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Abstract

Magnetic monopoles can be used to explain the quantization of electric charge, and are 

predicted by gauge field theory. If monopoles exist, they could have been produced by 

the proton-antiproton collisions at the Tevatron collider—the highest energy accelerator 

existing in the world, and trapped in the CDF and D0 detectors. We took Al, Be, and Fb 

samples from the Tevatron and used the induction technique with SQUIDs 

(Superconducting Quantum Interference Devices) to detect monopoles in the samples. 

We did not find monopoles, but we have set new limits for the monopole mass and the 

relevant cross section based on a Drell-Yan model and Monte Carlo calculation.



Chapter 1 

Introduction

In 1600, W. Gilbert first realized [I] that a magnet always has two poles (north and 

south) existing together. It was not known till the 19th century that electricity and 

magnetism were related. In 1820, Oersted [2] discovered that an electric current 

produced magnetism. This led to Ampere’s theory [3] that magnetism of materials ora 

magnetic field originates from small electric current loops. In other words, magnetism is 

different from electricity in existence since it is not independent. Magnetism is just a 

“by-product”, being generated by electric currents. It is entirely a relativistic effect. As a 

result, fundamental magnetic charges or monopoles did not exist. This was described by 

the asymmetry between electricity and magnetism exposed in Maxwell’s equations. [4] 

However, the asymmetry of Maxwell’s equations has stimulated physicists to 

symmetrize them by introducing magnetic monopoles. In 1896, Poincaré [S] calculated 

the motion of a charged particle in the presence of a single magnetic monopole. (This 

was result of mysterious observation of the motion of cathode rays in the presence of a 

long magnetic needle.) A few years later, Thomson [6] showed that a static system 

consisting of a magnetic monopole and an electric charge possessed an angular 

momentum.

The new era of magnetic monopole theories started in 1931, when Dirac [7] 

incorporated the magnetic monopole into the framework of quantum mechanics. He 

introduced magnetic monopoles which are associated with singularities (strings) in the 

electromagnetic potential, and showed that the existence of magnetic charge implies that 

electric charge be quantized. According to Dirac, the electric charge e and the magnetic 

charge g satisfy the quantized relation in rationalized unit system



= ^H c,n  = ±1,±2 {he = lin natural unit system) (1.1)

In 1948, Dirac [8] generalized this idea and confirmed the consistency of quantum theory 

with magnetic monopoles. The monopole introduced by Dirac is called “Dirac 

monopole".

In the early 1970’s, it was realized that the electric charge is naturally quantized in 

those unified theories of the fundamental interactions in which electromagnetism is 

embedded in a spontaneously broken non-Abelian gauge theory. In 1974, t Hooft and 

Polyakov [9] showed that such unified theories imply the existence of magnetic 

monopoles and their properties, e.g., mass, are calculable. The monopole mass in these 

theories is estimated to be about 10‘‘GeV (by electroweak theory) and 10‘®GeV (by 

GUT—grand unified theory).

Although the theories above predict the existence of the magnetic monopole, no 

complete quantum field theory of magnetically charged particles have been formulated 

yet One of the problems is that we are not allowed to use perturbation theory because 

the string singularity in the theory is unobservable. In the absence of a perturbative 

quantum theory of monopoles, we are forced to use model calculations. We will discuss 

this later.

The fact that no complete theory of magnetic charge has been formulated does not 

prevent people from seeking magnetic monopoles since the most important thing 

regarding magnetic monopoles is to ascertain if they exist. There are several types of 

monopole searches. The first is the accelerator search—a search for monopoles produced 

by high energy collisions. This is suitable for a low mass monopole search that is 

performed at every new accelerator that opens up a new energy region. In 1959, Bradner 

et o/.[10] used p  beam at 6 GeV to strike an aluminum target, trying to produce



monopoles; and he set the cross section limit for monopoles with charge n = 1 (Ig) as 

(T < 2.0 X 10“35 cm^ (20 pb) and the mass up to m < I GeV. In 1987, Price et al.[l 1] 

used pp collision in the Tevatron (1800 GeV) and set the cross section limit as 

(T < 3.0 X 10“^̂  cm^ (30 nb) with mass up to m < 800 GeV and magnetic charge n > I. 

Later in 1990, they [12] improved the cross section limit to <r < 1.2 x 10"^  ̂cm^. Also, 

Bertani et al. [13] set the cross section limit as a  < 2.0 x 10"^ cm^ (200 pb) with the 

mass up to 850 GeV. This was the best result for a direct search (in which monopoles are 

explicitly produced). In 1993, Pinfold et al. [14] performed a monopole search using 

e*e~ collision at LEP and set the cross section limit as o  < 3.0 x 10~̂  ̂cm^ (0.3 pb) with 

mass up to 45 GeV and magnetic charge n = 1, and the cross section limit as 

a  < 3.0 X 10"̂ ’ cm^ (0.3 pb) with mass up to 41.6 GeV and magnetic charge n= 2. The 

most recent indirect search (monopoles as virtual intermediate states) was performed by 

the D0 collaboration [15] in 1998. They set the mass limits for monopoles asm>  610 

GeV, with spin 0 and « = 1; and m > 870 GeV, with spin 1/2 and n = 1; and m > 1580 

GeV, with spin 1 and n = 1. However, these limits are strongly model dependent and 

violate unitarity. [ 16] So far no events have been found in this way.

The second type of search is in cosmic rays—a search for monopoles existing in the 

Universe. This is suitable for a search for GUT monopoles of huge mass. In 1951,

Malkus [17] used a solenoidal accelerator and emulsion technique to detect monopoles 

in the cosmic rays. This was the first monopole search and he set the monopole flux limit 

as/ <  2.0 X 10“” cm"^sr"‘s"‘. In 1975, Price et a/.[18] used plastics technique and 

claimed one event for monopole with/  = 1.0 x 10~‘ cm"^sr~*s~* , m > 200 GeV and 

n > 2, which interpretation was shot down by Alvarez [19]. Later in 1982, Cabrera [20] 

used the induction technique developed by Alvarez et a/ [21] and claimed one event for 

monopole w ith /<  4.0 x 10“"  cm“^sr“‘s“‘ and n = 1. In 1986, Caplin et al. [22] also 

claimed one event for monopole with n = 1. However, more events were never seen and 

these cases are no longer considered as monopole events. In 1991, Orito et el. [23]



reduced the flux limit to /  < 3.2 x 10“'® cm“̂ sr"‘s"' and set the mass limit as m > 10'® 

GeV for n = I, for monopole velocities fi (= Vic) > 0.05. The newest cosmic ray search 

was performed by MACRO collaboration in 1997 [24]. They set the flux limit as 

/ <  0.61 X 10“'® cm“*sr“'s“' forn = 1, and 1.0 x 10“* < ^  < 1.0 x 10"®.

The third way is a matter search. These experiments measure monopole signals in 

materials such as moon rock, sea water, and meteorites. In 1963, Goto et al. [25] tried to 

extract monopoles from a magnetite outcrop and a stony-iron meteorite, and set the 

monopole density as d < 2.0 x 10“®/gram. The most recent search of this type was 

performed by Jeon and Longo [26] in 1995. They applied the induction technique to 

measure meteorites and set the monopole density limit as d < 6.9 x 10"®/gram for 

n > 1/3.

Another way to set limits is based on astrophysics. In 1970, Parker [27] set the flux 

limit a s /  < 10"'® cm"®sr“'s“' with n = 1 based on the galactic magnetic field analysis. 

Later in 1993, Adams et al. [28] set the flux limit a s /<  10“'®cm“®sr“'s “' and the mass 

limit asm < 10'^ GeV by considering the evolution of the galactic field. In 1999, Freese 

and Krasteva [29] gave the newest flux limit a s /  < 1.3 x 10“®®cm“®sr“'s “' by analyzing 

catalysis of nucleon decay [30] in a faint white dwarf.

The experiment presented here [31] is a search for low mass Dirac-type monopoles 

produced by pp collisions at the Tevatron collider at the Fermi National Accelerator 

Laboratory for an integrated luminosity which has been extended by a factor of 10,000 

over the last search of Bertani [13]. If magnetic monopoles have a mass less than 10® 

TeV, they must have been produced by pp collisions observed by the D0 and CDF 

experiments over last a few years, and they should have been trapped in the materials 

comprising the detectors. We have searched for monopoles bound in these materials 

including the Be beam pipes, Al drift chamber supports and Pb pieces of the D0 and 

CDF detectors. We applied the induction method of Alvarez et al [20] by using a



detector similar to the Jeon-Longo apparatus.[2S] The monopole samples are passed 

through two superconducting loops that are connected to two DC-SQUIDs 

(Superconducting Quantum Interference Devices), and the signals induced by the 

magnetic charge of any magnetic monopoles in the samples can be measured by the 

SQUIDs. Based on the experimental data and using the Drell-Yan production model, 

[32] we set new limits for the monopole mass and the relevant cross section.



Chapter 2 

The Theory of Magnetic Monopoles

2.1 Magnetic Monopoles In Maxwell’s Equations

We know that Maxwell’s equations in vacuum in Gaussian units are given by

V • E = 4npe, (2.1)

V x B =  + (2.2)

V • B = 0, (2.3)

- V x E =  (2.4)

The electric field E and the magnetic field B are asymmetric in the equations in the 

presence of pe and Je. When we introduce magnetic monopoles, we have a magnetic 

charge density pm and a magnetic current Jm, which are analogous to electric charges 

and currents pe and J«. Then Maxwell's equations can be written as:

V • E = 4xpe, (2.5)

V X B = + - ^ J e ,  (2.6)



V • B = 4npm, (2.7)

- V x E  = + (2.8)

It can be easily shown from (2.7) and (2.8) that

0 = - V . V x E =

_ 1 d(4np„,) . ,
-  c et + c

or

■ % ^ + V .J „ = 0 .  (2.9)ot

Similarly, we can obtain independently from (2.5) and (2.6)

+ V . J,=0. (2.10)

The equations (5.9) and (5.10) show that both electric charge and magnetic charge are 

independently conserved.

Also, the modified Maxwell’s equations are symmetric under the duality 

transformations

E —► B, B —► —E, Je —* Jm Jm ~* ~Je»Pe p m i p m  —* ~ P e -  (2.11) 

Symmetrizing Maxwell’s equations was one purpose of introducing magnetic monopoles



although the terms p„ and Jm can be used in practical calculations without asserting the 

existence of magnetic charge. [33] In 1931, Dirac thought that the quantization of the 

electric charge was a much stronger reason to consider magnetic monopoles.[7]

2.2 Dirac Monopole

Non-integrable Phase and Electromagnetic Field

We follow Dirac’s original paper. [7] Consider a particle whose motion is represented by 

wave function T(r,r). We can express it in the form

Y (r,r) = p(r,r)e‘>('-'). (2.12)

In quantum mechanics, only the modulus of wave function is completely determined 

while the phase is not uniquely determined. We assume that the phase change between 

two different points is path dependent so different paths give different values, and the 

phase change around a closed curve need not vanish. This is the non-integrability of 

phase.

Now we express Y as a product

Y = (2.13)

where y  is a wave function similar to Y but determined in both amplitude and phase, and 

is the uncertain phase factor. The uncertainty of requires that should not be a 

function of r, t with a definite value at each point, but must have definite derivatives

K = V^ (2.14)

at each point They do not satisfy the conditions of integrability ÔKx/ôy  = ÔKy/ôx, etc..



which means that ÔKxIdy and d x y /d x  are not continuous everywhere.

The change in phase around a closed curve C will be, by Stokes’ theorem,

^ K *dl = JJ V X K *dS, (2.15)
c  s

where S is a surface bounded by C. Now we take the derivative of Y, and we obtain

-  = e‘P (2.16)

It indicates that if Y satisfies any equation, involving momentum and energy operators p 

and E, yr will satisfy the corresponding equation in which p and E have been replaced by 

p  + Hkx, and E -  fiKo. Thus k is associated with an electromagnetic field whose 

potentials are

A — -^K ,0 = —̂ kq, (2.17)

and the electric and magnetic fields E and B are determined by

V X r  = i E .  (2.18)

Thus, for a spacelike surface 5 bounded by C,

IJ  V X K *dS = - ^  JJ B •dS (2.19)

where is the flux going through the curve C. This equation shows that a change in



phase around a closed curve is equivalent to a magnetic flux going through the curve. 

Quantization Condition

Dirac considered an exceptional case where the wave function vanishes. As the wave 

function is complex, the vanishing condition is determined by two combined equations. 

One of the solutions to the equations gives a line in the 3-dimensional space, along 

which the wave function vanishes. This line was called a nodal line or string by Dirac. If 

the wave function vanishes, its phase has no meaning. So the string is just a singularity of 

the phase. As a result, the change in phase around an infinitely small curve which 

encircles a string must be 2itn. Here n is a positive or negative integer, and it is a 

characteristic of magnetic charge. Then, the change in phase around a finite curve is the 

sum of 2nn and the flux going through the surface bounded by the curve:

Afi = 2nn + - ^ j j B  -dS. (2.20)

Now we consider a closed surface, so there is no boundary and Afi must be zero. 

Moreover, if the string has an end inside the closed surface, 2nn will not cancel on the 

surface. In this case.

2;rn + - ^ |B . d S  =0, (2.21)

or

IB  -dS = 2 itn ^ .  (2.22)

Therefore, the total flux crossing a closed surface surrounding the end point is 2 n n ^ .  

Since the end point of the string is the source of this flux, it can be thought as a magnetic

10



monopole with magnetic charge g. Therefore,

4;rg = 2 n n ^ ,  (2.23)

I.e.,

ge = y  Ac in Gaussian units, (2.24)

or

^  in rationalized units. (2.25)
47T Z

This is the Dirac quantization condition.

The Dirac quantization condition has shown that both electric and magnetic charge 

should be quantized. The value of the magnetic charge unit can be determined by taking 

n = I and having c be the electric charge unit:

S = 68.5c, (2.26)

which is very big compared to e. 

The String Problem

With the monopole being introduced, the string singularity of the magnetic vector 

potential is also introduced. Without a monopole, the magnetic field B is determined by 

the potential A

B = V X A, (2.27)

11



and satisfies

V . B = V . V x A  = 0. (2.28)

In the presence of magnetic charge, it seems that no such potential exists because

V» Vx A = V«B = An pm * 0. (2.29)

However, we can keep the magnetic potential if we tolerate a string singularity of the 

potential. For a point charged monopole at the origin, the magnetic charge density can be 

described by a delta function.

V .  B = 4;rg5(r). (2.30)

Then, we define a new magnetic field

B, = B + h, (2.31)

where h is zero except on string, and can be expressed in terms of a string singularity 

along a path L from the origin (monopole) to infinity:

h(r) = -Ang J  J (r  -  r')dr', (2.32)
L

which leads to

V .  h(r) = -AngSir). (2.33)

Therefore, we can define the potential A by

12



B. = V X A(r), (2.34)

which satisfies

V .  (V X A) = V .  B, = 0 (2.35)

everywhere.

Bj can be realized by the magnetic field from an infinitely long and thin solenoid 

(string) placed along the negative z axis with its positive pole (with strength g) at the 

origin:

B, = - ^  r  + 4;rge(-z)g(x)J(y)z, (2.36)

and the magnetic field of a monopole is given by

B = ^ f  = V x A -  4zg0(-z)S(x)S(y)l. (2.37)

The potential A(r) of the solenoid can be written, with the conventional definitions of 

polar and azimuthal angles, as

(2.38)

which is singular on the negative z axis.

It should be mentioned that the Dirac string is unobservable and therefore it is 

unphysical. This is because the path L is completely arbitrary; reorienting L is a kind of 

gauge transformadon. This nonobservability can be shown by letting a particle of charge 

e move along a closed loop trajectory around a string containing magnetic flux = 4;rg.

13



Then there is a change in phase of the wave function of the particle, which will be by 

Stokes’s theorem

Aa = e^A«<il = e j B * d S  = Aiteg. (2.39)

This phase change should be observed by the Aharonov-Bohm effect [34] if eg is not 

equal to n/2, and therefore the string could be observed. However, the Dirac quantization 

condition just makes eg be n/2, and thus makes it unobservable. If the Dirac string is 

unobservable, the string at different positions must give physically equivalent results. As 

a matter of fact, a string can be moved from one position to another by a gauge 

transformation. Therefore, the Dirac string is just a gauge artifact and 

unphysical.[35][36][371[38]

The fact that the string is unphysical requires that the physics should be independent 

of the string. Thus, a realistic quantum theory of monopoles should give string 

independent results. Nevertheless, quantum theories are built using a Hamiltonian or 

Lagrangian which contains a magnetic potential. In this case, the string singularity will 

be included in the theory of magnetic monopoles and may lead to string-dependent 

physical results such as string-dependent cross section when perturbadve calculations are 

employed. It can be shown, however, that a quantum theory of magnetic charge is string 

independent using nonperturbative methods. It should be mentioned here that Gamberg 

and Milton, following on earlier works of Schwinger [39][40][41] and Zwanziger [42], 

have formulated a quantum field theory of magnetic charge and given a string 

independent cross section using the eikonal approximation.[37]

Dyons

It is possible that a magnetic monopole carries an electric charge in addition to its 

magnetic charge. Schwinger called such an object a dyon. Suppose that there exist two

14



dyons with magnetic and electric charges (gi,ei) and (gz.ez), Dirac’s quantization 

condition will take the form, in rationalized units, [39] [40] [41]

eij?2 - e 2fii ^  f  nJ2, unsymmetric A
I n, synunetric J

where » is an integer. “Symmetric” and “unsymmetric” refer to the presence and absence 

of dual symmetry in the solutions of Maxwell’s equations, i.e., whether the string is 

infinite or semi-infinite. For a pair of particles consisting of a pure electron and a 

monopole, i.e., e\ = e, ea = 0, = 0, ga = g, we get

f n/2, unsymmetric ] _
. (2 41)

V n, symmetric J
eiga -  eagi _ _

4jr 4fC

which gives the Dirac quantization condition for the semi-infinite string (unsymmetric). 

But for the symmetric case, the value of magnetic charge number, n, will be doubled in 

terms of the Dirac quantization condition. So the minimum value of n for the smallest 

magnetic charge or the magnetic charge unit corresponding to the charge of an electron, 

e, will be 1, or, 2. However, n could be 3, or, 6, if we consider the charge of a quark,

■l̂ e, as the electric unit charge. Therefore, we will study the cases for n = 1,2,3,6.

2.3 Magnetic Monopoles In Gauge Field Theory

Magnetic monopoles can be generated from a classical topologically stable solution of a 

non-Abelian gauge field theory by gauge symmetry breaking. We will follow Cheng and 

Li’s approach.[43]

The T Hooft-Polyakov Monopole [9]

15



This is the simplest model for magnetic monopoles in gauge theories. We start with a 

scalar field theory which possesses soliton solutions. Write the Lagrangian for an 50(3) 

field, I = 1,2,3,

(2.42)

with

V m  > 0. (2.43)

The energy for a given configuration for the scalar field is

£  = J  d3r[-^(0o0.)- + -^(V^,)' + n * ) ] .  (2.44)

Now we minimize ^(^) with ^ being determined by

Mo = {(ff = = a^>, (2.45)

where a is a constant. All points on Mo are equivalent to each other by 50(3) 

transformations. If there is a finite energy solution, we must have

V{n) = 0, (2.46)

and

0 f ( r )  =lim e Mo, (2.47)
R-*co

where r  is a radial unit vector. Topologically, the spatial infinities form a two-sphere 5^

16



5^ = {r : r  = 1}, (2.48)

which has the same topology as Mo. Thus, we can map 5^ to Mo to get a non trivial 

topology

= Tji = a?i (2.49)

If were not constant on the sphere, would go like r“* as r  -► oo. So the energy E

would diverge.

Now we introduce the gauge field, and write the Lagrangian with 50(3) or 51/(2) 

symmetry as

L = + ^ ( 0 4 )  .  (D^*) -  y(*). (2.50)

where

(2.51)

(Dp4»)“ = 0p0‘' - c e ‘̂ A^^S (2.52)

(2.53)

ÿ is a triplet Higgs scalar and X a positive parameter. Vÿ has been replaced by

0 ,*  = V* + ic(A,.T)*, (2.54)

where T is the 50(3) generator and

17



Tbc = »e‘̂ .  (2.55)

We arbitrarily choose

* = (0,0, a) (2.56)

to be the ground state configuration, which breaks the symmetry

SU(2) -  50(3) -> 50(2) = 0(1). (2.57)

Corresponding to 0(1) symmetry, the electromagnetic field is given by

= E', F‘i  = (2.58)

For a static state of the system without electric field, i.e.,

F? = 0, (2.59)

we have [9]

H = -L, (2.60)

and the energy

£  = j Hd^r = -  ^ (D '* ) .  (0,4») + V(4»)]dV. (2.61)

In order to let the energy integral be convergent, we make the following ansatz
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A‘b = -Ebij-^^W — K{aer)i], (2.63)

Ag = 0. (2.64)

Then, we obtain

D i^/r) = H{aer)K{aer)-^{8,ji^ -  nrj) + [flgr -  //(aer)

(2.65)

In the limit A —* 0, H{aer) and K{aer) have the forms [44]

'  i s f e - '

H{aer) =  -  ■ v -  I. (2.67)tanh(aer)

At large distance, we have

-* ^andK{^) -* 0  exponentially as 4 -* oo, (2 .6 8 )

thus we obtain

D ,*/r) -  -jL, (2.69)
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and

n  -  -L e « ‘r<,rt -  — (2.70) 
er* a er

Therefore, the energy is finite, and we have the magnetic field at long distance

B -  “ 4 " ^ ’ (2.71)

which corresponds to a magnetic monopole with the magnetic charge

g = -Anie. (2.72)

But it is only true for A —* 0. The constant e is the electromagnetic coupling constant 

that is related to the electric charge operator Q by

Q = e n , (2.73)

where T3 is the third component of the weak isospin operators that are the 50(3) 

generators. For T3 = ÿ ,  we obtain the unit electric charge qa = \ e ,  and

which is the Dirac quantization condition.

Now the lowest energy of the system for a static configuration is given
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^ f [ ^ ) -

(2.75)

The lowest energy is interpreted as the mass of the monopole. So the monopole mass is 

given by

(2.76)

w h e r e i s  the value of the integral and of order of unity. Thus the scale of 

monopole mass is given by

M  = Mx/a, (2.77)

where a = e^l4n, the fine structure constant, and Mx = ea, the mass of the vector boson 

after symmetry breaking, which may be taken as the symmetry breaking scale.

The magnetic monopole based on the finite energy solution is called the t 

Hooft-Polyakov monopole. From the above we can see that both a magnetic monopole 

and charge quantization have resulted from spontaneous symmetry breaking of a 

non-Abelian simple group to the electromagnetic group (/(I). Compared with the Dirac 

monopole, the t Hooft-Polyakov monopole has following features:

a. it behaves the same way as the Dirac monopole at long distance;

b. it has a finite core size that is determined by the gauge bosons or scalar particles;

c. its classical mass is of order of the spontaneous symmetry breaking scale, i.e., the
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vacuum expectation value of the scalar field.

Monopoles in Grand Unified Theories

The SU{2) -* Hooft-Polyakov monopole solution can be generalized to stable

monopole solutions for any gauge theories in which a simple group G is broken down to 

a smaller group H = h x U{1). The grand unified theories usually have a large simple 

group like SU(5) or 50(10), which would break down to some small groups such as 

SU{3)c X f/(l)em. Thus we have the t Hooft-Polyakov monopole for the grand unified 

theories. The monopole mass is also determined by the vacuum expectation value in such 

a way that it is of order of Mxle^. In the 50(5) model, Mx > 10*“* GeV. Therefore, the 

GUT monopole masses are of order of 10*® GeV, which is out of reach for their 

production by existing or any conceivable accelerators. However, the GUT monopoles 

can be primordial and produced in the early Universe and should still be around as 

cosmic relics. Thus, they will behave as a flux in the cosmic radiation reaching the earth, 

and they could be detected.

We can also obtain light monopoles if we consider electroweak symmetry breaking. 

