proof of Roseblade's theorem as 
given in [P, p. 492, 2.9] and make the necessary adjust­
ments wherever needed.

Let I = Yq 2 Yj 3 ... 2 = 0 be the given central
series for I such that Yj is an ideal of S that is
centrally generated modulo • Let h^,...,h^ be a
basis for H and define

I. = I [h,Y.] + Y. = I [h.,Y.] + Y. ,
J hsH  ̂ ] i=l 1 J J

0 <  j  <  t  .

It is clear that Î  is an additive subgroup of S since 
Yj is an ideal in S and the Lie bracket is bilinear. To 
show that Ij is an ideal in S , it suffices to show that 
for s,s' e S , we have s[h^,yj]s' e Ij for any e Yj 
and 1 < i < n , 0 < j < t .  But,
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s[h^,yj]s' = sh^/jS' - sy^h^s'
= h^syjS' + s!yjS' - sy^s'h^ - syysV 
= [h^.syjS'] + (sjy^sV - syysV) = Ij ,

where s| = [s,hj] s S and sV = [h^,s’] e S . Next,
we claim that Ij is centrally generated modulo ^j+i »
where 0 < j < t-1 . If yj^ + Yj^^, ... .yy^j + Yj+i
are central generators for S/Yj^^ , it is
clear that yj^ + Ij+i, ... .yy^. + Ij+i and
[hi,yjĵ ] + Ij+i generate for 1 < k < nj and
1 < i < n . It remains to show that these elements are 
central in S/Ij+^ . This is clear for the yj^ + Ij+^ .
On the other hand, if s + Ij+i = S/Ij+^ , we have

Ij+1 '  ̂ Ij+l]

= [[hi-yjki.s] * ij.i

= [[h. ,s],y..] + [h.,[y..,s]] + I- , by the 
 ̂ 1  ̂ Jacobi

identity
■ '

since [h^,s] e S and [yj^,s] e Yj+^ . Thus,
I = Ig 2 IJ 2 ... 2 Î  = 0 is a series of ideals in S 
such that Ij/Ij+^ is centrally generated in S/Ij+^ , 
and, by construction, [H,Ij] s Ij for 0 < j < t .

Since [H,S] s 8 and [H,Ij] e Ij for 0 < j < t , 
by using an argument similar to that given in the first part 
of the proof of (2.3), one can show that RIj = IjR (recall
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that R is generated by S and H). Thus, X = IR and 
Xj = IjR are ideals in R . The following computations 
all occur in the polynomial algebra R[Z] .

R(X) = R(X : Xg X̂ )
= <R,XjZ4 | 0 < j < t  , l < q < 2 ^ >
= < R , I j Z ^ | 0 < j < t  , 1 < q < zi >
= <S,IjZ4,H I 0 < j < t , l < q < 2 ^ >
= <§(I),H> .

Since I is polycentral in S , S(I) is left Noetherian 
by (2.5), and furthermore, it is easily seen that 
[H,§(I)] £ §(I) . Thus (2.3) implies that R(X) =<§(I),H> 
is also left Noetherian, and we conclude by (2.6) that X 
has the weak AR property. Finally, if V is any left 
R-module, then, because X = RI = IR, we have X^V = I^V , 
and the result follows.

Lemma 2.8. Let L = NXI H where N is a nilpotent Lie 
algebra and H is an arbitrary (finite dimensional) Lie 
algebra. Then E^(k) ®  E^(k) is an L-module and is an 
essential extension of the 1-dimensional trivial L-module k 
Proof :

Let E = Eĵ (k) ®  Ejj(k) , X = E%(k) , and
Y =  E„(k) . By (1.7), X = U (U(N)/I^)* where I is

" n>0
the augmentation ideal of U(N) . When we make the usual
identifications of H with a subalgebra of L and N with
an ideal of L , H acts on N as a Lie algebra of



i+1* ^ I

30

derivations of U(N) [D, p. 79, 2.4.9]. Let denote
the derivation of U(N) which extends ad^(h) , where
h c H . Then = hu - uh for any u « U(N)
[D, p. 79, 2.4.9]'. We show that s for every
positive integer n . For n = 1 , it suffices to show 
that Dĵ (n ̂ ng.. .n̂ ) « I where n ^ s N ,  l < i < q ,
since I consists of sums of products of elements in .
But,

