8215904

Dahlberg. Randall Philip

THE STRUCTURE OF INJECTIVE HULLS OF LIE MODULES

The University of Oklahoma
Ph.D. 1982

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

THE STRUCTURE OF INJECTIVE HULLS OF

LIE MODULES

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY
RANDALL PHILIP DAHLBERG
Norman, Oklahoma
1982

THE STRUCTURE OF INJECTIVE HULLS

OF
LIE MODULES

APPROVED BY

DISSERTATION COMMITTEE

TABLE OF CONTENTS

Page
INTRODUCTION iv
PRELIMINARIES vii
Chapter
I. INJECTIVE HULLS OVER NILPOTENT LIE ALGEBRAS 1
II. A STRUCTURE THEOREM FOR $E_{L}(k)$ WHEN L ISNILPOTENT-BY-FINITE21
III. INJECTIVE HULLS OVER SOLVABLE LIE ALGEBRAS. 34
REFERENCES 43

INTRODUCTION

Let A be a finite dimensional abelian Lie algebra over the algebraically closed field k of characteristic zero. It is a classical result that the injective hull $E_{A}(k)$ of the 1-dimensional trivial A-module k is isomorphic to the k-algebra $k\left[X_{1}, \ldots, X_{n}\right]$ of polynomials in n indeterminates where n is the k-dimension of A. The representation of A in $E_{A}(k)$ is defined by sending the basis element e_{i} of A to the partial derivative with respect to the indeterminate $X_{i}(1 \leqslant i \leqslant n)$ and extending linearly to all of A. We generalize this result to finite dimensional nilpotent Lie algebras N . We show that the injective hull $E_{N}(k)$ of the 1-dimensional trivial N-module k is isomorphic to $k\left[X_{1}, \ldots, X_{n}\right]$ where n is the k-dimension of N. The representation of N in $E_{N}(k)$ is defined by sending the basis elements of N to firstorder partial differential operators with polynomial coefficients whose degrees are bounded above by the integer d-1 where d is the index of nilpotency of N. We then extend by linearity to all of N .

We say that a finite dimensional Lie algebra L is nilpotent-by-finite if L is the semi-direct product
$N \rtimes H$ of a nilpotent Lie algebra N and an arbitrary Lie algebra H (both N and H are necessarily finite dimensional). We prove that the injective hull $E_{L}(k)$ of the 1 -dimensional trivial L-module k is isomorphic to the tensor product over k of the injective hulls $E_{N}(k)$ and $E_{H}(k)$, where the latter modules are equipped with suitable L-module structures. In particular, if L is nilpotent-by-abelian then we can construct the representations of N and H in $E_{N}(k)$ and $E_{H}(k)$ respectively by the result mentioned above. We show that in this case $E_{L}(k)$ is also a polynomial algebra over k in the number of indeterminates equal to the dimension of L. Furthermore, L is represented in $E_{L}(k)$ by derivations. We shall give several examples of these representations for various solvable and nilpotent Lie algebras.

A left module V for a k-algebra A is said to be locally finite dimensional (locally finite) if the k-dimension of $A v$ is finite for each element v in V. We prove that $E_{N}(V)$ is a locally finite $U(N)$-module where $U(N)$ is the universal enveloping algebra of a finite dimensional nilpotent Lie algebra N, and V is a locally finite N-module. It follows immediately by the preceding paragraph that the injective hull $E_{L}(k)$ will be locally finite if L is nilpotent-by-abelian since the tensor product of two locally finite modules is again locally finite. Furthermore, we obtain this result for any finite
dimensional solvable Lie algebra L . Finally, we use the local finiteness of $E_{L}(k)$ to prove that $E_{L}(V)$ is locally finite for any locally finite Lie module V over a finite dimensional solvable Lie algebra L . This result has been obtained independently by Stephen Donkin [Do, p. 3, 1.1.1]. Donkin adapts an argument given by K. A. Brown which shows that the injective hull of a locally finite $k G$-module is locally finite when G is a polycyclic-by-finite group. In fact, it is claimed in [Do, p. 37] that if V is a locally finite Lie module for a finite dimensional Lie algebra L over a field of characteristic zero, then $E_{L}(V)$ is locally finite if and only if L is solvable.

This dissertation was prepared under the supervision of Professor Andy R. Magid, whose help and encouragement are gratefully acknowledged.

0. PRELIMINARIES

All Lie algebras considered in this paper are finite dimensional over an algebraically closed field k of characteristic zero. All unadorned tensor products \otimes will be taken over k.
(0.1) Given any Lie algebra L there is a pair (U,i) consisting of an associative k-algebra with identity and a Lie algebra homomorphism $i \quad L \rightarrow U$ (U has a Lie algebra structure given by $\left[\mathrm{u}_{1}, \mathrm{u}_{2}\right]=\mathrm{u}_{1} \mathrm{u}_{2}-\mathrm{u}_{2} \mathrm{u}_{1}, \mathrm{u}_{1}, \mathrm{u}_{2} \in U$). This pair satisfies the following universal property: given any Lie algebra homomorphism $f: L \rightarrow A$ where A is an associative k-algebra with identity, there is a unique algebra homomorphism $\mathrm{F}: \mathrm{U} \rightarrow \mathrm{A}$ which maps 1 onto 1 and makes the following diagram commute.

It follows from the universal property that U is unique up to isomorphism, and U is generated by the image $i(L)$. U is called the universal enveloping algebra of L and will be denoted by $U(L)$ [J, p. 152].
(0.2) We will give a brief outline of the construction of $U(L)$ for any Lie algebra L. Let $T(L)$ denote the tensor algebra of the k-vector space L. Recall that $T(L)=k 1 \oplus T_{1}(L) \oplus T_{2}(L) \oplus \ldots \oplus T_{j}(L) \oplus \ldots \quad$ where $T_{1}(L)=L$ and $T_{j}(L)=L \otimes L \otimes \ldots \otimes, j$ times. We have the usual vector space operations in $T(L)$, and $T(L)$ has a multiplication indicated by \otimes and defined by

$$
\begin{aligned}
& \left(x_{1} \otimes \ldots \otimes x_{p}\right) \otimes\left(y_{1} \otimes \ldots \otimes y_{q}\right) \\
& \quad=x_{1} \otimes \ldots \otimes x_{p} \otimes y_{1} \otimes \ldots \otimes y_{q} .
\end{aligned}
$$

We then extend this operation linearly to all of $T(L)$.
Let I be the two-sided ideal in $T(L)$ generated by all the elements of the form $x \otimes y-y \otimes x-[x, y]$, $x, y \in L$. Set $U(L)=T(L) / I$, and let i be the restriction to $L_{1}=L$ of the canonical projection of $T(L)$ onto U(L) . We have

$$
\begin{aligned}
i(x) & \otimes i(y)-i(y) \otimes i(x)-i([x, y]) \\
& =(x \otimes y-y \otimes x-[x, y])+I \\
& =I=0(i n U(L)) .
\end{aligned}
$$

Hence, $i([x, y])=i(x) \otimes i(y)-i(y) \otimes i(x)=[i(x), i(y)]$ in $U(L)$; thus $i: L \rightarrow U(L)$ is a Lie algebra homomorphism. The pair ($U(L), i)$ is a universal enveloping algebra for L [J, p. 156, Theorem 2].
(0.3) Let J be a linearly ordered set and suppose that $\left\{e_{j} \mid j \in J\right\}$ is a basis for L. Since $U(L)$ is generated by $i(L), U(L)$ is spanned by 1 and the products $i\left(e_{j_{1}}\right) \ldots i\left(e_{j_{r}}\right), j_{1}, \ldots, j_{r} \in J$. In fact, $U(L)$ is spanned by 1 and the products $i\left(e_{j_{1}}\right) \ldots i\left(e_{j_{r}}\right)$, where $j_{1} \leqslant \ldots \leqslant j_{r}$, since we may rearrange the order of the factors by using the formula

$$
i\left(e_{q}\right) i\left(e_{p}\right)=i\left(e_{p}\right) i\left(e_{q}\right)+i\left(\left[e_{q}, e_{p}\right]\right)
$$

The Poincaré-Birkhoff-Witt Theorem states that $U(L)$ has as basis over $k \quad$ and the products $i\left(e_{j_{1}}\right) \ldots i\left(e_{j_{r}}\right)$, $j_{1} \leqslant \ldots \leqslant j_{r}[J, p .159$, Theorem 3].

A consequence of this theorem is the fact that $\mathrm{i}: L \rightarrow U(\mathrm{~L})$ is injective [J, p. 160, Corollary 1]. Hence we can and will identify L with $i(L)$ in $U(L)$.
(0.4) A Lie module V over a Lie algebra L is a k-vector space together with a Lie algebra homomorphism $p: L \rightarrow g 1(V)$, where $g 1(V)$ is the entomorphism ring End ${ }_{k}(V)$ equipped with a Lie algebra structure given by $[A, B]=A B-B A$, where $A B$ is the usual multiplication of A and B in $E n d_{k}(V)$: If $x \in L$ and $V \in V$ we shall often write $x . v$ or $x v$ for $\rho(x)(v)$. The homomorphism ρ is called a representation of L in V.
(0.5) Given a representation $\rho: L \rightarrow g 1(V)$, there is a unique algebra homomorphism $\sigma: U(L) \rightarrow$ End $_{k}(V)$ such that $\sigma \mid L=\rho$. Hence V has a unique $U(L)$-module structure
determined by ρ. Conversely, if V is a $U(L)$-module, then there is a representation (i.e. an algebra homomorphism) $\sigma: U(L) \rightarrow \operatorname{End}_{k}(V)$, and σ restricted to L defines a representation of L in V. Hence V is also an L-module. Thus the notions of an L-module and a U(L)-module essentially coincide. In this paper, we will write L-module for $U(L)$-module, $\operatorname{Hom}_{L}($,$) for$ $\operatorname{Hom}_{U(L)}($,$) , and module will always mean left-module.$

Definition 0.6 [HS, p. 36]. Let R be any ring with 1 and let M and N be R-modules. An injective R-module homomorphism $\mu: M \rightarrow N$ is called essential if for any submodule H of $N, H \neq 0$ implies that $H \cap \mu(M) \neq 0$. If M is regarded as a submodule of N, then N is called an essential extension of M.
(0.7) It is easy to see that N is an essential extension of M if and only if for any $n \in N, n \neq 0$, there exists some $r \in R$ such that $r n \in M, r n \neq 0$ [HS, p. 37, 9.1].
(0.8) Given any R-module M there is an injective R-module E containing M such that every injective R-module F containing M contains an isomorphic copy of E. This property defines E up to isomorphism and E is called the injective hull (injective envelope) of M [HS, p. 36].
(0.9) If M is a submodule of the injective module F, then there is a maximal essential extension E of M
contained in F . Any such maximal essential extension E is an injective R -module isomorphic to the injective hull of M [HS, p. 37, 9.2].
(0.10) If V is an L-module then the injective hull of V will be denoted by $E_{L}(V)$. We shall need the following facts:
(0.11) Let R be a left Noetherian ring with 1 . Then
(i) A direct limit of injective R-modules is injective.
(ii) A direct sum of injective R-modules is injective $\mathrm{Ma}, \mathrm{p} .512,1.2]$.

Definition 0.12. Let L be a Lie algebra over k and let I be an ideal (two-sided ideal) in $U(L)$. We say that I is a cofinite ideal if the k-dimension of $U(L) / I$ is finite.

Proposition 0.13. Let V be a finitely generated L-module such that $I M=0$ for the cofinite ideal I in $U(L)$. Then V is finite dimensional over k. Proof:

Since V is annihilated by I, V may be considered as an $R=U(L) / I$-module. Let v_{1}, \ldots, v_{n} be a set of generators for V over $U(L)$. Then v_{1}, \ldots, v_{n} also form a set of generators for V over R. We have a surjective homomorphism:

$$
\begin{aligned}
& \pi: R v_{1} \oplus R v_{2} \oplus \ldots \oplus R v_{n} \rightarrow V \\
& \left(r_{1} v_{1}, \ldots, r_{n} v_{n}\right) \rightarrow \sum_{i=1}^{n} r_{i} v_{i} .
\end{aligned}
$$

The cyclic modules Rv_{i} are clearly finite dimensional since the algebra R is finite dimensional and $R v_{i}$ is the image of the homomorphism

$$
\begin{aligned}
\pi_{i}: & R \\
& \rightarrow R v_{i} \quad(1 \leqslant i \leqslant n) \\
1 & \rightarrow v_{i} .
\end{aligned}
$$

Thus $R v_{1} \oplus \ldots \oplus R v_{n}$ is finite dimensional and we conclude that V is also finite dimensional.