The monopole mass at this scale is Mw/a -  10 TeV.(45][46] (But this is a controversial 

topic. See [47][48]) This type of monopole, if it exists, could be seen at future 

accelerators.
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Chapter 3 

The Production of Magnetic Monopoles

3.1 The Problem with the Theory of Magnetic Monopole

We are looking for the monopoles produced by proton-antiproton collisions so we need 

to know the cross section of production and the relationship between the cross section 

and the monopole mass. Unfortunately, we do not have a practical quantum field theory 

of magnetic monopoles, which we can use to calculate the cross section. There is a 

serious problem for constructing a quantum field theory of monopoles, as has been 

pointed out by Schwinger [40] [49]. The problem is that we cannot use perturbative 

methods to calculate cross section as we do for other particles.

To see the problem, we follow Schwinger's approach and start with the vacuum 

amplitude for a quantum electrodynamic system with magnetic charge included:

< 0+|0_ = exp[/W(y,y)], (3.1)

with

W{J,J-) = ^  j(dx)[y^(x)A;,(x) +• y^(jc)B/.r)], (3.2)

where J^{x) and *7''(x) are electric and magnetic sources which for classical point 

particles can be represented by

y(jc) = 2  ^ f  (3.3)
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= 2  « f  (3.4)

where Xe andxg are the coordinates of charge-bearing points. A^ix) and B^ix) are 

electromagnetic potentials which are related to the fields Ffivix) and *F^(x), and the 

string function/'(jc -  jc') by

M x )  = - \( .d x ') r ix -x ')F ^ ix ')  (3.5)

and

* F fiv — " ^ C f tY o r F ^ ^ . (3.7)

If we take a variation in the path of the electric charges, we obtain

SW  = 22 eSjdx^A^ix^)  = 22  e j  -^darid^^A, -  dyA^,)(xe) =
e e

2  e J  - ^ d a r F ^ y i x e )  - 2 ]  e g \ d a % i x ,  - X g ) ,  (3.8)
*f e

where the two-dimensional surfaces are bounded by the initial and varied paths, and we 

have used

F ^ y  = d ^ ^ A y - d y A ^  +* [ J(d[x')(/-^(jc~.t') Vv(jc') ~ f y { x ~ x ' ) ' J ^ , ( x ' ) ) ] .  (3.9) 

The string function f^Çx) satisfies
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(3.10)

Therefore, for any closed surface that surrounds the origin, we get

(3.11)

For any open integration surface £,

I  à a j^ ix )  =

r 1, if string passes through £
1/2, if string crosses the boundary of £

0, if string misses £ y
(3.12)

Then the requirement that exp[iVy(y,/*)] be unique requires that the variation satisfy

0 W iJ ,D  = 2nn. (3.13)

As it can be shown that

and

eg J da^ f̂i îxe -  xg) = -^eg. (3.14)

^  e j  ^doe''Ffivixe) = e JdS • B =ed*. (3.15)

we obtain

SW iJ,J^  = ^ e g  + e^. (3.16)
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where eO can be small and ignored. Thus,

•^eg = 2n7T, (3.17)

which is just the quantization condition.

Therefore, the string singularity, the quantization condition, and the gauge 

invariance in the theory of magnetic monopole, are consistent in quantum field theory. 

However, the uncertainty of 2xn for W{J,J*) is a constant and it makes exp[iW(7,y)] 

invariant but W{J,J*) not gauge invariant, so perturbation method is impossible. Thus, 

the existing perturbative quantum field theory cannot be used for calculating the 

monopole production cross section. Nonperturbative methods are the only hope. At 

present, we can only use models to calculate the cross section for monopole production 

in the absence of a complete quantum field theory of magnetic monopoles.

The Dirac quantization condition and Maxwell’s equations show that magnetic 

monopoles are very similar to electrons: they are quantized and the charge is conserved. 

In quantum field theory, the action for the interaction between a monopole and an 

electron mediated by photon exchange is given by [36][40][41], which follows 

immediately from above.

Wi. = € ^ o r \n x ) d T ix - x ') D ^ { x '- x " y f { x " ) ,  (3.18)

where the electric and magnetic currents are and *j^ = assuming

the monopoles have spin-1/2, and D+ is the photon propagator. However, we do not 

know how to calculate the cross section using this interaction because of the string 

problem. For simplicity, we treat monopoles as point-like particles, and assume they are 

produced in a one-photon process that is similar to that of electrons or other leptons such 

as muon pairs. As this action term is string dependent, we will, as we see below, not
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attempt to use it to compute the production process. Instead, for the proton-antiproton 

interaction, we will use Drell-Yan process [32] for pp (muon anti-muon) pair production 

of hadrons to model mm (monopole anti-monopole) pair production of hadrons, 

including a velocity suppression factor in the amplitude as suggested by the derivative 

term in Wou.

3.2 The Quark Parton Model

The Drell-Yan process is based on the parton model which was proposed by Feynman 

[SO] in the study of inelastic scattering of hadrons. Here we consider an inelastic 

electron-proton scattering that is shown in Figure 3.1, where there is more than just an 

electron and proton in the final state.

*, k

P P
X.p

Figure 3.1 Inelastic electron-proton scattering, in one-photon exchange 

approximation. X represents unobserved hadrons.

We try to calculate the cross section for which only the final electron is observed, which 

is called the inclusive cross section. This cross section can be factored into a leptonic
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tensor contracted with a tensor Wf,v describing the hadron vertex

da -  (3.19)

The leptonic tensor is defined by (for the unpolarized case)

f-Mv = y  y i y i  Uik\s')Y^uik,s)nik,s)Yvuik',s ), (3.20)
î'

and takes form

Lfiv = 2[^k'^kv + k'vkft + (^^/2)g,iv], (3.21)

where q = k - k ' .  In the absence of any information about the hadronic vertex, we may 

write Wfiv in the general form

W^v = Vxgttv + Vzp^Pv + ViiPtiqv + qtiPv) + V^ip^qv -  qnPv) + Vsq^qy +
(3.22)

where p^ is the four-momentum of the proton. Since is symmetric under interchange 

of p and V, the antisymmetric terms proportional to V* and should be excluded. 

Considering current conservation requires

q>‘Ŵ ,y = 0 = q''Wf^, (3.23)

we find that

V3 = -{q • P)V2lq-, (3.24)

and
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Vs = (3.25)q*

thus

= irg^'' ■^q^q''lq^)W\iQ^,v) + [p'' -  (p • q!q^)q^] x 
[p'' -  (p .  qlq^)q'’]M-^W2 {Q^, v) (3.26)

where Wi = —Vi, Wz = M^V2, M is the mass of produced electrons, and

= -q \ (3.27)

and V is defîned by

V = Ç • pIM. (3.28)

V is recognized as the energy transfer in the laboratory frame

v = (it'-it)® = £ ' - £ .  (3.29)

Wi(Q^,v) and W2(Q‘,v) are known as structure functions of the scalars and v. For 

elastic scattering, and v are related by

= 2A/V. (3.30)

But for inelastic scattering, we have the relation

2Mv = QZ + (3. 31) 

Here W is the invariant mass of the hadronic final state and is a variable. Therefore,
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and V are independent in inelastic scattering.

In 1969, Bjorken [51] predicted that in deep inelastic scattering, the structure 

functions should scale, i.e., become functions of Q^/v but not of and v independently. 

More specifically, if —► oo and v —* oo with x = Q^llMv fixed, the structure

functions will scale as

MW.CQ:, V ) ^  F,(x). vW2 iQ \ v) -* F2 M  (3.32)

where Fi(x) and F 2 (x) are finite, and F\(x) and F2 (x) satisfy the Callan-Gross relation 

[52]

2xFi(x) = F2(x), (3.33)

which is a direct consequence of the assumption that the partons are spin-1/2 quarks.

Bjorken scaling can be explained in terms of elastic scattering from free pointlike 

constituents [50] of the nucleons. At high and v, the virtual photon is probing very 

short distance and time scales within the hadron and it interacts elastically with small 

pointlike free partons that carry only a certain fraction x of the hadron’s energy and 

momentum. Thus, the structure functions F|(x) and F2 (x) can be obtained as a sum of 

the probability functions of the quarks (parton distributions), (x), in the hadron. In 

inelastic electron-proton scattering, for example, F2(x) for the proton has the form

F 2(x) =y i  elxfaix) = x{-|-[u(x) + H(x)] + ^ [d (x )  + 3(x) + s(x) + s(x) ]  + othersy,
a

(3.34)

where u(x) is the probability distribution for u quarks in the proton, S(x) for u antiquarks, 

and so on. But this is just a model, and we cannot derive it from QCD.
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In principle, the perturbative calculation of the cross section for hadron interactions 

is not applicable because the interaction becomes strong at large distance. But 

asymptotic freedom [S3] of what we now know as the underlying theory QCD (Quantum 

Chromodynamics) shows that the interaction between partons is almost negligible within 

short distances in the hadron. This makes perturbative calculations possible in many 

cases such as the deep inelastic e-p scattering and the Drell-Yan process. Therefore, we 

can make use of the parton model to factorize the hadronic cross section into two parts: a 

long distance factor and a short distance factor. [54] The short distance factor is 

associated with the subprocess of interactions with parton in the hadron, where we can 

perform perturbative calculations, while the long distance factor can be absorbed into the 

parton distribution functions. This is known as factorization. Using factorization, we can 

express the cross section in terms of parton distribution functions convoluted with a 

perturbatively calculable subprocess cross section: [55]

dox ^dx\dx-2fa{x\)fb{xi)dèab-^x (3.35)
aj)

where X  stands for any produced particles, jci and xi are the moment fractions of 

constitutes a and b, respectively, and the cross section for the subprocess ab —* X.

3.3 Quark Parton Distributions

In general, the parton distributions are functions of jc  and depend upon Q^, i,e.,/a(jc, Q^), 

the dependence arising from a QCD correction due to gluon emission by quarks. The 

dependence implies a violation of scaling, which is seen in electron, muon, and 

neutrino scattering data. [56] The parton distributions can be determined from a global 

fit to a wide range of deep inelastic and related hard scattering data. The basic procedure 

is to parametrize faix,Q^) at a low value of = Qq and then compute fa(x, Q^) at 

higher by using the renormalization group evolution equation, [57] or Altarelli-Parisi
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equation

Q:) = J  ^P „ (x/zV a iz, Q^) + 0{aKQ^)), (3.36)
X

where as(Q^) is the running coupling constant of QCD, and Pqqiy), the splitting function 

is

which is the probability that a quark, having radiated a gluon, is left with the fraction y of 

its original momentum. The evolution equation shows that the change in the distribution 

for a quark with momentum fraction x, which absorbs the virtual gluon, is then given by 

the integral over z of the corresponding distribution for a quark with momentum fraction 

z, which radiated away (via a gluon) a fraction xlz of its momentum with probability 

{as{Q^)l2n)Pqq{xl^. Therefore, given the measured quark distribution fa{z,Q^) over the 

range jc  to 1, the logarithmic derivative with respect to Q^, is determined by OsiQ^).

The parametrization must be general enough to accommodate all the possible jc  and 

quark flavor dependence, but it should not contain too many parameters so that the curve 

fitting becomes undetermined. In practice, it is common to use a form [54]

xq{x, Q) = Aox^^i 1 -  jc)^:P(jc) (3.38)

where P{x) is a smooth function; jĉ > dominates if jc is small and ( 1 -  x)^^ dominates if x 

is large.

The first generation of parton distributions, based on leading order evolution and data of 

the early 1980s, were given by Gluck et al. [58] and others. Second generation global
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analyses, based on next to leading order evolution and more recent data, have been 

carried out by several groups, e.g., [59] Similar efforts have been made by CTEQ 

collaboration since 1992. [60] They give different parametric forms and are continuing to 

improve their parametrizations with updated data and new physics processes available.

1. In GRV parametrizations [61], the P functions are given by

P{x, = I + /u* + Æc + C c^ , (3.39)

where A,B, C, and b are functions of Q and vary with different quarks.

2. MRST uses the following P functions [55]

Pix, Q ^ ) = l +  + Bx, (3.40)

where A and B are functions of Q.

3. The CTEQ collaboration uses a simple P function [62]

P(x,Q-)= l+ Ax^, (3.41)

where A and B are also functions of Q.

The differences between them come from choosing different factorization schemes, 

emphasizing different partons, and, more importantly, using different data sets. For 

example, CTEQ used inclusive jet data of CDF and DO, [63] whereas MRST relied on 

direct photon production results of WA70 and E706 [64]. The different parametrizations, 

however, are not very different. The CTEQ and MRST collaborations have given similar 

quark distribution functions that are shown in Figure 3.2.
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Figure 3.2 A comparison of the U quark distribution, U{x), 

between CTEQ and MRST parametrizations, which shows 

that they are approximately the same and should not give 

very different results, (see Figure 3.4)

3.4 The Drell-Yan Process for mm Production

First, we consider the Drell-Yan process for /ijl production

p +p —* p + Jl + X. (3.42)

This process involves a hard scattering subprocess and thus can be described by the 

parton model. Figure 3.3 shows an incoming proton or anti-proton with momentum P is 

represented as composed of partons < carrying longitudinal momentum fractions 

x,(0 < Xi < 1). We ignore transversi momenta of the partons since they are small. The 

subprocess is
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q + q n + Jl. (3.43)

P Pi

kptonpair

/
/

(a) DicU-Van process

X.P

kptonpair

parton or qnaik pair 

(b) Subprocess: parton interaction

Figure 3.3 Drell-Yan process with the parton subprocess.

The cross section for pp collision is obtained from factorization by multiplying the cross 

section for the subprocess by the quark parton momentum distributions 

dx\qa{x\ )dxzqa{x2), summing over parton and antiparton types and integrating over xi 

and X2 \ also an average must be made over different colors. That is [65] [66]

a{pp -* ppX) Ca J dx\dx2[qaixi)qaixz)]a{qaqa -*  ftp), (3.44)
a

where in the leading order approximation
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oiQaÇa — HH) = i4itaV3q^)el, (3.45)

andCa = 1/3. Therefore

a{pp -»  nJÛC) = 2  j  el{qa(,xi)qa{x2)]dx\dx2, (3.46)
a

or written in differential form

ifa ip p  — p-pX) = 2  ea[9a(jfi)9a(->f2)]dA:idx2. (3.47)
a

We can insert a S function 0{q' -  5JCi.t2) according to

I  dq^S(q^ -  SX1X2) = 1, (3.48)

then, fixing q‘ but integrating over xi and%2,

Jdxidx2XtX2^(xiX2 - r )  ^  el[qa{.x\)q^{x2)'\, (3.49)

where q^ = sz. Considering q‘ = (M  is the center of mass energy o f the muon pair), 

we can write the differential cross section for the Drell-Yan process by integrating over

X2 as

' m  ^  2 2  e 5 [ ^ a ( x , ) ^ „ ( ^ )  j /(x ,s ) . (3.50)
a

In the case o f monopole production
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p + p  —► m + m + X, (3.51)

in principle, we cannot simply use the Drell-Yan calculation because of the problem with 

the perturbation theory of magnetic monopoles due to the fixed and large magnetic 

charge and dependence of the amplitude on the Dirac string. But, heuristically, if we 

consider the similarity between the Lorentz forces for an electron and a monopole

Fe = cE + eP X B for electron, (3.52)

Fg = gB -  gP X E for monopole, (3.53)

and try a replacement in the cross section

e —* fig (3.54)

then

0.55)

This replacement is also approximately valid when people derive the energy loss of a 

monopole. [67] Moreover, [6 8 ] the nonrelativistic result (classical or quantum) for small 

angle scattering of electrons by monopoles differs from that of charged particle scattering 

by the same replacement e —» fig. In addition, we need to include a ^  as a phase space 

factor for the cross section formula. As a result, we roughly expect that the Drell-Yan 

cross section for monopole production will be significantly reduced by a factor i.e..
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da _  fl3 
dM = ^3(67.5n)2-^g^ j d x i ^  e ^ q a ix O q ^ ^ -^ )  J/(xts). (3.56)

Although the correction somewhat compensates for the largeness of we must 

emphasize that the Drell-Yan production mechanism proposed here for monopoles is still 

just a model. There is no solid physical foundation supporting this model. However, this 

is a reasonable working model, with which a mass limit can be determined based on a 

conservative cross section below the unitarity limit for/t = 1,2. (see Chap.6 )

To calculate the cross section for monopoles to be produced by pp collisions, we 

should know the quark distributions in the proton and antiproton. In a proton, there are 

valence quarks that constitute the proton (uvUvdv), and sea quarks that are qq pairs 

virtually produced. Then, the u quark and d  quark distributions in a proton can be 

parametrized by the sum of valence and sea contributions.

U = Uv + Us, D = dv + ds, s = s, (3.57)

while the antiquark S and 3 and strange quark s are taken to be pure sea. An antiproton is 

composed of antiquarks (flvUvdv), but the distribution functions are equal to the 

corresponding quark distributions in a proton, i.e.,

V  = U, 15 = D (3.58)

thus.
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el[qaMqJ,X2)] = ^^{U {xi)U {xz) + u{xi)H{x2)]9

•^[D(xi)D(jC2) +5(Xi)5(X2)] + 

2eL (3.59)

We have used both CTEQ and MRST parametrizations to work out the cross section 

calculations forra = 1, and obtained roughly the same results which are shown in Figure 

3.4. We used CTEQS parametrization to complete the Drell-Yan calculations.

10

—  Drell-Yan Cross Section, CTEQ, n = 1
-  - Drdl-Yan Cross Section, MRST, n « 1

500 520 540 560 S80 600 620 640 66C 680 7X
Monopole Pair Mass (GeV)

Figure 3.4 CTEQ and MRST obtain almost the same cross section 

with their own quark distributions.
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Chapter 4 

Monopole Stopping and Trapping in the D 0 and 
CDF Detectors

4.1 The Energy Loss of Magnetic Monopoles

We first consider the case of electrically charged particles, and then we will extend the 

analysis to magnetic monopoles. When the charged particles pass through matter, they 

will have energy loss that is caused by inelastic collisions between the charged particle 

and the atomic electrons of the materials. The energy loss is represented by a quantity 

called the stopping power: which is the average energy loss per unit path length.

Many people have calculated the stopping power. [69] Bohr [70] first calculated the 

stopping power using classical arguments. He gave the formula

(4.1)dx nteV̂ \ zê(a 2 J
where Ne is the number of electrons per unit volume, rtie the mass of electron, z the 

charge value of the charged particle in terms of the charge on the electron, V the velocity 

of the particle, m the characteristic atomic frequency of the orbital motion of the 

electron, P = Vic, and /2i a small ignorable correction factor (normally, -  10"*).

After quantum mechanics was formed, Bethe [71] and Bloch [72] conducted a 

quantum mechanical calculation of the energy loss. The formula they obtained is
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dE
dx =  -  ln (l -  -  r - )

where I is the excitation potential or ionization potential per electron.

However, Bohr, Bethe and Bloch assumed that the absorbing material is a dilute, 

cold gas, and that assumption is not true in many cases. Then, a so-called "densiQf 

effect” must be included. Fermi gave a classical treatment of the density effect, and Fano

[73] discussed the quantum mechanical approach. But in most cases, the classical and 

quantum mechanical approaches are equivalent. As a result, a density correction S has 

been added in above formula

Stemheimer [74] derived a numerical functional form of 8

0, % < %o
8 =  4.606%+ C  + a(%i -  %)"•, %o < % < %i (4.4)

4.606%+ C , %i < %

where

% = log(^y), C = - 2 1 n ^ ^ j  -  1, m = 3.0, a = - (C  + 4.606%o)/(%i -% o )T

(4.5)

and the values for C, a, %o, %i, and m are given in Table 4.1.
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Table 4 .1  (a) Parameters used for the density correction [75]

Solids and Liquids:

I  iq %0 %,
/ <  lOOeV iq  < 3.681 0.2 2.0
/ < 1 0 0 e V  iq > 3.681 0.326|q -  1.0 2.0
/ >  lOOeV iq < 5.215 0.2 3.0
/ >  lOOeV iq > 5.215 0.326|q -  1.5 3.0

(b) Parameters used for the density correction [75]

Gases at STP (7 = 0°C and P = 1 atm):

1C| Xq %,
iq < 10.0 1.6 4.0

10.0 < iq < 10.5 1.7 4.0
10.5 < iq < 11.0 1.8 4.0
11.0 < iq < 11.5 1.9 4.0
11.5 < iq < 12.25 2.0 4.0

12.25 < |C] < 13.804 2.0 5.0
iq  > 13.804 0 .326 |q -2 .5  5.0

The energy losses of magnetic monopoles are caused mainly by the interaction 

between the electric field of moving monopoles and the atomic electrons of the absorber. 

Other interactions such as nuclear reactions are extremely rare and can be ignored.

[69] [76] In principle, the electrical charged particle stopping power calculation can be 

applied to a magnetic monopole if the monopole features are taken into account. In fact, 

the energy loss by a magnetically charged particle is approximately obtained from that of 

an electrically charged particle by the substitution [6 8 ]
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-I-, or Ze — Pg. (4.6)

This is just a classical approach, though. Kasama, Yang, and Goldhaber [77] have used 

quantum mechanics for an electron moving in the magnetic field of a fixed monopole to 

obtain the differential scattering cross section; Ahlen [78] has used this cross section to 

obtain the following expression for monopole stopping power.

-  Æ  ,  ^  ^  -  X  .  B W ) ,  (4.7)

where AT(|g|) is the Kasama, Yang, and Goldhaber cross section correction:

0.406, |g| = ^ e ,  n = 1 

0.346, |g| = - ^ e ,  n = 2,3,6
(4.8)

and fi(|g|) is the Bloch correction that is determined by the digamma function y[79]:

00
B(|g|) = - ( y ( l ) - R e y ( l  +igo/c)) = 2  .3K-* + kteak-\ k{ga/ey

* "S

0.248, |g| = - ^ e ,  n = I

0.672, |g| = M = 2

1.022, |g| = - ^ e ,  n = 3

1.685, |g| = - ^ e ,  n = 6
V. V

(4.9)

We cut off the k summation at 1000 and obtain good enough corrections, and the error is 

O(10~^). The above stopping power formula is valid only for the large P range 

{P > 0.1). For small PiP  < 0.1), Ahlen and Kinoshita [80] have given a different
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formula

In this expression, is a minimum allowed electron scattering angle, and Vf is the 

Fermi velocity of the electrons. This expression shows that the monopole stopping power 

is proportional to /3 for < 0 ,1 .

4.2 The D0 Detector [81]

The Tevatron collider at the Fermi National Accelerator Laboratory is currently the 

world’s highest energy accelerator, colliding anti-protons and protons at a center-of-mass 

energy of 1.8 TeV. The D0 detector and CDF detector are the two general purpose 

detectors built to exploit the Tevatron, from (the Run I version of) which we took 

samples to search for magnetic monopoles. The 00 detector is used to study high mass 

states and large pj- phenomena, which include the search for the top quark, sensitive 

tests of the standard model, various studies of perturbative QCD, and searches for new 

phenomena beyond the standard model.

The material used for monopole samples in the D0 detector was part of the central 

detector that is composed of tracking and transition radiation detectors. The central 

detector includes four main parts: (i) the vertex drift chamber (VTX), (ii) the transition 

radiation detector (TRD), (iii) the central drift chamber (CDC), and (iv) two forward 

drift chambers (FDQ. The VTX, TRD, and CDC cover a large angular region and are 

arranged in three cylinders concentric with the beams. The FDCs are oriented 

perpendicular to the beams. Three aluminum cylinders (main and two extensions) 

surrounded the FDCs, of which the extension cylinders were taken for our monopole 

samples. Figure 4.1 shows the layout of the detector. Also we took a half meter of the
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beryllium beam pipe as a sample since it has the largest solid angle coverage 95%).
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Figure 4.1 The D0 detector. 9i = 30°, 6 2  = 40°, and 0\ = By,9z = 6 4 .

4.3 Energy loss in the DO Detector

Suppose that magnetic monopole pairs were produced by proton antiproton collisions. 

They would have gone through the beryllium pipe, VDC, TRD, and CDC if they had 

enough energy. Moreover, they would have been stopped in the aluminum cylinder if 

they lost all their kinetic energy when they reached the cylinder. Moreover, they would 

have been trapped in the cylinder if they were bound to the nuclei of the materials. In 

that case we would be able to find monopoles in the aluminum cylinder. Therefore, the 

first thing we need to do is to estimate the energy loss for a monopole going through the
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materials in each detector.