Dj^CniUa.. .Uq) = n ̂ . . .n^_ [h,Uĵ ] n

since [h,n^] s N for all i . In general,
by induction. Thus 

U(N)/I^ and also (UCN)/I^)* are L-modules. This implies
that X is an L-module. Furthermore, I is an L-module
via projection of L onto H , and since the kernel of
this projection is N , it is clear that Y is a trivial
N-module. Thus the tensor product E is an L-module.

We now show that E is an essential extension of 
k . Since Y is a trivial N-module, E = X“ as an 
N-module, where a is the k-dimension of Y . By (1.4) 
and (1.5), every element of X is annihilated by a power 
of I . Hence the same is true for elements of E . Given
an element x s E , x  ̂0 , we can find a least integer n
with the property that I^x = 0 . Then there exists some 
V G with vx  ̂ 0 . Since I(vx) = 0 implies that
z(vx) = 0 for every z s N , vx is an element of the
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N-invariants of E , . Since E^ is canonically an
L/N = H-module which is clearly essential over k as an 
H-module, we have E^ s Y , But since k s X ,
E = X ®  Y contains a copy of Y , namely 1 ®  Y , and
this implies that Y = Y^ s E^ s Y , and hence Y = E^ .
Thus we can find w s U(H) (considered as a subalgebra of 
U(L) ) such that w(vx) = (wv)x f  0 and (wv)x e k .
Since wv e U(L) , the result follows.

We are now prepared to prove the structure theorem 
for Eĵ (k) .

Theorem 2.9. Let L = N X  H where N is a nilpotent Lie 
algebra and H is an arbitrary Lie algebra (N and H 
are finite dimensional). Then E^^k) ®  E^(k) and E^(k) 
are isomorphic as L-modules.
Proof:

We will use the notation set up in the proof of (2.8)
By (2.8), E s Eĵ (k) . Since E = x“ as an N-module where
a is the k-dimension of Y and U(N) is left Noetherian,
it follows that E is an injective N-module because 
X = Eĵ (k) is an injective N-module and the direct sum of 
injective modules is injective in a left Noetherian ring 
(0.11). Hence the injective hull E^(k) , when considered 
as an N-module, is isomorphic to the direct sum ©  E' , 
where g is some cardinal number greater than or equal to
the k-dimension of Y , and E* is a direct sum of



32

indecomposable, injective N-subraodules of E^(k) which 
are not isomorphic to E^(k) = X [Ma, p. 516, 2.5].

We claim that E' = 0 . Suppose that x s where
is one of the indecomposable, injective summands in 

E' . Form the finitely generated L-submodule 
V = k + U(L)x c Eĵ (k) . Since N is a nilpotent Lie 
algebra, the augmentation ideal I of LJ(N) is a poly­
central ideal [Me, p. 498, 4.2]. Also, [H,N] s N 
implies that [H,I] £ I , since I is generated by 
products of elements in N . It is clear that 
U(L) =<U(N),H>, so by (2.7) with S = U(N) , we have 
I^V n k £ Ik = 0 for some positive integer n . Now if 
J denotes the ideal in U(L) generated by I , then 
J = U(L)I = IU(L) [D, p. 72, 2.2.14], and I^V = j"v 
implies that I^V is an L-submodule of E^(k) . Thus
I^V = 0 . We can therefore choose d such that I^x f  0
but I^^^x = 0 , and hence there exists some u  ̂0 in 
I  ̂ such that ux ̂  0 . Since I(ux) = 0 , the k-span of
ux is isomorphic to the 1-dimensional trivial N-module
k . Let T denote the k-span of ux . Since Ê  is an 
injective hull of every one of its nonzero submodules 
[Ma, p. 514, 2.2], E^ = E^(T) = E^(k) , contradicting 
the definition of E ' . Thus T=0 , and hence x = 0 . 
Since x was chosen arbitrarily from E^ and Ê  was 
any one of the summands of E' , it follows that E^ = 0 ;

ghence, E' = 0 . Therefore, as an N-module, Eĵ (k) = X
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Next, by the proof of (2.8), we have Y = . It
is clear that E^(k)^ is an essential extension of k
when considered as an L/N = H-module; hence
Eĵ (k)̂  Ç E%(k) = Y . But Y = E^ s E^Ck)^ and hence
Y = Eĵ (k)̂  . By the previous paragraph, E^(k) =
as an N-module, where B > ot = k-dimension of Y . But 

