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ABSTRACT

Although techniques for designing a fracture treat-
ment are available, the intended results of these techniques
are often not attained. The evaluation of fracturing treat-
ments on low permeability gas wells is required to both opti-
mize the fracturing design and form prediction calculations
of a treatments effect.

This study primarily investigates the effect of fracture
height on the performancé of vertically fractured wells.

The effects of layered media, turbulance, and closure pres-
sure are included in this work.

Consider that a well, intercepted by a vertical frac-
ture, is in the center of a squared drainage system with
closed outer boundary. Any increase in well productivity
will be determined by frécture parameters, which are: frac-
ture length, height. fracture conductivity, and location
of the fracture in the formation.

On the basis of the analysis of fluid flow in porous
media, the problem solving technique used in this study is
the numerical method. A three-dimensional finite difference
fully implicit model was written for this. In addition,

the Sparse Matrix technique was used as a solver. Furthermore,

- iii



Slices Source Over Relaxation was used as an iterative method
for solving routines.

Presented here are the numerical results of the three-
dimensional model for a well intercepting a vertical fracture
with finite conductivity. The results are presented in the
general form of dimensionless variables. Type curves con-
sidering the effect of fracture height on well performance
are included. 1In addition; type curves for turbulent flow
in the fracture are also oitained. Finally, other important
contributions of this work are the data showing the effect

of layered formation on fractured well performance.
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NUMERICAL SIMULATION OF HETEROGENEOUS FRACTURED
GAS RESERVOIR SYSTEMS WITH TURBULENCE

AND CLOSURE STRESS EFFECTS
CHAPTER I
INTRODUCTION

Hydraulic fracturing has proven to be one of the
most effective means currently available for increasing the
productivity of damaged wells or wells producing from low
permeability reservoirs. This process has been applied as
a well completion technique for about thirty years. In some
cases, this technique has been used to improve the injectivity
of wells in injection processes. Massive hydraulic fractur-
is a recent application, differing from hydraulic fractur-
ing in that much larger gquantities of fluid and proppant
are pumped to create extensive fractures in the reservoir.
Essentially, the hydraulic fracture causes a high permeability
condiut within the formation to allow a large drainage area
around the wellbore. With the introduction of massive hy-
draulic fracturing techniques, it is now possible to exploit
economically low permeability gas reservoirs.

Application of massive hydraulic fracturing to increase

-1-



production from low permeability formations has provided
unsatisfactory results, in many cases. In addition, pressure
analysis techniques often indicate the result of fracturing
differ from the designed parameters. Calculated fracture
lengths from actual well performance are much shorter than
the designed fracture lengths. In most cases, the assump-
tion was made that the permeability of the fracture is in-
finite and the fracture height equals the formation height.
Initially, these assumptions seemed to be realistic, but

in time, the analysis of preséure data including these assump-
tions.produced unreasénable results. Recently, solutions
have beén presented which develop techniques for analyzing
fractured systems with finite conductiﬁitigs;

The main purpose of this study is to determine frac-
ture performance using compufer simulation techniques. Also,
the effect of fracture height on the productivity increase
is to be closely examined. In addition, the effects of non-
Parcy flow within the fracture is to be considered. Further-
more, effects of closure pressure for a finite conductivity
fracture are considered. The phases of the study in this

dissertation are outlined in the following:

1.1 Fracture Geometry

Section IV proQides a brief description of the ver-

tical fracture system. Fracture forming and propping is reviewed



in this section. Fracture area is defined as the product

of fracture length and fracture height. It was always as-
sumed that fracture height equals formation height. 1In this
work, such an assumption is not made. Thus, fracture geometry
is determined by fracture length, height, and width. Frac-
ture height is limited by the upper and lower boundary of
fractured formation. Fracture width as well as fracture
length depend on formation characteristics and treating para-
meters. Finally, a very important factor which effects the
fracture system is fractue conductivity. The effectiveness
of a certain fracture is determined by the actual fracture

flow capacity.

1.2 Theoretical Considerations

Section V deals with the mathematical formulation
of the problem. The real gas potential is used instead of
pressure in developing the governing partial differential
equations for the system. In addition, the turbulent effect
of non-Darcy flow is considered for the fractured cells only.
The flow in the formation obeys Darcy's law. Finally, the
change of fracture conductivity with time and distance is

included in this study.

1.3 Numerical Mcdel Studies

A finite difference fully implicit numerical computer
program is written. The finite difference model is three-

dimensional one phase simulator. The sparse matrix technique



is used to obtain a direct solution. Further, the Slices
Successive Cver Relaxation is also used as an iterative solu-
tion scheme in this model. Section VI includes the finite
difference equation, boundary conditions, and methods of
solution. The validity of the model is also checked in this

section.

1.4 Objectives

The objectives of this work include the following:

1. Deﬁelop a three-dimensional simulator to model
vertical fractured wells in layered formations.

2. Determination of well productivity for vertically
fractured wells in heterogenous reservoirs.

3. Effect of fracture height on well performance
for vertically fractured wells with finite con-
ductivity fracture.

4, Effect of non-Darcy flow in the fracturé on well

performance for vertically fractured wells.



CHAPTER I1I
PREVIOUS WORK

To obtain commercial production of hydrocarbon fluids
from low permeable reservoirs, most of these formations must
be hydraulically fractured. One of the most important pro-
cesses developed in the petroleum industry is hydraulic frac-
turing. The importance of this process is indicated by the
increasing need for more. energy sources every day. Ever
since hydraulic fracturing was first presented to the petroleum
industry,1 it has been known that this process will increase
the productivity of a stiﬁulated well. Hydraulic fracturing
has been the subject of many studies. Several methods, analyt-
ical, experimental and numerical analysis, have been used

to investigate this process.

2.1 Analytical Solution

A vertical fracture is the most likely cutcome of
a fracturing treatment. Thus, most of the attention in the
literature has been directed toward vertical fractures. Much
of the early work on fractured wells was concerned with
the study of steady state behavior using analytical models.

In 1961, Prats2 studied the production response and pressure



behavior of a closed cylindrical reservoir producing an in-
compressible fluid through a single, vertical fracture located
at the center of the cylinder. Prats' study considers the
effect that fracture capacity;as well as the formation damage
from fracture treatments, have on the productive capacity

of vertically fractured wells. In addition, the study gives
the equivalent well radius of a fracture having different
lengths and capacities and, also, includes pressure distribu-
tion in and around the fractures. The effect of a damaged
zone around a fracture on the production response was not
found to be as great as reported earlier in the literature

by Van Poolen.3 This difference probably stems from the

fact that Prats considers a damaged zone which is widest

near the fracture, while, VanPoolen considers a damaged zone
having a uniform width for the entire fracture length.

Prats found that the production rate decline increases
as the fracture length increases. He suggested that the
lateral extent of the fracture can be determined from com-
parison of production rate declines before and after frac-
turing, or it can be determined from the rate decline if
the fluid and formation properties are known. It is found
that extensive damage to the formation around a fracture
(99 percent permeability reduction for a depth of 1 inch)
may not necessarily result in appreciably poorer production
rate response. It is concluded that the improvement in pro-

duction rate due to a high-capacity fracture is equal to the



improvement in production rate due to an acid treatment which
results in an z2ifective well radius of one-fourth the fracture
length. This suggests that fracturing is to be preferred
to‘acidizing if the creation of long fractures appears probable.

Prats also found that if the ratio of reservoir radius
to fracture radius was greater than two, then the production
behavior of such a fractured system can be represented by
an equivalent radial flow systgm having an effective well
radius equal to one-fourth of theltotal fracture length.

Muskat4 arrived at a similar conclusiorn: earlier when
he examined a fractured well in an infinite reservoir. 1In
petroleum engineering literature, this observation is known
as the "effective wellbore radius concept."

In 1962, Prats et 31,5 studied the effect of vertical
fractures on reservoirs producing a compressible fluid. The
pressure and production behavior of a homogeneous cylindrical
reservoir producing a single fluid through a centrally lo-
cated vertical fracture of limited lateral extent was in-
vestigated. The appropriate partial differential equations
were solved by using mathematical methods. It is assumed
that there is no pressure drop within the fracture, that
is to say, that the fracture capacity is infinite.