The VTX chamber is the innermost tracking detector. It has an inner radius of 3.7 

cm and an outer active radius of 16.2 cm. There are a variety of materials inside the 

VTX: carbon fiber support tubes, sense wires, field and grid wires, and gases such as 

CO2 and ethane, etc.. Most of them are negligible, but CO2 and ethane gases and 

aluminum field and grid wires were considered for the energy loss of monopoles.

The TRD consists of three separate units, each containing a radiator and an X-ray 

detection chamber. The radiator section consists of 393 foils of 18 /nn thick 

polypropylene in a volume filled with nitrogen gas. The radiator section is enclosed in a 

carbon-fiber tube with end flanges made of Rochacell with carbon-fiber skins. The 

radiator and detector volumes are separated by a pair of 23 /im aluminized mylar 

windows. Dry CO2 gas flows through the gap between these two windows to keep the 

nitrogen in the radiator from leaking into the detector volume and polluting the 

recirculating chamber gas, a mixture of Xe (91%) / CH2 (7%) / C2H6 (2%). The outer 

support cylinder of each of the TRD units is a 1.1 cm thick plastic honeycomb with 

fiber-glass skins.

The CDC is a cylindrical shell of length 184 cm, and its inner and outer radii are 

49.5 and 74.5 cm, respectively. It consists of four concentric rings of 32 azimuthal e lls  

per ring. Each cell contains seven 30 fan tungsten sense wires. The chamber is divided 

into 32 separate identical modules. Each module is made from a set of Rochacell 

structural members (“shelves”) covered with epoxy-coated Kevlar cloth and wrapped 

with a double layer of 50 pan Kapton. The separate modules are positioned within a 

single support cylinder. The inner surface is a composite carbon fiber/Rochacell tube. 

The outer main cylinder is 0.95 cm thick aluminum and serves as the main support for 

the full CDC. The CDC is operated with Ar(92.5%) CH4(4%) C02(3%) gas and 0.5% 

H2O. We use Ahlen's monopole stopping power equations and Stemheimer’s parameters
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[74] obtain the numerical curves for each material in the detector, which are shown in 

Rgure 4.2.

Energy Loss in DO Detector (Be pipe, VTX. and CDC)
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Figure 4.2 (a) (b) Energy loss of magnetic monopoles for the materials in 

D0 detector. dE/dx is around 5 GeV*cm-/g for 0.1 < fi < 0.8.
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The range between the A1 sample (1.27 cm thick) and the IR collision point at an 

angle (35°) with respect to the beam pipe in the D0 detector is about 9.4 g/cm^. The 

materials in D0 detector and the corresponding range are listed in Table 4.2.

Table 4.2 The materials and the ranges at angle of 35° in D0 Detector

Detector Material Range (g/cm^) at 35°
Beryllium pipe 0.16

VTX C2H6&CO2 gases and A1 wire Mixture 0.12
TRD A1 Window 2.18

N2 gas 0.01
Polypropylene 1.12

Xe, CH4 , C 2H6 gases 0.02
Honeycomb 1.99

CDC Ar, CO2 , CH4 gases 0.07
Kapton 0.1

Rohacell 0.49
Endplate (Al) 4.18

GIO I.II
Total 9.4

4.4 The CDF Detector [82]

The CDF dectector consists of a central detector which is made up of the solenoidal 

magnet, steel yoke, tracking chambers, electromagnetic shower counters, hadron 

calorimeters and muon chambers, and two identical forward/backward detectors 

consisting of segmented time-of-flight counters, electromagnetic shower counters, 

hadron calorimeters, and muon toroidal spectrometers. An elevation view of the forward 

half of the complete detector is shown in Figure 4.3. The detector is divided into a 

central detector (10° <0s < 170°), which includes the end-plugs which form the pole
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pieces for the solenoidal magnet (10° < 0, < 30°), and the forward/backward regions 

(9s < 1 0 °), where 9s is the polar angle measured from either the proton or antiproton 

beam. At angles less than 10° to either beam, particles produced at the interaction point 

exit the conical hole in the end plug and strike the forward shower counters and hadron 

calorimeters. The lead plates we used as samples were taken from the forward shower 

counters.

End waO hadron 
caloriactcr

Fonrard£\I 
shower coûter Solenoid

Central tracking 
chamberBz

protons

Collision
point

Bz

Silicon vertex detectoi 
u d  Vertex time 
projection chambers

Pb layers End pings

forward tracking 
chamber

Figure 4.3 A side view of the forward (East) half of the CDF detector, 

the other part is in the West (on the right).

We are concerned with the detectors between the pp collision point and the forward 

shower counters, through which monopoles might have gone. The collisions occur in the 

beryllium pipe. The first detector which monopoles may go through is the silicon vertex 

detector (SVX) [83] that is located with its center on the nominal BO interaction point
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and consists of two cylindrical modules placed end-to-end with their axes coincident 

with the beam axis. Then there are eight small vertex time projection chambers (VTPC). 

The central tracking chamber (CTC) is a large cylindrical drift chamber surrounding the 

VTPC. Outside of the central detector is the forward tracking chamber (FTC). The 

forward shower counter is behind the FTC.

There were 30 layers of lead installed parallel and perpendicular to the beam pipe 

inside the forward shower counters. Between each layer, there are self-contained 

chambers that contain aluminum plates and fiberglass (G-10) panels [84].

The solenoid magnet coil is installed around the CTC, which produces a magnetic 

field of 1.4 Tesla (Bz) oriented along the incident beam direction in z-axis. We do not 

know exactly how the magnetic field is distributed. As an approximation (along the 

central axis), we use the following formula for a solenoid [85] to model this field.

b (z', = £s>̂l [  I f /2+z 1 -

where Bo is the magnetic field from an infinitely long solenoid, z the position along 

central axis, a (= 2.5 m) the radius of the solenoid, and L (= 3 m) the length of the 

solenoid. Figure 4.4 shows the curve of B;(z), which is close to 1.4 Tesla uniformly in a 

wide range, with which the CDF detector was operated.
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Figure 4.4 The magnetic field along the symmetry axis of the beryllium 

beam pipe in the CDF detector.

4.5 Energy Loss in the CDF Detector

The SVX consists of 4 radial layers of silicon strips surrounding the beam pipe. It has a 

number of aluminum bulkheads, a group of ladders made of Rohacell, and alumina 

(AI2O3) ears on the end of a ladder. The VTPC system is comprised of eight separate 

time projection chamber modules which are mounted end-to-end along the beam 

direction. The chambers are mainly made of a carbon fiber octagon, and they contain 

3072 sense wires and 3072 pads for the measurement of track coordinates. The FTC is a 

radial drift chamber that contains planes of radial anode and field shaping wires which 

alternate with planes of cathode strips. The energy loss for those materials is shown in 

Figure 4.5.
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Energy Loss in CDF Detector
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Figure 4.5 The energy loss of monopoles in the CDF detector.

The materials in the CDF detector have an angular distribution with respect to angle 

6, which should be considered in the calculation of energy loss.

The range between the Pb samples and the collision at an angle (6.5°) with respect to 

the beam pipe in the CDF detector is about 7.5 g/cm^. The materials in CDF detector and 

the corresponding ranges are listed in Table 4.3.

52



Table 4.3 The materials and the ranges at angle 6.5° in CDF detector

Detector Material Range at 6.5° (g/cm
Be pipe 0.82

SVX C 0.94
Al 0 . 6

Si 0 . 0 1

AI2O 3 0.96
Rohacell 0 . 0

VTPC C 2.40
FTC Al 1.78

Range Before Sample 7.5
Pb layer 5.71

Al-GlO between Pb 0.83

4.6 Binding Energy in Monopole Samples

People have discussed the possibility that slow magnetic monopoles interacting with 

matter bind to extended particles, such as nuclear and atomic systems. [8 6 ] [87] [8 8 ] They 

have found that the interaction of the monopole with the magnetic moments of these 

systems can be strong enough to produce bound states under certain conditions.

Consider a nucleon that has spin s and magnetic moment

ft =kfiNS, (4.12)

where

2niN (4.13)

53



the nuclear magneton, Z is the number of proton, and k the Landé factor, or g-factor. For 

point-like particles with spin s = 1/2, k = 2. A  magnetic monopole with magnetic charge 

g at the origin produces a magnetic field in Gaussian units

B = g - ^ .  (4.14)

The interaction energy of a charged particle of magnetic moment p with a magnetic 

monopole (n = I) of field B is

( /=  = -it—^ s  .  R. (4.15)

Then we have the non-relativistic Hamiltonian of a charged particle interacting with a 

monopole [89] [86]

r ^ ( r - Z e A f - , l ~ B =  + (t' - «") -  - f-» *8]
(4.16)

Here

q = -^Z, (4.17)

L = R x  (P -Z e A )-^ R  (4.18)

Because this potential is too singular at Æ = 0, in order to allow bound states to exist, 

Bracci and Fiorentini assume an infinite repulsive potential (hard core) for /? < a, the 

size of the particle:
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U{R) = +oo,R< a. (4.19)

We then define the total angular momentum that is conserved

J  = L + S, (4.20)

and apply the SchrOdinger equation and bound state condition E < 0, thus we obtain one 

dimensional SchrOdinger equations for the lowest angular momentum states

= (4.21)

with corresponding boundary condition

X i a )  = 0. (4.23)

The monopole-particle interaction has been reduced to a one-dimensional problem in an 

effective potential:

V = X,(2m R^y\X i = \q\ -  - |it. (4.24)

To obtain bound states, Xi < 0. For Xi < —̂  ~"i")’ infinitely many (zero)

bound states. Thus the condition for bound states is (for the lowest angular momentum

states)
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^ > 2 M  + ^ .  (4.25)

Under those conditions, Bracci and Fiorentini [86] have estimated the binding 

energies for different materials. The binding energy between a monopole and a lead 

isotope 82Pb^‘” with

^ = ±  ^ = 41, & = 2.97, ^  = 122 > 2\q\ + -1 = 82.5 (4.26)

has been given:

£ô(Pb) = 6.9 keV. (4.27)

Olaussen and Sollie [87] have considered relativity and introduced the form factors 

of nuclei. They have derived the conditions for general spin. For the states of lowest 

angular momentum, y = -  5, the condition is the same as S = 1/2 above. Binding will

occur for y = |^| -  S + 1 if A± > - j ,  where

= ( 5 -  i-)X -  2\q\ -  1 ± V (k |+ l)^  + ( 2 S - l- |^ |)%  + %:/4 (4.28)

Here

% = k„\q\, and k„ = - ^ / i .  (4.29)

In all cases, binding occurs only if the nuclei have large anomalous magnetic 

moments.
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For aluminum 13 S = 5/2, |g| = 6.5, X  = 19.7, then X+ = 35.6 > 1/4, and 

A- = 15.2 > 1/4. They have given the binding energy for aluminum:

£*(A1) = 2.6 MeV. (4.30)

This is a huge binding energy.

C. J. Goebbel has given a different binding energy of 0.56 MeV for aluminum using 

a hard core repulsion condition.[90] This shows that monopole binding energy 

calculations are model dependent.

But fortunately, binding energies are estimated to be in the keV range and up for 

many materials. It ensures that the monopole-atom complex will remain permanently 

bound to the material lattice based on a tunneling calculation.[88] For example, to get a 

10 years life time, the binding energy would have to be only of the order of 1 eV. Even if 

we put 13 Al^  ̂in a magnetic field of 1.5 T, the monopole-atom complex would not be 

extracted and can still stay in the aluminum for ~ 10  ̂years! [88] [91] Therefore, 

monopoles should have been trapped in D0 and CDF aluminum and lead samples if they 

were produced and stopped in those materials.

Beryllium is very special. The Be pipe in the detectors is very thin but has the largest 

angular coverage (- 4;r); it can stop monopoles of large charge (n = 3,6). According to 

Milton, Olaussen and Sollie, however. Be, treated as a point particle, is not expected to 

bind monopoles. Nevertheless, we do not think that Beryllium should be neglected. First 

of all. Be can trap dyons with negative electric charge. Moreover, the magnetic field of a 

monopole is so strong that it will disrupt the nucleus and bind to individual nucleons if 

not to quarks. Therefore, we strongly suspect that monopoles will bind to Be and believe 

that it is safe to include Be samples as well as Al and Pb in our monopole search, 

because 4Be’ has spin-3/2 and a negative g-factor.
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In order to make a better trap for trapping monopoles for current experiment, we 

should use a thick aluminum beam pipe (instead of Be) at the interaction point, if it is 

possible, to get the maximum angular acceptance with large binding energy.
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Chapter 5 

The Apparatus for Detection of Magnetic 
Monopoles

5.1 The Outline of the Monopole Detector

The principle of detecting magnetic monopoles is to convert the characteristic magnetic 

field generated by a magnetic monopole into an electric current or voltage which can be 

read out electronically. There are, however, two problems related to a monopole 

measurement. First, we have to find ways to distinguish between monopole signals and 

other magnetic signals. Second, the monopole signal is very weak, and the induced 

electric current may die out very quickly and may therefore not be measurable. This is 

because the induced current will be converted into heat by the IrR losses of the coil. 

Based on Faraday's law of inductance and superconductivity, the problems can be solved 

by moving samples through a superconducting coil in which a magnetic monopole will 

produce an induced current which will persist at low temperature after the monopole has 

passed through the coil. This is the induction method.

In order to use the induction method, we need a superconducting coil, a cryogenic 

system to make it superconducting, and a device to measure the persistent induced 

current set up in the coil. The device we choose to measure the induced current is a 

SQUID (Superconducting Quantum Interference Device), which is cooled with liquid 

helium that is stored in a liquid helium dewar. We want to have a manageable and cost 

effective operating scenario for measuring samples, i.e., keep operating SQUIDs 24 

hours a day so that we can complete measuring about 1000 samples in a limited time. 

This implies a helium loss rate < I liter/hour for our helium dewar, which requires a heat
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load into the liquid helium (caused by conduction and radiation) to be < 1 Watt. This 

also implies a vacuum < 10~̂  torr, a liquid nitrogen shield absorbing heat at SO 

W'hour/liter, a thin walled helium dewar, and superinsulation radiation shields. This will 

be discussed later.

Those required devices were built in the monopole detector that is schematically 

shown in Figure 5.1. Two cylindrical dewars, a liquid helium dewar and a liquid nitrogen 

dewar, are concentrically set in a cylindrical steel tank with a “warm bore" along the 

central axis. Two superconducting coils connected to two SQUIDs are immersed in the 

liquid helium. A monopole sample is set in a carrier attached to a nylon rope that is 

guided by several pulleys and connected to a stepper motor that moves the sample up and 

down along the warm bore through the superconducting coils surrounding the bore. The 

signal current from the superconducting coils is converted into a voltage in the SQUIDs 

and received by the data acquisition system external to the detector.
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Figure 5.1 A schematic diagram of the monopole detector. The length is 

155 cm for the D0 samples and 185 cm for the CDF samples.
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5.2 The Monopole Signature

Suppose that a magnetic monopole passes through a ordinary conducting metal coil C 

bounding a surface 5 in the z = 0 plane, as shown in Figure 5.2.

Figure 5.2 A magnetic monopole g passing through the conducting 

metal coil C along the z-axis. S is the surface bounded by C, a is 

the radius of the coil, and n the normal vector of 5.

From Maxwell’s equation with magnetic charge in SI units we have

^ E • </r = — /io J  Jm • dS, (5.1)

where 4> is the magnetic flux through C, and

J™ = gv5^(r -  vr), 

and on the plane of the loop, r  = z = 0, thus

(5.2)
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I  Jm • = g V z S i -V z t )  =  g S ( t ) .  (5.3)
s

The function S{t) shows that the monopole intersects the plane of the coil at time / = 0,

and so Jm on the plane is nonvanishing only at r = 0. Therefore, a current I will be

induced in the coil C when the monopole is passing through the coil. The induced 

current /  is given by

IR = e = j E » d r ,  (5.4)
c

G is the electromotive force that is defined as the work done for each unit of charge 

transferred in the coil. However, the current just induced cannot be maintained and will 

immediately become too weak to detect because of energy loss due to the resistance of 

the metal coil. The way to maintain the induced current is to replace the ordinary metal 

coil with a resistanceless superconducting coil. In this case, /{ = 0, i.e.,

e E • dr = 0, (5.5)

and

-  = HogSit), (5.6)

Now, we let a monopole move along the symmetry axis of the superconducting coil, 

so the magnetic flux due to the monopole moving through the coil is
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f  = ^ [ i  -2«(z)^ (57)
S

where R is a vector from the monopole to a point on the plane bounded by the coil C, z is 

the position on the symmetry axis, and a the radius of the coil. 6(z) is the theta function 

that is equal to I if z > 0, and, otherwise, is equal to 0.

The total flux through 5 is

d* = + d>/, (5.8)

where d>/ is the induced flux due to the current induced in the superconducting coil and 

is given by

d>/ = -U . (5.9)

Here I is the induced current, and L is the self-inductance of the coil. Initially, there is no 

current flowing, so we set d> = 0 at z = -w, and obtain

d> = -HQg0{z). (5.10)

Therefore, we find the induced current in the superconducting coil by combining the 

above equations:

which is plotted in Figure 5.3, appearing as a smoothed-out step function. The value of 

the step is
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A/ = , when z goes from -  oo to oo. (5.12)

I

z

Figure 5.3 The induced current in a superconducting coil, which is 

the signature of magnetic monopole. The units of I and z are 

arbitrary in the figure.

We installed two TiNb coils in the detector, which were attached to and surrounded 

the inner wall of the helium dewar, and used liquid helium to cool the coil down to 4.2 K 

which is below the critical temperature (9.8 K) of the TiNb superconducting coil. With 

the liquid helium filled, the TiNb coils became superconducting and they would detect 

the magnetic monopole signature, the step current.

If we install a superconducting shield surrounding the coil, as is the case of our 

experiment, (see Figure 5.1) the shape of the step will be somewhat changed and the
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magnitude of the step will be reduced approximately by a factor ^  where a is 

the radius of the coil and b that of the shield. [92]

5.3 Fundamentals of SQUIDs

Since the monopole flux linking the superconducting coils is very weak (- 10~'  ̂Wb) 

and therefore the induced current is weak, we need a device to convert this weak current 

into a measurable signal. A special device, SQUID (Superconducting Quantum 

Interference Device), was used for this purpose.

The SQUID is an application of the Josephson junction [93] that is an arrangement 

of two superconductors connected by a thin layer of insulation. In principle, the 

wavefunction for electrons in two superconductors have different phases. We use 8 to 

represent the phase difference. If there is a voltage V cross the Junction, the current J 

going through the junction is [94].

J = Jos\n5, (5.13)

where Jo is a characteristic of the junction. 5 is related to V by

(5.14)

or

Sit) = So + f j v { t ) d L  (5.15)

Since h is very small, any normal non-zero V applied will induce a rapid oscillation and
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the net current is negligible. But if V is zero, we obtain a current between -Jo and Jo. 

This is the Josephson junction.

Now we apply a high frequency ac voltage Va coseot with a dc voltage V̂o, thus

Vo -♦ Vo + Va cos tor. (5.16)

Treat Va as small and use approximation, we get

J = yo^sin^^o + ^  Vot^ + sin tor cos ^  Vor  ̂J. (5.17) 

The first term is zero on average, but the second term includes the term

sin tor sin ̂ ^V or y  (5.18)

which does not average to zero if

to = ■^Vo.(the average current 7 = VJ2Vo). (5.19)

There should be a current if the ac voltage has just this frequency.

Since V is small, and e = jE * t/r  = Oin superconductor, we can treat the electric 

field E as small. Then we have

0 = E = -V V - (5.20)at

which indicates that
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jvdt = - j A » d r .  (5.21)

Thus we can replace ^V o tb y  and write the phase factor in a different way:

5 =  ( 5 o - | - j A . d r ) .  (5.22)

Then we obtain

y = Jo sin (jo  -  J  A . d r ) . (5.23)

Now we put two Josephson junctions in parallel and let them form a loop as in 

Fig.5.4, then we apply an external magnetic field passing through the loop. There are two 

different currents crossing the two different Junctions. The total current out of the two 

junctions is the sum of the two currents which have different phases for different paths. 

The difference between the two phases is given by

Sb-5a = f j A * d r  = (5.24)

where 4> is the flux going through the loop. Thus the total current is

Jtomi = 2Jo sin cos( -^<D) = JAsin^ocosf-^d*), (5.25)

where J/o = 2Jo, So = y  (Sa + S*), and e = the charge of an electron as g is the 

charge of an electron pair in a superconductor. Then we obtain the maximum Jmax'-
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/m a x  =  / i o | c O S ( - ^ 0 ) | . (5.26)

/max will itself have maxima when

n = 1,2, ... (5.27)

A change in flux (-■§-» 10"*̂  Weber) will result in a change (~ /ro) in the current. 

This forms the basis of the operation of SQUIDs.

Josephson
Junctions

r------

f
Magnetic flux J

I
J2  m J2  --------►

Figure 5.4 A Josephson junction pair forming a loop. The current J  

is affected by the flux linking the loop

A SQUID is made of a superconducting coil with the Josephson junctions in it. It 

gives rise to an output voltage signal that is a periodic function of the flux threading the 

coil as described above. The minimum flux variation it can measure is of the order of
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fractions (~ 10"®) of the flux quantum Oo(= h!2e = 2.07 x 10"'® Wb). There are two 

different types of SQUID: one is a dc SQUID that contains two Josephson junctions as 

described above and depends on the dc interference; the other is an rf SQUID that 

contains only one junction. [95] In our experiment, we used two dc SQUIDs that were 

made by Quantum Design. The SQUID probes were attached to the liquid helium dewar 

inner wall, each inductively connected to a TiNb coil at one end, and to a preamplifier on 

the top of the detector at the other end. The signals from the preamplifiers were sent to 

two SQUID controllers external to the detector and to the DAQ (Data Acquisition 

System). The SQUID electronics is shown in Figure 5.5.
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bias current DC SQUID
L3

/  L2

signal monopole
signal

SQUID ring
feedback current

siq>erconducting shield

SQUID
controller inside: cryogenics

filter 2filter 1 outside: 300 K

Figure 5.5 The flux passed through the superconducting coil is converted 

into a current change that induces a flux change in the DC SQUID ring, 

which induces a feedback current and is converted into an amplified 

voltage as an output signal to the DAQ.
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5.4 Cryogenics

In order to create superconductivity, we need to produce low temperature. The 

temperature (» 9 K) required for the SQUIDs and the superconducting coils we choose 

can be produced by liquid helium (4.2 K). But the liquid helium is boiling off all the 

time. Thus, in order to keep the superconductiviQf long enough for us to efficiently 

measure monopole samples, we need to maintain a low helium boil off rate. The helium 

boil off or loss rate is related to the thermal conductivity of the helium dewar and the 

residual gas as well as infrared radiation. We use vacuum pumping and other means to 

reduce conduction and radiation to keep the helium boil off rate as low as possible.

As we have noted, the nitrogen dewar and helium dewar were installed in a large 

cylindrical tank of steel in which a vacuum was prepared between the dewars and the 

walls of the tank. The tank had an inner wall and an outer wall. It was 152 cm long and 

had a radius of 23 cm for the outer wall. The inner warm bore wall was a G-10 tube of

10.5 cm in radius. G-10 is an electrically non-conductive fiber glass reinforced plastic, 

and it was used to reduce thermal noise. We used liquid nitrogen to pre-cool the detector 

(~ 77 K) and provide a radiation shield for the helium. The nitrogen dewar was made of 

aluminum and also concentrically placed between the helium dewar and the outer wall of 

the tank See Figure 5.1.

We used an oil diffusion pump backed by a mechanical pump to pump down the 

vacuum space in the detector from its bottom. An ionization pressure gauge was installed 

at the top of the detector to read the vacuum pressure. We could attain a vacuum » 10~̂  

torr with liquid helium in the internal dewar, which is good enough for the experiment.