= E%(k)G = E^(k*) [Ma, p. 514, 2.1]; hence
Y = E^(k)^ = E^(k^)^ = k^ as N-modules, and therefore
the k-dimension of Y is equal to g . Thus
E^(k) = E^(Y) = Eĵ (Ê ) as N-modules. Since E is an 
injective N-module containing E^ , we have E^(E^) s E , 
and this implies that E = E^(k) .



CHAPTER III 

INJECTIVE HULLS OVER SOLVABLE LIE ALGEBRAS

In Chapter I we showed that the injective hull of 
a locally finite module over a nilpotent Lie algebra is 
locally finite. By using the structure theorem (2.9), we 
will be able to extend this result to locally finite modules 
over solvable Lie algebras. We will also give some examples 
of F-ĵ (k) in the case where L is a solvable Lie algebra 
of the form N X  A . In this case N denotes a nilpotent 
ideal and A an abelian subalgebra of L . In particular, 
the solvable Lie algebra r(n,k) of upper triangular nxn 
matrices with entries in the field k is of this form: 
take N to be n(n,k) = strictly upper triangular nxn 
matrices, and A = 6(n,k) = diagonal nxn matrices.

Lemma 3.1. Let L be a solvable Lie algebra over the 
algebraically closed field k of characteristic zero.
Then E^(k) is locally finite.
Proof :

Since we are assuming that L is finite dimensional 
over k , Ado's theorem implies that there is a finite

34
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dimensional representation p : L -»■ g&(n,k) , where 
n = dimension of the representation [J, p. 202]. The 
image p(L) lies in the solvable subalgebra x(n,k) of 
gf(n,k) . We identify L with p(L) and consider p as 
an inclusion. Then by (2.1), ^j(k) is an injective
L-module, and hence there is a submodule of E^^^ ^j(k) 
isomorphic to E^(k) [HS, p. 38, 9.3]. Therefore, if

(n k)(k) is locally finite then so is E^(k) . But
since x(n,k) = n(n,k)XI 6(n,k) , by (2.9),

®  EjCn.k)'’'’ ^nd both 
and Eg^^ ^^(k) are locally finite by (1.4). Therefore 
Ex(n %j(k) is locally finite because it is a tensor
product of two locally finite modules.

Theorem 3.2. Let S be an irreducible module over a 
solvable Lie algebra L . Then E^(S) = 5 ®  Eĵ (k) and 
hence E^^S) is locally finite.
Proof :

By Lie's theorem [J, p. 50], S is 1-dimensional. 
We first show that 8 ®  E^(k) is an injective L-module. 
Let W be any L-module. Then

Hom^(W,SC&E^(k)) = Hom^lW, (S*)*® Eĵ (k))
= HomL(W,Hom%^S*,E^(k)))
= HoraL(S*®W,EL(k)) .

Since S* is a free k-module and E^(k) is an injective 
L-module, the composite functor W -> Hom^[S*C&W,E^(k)) is
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exact. Thus, Hom^[ ,S®Ej^(k)) is an exact functor and 
S ®  Eĵ (k) is an injective L-module [HS, p. 105, 5.6].