They found that the production rate decline of such
a fractured reservoir is constant when the flowing bottom-
hole pressure remains constant. This decline increases as

the fracture length increases. Thus, the lateral extent



of fractures can be determined from the production rate de-
clines before and after fracturing. They also concluded
that the production behavior over most of the productive
life of such a fractured reservoir can be represented by

an equivalent radial flow reservoir of equal volume. The
effective well radius of this equivalent reservoir would

be equal to one-fourth of the total fracture length. There-
fore, it appears that the behavior of vertically fractured
reservoirs can be interpreted in terms of simple radial flow
reservoirs of large wellbore.

In-1971, Van Everdingen and Myer6 studied buildup
curves obtained after well treatment. They concluded that
the point source solution can be used in analyzing pressure
data from normally completed wells. However, either an acidiz-
ing or fracture treatment invalidates this conclusion because
of the fact that the duration of one dimensionless time unit
is substantially increasad.

Although interest in wells intercepting vertical
fractures dates back a quarter of a century, the first compre-
hensive study of the pressure transient response of such
well, was performed by Gringarten et 31.7 They studied the
case flow to an infinitely conducting vertical fracture in
infinite reservoirs.

In 1974, Gringarten, Ramey, and Raghavan found it neces-
sary to re-examine the solutions presented by Russell and

Truitt. (This will be discussed in the following section



in more detail). The Russell-Truitt solution was not intended
for short time analysis. They examined the problem analyt-
ically by using Green's functions and the Newman8 product
method which had been discussed earlier by Gringarten and
Ramey.9 Gringarten, et al, were also the first to present
a complete and comprehensive view of the pressure behavior
of a infinite-conductivity vertical fracture. They modeled
a plane (zZero-thickness) vertical fracture which is totally
penetrating a horizontal, homogeneous, and isotropic formation.
A single-phase, slightly compressible fluid flows from the
reservoir into the fracture at a constant rate. The produc-
ing pressure is uniform over the fracture rate. The pro-
ducing pressure is uniform over the fracture (infinite frac-
ture conductivity). This pressure remains constant and equal
to the initial pressure as distance from the well becomes
infinitely large.

An analytical solution was obtained by Gringarten,
et al, called the uniform-flux solution. The uniform-flux
solution gives the appearance of a high, but not infinite,
conductivity fracture. Thus, unlike infinite conductivity
boundary conditions, the pressure varies along the length
of the fracture at any given time. Application of these
solutions to field data indicates that the uniform-flux
solution usually matches pressure behavior of wells inter-
secting natural fractures better than the infinite-conductivity

solution. On the other hand, the infinite-conductivity solution
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matches the behavior of hydraulicélly fractured propped wells
better than the uniform-flux solution.

Gringarten, et al, also proposed that log-log type
curve matching (actually Ramey10 suggested this approach
in 1970) be used to calculate permeability and frécture length.
The basis for the type curve matching procedure is well known
in petroleum industry literature. They, also, provide a
comparison of the analytical solution results for vertically
fractured wells with the Russell-Truitt data.

Application of the Gringarten, et al, type curves
to hydraulically fractured wells, in many instances, produces
results that are compatible with reservoir performance and
design calculations priof to treatment. But, in some instances,
the results ars not compatible with design calculations or
production performance, even though field data matched the
type curve very well. One of the reasons for this anomaly
appears to be the finite flow capacity of the vertical frac-
ture.

Refering back to the study of Prats, which was pub-
lished nearly twenty years ago, he described the effect of
finite fracture capacity as, '"the product of fracture permea-
bility and fracture width." This is defined and presented
in this paper. But unfortunately, its importance has been
ignored for many years. Prats showed that three parameters
controlled the pressure distribution around a fractured well.

They are, (A) the ratio of the fracture length to the well
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radius, (B) the ratio of the reservoir drainage radius to
the well radius, and (C) the dimensionless fracture flow
capacity. The first two parameters describe the geometry
of the system and the third is the measure of the ability
of the fracture to carry fluids from the formation into the
well. The most important contribution of Prats' paper is
the dimensionless fracture flow capacity. This determines
that well performance and productivity increase - not the
fracture length. Hence, for a long fracture to be as effi-
cient as a short one, the fracture flow capacity would have
to be much higher for the longer one.

11

Agarwal, Carter, and Pollock report that for practi-

cal purposes, the infinite-conductivity solution obtained by
Gringarten, et al, can be used if the fracture flow capacity
is greater than five hundred. They strongly recommend, how-
ever, when this is done, that prefracture pressure data be
measured whenever possible. Type curve match analysis can
be performed with considerable ease and a match can be ob-
tained. Agarwal, et al, have empirically correlated the
dimensionless pressure intercept as a function of dimension-
less fracture flow capacity. Thus, this correlation may

be used to determine fracture flow capacity-.

Cinco and Samaniegolz’13

have presented a methodical
explanation for the pressure behavior of a vertically frac-
tured well of finite fracture capacity. They have shown

that, initially, there is a fractured linear flow period when
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the pressure behavior is controlled principally by the frac-
ture. During this period, the formation has no effect on
pressure behavior since most of the fluid entering the well-
bore comes from fluid expansion within the fracture.

Subsequent to the fracture linear flow period, Cinco
and Samaniego have shown that another distinctive flow period
exists. They call this flow period a bilinear flow period.
During this period, the flow in the fracture is linear in-
compressible flow, and that which is within the formation
is a linear compressible flow. This flow period exists when-
ever most of the fluid entering the wellbore comes from the
reservoir when the effect of the fracture tip is negligible.
For the high fracture cabacity solution, we see that the
bilinear flow period may or may not exist. Cinco and Samaniego
have presented a technique to analyze data on the bilinear
flow period. It was shown that during this flow period,
a graph of bottom-hole pressure versus fourth root of time
yields a straight line with slope related to the fracture
flow capacity and fracture height.

The next characteristic flow period, according to
Cinco and Samaniego, is a linear flow period in the forma-
tion. A graph of bottom=hole pressure versus square root
time yields a straight line whose slope is related to the
fracture length. If boundary effects do not become dominant,
then the pseudoradial flow regime will govern pressure be-

havior.
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14 studied the

In 1978, Raghavan, Uraiet, and Thomas
effect of vertical fracture height on transient flow behavior
analytically. Their work presents an analytical study of
the pressure behavior of a well producing at a constant rate
through one vertical fracture from an infinitely large reser-
voir. The fracture height is less than the formation thick-
ness. They examine both the uniform-flux and infinite-conducti-
vity fractures and considered two fracture locations (center
and top) in the producing interval. In addition, they present
information regarding production rate changes as a function
of fracture height.

Raghavan, et al, have discussed methods for determin-
ing horizontal permeability, vertical permeability, fracture
length, and entry ratio from drawdown and buildup tests.

They concluded that at early times,; a linear flow period
which controls pressure behavior does exist. The duration

of this period is governed by the fracture location, fracture
length, vertical permeability, and the fracture type (infinite
conductivity or uniform-flux). If the fracture is located

at the top (or bottom) of the formation, the length of this
flow period is almost the same as entry ratio equals one

case. During this period, the well behaves as if the forma-
tion thickness is equal to the fracture height. TFollowing
the linear flow period is the transitional flow period. After
this period, a pseudo-radial flow period controls pressure

behavior. The onset of the pseudo-radial flow period depends
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on the reservoir thickness, fracture length, the ratio of
vertical-to-horizontal permeability, and is independent of
the location of the fracture.

Raghavan, et al, also concluded that the magnitude
of the pressure drops for the limited-entry case and is larger
for the complete-entry case because of the converging nature
of the flow. This additional pressure drop is time dependent
and stabilizes after the onset of pseudo-radial flow. The
pressure drop increases as the fracture departs from the
ceunter line of the forwmation. This implies that the produc-
tive capacity of a fractured well also depends on the frac-

ture location.

2.2 Experimental Solution

In 1958, Dyes, Kemp, and Caudle15 were the first to
investigate the effect of a vertical fracture on Horner plot
straight line. They used the x-ray shadowgraph technique,
using miscible displacement in porous models, while studying
the influence of fractures on pattern sweep-out efficiency.
Fractures were represented by leaving the proper portion
of the model surface which was exposed to either injection
or production. The types of models were to represent verti-
cal fractures in the five-spot flood.

The pool unit of a Carter electric analyzer was used
in studying the influence of fractures on productivity and
buildup behavior. The square drainage system of a well was

represented by a network of over five hundred elements of
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equal volume and resistance. Vertical fractures were repre-
sented by a shunt directed from the well perpendicular to

the drainage boundary. Horizontal fractures were represented
by a circular shunt.