Radiation and gas conduction in the vacuum space contribute to the liquid helium 

boil off rate. They were reduced by the installation of superinsulation material in the 

vacuum space. The superinsulation material is a thin (« 0.02 mm) mylar film aluminized
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on both sides, and has a high reflectivity in the infrared region. We wrapped the helium 

dewar with ~ 20 layers of superinsulation and the nitrogen dewar with ~ 30 layers for 

both inner and outer shields. Also we wrapped the G-10 tube with ~ 2 layers of 

superinsulation. To avoid electrical contact between layers, we spaced superinsulation 

with nylon material (Remay) between each layer. The heat loss with the superinsulation 

installed can be estimated based on the empirical curve in Figure 5.6. By multiplying the 

area (« 1.5 m^) of the superinsulation layers and using the conversion between the 

helium level or volume and the helium percentage in the dewar:

30 inches = 100%, 3% = lliter, (5.28)

and the liquid helium heat-volume conversion:

IWatt = 1 liter/hour, (5.29)

the heat loss rate can be converted into helium boil off rate in terms of the loss of 

percentage of the liquid helium in the dewar per hour with respect to the vacuum 

pressure: (see Figure 5.7)

Pi= 0.3%/hour + 9%/hour( ------- ^ ------- ), (5.30)
V 5 X lO^Torr J

where p is the vacuum pressure in the helium dewar. The first term corresponds to 

radiation and the second term corresponds to conduction.
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Figure 5.6 Heat flux vs vacuum: (a) from 80 K to 20 K (to LHe dewar); [96]

(b) from 300 K to 80 K (to LNz dewar) [97] for -  10 layers of superinsulation.

In addition, the conduction down the liquid helium dewar contributed to the helium 

boil off rate. Suppose that the helium dewar has a cross-sectional area A, which is in the 

horizontal plane, and a change in temperature AT when one makes a change in vertical

position Az. The heat loss Q j  is a function of A and temperature gradient
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0 =  - 2 ^ ,  (5.31)

where a is the heat loss coefficient, which is a function of temperature; for stainless 

steel, a has values of 0.3 W/K»m at 4 K, 0.7 W/K«m at 10 K, 5 W/K»m at 40 K, and 8 

W/K*m at 80 K, and can be approximated as a « O.IT. Then,

ê -  ^  « 0 . \ T § A  =  (5.32)

The region above the liquid helium level (z > 0, 77 K> T > 4.2 K) was mainly 

responsible for the heat conduction. Integrating from 0 to z = L, and To (4.2K) to T  (77 

K), we get

where A = 8 x 10^ m^, L is the distance between the liquid helium surface and the top 

of the helium dewar. L = 7.5 + </ in inches, where d is the distance between the helium 

level and the highest helium level where helium could be filled (117%), and 7.5 in is the 

distance between the highest helium level and the top of the helium dewar. Using the 

conversions above, we convert heat loss to 11K into helium loss or boil off rate as a 

function of the helium percentage (LHe refers to the % fill as defined above)

7.5 + 0.30(fl7 -  LHe)

This is the loss due to conduction.

Resistance heating (up to 75 mW) in the “normal” part of the liquid helium monitor 

(a 60-inch long conductor folded in half) immersed in helium, when it was turned on.
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also caused a significant boil off rate; we turned it off when measuring samples. Thus, 

the total helium boil off rate at p = 1.0 x 1Q~̂  torr, the pressure we used for the 

measurement, will be

Pr= P \ir  0.5) + /» 2  . (5.35)

Pr, Pi, and Pz are plotted in Figure 5.7. We observed ~ 1.7%/hour under steady 

continuous operation with a 20% fill, which agrees with the P t  curve.
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Figure 5.7 (a) The liquid helium boil off rate dPildt caused by the 

conduction in the dewar wall and the total liquid helium boil off rate 

dPIdt vs helium level; (b) the liquid helium boil off rate dPJdt caused 

by the radiation and conduction of the residual gas in the vacuum space 

vs vacuum pressure.
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There are three steps to cool down the system. First, we establish a vacuum by 

running the mechanical and diffusion pumps to pump down to ^  10^ torr. Secondly, we 

transfer liquid nitrogen to cool the detector down to ~ 77°. This will take about one 

week. Before we transferred liquid nitrogen into the nitrogen dewar, however, we had to 

fill the liquid helium dewar with helium gas to keep out air and water from the helium 

dewar and the He transfer line. If we did not do this, the moisture might ice up and block 

the transfer line. We needed to perform a helium transfer once daily to operate 

continuously for an extended time. The nitrogen transfer (about once daily) was 

controlled automatically by sensors and a controller. A computer was used to monitor 

nitrogen filling. The time interval between nitrogen fills was about 20 hours without 

liquid helium inside the helium dewar, and about 25 hours with liquid helium inside the 

helium dewar.

The last step is to transfer liquid helium to prepare for the operation of the SQUIDs 

and the superconducting coils. The liquid helium transferring with the SQUIDs off was 

done manually. To conserve expensive liquid helium, the helium transfer rate is 

important. If the rate is too high, helium is evaporated inefficiently by not cooling the 

detector and this valuable conunodity is wasted. We adjusted the rate by keeping -  2 lb 

of overpressure in the LHe supply dewar. It took about 40 minutes to complete liquid 

helium transfer. Eight carbon resistors were installed in the helium dewar at different 

heights to measure the temperatures at the corresponding positions. We transferred about 

35 -  40 liters of liquid helium (the helium controller read about 24 -  30% of the helium 

dewar, 3% »  1 liter) each time, and waited for about two hours for stabilizaction of the 

*SQUID outputs until the helium level then dropped close to where the superconducting 

coils (~ 16%) were located. Also, the helium boil off rate dropped to about 2% per hour, 

which was close to the calculated rate. That amount of helium could last, at that a boil 

off rate, for about 18 hours during which we could measure about 22 samples plus 8 runs 

on the one chosen background sample. With liquid nitrogen filling into the nitrogen
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dewar, the vacuum would be improved because of cryo-pumping (absorption of gas by 

the cold porous surface [26]). And with liquid helium filling the helium dewar, the 

vacuum could reach < 10~̂  for the same reason, at a temperature of 4.2 K. The detector 

now is ready to operate the superconducting coils and the SQUIDs.

5.5 Noise

Noise is always a problem in detecting monopoles. We had to deal with three different 

types of noise: thermal noise, mechanical noise, and electronic noise.

Thermal Noise

Thermal noise is generated by Brownian motion of electrons in a resistor or other electric 

circuit. It exists wherever the temperature is greater than 0 K. The intrinsic noise due to a 

SQUID has been estimated to be of the order of 10~*d)o/VHz (~ 10"" G«cm^/^Hz ) and 

can be ignored. [98] But the liquid helium dewar was made of stainless steel and its inner 

wall was inside the coils. We know that stainless steel is electrically conductive and, 

thus, a source of thermal noise. Another steel wall at liquid nitrogen temperature to 

enclose the inner wall of the helium dewar was also placed concentrically inside the 

detection coils. So we should study the thermal noise in the stainless dewar and this steel 

wall and see how much the thermal noise influenced our measurement.

In general, in any resistor, the random Brownian motion causes a small fluctuating 

voltage across the resistor. The average voltage is zero, but the mean square voltage is 

not zero. The mean square voltage developed by a resistor in any frequency interval df\s 

given by [99]

d{V^) = AkTRdf, (5.36)

where k is the Boltzmann constant, T  the temperature, R the resistance. Then
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d{t^) = (5.37)

This fluctuating current gives rise to a fluctuating magnetic field set up in a circuit of 

inductance of L. Since ^  = BS = LI, we get

d{B^) = (5.38)

Here S is the area of the horizontal cross section of the dewar, and L is the inductance of 

the dewar. If we consider the dewar as a one turn solenoid, we have

L = i l Æ ,  S = 7 tr^ ,N = l,a n d R  = p - ^  = (5.39)

where / is the length of the dewar, r  the radius of the dewar, p the resistivity, t the 

thickness, c the perimeter, and Sc the area of the vertical section of the metal portion of 

the dewar. Thus,

d(g:) = 33^ <f/inTesla^ • Hz. (5.40)

We set df = 1 Hz, T s  ID K (an approximation, higher than the He temperature but 

lower than the Nz temperature), and p  = 5.0 x 10“^/Q • m. For the helium dewar,

/ = 1.397 m, f = 0.0006 m, r = 0.0855 m. Thus we obtain the field fluctuation caused by 

the helium dewar

(5.41)

and the flux fluctuation or thermal noise
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AO, = (</<fl2)52)''2 = ( 1 .4  X 10-30 x( ; rx  0.0%55^f)

= 2.7 X lO~̂ '’Tesla •m} • ^Hz = 2.7 x I0-OGa«55 • cm  ̂• ^Hz
(5.42)

For the steel wall between the G-10 and the helium dewar at the liquid nitrogen 

temperature (77 K), / = 1.22 m, r = 0.0006 m, r = 0.0635 m. Thus the field fluctuation 

caused by the steel wall is

J /0 2 V = 32/r X lO '^tTf 32/r x 10 '^ x 1.38 x 10~33 x 77 x 0.0006 
'   ̂ prl  ̂ 5 X 10-’ X 0.0635 x 1.22

= 16.55 X 10-30 Tesla^ • H z,
(5.43)

and the flux fluctuation or thermal noise is

\  1/2AO2 = (d{B^)S^Ÿ'^ = (  16.55 X 10-30 x ( ; rx  0.06353)’ )

= 5.15 X 10"*’ Tesla • m  ̂• ^Hz = 5.2 x 10"’ Gauss • cm^ • ^Hz ,
(5.44)

So the total flux fluctuation per Hz is

Ad>r = ^A4>3 + AO? = 5.8 x lO"’ Gauss • cm^. (5.45)

Compared with the flux of one monopole, 4»̂  = 4.14 x lO-’Gauss'cm^, the thermal 

noise A $r should be quite negligible.

Mechanical Noise

There were two sources of mechanical noise that affected signals: internal liquid helium 

boiling and external vibration caused by the environment When the helium dewar is
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filled with liquid helium, the helium is boiling and the helium bubbles hit the coils and 

make the coils move slightly. This causes a change of flux, or noise. Therefore, the liquid 

helium level inside the dewar is related to this type of noise which affected the SQUID 

signals. In the beginning, we tried to fill as much helium as we could, e.g., 80% of the 

dewar (32 liters), to keep low temperature for a long time. However, the more helium 

transferred, the longer the helium boiling noise lasted. This type of noise caused a large 

fluctuation of signals that made data taking impossible. We finally found that when the 

helium level fell below the detection coils, the SQUIDs abruptly became very stable. 

(Jeon also observed this phenomena. [26]) Presumably, this was because the helium 

bubbles did not interact directly with the coils at that position. We took data when the 

liquid helium fell below that level.

Our apparatus was set up in a building with a high ceiling (^ 15 m), which is near an 

airport. To reduce the vibrations caused by the environment including the ground and 

airplanes, the detector was suspended from a large aluminum frame by 12 aluminum 

rods each bolted to the frame via a vibration damper, (see Figure 5.8) The aluminum 

frame was anchored on one wall of the building. The vibration of the wall would 

propagate to the frame. Also the vibration coming from the ground, which was partly 

caused by airplanes landing and taking off, would cause vibration of the frame. Four of 

the supports could be adjusted along the vertical direction, while the other eight supports 

could be adjusted along horizontal directions. There were also 12 dampers filled with air 

at a chosen pressure (vertical pressure is 38 lb, horizontal pressure is 33 lb) to further 

reduce vibration. We used an accelerometer to measure the vibration of the detector and 

recorded it with the Labview program (by National Instruments). The typical vibration 

(as a velocity) was around 10 — 15 mV (peak-to-peak, -  10~̂  cm/second) as measured 

by the accelerometer, which turns out to be good enough for data collection. Therefore, 

the mechanical noise in our experiment is sufficiently under control.
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Figure 5.8 The monopole detector suspended on the aluminum 

frame. The stepper motor is anchored on the wall of the building.

Electronic Noise

We have observed that the SQUIDs were very sensitive to electronic noise that caused 

the output signals to jump drastically on the computer screen. Since we had to run 20 

up-and-down cycles for each sample to obtain statistically satisfactory results and we had 

over 1000 samples (about 222 aluminum samples and 800 lead samples) to measure 

continuously over a period of time (e.g., one month), we must reduce the electronic noise 

effectively to keep the SQUIDs stable for a sufficient length of time.

However, controlling the electronic noise was very difficult as it was hard to identify
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the sources. In principle, any electronic devices and elements cause electronic noise. We 

tested all the devices we used, i.e., vacuum pump station, printer, computers, various 

electronic meters, resistors inside the dewars, refrigerator, fans, etc.. Also we checked 

environmental factors such as weather and airplanes, as well as some devices other 

people used nearby, such as lasers, welding equipment, and public clocks. We have 

observed that SQUIDs did not operate well during thunderstorms and welding. The 

liquid helium level detector, liquid nitrogen filling controller, and the resistors inside the 

helium dewar, also caused the SQUIDs’ signal to “jump” (i.e., reset the SQUID 

controllers at random times). It was reasonably easy to find that a periodic (1 minute) 

noise of 20 mV magnitude for 4 seconds which bothered us was caused by an IBM clock 

outside of the laboratory. We modified the Labview DAQ program and only took data 

when this was not present. Also, it took some time to find that the ground current loops 

and associated noise from electronic connection between the devices. The counter 

weights used to balance the sample (when the sample was moved up and down) had an 

interaction with the SQUID preamplifiers on the top of the tank and induced electronic 

noise.

In dealing with those electronic noises, we cut off ground current loops, set an 

electronic shield between the weights and the SQUID preamplifiers, and turned off the 

devices that affected the SQUIDs when we took data. Also, we avoided operating the 

apparatus during thunderstorms and welding operation. As a result, the electronic noise 

has been significantly reduced and operation became possible.

5.6 Stabilizing, Reducing, and Homogenizing the Ambient Magnetic Field

The ambient magnetic field in the detector comes mainly from the earth’s field and 

also comes from the electronic devices and the environment. The earth has a magnetic 

field of about -470 mG, which at our location points down at an angle of -  75° with 

respect to the vertical direction. The vacuum tank was made of mild steel and can reduce
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the earth’s field inside the tank. A Mu metal shield attached to the inside of the tank also 

helped reduce the earth’s field. However, the distribution of the ambient field inside the 

detector was not uniform. The variation of the field caused by inhomogeneous 

ferromagnetic materials and noises could affect the monopole signature. The Mu shield 

actually helped homogenize the field distribution. Also we installed two degaussing 

coils, each consisting of 280 turns of copper wire on the extension of the vacuum tank, to 

reduce and homogenize its inhomogeneous magnetization with an AC current (/ ^  2.3 

A, 60 Hz). But there was still a significant gradient in the magnetic field strength. 

Especially, after liquid helium was filled and the lead shield became superconducting, 

magnetic flux was trapped in the warm bore and changed somewhat the gradient of the 

field distribution. Since it is impossible to completely cancel the ambient field, the best 

thing we could do was to make the ambient field as small and flat as possible in the 

region close to the detection coils. In a homogenous ambient field the monopole 

signature would not be affected.

We used a modified Helmholtz coil arrangement in addition to the Mu shield and 

the degaussing coils to reduce and homogenize the ambient field. The Helmholtz coils 

consist of two pairs of two coils. Each coil consists 40 turns of copper wire. The radius 

of the coils is 1.0 meter. The four coils were installed from at the bottom of the tank to 

the top at equal distance, surrounding the tank along the center axis. We input different 

currents for each pair. For the bottom pair, we used large current h  (0.70A) to reduce the 

opposing earth’s field; a smaller current h  (-0.3 A) was used for the top pair to balance 

the bottom coils. Figure 5.9 shows the Helmholtz coils set-up. We did not obtain a 

perfectly uniform field along the warm bore, but the field distribution we used in Figure 

S. 10 was sufficiently good for us to take data.
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Figure 5.9 The “Helmholtz” coils and degauss coils. The bottom Helmholtz 

coil pair produces a field to reduce the earth’s field while the top one 

produces a field to balance the bottom’s field. Each coil has different 

current, which is different from the original Helmholtz coil setting with 

two currents of equal magnitude but opposite directions.[lOO]
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Figure S. 10 Magnetic field distributions, as indicated.

The ambient magnetic field may fluctuate due to the changes in the environment. A 

superconducting shield was installed in the liquid helium dewar to reduce such 

fluctuation. The superconducting shield we used is a lead sheet. The thickness of the 

sheet is 0.2 mm and the superconducting transition temperature is 7.32 K. In most cases, 

significant fluctuations were not observed during the operation of SQUIDs. We only 

observed that welding, airplane taking off and landing, and thunderstorms had 

interference with the SQUIDs and maybe the field also, so we avoided operation in those 

cases.

5.7 Calibration of the Detector and Monopole Signal

The monopole signal is read by the SQUIDs in terms of a voltage that is converted from 

the current induced by the flux linking the superconducting loop. The flux linking the
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superconducting loop is converted into the flux going through the paired Josephson 

junction loop, which induces a readable voltage change as the output from the SQUID, 

[see Figure 5.5] The relationship between the input flux and the output voltage is 

determined by the transfer function. The transfer function is defined by

r f = ^ ( m V / 4 . o ) . ( ^ ) ( ^ ) ( ^ ) ,  (5.56)

where <I>o = = 2.07 x 10“̂ G«cm^ (I superconducting fluxoid unit), AOj the flux

change in the SQUID, AO the flux change in the detection coil. A/ the induced current 

change in the SQUID, and ( " ^ ^ ) *  ( ' ^ ’)  conversion factors that

depend on the features of the SQUID and the setting of the apparatus. For the SQUIDs 

we used, (  “  4.60 Oq//iA, (calibration of SQUID sensor as supplied by Quantum

Design), and )  was measured (by a test pulse injection procedure) to be 0.60

V/Oo. We proceed to calculate •

In our apparatus, the superconducting coil of radius a was surrounded by a 

superconducting cylinder of radius b. According to K. Milton [92], if the wall of the

cylinder is far away from the coil, or c  1, we have the flux for a single

monopole passing through the coil (in Gaussian units)

O = = 200. (5.57)

Correcting for , we have

(5.58)
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In our case, a = 3.88 in, b = 5.8 in, which give the factor ^  j  = 0.55, thus

4» -  0.55$. (5.59)

Since the flux in a superconducting coil is conserved as a result of the Meisner effect, we 

have

$  + /(Li + £.2 + L3 ) = constant = n$o (5.60)

where $  is the total flux arising from the monopoles passing through the coil, I  the 

induced current in the coil, L\, Lz, and £.3 the self inductances of the detection coil, the 

interconnecting lead, and the input coil coupled to the SQUID ring, respectively (see 

Figure 5.5). For a one turn coil, the inductance Li can be obtained by [101]

Li = 0 .004;ra(ln-^  -  1.75). (5.61)

Here a is the radius of the coil, p the wire radius, both in cm; L\ is in pH. In our case, 

a = 3.88 in = 9.855 cm, and p = 0.008 in = 0.020 cm, which give L\ = 0.807 pH. 

Considering that the interconnecting lead is a short twisted pair, we ignore £.2 The 

SQUID specification sheet gives £,3  = 1.66 pH. From above formula, we have

^ = z Æ ï 7-

Considering the cylinder shield, it becomes

A /  _ 0.55 X A$ 0.55 X A$ /c
L1 +L 2 + L3 0.81+0+1.66  ̂  ̂ ^

Therefore, if A$ = l$o, A£ = 0.224 $o/pH= 0.46 x 10"’ A, or
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= 0.46 X 10-» A/<Do. (5.64)

Thus, we obtain the transfer function for the SQUID

T F = -^ im V IF o )  = ( ^ ) ( . ^ ) ( ^ )

= 0.60(V/Oo) X 4.6(<Do/M) * 0.46 x 10-»(^<Do)
= I.27mV/<I>o = 2.5m V/<D,. (5.65)

This is just the "a priori”expected response.

To determine the actual response, we used a pseudopole to calibrate our detector. 

The pseudopole was a solenoid as shown in Figure 5.11.
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Flux

Figure 5.11 One end of the pseudopole mimics a monopole of a magnitude 

corresponding to the current I.

91



The calibration included two steps. First, we put one end of the pseudopole in the 

superconducting coil and turned on and off the current in the pseudopole, which 

simulated the presence of monopoles. We tried several different values of the current in 

the pseudopole, which corresponded to different values of monopole charge or different 

number of of monopoles . The relation between the current and the effective magnetic 

charge was linear, which is shown in Figure S. 12.

400

300

200

100

OH

Number olMcmooole#

Figure 5.12 Relative calibration via Fourier transforms using on/off 

switching of pseudopole. The response (proportional to the output 

voltage) is proportional to the number of monopoles.

Then, we read the output values of voltage by the Lab view program and divided the 

outputs by the corresponding number of monopoles, thus obtained the actual measured 

transfer function: 2.4 mV/4>;. The estimated value above is very close to the actual 

value. Also we moved the pseudopole up and down to simulate a monopole tranversing 

the coil, then we obtained a step curve. Figure 5.13 shows a pseudopole-simulated
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monopole curve ( -  60 monopoles) and a dipole curve.

1.0
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OX

20-10-20-30
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Figure 5.13 A monopole curve and a dipole curve obtained from the 

pseudopole. The values from calculation agree with the measurement.

Second, we bound the end of pseudopole to an A1 sample, and set a current to give a 

flux corresponding to a given number of monopoles. Then we let it transverse up and 

down through the superconducting coils. The signal simulated monopoles in the sample. 

In this way we see what a monopole signal really would look like. The signal of the 

pseudopole (~ 2.3 poles) in a sample containing dipoles is shown in Figure 5.14, and, 

again, gives

5.5 mV/2.3 poles = 2.4 mV/pole. (5.66)
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Rgure 5.14 Calibrated monopole signal gives (5.66)
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Chapter 6 

Analysis and Results

6.1 The Strategy of Analysis

As stated in the introduction, the search for monopoles has one main objective: to set 

new limits on the production cross section and mass of monopoles. Finding monopoles 

means seeing the “step” signals that match the monopole signatures (e.g., 2.4 mV step 

signal from the SQUID for an n = 1 monopole). We shall find a limit on the number of 

possible events based on a statistical analysis of the steps. This number N can be used to 

set a limit on the cross section a  and accepted cross section a a by

<T < and Oa < = ffA (6.1)

where e is the efficiency of using samples, A the acceptance for detection of monopoles 

in samples, and L the luminosity of proton-antiproton colliding beams in the Tevatron. 

Then, we use the Drell-Yan cross section curve, as a function of the monopole mass, to 

set the limit on monopole masses.

The probability for the production of monopoles is modelled by the monopole 

Drell-Yan cross section as discussed in Chapter 3. However, the probability for those 

monopoles to be detected has been significantly reduced by the energy loss and the 

angular cuts. Thus, only those that have high enough energies and move within the small 

solid angles exposed by the sample materials can be measured, which correspond to the 

cross section accepted, The ratio oaIo is defined as acceptance A.

95



We have written a Monte Carlo program (see Appendix) to calculate the Drell-Yan 

cross section a  and cross section accepted a using the energy loss of monopoles in the 

CDF and D0 detectors, to get the acceptance A. We also use this program to select CDF 

samples as it tells which part of the materials has a significant acceptance for monopoles 

and which does not, due to the 1.4 T solenoidal magnetic field. It turns out that not all 

the CDF Pb samples have a significant acceptance. The ratio of the number of samples 

used to all (used plus unused) is the efficiency e.

The total luminosity L delivered by the Tevatron over the years of operation covered 

was determined by the CDF and D0collaborations to be about 180 ± S% pb"'. [102]

6.2 Data Acquisition and Analysis

Monopole sample materials including AI cylinders. Be pipe, and Pb layers were cut into 

small pieces, each A1 sample having a size less than 7.5 cm in diameter by 7.5 cm in 

length. A beryllium sample has a length of 7.6 cm, a diameter of 5.0 cm and a wall 

thickness of 0.5 cm. We put a sample in a carrier made of copper wires that was proven 

to be sufficiently unmagnetized and held by a nylon string connected to a stepper motor. 

The sample was moved up and down by the stepper motor through the superconducting 

loops for a meter long distance as one cycle. Each cycle took about one minute. We took 

20 cycles for one sample. Also we measured the background (an empty carrier or a 

specified ordinary sample such as an A1 sample) after every two or three samples.

The magnetic signals from the SQUIDs were the amplified analog voltages. They 

went into the SQUID controllers, passed through a low pass filter, and were displayed on 

a oscilloscope. Meanwhile, the signals coming out of the controllers were digitized by an 

Analog/Digital converter on a board in a Mac computer. The digitized signals (voltages) 

were simultaneously recorded and plotted out by the Labview program on the computer. 