THE STRUCTURE OF INJECTIVE HULLS
 OF LIE MODULES

CHAPTER I

INJECTIVE HULLS OVER NILPOTENT LIE ALGEBRAS

The main result of this chapter is a description of the representation of a nilpotent Lie algebra N in the injective hull of the 1 -dimensional trivial N-module k. The representation space is the k-algebra of polynomials $k\left[X_{1}, \ldots, X_{n}\right], n=k$-dimension of N, and the action of N on this space is given by k-derivations. We begin by exhibiting the module structure for the injective hull of the 1 -dimensional trivial A-module in the case where A is a l-dimensional Lie algebra. Indeed, this example provided the motivation to generalize to the nilpotent case.

Proposition 1.1. Let A be a 1-dimensional Lie algebra over k with basis e, and let $k[X]$ be the k-algebra of polynomials in the indeterminate X. Then $k[X]$ with the A-module structure given by (αe) $\cdot p(X)=\alpha \frac{d}{d X} p(X), \alpha \in k$, $p(X) \in k[X]$, is isomorphic to the injective hull, $E_{A}(k)$,
of the 1-dimensional trivial A-module k.
Proof:
Let $\rho: A \rightarrow g 1(k[X])$ be the corresponding representation of A given by $\rho(e)=\frac{d}{d X}$ and extending linearly to all of A. Then ρ extends uniquely to a representation of the universal enveloping algebra $\sigma: U(A) \rightarrow$ End $(k[X])$. Since $U(A)$ may be identified with the k-algebra of polynomials in the basis element e, σ is uniquely defined by $\sigma(f(e))=f\left(\frac{d}{d X}\right)$, i.e. if $f(e)=a_{n} e^{n}+\ldots+a_{0} \in U(A)$, then $f\left(\frac{d}{d X}\right)=a_{n} \frac{d^{n}}{d X^{n}}+\ldots+a_{0} 1$, where 1 is the identity map on $k[X]$. We note that $k[X]$, with the $U(A)$-module structure given by σ, is an essential extension of k. Namely, if $p(X)$ is any nonzero polynomial in $k[X]$ of degree n, then $\sigma\left(e^{n}\right)(p(X))=a_{n} n!\neq 0$, where a_{n} is the leading coefficient of $p(X)$.

To complete the proof we must show that $k[X]$ is an injective $U(A)$-module. Since $U(A)$ is a principal ideal domain, it suffices to show that $k[X]$ is a divisible $\mathrm{U}(\mathrm{A})$-module $[\mathrm{HS}, \mathrm{p} .31,7.1]$. Thus let $\mathrm{p}(\mathrm{X}) \in \mathrm{k}[\mathrm{X}]$ and $f(e) \in U(A)$ be given. We will show that there exists some $q(X)$ in $k[X]$ satisfying $\sigma(f(e))(q(X))=p(X)$. It suffices to show that the differential operator $F=f\left(\frac{d}{d X}\right)$ is a surjective endomorphism of $k[X]$. Since F is clearly k-linear, we show by induction that X^{n} lies in the image of F for all integers $n \geqslant 0$. Suppose
$F=a_{m} \frac{d^{m}}{d X^{m}}+\ldots+a_{0} 1$ and let j be the least integer such that $a_{j} \neq 0,0 \leqslant j \leqslant m$. Then $F\left(\left(a_{j} j!\right)^{-1} X^{j}\right)=1$. Assume now that all polynomials of degree less than n lie in the image of F. Then $F\left(n!\left(a_{j}(n+j):\right)^{-1} X^{n+j}\right)=X^{n}+r(X)$, where $r(X)$ is in $\mathrm{k}[\mathrm{X}]$ and has degree strictly less than n . By induction, there exists some $s(X)$ in $k[X]$ such that $F(s(X))=r(X)$. Thus $F\left[n!\left(a_{j}(n+j)!\right)^{-1} X^{n+j}-s(X)\right)=X^{n}$. Hence F is surjective. Thus $k[X]$ is a divisible, and hence injective $U(A)$-module. Since $k[X]$ is also an essential extension of $k, k[X]$ is isomorphic to the injective hull of k.

Remark 1.2. Note that the representation of A in (1.1) is faithful. We will see later that the representation of N in $E_{N}(k)$ is faithful when the Lie algebra N is nilpotent.

The following lemmas will be used to prove a structure theorem for the injective hull $E_{N}(k)$ where N is a nilpotent Lie algebra. In particular, Lemma 1.4 is of independent interest and will be extended to solvable Lie algebras.

Definition 1.3. Let R be a ring and I a two-sided ideal in R. I has the weak Artin-Rees property (weak AR property) if for any finitely generated left R-module V and submodule W of V there exists some positive integer
n such that $I^{n} V \cap W \subseteq I W$ [P, pp. 485-486].

Lemma 1.4. Let N be a nilpotent Lie algebra over the field k and let V be a locally finite N-module. Then $E_{N}(V)$ is locally finite.
Proof:
We first assume that the k-dimension of V is finite. Let I be the kernel of the structure map $U(N) \rightarrow \operatorname{End}(V)$, where $U(N)$ is the universal enveloping algebra of N. Then I is a two-sided cofinite ideal in $U(N)$ with the weak AR property [Mc, p. 497, 4.2]. Let S be any finite subset of $E_{\dot{N}}(V)$ and form the finitely generated submodule M which is generated by V and the subset S. Since I has the weak AR property, there is an integer n such that $I^{n} M \cap V \subseteq I V=0$. Thus M is finite dimensional because I^{n} is also a cofinite ideal in $U(N)$ [D, p. 82, 2.5.1], and hence every finite subset of $E_{N}(V)$ is contained in a finite dimensional submodule of $E_{N}(V)$. Thus $E_{N}(V)$ is locally finite. Now suppose V is locally finite. Any finitely generated submodule V_{i} of V is finite dimensional. Since V is a direct limit of its finitely generated submodules, we have that $V=\sum V_{i}$ where each V_{i} is finite dimensional. Now the inclusions $V_{i} \rightarrow V_{j}$ for $i \leqslant j$ induce injective maps $E_{N}\left(V_{i}\right) \rightarrow E_{N}\left(V_{j}\right)$. To see this, consider the diagram below, where $f_{i j}$ is the composite $V_{i} \rightarrow V_{j} \rightarrow E_{N}\left(V_{j}\right)$ and g is inclusion.

The injectivity of $E_{N}\left(V_{j}\right)$ implies the existence of the $\operatorname{map} F_{i j}$ and furthermore, $\operatorname{ker}\left(F_{i j}\right) \cap g\left(V_{i}\right)=0$ because f_{ij} is injective. But $\mathrm{E}_{\mathrm{N}}\left(\mathrm{V}_{\mathrm{i}}\right)$ is an essential extension of V_{i} and hence $\operatorname{ker}\left(F_{i j}\right)=0$. Thus the $E_{N}\left(V_{i}\right)$ together with the induced injective maps $F_{i j}$ define a directed system and $\operatorname{dir} \lim E_{N}\left(V_{i}\right)=\sum E_{N}\left(V_{i}\right)$. Clearly $\sum E_{N}\left(V_{i}\right)$ is an essential extension of V. We claim that $\sum E_{N}\left(V_{i}\right)$ is an injective N-module. But this follows from the fact that $U(N)$ is Noetherian and (0.11). Thus $\sum E_{N}\left(V_{i}\right)$ is an injective N-module which is an essential extension of V and hence is isomorphic to $E_{N}(k)$. It is now clear that $E_{N}(V)$ is locally finite since each $E_{N}\left(V_{i}\right)$ is locally finite by the previous paragraph.

Lemma 1.5. Let N be a nilpotent Lie algebra over the field k, and suppose that V is a finite dimensional essential extension of k. Then
(i) The representation $\rho: N \rightarrow g 1(V)$ defined by $\rho(x)(v)=x v$, where x is in N and v is in V, is a nịl representation, i.e. $\rho(x)$ is a nilpotent endomorphism of V for every x in N.
(ii) There is a positive integer d such that $I^{d} V=0$ where I denotes the augmentation ideal of $U(N)$.

Proof:
(i) $V=V_{0} \oplus V_{1}$ where V_{0} and V_{1} are submodules of V such that for every x in $N, \rho(x) \mid V_{0}$ is nilpotent and $\rho(x) \mid V_{1}$ is an automorphism [J, p. 39, 4]. Suppose $0 \neq v$ is an element in V_{1}. Since V is essential over k, there exists some u in $U(N)$ such that $u v$ is a nonzero element in k. Now uv lies in V_{1}, but for all x in N we have $0=x(u v)=\rho(x)$ (uv), contradicting the definition of V_{1}. Thus $V_{1}=0$.
(ii) Let $0=V_{0} s V_{1} s \ldots \ldots s V_{d}=V$ be a composition series for V. Since the factor modules V_{i} / V_{i-1} are finite dimensional simple modules, they are l-dimensional [D, p. 13, 1.3.13]. Suppose that for x in N, $\rho(x)\left(v_{i}\right)=\alpha v_{i}$ (modulo V_{i-1}), where $v_{i} \in V_{i}$ is a coset representative for a basis of $V_{i} / V_{i-1}, 1 \leqslant i \leqslant d$, and $\alpha \in k$. Since ρ is nil by (i), $\alpha^{r} v_{i}=\rho(x)^{r}\left(v_{i}\right)=0$ (modulo V_{i-1}); hence $\alpha=0$. Thus for any x in N, $x V_{i}=\rho(x)\left(V_{i}\right) \subseteq V_{i-1}, 1 \leqslant i \leqslant d$, and hence $I^{d} V \varsigma V=0$.

Lemma 1.6. Let I be the augmentation ideal in the universal enveloping algebra $U(N)$ of the nilpotent Lie algebra N over the field k. Then $\bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)^{*}$ may be identified with the submodule of $U(N)^{*}$ consisting of those linear functionals which vanish on some power of the ideal I .

Proof:
The surjections $U(N) / I^{m} \rightarrow U(N) / I^{n}, m \geqslant n$, give rise to the injective maps $f_{m}^{n}:\left(U(N) / I^{n}\right)^{*} \rightarrow\left(U(N) / I^{m}\right)^{*}$, and the modules $\left(U(N) / I^{n}\right)^{*}$ together with the homomorphisms f_{m}^{n} form a direct system of N-modules. Since the f_{m}^{n} are injective, the direct limit $\operatorname{dir} \lim \left(U(N) / I^{n}\right)^{*}=\bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)^{*}$, and hence the latter set is an N-module. If f is an element of $U(N)^{*}$ such that $f\left(I^{n}\right)=0$, then f induces a linear functional f in $\left(U(N) / I^{n}\right)^{*}$. Conversely, if \bar{g} is in $\left(U(N) / I^{n}\right)^{*}$ we may define a linear functional g in $U(N)^{*}$ by $g\left(I^{n}\right)=0$ and $g(u)=\bar{g}\left(u+I^{n}\right)$ for u in $U(N)$. This correspondence is clearly an N-module isomorphism and allows us to identify $\left(U(N) / I^{n}\right)^{*}$ with those functionals in $U(N)^{*}$ which vanish on I^{n}.