Dyes, et al, concluded that short fractures can be
used in flooding operations to gain an increase in injectivity
or productivity. A long fracture does not harm the sweep
if it is directed between producers. Productivity and pres-
sure buildup tests obtained prior to and following a fracture
treatment on a well can be used to differentiate between
a short or long fracture in the reservoir.

Most of the experimental work in the area of vertically
fractured wells is done 5ecause of the great interest in
the productivity increase that would result from a fracture
treatment. Unfortunately, the results are not in good agree-
ment.

In 1960, McGuire and Sikora16 were studying the effect
of vertical fractures on well productivity by using an electric
analogue. This study considers fractures which extend in
a vertical plane with equal distance on both sides of the
wellbore and through the entire height of the reservoir.

The well of six-inch diameter drained 40 acres in a square
drainage area. They used the pool unit electric analyzer
in their study. By scaling, the results were applied to
all combinations of well diameter and spacings.

Sikora provided a family of curves for productivity
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increase in fractured wells under steady state conditions.
They showed us, experimentally, that the fractures can be
made more effective by increasing their relative conductivity.
This can be done by propping the fracture with large high
strength particles.

In contrast, little improvement in the productivity
of the well is gained by increasing the relative conductivity
of short fractures. This is because of the undistributed
formation beyond the end of the fracture controls the rate
of flow.

In 1963, Scottl’

examined the transient pressure be-
havior of wells intersected by a vertical fracture§ he used
a heat flow analogy. Results are correlated in terms of
dimensionless pressure change and dimensionless transient
time. Use of Scott's cgrvés provide a means of determining
reservoir permeability, effective wellbore radius, and frac-
ture length.

A heat flow model was constructed to determine the
applicability of the pressure transient theory to vertically
fractured wells. A complete description of the model is
presented in reference 17. For the test, the simulated frac-
ture well was inserted into the reservoir container. Then,
granular material of low conductivity was poured into the
container and vibrated to a uniform packing. There the reser-
voir was brought to a uniform temperaiure in an air bath.

Scott found, as Prats also found, that for high capacity
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fractures, the effective wellbore radius is about one-fourth
of the total fracture length. Effective wellbore radii in
Scott's experiments were found to be higher than those com-
puted by Prats for low conductivity fractures. He attributed
that difference to the physical size of the heating wires
used in the experiment. It was concluded that the vertical
fracture causes a changing slope of the transient pressure
curve in fractured wells. In addition, transient pressure
behavior of vertically fractured wells may be related to
dimensionless pressure curves to determine formation permea-
bility, effective wellbore radius, and fracture length.
Tinsley, Williams? Tiner and Malone18 have investigated
the effect of fracture height on staedy-state production
increase by use of electrolytic analogue, in which a conduc-
tive solution represents a uniform isotropic porous media.
They considered a vertical fracture with constant width in
a homogeneous formation producing a single incompressible
fluid under a steady-state condition. The model constructed
for these experiments was geometrically similar to a producing
well with a circular boundary drainage. The model was built
with all dimensions scaled to 1/100 of the prototype. The
diameter wall was a non-conductive sheet of acrylic plastic,
and the semicircular conductive well was aluminum. The well-
bore was represented by a vertical wire .031 inch diameter.
The fractures to be tested were constructed on a sheet of

plastic. This sheet could be inserted vertically into the
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model and clamped against the diameter wall. The fluid used
in the model for all tests was distilled water.

Tinsley, et al, concluded that productivity increase
is a function of the ratio of fracture height to formation
height. Steady state productivity curves of this function
showed lower porductivity increase values than the unsteady-
state published curves. In addition, the productivity in-
crease ratio for a given fracture decreases as the fracture
location departs from the center line of the formation interval.
However, for fractures less than five hundred feet in length,
the effect of fracture location upon productivity index is
negligible.

In 1977, Ming Mao19 studied the performance of verti-
cally fractured wells with finite conductivity fractures
by relating potentiometric and computed results. By assuming
a well intercepted by vertical fracture is in the center
of a drainage system with constant pressure on the outer
boundary, potentiometric model was constructed similar to
the model presented by Tinsley, et al. Studies were also
made from a staedy-state finite-element computer model.

Mao concluded that the productivity of vertically
fractured wells are best presented in terms of effective
wellbore radius versus fracture conductivity. This appears
to correlate effects of fracture length to drainage radius
for each value of fracture height to formation height ratio.

He also concluded that the studies by McGuire, et al, and
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Raymond and Binder20 appear to be rough approximations. Re-
sults of Mao’s study from both the potentiometric model and
the finite-element model, fit between Prats analytical solu-

tions and the Tinsley, et al, electrolytic model studies.

2.3 Numerical Solution

The first comprehensive treatment of the pressure
behavior of a fractured well was presented by Russell and

Truitt21

in 1964. They examined the pressure behavior of
fractured wells of infinite conductivity located in a closed
square reservoir'using a finite difference model. They con-
sidered a homogeneous, isotropic formation in the form of
a closed square completely filled wiih a slight1§ compressible
fluid of constant viscosity. Pressure gradients were to
be small everywhere and gravity effects were neglected. The
plane of the fracture was.located symetrically within the
reservoir and parallel to one of the.sides of the square
boundary. The fracture extended throughout the vertical
extent of the formation and production at a constant rate
was only through the fracture. The boundary conditions which
describe the physical situation of interest were specified.
Since it is difficult to solve the problem analytically for
the boundary conditions, the two-dimension-finite difference
analog was written, and the problem was solved numerically.
Russell and Truitt computed the pressure at the well-

bore as a function of time and fracture penetration ratio.

They demonstrated the effect of fracture length on the drawdown
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and buildup behavior of a vertically fractured well for a
wide variety of conditions. They concluded that in a verti-
cally fractured system, the transient flow regime is charact-
erized by a region near the fracture where the flow is
practically linear. Thus, pressure analysis methods based
on radial flow theory are somewhat inaccurate. The degree

of inaccuracy involved depends on the magnitude of the linear
flow region, i.e., the depth of penetration of the fracture
into the formation. The amount of fracture penetration also
effects the calculation of fracture length and the determina-

22

tion of average reservoir pressure. In 1968, Clark extended

this study to determinations of fracture length.

In 1969, Wattenbarger and Ramey23

extended the theory
of fractured gas well testing to the flow of real gases.

They determined the effects of wellbore storage and turbulence
on welltest interpretation by using a finite difference model
to simulate welltest conditions. The emphasis has been put
on the early transient behavior before the effects of outer
boundary are noticable at the wellbore. Their mathematical
model considers the well is centered in a circular uniform
reservoir. A vertical fracture of infinite flow capacity
penetrates the formation and passes through the wellbore.

The equation for the flow of real gas (pseudo-pressure m(p))
is used. Before applying finite differences to the model,

a coordinate transformation was made. The coordinate trans-

formation is a conformed mapping that has certain computational
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advantages.

Wattenbarger and Ramey concluded that the drawdown
testing for vertically fractured wells can be extended to
the real gas case by using the pseudo-pressure function.

The stabilized turbulence can be directly related to the
effective wellbore radius of a fractured well. They, also,
added that turbulence within the fracture itself is sometimes
more important than turbulence within the formation.

Morse and Van Gonten24 studied the productivity of
vertically fractured wells prior to stabilized flow. Numeri-
cal simulation was used to solve the relationship between
the production rate and time. They considered both constant
rate and constant wellbofe pressure, a squared drainage area
with closed boundary, and fractures of various lengths. They
concluded that the estimates of semi-steady state production
rates for fractured reservoirs are adequate where the forma-
tion permeability is more than ten md. For reservoirs of
very 1low permeability, production rates will be grossly
pessimistic during the first years of production.

Locke and Sawyerzs’ 26

studied the transient pressure
behavior of finite-conductivity vertical fractures in gas
wells in 1973. They used the numerical simulation and type
curve analysis to perform the study. Their solutions cannot
be used to analyze transient pressure data in fractured wells

becausde only specific cases were presented.