The Labview (by National Instruments) data acquisition (DAQ) program had a data
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taking rate of 1000 Hz. The 1000 numbers for one second were grouped by 100 and then 

averaged in each group. Thus, the program recorded 10 numbers from averaging for the 

signal per second. However, because the Labview program did not take exact 1000 

numbers per second and less than 60 seconds were used for each minute, only about 

9,000 numbers for one sample per channel were recorded.

The Labview DAQ bad six channels receiving data for two SQUIDs (DCl and 

DC2), vertical position of the sample read by an optical encoder, vibration noise read by 

an accelerometer, the time, and the number of increments taken by the step motor. These 

were displayed in four graphical windows on the computer screen so that we could 

monitor the data taking. The four windows are shown in Figure 6.1.
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Figure 6.1 The Labview windows show the outputs: SQUIDs signal, 

position of a sample, and vibration noise.

The data analysis includes several steps. Since we had 20 cycles of traces for one 

sample and these traces were not at the same level because of the SQUID drift, the traces 

formed a band of width about S to SO mV wide. The drift caused a larger error, but being 

linear caused no significant bias. Thus, we can compress the band by subtracting a value 

(that at one given position in one of the “flat end regions”) from all traces. Then, the
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errors from the random drift are canceled out. This is the first step. Second, we edit the 

compressed curves by throwing away those spurious numbers that were created by 

misbehaviors of the SQUIDs. Third, we group the 8,000 numbers into 92 position bins 

and take average of each group. Thus, we obtain 92 numbers for each sample, which 

forms the SQUID response vs vertical position curve. We perform the same procedure to 

process the data from both DCl and DC2. Then, we take average between the DCl and 

DC2 curves for each sample and subtract the background curve from the sample curve. 

Now we have obtained the processed signal curve for a sample. At last, we take average 

over ten numbers on the flat (not exactly flat in many cases) parts corresponding to the 

ends of two tails of the processed curve. There are 60 points between the two ten-points, 

which usually include useless signals such as magnetic dipoles in the sample and are 

excluded from the analysis. The first and the last few points (about 6 points) are also 

excluded as they are affected by the starting and stopping vibrations of the nylon string. 

Then we do a subtraction between the two endpoint values obtained from averaging. The 

value obtained from the subtraction is just the step that describes the magnetic signal in 

the sample. The procedure is shown in Figure 6.2.
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(e) Start from the 10th point in the left tail and take average over the 

following 10 points, then skip 60 points from some useless signals such 

as dipoles, and take average over the following 10 points in the right 

tail. The difference between the two values from averaging is the “step” 

for this sample.

Figure 6.2 The steps of data analysis.

The errors are also obtained from the analysis. There are two types of error: 

statistical error dS and systematic error sS. The stadsdcal error is caused by signal 

drifting and all kinds of noise. The systematic error is caused by big dipoles in the 

sample, and the background change due to the changes in temperature and time. The 

systematic error usually changes the shape of the curve and make it difficult to determine
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the true size of the steps. Now we will calculate those errors.

We know that compressing the 20 traces of data and averaging will produce errors at 

each point X, which can be described by the standard deviation. <ri(x) and a six) are the 

standard deviations corresponding to DCl and DC2. Then we do weighted average over 

the two curves to get an averaged signal curve S ‘̂ (x) and error <r]^(x) for the averaged 

curve. [103] We define a quantity d by

and the weighted average is

5i(x) Siix)

S"-M  -  (6.3)

and the weighted averaged error is

alHx) = l /V dW . (6.4)

The value of the step is the difference between the two tails. We take 10 points close to 

each end, and take average over the 10 points, then we obtain the averaged values for 

two tails:

N  N +K

Sn  =  ,S n  =  . (6.5)

where N = 10, and K{= 60) is the distance between two tails. Thus the step is
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s  = S t2 — S t\- (6.6)

Also we get errors for two tails:

J z  o!=(0 I z  ®“(|)
.12 _  I   „12 _  I _______

The statistical error for the step is given by

dS = J ia liV  + (trll)^ • (6.8)

Similarly, we have

£  (5'^(i))-
jÿ (6.9)

and

jS2 =

V+/C

S  (5 '"(0)'
 s h -  (6.10)

Thus the systematic error is defined by

which gives a measure of the 'flatness" of the steps.

(6.11)
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The data analysis was conducted with the WaveMetrics’s Igor program, and the 

processed signal is shown in Figure 6.3.
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Figure 6.3 The results are listed in the appended table. The step (ThisStep) 

is 0.31 mV. The statistical error dS is calculated based on the error bars in 

the curve, which is small (0.12 mV) compared with the monopole signal,

2.4 mV. The systematical error sS is obtained based on the standard 

deviation of two pieces of the averaged ten-point line in either tails, which 

is also small (0.06 mV) as the tails are quite flat.

6.3 The D0 Samples and Results

We had some 222 aluminum samples and 6 Be samples. The efficiency e is 0.94. The
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distribution of the steps for A1 samples is plotted out as a histogram in Figure 6.4.
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Figure 6.4 The histogram of D0 A1 samples. The rms is 0.73 mV

The histogram is well described by a Gaussian curve whose standard deviation <Js is 

the root-mean-squared deviation obtained from the data 

<Tj = 0.73 mV, 

and the mean

5 = 0.16 mV.

We know the monopole signals should be at
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5m —

^  ±2.4 mV for n = ±1 ^  
±4,8 mV for n = ±2 
±7.2 mV fern = ±3 
±14.4m Vfern = ± 6  j

(6 . 12)

which are labeled in a subsequent graph.

The histogram shows 8  events are located within the 90% confidence interval of the 

n = ±1 Gauss distribution. We have remeasured all the eight samples and they all fell 

within ±1.47 mV of n = ±0, which implies that they are very unlikely monopole events 

Therefore, the next thing we need to do is to set a limit for the number of possible events 

based on the histogram (ignoring remeasurements) so that we can set a limit on the cross 

section for monopole production. If there were monopole events occurring, we assume 

they would have had a Gaussian distribution centered on the monopole signal, ±2.4 mV, 

with the same standard deviation as that of the samples. The distributions of possible 

monopoles and samples are shown in Figure 6.5. Then, we take a one-sided 90% 

confidence limit for monopole charge of /i = -1 by cutting the Gaussian curve of events 

on the right side at the position that is 1.28 Oj away from n = -1, which is -1.47 mV. 

Similarly, a one-sided 90% confidence limit for n = 1 can be obtained by cutting the 

Gauss curve for /t = 1 at 1.47 mV. We find eight samples in total in the two 90% 

confidence intervals, where 10.4 are expected from the Gaussian distribution of samples. 

According to Feldman and Cousins [104], the 90% confidence upper limit for eight 

events observed when ten are expected is 4.2 signal events. Therefore,

N < 4.2 for n = ±1. (6.13)

No samples were found within 1.28 (T5 of |n| > 2  positions, and the closest being
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3.08<T5 away from n = -2 . The 90% confidence limit for zero events observed and zero 

expected is 2.4 signal events. Therefore,

^ < 2 .4  for Ini > 2 . (6.14)

+2n - 2
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 Monopole signal Lines
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^  -A .9 "147 1.47
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Figure 6.5 The histogram of steps for A1 samples is described by a Gaussian 

curve whose standard deviation is the rms of the steps. The limit on the number 

of events is based on the cuts at ±1.47 for n = ±I on the two Gaussian curves 

of events with the same standard deviation of samples.

There are two approaches to calculate acceptance. The first one is an approximation 

assuming factorization into an angular acceptance An and a mass acceptance A„, in 

which the total acceptance A is calculated by the product of An and Am, and gives a
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qualitative insight to the process. This method was used in our paper published in 

Physical Review Letters [31, later we call this paper PRL paper]. An can be obtained 

from the geometric configuration of the aluminum extension cylinder of the D0 detector, 

which gives about 0.12. In this case, the angular distribution is assumed to be isotropic. 

The mass acceptance is a function of ranging out of monopoles due to the energy loss in 

the detector and the distribution in energy of the produced monopoles based on the

Drell-Yan model. We estimated the lowest energy El and highest energy E», with which 

monopoles were accepted in the samples based on the energy loss calculation. Then we

cut the curve at E l and Ef f .  The ratio of the cut area to that of the total area under am

the curve gives the mass acceptance. This is shown in Figure 6.6. In this way we get

r o . 2 9 f o r W = . \  
0.015 for M = 2 J

Thus, we can calculate the cross section limits using the formula in 6.1. Furthermore, we 

can find the mass limit using the Drell-Yan cross section as a function of monopole mass 

a(m).
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Figure 6.6 Cut at E l and E h  to get mass acceptance. T is the 

kinetic energy of monopoles and the mass m = 325 GeV.

For |n| > 3, the acceptance of the AI sample is very small, but somewhat better for 

Be. We have six Be samples taken from the beryllium beam pipe. The solid angle 

acceptance is about 0.95, and the mass acceptance is 0.0065 for |n| = 3, and 0.13 for 

|n| = 6. As the Drell-Yan cross section becomes very large with increasing n, we need to 

think about whether this cross section for large n, say, n = 3,6, is consistent with the 

uni tari ty limit on the corresponding cross section. Based on Milton and Gamberg’s 

estimation, [105] the required unitarity of a partial wavefunction [106] would be violated 

for n > 3 and angular momentum 7 ~ 1. Therefore, we use the unitarity limit to the cross 

section for n = 3,6, which is equivalent to the Drell-Yan cross section for n = 3, and 

find mass limits based on the unitarity curve. The results obtained in this approach are 

listed in Table 6.1.[31]
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Table 6.1 PRL limits on cross sections and masses of monopoles from D0 

samples at 90% CL (e is included in Ao with isotropic angular distribution)

n |n| = I l«l = 2 |n| = 3 hi = 6
Sample A1 A1 Be Be
An 0.12 0.12 0.95 0.95
Am 0.29 0.015 0.0065 0.13
N <4.2 < 2.4 <2 .4 < 2.4
<T(pb) <0.70 <7.8 <2.3 <0.11
M(GeV) > 295 > 260 > 325 >420

However, the acceptance obtained this way is not really correct since different 

monopoles have different in different materials. In addition, the Lorentz

transformation from qq center-of-mass frame to the laboratory frame mixes the energies 

and angles of monopoles (the “factorizing” into A^and Am is an approximation). A better 

approach is to Monte Carlo simulate and track every produced monopole and determine 

which are accepted and which are not. In this approach, we do not separate A into Aq 

and Am- We even do not need to know A. Instead, we just calculate cross section 

accepted a Aim) as a function of monopole mass. Then we take the value of a a, which is 

equal to , and use the a  Aim) curve to find the monopole mass m corresponding to

a A. m obtained this way is just the lower mass limit of monopole. Furthermore, we find 

the upper limit on the cross section, which corresponds to m on the Drell-Yan total cross 

section curve aim). The corresponding acceptance can be obtained by simply dividing 

cr(m) by a^Cm). This procedure is shown in Figure 6.7.

Now we calculate a  a corresponding to the data:

Oa < - ^  = 0 94x 172 "  ^  (6 16)
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-  Ô 94x  172 = pb, forn = 2, (6.17)

Oa < YQ^^72 0.014 pb, forn = 3,6. (6.18)

In the a  Aim) curve, a  a < 0.026 pb corresponds to 2m > 516 GeV, and thus a  < 0.95 pb 

from the o(m) curve, for n = I . Similarly, we obtain the new limits for cross section and 

mass for n = 2,3,6, which are listed in Table 6.2 and also shown in Figure 6.7.

Cross Section Accepted: 
...... Al, n s  1
- - - Al, n s  2 
 Be, n = 3
— * Be, n s  6

Cross Section:
n = 2

—— Drell-Yan

n = 6

Unitarity Limit
0.1

DYn

0.01

500350
Monopole Mass (GeV)

400 450250 300

Figure 6.7 Find the limit for m from rr^fm), then find the limit for a  

from <r(m).
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Table 6.2 Revised limits on cross sections and masses of monopoles from 

D0 samples at 90% CL with Monte Carlo Calculation

n |/i| = 1 H  = 2 |n| = 3 |n| = 6
Sample A1 A1 Be Be
€ 0.94 0.94 1.0 1.0
A 0.025 0.007 0.0035 0.042
iV <4.2 < 2.4 <2.4 <2.4
<T(pb) < 1.02 < 2.0 < 3.95 <0.33
Af(GeV) > 256 > 280 > 284 > 368

6.4 CDF Samples and Results

We took 12 square ( 2 x 2  meter^) layers of lead closest to the IR (interaction range) point 

from the CDF detector, of which six were located on the East side and the other six on 

the West side. Each layer had an octagonal hole at the center, where the Be beam pipe 

passed through. Each layer was cut into about 68 small rectangular pieces, and each 

piece was rolled into a cylinder of about 7.5 cm in height and 7.5 cm in diameter. We 

had about 816 Pb sample cylinders in total.

Out of the 816 samples, only 664 samples have been successfully measured. The 

rest of them were immeasurable due to huge dipoles caused by the (ferromagnetic) red 

paint on these samples (first layer). The histogram of the step signals obtained from 

measurements are shown in Figure 6.8. The long tails of the distribution indicate that 

some of the measurements must have big systematic errors so they should be excluded. 

The error distributions are plotted in Figure 6.9. In order to reduce the rms of the 

samples, we made cuts on errors

sS < 0.3, and dS < 0.45, (6.19)
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we have obtained a new histogram with a reduced rms, which is shown in Figure 6.10.
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Figure 6.8 The histogram of ail measured lead samples. The rms is 1.01 mV.
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Figure 6.9 (a) The statistical error distribution, (b) The systematic 

error distribution.
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Figure 6.10 The rms of the histogram is reduced from 1.01 mV to 0.88 mV 

after error cuts.

The Monte Carlo calculation has shown that the magnetic field produced by the 

solenoid magnet has had a significant effect on monopole tracking and energy loss. The 

effect should be considered when we select samples and calculate acceptance. In the 

absence of the field, monopoles would move along straight trajectories and be accepted 

in the entire area of a lead sample layer covered by the angle OÇi" < 0 < 10°). Thus, all 

samples of the layer should be selected. In the presence of the field, however, the 

longitudinal momentum of monopoles will be changed by the field (acceleration along 

/against the field direction). As a result, the direction of motion and the energy will be 

changed during the motion. Thus, the monopoles with positive magnetic charge moving 

along the direction of the field will track along a curve bent towards the center of the 

layer while those moving against the field will move away ftom the center.
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Symmetrically, the monopoles with negative magnetic charge moving against the 

direction of the field will track along a curve bent towards the center of the layer while 

those moving along the field will move away from the center. Therefore, the monopoles 

reaching the lead layers were not uniformly distributed, only a small ring around the 

center (3° < 0 < 7.5°) accepted monopoles, where 52 samples were expected in that 

region. In this case, we need at most 52 samples out of 68 for each layer. This is shown 

in Figure 6.12.
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Figure 6.11 A lead sample layer is cut into 68 samples. The Monte Carlo 

simulation shows that only the samples (52 in one layer) subtending an 

angle 3° < d < 7.5° have significant acceptance and should be considered. 

The cross hatched samples and others with large dS and sS errors are 

excluded from the analysis.
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The magnetic field also has affected the acceptance for different layers. In the 

absence of the magnetic field, the monopoles have a somewhat uniform energy 

distribution, so all six layers accept monopoles for n = ±1, as is shown in Figure 6.12.
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Figure 6.12 The ratio of the acceptance for one layer (LI through L6, 

equally separated in the Forward Shower Calorimeter with LI being 

the closest to the IR point) to that for the total six layers for /i = 1 

without magnetic field.

But the magnetic field will change the energy of monopoles. The monopoles of 

charge n(> 0) will gain an energy of about 70n GeV if they are moving along the 

direction of the field, and will lose 70n GeV if they are moving against the direction of 

the field. Symmetrically, the monopoles of charge n(< 0) will gain an energy of about
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70n GeV if they are moving against the direction of the field, and will lose 70» GeV if 

they are moving along the direction of the field. Thus, the monopoles moving out of the 

field do not have a uniform energy distribution and are not accepted by each layer. The 

Monte Carlo simulation has shown that the first three layers have almost no acceptance 

in the presence of the field. We can only use the samples from layers 4.5,6 for n = ±1. 

For n = ±2, layer 2 has about 90% of total acceptance while layer 3 shares about 10%. 

We just use the layer 2 samples for our analysis for » = ±2 case. For n = ±3, only layer 2 

has acceptance. The energy loss (~ 900 GeV lost in the materials before the lead layers) 

is too large for monopoles with charge of 6g (n = 6) to reach the sample layers. Thus, 

the » = ±6 case has been excluded from the CDF analysis. Figure 6.13 shows the 

acceptance for» = ±1,±2,±3.
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Figure 6.13 Acceptance for n = ±1,±2,±3.

There should be 312 samples in total taken from layers 4,5,6, which were expected
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to be used for the n = 1 analysis. However, only 187 measured samples have been 

actually used due to dS and sS error cuts. The efficiency of the samples, e, can be 

obtained by taking the ratio between the sum of the areas cut by 6(3° < 6 < 10°) of all 

used samples and the area of the region covered by 6(3° < 6 < 10°) for each layer and 

averaging over the ratios. In this way, e(n = ±1) of the samples is estimated to be 0.53. 

The steps of those samples form a histogram shown in Figure 6.14.
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Figure 6.14 The histogram of steps of 187 layers 4, 5 ,6  (L4,5,6) 

samples forn = ±1 after error cuts: dS < 0.45 mV and sS < 0.30 mV.

The “rms” deviation (a^) of the 187 samples and the 14 remeasured 

samples are 0.85 mV.

Again, we use a Gaussian distribution, which has the same standard deviation as that 

of the histogram and is centered on zero, to describe the histogram. Then, we take
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another Gaussian distribution centered at ±2.4 mV for n = ±1, which still has the same 

standard deviation as that of the histogram. Now, if we make a 90% confidence level 

cuts at ±1.31 mV, we would have too many events in the tail to get a “good” limit. We 

restrict the “monopole region” to a one-sided 80% confidence interval which cuts at ±1.6 

mV. Now only 14 samples out of that region need to be remeasured. After those 14 

samples were remeasured, they all have fallen within ±1.6 mV of n = 0. For the 

Gaussian distribution centered at n = 0, ±1.6 mV is equal to ±1.88(75, at which two tails 

are cut and only 6% of the area under the Gaussian curve is out in the tails. Thus, the 

expected number of samples in the tails should be 6% x 187 = 11. Using Feldman and 

Cousin’s table, we find the upper limit number for 14 observed while 11 expected is 10.5 

for 90% confidence level and 7.32 for 68% confidence level. Averaging 7.32 and 10.5, 

we take N  = 8.9 as an approximate upper limit number of events for 80% confidence 

level. Thus, the upper limit on the accepted cross section is

which corresponds to the lower mass limit from the (7/%(m) curve in Figure 6.15:

m >  204 GeV. (6.21)

From the Drell-Yan a{m) curve, we obtain the upper limit for cross section

o(m > 204) < 4.8 pb. (6.22)
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Figure 6.15 The accepted cross section and corresponding Drell-Yan 

cross section as a function of monopole mass for CDF samples. The 

results are derived from the cross section curves.

We can improve the cross section limit using the data from the remeasurement. The 

remeasured 14 samples form a small Gaussian distribution with the same standard 

deviation centered at the origin. But nothing appears beyond ±1.6 mV while 6% x 14 

= 0.84 events are expected. Feldman and Cousin’s table gives 1.07 as the 80% 

confidence level upper limit for events. Since possible monopoles in the 14 samples 

occur with only 80% probability, the expected limit N  should be corrected as 

1.07/80% = 1.34. Thus the accepted cross section is
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which corresponds to

m > 260  GeV. (6.24)

Therefore, we obtain an improved limit for cross section from the Drell-Yan curve

aim > 260 GeV) < 0.9 pb. (6.25)

We can also take the average of the original step values and remeasured values for 

the remeasured 14 samples. Then we find three of them fall out of ±1.6 mV: 2.29 mV, 

2.11 mV, and -1.77 mV. Based on Feldman and Cousin’s table, we obtain 5.36 as the 

upper limit on the events for 1 expected and 3 observed. But we still need to divide it by 

80% and get

N  < 5.36/80% = 6.7. (6.26)

Thus,

which implies, from the Drell-Yan curve in Figure 6.15, that

m > 213 GeV and a  < 3.6 pb. (6.28)

This result is better than that from the original data but worse than that from just the 

remeasurement data.
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We have used 90 measured samples {dS < 0.6, sS < 0.4) from layer 2 for n = ±2 

and 95 (dS < 0.8, sS < 0.6) for n = ±3. The efficiencies for those samples are: 

e(fi = ±2) = 0.83, c(n = ±3) = 0.87. The histograms and the Gaussian distributions for 

/I = ±2 and n = ±3 in Figures 6.16 and 6.17 also have the standard deviation of 0.85 mV 

and are centered on zero.

20 -I

L2:
N= 90, sigm*=0.85

 GOSampI##
—  Gaussian Curve for 

90 Samples_______15 -

n = 2n = -2
10 -

5 -

Figure 6.16 The histogram of steps of 90 layer 2 (L2) samples for 

n = ±2 after error cuts: dS < 0.60 mV and sS < 0.4 mV. The “rms" 

deviation (<t,) of the 90 is 0.85 mV.
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Figure 6.17 The histogram of steps of 95 layer 2 (L2) samples for 

n = ±3 after error cuts: dS < 0.60 mV and sS < 0.40 mV. The “rms” 

deviation (a,) of the 95 is 0.85 mV.

The one-sided 90% confidence cuts for n = ±2 is ±3.57 mV, and ±5.9 mV for 

n = ±3. But no events have been found and none expected beyond ±3.57 mV of n = 0. 

Thus, the upper limit on the number of events at 90% confidence level is ^  = 2.44 for 

n = ±2, ±3 from Feldman and Cousin’s table. The accepted cross section for n = ±2 is

and the accepted cross section for n = ±3 is

J L  _  2.44<Ta < cL 0.87 X 180 = 0.0156 pb.

(6.29)

(6.30)
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From the accepted cross section curve in Figure 6.16, we find lower mass limit is

m = 303 GeV, for n = ±2, (6.31)

and obtain from the Drell-Yan curve the upper limit for cross section

aim  = 303 GeV) = 1.03 pb for n = ±2. (6.32)

Similarly, we obtain mass limit from Figure 6.16

m = 343 GeV, for n = ±3 (6.33)

and cross section limit

a(m = 343 GeV) = 0.72 pb for n = ±3. (6.34)

which are obtained from the unitarity curve in Figure 6.16. These results are better than 

those obtained from D0 samples. They are listed in Table 6.3.
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Table 6.3 New limits on cross sections and masses of monopoles from 

CDF Pb samples at 80% CL (n = ±1) and 90% CL (n = ±2, ±3) 

with Monte Carlo Calculation.

n |n| = 1 |n| = 2 W = 3
€ 0.53 0.83 0.87
N < 1.34 < 2.44 <2.44
A 0.015 0.018 0.022
a(pb) <0.89 < 1.03 <0.72
Af(GeV) >260 > 303 >343

6.5 Discussions and Conclusions

The results we have obtained from both D0 and CDF samples are better than those of 

Bertani, the best results of the previous accelerator based monopole searches. The cross 

sections have been improved by a factor of 200, and the mass limit raised by a factor of 

> 2. Also, we are above lunar mass limit. The comparison is shown in Figure 6.18.
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Figure 6.18 A comparison with previous searches: (a) D0 results; 

(b) CDF results.
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Although our results are very good compared to others, they can be improved by 

selecting better samples and using better apparatus. For example, if we use a thick 

aluminum beam pipe (instead of Be) at the interaction point, we can get the maximum 

angular acceptance with large binding energy. Also, if we build a new detector which is 

not magnetized and allows a flatter magnetic field in the warm bore, we can reduce the 

errors of measurement and increase the efficiency of the samples. The limits on cross 

section can be further reduced while the limits on mass can be further increased.

On the other hand, our results like the previous ones are model dependent. We can 

have different results for different models. In absence of a complete quantum theory of 

magnetic monopoles, we have chosen the Drell-Yan process for leptons as the model for 

monopole production. First, the Drell-Yan model describes a simple way for monopoles 

to be produced, e.g., by a single photon process. Second, the inclusion of a factor of in 

the cross section has reduced the effect of the large monopole coupling constant, which 

is a problem in a perturbative quantum field theory of monopoles. Third, the results from 

this model are conservative in that other corrections or models give larger cross section. 