Theorem 1.7. Let N be a nilpotent Lie algebra over the field k. Then $E_{N}(k)=\operatorname{dir} \lim \left(U(N) / I^{n}\right)^{*}=\bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)^{*}$. Proof:

First of all, we show that $\left(U(N) / I^{n}\right)^{*}$ is an essential extension of k (which we identify with k^{*} under the usual isomorphism) for every positive integer n. We will make the identifications guaranteed by (1.6). Let f be a nonzero linear functional in $U(N)$ * which vanishes on I^{n}. Choose an integer $m, 1 \leqslant m \leqslant n$, such that $f\left(I^{m}\right)=0$ and $f\left(I^{m-1}\right) \neq 0$. Hence there is some u in I^{m-1} such that $f(u) \neq 0$. Now $U(N)^{*}$ is an N-module by
the action (x.f)(w) $=-f(x w)$, where x is in N, f is in $U(N)^{*}, W$ is in $U(N)$, and the product $x w$ is taken in $U(N)$. This action extends uniquely to an action of $U(N)$ on $U(N)^{*}$: (w.f)(v) $f\left(W^{T} v\right)$, where w and v are in $U(N)$ and $w \rightarrow W^{T}$ is the unique antiautomorphism of $U(N)$ such that $x^{T}=-x$ for all elements x in N [D, p. 73, 2.2.18]. Thus the functional u.f is nonzero and (u.f)(v) $=0$ for all v in I since $u^{T} v$ lies in I^{m}. Hence $u . f$ is an element in $(U(N) / I)^{*}=k^{*}=k$.

Next we observe that $U(N)^{*}$ is an injective N -module. If M is any N -module, then

$$
\begin{aligned}
\operatorname{Hom}_{N}\left(M, U(N)^{*}\right) & =\operatorname{Hom}_{N}\left(M, \operatorname{Hom}_{k}(U(N), k)\right) \\
& =\operatorname{Hom}_{k}(U(N) \otimes M, k) \\
& =\operatorname{Hom}_{k}(M, k)
\end{aligned}
$$

where the second line follows from adjoint associativity [HS, p. 111, Exercise 7.3], and the third line follows from the natural isomorphism $U(N) \otimes M=M$. Since $\mathrm{Hom}_{\mathrm{k}}(, k)$ is an exact functor on N-modules so is $\operatorname{Hom}_{\mathrm{N}}\left(, \mathrm{U}(\mathrm{N})^{*}\right)$ and hence $\mathrm{U}(\mathrm{N})^{*}$ is injective.

Thus we have the following inclusions:

$$
k=k^{*} \subseteq \bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)^{*} \subseteq U(N)^{*} .
$$

Since $U(N)^{*}$ is injective and contains an isomorphic copy
of k, $U(N)^{*}$ contains a submodule isomorphic to $E_{N}(k)$ [HS, p. 38, 9.3]. Hence $\bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)^{*} \subseteq E_{N}(k)$. if we identify $E_{N}(k)$ with its image in $U(N)^{*}$ under the isomorphism, because by our iirst argument,
$U\left(U(N) / I^{n}\right)^{*}$ is an essential extension of k and $n \geqslant 0$ $E_{N}(k)$ is the maximal essential extension of k contained inside of $U(N) *$. By (1.4), $E_{N}(k)$ is locally finite, and hence by (1.5), if f is an element of $E_{N}(k)$ there is a positive integer n such that $I^{n} . f=0$. But this implies that f vanishes on I^{n}, and hence $f \in \bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)^{*}$. Thus the result follows. In order to make explicit calculations of the injective hull $E_{N}(k)$ when N is a nilpotent Lie algebra, we will need the following results on the dual of the universal enveloping algebra of an arbitrary Lie algebra. The relevant facts will be summarized here for a finite dimensional Lie algebra. However, these facts may be extended to the case where the Lie algebra is of arbitrary dimension over a field k of characteristic zero [B1, pp. 118-119].

Let L be a finite dimensional Lie algebra over the field k of characteristic zero, and suppose that e_{1}, \ldots, e_{n} is a basis for L over k. The diagonal map $L \rightarrow L \times L$ given by $x \rightarrow(x, x)$ induces a Lie algebra homomorphism $L \rightarrow U(L) \otimes U(L)$ given by $x \rightarrow x \otimes 1+1 \otimes x$, and hence induces an algebra homomorphism (in fact, a unique
algebra homomorphism) $U(L) \rightarrow U(L) \otimes U(L)$ called the coproduct of $U(L)$. The coproduct c together with the augmentation map $\varepsilon: U(L) \rightarrow k$ give $U(L)$ the structure of a cocommutative bialgebra [B, p. 115]. Thus the dual $U(L) *$ is an algebra with the multiplication given as follows: if f and g are elements in $U(L)^{*}$ and u is in $U(L)$, then $f g(u)=f \otimes g(c(u))$. In order to elucidate the structure of this algebra, we choose the following basis for $U(L)$: for $v=\left(v_{1}, \ldots, \nu_{n}\right)$ any n -tuple of nonnegative integers define $e_{v}=e_{1}^{\nu_{1}} e_{2}^{\nu_{2}} \ldots e_{n}^{\nu_{n} / v_{1}}!\ldots v_{n}!$. Then $\left\{e_{v} \mid v \in \mathbb{N}\right\}$ is a basis over k for $U(L)$ by the Poincaré-Birkhoff-Witt Theorem. The following lemma shows that the value of the coproduct c on e_{v} has a particularly simple expression.

Lemma 1.8.

$$
[D, p .90,2.7 .2] \quad c\left(e_{\nu}\right)=\sum_{\mu+\lambda=\nu} e_{\mu} \otimes e_{\lambda} .
$$

Proof:
We first observe that

$$
\begin{aligned}
c\left(e_{i}^{v_{i}} / v_{i}!\right) & =\frac{1}{v_{i}!} c\left(e_{i}\right)^{v_{i}} \\
& =\frac{1}{v_{i}!}\left(e_{i} \otimes 1+1 \otimes e_{i}\right)^{v_{i}} \\
& =\frac{1}{v_{i}!} \sum_{i}+\lambda_{i}=v_{i}\binom{v_{i}}{\mu_{i}} e_{i}^{\mu_{i}} \otimes e_{i}^{\lambda_{i}} \\
& =\sum_{i}+\lambda_{i}=v_{i} e_{i}^{\mu_{i}} \otimes e_{i}^{\lambda_{i} / \mu_{i}!\lambda_{i}}: \\
& =\sum_{\mu_{i}+\lambda_{i}=v_{i}} e_{i}^{\mu_{i} / \mu_{i}}: \otimes e_{i}^{\lambda_{i} / \lambda_{i}}: .
\end{aligned}
$$

Hence the result is clear in this case. Finally,

$$
\begin{aligned}
c\left(e_{v}\right) & =c\left(e_{1}^{\nu_{1}} e_{2}^{\nu_{2}} \ldots e_{n}^{\left.\nu_{n} / v_{1}!v_{2}!\ldots v_{n}!\right)}\right. \\
& =\prod_{i=1}^{n} \mu_{i}+\sum_{i}=v_{i} e_{i}^{\mu_{i} / \mu_{i}}: \otimes e_{i}^{\lambda_{i}} / \lambda_{i}! \\
& =\mu_{i} \sum_{i} \sum_{i} v_{i} e_{1}^{\mu_{1}} e_{2}^{\mu_{2}} \ldots e_{n}^{\mu_{n}} / \mu_{1}!\ldots \mu_{n}! \\
& \otimes e_{1}^{\lambda_{1}} e_{2}^{\lambda_{2}} \ldots e_{n}^{\lambda_{n} / \lambda_{1}}!\ldots \lambda_{n}! \\
& =\sum_{\mu+\lambda=v} e_{\mu} \otimes e_{\lambda} .
\end{aligned}
$$

Theorem 1.9. [D, p. 90, 2.7.5] Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis for a Lie algebra L over a field k of characteristic zero, and let $\left.k\left[X_{1}, \ldots, X_{n}\right]\right]$ denote the algebra of formal power series over k in the n indeterminates X_{1}, \ldots, X_{n}. If $f \in U(L)^{*}$, denote the formal power series $\sum_{\nu \in \mathbb{N}^{n}} f\left(e_{\nu}\right) X^{\nu}$ by s_{f} where $X^{\nu}=X_{1}^{\nu} X_{2}^{\nu_{2}} \ldots X_{n}^{\nu_{n}}$. Then $f \rightarrow s_{f}$ is an isomorphism of the algebra $U(L)^{*}$ onto the algebra $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$.
Proof:
Since the e_{ν} for all $v \in \mathbb{N n}$ form a basis of
$U(L)$, it is clear that s is a k-linear isomorphism of $U(L)^{*}$ onto $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. To see that s is an algebra homomorphism let f and g be elements in $U(L)^{*}$. Then,

$$
\begin{aligned}
& s_{f g}=\sum_{\nu \in\left\{\mathbb{F}^{n}\right.} f g\left(e_{v}\right) X^{\nu} \\
& =\sum_{\nu \in \mathbb{N}^{n}} f \otimes g\left(c\left(e_{\nu}\right)\right) X^{\nu} . \\
& =\sum_{\nu \in \mathbb{N} n} \sum_{\mu+\lambda=\nu} f\left(e_{\mu}\right) g\left(e_{\lambda}\right) x^{\nu} \\
& =\sum_{\mu \in \mathbb{N}^{n}} f\left(e_{\mu}\right) x^{\mu} \sum_{\lambda \in \mathbb{T}^{n}} g\left(e_{\lambda}\right) X^{\lambda} \\
& =\mathbf{s}_{\mathrm{f}} \mathbf{S}_{\mathrm{g}} .
\end{aligned}
$$

Lemma 1.10. [D, p. 91, 2.7.7] The Lie algebra L in Theorem 1.9 acts via the left corregular representation as a Lie algebra of derivations on the algebra $U(L)^{*}$. Proof:

Let f and g be elements in $U(L)^{*}$ and let x be in L . Then

$$
\begin{aligned}
(x .(f g))\left(e_{\nu}\right) & =-(f g)\left(x e_{\nu}\right) \\
& =-(f \otimes g)\left(c\left(x e_{\nu}\right)\right) \\
& =-(f \otimes g)\left((x \otimes 1+1 \otimes x) \sum_{\mu+\lambda=\nu} e_{\mu} \otimes e_{\lambda}\right. \\
& =-\sum_{\mu+\lambda=\nu} f\left(x e_{\mu}\right) g\left(e_{\lambda}\right)-\sum_{\mu+\lambda=\nu} f\left(e_{\mu}\right) g\left(x e_{\lambda}\right) \\
& =((x . f) g+f(x . g))\left(e_{\nu}\right) .
\end{aligned}
$$

Thus we have a representation $L \rightarrow \operatorname{Der}\left(U(L)^{*}\right)$ by (1.10). Furthermore, the image of $\bigcup_{n \geqslant 0}^{U}\left(U(L) / I^{n}\right)^{*}$ under the isomorphism s in (1.9) is contained in $k\left[X_{1}, \ldots, X_{n}\right]$. For if f vanishes on I^{m} for some integer m, then $f\left(e_{v}\right)=0$ for all v with $|v|=\sum_{i=1}^{n} v_{i} \geqslant m$, and clearly
from this one sees that s_{f} is a polynomial. If the Lie algebra L is nilpotent, then we will show below that the converse is also true, namely that s maps $\bigcup_{n \geqslant 0}\left(U(L) / I^{n}\right)^{*}$ onto $k\left[X_{1}, \ldots, X_{n}\right]$. Using this isomorphism s, we can then identify $E_{L}(k)$ with $k\left[X_{1}, \ldots, X_{n}\right]$.

We will first develop some preliminary concepts and notation due to M. Vergne [V, pp. 87-88]. Let N be a nilpotent Lie algebra with corresponding lower central series $N=N_{1} \supseteq N_{2} \geq \ldots \geq N_{d+1}=0$. Recall that $N_{i}=\left[N, N_{i-1}\right]$ for all $i>1$. Using the Jacobi identity, one can easily show that the N_{i} are ideals in N, and, by induction on i, one can also show that $\left[N_{i}, N_{j}\right] \subseteq N_{i+j}$ for all pairs i and j. Hence the lower central series forms a finite filtration on N in the sense that $N_{i}=N$ for $i \leqslant m$ and $N_{i}=0$ for $i \geqslant M$; in fact, in this case take $m=1$ and $M=d+1$. Thus the graded vector space $\operatorname{gr}(N)=\sum N_{i} / N_{i+1}$ has the structure of a Lie algebra: $\left[x+N_{i+1}, y+N_{j+1}\right]=[x, y]+N_{i+j+1}$. Let x_{1}, \ldots, x_{n} be a basis of $\operatorname{gr}(N)$ consisting of homogeneous elements and define α_{i} to be the degree of homogeneity of x_{i}, i.e. $x_{i} \in N_{\alpha_{i}} / N_{\alpha_{i+1}}$. Choose a representative e_{i} in N for each x_{i} and call α_{i} the weight of e_{i}, wt $\left(e_{i}\right)=\alpha_{i}$. Then e_{1}, \ldots, e_{n} form a basis of N. For the sequence $M=\left\{i_{1}, \ldots, i_{r}\right\}$ of integers from the set $\{1,2, \ldots, n\}$ we define the length of $M, \quad \ell(M)=r$, and define the weight of M, wt $(M)=\alpha_{i_{1}}+\alpha_{i_{2}}+\ldots+\alpha_{i_{r}}$. We denote by M^{*}
the sequence consisting of the same indices as M but rearranged in ascending order. Finally, set $e_{M}=e_{i_{1}} e_{i_{2}} \ldots e_{i_{r}}$.