Cinco, et al., studied the transient pressurzs behavior



Tfor a well with a finite-conductiﬁity vertical fracture in
1978. They developed a mathematical model to study the
pressure behavior of a vertically fractured well with finite
conductivity in an infinite reservoir. They considered the
reservoir contains a slightly,éompressible fluid with con-
stant viscosity and the fluid produced through the finite
conductivity fracture which is fully penetrating the forma-
tion. o

Cinco, et al, provided a generallsolution that_could
be applied to analyge transient pressﬁre data for wells with
a finite conductivity vertical fracture. The solution can
be correlated as a function of dimensionless fracture conduc-
tivity. A degrease in dimensionless fracture conductivity
may be caused by either increase in fracture length or decrease
in fracture permeability or both. For dimensionless fracture
conductivity values greater than 300, the finite conductivity
solutions are identical to the infinite conductivity vertical
fracture solution of Gringarten, et al.

They, also, concluded that the uniform flux solution
of Gringarten, et al, follows a finite fracture conducfivity
solution of dimensionless conductivity equals a 4.4 at large
values of time. Pressure data for a well with a low fracture
condﬁctivity does not exhibit a one-half slope straight line
on log-log graph. |

28

Narasimhan and Polen studied fluid flow to a well

intercepting a vertical fracture. A numerical method, based
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on an integral finite difference approach is used. The inves-
tigated well intercepting fractures, in general, and vertical
fractures, in particular. Finite conductivity, wellbore stor-
age, damage, and fracture deformability are handled. They
provide a general purpose tool for studying the pressure
response in finite diameter wellbores which is the integral
numerical method described in their paper. Results are al-

ready published in some of the literature.



CHAPTER III
STATEMENT OF THE PROBLEM

The well is vertically fractured in the center of
a square reservoir and producing at constant bottom hole
pressure under unsteady-state conditions. The reservoir
is heterogenous, i.e., includes two layers, different poro-
sity, and permeability in.each layer. Further, the ianer
boundary between the two layers can be either a crozs-flow
or no crcss flow boundary. The above, below, and outer square
boundaries of the reservoir are no flow boundaries. The
fracture extends an equalldistances on both sides from the
wellbore . The fracture is propped and has a finite flow
capacity of (ka) and height hf which is different from the
total formation height (h).

The problem is to determine the well performance in
layered formations after the fracturing treatment considering
non-Darcy flow and fracture closure effects. In addition,
the effect of fracture height on well performance is to be
investigated. The results are to be determined using a
numerical model.

The system may be further simplified by the following

assumptions:
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1) Single phase flow exists.

2) Gravity forces are neglected.



CHAPTER 1V
HYDRAULIC FRACTURE GEOMETRY

Hydraulic fracturing is the creation, propogation
and preservation of a fracture in a reservoir formation.
In the process of hydraulic fracturing treatments, the frac-
turing fluid is injected into the bore hole and pressurized.
When the bottom hole pressure reaches the designed treating
nressure, reservoir rocks break down and a hydraulic frac-
ture is initiated. Further injection of fracturing fluids
results in fracture extension. The fracture growth depends
on treatment, formation pfoperties, injection rate, and total
injected volume. In order to keep the fracture open, the
propping agent is pumped into the formation. Several dif-
ferent proppants are used depending on the closure stress
in the fracture. In deep wells where closure stress is severe,
the super prop is usually the only alternative to sand. 1In
addition to preventing the fracture from closing, the propping
agents also provide a highly conductive conduit for the reser-
voir fluids to flow. The final result of a hydraulic frac-
turing process is a propped fracture.

Effectiveness of hydraulically created fracture is

evaluated by the real extent of the fracture and by the
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fracture flow capacity. In addition, the post-fracturing
production is an important factor to justify a successful
fracturing treatment. At the present time, no one can deter-
mine exactly the fracture configuration. One of the best
ways to obtain some information about fracture length and
its conductivity is from pressure and production.analysis.
The laboratory tests and simulations are anolhmer imporcant
source for obtaining information about hydraulic fracturing
by means of modeling the reservoir conditiomns. The SPE
Monograph, Volume 2, "Hydraulic Fracturing,' by Howard and
Fast, is a good source of pertinent information.28 This
section provides a describtion of vertical fracture system
as well as a brief review of the effect of treatment para-

meters on the fracture configuration.

4,1 Fracture Forming and-Perping

Essentially, the process of hydraulic fracturing con-
sists of injecting a fluid into the wellbore and pressurizing
it until the induced streeses éxceed the in-situ stresses
of the formation. At this point, a sudden major pressure
drop will be observed which indicate a fracture initiation.
Hubbert and Willis,29 studied comprehensively the mechanics
of hydraulic fracturing. It was suggested that a fracture
is initiated and extended in a plane perpendicular to the
least in-situ compression principle stress as shown in
FPigure 4.1. In general, the plane of hydraulic fracture

is either parallel, inclined, or perpendicular to the axis
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wellbore ————

4

vertical fracture

least principle stress

Figure 4.1 Fracture plane related to the least principle stress
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of the borehole. Thus, these fractures will be vertical,
angular, and horizontal fracture respectively as shown in
Figure 4.2.

Daneshy30 extended this work on the subject of frac-
ture geometry and its orientation by means of mathematical
models and experimental tests. It was concluded that both
initiation and extension of vertical fractures are caused
by purely tensile failure of the borehole wall and the sur-
rounding formation. It was concluded that the appearance
of a vertical fracture at the wellbore is not sufficient
to insure a vertical fracture, and that a fracture can change
direction away from the wellibore. This change of direction
can prevent a smooth fraéture and cause sand-outs.

Following fracture initiation is the fracture exten-
sion stage. At this point, hydraulic pressure is continuously
applied to the fracture face to hold the fracture open. 1In
this stage, the fracture geometry changes with the increase
of the total injected volume. This geometric change depends
on treatment parameters (viscosity, leak-off, injection rate,
etc.) and formation properties. The fracture will continue
to extend as long as the pressure applied at the tip of the
fracture. The final stage is propping the created fracture.
The main purpose for using the propping agent is to prevent

the fracture from closing.

4.2 Fracture Area

Fracture area is defined as the product of fracture
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Figure 4,2 Fracture Orientation
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length and fracture height. Since the extent of fracture
increases with time, the fracture area is a function of time.
For a certain fracture area, fracture length depends on frac-
ture height. For most cases, fracture height is determined

by the upper and lower boundary of the fractured formation.
For simplicity, it was always assumed that fracture height
equals formation height. In the present work, this assumption
is no longer held.

One of the treating parameters which effects fracture
extent greatly is the injection rate. High injection rate
will often increase injection treating pressure and extent
fracture area. Senddon31 presented a mathematical expres-

sion for hydraulic fracture extension. This expression is

given as:
_ 2 EY L

P S - { T{' L:f (i_vz) ] . ] [ . . . . L] . . . . . (4.1)
in which:

v = DPoisson's ratio of the material

S = Least principle stress

P = Pressure needed for propagation of the fracture

Y = Specific gravity of fracturing fluid.

Obviously, the above equation is based on some assump-
tions. The formation is assumed to be homogeneous, isotropic,
lineraly elastic, and impermeable to fracturing fluids. The
last assumption made the use of this equation limited in

field applications. The effect of fracture height is not
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included in the above expression which is a two dimensional

representation of the fracture.

4.3 Fracture Width

Generally, fracture width calculations aid in estab-
lishing the required injection rate for a certain treatment.
It is also an important factor in optimizing fracturing de-
sign. Fracture width is a function of both formation charac-
teristics and treating parameters. In other words, frac-
ture width depends on rock elasticity, injection rate, frac-
turing fluid properties, and fracture area.

Perkins and Kern32.were first to derive the expression
for calculating fracture width in a vertical fracture; for
Newtonian fluids in laminar flow:
qI“ij%

E

W= 0.02 [ Y € -

Newtonian fluids in turbulent flow:

2

W = 0.033 [ . [ . . . . . . . . . . (4.3)
B hf
______ Conditions for laminar and turbulent flow:
a2y
< 0.32 lamipnar . . . . ¢ ¢ 0 o o o . . (4.4)
hf u
dy ¥y
> 0.32 turbulent, . .- .-.- . ¢ « +« « « .« o« (4.5)
h:f u
in which
W = Maximum fracture width at the wellbore, ft.

Injection rate, bbl/min.

fle]
—
|
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Several assumptions were made in developing the above
expression of fracture width. These assumptions are:

1) Homogeneous, lineraly elastic and isotropic forma-
tion

2) The rocks are assumed to be impermeable to frac-
turing fluid, i.e., there is no leak-off taking
place.

3) It is either assumed that the fracture originates
from a point source (penny shaped crack) or that

it has a constant height.