Therefore, the Drell-Yan model with correction appears practical and reasonable.

Nevertheless, we do not want close the door to other models or theories about 

monopoles. Even for the Drell-Yan model, it is clear that we need to consider some other 

cases such as different angular distributions since we know very little about monopoles, 

and the features of monopoles such as spin imply different, as yet undetermined, angular 

distributions. So far we have used the angular distribution in the Monte Carlo calculation 

of

1 + (cosO)^, (6.35)

which corresponds to the coupling spin 1/2 leptons to photons. All Monte Carlo results 

given above are obtained using the (1 + (cos6)^) distribution. Now let us consider
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angular distributions given by

1, and I -  (cosOy. (i.e., isotropic and (sinO)  ̂respectively) (6.36)

This leads to different acceptances which are shown in Figure 6.19.

-I— '— I ■ I'

 1 -coa(a)” 2
 I.laolropic
  1 + oo8<a)**2

0.016
0.014
0.012

0.006
0.006
0.004
0.002

500 520 540 560 560 600 620 640 660 680 700
Monopole Pair Mass (QeV)

(a)
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Figure 6.19 Acceptance for different angular distributions of monopoles 

production: (a) D0 case; (b) CDF case.

A comparison of results with different angular distributions is given in Table 6.4.
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Table 6.4(a) Results for D0 samples with different angular distributions.

(n = I)

Angular Distribution 1 + (cosfl)^ 1 1 -  (cos9)^
e 0.94 0.94 0.94
N <4.2 <4.2 <4.2
A 0.025 0.018 0.011
ff(pb) < 1.02 < 1.4 <2.2
A/(GeV) >256 > 246 > 230

Table 6.4(b) Results for CDF samples with different angular distributions.

(n = 1)

Angular Distribution 1 + (cos0)“ I 1 -  (cos0)^
€ 0.53 0.53 0.53
N < 1.34 < 1.34 < 1.34
A 0.015 0.01 0.003
a(pb) <0.89 < 1.3 <4.7
M(GeV) >260 > 250 > 204

No magnetic monopoles have been found in our experiment, but this experiment is 

very efficient in setting limits on cross sections and masses of monopole. With higher 

energy accelerators becoming available, e.g., the LHC (Large Hadron Collider, the center 

mass energy will be 14 TeV), the cross section and mass limits can be further improved 

with this type of experiment. Figure 6.20 shows possible cross section and mass limits 

that will be reached at the LHC. For example, the mass limit can be improved from about 

500 GeV (Tevatron) to 1300 GeV (LHC) obtained, given the same cross section of 0.1 

pb. Therefore, future searches for magnetic monopoles should be continued not just 

because it is important to confirm the existence or nonexistence of monopoles but
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because it is doable.

- -  Tevatron 
— LHC

0.1

0.01

0.001 T

0.0001

100 0  2 0 0 0  30 0 0  4 0 0 0  9 0 0 0
Mass of Monopole Pair (GeV)

6000

Figure 6.20 The Drell-Yan cross section for Tevatron and LHC. For the 

same cross section limit, the mass limit will be significantly raised.
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Appendix

M onte C arlo  P rogram  fo r P b  S am ples

There are three kinds of programs used in the monopole project:

1. The Lab view programs used for data acquisition;

2. The Igor programs used for data analysis; and

3. The Monte Carlo programs used for energy loss and cross section 

calculations.

I wrote the Monte Carlo programs for different samples. The following 

porgram is for the lead samples in the CDF detector.

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

Some subroutines and functions used in this program are listed as follows. M  is the 

energy of monopole pair and m the mass of monopole.

dSdM: main program, g i v e s ( A / ,  m) a n d ( A / ,  m) 142

ds_dm(): compute and given m 143

ElossQ comppute energy loss in the detectors 160
lossBeO energy loss in Be pipe 162
lossSVXQ energy loss in silicon vertex detector 191
lossVTPCO energy loss in vertex time projection chamber 196
lossFTCQ energy loss in forward tracking chamber 198
rangePbO energy loss and range in Pb layers 183
lossAIGlOO energy loss in the materials between Pb layers 164

solidO energy loss in the given material 166
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BfieldO magnetic field in the materials 172
SpbO energy loss at low speed 183
glO interpolation function 184
coefQ apply coeficients (obtained from Igor program) for curve fitting 200
gO interpolation function 190

solidPbO energy loss in the Pb layer 184

BfieldlO homogenous magnetic field inside the solenoid 174
Bfield2() inhomogenous magnetic field 178
layersO get weight function (for Monte Carlo calculation) for each layer 157

dS() get for given mass m and given energy M  158

DYw() get for given mass m and given energy M  157

protO get quark distribution functions using CTEQ parametrizaiton 211

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c This Monte Carlo program in Fortran is used to calculate the Drell-Yan cross

c section and the accepted cross section as the functions of mass M 
o M  u M

c for magnetic monopoles in the CDF detector. The total cross section a  and

c oa can be obtained by integrating and over mass M.

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

program dSdM

implicit double precision(a-h,o-z) 

double precision mm,mO 

parameter (n=9) 

dimension j(n)

data j/200,225,250,275,300,325,350,375,400/ 

z=  1.0 

mO = 10.0
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do 1 i=l,n

call ds_dm(i,z,mm) 

I continue 

stop 

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c This program is used to compute the cross section with CTEGS data 

c by using Monte Carlo method

c This program has considered the angular distribution and use the 

c angular distribution in the lab frame to restrict the angular 

c distribution in the CM frame based on the Lorentz transformation, 

subroutine ds_dm(ii,z,mm)

Implicit Double Precision (A-H, O-Z) 

double precision mm,Ie,Mnu,mmj,m 

c Drell-Yan pair production cross section 

parameter (n=1000,kk=1300)

dimension wl(n),w2(n),w3(n),w4(n),w5(n),w6(n),wd(n),x(n)

dimension wl I(n),w22(n),w33(n),w44(n),w55(n)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

print*,’ds_dm’

print*,’n:’,n

alpha = 1,0/137.0

pie = 4.0*atan(1.0)

rts = 1800.0

wie = 3.8935E+8
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arfal = 3.0/180.0*pie 

arfa2 = 10,0/I80.0*pie 

ctl = Cos(arfal) 

ct2 = Cos(aifa2) 

ct3 = -ct2 

ct4 = -ctl 

Emax = 900.00 

Rmax = 150.00

cccccccccccccccccccccccccccccccccc

print*ct  1 ,ct2: ’ ,ct 1 ,ct2

Xnün = l.OOOOE-05

mmj = 2.0*nun

ssl = 660.0*tan(arfal) !cm

ss2 = 660.0*tan(arfa2) !cm

le = 3.8935E+8

dm = (its - 2.0*mm)/(1.0*(n-l)) 

print*,’dM=’,dm 

mmj = 2.0*mm + 0.0(X)1 

kkk = 0

print*,’before 20’

Ll = 1 

L2 = 2 

L3 = 3 

L4 = 4 

L5 = 5 

L6 = 6 

L ll = l l
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L22 = 22 

L33 = 33 

L44 = 44 

L55 = 55 

Ld = 0 

Rgd = 0.0

cccccccccccccccccccccccccccc

do20j = l,n-l

do 3 i=l,n

x(i) = 0.0

wl(i>=0.0

w2(iH>.0

w3(i)=0.0

w4(i)=0.0

w5(iH).0

w6(i)=0.0

wd(i)=0.0

w33(i)=0.0

w44(i)=0.0

w22(i)=0.0

wll(i)=0.0

w55(i)=0.0

3 continue

m = mmj + (j-l)*dm

am = m

ave_ml =0.0

ave_m2 = 0.0
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ave_m3 = 0.0 

ave_m4 = 0.0 

ave_nti5 = 0.0 

ave_m6 = 0.0 

ave_ml 1 = 0.0 

ave_m22 = 0.0 

ave_m33 = 0.0 

ave_m44 = 0.0 

ave_m55 = 0.0 

ave_md = 0.0 

i_rand = 0 

cccccccccccccc 

nl = 0 

n2 = 0 

n3 = 0 

n4 = 0 

n5 = 0 

n6 = 0 

n il  = 0  

n22 = 0 

n33 = 0 

n44 = 0 

n55 = 0  

nd = 0 

SmI = 0.0 

Sm2 = 0.0 

Sm3 = 0.0
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Sm4 = 0.0

Sm5 = 0.0

Sm6 = 0.0

Sm ll =0.0

Stn22 = 0.0

Sm33 = 0.0

Sm44 = 0.0

Sm55 = 0.0

Smd = 0.0

print*,’before 4,j=’,j

pm = 0.0

pmL = 0.0

Emc = 0.0

do4 i =l,n-l

ami = am + rand(0)*dm

q = aml**2

xl =Xmin + rand(O)

x2 = q/(xl *rts**2)+ Xmin

costCM= i-2.0*rand(0)

Lrand = i_rand + I

do while((xl .gt. I.0).or.(x2 .gt. 1.0))

ami = am + rand(0)*dm

q = aml**2

xl = rand(0)+Xmin

x2 = q/(xl*rts**2)+ Xmin

costCM = l-2.0*rand(0)

Lrand = i_rand + 1
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end do

x(i) = xl

bet = sqrt(abs(1.0 - (2.0*mm)**2/aml**2))

c do angular limitation and Lorentz transformation

ccccccccccccccccccccccccccccccccccccccccccccccccccccccc

etaCM =abs(x2-xl)/(2.0*sqrt(xl*x2))

gamCM=sqrt(etaCM**2+1.0)

estar = am 1/2.0

estar = am 1/2.0

if(costCM It. 0.0) then

pstar = -sqrt(abs(estar**2-mm**2))

else

pstar=sqrt(abs(estar* *2-mm* *2)) 

endif

eLb = etaCM*pstar*costCM+gamCM*estar

if(costCM It. 0.0) then

pLb = -sqrt(abs(eLb**2-mm**2))

else

pLb = sqrt(abs(eLb**2-mm**2)) 

endif

costLb=(gamCM*pstar*costCM+etaCM*estar)/pLb 

cccccccccccccccccccccccccccc 

c Drell-Yan

cccccccccccccccccccccccccccccc 

ave_md = ave_md + ami 

nd = nd + 1

c print*,’before DYw, q=’,q,i
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call DYw(z,bet,xI,x2,q,wd(i)) 

c print*,’after DYw, q=',q,i 

if(Stnd .It. wd(i)) then 

Smd = wd(i) 

endif

cccccccccccccccccccccccccccccccccccccc 

c do energy loss

cccccccccccccccccccccccccccccccccccccc

S t = 0.99999999

if(abs(costLb) .gt. st) then

goto 4

endif

call Eloss(RO,csO,hO,yO,Eout,z,mm,eLb,costLb) 

if(Eout le. mm) then 

goto 4 

endif

if(abs(csO) .gt. st) then

goto 4

endif

dl = 140.0 !cm, constant field region 

d2 = 400.0 !cm, not constant field region 

if(abs(hO) .It. dl) then

call Bfield 1 (z,Eout,csO,mm,Eout 1 ,cs 1 ,hO,h 1 ,yO,y 1 ) 

call Bfield2(z,Eout 1 ,cs 1 ,mm,Eout2,cs,h 1 ,h,y 1 ,y,L) 

else

call Bfield2(z,Eout,csO,mm3out2,cs,hO,h,yO,y,L) 

endif
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c First cut by the iron 

if(L .eq. 0) then 

goto 4 

endif

c Count particles in the opposite direction 

if(cs eq. 0.0) then 

goto 4 

endif

tann = sqrt(abs(I.0-cs**2))/abs(cs)

dd = 660.0 - abs(h)

yy = y + tann*dd

ccccccccccccccccccc

c angl cuts

ccccccccccccccccccc

if((yy It. ssl) or. (yy gt. ss2)) then

goto 4

endif

Ein3 = Eout2

ccccccccccccccccccccccccccc 

c First Layer

ccccccccccccccccccccccccccc

call rangePb(Rgl,z,Ein3,nun,cs,Eout3)

Rgl = Rgl + RO

if(Eout3 le. mm) then

ave_ml = ave_ml + ami

nl = nl + 1

call layers(z,costCM,bet,xI,x2,q,wl(i))
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if(Sml .It wl(i)) then

Sml = wl(i)

endif

goto 4

else

call lossAlG10(Rgl 1,E1 l,z,Eout3,nim,cs)

R gll = R gll + Rgl

if(EI 1 le. mm) then

ave_ml I = ave_ml 1 + ami

n il  = n il  + 1

call layers(z,costCM,bet,xl,x2,q,wl 1(1))

if(Sml 1 It. wl l(i)) then

Sm ll = wl 1(1)

endif

goto 4

endif

endif

c Second Layer 

Ein4 = E ll

call rangePb(Rg2,z,Ein4,mm,cs,Eout4)

Rg2 = Rg2 + Rgl 1

if(Eout4 .le. mm) then

ave_m2 = ave_m2 + am 1

n2 = n2 + 1

call layers(z,costCM,betx 1 ,x2,q,w2(i)) 

if(Sm2 It. w2(i)) then 

Sm2 = w2(i)
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endif 

goto 4 

else

call lossAIG10(Rg22,E22,z,Eout4,mm,cs)

Rg22 = Rg22 + Rg2

if(E22 le. mm) then

ave_m22 = ave_m22 + ami

n22 = n22 + 1

call layers(z,costCM,bet,x 1 ,x2,q,w22(i))

if(Sm22 .It. w22(t)) then

Sm22 = w22(i)

endif

goto 4

endif

endif

c Third Layer 

Ein5 = E22

call rangePb(Rg3,z,Ein5,mm,cs,Eout5)

Rg3 = Rg3 + Rg22

if(EoutS le. mm) then

ave_m3 = ave_m3 + ami

n3 = n3 + I

call layers(z,costCM,bet^ 1 ,x2,q,w3(i))

if(Sm3 It. w3(i)) then

Sm3 = w3(i)

endif

goto 4
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else

call lossAlG10(Rg33Æ33,z,Eout5,mm,cs)

Rg33 = Rg33 + Rg3

if(E33 le. mm) then

ave_m33 = ave_m33 + ami

n33 = n33 + 1

call layers(z,costCM,bet,x 1 ,x2,q,w33(i))

if(Sm33 It. w33(i>) then

Sm33 = w33(i)

endif

goto 4

endif

endif

c Fourth Layer 

Ein6 = E33

call rangePb(Rg4,z,Ein6,mm,cs,Eout6)

Rg4 = Rg4 + Rg33

if(Eout6 le. mm) then

ave_m4 = ave_m4 + ami

n4 = n4 + 1

call layers(z,costCM,bet,x 1 ,x2,q, w4(i))

if(Sm4 It. w4(i)) then

Sm4 = w4(i)

endif

goto 4

else

call lossAlG 10(Rg44,E44,zÆout6,mm,cs)
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c print*,’4,after AlG,Eout:',E44 

Rg44 = Rg44 + Rg4 

if(E44 .le. nun) then 

ave_m44 = ave_m44 + ami 

n44 = n44 + I

call layers(z,costCM,bet,x 1 ,x2,q,w44(i))

if(Sm44 .It. w44(i)) then

Sm44 = w44(i)

endif

goto 4

endif

endif

cccccccccccccccccccc 

c Fifth Layer 

Ein7 = E44

call rangePb(Rg5,z,Ein7,mm,cs,Eout7)

Rg5 = Rg5 + Rg44

if(Eout7 .le. mm) then

ave_m5 = ave_m5 + ami

n5 = n5 + 1

call layers(z,costCM,bet,x 1 ,x2,q,w5(i))

if(Sm5 It. w5(i)) then

Sm5 = w5(i)

endif

goto 4

else

call lossAlG10(Rg55,E55,z,Eout7,nun,cs)
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Rg55 = Rg55 + Rg5 

if(E5S .le. mm) then 

ave_m55 = ave_m55 + ami 

n55 = n55 + I

call layers(z,costCM,bet,x 1 ,x2,q,w55(i))

if(Sm55 .It. w55(i>) then

Sm55 = w55(i)

endif

goto 4

endif

endif

c Sixth Layer 

EinS = E55

call rangePb(Rg6,z,Ein8,mm,cs,Eout8)

Rg6 = Rg6 + Rg5

if(Eout8 .le. mm) then

ave_m6 = ave_m6 + am 1

n6 = n6 + I

call layers(z,costCM,bet,x I ,x2,q,w6(i))

if(Sm6 It. w6(i)) then

Sm6 = w6(i)

endif

goto 4

else

goto 4

endif

4 continue
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pmc = sqrt(Emc**2 - mm**2) 

cccccccccccccccccccccccccccccccccccccc 

c Cross Sections:

cccccccccccccccccccccccccccccccccccccc 

c Drell-Yan Cross Section 

call dS(ii,nd,x,Smd,wd,ave_md,m,nbinci,j,Ld) 

c First Layer

call dS(ii,n 1 ,x,Sm 1 ,w 1 ,ave_ml ,m,nbin 1 ,j,Ll ) 

call dS(ii,nl l,x,Sml l,wl l,ave_ml l,m,nbinl 1 j,L l 1) 

c Second Layer

call dS(ii,n2,x,Sm2,w2,ave_m2,m,nbin2,j,L2) 

call dS(ii,n22,x,Sm22,w22,ave_m22,m,nbin22,j,L22) 

c Third Layer

call dS(ii,n3,x,Sm3,w3,ave_m3,m,nbin3J,L3) 

call dS(ii,n33,x,Sm33,w33,ave_m33,m,nbin33,j,L33) 

c Fourth Layer

call dS(ii,n4,x,Sm4,w4,ave_m4,m,nbin4j,L4) 

call dS(ii,n44,x,Sm44,w44,ave_m44,m,nbin44,j,L44) 

c Fifth Layer

call dS(ii,n5,x,Sm5,w5,ave_m5,m,nbin5j,L5) 

call dS(ii,n55,x,Sm55,w55,ave_m55,m,nbin55,j,L55) 

c Sixth Layer

call dS(ii,n6,x,Sm6,w6,ave_m6,m,nbin6,j,L6)

20 continue

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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subroutine DYw(z,bet,xl,x2,q,w) 

implicit double precision(a-h,o-z) 

alpha = 1.0/137.0 

pie = 4.0*atan(1.0)

Its = 1800.0

c get weight function based on the cross section integrand 

call prot(xl,q,dbl,ubl,ul,dl.sl) 

call prot(x2,q,db2,ub2,u2,d2,s2)

A = 8.0*(137.0*z/2.0)**2*pie*alpha**2/(9.0*rts**2) 

B=(4.0*(ul*u2+ubl*ub2) +

* dl*d2+dbl*db2

* + 2.0*sl*s2)/(9.0*xl)

w = bet**3*A*B/sqrt(abs(q)) !m(j)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine layers(z,csm,bet,x 1 ,x2,q, w)

implicit double precision(a-h,o-z)

alpha = 1.0/137.0

pie = 4.0*atan(1.0)

rts = 1800.0

C = 2.0*(1.0 + csm**2)

c get weight function based on the cross section integrand 

call prot(xl,q,dbl,ubl,ul,dl,sl) 

call prot(x2,q,db2,ub2,u2,d2,s2)

A = (137.0*z/2.0)**2*pie*alpha**2/(3.0*rts**2)
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B=(4.0*(ul*u2+ubl*ub2)+dl*d2+dbl*db2+2.0*sl*s2)/(9.0*xl)

w = bet**3*A*B*C/sqrt(abs(q)) !m(j)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine dS(ij ,nO,x,Stn,w,ave_m,m,nbin.j ,L)

implicit double precision(a-h,o-z)

parameter (kk = 1300,k=600,n=1000)

double precision m,Ie

dimension f(n),w(n)

dimension nbin(kk),x(n)

le = 3.8935E+8

Emax = 1800.0

Rmax = 150.0

do 1 ii=i,n

f(ii) = 0.0

1 continue 

do2 jj= I,kk 

nbin(jj)=0

2 continue 

Smax = Sm 

if(nO ne. 0) then

m = ave_m/(I.O*nO) 

endif

c accept-reject based on the weight w(j,i)

c rearrange the order of mass

Np=0
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Nn=0

do 14i=l,n-l 

f(i) = rand(0) 

if(Smax .gt. 0.0) then 

w(i) = w(i)/Smax 

endif

Ll =k*x( i ) + l

if(f(i) .It. w(i)> then

nbin(Ll) = nbin(Ll) + I

else

goto 14

endif

14 continue 

Smax = Ie*Smax 

averl = 0.0 

aver2 = 0.0 

sigma = 0.0 

do 8 LI = 1, k

sigma = sigma + I.O*Smax*nbin(Ll)/(i.O*n)

averl = averl + 1.0*Smax*nbin(L 1 )/( 1 0*n*k)

aver2 = aver2 + (1.0*Smax*nbin(Ll)/(1.0*n))**2/(1.0*k)

8 continue

delO = sqrt(abs(aver2 - averl **2)/( 1 0*k))

del = sqrt(1.0/(1.0*n)*(sigma*abs((Smax-sigma))))

write(ij+10*L+200,12) m,sigma

12 format(3el4.4,3el4.4)

write(ij+10*L, 11) j,Smax,sigma,m,del
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11 format(i4,3el4.4,3el4.4,3el4.4,3el4.4)

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine Eioss(R,cs,h,y,Eout,z,mm^,csO)

c Use S. Ahlen’s formula, S.P. Ahlen, Monopole Energy Loss

c and Detector Excitation Mechanism, ’’Magnetic Monopoles”

c Edited by R. Carrigan,Jr and W.Trower, Plenum Press, 1983

c use Simpson’s rule

c energy loss in the DO detector

implicit double precision(a-h,o-z)

double precision mm

R = 0.0

cs = csO

Eout = E

if(E le. mm) then

return

endif

call lossBe(R 1 ,Ebe,z,E,mm,csO,cs I ,h I ,y 1 )

if(Ebe.le.mm) then

h = hl

y = yl

cs = csl

Bout = Ebe

R = R1

return

endif
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E2 = Ebe

call lossSVX(R2,Esvx,z,E2,mm,csl,cs2,h2,y2)

h2 = h2 + hl

y2 = y2 + yl

R2 = R2 + R1

if(Esvx.le.mm) then

h = h2

y = y2

cs = cs2

Eout = Esvx

R = R2

return

endif

E3 = Esvx

call IossVTPC(R3Æv,z,E3,mm,cs2,cs3,h3,y3)

h3 = H3 + H2

y3 = y3 + y2

R3 = R3 + R2

if(Ev.le.nun) then

h = h3

y = y3

cs = cs3

Eout = Ev

R = R3

return

endif

E4 = Ev
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call lossFTC(R4,Ef,z,E4,itun,cs3,cs4,h4,y4)

h = h4 + h3

y = y4 + y3

R = R4 + R3

cs = cs4

Eout = Ef

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine lossBe(Rn,E,z,EO,mm,csO,cs,h,y)

implicit double precision(a-h,o-z)

double precision Im,m,Na,Iml,ml,Nal

double precision Ka,Kl,K2,me,nun,Nc,Nmol

c Be:

Im = 63.7E-9 

m = 2.4339 

Na = 4

hbo = 26.098E-9 

xO = 0.0592 

xl = 1.6922 

! cm

Za = 0.44384 !Z/A 

den = 1.848 ! g/cm'^3 

R1 = 0.05 ! cm 

LI = 1

call Solid(R 1 ,Rn 1 ,E 1 ,z^O,mm,csO,Im,hbo,xO,x 1 ,Na,m,den,Za, 

♦ csl,hl,yl,L l)

1 6 2



if(El .le. mm) then

E = E1

Rn = Rnl

h = hl

y = yl

es = csl

return

else

cC:

pi = 4.0*atan(l.0)

Iml = 78.0E-9 

ml = 3.0036 

Nal = 6.0 

hbol = 28.08E-9 

xlO = -0.0351 

x ll =2.486 

! cm

Zal =0.49954 ! 27A

denl = 2.00 ! g/cm'^3

L2 = 2

yyl = 10.0

yy2 = 28.0

tyl = 180.0 - yyl

ty2 = 180.0 - yy2

XX = abs(acos(cs 1 ))* 180.0/pi

if((xx.gt.yyl) .and.(xx.it.yy2)> then

R2 = -3.0*xx/4.0 + 24.0
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else

if((xx.lt.tyl) .and.(xx.gLty2)) then 

R2 = -3.0/4.0*(180.0-xx-32.0) 

else

if((xx,gt.yy2) .or.(xx.It.ty2)) then

R2 = 2.5

else

R2 = 0.0 

endif 

endif 

endif

R2 = R2* 18.8/100.0! cm

call Solid(R2,Rn2,E,z,El,mm,csl,ImI,hbol,xlO,xl 1,

* Nal,ml,denl,2^1,cs,h2,y2,L2)