Lemma 1.11. [V, p. 88, Lemma 3] Let M be a sequence of indices from the set $\{1,2, \ldots, n\}$. Then $e_{M}=e_{M^{*}}+\sum C_{A} * e_{A}$ * with $\ell\left(A^{*}\right)<\ell(M)$ and $w t\left(A^{*}\right) \geqslant w t(M)$.

Proof:
We will use induction on $\ell(M)$. The case $\ell(M)=1$ is trivial. Suppose $M=\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ and let i_{s} be the smallest index appearing in M. Then

$$
e_{M}=e_{i_{s}} e_{M},+\sum_{t=1}^{s-1} e_{i_{1}} e_{i_{2}} \ldots\left[e_{i_{s-t}}, e_{i_{s}}\right] \ldots \hat{e}_{i_{s}} \ldots e_{i_{r}},
$$

where $M^{\prime}=\left\{i_{1}, i_{2}, \ldots, i_{s-1}, i_{s+1}, \ldots, i_{r}\right\}$, and - means delete that term. Now each of the terms in the sum on the right is of length one less than $\ell(M)$, and since [$\mathrm{e}_{\mathbf{i}_{s-t}}, \mathrm{e}_{\mathbf{i}_{\mathbf{s}}}$] is a sum of basis elements of weight greater than or equal to $\alpha_{i_{s-t}}+{ }^{\alpha_{i}}$, it follows that each of these terms has weight greater than or equal to $w t(M)$. By induction, each of these terms can be expressed as a sum of ordered monomials of length less than $\ell(M)$ and of weight greater than or equal to wt (M) . Since $\ell\left(M^{\prime}\right)<\ell(M)$, again it follows by induction that $e_{M^{\prime}}=e_{\left(M^{\prime}\right)} *+\sum C_{B} * e_{B} *$ where $\ell\left(B^{*}\right)<\ell\left(M^{\prime}\right)$ and $w t\left(B^{*}\right) \geqslant w t\left(M^{\prime}\right)$. Hence, $e_{i_{S}} e_{M^{\prime}}=e_{M^{*}}+\sum C_{B^{*}} e_{i_{S}} e_{B^{*}}$. If we let B^{\prime} denote the sequence whose first term is i_{s} and the following terms
are just the terms in the sequence B^{*} arranged in the same order, then $e_{i_{S}} e_{B^{*}}=e_{B}$, and we have $\ell\left(B^{\prime}\right)=\ell\left(B^{*}\right)+1<\ell\left(M^{\prime}\right)+1=\ell(M)$. Also, $w t\left(B^{\prime}\right)=w t\left(B^{*}\right)+w t\left(e_{i_{s}}\right) \geqslant w t\left(M^{\prime}\right)+w t\left(e_{i_{s}}\right)=w t(M)$. Thus, by induction, each term e_{B}, can be written as a sum of ordered monomials of length less than $\ell(M)$ and of weight greater than or equal to wt(M). Thus the result follows.

Corollary 1.12. Let N be a nilpotent Lie algebra. Then $\bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)^{*}$ is isomorphic to the subalgebra $k\left[X_{1}, \ldots, X_{n}\right]$ of $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ under the isomorphism s in (1.9).

Proof:

It suffices to show that s maps $\bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)$ * onto $k\left[X_{1}, \ldots, X_{n}\right]$. Let $f=s^{-1}(p) \in U(N)^{*}$ where p is in $k\left[X_{1}, \ldots, X_{n}\right]$. Then there exists some positive integer m such that $f\left(e_{v}\right)=0$ for all ordered monomials e_{v} with $\ell(v) \geqslant m$. Suppose that the index of nilpotency of N is equal to d, i.e. $N_{d+1}=0$. Then $1 \leqslant w t\left(e_{i}\right) \leqslant d$ for $\mathbf{i}=1,2, \ldots, n$. Furthermore, if $w t(M) \geqslant d m$, then $e_{M}=e_{M^{*}}+\sum C_{A} * e_{A^{*}}$ where $\ell\left(A^{*}\right)<\ell(M)$ and $w t\left(A^{*}\right) \geqslant w t(M)$ by (1.11). Since $d \ell\left(A^{*}\right) \geqslant w t\left(A^{*}\right) \geqslant w t(M) \geqslant d m$, we have that $\ell\left(A^{*}\right) \geqslant m$, and hence $f\left(e_{M}\right)=0$. Since $I^{d m}$ consists of linear combinations of monomials e_{M} with $w t(M) \geqslant \ell(M) \geqslant d m$, it follows that $f\left(I^{d m}\right)=0$, whence $f \in \underset{n \geqslant 0}{U}\left(U(N) / I^{n}\right)^{*}$.

We can now identify $k\left[X_{1}, \ldots, X_{n}\right]$ with
$\bigcup_{n \geqslant 0}\left(U(N) / I^{n}\right)^{*}=E_{N}(k)$ under the isomorphism s and define an N-module action in the following way: if e_{i} is a member of a basis of N and $p \in k\left[X_{1}, \ldots, X_{n}\right]$, let $f=s^{-1}(p)$ and define $e_{i} \cdot p=s\left(e_{i} \cdot f\right)$
$=\sum_{\nu}\left(e_{i} \cdot f\right)\left(e_{\nu}\right) X^{\nu}$. We then extend this action linearly to all of N. Since N acts via derivations on $k\left[X_{1}, \ldots, X_{n}\right]$ by (1.10), it suffices to determine the polynomials $e_{i} \cdot X_{j}(1 \leqslant i, j \leqslant n)$. These polynomials correspond under the isomorphism s to the linear functionals $e_{i} \cdot f_{j}$ where f_{j} is the linear functional in $U(N)^{*}$ which takes on the value 1 at e_{j} and 0 otherwise. Thus, $e_{i} \cdot X_{j}=\sum_{\nu}\left(e_{i} \cdot f_{j}\right)\left(e_{\nu}\right) X^{\nu}$ and we need only to compute the values $\left(e_{i} \cdot f_{j}\right)\left(e_{\nu}\right)$. By the proof of (1.12), we have $f_{j}\left(e_{v}\right)=0$ whenever $w t(v)>d$. If $\ell(v)>d$, then clearly $w t(v)>d$, so we need only to compute the value of $e_{i} \cdot f_{j}$ on standard monomials e_{v} with $\ell\left(e_{v}\right) \leqslant d-1$.

We now give a series of examples of the computation of the representation of N in $E_{N}(k)$ for various nilpotent Lie algebras N.
(1.13). Let N be an abelian Lie algebra of dimension n over the field k. Let e_{1}, \ldots, e_{n} be a basis of N. Then with f_{j} in $U(N)^{*}$ defined as above, we have $\left(e_{i} \cdot f_{j}\right)(1)=-f_{j}\left(e_{i}\right)=-\delta_{i j}$, where $\delta_{i j}$ is defined to be 1 if $i=j$ and 0 otherwise. Note that the index of
nilpotency here is 1 so we only had to compute the values $\left(e_{i} \cdot f_{j}\right)\left(e_{v}\right)$ for $\ell(v) \leqslant 0$, i.e. for $e_{v}=1$. Thus we have a representation $\rho: N \rightarrow \operatorname{Der}\left(k\left[X_{1}, \ldots, X_{n}\right]\right)$ with $\rho\left(e_{i}\right)=-\frac{\partial}{\partial X_{i}} \quad(1 \leqslant i \leqslant n)$ and extending linearly to all of N . This generalizes (1.1).
(1.14). Let N be a 4-dimensional nilpotent Lie algebra over k with basis $e_{1}, e_{2}, e_{3}, e_{4}$ and nonzero brackets given by $\left[e_{2}, e_{3}\right]=e_{1}=\left[e_{2}, e_{4}\right],\left[e_{3}, e_{4}\right]=e_{1}+e_{2}$, and e_{1} is a central element. Note that the index of nilpotency of N is 3 . Thus we need only to compute the values $\left(e_{i} \cdot f_{j}\right)\left(e_{\nu}\right)$ for $|\nu| \leqslant 2$. Since e_{1} is a central element, $e_{1} \cdot f_{j}=0$ for $j \neq 1$ and $\left(e_{1} \cdot f_{1}\right)(1)=-f_{1}\left(e_{1}\right)=-1$. It is clear that $\left(e_{1} \cdot f_{1}\right)\left(e_{\nu}\right)=0$ for $|\nu| \geqslant 1$. Thus $e_{1} \cdot X_{1}=-1$ and $e_{1} \cdot X_{j}=0$ for $j=2,3,4$. If we let $\rho: N \rightarrow \operatorname{Der}\left(k\left[X_{1}, \ldots, X_{4}\right]\right)$ be the corresponding representation of N, it is now clear that $\rho\left(e_{1}\right)=-\frac{\partial}{\partial X_{1}}$. In a similar manner, one can show that $\rho\left(e_{2}\right)=-\frac{\partial}{\partial X_{2}} \cdot$ Next consider $e_{3} \cdot f_{j}$. For $j=2,4$, we have $e_{3} \cdot f_{j}=0$. Also, as above, we have $\left(e_{3} \cdot f_{3}\right)(1)=-1$, and $\left(e_{3} \cdot f_{3}\right)\left(e_{\nu}\right)=0$ for $|v| \geqslant 1$. Finally, $\left(e_{3} \cdot f_{1}\right)\left(e_{2}\right)=-f_{1}\left(e_{3} e_{2}\right)=-f_{1}\left(e_{2} e_{3}+\left[e_{3}, e_{2}\right]\right)=-f_{1}\left(e_{2} e_{3}-e_{1}\right)=1$, and $\left(e_{3} \cdot f_{1}\right)\left(e_{\nu}\right)=0$ for all $e_{v} \neq e_{2}$. Thus, $\rho\left(e_{3}\right)=X_{2} \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{3}}$.