]

v specific gravity of fracturing fluid
hf = fracturg height, ft.
Fracture width can be also calculated as a function
of proppant concentration. Figure 4.3 represents an experimental
correlation between fracture width and proppant concentration.
The following equation was derived from the above correlation:
Wo= 0104x 10785 ... ... (4.6)
where
Sc = proppant concentration in 1b/1000 ft.z
Basically, the actual fracture length could be reduced
considerably from the designed value due to crushing or em-

bedding of propant agent in the fracture.

4.4 Fracture Conductivity

Fracture conductivity is a very important factor in
designing and evaluating a hydraulic fracturing treatment.

The increase of well productivity following a fracturing
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treatment depends greatly on the fracture conductivity as
well as fracture extent. The fracture conductivity is de-
fined by the fracture permeability and its width. An analyti-
cal solution for fracture permeability is not available as
yet in the literature. However, the laboratory data on frac-
ture flow capacity for different proppant agents are avail-
able.

Now, let us discuss in the following section the formu-
lation of the mathematical model of a vertically fractured

well in layered media.



CHAPTER V
MATHEMATICAL FORMULATION

The problem of a vertically fractured well in the
center of a squared drainage area with no flow boundaries
will be formulated. In addition, the model will consider
a formation of two layers with different permeability and
porosity values. The inner boundary between the two layers
can accomodate cross flow as well as no flow except through
the fracture. The well is producing at constant bottom hole
flowing pressure.

This study investiéates the problem of a vertically
fractured well producing a single-phase which is gas. The
real gas potential will be used instead of pressure in the
real gas flow equations. The pseudo-pressure function of
Al-Husseiny et 22?3 is used in developing the governing partial
differential equations. The turbulent effect in the frac-
tured cells is considered. The flow in the rest of the forma-
tion cells is laminar and Darcy's formula is applicable.
Finally, the change of fracture conductivity with time and

distance is included.
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5.1 Single-phase Gas Flow Equations

Figure 5.1 shows a schematic view cf a vertically-
fractured well in the center of a square drainage area. The
fracture partially penetrates the reservoir formation to
a fraction of the total height of the two zones. This pro-
vides a three-dimensional fluid flow problem. If the frac-
ture height is assumed to be equal to the total height, the
problem becomes two-dimensional. The fracture can be in
any location between the upper and lower boundaries of the
two zones.

To reduce the computationaf time considerably, it
is convienient to take advantage of the symmetry of this
type system shown in figures 5.2 and 5.3. Unsteady-state
gas flow through a porous media is governed by nonlinear
partial differential equations which can not be solved by
analytical means. To solve the nonlinear terms in a vigorous
way rather than making simplifying assumptions, the finite
difference scheme must be used to solve such a problem. In
addition, the pseudo-pressure function simplified the prob-
lem and the nonlinear terms no longer appear in the partial
differential equations.

The equation for flow of a real gas in the porous
medium can be derived using Darcy's law and the principle
of conservation of mass. Appendix A includes this deriva-
tion in more details. Considering one cubic unit of reser-

voir formation through which, a single phase is flowing in
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Figure 5.1 A schematic view of a vertically fracturad well
in the center of squared drainage area.
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Figure 5.2 A two-dimensional view of the fractured system.
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wellbore

Figure 5.3 A three-dimensional view of one-fourth of
the drainage volume of vertically fractured

well in layered formation.
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one direction, from the equation of state:

3—%%;3J = - %—% - T D)

vEmE R LB
substituting equation (1) in (2), we have:
5% k- I (5.3)

using the gas law for real gases;

PM
p - ZRT . . - ) [ . . . . [ . . [} . . . . . . [ 3 (5.4)

from equations 3 and 4:

, (_ k PM ap) _
v _ZRT 37Z / _ 3 PM
ax - < ) . . . . . . . . . (5-5)

~% 3t | ZRT
dividing by M/RT which is assumed to be constant for iso-

thermal formation:

kP 3P o[ P
<]JZ ax) ¢ R('z); . . . . . . .« o . . . . (5-6)
Then, for the three-dimensions, we have in the reservoir:
8 kP 9P ) kP 3P 9 (kP 3P\ _ a_(P
(uz 3x)+ By(uZ 3y>+ ('JZ az)' ¢ at(~z)(5'7)
/

and in the fracture:

2 (5P sp), o_(XsPap) 5 (%% B\ _ . 3 (R) 4,
Wz 9% ay vz 3y 3z\ 1Z 9z % 3t |\ Z)'°"

where k and kfy represent permeablllty in the reservoir and
in the fracture respectivity. All variables are defined

in the nomenclature.
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5.2 Real Gas Potential Flow Egquation

Another approach to solve the problem is to formulate
the equations in terms of a real gas potential or pseudo-
pressure.  The use of this pseudo-pressure function simpli-
fies equations 7 and 8, derived in the previous section.

In addition, some of the non linearity in the partial dif-
ferential equations (5.7) and (5.8), will be removed when
the pseudo-pressure function is used instead of pressure.
The pseude~pressure is defined as:

P P

mP) =2f S dP . ... (5.9
uz
P

For convienience m(P) will be abbreviated to m, then:

om _ 9P |

ap - ].lz . . . . . ] . [] . . . . . ] ] L] L] . (] . (5110)
and;

dm _ om 3P

X 0P ox

From equation (5.10), we have:

_3_19' = __P__aP . . . . . . . . . . . . . . . . . . (5.11)

Now, the right hand side of equation (5.7) can be expanded:

5 (By_, R (l_103% 22
¢ a.t (Z)_¢Z (P Z aP/ at « e o e e & o o o e (5.12)

C == =2 L e e s (5.1

substituting equations (5.11), (5.12), (5.13), in (5.7),

we have:
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a_ om . om
% LE 3kl + 3y [k 53]

similarly, for the fracture;
3_ am
f dy

5y LK

) om
X [kf ax]+

The boundary conditions are:

%% (x, 0, 2) =0 % .
%; (x, Vs z) =0
-g;(o,y, z) =0
o
%; (Xgs V> z) =0
%E'(X’ y, 0) = 0.(
o

%’Z‘(x’ ) h) =0

m(P) = constant - o
m(P) = constant o
m(P) = m(P)I
Figures
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5.4 and 5.5 show the symmetry element and

The boundary condition between the two layers

The

wellbore can occur through the fracture

When no flow boundary case is considered

between the layers, the only connection between them will

be through the fracture.

where within the upper and lower out boundaries.

The fracture location can be any-

Some usual simplifying assumptions were made in
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Figure 5.4 The symmetry element and boundary conditions.
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Figure 5.5 The symmetry element and other boundary conditions.
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developing this model. They are:

1) Horizontal, isotropic, layered formations.

2) The fracture is vertical and extends an equal
distance from both sides of the wellbore.

3) The drainage area is square with no flow across
the outer boundaries.

4) TFlow is unsteady and turbulence only in the
fracture.

5) Gravity forces are neglected.

5.3 Non-Darcy Flow

Thus far, the mathematical formulation of the partial
differential equations is based on the assumption that the
flow behavior can be described as laminar. This is not true
especially in the case of gas wells. At high flow rates,
non-Darcy flow occurs more commonly in gas wells. Non-Darcy
flow also occurs in flow through high conductivity fractures.
Turbulent flow in porus media has been studied for many years.
In this section, the non-Darcy flow will be discussed.

Forcheimer34

suggested a non-linear equation with
a velocity squared term to represent the pressure drop in
a porous medium with non-Darcy flow.
AP/AL =  wv/K + BpvZ v v v v e v e e e e e . . (5.1T)
This equation is equivalent to Darcy's equation, except
for an extra term which considers the extra pressure drop

due to the high velocity. In the Forcheimer equation, beta

factor (turbulence factor) was required which is a characteristic
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of the porous medium Cornell and Kat235

measured the porosity
and permeability for a number of different sandstone and
carbonate formations. They derived a correlation of beta
factors as a function of permeability and porosity

The correlations described above are best suited for
flow in the formation. The correlation developed by Cooke®®
has the most immediate application to hydraulically induced
fractures. He noted that beta factors packed with multiple
layers of sand had not been reported and suggested the fol-
lowing equation:

B = Db/(1,000 KDZ & v it i et e e e e e e e . (5.18)
where a and b are constants which depend on sand size.

In 1969, Wattenbarger and Ramey,37 using a finite
difference model, studied the effects of turbulence in the
formation for a gas well intercepted by an infinitely con-
ductive fracture. They concluded that turbulence in the
formation only becomes significant for very small fracture
lengths, and that turbulence in the fracture is more common.