Rn = Rnl + Rn2

h = hl +h2

y = yl +y2

endif

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine lossAIG lO(Rn,E,z,EO,mm,csO)

implicit double precision(a-h,o-z)

double precision Im,m,Na,ImI,ml,Nal

double precision Ka,Kl,K2,me,mm,Nc,Nmol

c Al:
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Im = 164.0E-9 

hbo = 32.86E-9 

Na= 13 

m = 3.6345 

xO = 0.1708 

xl =3.0127 

R1 =0.22 ! cm 

Za = 0.48181 !Z/A 

den = 2.7 ! g/cm^3 

L3 = 30

call Solid(R 1 ,Rn 1 ,E 1 ,z,EO,mm,csO,Im,hbo,xO,x 1 ,Na,m,den,Za,

* csl,hl,yl,L3)

c print*,’A1,E1,E2:’,E0,E1

if(El le. mm) then

E = E1

Rn = Rnl

h = hi

y = yl

cs = csl

return

else

cGlO:

Iml = 139.2E-9 

hbol =31.014E-9 

xlO = 0.1385 

x l l  = 3.0025 

Nal = 30
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ml = 3.5064 

R2 = 0.I !cm 

deni = 2.32 

Zal =0.4993 

L7 = 7

call Solid(R2,Rn2,E,z,E 1 ,mm,cs 1,1m 1 ,hbo 1 ,x 10,x 11,

* Nal,ml,denl,Zal,cs,h2,y2X7)

Rn = Rnl + Rn2

h = hl +h2 

y = yl +y2 

endif 

return 

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine Soiid(R,Rn,Eout,z,Ein,mm,csO,Im,hbo,xO,x 1,

* Na,m,den,2^cs,h,y,L) 

implicit double precision(a-h,o-z)

double precision m,Ka,me,mm,Im,Nc,Ne,Na,Nmol,Kl,K2,Nav

parameter (nn=201,n=4,n1=240)

dimension f(nn),v 1 (n),c 1 (n),v2(n 1 ),c2(n 1 )

do 10 i3=l,nn

f(i3)=0.0

10 continue

Its = 1800.0

factor = z/2.0

ge = factor* 1.97327E-14 ! Gev.cm n = 1 

me = 0.51 lE-3 ! mass of electron Gev
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hb = 6.582E-25 ! Gev s 

pie = 4.0*atan(l.0)

Nav = 6.02E+23 ! Avogadro constant

C = -2.0*log(Im/hbo) -1.0

c ! number of electrons per

Ne = Nav*den*Za ! unit volume for gas

cccccccccccccccccccccccccc

Bl = 0.248 ! Bloch correction, n = 1

B2 = 0.672 ! Bloch correction, n = 2

B3 = 1.022 ! Bloch correction, n = 3

B6 = 1.685 ! Bloch correction, n = 6

if(z eq. 1.0) then

B = B1

else if(z eq. 2.0) then 

B = B2

else if(z eq. 3.0) then 

B = B3

else if(z eq. 6.0) then

B = B6

endif

K1 =0.406 

K2 = 0.346 

if(z It. 2.0) then 

Ka = Kl

else if(z ge. 2.0) then

Ka = K2

endif
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cccccccccccccccccccccccccc

A2 = Ka/2.0-0.5

aa = -(C + 4.606*x0)/(xl - xO)**m

D1=0.0

ee = Ein

Rn = 0.0

delE = 0.0

dell = R/(1.0*nn)

dbeta = 1.0/( 1 0*nn)

A = 4.0*pie*Ne*ge**2/(me)

do 50 î2=l,n

vl(i2) = 0.0

cl(i2) = 0.0

50 continue

betaS =0.00001+ 31*dbeta 

ec3 = mm/sqit(1.0-beta3**2)

A13 = Log(2*(ee3**2-mm**2)*me/(Im*mm**2)) 

X13 = Logl0(sqrt(ee3**2-mm**2)/mm) 

if(X13 .le. xO) then 

A33 = D1

else if((X13 .gt. xO).and.(X13.1t.xl)) then 

A33 = 4.606*X13+C+aa*(xl - X13)**m 

else if(X13 .ge. xl) then 

A33 = 4.606*X13 + C 

endif

beta4 = 0.00001+ 33*dbeta 

ee4 = mm/sqrt(1.0-beta4**2)

168



A14 = Log(2*(ee4**2-nun**2)*me/(Im*mm**2)) 

X14 = Log 10(sqrt(ee4**2-mm**2)/mm) 

if(X14 .le. xO) then 

A34 = D l

else if((Xl4 .gt. xO).and.(X14.1t.xl)) then 

A34 = 4.606*X13+C+aa*(xl - X14)**m 

else if(X14 .ge. xl) then 

A34 = 4.606*X14 + C 

endif

vl(2) = 0.00001+3*dbeta 

c l(2)=  I80.0*vI(2)*(z/2.0)**2 

vi(3) = beta3

cl(3) = A*(A13 + A2 - A33/2 - B)/den 

v l(l) = 0.00001+2*dbeta 

c l( l )=  l80.0*vl(l)*(z/2.0)**2 

vl(4) = beta4

c 1(4) = A*(A14 + A2 - A34/2 - B)/den 

v2(l) = vl(l) 

v2(ni) = vl(n)

cccccccccccccccccccccccccccccccccccccccc 

call coef(pO,pl,p2,p3,p4,p5,z,L) 

cccccccccccccccccccccccccccccccccccccccccccccc 

y = 0.0 

cs = csO 

Rn = 0.0 

h = 0.0 

do 11 = l,nn
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beta = sqrt(abs(l-(min/ee)**2))

Al = Log(2*(ee**2-mm**2)*me/(Im*mm**2)) 

X = Log 10(sqrt(ee* *2-mm* *2)/mm) 

if(X le. xO) then 

A3 = Dl

else if((X gt. xO).and.(X.lt.xl)) then 

A3 = 4.606*X+C+aa*(xl - X)**m 

else if(X ge. xl) then 

A3 = 4.606*X + C 

endif

if(beta .It. vl(l>) then

f(i)= l80.0*beta*(z/2.0)**2

else if(beta gt. vl(4>) then

f(i) = A*(AI + A2 - A3/2 - B)/den

else

f(i) = gl(pO,pl,p2,p3,p4,p5,beta) 

endif

if((cs eq. 0.0).or.(cs eq. 1.0» then

exit

endif

sn = sqrt(abs(l.G-cs**2)) 

ctan = cs/sn

if((L eq. 7) .or. (L eq. 30)) then 

delE = f(i)*del I *den/abs(cs) 

else

call Bfield(z,ee,csO,del I ,mm,Eb,cs) 

if(L eq. I) then
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delE = f(i)*del 1 *den/sn

ee = Eb

else

delE = f(i)*dell*den

ee = Eb

endif

endif

ee = ee - delE 

csO = cs

if((cs .eq. 0.0).or.(cs eq. 1.0)) then

exit

endif

sn = sqrt(abs( 1.0-cs**2))

ctan = cs/sn

y = dell +y

h = dell*ctan + h

Eout = ee

if(ee le. mm) then

Eout = mm

exit

endif

if((L eq. 7) .or. (L eq. 30)) then 

Rn = Rn + dell*den/abs(cs) 

else

if(L eq. 1) then

Rn = Rn + dell*den/sn

else
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Rn = Rn + dell*den

endif

endif

I continue

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine Bfield(z,Ein,cosLb,deI l,nun^ut,cs)

implicit double precision(a-h,o-z)

double precision mm

c print*,’In Bfeild,Ein,cosLb:’,Ein,cosLb

c Add B field B = 1.4 T, use SI units

pie =4.0*atan(l.0)

GevJ= I.6E-I0 ! I GeV= I.6E-I0J

g = z*3.29E-9 ! A.m

Bf = 1.4 !T

cOffB:

cB f=0.0

Elb = Ein

Eout = Ein

cs = cosLb

if(Ein .It. mm) then

return

endif

dell = dell/100.0 ! cm —> m 

sinLb = sqrt(abs(1.0-cosLb**2)) 

p = sqrt(EIb**2-nun**2)
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py = p*sinLb

if((cosLb .ge. 0.0) .and. (cosLb .It. 1.0» then

Elb = Elb + g*Bf*dell/GevJ

if(Elb le. mm) then

return

endif

p = sqrt(Elb**2-mm**2) 

if(p It. py) then 

return 

endif

px = sqit(p**2 - py**2) 

else

Elb = Elb - g*Bf*dell/GevJ 

if(Elb le. mm) then 

return 

endif

p = sqrt(Elb**2-mm**2) 

if(p It. py) then 

return 

else

px = -sqrt(p**2 - py**2)

endif

endif

dell = del 1*100.0 

cs = px/p

ss = sqrt(abs(1.0 - cs**2))

Eout = Elb

173



c print*,’!!! BfeiId,Eout,cs:’,Eout,cs

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine Bfieldl (z,Ein,cosLb,inm,£out,cs,hO,h,yO,y)

implicit double precision(a-h.o-z)

parameter(n = 100)

double precision nun

c Add B field B = 1.4 T, use SI units

pie = 4.0*atan(1.0)

GevJ = 1.6E-10 ! I GeV = 1.6E-10 J

g = z*3.29E-9 ! A.m

dl = 1.4 ! m, region of constant field

Bf = 1.4 !T

c Bf = Bf*2.0/3.0

cOffB:

cB f = 0.0

c cm ->  m

eplugx = 240.0 !cm, distance between interaction and 

! the iron

eplugy = 41.38 !cm, the height cut by the iron

Elb = Ein

Eout = Ein

h = hO

y = yO

cs = cosLb

if(Elb It. mm) then
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return

endif

hO = hO/100.0 

yO = yO/100.0

sinLb = sqrt(abs(l.0-cosLb**2))

ss = sinLb

if(cs .eq. 0.0) then

return

endif

t = abs(ss/cs)

dd = (dl - hO)/(l.O*n)

if(dd .le. 0.0) then

return

endif

d2 = dd

hn0 = dl*100.0-dd* 100.0

hneg = - hnO

p = sqrt(Elb**2-mm**2)

py = p*sinLb

if(p It. py) then

return

endif

do while((h le. hnO).and.(h.ge.hneg)) 

if((cs It. 1.0).and.(cs.ge.0.0)) then 

d2 = dd

Elb = Elb + g*Bf*d2/GevJ 

if(Elb It. mm) then
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cycle

endif

p = sqrt(Elb**2-mm**2) 

if(p .It. py) then 

cycle 

endif

px = sqrt(p**2 - py**2) 

cs = px/p

ss = sqrt(abs(1.0 - cs**2)) 

else

d2 = -dd

Elb = Elb + g*Bf*d2/GevJ 

ifCElb .It. mm) then 

d2 = dd

Elb = Elb + g*Bf^d2/GevJ 

p = sqrt(Elb**2-mm**2) 

if(p .It. py) then

Elb = sqrt(py**2 + mm**2) + g*B f d2/GevJ

p = sqrt(Elb**2-mm**2)

endif

px = sqrt(p**2 - py**2) 

cs = px/p

ss = sqrt(abs(1.0 - cs**2)) 

else

p = sqrt(Elb**2-mm**2) 

if(p It. py) then 

d2 = dd
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Elb = sqrt(py**2 + mm**2) + g*Bf*d2/GevJ 

p = sqrt(Elb**2-mm**2) 

px = sqit(p**2 - py**2) 

cs = px/p

ss = sqrt(abs(i.O - cs**2))

if(cs .eq. 0.0) then

return

endif

else

px = -sqrt(p**2 - py**2) 

cs = px/p

ss = sqrt(abs(1.0 - cs**2>)

if(cs .eq. 0.0) then

return

endif

endif

endif

endif

if(cs eq. 0.0) then

return

endif

t = abs(ss/cs) 

y2 = dd*t 

hO = hO + d2 

yO = yO + y2 

y = y0*100.0 

h = h0*100.0
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if(y gt. eplugy) then

exit

endif

enddo

Eout = Elb

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine Bfie!d2(z,Ein,cosLb,mm,Eout,cs,hO,h,yO,y^)

implicit double precision(a-h,o-z)

parameter(n = 100)

double precision mm

c Add B field B = 1.4 T, use SI units

pie = 4.0*atan(1.0)

GevJ = 1.6E-10 ! 1 GeV = 1.6E-10 J

B0= 1.4 !T

c BO = B0*2.0/3.0

cOffB:

c BO = 0.0

rad= 1.5 !m

g = z*3.29E-9 ! A.m

hn = 4.0 ! m, region of unconstant field

eplugx = 240.0 !cm, distance between interaction and

! the iron

eplugy = 41.38 !cm, the height cut by the iron 

c cm ->  m 

Elb = Ein
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Eout = Ein 

h = hO 

y = yO 

cs = cosLb

sinLb = sqrt(abs(1.0-cs**2))

ss = sinLb

if(cs .eq. 0.0) then

return

endif

t = abs(ssZcs) 

if(Ein .It. mm) then 

return 

endif

hO = hO/lOO.O 

yO = yO/lOO.O

Lh = 2.5 ! half length of the solenoid 

dd = (hn-hO)/(l.O*n) 

d2 = dd

hnO = hn* 100.0-dd* 100.0 

hneg = - hnO 

p = sqrt(Elb**2-mm**2) 

py = p*sinLb 

upO = Lh

downO = sqrt(rad**2 + upO**2) 

fact = 2.0*up0/down0 

do while((h .le. hnO).and.(h.ge.hneg)) 

denl = sqrt(rad**2 + (Lh - hO)**2)
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den2 = sqrt(rad**2 + (Lh + hO)**2)

Bf = BO*((Lh-hO)/denl + (Lh+h0)/den2)/fact 

if((Bf .It. 0.0).or.(Elb .le. mm)) then 

return 

endif

p = sqrt(Elb**2-nun**2) 

if(p .It. py) then 

return 

endif

px = sqrt(p**2 - py**2)

if((cs .le. I.O).and.(cs.ge.O.O))then

d2 = dd

Elb = Elb + g*Bf*d2/GevJ 

if(Elb .le. mm) then 

return 

endif

p = sqrt(Elb**2-mm**2) 

if(p iL py) then 

return 

endif

px = sqrt(p**2 - py**2) 

cs = px/p

ss = sqrt(abs(1.0 - cs**2))

if(cs .eq. 0.0) then

return

endif

else
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d2 = -dd

Elb = Elb + g*Bf*d2/GevJ 

if(EIb .It. mm) then 

d2 = dd

Elb = Elb + g*Bf*d2/GevJ 

p = sqrt(Elb**2-mm**2) 

if(p .It. py) then

Elb = sqrt(py**2 + mm**2) + g*Bf*d2/GevJ

p = sqrt(Elb**2-nun**2)

endif

px = sqrt(p**2 - py**2) 

cs = px/p

ss = sqrt(abs(1.0 - cs**2))

if(cs .eq. 0.0) then

return

endif

else

p = sqrt(Elb**2-mm**2) 

if(p It. py) then 

d2 = dd

Elb = sqrt(py**2 + mm**2) -i- g*Bf*d2/GevJ 

p = sqrt(Elb* *2-mm* *2) 

px = sqrt(p**2 - py**2) 

cs = px/p

ss = sqrt(abs(I.O - cs**2)) 

if(cs .eq. 0.0) then 

return
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endif

else

px = -sqrt(p**2 - py**2) 

cs = px/p

ss = sqrt(abs(1.0 - cs**2))

if(cs .eq. 0.0) then

return

endif

endif

endif

endif

t = abs(ssZcs) 

y2 = dd*t 

hO = hO + d2 

yO = yO + y2 

y = yO* 100.0 

h = hO*iOO.O 

c m —> cm

if((abs(h) .It. eplugx) .and. (y .gt eplugy)) then

L = 0

exit

else

L = 1

endif

enddo

Eout = Elb

c print*,’End B2,cs,h,y^ut’,cs,h,y,Eout
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return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine rangePb(Rn,z,E,min,s,Eout)

implicit double precision(a-h,o-z)

double precision Im,m,Na

double precision Ka,Kl,K2,me,nun,Nc,Nmol

Im = 823.0E-9

m = 3.1608

Na = 82

hbo = 61.072E-9 

xO = 0.3776 

xl =3.8073 

R = 0.5 ! cm 

Za = 0.39575 !Z/A 

den= 11.35 ! g/cm^3

call SolidPb(R,Rn,Eout,z,E,mm,s,Im,hbo,xO,x 1 ,Na,m,den,Za)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function Spb(z,Na,Ne,vf,kf,a,tm,t,y)

implicit double precision(a-h,o-z)

double precision Ne,kf,me,Na

aO = 5.3E-9

pi =4*atan(1.0)
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x =  1.0/3.0

me = 0 JlE -3

factor = z/2.0

c = 3.0E+10

ge = factor* 1.97327E-14

ge = factor* 1 054E-34/1.602E-19*c* 1 OE-9 !GeV.cm 

pp =0.0025

Spb = pp*4*pi*c*Ne*ge**2/(vf*me)*Log(50*a*tm*kf^t)*y

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function gi(p0,pl,p2,p3,p4,p5,x)

implicit double precision(a-h,o-z)

gl=pO+pl*x+p2*x**2+p3*x**3+p4*x**4+p5*x**5

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine SolidPb(R,Rn,E2,z,E 12,mm,ss,Im,hbo,

* xO,xl,Na,m,den,Za)

implicit double precision(a-h,o-z)

double precision m,Ka,me,nun,Im,Nc,Ne,Na,Nmol

double precision KI,K2,Nav,kf

parameter (k=201 ,n=4,n1=240)

dimension f(k),w(k), v 1 (n),c l(n), v2(n 1 ),c2(n 1 )

dimension ran(12),En(12)

vf = 1.82E+8

kf = 1.57E+8
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an = 3.5E-8 

tm = 600.7 !K 

t = 300.0 

do 10 i=l,k 

f(i)=0.0 

10 continue 

factor = z/2.0

ge = factor* 1.97327E-14 ! Gev.cm n = 1 

me = 0.51 lE-3 1 mass of electron Gev 

nn = k

hb = 6.582E-25 ! Gev s 

pie = 4*atan(1.0)

Nav = 6.02E+23 ! Avogadro constant 

C = -2.0*log(Im/hbo)-1.0 

c ! number of electrons per 

Ne = Nav*den*Za ! unit volume for gas 

ccccccccccccccccccccccccccccccccccc 

Bl = 0.248 ! Bloch correction, n = 1 

B2 = 0.672 ! Bloch correction, n = 2 

B3 = 1.022 ! Bloch correction, n = 3 

B6 = 1.685 ! Bloch correction, n = 6 

if(z eq. 1.0) then 

B = B1

else if(z eq. 2.0) then 

B = B2

else if(z eq. 3.0) then 

B = B3
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else if(z .eq. 6.0) then

B = B6

endif

K l=  0.406 

K2 = 0.346 

if(z It. 2.0) then 

K a=K l

else if(z .ge. 2.0) then

Ka=K2

endif

cccccccccccccccccccccccccc

A2 = Ka/2.0-0.5

aa = -(C + 4.606*x0)/(xl - xO)**m

Dl =0.0

ee = EI2

delE = 0.0

dell =R/(1.0*nn)

A = 4.0*pie*Ne*ge**2/(me)

dbeta = 1.0/(1.0*k)

do 50 i2=l,n

vl(i2) = 0.0

cl(i2) = 0.0

50 continue

beta3 = 0.00001+ 31*dbeta 

ee3 = mm/sqrt(I.0-beta3**2)

A13 = Log(2*(ee3**2-mm**2)*me/(Im*mm**2)) 

X13 = LoglO(sqrt(ee3**2-mm**2)/nun)
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if(X13 le. xO) then 

A33 = D1

else if((X13 .gL xO).and.(XI3.1t.xI)) then 

A33 = 4.606*X13+C+aa*(xl - X13)**m 

else if(XI3 ge. xl) then 

A33 = 4.606*X13+C 

endif

beta4 = 0.00001+ 33*dbeta 

ee4 = mm/sqrt( 1 0-beta4**2)

A14 = Log(2*(ee4**2-mm**2)*nie/(lm*mm**2)> 

X14 = Logl0(sqrt(ee4**2-nun**2)/mm) 

if(X14 le. xO) then 

A34 = D1

else if((X14 gt. xO).and.(X14.1t.xl)) then 

A34 = 4.606*X13+C+aa*(xl - X14)**m 

else if(X14 .ge. xl) then 

A34 = 4.606*X14 + C 

endif

vl(2) = 0.00001+3*dbeta

cl(2) = Spb(z,Na,Ne,vf,kf,a,tm,t,vl(l))

vl(3) = beta3

c l(3) = A*(A13 + A2 - A33/2 - B)/den 

v l(l) = 0.00001+2*dbeta 

c l( l)  = Spb(z,Na,Ne,vf,kf,a,tm,t,vl(l)) 

vl(4) = beta4

cl(4) = A*(A14 + A2 - A34/2 - B)/den 

v2(l) = v l(l)

187



v2(nl) = vl(n)

ccccccccccccccccccccccccc

if(z eq. 1) then

pO = -0.0056944

pi = 18.626

p2 = -126.36

p3 = 854.06

p4 = -3025.8

p5= 4023.5

endif

if(z eq. 2) then 

pO = -0.040523 

pi = 80.057 

p2 = -924.57 

p3 = 7537.9 

p4 = -27782.0 

p5 = 37233.0 

endif

if(z eq. 3) then 

pO = -0.092833 

pi = 180.6 

p2 = -2112.0

p3 = 17382.0 

p 4  =  ^ 5 4 8 . 0  

p5 = 87105.0 

endif

if(z eq. 6) then
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pO = -0.36885 

pi =721.56 

p2 = -8390.5 

p3 = 68702.0 

p4 = -253850.0 

p 5  =  340730.0 

endif

cccccccccccccccccccccccccccccccccccccccccccccc

Rn = 0.0

do 1 i = i,nn

if(ee .le. mm) then

E2 = ee

exit

endif

beta = sqrt(abs(i-(mm/ee)**2))

Ai = Log(2*(ee**2-mm**2)*me/(Im*mm**2))

X = Logl0(sqrt(ee**2-mm**2)/mm) 

if(X .le. xO) then 

A3 = D1

else if((X .gt. xO).and.(X.lt.xl)) then 

A3 = 4.606*X+C+aa*(xi - X)**m 

else if(X .ge. xl) then 

A3 = 4.606*X + C 

endif

if(beta It. vl(l)> then

f(i) = Spb(z,Na,Ne,vf,kf,an,tm,t,beta)

else if(beta gt. vl(4)> then
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f(i) = A*(A1 + A2 - A3/2 - B)/den 

else

f(i) = gl(pO,pl,p2,p3,p4,p5,beta) 

endif

if(ss .eq. 0.0) then

exit

endif

delE = f(i)*del I *den/abs(ss) 

ee = ee - delE 

E2 = ee

if(E2 le. mm) then

E2 = mm

exit

endif

Rn = Rn + del 1 *den/abs(ss)

I continue

if(E2 .gt. mm) then

Rn = R*den/abs(ss)

endif

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function g(p0,pl,p2,p3,x)

implicit double precision(a-h,o-z)

g=pO+pl *x+p2*x**2+p3*x**3

return

end
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine lossSVX(Rn^,z,EO,mni,s,cs,h,y)

implicit double precision(a-h,o-z)

double precision Im,m,Na

double precision Ka,Kl,K2,me,mm,Nc,Nmol

h0 = 0.0

yO = 0.0

RnO = 0.0

csO = 1.0

c A1 :

Im= 164.0E-9 

hbo = 32.86E-9 

Na= 13 

m = 3.6345 

xO = 0.1708 

xl =3.0127 

R0 = 0.0046! cm 

Za = 0.48181 IZ/A 

den = 2.7 ! g/cm^3 

L3 = 3

pi = 4.0*atan(1.0) 

yyl =4.76 

yy2 = 7.6 

yy3 = 15.0 

tyl = 180.0 - yyl 

ty2 = 180.0 - yy2
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ty3 = 180.0 - yy3

XX = abs(acos(s))* 180.0/pi

if(((xx.gt.yy2).and.(xx.lt.yy3)).or.