Now S ®  Eĵ (k) contains an isomorphic copy of S
since k s E^(k) and hence E^(S) s S®Ej^(k) because
S ®  Eĵ (k) is injective [HS, p. 38, 9.3]. Since E^(S) 
is also injective, we have S®E^(k] = Ej^(S)©E' for 
some L-module E* . We must show that E' = 0 . But, 
S*®(S®EL(k)) = (S*®El (S)) ©  CS*®E') ; since dim^S = 1, 
we have S*®S = k, and hence,
S*®(S®EL(k]) = (S*®S)®Ej^(k) = k®E^Ck) = E^Ck) . We 
conclude that E^Ck) = (S*®E^[S)) ©  CS*®E') . Now 
Eĵ (k) = Eĵ (U(L]/l) where I is the augmentation ideal of 
U(L) ; therefore, E^(k] is an indecomposable, injective 
L-module since I is an irreducible ideal in U(L)
[Ma, p. 515, 2.4]. Thus E^(k) cannot have any proper 
nonzero direct summands, and we conclude that S*®E' = 0 ; 
hence E' = 0 . Thus S®E^[k) = E^(S) . Finally, it is
clear that E^(S) is locally finite because both E^(k)
and S are locally finite.

Corollary 3.3. Let L be a solvable Lie algebra over the 
algebraically closed field k of characteristic zero. Let 
V be a locally finite L-module. Then E^(V] is also 
locally finite.
Proof:

By using an argument similar to that given in the 
proof of (1.4), it suffices to consider the case where V
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is finite dimensional. Since the field k is algebraically 
closed and characteristic zero, V contains irreducible 
submodules by Lie's theorem. If is the collec­
tion of all irreducible submodules of V , then the socle 
of V , Soc(V) , is equal to the direct sum of a certain
subcollection of the S's, say Soc(V) = ©  S where

a « A  **
A s  A [L, p. 60]. Thus Ej^(Soc(V)) = ©  Eĵ (Ŝ ) [Ma, p. 514,

a
2.1]. By (3.2) each E^CS^) is locally finite and hence 
Eĵ (Soc(V)) is also locally finite since a direct sum of 
locally finite modules is locally finite.

To complete the proof, we show that 
Eĵ (V) = E^[Soc(V)] . If U is any nonzero submodule of
V , then U has a composition series
U = Ug 3 Uj 3 ... 3 3 = 0 and is irreducible
by Lie's theorem. Thus U n Soc(V) f  0 , and hence V is
an essential extension of Soc(V) . Therefore,
V s Eĵ (Soc(V)) , and since E^(Soc(V)] is an injective 
L-module containing V , E^(V) c E^(Soc(V)) . But
clearly, E^(Soc(V)] is contained in E^(V) since 
Soc(V) s V . Thus Eĵ (V) = Eĵ (Soc(V)) and the result 
follows.

Remark 3.4. The local finiteness of E^(V) when V is 
locally finite has also been obtained independently by 
Stephen Donkin. See [Do].

We will now give some examples of E^(k) where L
is a solvable Lie algebra of the form N XI A . These
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calculations will make use of (1.7) and (2.9).

(3.5). Let L be the 2-dimensional non-abelian Lie 
algebra over the field k with basis 6^,62 and bracket 
[6^,62! = . Then L = NXl A , where N = [L,L] = ke^ ,
and A = keg . By (1.13), E^(k) = k[X^] with the basis
element ê  sent to - E^^k) = k[Xg] with

®2 ^ - 317 • (2-9), = ^^(k) ®  E^(k) = kEXi.Xg]

2We only need to determine the action of e„ on Ew(k) ,
and it suffices to calculate e^.X^ since A acts on N
via derivations. Recall that X̂  corresponds to the
linear functional fj in U(N) satisfying f^(ei) = 1
and f^(e^) = 0 for all ê   ̂ ê  . Now
e2.fi(e^) = -f\( [62,61]) = -fi(-ei) = 1 . Furthermore,
eg. fi (6j Vvi I) = 0 for all Vj 7̂ 1 . Thus we have the
representation

L Der(k[Xi ,Xg])

o -V Y 3 a®2 %i3Xi ■ 9X2

obtained by extending linearly to all of L .