Holditch and Morse38 developed a simulator which in-
cluded the effects of non-Darcy flow in the fracture. In
their study, the beta factor was predicted by Cooke's formula.

Recently, Guppy, Cinco, and Rameysg’ 40 have investi-
gated the effects of non-Darcy flows within the fracture
for a vertically fractured system with finite conductivity.

They concluded that the fracture conductivity does not have

a constant value, but it varies with time.
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Non-Darcy Factor

To obtain the correct pressﬁre profilc in the reser-
voir under non-Darcy flow conditions, a correlation factor
called turbulent factor (d) is included in the partial dif-
ferential equations. § is derived as follows;

from barcy's law

AP/AL =I'Lu/kf- . . L] . . . . [] . . . . L) . . . (5.19)
the flow of fluid in the fracture with non-Darcy flow effect

can be represented by Forcheimer's equation.
AP/AL = 3 ik + p B V2 o o i oot e e . . (5.20)

from equation (5.20):

B p Vv kf. .
AP/AL u V/kf [1 + -‘_————‘_] . . . . . . . . . (5.21)

u

1)

AP/AL H .\)/I{T' o e . . . . . . . . . . . . . . (5‘022)

where kf = permeability measured under laminar flow conditions.
-

1 B e u kg

kT . [1 + ——'_—_—-] ) . . - . . . . . . . (5.23)
kf u X

kT is the permeability required in Darcy's law to provide

correct values under non-Darcy flow conditions. Therefore,

from equation 7:

. L] . . . . . . . . . ° (5;24)

m
In oil field units:
1
8 297 x 1010 5 5 v kgt ot oc o (5:28)
1+ "
where:
v = gas velocity in the fracture, ft/day
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The turbulent factor is a measure of the degree of non-Darcy

flow in the fracture. If g factor or v approaches zero, then
9 approaches one and flow is laminar. If the velocity is
high, the the value of 3 will be smaller than one. As the
degrée of non-Darcy flow increases, the value of the turbu-
lent factor decreases.

Now, for non-Darcy flow, the velocity of a fluid is

given by:
skf 9P
v= - T a_.x- L] L] . . L] . L] L] L] L] L] L] . L] L] . L] (5.26)

Thus, for the flow in the formatibn, equation 14 can- be used
to describe the flow behavior. For non-Darcy flow in the

fracture,- we have:

? - oam 3T am d am7 - am -
% [5,k~ —-]+ 37 [6kf ay]-i- p [akf az:] = d “Cgat (5.27)

Eugations (5.14) and (5.27) represent the flow of
gas in the formation and fracture at sny one point in the

reservoir for any instant.

5.4 Closure Pressure Effects

Another characteristic of a fractured system that
should be considered is the reduction in fracture permeability
with increasing closure stress. When a fractured well be-
gins production, the pressure in the fracture is reduced
significantly. The closure pressure is the difference be-
tween bottom-hole treating pressufe and the average pressure
in the fracture. The fracture flow capacity decreases as

the closure pressure increases. As a result of that, the
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fracture permeability decreases with time. Laboratory data
on fracture closure pressure as a function of proppant con-
centration and fracture flow capacity are available in the

4 and are presented in

Halliburton's Frac Theory Book
Figures (5.6 - 5.17).

Using the laboratory data of these figures, the effect.
of changing closure pressure can be considered in calculating
actual fracture flow capacity and fracture permeability.

The model considers the maximum closure pressure at each
cell in the fracture. However, a new fracture flow capacity

is determined at each time step. From that, a new fracture

permeability is calculated.
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CHAPTER VI
NUMERICAL MODEL

Numerical simulators can be used for solving the
mathematical equations in petroleum engineering problems.
These equations describe the behavior of the fluids in
porous media under unsteady state conditions. Peaceman and

42 were the firstito introduce the numerical models

Rachford
to solve the reservoir engineering problems in the 1950's.
Since that time, the numerical models have been used exten-
sively to model the most complicated patterns of reservoir
behavior. In some cases, the analytical tools are difficult
to use or impossible to use because of the complexity of the
problems. However, developing a computer model to solve
such difficult systems numerically is very essential. For
instance, in the cases of vertically fractured wells with
finite conductivity fracture, it is very difficult to design
a computer model to solve this system. In the past, two
important assumptions were made in developing such simula-
tors. One is that the fracture has an infinite permeability.

These types of problems can be handled by utilizing analyti-

cal means. The second assumption was that the fracture and

63



64

formation heights be the same.

In the present work, a vertically fractured well with
finite conductivity is simulated. Further, the fracture
height is different from the formation height. The forma-
tiorn is layered with no cross-flow between layers. In addi-
tion, the non-Darcy flow and closure pressure effects are
considered in the fracture. A three-dimensional reservoir
model, fully implicit, finite difference, is written. This
simulator utilizes beth an iterative and a direct solution

scheme.

6.1 Finite Difference Equations

Theiequations which govern the fluid flow in the for-
mation and fracture are derived earlier in the previous
section. The numerical solution of these equations can be
obtained by the use of the finite difference technique.

The equivalent finite difference equations are produced by
making the first order Taylor expansion for all derivatives.
The solution is obtained at discrete points in space and
time. Appendix B includes the finite difference equation

formulation. The finite difference equation for flow is

given by:
1 . mj+1—mj k. . mJ -m._4 ]n+1 .
Bxglovt By o 3R hG
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1 [k Lo e A Bl P B Lt
By, L7i+% Vi3 *i-% BY;_3 ]

1 [k Toal T My Mg~ Meg ]n+1 _
— 4 T - = == =
Azl £+2 +% 2‘% Zg_%

mn+1 m
+ 3 . - 3 3
(oucy)™? [ 1j ije ] FQ e (6.1)
At
Equation (6.1) can be simplified as:
n+1l n+l n+l n+l n+l

Cl mj+1 + Cz mj_l + 03 mi+1 + 04 mi_l + 05 m£+1 +

n+1 n+l _

b1 - C7Misp = RES ... (6.2)

where all coefficients c,-Co and RHS are defined in Appen-
dix B.

For the flow in the fracture cells, the coefficients
of equation (2) are calculated based on the fracture permea-
bility (kf). In addition, these coefficients include
another new term called turbulent factor (§), to consider
the effect of non-Darcy flow within the fracture cells.
Finite difference equations for fracture blocks are in-
cluded in Appendix B.

Several points should be noted in formulating the
previous equations. First of all, an irregular grid is

used. The dependent pseudo-pressure function is calculated
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at the center of each block. Figure 6-1 shows the grid

size distribution. This grid is used to increase the defi-
nition in regions where better control is needed. Cells
near the wellbore and fracture are a smaller size than those
away from the wellbore, This is done to provide a stable
solution.

Secondly, as fluid and reservoir properties are only
defined at grid points, some techniques must be used for
approximating interblock flow coefficients based on values
at the grid points. The term that makes up the flow co-
efficients is the fluid permeability. At the fracture
faces, permeability changes rapidly from grid block to
another. These sharp chénges in fluid permeability could
cause a significant difficulty. The two-points upstream
technique43 appears to be -a useful tool in evaluating
permeability at the upstream block face. The two-points
method provides a reduction in numerical dispersion. Thus,
at planes (i+}), the following approximation is used:

For flow in the minus x- direction:

Ax,

+1
k. k. . - J (Koo = Koq)eunnn (6.3)
J+ 3 j+1 ij+1 + ij+2 j+2 j+1
AXJ.
kj_% = kj - ij + Ax. (kj+1 - kj) ........... (6 4)

j+1
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The eguations for evaluating upstream permeability
for flow in the plus x'direction are included in Appendix B.
Equations (6.3) and (6.4) can be written for y and z direc-
tions.
| Thirdly, turbulence and fracture q}osure effects
are calculated in the main program. Equatioh (5.25) defines

the turbulence factor (§):

§ = 1 i i i e e e e . . (8.5)

T -10
+ 2.97 g 10 bpka

1

o

The turbulent flow is considered only in the fracture.
The flow in the formatioﬁ-is assumed to obey Darcy's law.
Values of density (p), velocity (¥), viscosity (u), and per-
meability (kf) are calculared for each fracture cell at each
time step. To provide stability, the turbulence factor at
time step t? is averaged with the old value. The following

equation is used:

& = 0.67 - + 0.34 62‘1 vere...(6.6)
1+ 2.97 x 10 Bovk,

The value of the g factor is calculated using

Cooke's formula:36

B = b/(1000k)* ...... e .. (8.7)
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The values of (a) and (b) must be read in the model. These
values depend on the size of propping agent. Table 6.1
provides this data.36
To consider the effects of fracture closure, the
bottom hole treating pressure must be read into the model.
The maximum closure pressure which is the difference between
bottom hole treating pressure and current pressure is calcu-
lated for each cell in the fracture. Using the data of
closure pressure versus fracture flow capacity, the new
permeability in the fracture cell is determined at each
time step. Therefore, the fracture flow capacity is chang-
ing with distance and time. These modifications produce a

realistic results from the model because the model is more

representative to the actual reservoir conditions.