To complete this example, we look at $e_{4} \cdot f_{j}$. One can easily check that the only nonzero values are given by

$$
\begin{aligned}
&\left(e_{4} \cdot f_{1}\right)\left(e_{2}\right)=-f_{1}\left(e_{4} e_{2}\right)=-f_{1}\left(e_{2} e_{4}+\left[e_{4}, e_{2}\right]\right) \\
&=-f_{1}\left(-e_{1}\right)=1, \\
&\left(e_{4} \cdot f_{1}\right)\left(e_{3}\right)=-f_{1}\left(e_{4} e_{3}\right)=-f_{1}\left(e_{3} e_{4}+\left[e_{4}, e_{3}\right]\right) \\
&=-f_{1}\left(-e_{1}-e_{2}\right)=1 . \\
&\left(e_{4} \cdot f_{1}\right)\left(e_{3}^{2} / 2!\right)=-f_{1}\left(e_{4} e_{3}^{2} / 2\right) \\
&=-\frac{1}{2} f_{1}\left(e_{3} e_{4} e_{3}+\left[e_{4}, e_{3}\right] e_{3}\right) \\
&=-\frac{1}{2} f_{1}\left(e_{3}\left(e_{3} e_{4}+\left[e_{4}, e_{3}\right]\right)-e_{1} e_{3}-e_{2} e_{3}\right) \\
&=-\frac{1}{2} f_{1}\left(e_{3}^{2} e_{4}-e_{3} e_{1}-e_{3} e_{2}-e_{1} e_{3}-e_{2} e_{3}\right) \\
&=-\frac{1}{2} f_{1}\left(e_{3}^{2} e_{4}-2 e_{1} e_{3}-2 e_{2} e_{3}-\left[e_{3}, e_{2}\right]\right) \\
&=-\frac{1}{2} f_{1}\left(e_{3}^{2} e_{4}-2 e_{1} e_{3}-2 e_{2} e_{3}+e_{1}\right) \\
&=-\frac{1}{2}, \\
&\left(e_{4} \cdot f_{2}\right)\left(e_{3}\right)=-f_{2}\left(e_{4} e_{3}\right)=-f_{2}\left(e_{3} e_{4}+\left[e_{4}, e_{3}\right]\right) \\
&=-f_{2}\left(-e_{1}-e_{2}\right)=1,
\end{aligned} \quad \begin{aligned}
\left(e_{4} \cdot f_{4}\right)(1)=-1
\end{aligned}
$$

Thus, $\rho\left(e_{4}\right)=\left(X_{2}+X_{3}-\frac{1}{2} X_{3}\right) \frac{\partial}{\partial X_{1}}+X_{3} \frac{\partial}{\partial X_{2}}-\frac{\partial}{\partial X_{4}}$.
We summarize:

$$
\begin{aligned}
\rho: N & \rightarrow \operatorname{Der}\left(k\left[X_{1}, \ldots, X_{4}\right]\right) \\
e_{1} & \rightarrow-\frac{\partial}{\partial X_{1}} \\
e_{2} & \rightarrow-\frac{\partial}{\partial X_{2}} \\
e_{3} & \rightarrow X_{2} \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{3}} \\
e_{4} & \rightarrow\left(X_{2}+X_{3}-\frac{1}{2} X_{3}^{2}\right) \frac{\partial}{\partial X_{1}}+X_{3} \frac{\partial}{\partial X_{2}}-\frac{\partial}{\partial X_{3}} .
\end{aligned}
$$

We then extend linearly to all of N.
(1.15). Let $n(3, k)$ denote the nilpotent Lie algebra of strictly upper triangular 3×3 matrices over k. $\eta(3, k)$ has a basis consisting of the matrices $e_{i j}$ $(1 \leqslant i<j \leqslant 3)$ where $e_{i j}$ is the 3×3 matrix having a 1 in the (i, j) position and zeros elsewhere. The only nonzero commutator is $\left[e_{12}, e_{23}\right]=e_{13}$. The index of nilpotency is 2 so one only needs to determine the values $\left(e_{i j} \cdot f_{k \ell}\right)\left(e_{\nu}\right)$ for $|\nu| \leqslant 1$. If we choose e_{13}, e_{12}, e_{23} as the ordered basis, then the representation has the following form:

$$
\begin{aligned}
\rho: & \eta(3, k) \rightarrow \operatorname{Der}\left(k\left[X_{1}, \ldots, X_{4}\right]\right) \\
& e_{13} \rightarrow-\frac{\partial}{\partial X_{1}} \\
& e_{12} \rightarrow-\frac{\partial}{\partial X_{2}} \\
& e_{23} \rightarrow X_{2} \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{3}} .
\end{aligned}
$$

Again we extend linearly to all of $n(3, k)$.
(1.16). Let $\eta(4, k)$ have as ordered basis e_{14}, e_{24}, e_{13}, e_{34}, e_{23}, e_{12}. The index of nilpotency is 3 and we have

$$
\begin{aligned}
\rho: n(4, k) & \rightarrow \operatorname{Der}\left(k\left[X_{1}, \ldots, X_{6}\right]\right) \\
e_{14} & \rightarrow-\frac{\partial}{\partial X_{1}} \\
e_{24} & \rightarrow-\frac{\partial}{\partial X_{2}} \\
e_{13} & \rightarrow-\frac{\partial}{\partial X_{3}} \\
e_{34} & \rightarrow X_{3} \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& e_{23} \rightarrow-X_{4} \frac{\partial}{\partial X_{2}}-\frac{\partial}{\partial X_{5}} \\
& e_{12} \rightarrow\left(-X_{2}+X_{4} X_{5}\right) \frac{\partial}{\partial X_{1}}-X_{5} \frac{\partial}{\partial X_{3}}-\frac{\partial}{\partial X_{6}}
\end{aligned}
$$

Again, we extend linearly to all of $n(4, k)$.
In all of the examples above, the degree of the polynomial coefficients of the various partial derivatives are bounded above by the integer $d-1$ where d is the index of nilpotency. Also notice that each of these representations of the nilpotent Lie algebra N are faithful.

CHAPTER II

A STRUCTURE THEOREM FOR $E_{L}(k)$
 WHEN L IS NILPOTENT-BY-FINITE

In this chapter we consider Lie algebras L which are the semi-direct product $N \gg H$ of nilpotent Lie algebras N by arbitrary (finite dimensional) Lie algebras H . We are assuming that N is an H -module such that H acts as a Lie algebra of derivations on N. We identify N with a nilpotent ideal of L and H with a subalgebra of L [J, p. 18]. The goal of this chapter is to describe the structure of the injective hull of the l-dimensional trivial L-module $E_{L}(k)$ in terms of the injective hulls $E_{N}(k)$ and $E_{H}(k)$.

Proposition 2.1. Let L be an arbitrary finite dimensional Lie algebra over k with universal enveloping algebra $U(L)$. If K is a subalgebra of L and $U(K)$ is the universal enveloping algebra of K, then any injective L-module is also an injective K-module.

Proof:
$\mathrm{U}(\mathrm{L})$ is a free right $\mathrm{U}(\mathrm{K})$-module [D, p. 71, 2.2.7],
so the functor $M \rightarrow U(L) \underset{U(K)}{\otimes} M$ is exact on left K-modules.
If E is any injective L-module, then $P \rightarrow \operatorname{Hom}_{L}(P, E)$ is an exact functor on left L-modules P. Hence the composite functor $M \rightarrow \operatorname{Hom}_{L}(U(L) \underset{U(K)}{\otimes} M, E)=\operatorname{Hom}_{K}(M, E)$ [HS, p. 111, exercise 7.3] is exact on left K-modules. Thus E is an injective K-module.

Remark 2.2. (2.1) implies that $E_{L}(k)$ is an injective K-module and hence contains a submodule isomorphic to $\mathrm{E}_{\mathrm{K}}(\mathrm{k}) \quad[\mathrm{HS}, \mathrm{p} .38,9.3]$.

Now assume that $L=N \ngtr H$ where N is a nilpotent ideal in L and H is a subalgebra of L. In order to prove our structure theorem for $E_{L}(k)$, we will need to show that the ideal in $U(L)$ generated by N has the weak $A R$ property. The following results will allow us to establish this fact.

Lemma 2.3. Let R be a k-algebra containing 1 which is generated by a finite dimensional Lie subalgebra H and a left Noetherian subalgebra S containing the same 1 as R and satisfying $[H, S] \subseteq S$. Then R is left Noetherian. Proof:

We first observe that any element of R can be written as a finite sum of terms $s_{1} h_{i_{1}} s_{2} \ldots s_{d} h_{i_{d}}{ }^{s}{ }_{d+1}$, where either $s_{i} \in S$ or is omitted, and $\left\{h_{i_{1}}, \ldots, h_{i_{d}}\right\}$ is any subset of a basis h_{1}, \ldots, h_{n} of H. We define the
number of inversions of an s_{i} in this term to be the number of h 's preceding s_{i}, and we define the number of inversions in a term of the above type to be the sum of the inversions of the s_{i} 's appearing in the term [compare Mc, pp. 488-489].

We show that any term $s_{1} h_{i_{1}} \ldots s_{d} h_{i_{d}}{ }^{s}{ }_{d+1}$ can be written as a sum of terms of the form $s h_{j_{1}} h_{j_{2}} \ldots h_{j_{e}}$, where $s \in S$ and $\left\{h_{j_{1}}, \ldots, h_{j_{e}}\right\}$ is a subset of the basis for H. We induct on the number of inversions appearing in a term and on the number d of h 's appearing in a term. For $d=1$, the term is either $s_{1} h_{i_{1}}$, in which case we are done, or $\mathrm{s}_{1} \mathrm{~h}_{\mathrm{i}_{1}} \mathrm{~s}_{2}$. By hypothesis, $\left[h_{i_{1}}, s_{2}\right]=s^{\prime} \in S$; hence $s_{1} h_{i_{1}} s_{2}=s_{1} s_{2} h_{i_{1}}+s_{1} s^{\prime}$, and the terms on the right are in the desired form. Suppose now that the result holds for all terms with the same number of h 's but fewer inversions, and for all terms with fewer than d h's . Again, by hypothesis, $\left[h_{i_{d}}, s_{d+1}\right]=s^{\prime} \in S$; hence,

$$
\begin{aligned}
s_{1} h_{i_{1}} s_{2} \cdots s_{d} h_{i_{d}} s_{d+1}= & s_{1} h_{i_{1}} s_{2} \cdots h_{i_{d-1}} s_{d} s_{d+1} h_{i_{d}} \\
& +s_{1} h_{i_{1}} s_{2} \cdots h_{i_{d-1}} s_{d} s^{\prime}
\end{aligned}
$$

The first term on the right has fewer inversions than the left-hand side, and the second term on the right has less than d h's . By induction, these terms can be rewritten as a finite sum of terms in the desired form. Hence the term on the left can also be expressed in this form.

Next, given any term $s_{j} \ldots h_{j}$, by using the switching process employed in the Poincaré-Birkhoff-Witt Theorem [J, pp. 157-159], we may express this term as a sum of ordered monomials in the h_{1}, \ldots, h_{n} with coefficients on the left in S . Note, however, that this expression is not necessarily unique.

We define a filtration on R in the following way: $R_{p}=0$ for any negative integer $p ; R_{0}=S$; and $R_{p}=$ sums of ordered monomials in h_{1}, \ldots, h_{n} with coefficients on the left in S whose total degree in the h's is less than or equal to the positive integer p. By the above paragraph, $R=\int_{p} R_{p}$, and clearly $\bigcap_{p} R_{p}=0$. Since $R_{-1}=0$, the induced topology on R is discrete (hence complete) and Hausdorff. If $\operatorname{sh}_{1}^{i_{1}} \ldots h_{n}^{i_{n}} \in R_{p}$ and $s^{\prime} h_{1}^{j_{1}} \ldots h_{n}^{j_{n}} \in R_{q}$, then
$\operatorname{sh}_{1}^{i_{1}} \ldots h_{n}^{i_{n}} s^{\prime} h_{1}^{j_{1}} \ldots h_{n}^{j_{n}}=\operatorname{ss}^{\prime} h_{1}^{i_{1}+j_{1}} \ldots h_{n}^{i_{n}+j_{n}}$ modulo lower degree terms, since switching s^{\prime} with the $h^{\prime} s$ does not introduce any new h's, and rearranging the h's does not increase the total degree [compare J, p. 157, 1]. Thus $R_{p} R_{q} \subseteq R_{p+q}$ and R is a filtered ring.

We can now make use of the associated graded algebra $\operatorname{gr}(R)=\sum R_{p} / R_{p-1}$. Given any two basis elements of H, say h_{i} and h_{j}, we have

$$
\left(h_{i}+R_{0}\right)\left(h_{j}+R_{0}\right)-\left(h_{j}+R_{0}\right)\left(h_{i}+R_{0}\right)=\left[h_{i}, h_{j}\right]+R_{1}=R_{1}
$$

Also, given $s \in S=R_{0} / R_{-1}$, and an h_{i}, we have
$\left(h_{i}+R_{0}\right)\left(s+R_{-1}\right)-\left(s+R_{-1}\right)\left(h_{i}+R_{0}\right)=\left[h_{i}, s\right]+R_{0}=R_{0}$, because $\left[h_{i}, s\right] \in S=R_{0}$. Thus $\operatorname{gr}(R)$ is isomorphic to the algebra over S generated by the central elements $h_{i}+R_{0}(1 \leqslant i \leqslant n)$. If y_{1}, \ldots, y_{n} are indeterminates which commute with S and with each other, then $\operatorname{gr}(R)$ is a homomorphic image of the polynomial algebra over S , $S\left[y_{1}, \ldots, y_{n}\right]$. Thus $\operatorname{gr}(R)$ is left Noetherian because $S\left[y_{1}, \ldots, y_{n}\right]$ is left Noetherian by the Hilbert Basis Theorem [L, pp. 70-71]. This implies that R is left Noetherian [B2, p. 42, Corollary 2].