(3.6). Let L be a 3-dimensional solvable Lie algebra over 
the field k with basis ei,eg,e3 . The brackets are given 
by [61,eg] = -61,[eg,63] = -ei + eg , and all other 
brackets are zero. We have [L,L] = kei + keg is an 
abelian ideal in L and L is the semi-direct product
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[L,L] XI keg . Since N = [L,L] is abelian, by (1.13) 
we know that E^(k) = k[X^,X2] with ej -»■ - and
e% + - . Also by (1.13), E^^k) = k[Xg] where
A = keg and eg -»■ - . Thus we only have to deter­
mine the action of eg on X̂  and Xg . Let f̂  (resp. 
fg) be the linear functional in U(N)* which takes the 
value 1 at ê  (resp. eg) and zero otherwise. Note that
f̂  (resp. fg) corresponds to X̂  (resp. Xg) under the 
isomorphism given in (1.12). If f s U(N)* , u e U(N) , 
then eg.f(u) = -f([6g,u]) = -f(egU - ueg) . We have

= -fgCEeg.Gg]) = -fzCe^-e,) = 1 ,

Gs-fgCGi'eVz/ViIVg!) = ^^Y^fg(vi[eg,eje^i"^e''2

+ vge^i[eg,eg]eg2"l)

+ V2ei^(e - 6g)e2^ )̂

+ V2evi+Ie%2-1]

= 0 if (vi,V2) (0,1) .

Thus e^.Xg = Xg . Similarly, one can show that the only 
nonzero values for e^.f^ are given by

Gs'fifeg) = -fi([eg,eg]) = -f^(e^ - e^) = -1 ,
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and

©g.fiCei) = -fi([e3,ej) = -fjCe^) = -1 .

Thus we have the representation

L ^  D e r ( k [ X j , X 2 , X 3 ] )

3e

e
1 3Xi

3
2 3 X2

®3  ^ 2 ) 3 } ^ -  ■  3 X ^  •

The next examples are calculated in the same manner 
as the previous ones. However, since these calculations 
become exceedingly tedious, we will omit the details. The 
general form of the representation of t(n,k) in 
E^(n %j(k) is unknown to the author at this time, although 
theoretically these calculations can be accomplished using 
the method outlined in the previous examples.

(3.7). L = x(2,k) • L has the basis ei2>®ii»®22 with 

brackets [e^2>®22] “ ®12 » t®i2>®ii] “ ®12 > and all v .

other brackets are zero. The representation is given by

L -> Der(k[X;
3

®12 -> 3X%

-X13X 1 ■
3

3X2

®22 ^i3&r ■
3

3X 3

and extending linearly to all of L ..
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(3.8). L = %(3,k) . L has the basis
®13»®12»®2 3 1»®22>®33 • The bracket relations are
given by - s.^e^. for
1 < i,k < j,£ < 3 . We have the representation

L -> Der(k[X^,X2,...,Xg])

®i3

®12 ■ 317
_ Y 9 3

®23 ^2axj • 3 X 3

*22 + X

*33 ^ X

- X,3X: 0
3 Xl̂

a V 3 a
■2'axi' ■ *33X3 " 3X5

a V 3 a
laXi *33X3 " aXg

We then extend by linearity to all of L .

(3.9). L = x(4,k) . L has the basis

Slit >e2it j6i 3 >63«t >®23 >612 >®11 >®22 >633 * The bracket
relations are given by [e^j,e^^] = 6j^e^^ - 6^^e^j for
l < i , k < j , £ < 4  . The injective hull ^^(k) has
for its representation space the algebra
k[X^jXj,...,Xjq] and the representation is defined by
extending linearly to all of L the function whose values
on the basis are listed below:

L -> Der(k[Xj ,Xg,... ,Xj q] )

*14 + - 3%r
624 ^sXc



oixee - -X * = x « ; x . ' f ’X 4-
®xee - =x . - f - X  - -f- E E@

®xee ’X * =X - =X«:X- ZZG
^xee 9 x e,„ i x c c  _ 'xe,g A e e <- IÏO
'xee - ili(;sx*»x + %x-) 4- 2l0

sxe zxGt e e ^ -t- EZo
"xe _ 'xcEy e e ■*■ 4- 4E@

^xee 4- El0

Zl7
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