TABLE 6-1
CONSTANTS a AND b FOR CALCULATING THE 8 FACTOR

Sand Size . a b
8-12 1.24 3.32
10-20 1.34 2.63
20-40 1.54 2.65

40-60 1.60 1.10
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Finally, the finite difference method is a fully
implicit formulation. The above equations are set up for
each grid block. Therefore, the following number of equa-
tions to be solved are defined as:

N = NX * NY * NZ
where:

NX

Number of blocks in the X-direction

NY Number of blocks in the Y-direction

NZ = Number of blocks in the Z-direction
These N equations are solved simultaneously for the unknown
pseudo-pressures at each time step. All parameters in the
left hand side of equation (6.2) are calculated at the
future time step (n+l), és are the unknowns in the equation.
The collected terms in the right hand side of equation (6.2)
are known from the old time step (n). The old pseudo-
pressure value is used in the RHS.

The boundary conditions around the entire system are

given by assuming zero permeability.

sm _ i =1,
3 x | A AX.
3

m. - m..
sm i 471 6.8
Ble AYi L (6.8)
sm 0 " M1
5z |C 57,

where:
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A - the boundary at (¥=0, or :#xe)

B - the boundary at (y=0, or y=yé)

C - the boundary at (z=0, or z=h)
The boundary conditions for producing cells (1, 1, 2) are
set up differently. Since these cells are producing, the
RHS of equations (6.2) must include the flux rate term. For
a constant bottom hole flowing pressure, the flux rate term

can be calcualted as:

RHS = RHS + C * PMPWf .........................

where PMPWf is the pseudo-pressure function corresponding
to bottom hole flowing pressure; C is defined in Appendix B.

The boundary conditions for producing cells are:

™ m. - PMPW,
= = = = non-zero
X |x=r_ Bxy -
............. (6.10)
m. - PMPW
om £
=¥ lyep = ——F——= = non-zero
oY |y=r, By

The inner boundary between the two layers can be

represented by assuming no flow (k = 0):

(=3

m Mo — Moy

9z Z=hi AZQ

In this case, the only communication between the layers will
be via the fracture. On the other hand, the inner boundary

can be with cross flowing;
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m, - m,,
%% |z=h, = A AL on-Zero ... (6.12)

1 Az,

6.2 Methods of Solution

At this point, equations were developed to describe
the fluid flow in a fractured formation. The finite differ-
ence equations are set up in the previous section. Combin-
ing all equations for N blocks yield NX * NY * NZ equations
with N pseudo-pressure unknowns, where NX, NY, and NZ are
the total grids in the X, Y, and Z directions. The matrix
formed by the equations appears as a 7-diagonal matrix. The
matrix has three central diagonals and four other diagonals
There are two basic methods for solving this system

of equations. TFirst, the direct Process: in this

method, the solution to the system of equations is obtained
upon the completion of a fixed number of operations. Second
is the iterative process. The latter process is cyclic in
nature, and the solution process involves several computa-
tions of hopefully better and more exact approximations to
the solution at each iteration. One technique of each pro-
cess is used in developing the model. 1In the following
section, the Sparse Matrix Technique will be discussed as

a direct method for solving this system of equations.

A. Sparse Matrix Technique

The banded matrix is solved by a direct method using

a sparse matrix solver. The big advantage of the Sparse
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Matrix technique is working only on the non-zero elements.
The technique involves two approaches. First, the matrix
is reordered to preserve its sparsity and to minimize the
number of operations involving non-zeros. Second, the re-
ordered matrix is solved by using an efficient Gaussian
elimination algorithm. The algorithm operates and stores
only non-zeros elements of the matrix plus the new non-
zeros that occur during calculations.

The Sparse Matrix algorithm used is similar to that

developed by Gustavson44

oughby.45 The details of the techniques are given in the

and Gustavson, Liniger and Will-

references. Initially, the matrix algorithm is based on
utilizing a Gaussian elimination method which is derived

by considering a coefficient matrix M, where the coefficient
matrix M is large, sparse, and non symmetrical. This matrix
can be factored as a product of L, a lower triangular matrix;
D, a diagonal matrix; and U, a unit upper triangular matrix.

Thus, the following:

M = LDU

The LDU decomposite of M is found, and the triangular sys-

tems are solved as:
LY = b, DZ =y, and Ux = Z

Since M is sparse, most entries of M, L, and U are zero,
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and there are significant advantages to factoring, storing,

or operating on the non-zeros.

B. SSOR Technigue

SSOR is an abbreviation for "SLICES SUCCESSIVE OVER-
RELAXATION." This is an iterative technique that is also
used in the model. Two important factors are required for
SSOR to converge. Firstly, the value of the iteration para-
meter (w) must be less than 2.0. Secondly, the matrix M
must be diagonally dominate. Which means, the absolute
value of the main diagonal must be greater than or equal
to the sum of the absolute values of other coefficients for
the same grid point.

The general equation 6.2 is rewritten for a slice

as follows:
C1My41 T CoMy1 T CaMiyg F CqMyg -
= RHS - CgMp,q = CgMy_ 1 srvrrvrcnnnennannennns (6.13)

Equation (6.13) shows that we have five unknowns.
If similar equations are formulated for all grid points in
level %, the NX * NY equations will have results which have
NX * NY unknowns. At this point, old pseudo-pressure values
at level %2+1 will be used in Equation (6.13) as knowns.
Also, pseudo-pressure values at level 2-1 wiil ke known

because they are just calculated from previous iteration.



75

Now, as for level %, we have a matrix which has the
dimension N*N which must be solved, where N equals NX * NY.
The alternating diagonal technique has been used in mathe-
matics for years. Price and Coats46 were the first to im-
prove the technique and apply it to petroleum reservoir
simulation., The alternating diagonal technique for two-
dimensional, single phase flow is explained in the litera-
ture. Thus, the alternating diagonal technique is used to
sblve this system of equations in one vertical level ().

To accelerate the convergence after the solution was
obtained for one level, the relaxation parameter (w) is used.
During over-relaxation, we ampiify the magnitude of pseudo-
pressure change during eéch iteration by simply multiplying
this pseudo-pressure change by (w). Thus, for a new pseudo-

pressure value, we have the following:

k+1 _ Kk k
myyT = Wy + w (mij - mij> ............ ceeeean (6.14)

It should be noted that this step is completed before
proceeding to the next level (&+1). In other words, the

extrapolated value mk+1

is used in the subsequent equations.
The optimum value for (w) is obtained by trial and error.

The process is repeated for 2+1, 2+2, ..., NZ. If
the solution doesn't meet the convergence criteria, the

iterative process continues until one of the following con-

ditions is met:
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1) The solution is obtained within the convergence
limit, or
2) Number of iteration exceeds the maximum allowable
limit.
For condition 2, the time step is reduced by factor of one
half and the process is repeated again. The relative error

in the model is defined in equation (6.15).

6.3 Computer Program

The computer progrém consists of main and several
subroutines. The main is used for all input, output, and
controlling DO LOOP. Appendix C includes a flow chart of
the main routine. Initial calculations, such as gas pro-
perties table (pseudo-pressure, viscosity, formation volume
factor, and compressability), gas inplace are made prior to
entering DO LOOP. The program will terminate from DO LOOP
when; 1) the gas flow rate drops below a certain limit;

2) total number of cycles have occurred; 3) average reser-
voir pressure reaches bottom hole flowing pressure; and

4) the total time in days exceeds the time limit. A mater-
ial balance is kept in main and a summary table is stored
for each step and is printed upon termination of the run.