Remark 2.4. If, in Lemma 2.3, S is right Noetherian, then the same proof shows that R is right Noetherian.

We shall need some additional notions related to the weak $A R$ property for ideals in a ring R. Following the terminology given in Passman [P, p. 488], we say that an ideal I in a ring R with 1 is polycentral of height t if there exists a finite series of ideals in R

$$
I=I_{0} \supseteq I_{1} \supseteq \ldots \supseteq I_{t}=0
$$

such that for each $j, 0 \leqslant j \leqslant t-1, I_{j} / I_{j+1}$ is a centrally generated ideal of R / I_{j+1}. Given such an ideal I , we define $\tilde{R}(I)=\tilde{R}\left(I: I_{0}, I_{1}, \ldots, I_{t}\right)$ to be the subring of the polynomial ring $R[Z]$ generated by R and $I_{j} Z, I_{j} Z^{2}, \ldots, I_{j} Z^{2}$ for $j=0,1, \ldots, t$. The following two lemmas show the relation between polycentral ideals in
a left (resp. right) Noetherian ring and the weak AR property.

Lemma 2.5. [P, p. 489, 2.6] Let R be a left (resp. right) Noetherian ring, and let I be a polycentral ideal of height t with corresponding central series $I=I_{0} \geq I_{1} \geq \ldots \geq I_{t}=0$. Then $\tilde{R}\left(I: I_{0}, I_{1}, \ldots, I_{t}\right)$ is left (resp. right) Noetherian.

Lemma 2.6. [P, p. 491, 2.7] Let R be a ring as in (2.5), and let $I=I_{0} \geq I_{1} \geq \ldots \geq I_{t}=0$ be a chain of ideals in R. If $\tilde{R}(I)=\tilde{R}\left(I: I_{0}, I_{1}, \ldots, I_{t}\right)$ is left (resp. right) Noetherian, then I has the weak AR property.

The next proposition is essentially a theorem of Roseblade [P, p. 492, 2.9]. Roseblade's theorem deals with a ring R with 1 which is generated by a right Noetherian subring S with the same 1 as R and by a polycyclic-by-finite group of units G such that the action of G on S by conjugation stabilizes S, i.e. $S^{G}=S$ where $S^{G}=\left\{x^{-1} s x \mid x \in G, \quad s \in S\right\}$. Here we are replacing R by a k-algebra with 1 , S by a subalgebra with the same 1 as R, and G by a finite dimensional Lie subalgebra H such that the commutator in R of an element in H with an element in S lies in S. This result will be useful in proving the structure theorem for $E_{L}(k)$ where L is the semi-direct product $N \ngtr H$ as described above.

Proposition 2.7. Let R be a k-algebra containing I which is generated as a ring by a finite dimensional Lie sub-algebra H and a left Noetherian subalgebra S containing the same 1 as R and satisfying $[H, S] s S$. Suppose that I is a polycentral ideal in S such that $[H, I] s I$. If V is a finitely generated left R-module and if U is a sub-module, then there exists an integer d such that $I^{d} V \cap U s I U$. Furthermore, $R I=I R$ has the weak AR property.

Proof:
We will follow the proof of Roseblade's theorem as given in $[P, p .492,2.9]$ and make the necessary adjustments wherever needed.

Let $I=Y_{0} \supseteq Y_{1} \supseteq \ldots \supseteq Y_{t}=0$ be the given central series for I such that Y_{j} is an ideal of S that is centrally generated modulo Y_{j+1}. Let h_{1}, \ldots, h_{n} be a basis for H and define

$$
\begin{gathered}
I_{j}=\sum_{h \in H}\left[h, Y_{j}\right]+Y_{j}=\sum_{i=1}^{n}\left[h_{i}, Y_{j}\right]+Y_{j}, \\
0 \leqslant j \leqslant t
\end{gathered}
$$

It is clear that I_{j} is an additive subgroup of S since Y_{j} is an ideal in S and the Lie bracket is bilinear. To show that I_{j} is an ideal in S, it suffices to show that for $s, s^{\prime} \in S$, we have $s\left[h_{i}, y_{j}\right] s^{\prime} \in I_{j}$ for any $y_{j} \in Y_{j}$ and $1 \leqslant i \leqslant n, 0 \leqslant j \leqslant t$. But,

$$
\begin{aligned}
s\left[h_{i}, y_{j}\right] s^{\prime} & =s h_{i} y_{j} s^{\prime}-s y_{j} h_{i} s^{\prime} \\
& =h_{i} s y_{j} s^{\prime}+s s_{i}^{\prime} y_{j} s^{\prime}-s y_{j} s^{\prime} h_{i}-s y_{j} s_{i}^{\prime \prime} \\
& =\left[h_{i}, s y_{j} s^{\prime}\right]+\left(s s_{i}^{\prime} y_{j} s^{\prime}-s y_{j} s_{i}^{\prime \prime}\right) \in I_{j},
\end{aligned}
$$

where $s_{i}^{!}=\left[s, h_{j}\right] \in S$ and $s_{i}^{\prime \prime}=\left[h_{i}, s^{\prime}\right] \in S$. Next, we claim that I_{j} is centrally generated modulo I_{j+1}, where $0 \leqslant j \leqslant t-1$. If $y_{j 1}+Y_{j+1}, \ldots, y_{j n_{j}}+Y_{j+1}$ are central generators for Y_{j} / Y_{j+1} in S / Y_{j+1}, it is clear that $y_{j 1}+I_{j+1}, \ldots, y_{j n_{j}}+I_{j+1}$ and $\left[h_{i}, y_{j k}\right]+I_{j+1}$ generate I_{j} / I_{j+1} for $1 \leqslant k \leqslant n_{j}$ and $1 \leqslant i \leqslant n$. It remains to show that these elements are central in S / I_{j+1}. This is clear for the $y_{j k}+I_{j+1}$. On the other hand, if $s+I_{j+1} \in S / I_{j+1}$, we have

$$
\begin{aligned}
& \left.\left[h_{i}, y_{j k}\right]+I_{j+1}, s+I_{j+1}\right] \\
& \quad=\left[\left[h_{i}, y_{j k}\right], s\right]+I_{j+1} \\
& \quad=\left[\left[h_{i}, s\right], y_{j k}\right]+\left[h_{i},\left[y_{j k}, s\right]\right]+I_{j+1} \begin{array}{l}
\text { by the } \\
\quad \begin{array}{l}
\text { Jacobi } \\
\text { identity }
\end{array} \\
\quad=I_{j+1},
\end{array}
\end{aligned}
$$

since $\left[h_{i}, s\right] \in S$ and $\left[y_{j k}, s\right] \in Y_{j+1}$. Thus, $I=I_{0} 2 I_{1} 2 \ldots 2 I_{t}=0$ is a series of ideals in S such that I_{j} / I_{j+1} is centrally generated in S / I_{j+1}, and, by construction, $\left[H, I_{j}\right] \leq I_{j}$ for $0 \leqslant j \leqslant t$.

Since $[H, S] \leq S$ and $\left[H, I_{j}\right] \leq I_{j}$ for $0 \leqslant j \leqslant t$, by using an argument similar to that given in the first part of the proof of (2.3), one can show that $R I_{j}=I_{j} R$ (recall
that R is generated by S and H). Thus, $X=I R$ and $X_{j}=I_{j} R$ are ideals in R. The following computations all occur in the polynomial algebra $\mathrm{R}[\mathrm{Z}]$.

$$
\begin{aligned}
\tilde{R}(X) & =\tilde{R}\left(X: X_{0}, \ldots, X_{t}\right) \\
& =\left\langle R, X_{j} Z^{q} \mid 0 \leqslant j \leqslant t, 1 \leqslant q \leqslant 2^{j}\right\rangle \\
& =\left\langle R, I_{j} Z^{q} \mid 0 \leqslant j \leqslant t, 1 \leqslant q \leqslant 2^{j}\right\rangle \\
& =\left\langle S, I_{j} Z^{q}, H \mid 0 \leqslant j \leqslant t, 1 \leqslant q \leqslant 2^{j}\right\rangle \\
& =\langle\widetilde{S}(I), H\rangle .
\end{aligned}
$$

Since I is polycentral in $S, \tilde{S}(I)$ is left Noetherian by (2.5), and furthermore, it is easily seen that $[\mathrm{H}, \tilde{S}(\mathrm{I})] \varsigma \tilde{S}(\mathrm{I})$. Thus (2.3) implies that $\tilde{R}(X)=\langle\tilde{S}(I), H\rangle$ is also left Noetherian, and we conclude by (2.6) that X has the weak AR property. Finally, if V is any left R-module, then, because $X=R I=I R$, we have $X^{n} V=I^{n} V$, and the result follows.

Lemma 2.8. Let $L=N \rtimes H$ where N is a nilpotent Lie algebra and H is an arbitrary (finite dimensional) Lie algebra. Then $E_{N}(k) \otimes E_{H}(k)$ is an L-module and is an essential extension of the 1 -dimensional trivial L-module k. Proof:

Let $E=E_{N}(k) \otimes E_{H}(k), \quad X=E_{N}(k)$, and $Y=E_{H}(k)$. By (1.7), $X=\bigcup_{n \geqslant 0}^{U}\left(U(N) / I^{n}\right)^{*}$ where I is the augmentation ideal of $U(N)$. When we make the usual identifications of H with a subalgebra of J and N with an ideal of L, H acts on N as a Lie algebra of
derivations of $U(N) \quad[D, p .79,2.4 .9]$. Let D_{h} denote the derivation of $U(N)$ which extends $\operatorname{ad}_{L}(h)$, where $h \in H$. Then $D_{h}(u)=h u-u h$ for any $u \in U(N)$ [D, p. 79, 2.4.9]. We show that $D_{h}\left(I^{n}\right) \leq I^{n}$ for every positive integer n. For $n=1$, it suffices to show that $D_{h}\left(n_{1} n_{2} \ldots n_{q}\right) \in I$ where $n_{i} \in N, 1 \leqslant i \leqslant q$, since I consists of sums of products of elements in N_{q}. But,

$$
D_{h} \cdot\left(n_{1} n_{2} \ldots n_{q}\right)=\sum_{i=1}^{q} n_{1} \ldots n_{i-1}\left[h, n_{i}\right] n_{i+1} \ldots n_{q} \in I
$$

since $\left[h, n_{i}\right] \in N$ for all i. In general, $D_{h}\left(I^{n}\right)=D_{h}(I) I^{n-1}+I D_{h}\left(I^{n-1}\right) \subseteq I^{n}$ by induction. Thus $U(N) / I^{n}$ and also $\left(U(N) / I^{n}\right)^{*}$ are L-modules. This implies that X is an L-module. Furthermore, I is an L-module via projection of L onto H, and since the kernel of this projection is N, it is clear that Y is a trivial N-module. Thus the tensor product E is an L-module. We now show that E is an essential extension of k. Since Y is a trivial N-module, $E \simeq X^{\alpha}$ as an N -module, where α is the k -dimension of Y . By (1.4) and (1.5), every element of X is annihilated by a power of I . Hence the same is true for elements of E . Given an element $x \in E, x \neq 0$, we can find a least integer n with the property that $I^{n} x=0$. Then there exists some $v \in I^{n-1}$ with $v x \neq 0$. Since $I(v x)=0$ implies that $z(v x)=0$ for every $z \in N$, $v x$ is an element of the
N-invariants of E, E^{N}. Since E^{N} is canonically an $\mathrm{L} / \mathrm{N}=\mathrm{H}$-module which is clearly essential over k as an H-module, we have $E^{N} s Y$. But since $k \leqslant X$, $E=X \otimes Y$ contains a copy of Y, namely $1 \otimes Y$, and this implies that $Y=Y^{N} \subseteq E^{N} \subseteq Y$, and hence $Y=E^{N}$. Thus we can find $w \in U(H)$ (considered as a subalgebra of $U(L)$) such that $w(v x)=(w v) x \neq 0$ and (wv) $x \in k$. Since $w v \in U(L)$, the result follows.