* ((xx.lt.ty2).and.(xx.gt.ty3))) then 

RI =5.0

else

if((xx .gt. yy3) .or. (xx.lt.ty3)) then

RI =2.5

else

RI =0.0

endif

endif

RI =RI *8.9/100.0! cm

call Solid(RI ,Rn I ,E I ,z,EO,nun,s,Im,hbo,xO,x I ,Na,m,den,2^

* csI,hI,yI,L3) 

if(EI le. mm) then 

E = EI

Rn = Rnl 

h = hl 

y = yl 

cs = csl 

return 

else

if((xx It. yy2) .or. (xx.gt.ty2)) then

R2 = 0.0

else

if(((xx.gt.yy2).and.(xx.lt.yy3)).or.
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♦ ((xx.lt.ty2).and.(xx.gtty3))) then 

R2 = 5.0

else

if((xx .gt yy3) .or. (xx.lt.ty3)) then

R2 = 2.5

else

R2 = 0.0 

endif 

endif 

endif

R2 = R2M2.5/100.0 !

Im = 74.0E-9 

m = 3.3836 

Na = 64

hbo = 23.086E-9 

xO = 0.1824 

xl = 2.6681 

! cm

Za = 0.53937 !Z/A 

den = 0.075 ! g/cm^3 

L4 = 4

call Solid(R2,Rn232,z,E 1 ,mm,cs 1 ,Im,hbo,xO,x 1 ,Na,m,den,Za,

♦ cs2,h2,y2,L4)

Rn2 = Rn2 + Rnl 

h2 = hi + h2

y2 = yl + y2 

if(E2 .le. mm) then
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E = E2 

Rn = Rn2 

h = h2 

y = y2 

cs = cs2 

return 

else

Iml = 173.0E-9

ml = 3.2546

Nal = 14

hbol = 3I.055E-9

xlO = 0.2014

x ll = 2.8715

Z al=  0.49848 !Z/A

deni = 2.33 ! g/cm^3

L5 = 5

yy4 = 7.0

ty4 = 180.0 - 7.0

if(((xx.gLyy4).and.(xx.lt.yy3))

* .or.((xx.lt.ty4).and.(xx.gtty3))) then

R3 = 3.3

else

if((xx.gt.yy3).or.(xx.lt.ty3)) then

R3 = 2.0

else

R3 = 0.0 

endif
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endif

R3 = R3*9.36/100.0 !

call Solid(R3,Rn3,E3,zÆ2,mm,cs2,Iin,hbo,xO,x 1 ,Na,m,den,Za 

* ,cs3,h3,y3,L5)

Rn3 = Rn3 + Rn2

h3 = h2 + h3

y3 = y2 + y3

if(E3 le. mm) then

E = E3

Rn = Rn3

h = H3

y = y3

cs = cs3

return

else

Im = 145.2E-9 

m = 3.5458 

Na = 50

hbo = 40.206E-9 

xO = 0.0402 

xl =2.8665 

! cm

Za = 0.49038 !Z/A 

den = 3.97 ! g/cm^3 

L6 = 6

if((xx It. yyl) or. (xx.gLtyl)) then 

R4 = 0.0
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else

if(((xx.gtyy 1 ).and,(xx.lt.yy3)).or.

* ((xx.U.tyI).and.(xx.gt.ty3))) then 

R4 = 5.0

else

if((xx .gL yy3) or. (xx.lt.ty3)) then

R4 = 2.5

else

R4 = 0.0 

endif 

endif 

endif

R4 = R4*4.85/100.0 !

call Solid(R4,Rn4,E4,z,E3,inm,cs3,Im,hbo,xO,x I,Na,m,den,Za

* ,cs,h,y,L6)

E = E4

Rn = Rn3 + Rn4

h = h3 + h

y = y3 + y

endif

endif

endif

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine lossVTPC(Rn,E,z,EO,mm,s,cs,h,y)
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implicit double precision(a-h,o-z)

double precision Im,m,Na

double precision Ka,Kl,K2,me,nun,Nc,Nmol

c C :

pi =4.0*atan(1.0)

Im = 78.0E-9 

m = 3.0036 

Na = 6.0 

hbo = 28.08E-9 

xO = -0.0351 

xl =2.486 

! cm

Za = 0.49954 ! Z/A

den = 2.00 ! g/cm^3

L2 = 2

y l= 3 .0

y2 = 16.0

tyl = 180.0 - yl

ty2 = 180.0 - y2

XX = abs(acos(s))* 180.0/pi

if((xx.gt.yl) .and.(xx.lt.y2)) then

R = -5.0*xx/9.0 + 10.0

else

if((xx.lt.tyl) .and.(xx.gtty2)) then 

R = -5 0/9.0*(180.0-xx-18.0) 

else

if((xx.gt.y2) .or.(xx.lt.ty2)) then
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R =1.0

else

R = 0.0

endif

endif

endif

R = R*18.8/I00.0!cm

call Solid(R,Rn,E,z,EO,mm,s,Im,hbo,xO,x 1 ,Na,m,den,Za

* ,cs,h,y4-2)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine lossFTC(Rn,E,z,EO,mm,s,cs,h,y)

implicit double precision(a-h,o-z)

double precision Im,m,Na

double precision Ka,Kl,K2,me,nun,Nc,Nmol

c A1 :

c print*,’Start FTC,EO,s:’,EO,s

Im = 164.0E-9

hbo = 32.86E-9

Na= 13

m = 3.6345

xO = 0.1708

xl = 3.0127

RO = 0.0046 ! cm

Za = 0.48181 !Z/A

den = 2.7 ! g/cm^3
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L3 = 3

pi = 4.0*atan(1.0)

yl = 3.0

y2 = 9.0

y3 = 10.0

y4 = 32.0

ty l=  180.0-y l

ty2 = 180.0 - y2

ty3 = 180.0 - y3

ty4= 180.0 - y4

XX = abs(acos(s)>* 180.0/pi

if((xx.ge.yl) .and.(xx.lt.y2)) then

R = -0.87*xx + 13.05

else

if((xx.le.tyl) .and.(xx.gt.ty2)) then 

R = -0.87*(180.0-xx - 13.05/0.87) 

else

if((xx.ge.y2) .and.(xx.lt.y3)) then

R = 0.96*xx-2.88

else

if((xx.le.ty2) .and.(xx.gt.ty3)> then 

R = 0.96*( 180.0 -XX - 2.88/0.96) 

else

if((xx.ge.y3) and.(xx.lt.y4)) then 

R = -25.0*xx/38.0 + 25.0 

else

if((xx.le.ty3) .and.(xx.gtty4)) then
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R = -25.0/38.0*(180.0-xx - 25.0*38.0) 

else

if((xx.gt.y4).or. (xx.lt.ty4)) then

R = 4.0

else

R = 0.0

endif

endif

endif

endif

endif

endif

endif

R = R*8.9/100.0 ! cm

call SoIid(R,Rn,E,zÆO,mm,s,Im,hbo,xO^ l ,Na,m,den,Za,

* cs,h,y,L3)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine coef(pO,p 1 ,p2,p3,p4,p5,z,L)

implicit double precision(a-h,o-z)

c Be: L = 1

if(L .eq. l) then

if(z eq. 1) then

pO = -0.013061

pi =48.961

p2 = -274.09
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p3 = 816.48 

p4 = -970.7 

p5 = 51.719 

endif

if(z .eq. 2) then 

pO = -0.071284 

pi =201.8 

p2 = -1540.5 

p3 = 7508.0 

p4 = -19489.0 

p5 = 20486.0 

endif

if(z eq. 3) then 

pO = -0.19373 

pi = 464.49 

p2 = -4256.6 

p3 = 24646.0 

p4 = -73435.0 

p5 = 86288.0 

endif

if(z eq. 6) then 

pO = -1.0386 

pi = 1939.7 

p2 = -23101.0 

p3 = 157640.0 

p4 = -515570.0 

p5 = 640110.0
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endif

endif

cccccccccccccccccccccccccccccccccccc

c C: L = 2

if(L .eq. 2) then

if(z eq. I) then

pO = -0.0095844

pl =47.881

p2 = -193.79

p3 = 99.217

p4 = 1629.9

p5 = -3362.8

endif

if(z .eq. 2) then 

pO = -0.059967 

pl = 198.28

p2 = -1280.2

p3 = 5247.9 

p4 = -11455.0 

p5 = 10107.0 

endif

if(z eq. 3) then 

pO = -0.17496 

pl =458.68 

p2 = -3830.2 

p3 = 21286.0 

p4 = -62369.0

202



p5 = 72771.0 

endif

if(z .eq. 6) then 

pO = -0.99354 

pi = 1925.8 

p2 = -22098.0 

p3= 151060.0 

p4 = -497810.0 

p5 = 623070.0 

endif 

endif

ccccccccccccccccccccccccccccccccccccc

c Al: L = 3

if(L eq. 3) then

if(z eq. 1) then

pO = -0.019902

pl =51.095

p2 = -434.65

p3 = 2409.7

p4 = -6997.5

p5 = 8094.0

endif

if(z eq. 2) then 

pO = -0.10207 

pl =211.4 

p2 = -2265.2 

p3 = 14833.0
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p4 = -47697.0 

p5 = 58728.0 

endif

if(z .eq. 3) then 

pO = -0.26623 

pl =487.12 

p2 = -5962.6 

p3 = 41854.0 

p4 = -139530.0 

p5 = 175630.0 

endif

if(z .eq. 6) then 

pO = . 1.3447 

pl = 2035.2 

p2 = -30295.0 

p3 = 229730.0 

p4 = -791530.0 

p5 = 1012800.0 

endif 

endif

ccccccccccccccccccccccccccccc

c Al: L = 30, for the materials between Pb layers

if(L eq. 30) then

if(z eq. 1) then

pO = -0.019902

pl =51.095

p2 = -434.65
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p3 = 2409.7 

p4 = -6997.5 

p5 = 8094.0 

endif

if(z .eq. 2) then 

pO = -0.10207 

pl =211.4 

p2 = -2265.2 

p3 = 14833.0 

p4 = -47697.0 

p5 = 58728.0 

endif

if(z .eq. 3) then 

pO = -0.26623 

pl =487.12 

p2 = -5962.6 

p3 = 41854.0 

p4 = -139530.0 

p5 = 175630.0 

endif

if(z .eq. 6) then 

pO = -1.3447 

pl = 2035.2 

p2 = -30295.0 

p3 = 229730.0 

p4 = -791530.0 

p5 = 1012800.0
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endif

endif

ccccccccccccccccccccccccccccc

c Rohaceil: L = 4

if(L eq. 4) then

if(z eq. 1) then

pO =-0.0051014

p l=  46.487

p2 = -90.012

p3 = -842.03

p4 = 5022.7

p5 = -7757.2

endif

if(z eq. 2) then 

pO = -0.04405 

pl = 193.34 

p2 = -913.3 

p3 = 2021.0 

p4 = -272.33 

p5 = -3693.0 

endif

if(z eq. 3) then 

pO = -0.13767 

pl = 447.08 

p2 = -2962.3 

p3 = 13110.0 

p4 = -31695.0
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p5 = 31506.0 

endif

if(z eq. 6) then 

pO = -0.87904 

pl = 1890.3 

p2 = -19453.0 

p3 = 127370.0 

p4 = -412720.0 

p5 = 512980.0 

endif 

endif

ccccccccccccccccccccccccccccc

c Si, L = 5

if(L eq. 5) then

if(z eq. 1) then

pO = -0.019441

pl = 50.953

p2 = -424.52

p3 = 2353.1

p4 = -6889.8

p5 = 8052.7

endif

if(z eq. 2) then 

pO = -0.10017 

pl =210.82 

p2 = -2223.2 

p3 = 14577.0
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p4 = -47248.0 

p5 = 58843.0 

endif

if(z .eq. 3) then 

pO = -0.26327 

p l=  486.21 

p2 = -5897.3 

p3 = 41453.0 

p4 = -138500.0 

p5 = 174630.0 

endif

if(z eq. 6) then 

pO = -1.3413 

pl =2034.2 

p2 = -30229.0 

p3 = 229880.0 

p4 = -793290.0 

p5=1015500.0 

endif 

endif

ccccccccccccccccccccccccccccc

c AL203: L = 6

if(L eq. 6) then

if(z eq. 1) then

pO = -0.018152

pl = 50.552

p2 = -394.4
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p3 = 2062.0 

p4 = -5818.8 

p5 = 6661.3 

endif

if(z .eq. 2) then 

pO = -0.08505 

pl = 206.05 

p2 = -1851.1 

p3 = 9792.3 

p4 = -24094.0 

p5 = 20191.0 

endif

if(z eq. 3) then 

pO = -0.24994 

pl =482.06 

p2 = -5585.2 

p3 = 38404.0 

p4 = -127130.0 

p5 = 59670.0 

endif

if(z eq. 6) then 

pO = -1.2785 

pl = 2014.6 

p2 = -28752.0 

p3 = 214980.0 

p4 = -735790.0 

p5 = 37090.0
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endif

endif

cG 10,L = 7 

if(L .eq. 7) then 

if(z eq. 1.0) then 

pO = -0.016676 

p l=  50.091 

p2 = -359.77 

p3 = 1719.2 

p4 = -4487.7 

p5 = 4826.4 

endif

if(z .eq. 2.0) then 

pO = -0.08908 

pl =207.36 

p2 = -1963.2 

p3 = 12013.0 

p4 = -37450.0 

p5 = 45579.0 

endif

if(z eq. 3.0) then 

pO = -0.23877 

pl =478.58 

p2 = -5323.9 

p3 = 35868.0 

p4 = -117450.0 

p5 = 146520.0
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endif

if(z .eq. 6.0) then

pO = -1.2492

pl = 2005.5

p2 = -28084.0

p3 = 209520.0

p4 = -718780.0

p5 = 919110.0

endif

endif

return

end
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine prot(x,q2,db,ub,u,d,s) 

c PDF5(-2),PDF5(-1),PDF5( 1),PDF5(2),PDF5(3)

C - - -  ..... .......... ........ .................  ....................

C Trivial test program for CTEQ PDFs: Fred Olness 6/20/96 

C

C Revised 12 March 1999 by Randall J. Scalise (scalise@phys.psu.edu)

CforCTEQ5

C

Implicit Double Precision (A-H, O-Z)

Dimension PDF5 (-5:5)

DATA ISET,Q/1,10V 

ISET=1
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Q = sqrt(q2)

c print *, ’DBAR, UBAR. U , D, S’

Call SetCtq5(Iset)

DO 11 Iparton=-5,5

PDF5(Iparton) = CtqSPdf (Iparton, X, Q)

11 CONTINUE 

DO 21 Iparton=3,5

If(PDF5(Iparton) .ne. PDF5(-Iparton))

> Write(6,*) ’ Error; Sea not symmetric. iparton= iparton

21 CONTINUE

db = PDF5C-2)

ub = PDF5(-l)

u = PDF5(l)

d = PDF5(2)

s = PDF5(3)

return

END

C = — =   -  - —  -

Function CtqSPdf (Iparton, X, Q) 

Implicit Double Precision (A-H,0-Z) 

Logical Warn 

Common

> / CtqPar2 / Nx, Nt, NfMx

> / QCDtable / Alambda, Nfl, lorder 

Data Warn /.trueV

save Warn

If (X .It. ODO or. X .gt. IDO) Then
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Print *, X out of range in CtqSPdf: X

Stop

Endif

If (Q .It. Alambda) Then

Print *, ’Q out of range in CtqSPdf: Q

Stop

Endif

If ((Iparton .It. -NfMx or. Iparton .gt. NfMx) or.

* (Iparton eq. 0 and. NfMx eq. 0)) Then 

If (Warn) Then

C put a warning for calling extra flavor.

Warn = .false.

Print *, 'Warning: Iparton out of range in CtqSPdf: ’

> , Iparton 

Endif

CtqSPdf =0D0

Return

Endif

CtqSPdf = PartonX (Iparton, X, Q) 

if(CtqSPdf.lt.O.DO) CtqSPdf = 0.D0 

Return 

End

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

FUNCTION PartonX (IPRTN, X, Q)

C

C Given the parton distribution function in the array Upd in 

C COMMON / CtqParl / ,  this routine fetches u(fl, x, q) at any value of
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c  X and q using Mth-order polynomial interpolation for x and Ln(Q/Lambda). 

C

IMPUCrr DOUBLE PRECISION (A-H, O-Z)

C

PARAMETER (MXX= 105, MXQ = 25, MXF = 6)

PARAMETER (MXPQX = (MXF *2 +2) * MXQ * MXX)

PARAMETER (M= 2, Ml = M + 1)

C

Logical First 

Common

> / CtqParl / Al, XV(0:MXX), QL(0:MXQ), UPD(MXPQX)

> / CtqPar2 / Nx, Nt, NfMx

> / XQrange / Qini, Qmax, Xmin 

C

Dimension Fq(Ml), Df(Ml)

Data First /.true./ 

save First

C Work with Log (Q)

QG = LOG (Q/AL)

C Find lower end of interval containing X 

JL = -1 

JU = Nx+l

llIf(JU-JL.GT. DThen 

JM = (JU+JL)/2 

If(X.GT.XV(JM))Then 

JL = JM 

Else
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JU = JM 

Endif 

Goto 11 

Endif

Jx = JL - (M-l)/2

If (X .It. Xmin .and. First ) Then

First = .false.

Print ’(A, 2(ipEI2.4))’,

> ’ WARNING: X «  Xmin, extrapolation used; X, Xmin =’, X, Xmin

If(Jx LT.O) Jx = 0

Elseif (Jx GT. Nx-M) Then

Jx = Nx - M

Endif

C Find the interval where Q lies 

JL = -1 

JU = NT+I

12 If (JU-JL GT. I) Then

JM = (JU+JL) / 2

If (QG GT. QUJM)) Then

JL = JM

Else

JU = JM 

Endif 

Goto 12 

Endif

Jq = JL - (M-I)/2 

If (Jq LT. 0) Then
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Jq = 0

If (Q It. Qini) Print ’(A, 2(lpEI2.4))’,

> ’ WARNING: Q «  Qini, extrapolation used; Q, Qini =', Q, Qini 

Elseif (Jq GT. Nt-M) Then

Jq = Nt - M

If (Q .gt Qmax) Print ’(A, 2(lpEI2.4))’,

> ’ WARNING: Q > Qmax, extrapolation used; Q, Qmax =’, Q, Qmax 

Endif

If (Ipitn GE. 3) Then

Ip = - Iprm

Else

Ip = Iprm 

Endif

C Find the off-set in the linear array Upd 

JFL = Ip + NfMx

JO = (JFL ♦ (NT+1) + Jq) * (NX+l) + Jx 

C

C Now interpolate in x for Ml Q’s

Do 21 Iq= l,M l

J1 =JO + (Nx+l)*(Iq-I)+ 1

Call Polint (XV(Jx), Upd(Jl), Ml, X, Fq(Iq), Df(Iq))

21 Continue

C Finish off by interpolating in Q

Call Polint (QL(Jq), Fq(l), Ml, QG, Ftmp, Ddf)

PartonX = Ftmp 

C

RETURN
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Q * * * * * * * * * * * * * * * * * * * * * * * * * * * *

END

Subroutine SetCtqS (Iset)

Implicit Double Precision (A-H,0-Z)

Parameter (Isetmax=9)

Character Flnm(Isetmax)*12, Tabiefile*40 

Data (Flnm(I), I=i,Isetmax)

> / ’cteqSm.tbl’, ’cteq5d.tbr, ’cteqSl.tbl’, ’cteqShj.tbl’ 

> , ’cteqShq.tbr, ’cteq5f3,tbr, ’cteq5f4.tbi’

> , ’cteqSmi.tbr, ’ctqShql.tbl’ /

Data Tablefile / ’testtbl’ /

Data Isetold, Isetmin, Isettest / 987, 1,911/ 

save

C If data file not initialized, do so.

Ifflsetne.Isetold) then 

IU= NextUnO 

If (Iset eq. Isettest) then 

Print* , 'Opening ’, Tablefile

21 Open(IU, File=Tablefile, Status='OLD', Err=10l) 

GoTo 22

101 Print*, Tablefile, ’ cannot be opened ’

Print*, ’Please input the tbl file:’

Read (*,’(A)’> Tablefile 

Goto 21

22 Continue

Elseif (Iset.lt.Isetmin or. Iset.gt.Isetmax) Then 

Print *, Invalid Iset number in SetCtqS Iset
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Stop

Else

T ablefiIe=Flnin(Iset)

Open(IU, Rle=Tab!efile, Status=’OLD’, Err=100)

Endif

Call ReadTbl (lU)

Close (lU)

Isetold=Iset

Endif

Return

100 Print *, ’ Data file Tablefile, ’ cannot be opened ’ 

>//’in SetCtqS!!’

Stop
Q * * * * * * * * * * * * * * * * * * * *

End

Subroutine ReadTbl (Nu)

Implicit Double Precision (A-H,0-Z)

Character Line*80

PARAMETER (MXX = 105, MXQ = 25, MXF = 6) 

PARAMETER (MXPQX = (MXF *2 +2) ♦ MXQ * MXX) 

Common

> / CtqParl / Al, XV(0:MXX), QL(0:MXQ), UPD(MXPQX)

> / CtqPar2 / Nx, Nt, NfMx

> / XQrange / Qini, Qmax, Xmin

> / QCDtable / Alambda, Nfl, lorder

> / Masstbl /  Amass(6)

Read (Nu, ’(A)’) Line
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Read (Nu, ’(A)’) Line

Read (Nu, *) Dr, FI, Al, (Amass(I),I=I,6)

lorder = Nint(Dr)

Nfl = Nint(Fl)

Alambda = Al 

Read (Nu, ’(A)’) Line 

Read (Nu, ♦) NX, NT, NfMx 

Read (Nu, ’(A)’) Line

Read (Nu, ♦) QINI, QMAX, (QL(D, I =0, NT)

Read (Nu, '(A)') Line

Read (Nu, ♦) XMIN, (XV(I), I =0, NX)

D e l 1 Iq = 0, NT 

QL(Iq) = Log(QL(Iq)/Al)

11 Continue 

C

C Since quark = anti-quark for nfl>2 at this stage,

C we Read out only the non-redundent data points 

C No of flavors = NfMx (sea) + 1 (gluon) + 2 (valence) 

Nblk = (NX+l)*(NT+l)

Npts = Nblk • (NfMx+3)

Read (Nu, ’(A)’) Line

Read (Nu, ♦, IOSTAT=IRET) (UPD(I), 1=1,Npts) 

Return
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * *

End

Function NextUnQ

C Returns an unallocated FORTRAN i/o unit.
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Logical EX 

C

Do 10 N = 10, 300

INQUIRE (UNrr=N, OPENED=EX)

If (.NOT. EX) then 

NextUn = N 

Return 

Endif

10 Continue

Stop ’ There is no available I/O unit. ’
Q * * * * * * * * * * * * * * * * * * * * * * * * *

End

SUBROUTINE POLINT (XA,YA,N,X,Y,DY) 

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

C Adapted from "Numerical Recipes” 

PARAMETER (NMAX=10)

DIMENSION XA(N),YA(N),C(NMAX),D(NMAX) 

NS=1

DIF=ABS(X-XA(1))

DO 11 I=1,N 

DIFT=ABS(X-XA(D)

IF (DIFT.LT.DIF) THEN

NS=I

DIF=DIFT

ENDIF

C(I)=YA(D

D(I)=YA(D
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11 CONTINUE 

Y=YA(NS)

NS=NS-1

DO 13 M=l,N-l

DO 12 I=1,N-M

HO=XA(I)-X

HP=XA(I+M)-X

W=C(I+1)-D(D

DEN=HO-HP

IF(DEN.EQ.O.) PAUSE

DEN=W/DEN

D(D=HP*DEN

C(I>=HO*DEN

12 CONTINUE

IF (2*NS.LT.N-M)THEN 

DY=C(NS+1)

ELSE

DY=D(NS)

NS=NS-1

ENDIF

Y=Y+DY

13 CONTINUE 

RETURN 

ENd

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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