We are now prepared to prove the structure theorem for $E_{L}(k)$.

Theorem 2.9. Let $L=N \gg H$ where N is a nilpotent Lie algebra and H is an arbitrary Lie algebra $(N$ and H are finite dimensional). Then $E_{N}(k) \otimes E_{H}(k)$ and $E_{L}(k)$ are isomorphic as L-modules.

Proof:
We will use the notation set up in the proof of (2.8). By (2.8), $E \subseteq E_{L}(k)$. Since $E \simeq X^{\alpha}$ as an N-module where α is the k-dimension of Y and $U(N)$ is left Noetherian, it follows that E is an injective N-module because $X=E_{N}(k)$ is an injective N-module and the direct sum of injective modules is injective in a left Noetherian ring (0.11). Hence the injective hull $E_{L}(k)$, when considered as an N-module, is isomorphic to the direct sum $X^{\beta} \oplus E^{\prime}$, where β is some cardinal number greater than or equal to the k-dimension of Y, and E ' is a direct sum of
indecomposable, injective N-submodules of $E_{L}(k)$ which are not isomorphic to $\mathrm{E}_{\mathrm{N}}(\mathrm{k})=\mathrm{X} \quad$ [Ma, p. 516, 2.5].

We claim that $E^{\prime}=0$. Suppose that $x \in E_{\gamma}$ where E_{γ} is one of the indecomposable, injective summands in E^{\prime}. Form the finitely generated L-submodule $V=k+U(L) x \leq E_{L}(k)$. Since N is a nilpotent Lie algebra, the augmentation ideal I of $U(N)$ is a polycentral ideal [Mc, p. 498, 4.2]. Also, $[H, N] s N$ implies that $[H, I] \subseteq I$, since I is generated by products of elements in N. It is clear that $U(L)=\langle U(N), H\rangle$, so by (2.7) with $S=U(N)$, we have $I^{n_{V}} \operatorname{nks} \mathrm{Ik}=0$ for some positive integer n. Now if J denotes the ideal in $U(L)$ generated by I, then $J=U(L) I=I U(L) \quad[D, p .72,2.2 .14]$, and $I^{n} V=J^{n} V$ implies that $I^{n} V$ is an L-submodule of $E_{L}(k)$. Thus $I^{n}=0$. We can therefore choose d such that $I^{d} \neq 0$ but $I^{d+1} x=0$, and hence there exists some $u \neq 0$ in I^{d} such that $u x \neq 0$. Since $I(u x)=0$, the $k-s p a n$ of ux is isomorphic to the 1 -dimensional trivial N-module k. Let T denote the k-span of $u x$. Since E_{γ} is an injective hull of every one of its nonzero submodules [Ma, p. 514, 2.2], $E_{\gamma}=E_{N}(T)=E_{N}(k)$, contradicting the definition of E^{\prime}. Thus $T=0$, and hence $x=0$. Since x was chosen arbitrarily from E_{γ} and E_{γ} was any one of the summands of E^{\prime}, it follows that $E_{\gamma}=0$; hence, $E^{\prime}=0$. Therefore, as an N-module, $E_{L}(k)=X^{\beta}$.

Next, by the proof of (2.8), we have $Y=E^{N}$. It is clear that $E_{L}(k)^{N}$ is an essential extension of k when considered as an $L / N=H$-module; hence $E_{L}(k)^{N} \subseteq E_{H}(k)=Y$. But $Y=E^{N} \subseteq E_{L}(k)^{N}$ and hence $Y=E_{L}(k)^{N}$. By the previous paragraph, $E_{L}(k)=X^{\beta}$ as an N-module, where $\beta \geqslant \alpha=k$-dimension of Y. But $X^{\beta}=E_{N}(k)^{\beta}=E_{N}\left(k^{\beta}\right) \quad[M a, p .514,2.1] ;$ hence $Y=E_{L}(k)^{N}=E_{N}\left(k^{\beta}\right)^{N}=k^{B}$ as N-modules, and therefore the k-dimension of Y is equal to B. Thus $E_{L}(k)=E_{N}(Y)=E_{N}\left(E^{N}\right)$ as N-modules. Since E is an infective N-module containing E^{N}, we have $E_{N}\left(E^{N}\right) s E$, and this implies that $E=E_{L}(k)$.

CHAPTER III

INJECTIVE HULLS OVER SOLVABLE LIE ALGEBRAS

In Chapter I we showed that the injective hull of a locally finite module over a nilpotent Lie algebra is locally finite. By using the structure theorem (2.9), we will be able to extend this result to locally finite modules over solvable Lie algebras. We will also give some examples of $F_{L}(k)$ in the case where L is a solvable Lie algebra of the form $N \gg A$. In this case N denotes a nilpotent ideal and A an abelian subalgebra of L. In particular, the solvable Lie algebra $\tau(n, k)$ of upper triangular $n \times n$ matrices with entries in the field k is of this form: take N to be $n(n, k)=$ strictly upper triangular $n \times n$ matrices, and $A=\delta(n, k)=$ diagonal $n x n$ matrices.

Lemma 3.1. Let L be a solvable Lie algebra over the algebraically closed field k of characteristic zero. Then $E_{L}(k)$ is locally finite.

Proof:
Since we are assuming that L is finite dimensional over k, Ado's theorem implies that there is a finite
dimensional representation $\rho: L \rightarrow g \ell(n, k)$, where $\mathrm{n}=$ dimension of the representation [J, p. 202]. The image $\rho(\mathrm{L})$ lies in the solvable subalgebra $\tau(\mathrm{n}, \mathrm{k})$ of $g \ell(n, k)$. We identify L with $\rho(L)$ and consider ρ as an inclusion. Then by (2.1), $E_{\tau(n, k)}(k)$ is an injective L-module, and hence there is a submodule of $E_{\tau(n, k)}(k)$ isomorphic to $E_{L}(k)$ [HS, p. 38, 9.3]. Therefore, if $E_{\tau(n, k)}(k)$ is locally finite then so is $E_{L}(k)$. But since $\tau(n, k)=n(n, k) \not \subset \delta(n, k)$, by (2.9), $E_{\tau(n, k)}(k)=E_{n(n, k)}(k) \otimes E_{\delta(n, k)}(k)$ and both $E_{n(n, k)}(k)$ and $E_{\delta(n, k)}(k)$ are locally finite by (1.4). Therefore $E_{\tau(n, k)}(k)$ is locally finite because it is a tensor product of two locally finite modules.

Theorem 3.2. Let S be an irreducible module over a solvable Lie algebra L. Then $E_{L}(S)=S \otimes E_{L}(k)$ and hence $E_{L}(S)$ is locally finite.

Proof:
By Lie's theorem [J, p. 50], S is i-dimensional.
We first show that $S \otimes E_{L}(k)$ is an injective L-module. Let W be any L-module. Then

$$
\begin{aligned}
\operatorname{Hom}_{L}\left(W, S \otimes E_{L}(k)\right) & =\operatorname{Hom}_{L}\left(W,\left(S^{*}\right) * \otimes E_{L}(k)\right) \\
& =\operatorname{Hom}_{L}\left(W, \operatorname{Hom}_{k}\left(S^{*}, E_{L}(k)\right)\right) \\
& =\operatorname{Hom}_{L}\left(S^{*} \otimes W, E_{L}(k)\right) .
\end{aligned}
$$

Since S^{*} is a free k-module and $E_{L}(k)$ is an injective L-module, the composite functor $W \rightarrow \operatorname{Hom}_{L}\left(S^{*} \otimes W, E_{L}(k)\right)$ is
exact. Thus, $\operatorname{Hom}_{L}\left(, S \otimes E_{L}(k)\right)$ is an exact functor and $S \otimes E_{L}(k)$ is an injective L-module [HS, p. 105, 5.6]. Now $S \otimes E_{L}(k)$ contains an isomorphic copy of S since $k \subseteq E_{L}(k)$ and hence $E_{L}(S) \subseteq S \otimes E_{L}(k)$ because $S \otimes E_{L}(k)$ is injective [HS, p. 38, 9.3]. Since $E_{L}(S)$ is also injective, we have $S \otimes E_{L}(k)=E_{L}(S) \oplus E^{\prime}$ for some L-module E^{\prime}. We must show that $E^{\prime}=0$. But, $S^{*} \otimes\left(S \otimes E_{L}(k)\right)=\left(S^{*} \otimes E_{L}(S)\right) \oplus\left(S^{*} \otimes E^{\prime}\right) ;$ since $\operatorname{dim}_{k} S=1$, we have $S^{*} \otimes S=k$, and hence, $S^{*} \otimes\left(S \otimes E_{L}(k)\right)=\left(S^{*} \otimes S\right) \otimes E_{L}(k)=k \otimes E_{L}(k)=E_{L}(k) \cdot W e$ conclude that $E_{L}(k)=\left(S^{*} \otimes E_{L}(S)\right) \oplus\left(S^{*} \otimes E^{\prime}\right)$. Now $E_{L}(k)=E_{L}(U(L) / I)$ where I is the augmentation ideal of $U(L)$; therefore, $E_{L}(k)$ is an indecomposable, injective L-module since I is an irreducible ideal in $U(L)$ [Ma, p. 515, 2.4]. Thus $E_{L}(k)$ cannot have any proper nonzero direct summands, and we conclude that $S^{*} \otimes E^{\prime}=0$; hence $E^{\prime}=0$. Thus $S \otimes E_{L}(k)=E_{L}(S)$. Finally, it is clear that $E_{L}(S)$ is locally finite because both $E_{L}(k)$ and S are locally finite.

Corollary 3.3. Let L be a solvable Lie algebra over the algebraically closed field k of characteristic zero. Let V be a locally finite L-module. Then $E_{L}(V)$ is also locally finite.

Proof:
By using an argument similar to that given in the proof of (1.4), it suffices to consider the case where V
is finite dimensional. Since the field k is algebraically closed and characteristic zero, V contains irreducible submodules by Lie's theorem. If $\left\{S_{\lambda}\right\}_{\lambda \in \Lambda}$ is the collection of all irreducible submodules of V, then the socle of V, $\operatorname{Soc}(V)$, is equal to the direct sum of a certain subcollection of the $S^{\prime} s$, say $\operatorname{Soc}(V)=\oplus S_{\alpha}$ where $A \in \Lambda \quad[L, p .60]$. Thus $E_{L}(\operatorname{Soc}(V))=\underset{\alpha}{\oplus} E_{L}\left(S_{\alpha}\right) \quad[M a, p .514$, 2.1]. By (3.2) each $E_{L}\left(S_{\alpha}\right)$ is locally finite and hence $E_{L}(\operatorname{Soc}(V))$ is also locally finite since a direct sum of locally finite modules is locally finite.

To complete the proof, we show that $E_{L}(V)=E_{L}(\operatorname{Soc}(V))$. If U is any nonzero submodule of V, then U has a composition series
$\mathrm{U}=\mathrm{U}_{0} \supseteq \mathrm{U}_{1} \supseteq \ldots \supseteq \mathrm{U}_{\mathrm{d}} \supseteq \mathrm{U}_{\mathrm{d}+1}=0$ and U_{d} is irreducible by Lie's theorem. Thus $U \cap \operatorname{Soc}(V) \neq 0$, and hence V is an essential extension of Soc (V) . Therefore, $V \leq E_{L}(\operatorname{Soc}(V))$, and since $E_{L}(\operatorname{Soc}(V))$ is an injective L-module containing $V, E_{L}(V) \approx E_{L}(\operatorname{Soc}(V))$. But clearly, $E_{L}(\operatorname{Soc}(V))$ is contained in $E_{L}(V)$ since $\operatorname{Soc}(V) \leq V$. Thus $E_{L}(V)=E_{L}(\operatorname{Soc}(V))$ and the result follows.

Remark 3.4. The local finiteness of $E_{L}(V)$ when V is locally finite has also been obtained independently by Stephen Donkin. See [Do].

We will now give some examples of $E_{L}(k)$ where L is a solvable Lie algebra of the form $N \ngtr A$. These
calculations will make use of (1.7) and (2.9).
(3.5). Let L be the 2-dimensional non-abelian Lie algebra over the field k with basis e_{1}, e_{2} and bracket $\left[e_{1}, e_{2}\right]=e_{1}$. Then $L=N \ngtr A$, where $N=[L, L]=k e_{1}$, and $A=k e_{2}$. $B y(1.13), E_{N}(k)=k\left[X_{1}\right]$ with the basis element e_{1} sent to $-\frac{\partial}{\partial X_{1}}$, and $E_{A}(k)=k\left[X_{2}\right]$ with $e_{2} \rightarrow-\frac{\partial}{\partial X_{2}} . B y(2.9), E_{L}(k)=E_{N}(k) \otimes E_{A}(k)=k\left[X_{1}, X_{2}\right]$. We only need to determine the action of e_{2} on $E_{N}(k)$, and it suffices to calculate $e_{2} \cdot X_{1}$ since A acts on N via derivations. Recall that X_{1} corresponds to the linear functional f_{1} in $U(N)^{*}$ satisfying $f_{1}\left(e_{1}\right)=1$ and $f_{1}\left(e_{\nu}\right)=0$ for all $e_{v} \neq e_{1}$. Now $e_{2} \cdot f_{1}\left(e_{1}\right)=-f_{1}\left(\left[e_{2}, e_{1}\right]\right)=-f_{1}\left(-e_{1}\right)=1$. Furthermore, $e_{2} \cdot f_{1}\left(e_{1}^{\nu_{1}} / \nu_{1}!\right)=0$ for all $v_{1} \neq 1$. Thus we have the representation

$$
\begin{aligned}
L & \rightarrow \operatorname{Der}\left(k\left[X_{1}, X_{2}\right]\right) \\
e_{1} & \rightarrow-\frac{\partial}{\partial X_{1}} \\
e_{2} & \rightarrow X_{1} \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{2}}
\end{aligned}
$$

obtained by extending linearly to all of L.
(3.6). Let L be a 3-dimensional solvable Lie algebra over the field k with basis e_{1}, e_{2}, e_{3}. The brackets are given by $\left[e_{1}, e_{3}\right]=-e_{1},\left[e_{2}, e_{3}\right]=-e_{1}+e_{2}$, and all other brackets are zero. We have $[L, L]=k e_{1}+k e_{2}$ is an abelian ideal in L and L is the semi-direct product
$[\mathrm{L}, \mathrm{L}] \rtimes \mathrm{ke}_{3}$. Since $\mathrm{N}=[\mathrm{L}, \mathrm{L}]$ is abelian, by (1.13) we know that $E_{N}(k)=k\left[X_{1}, X_{2}\right]$ with $e_{1} \rightarrow-\frac{\partial}{\partial X_{1}}$ and $e_{2} \rightarrow-\frac{\partial}{\partial X_{2}}$. Also by (1.13), $E_{A}(k)=k\left[X_{3}\right]$ where $A=k e_{3}$ and $e_{3} \rightarrow-\frac{\partial}{\partial X_{3}}$. Thus we only have to deter mine the action of e_{3} on X_{1} and X_{2}. Let f_{1} (resp. f_{2}) be the linear functional in $U(N)^{*}$ which takes the value 1 at e_{1} (resp. e_{2}) and zero otherwise. Note that $f_{1}\left(r e s p . f_{2}\right.$) corresponds to X_{1} (resp. X_{2}) under the isomorphism given in (1.12). If $f \in U(N)^{*}, u \in U(N)$, then $e_{3} \cdot f(u)=-f\left(\left[e_{3}, u\right]\right)=-f\left(e_{3} u-u e_{3}\right)$. We have

$$
\begin{aligned}
& e_{3} \cdot f_{3}\left(e_{2}\right)=-f_{2}\left(\left[e_{3}, e_{2}\right]\right)=-f_{2}\left(e_{1}-e_{2}\right)=1, \\
& e_{3} \cdot f_{2}\left(e_{1}^{\nu_{1}} e_{2}^{\nu_{2} / \nu_{1}}: \nu_{2}!\right)= \frac{-1}{v_{1}!v_{2}!} f_{2}\left(\nu_{1}\left[e_{3}, e_{1}\right] e_{1}^{\nu_{1}-1} e^{\nu_{2}}\right. \\
&\left.+v_{2} e^{\nu_{1}}\left[e_{3}, e_{2}\right] e_{2}^{\nu_{2}-1}\right) \\
&= \frac{-1}{v_{1}!v_{2}!} f_{2}\left(\nu_{1} e_{1}^{\nu_{1}} e_{2}^{\nu_{2}}\right. \\
&\left.+v_{2} e_{1}^{\nu_{1}}\left(e-e_{2}\right) e_{2}^{\nu_{2}-1}\right) \\
&= \frac{-1}{v_{1}!v_{2}!} f_{2}\left(\left(\nu_{1}-v_{2}\right) e_{1}^{\nu_{1}} e_{2}^{\nu_{2}}\right. \\
&\left.+v_{2} e_{1}^{v_{1}+1} e_{2}^{\nu_{2}-1}\right) \\
&= 0 \text { if }\left(v_{1}, \nu_{2}\right) \neq(0,1) .
\end{aligned}
$$

Thus $e_{3} \cdot X_{2}=X_{2}$. Similarly, one can show that the only nonzero values for $e_{3} \cdot f_{1}$ are given by

$$
e_{3} \cdot f_{1}\left(e_{2}\right)=-f_{1}\left(\left[e_{3}, e_{2}\right]\right)=-f_{1}\left(e_{1}-e_{2}\right)=-1
$$

and

$$
e_{3} \cdot f_{1}\left(e_{1}\right)=-f_{1}\left(\left[e_{3}, e_{1}\right]\right)=-f_{1}\left(e_{1}\right)=-1
$$

Thus we have the representation

$$
\begin{aligned}
L & \rightarrow \operatorname{Der}\left(k\left[X_{1}, X_{2}, X_{3}\right]\right) \\
e_{1} & \rightarrow-\frac{\partial}{\partial X_{1}} \\
e_{2} & \rightarrow-\frac{\partial}{\partial X_{2}} \\
e_{3} & \rightarrow-\left(X_{1}+X_{2}\right) \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{2}} .
\end{aligned}
$$

The next examples are calculated in the same manner as the previous ones. However, since these calculations become exceedingly tedious, we will omit the details. The general form of the representation of $\tau(n, k)$ in $\mathrm{E}_{\tau(\mathrm{n}, \mathrm{k})}(\mathrm{k})$ is unknown to the author at this time, although theoretically these calculations can be accomplished using the method outlined in the previous examples.
(3.7). $L=\tau(2, k) . L$ has the basis e_{12}, e_{11}, e_{22} with brackets $\left[e_{12}, e_{22}\right]=e_{12},\left[e_{12}, e_{11}\right]=-e_{12}$, and all \because. other brackets are zero. The representation is given by

$$
\begin{aligned}
L & \rightarrow \operatorname{Der}\left(k\left[X_{1}, X_{2}, X_{3}\right]\right) \\
e_{12} & \rightarrow-\frac{\partial}{\partial X_{1}} \\
e_{11} & \rightarrow-X_{1} \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{2}} \\
e_{22} & \rightarrow X_{1} \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{3}}
\end{aligned}
$$

and extending linearly to all of L .
(3.8). $L=\tau(3, k) . \quad L$ has the basis
$e_{13}, e_{12}, e_{23}, e_{11}, e_{22}, e_{33}$. The bracket relations are given by $\left[e_{i j}, e_{k \ell}\right]=\delta_{j k} e_{i \ell}-\delta_{i \ell} e_{k j}$ for $1 \leqslant i, k<j, \ell \leqslant 3$. We have the representation

$$
\begin{aligned}
L & \rightarrow \operatorname{Der}\left(k\left[X_{1}, X_{2}, \ldots, X_{6}\right]\right) \\
e_{13} & \rightarrow-\frac{\partial}{\partial X_{1}} \\
e_{12} & \rightarrow-\frac{\partial}{\partial X_{2}} \\
e_{23} & \rightarrow X_{2} \frac{\partial}{\partial X_{1}}-\frac{\partial}{\partial X_{3}} \\
e_{11} & \rightarrow-X_{1} \frac{\partial}{\partial X_{1}}-X_{2} \frac{\partial}{\partial X_{2}}-\frac{\partial}{\partial X_{4}} \\
e_{22} & \rightarrow X_{2} \frac{\partial}{\partial X_{1}}-X_{3} \frac{\partial}{\partial X_{3}}-\frac{\partial}{\partial X_{5}} \\
e_{33} & \rightarrow X_{1} \frac{\partial}{\partial X_{1}}+X_{3} \frac{\partial}{\partial X_{3}}-\frac{\partial}{\partial X_{6}} .
\end{aligned}
$$

We then extend by linearity to all of L.
(3.9). $L=\tau(4, k) . \quad L$ has the basis
$e_{14}, e_{24}, e_{13}, e_{34}, e_{23}, e_{12}, e_{11}, e_{22}, e_{33}, e_{44}$. The bracket relations are given by $\left[e_{i j}, e_{k \ell}\right]=\delta_{j k}{ }_{i \ell}-\delta_{i \ell} e_{k j}$ for $1 \leqslant i, k<j, \ell \leqslant 4$. The injective hull $E_{\tau(4, k)}(k)$ has for its representation space the algebra $k\left[X_{1}, X_{2}, \ldots, X_{10}\right]$ and the representation is defined by extending linearly to all of L the function whose values on the basis are listed below:

$$
\begin{aligned}
\mathrm{L} & \rightarrow \operatorname{Der}\left(\mathrm{k}\left[\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{10}\right]\right) \\
\mathrm{e}_{14} & \rightarrow-\frac{\partial}{\partial \mathrm{X}_{1}} \\
\mathrm{e}_{24} & \rightarrow-\frac{\partial}{\partial \mathrm{X}_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{{ }^{6} X e}{e}-\frac{{ }^{s} X e_{s}}{e} X+\frac{{ }^{7} X e_{H}}{e} X-\frac{{ }^{\varepsilon} X e}{e} \varepsilon_{X} \leftarrow \varepsilon_{\partial}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{s_{X e}}{e}-\frac{z_{X e}}{e}{ }_{n} X-\varepsilon z_{\partial} \\
& \frac{{ }^{5} X e}{e}-\frac{{ }^{T} X e}{e} \varepsilon_{X} \leftarrow{ }^{\dagger} \varepsilon_{\partial} \\
& \frac{\varepsilon_{X e}}{e}-\varepsilon_{\text {I }}
\end{aligned}
$$

REFERENCES

[B1] Bourbaki, N., Elements of Mathematics, Lie Groups and Lie Algebras, Chapter 1-3, Hermann, Paris, 1975.
[B2] Bourbaki, N., Elements de Mathematique, Algebre Commutative, Chapitre 3, Hermann, Paris, 1961.
[D] Dixmier, J., Enveloping Algebras, North-Holland Publishing Company, Amsterdam, 1977.
[Do] Donkin, S., "Locally Finite Representations of Polycyclic-By-Finite Groups," Preprint, Mathematics Institute, University of Warwick, September 1979.
[J] Jacobson, N., Lie Algebras, Dover, New York, 1979.
[L] Lambeck, J., Lectures on Ring and Modules, Blaisdell Publishing Company, New York, 1966.
[Ma] Matlis, E., "Injective Modules Over Noetherian Rings," Pacific J. Math. 8 (1958), pp. 511-528.
[Mc] McConnell, J.C., "The Intersection Theorem for a Class of Non-Commutative Rings," Proc. London Math. Soc. 17 (1967), pp. 487-498.
[P] Passman, D.S., The Algebraic Structure of Group Rings, Wiley, New York, 1977.
[HS] Hilton, P.J., and Stammbach, U., A Course in Homological Algebra, Springer-Verlag, New York, 1970.
[V] Vergne, M., "Cohomologie des Algebres de Lie Nilpotentes. Application a L'Etude de la Variete des Algebres de Lie Nilpotentes," Bull. Soc. Math. France 98 (1970), pp. 81-116.