Function PINT is an interpolation subroutine used

in several places throughout the program. Subroutine GASP
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is used to calculate the gas properties in each cell. This
subroutine is called:

1) To utilize all gas properties

2) During each iteration

3) At the end of each time step to update gas pro-

perties for material balance calculations.
In subroutine COEFF, the permeability for gas between cells
are calculated in x, y, and z directions. The average per-
meability is chosen based on the two-point upstream cell,
The boundary conditions are set up in this subroutine. All
coefficients Cys Cgs Cgs €4, Cg, Cg, Cn, and RHS are then
calculated. The last step in this subroutine is normalizing
the coefficients by dividing all of them by Coe At this
time, the matrix is set up and ready to be called for solu-
tion subroutine.

Subroutine CONT is used to control the process.
Several checks are made at the beginning of CONT. These
checks are to determine if the new time stey may be too
large. The time step may be reduced based on the maximum
pressure change in a cell, and the maximum time step. After
any necessary adjustment, GASP is called to update the gas
properties in each cell. Then SSOR or NDRV is called for
solution. Upon returning to CONT, the values of pseudo-
pressure for each cell have been calculated. Using PINT
interpolating routine, values of pressure are known at each

cell for time (t + At).
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Numerous checks are made near the end of CONT to
determine if the calculated values of pressure have met
specific limitations. If the pressure drop is too high,
another iteration is begun with time step reduced to one
half of the previous one. This is necessary to make the
program more stable by controlling pressure drop within a
certain limit for each time step. Appendix C presents flow

charts for the main and several subroutines.

6.4 Validity of the Model

The model was stable and consistent throughout all
different validation runs made to verify its accuracy. Some
points of interest should be mentioned before any discus-
sions of results. First; it was difficult to design a
unique grid-size distribution for all cells. In general,
this is one of the most imbortant features in designing a
stable simulator. To achieve acceptable results, it was
necessary to use irregular grid size. Because of the sharp
discontinuity encountered in this problem, especially near
the fracture faces, it was necessary to use small dimen-
sions in the vicinity of any discontinuity. Thus, very
small cells were considered near the wellbore and the
fracture. Larger cells, however, were acceptable at greater
distances from these areas of discontinuities.

For the purpose of this study, the drainage area was

treated as three-dimensional flow region divided into
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irregular flow cells. 1In addition? the discontinuity en-
countered in the third dimension is also considered. As a
result, a unique grid size structufe was chosen with fine
grids at some areas.

Second, the described model was stable under a wide
range of varying conditions. It was found that a very
small initial time step is necessary. This initial time
step in the model is 104 day. The time step can be in-
créased by a factor of two for every new time. The méximum
time step size is set equal to 20'days. In fact, it can be
larger or smaller than 20 days, as long as the convergence
criteria are met. If At.is too large, the program will cut
back At by a factor of %.

In many cases, it was observed that a large initial
time step caused oscillating solutions due to numerical in-
stability. In addition, more stability was obtained when
a maximum pressure drop for every time step is considered.
A maximum pressure drop of 300 psi is allowed for any time
step. If the pressure drop for any cell exceeds such a
limit, a reduction in the time step is considered. This
pressure control factor is very important, particularly at
very early time. - _

In general, the program was very stable because the
problem is implicitly treated. It should be mentioned

that the execution time was large when the iterative
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technique was used compared to the direct method solution.
For example, two different computer runs were made using the
same input data in both cases. Using the iterative solver
(SSOR), thé total execution time was 9,92 minutes for model-
ling the we&ll performance for 10 days of production. In the
second computér run, the dirent sclver (é;ARSE) yielded an
execution time of 3.2 minutes. This is expected because of
the heterogeneity which was involved in the problem. Thus,
in all runs, the solver used was sparse matrix technique.

Finally, in this study, the validity of the model

tion of a finite conductivity fracture (constant pressure
case). The solution generated for hf/h=1, laminar flow,
and the results were compared with the analytical solution
for constant bottom hole pressure presented by Agarwal.

et al.

The above results of these simulations are presented
in Tables 6.1;6.4 and Figure 6.2. Figure 6.2 is a plot of
log 1/qD versus log thf for various FCD‘ In Figure 6.2,
solution is presented for four values of FCD: 1, 5, 10, and
50.

Comparison of the analytic and numerical solutions
presented reveal two interesting points. First, there is
excellent agreement between the numerical solutions and
those of Agarwal et al. over most of the range. Second,

-4

for t <10 7, the numerical results differ from the

Dxf
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TABRLE &~ COMFARISON BETWEEN ANALYTICAL AND NUMERICAL

SOLUTIONS FOR FCD=10 ,HF/H=1 AND MDT=0
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analytical solution. 1In real life, this dimensionless time
corresponds to a few seconds. A smaller initial time step
and more iteration per time step will cause a better agree-

ment over that region.



CHAPTER VII
DISCUSSION OF RESULTS

All studies on fractured wells with finite conduc-
tivity fracture are based on the assumption that the frac-
ture height and formation height are equal. This is not
usually the case. Field studies on fracture height indi-
cate that this assumption'is unrealistic. Furthermore, the
propped fracture height through which fluid is produced is
less than the created fracture height.

In this study the effect of the fracture on the well
performance is closely examined for constant pressure case,.
The well is intercepted by vertical fracture with finite
conductivity. Two operating techniques are commonly used
by industry for producing wells; constant rate or constant
bottom hole flowing pressure. At times, constant flow
rates are hard to maintain due to wellhead limitations.
Also, if the reservoir is in the depletion phase, the flow
rate decreases with time. Generally, the constant bottom
hole flowing pressure technique is more likely to be used

during production.
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In the case of constant pressure, the flow rate
changes continuously, and the constant rate solution can not

be used. Recently, Ra.ghavan14

studied the effect of frac-
ture height on transient flow behavior for a uniform flux
and infinite conductivity fractures (constant flow rate
case). Agarwal, et al. published the results for constant
pressure production for finite conductivity fractures. These
results demonstrated that a graph of log l/qD vs log thf

can be used to determine fracture length and its conductiv-
ity by using the type curve match technique. Cinco, et
3;.12 solved the same problem by using semi-analytical
methods.

These studies showed that, at early times, a high
conductivity fracture gives a higher flow rate at a given
pressure than a low conductivity fracture. In the follow-
ing sections, we shall examine the characteristics of the

dimensionless rate as a function of dimensionless time

obtained by numerical simulator.

7.1 -Effect of Fracture Height

The main purpose of this work is to study the effect
of fracture height on productivity of a well intercepting
a vertical fracture with finite conductivity. Using the
numerical simulator, several runs were made for different
fracture conductivities. To compare the results with

Agarwal, et al. analytical solution, a Darcy flow in the
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fracture is assumed. When the fracture height equals
the formaticn thickness, a good agreement is obtained
between our results and numerical solution for all different
fracture conductivities. This has been mentioned earlier
in the validity of the model section.

Figures 7-1 to 7-4 are graphs of reciprocal dimen-
sionless rate versus dimensionless time and dimensionless
fracture conductivity. The term penetration ratio will be

used throughout this study which is defined as:

The case of b = 1 is equivalent to the complete fracture
penetration throughout the total formation thickness. At
this point, it should be mentioned that when b = 1, the
problem is reduced to two-dimensional. Thus, the flow in
the vertical direction is not significant because of com-
plete penetration. Thus, one may be able to compare the
results with the analytical solution for such a case.

As can be seen from Figures 7-1 to 7-4, for all runs
when b = 1, the results are comparable with Agarwal, et al.
The dimensionless flow decreases as the penetration ratio
decreases for any values of dimensionless fracture conduc-
tivity. This is expected because larger values of b cor-
respond to a greater fracture area. In general, all results
indicate that a fracture with b < 1 behaves as a fully

penetrated fracture with lower conductivity.
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Figures 7-5 and 7-6 present the result of long time
solution. As is evident from these graphs, the boundary
effect appears at the late time period. This is also ex-
pected because the model assumes a bounded reservoir. It
is noticeable that the curves cross each other at approxi-
mately thf of 20 and 100 in Figures 7-5 and 7-6, respec-
tively. This implies that for a partially penetrated
reservoir (b < 1) is depleted slower than a fully penetrated
reservoir. Obviously, such a depletion effect is because a
fully penetrated reservoir produces at higher rates at the
early time of well life. Figures 7-5 and 7-6 present the
late time solution in dimensionless form for two different
sets of xe/xf ratios of 5 and 10, respectively. A family
of graphs can be obtained by varying FCD and xe/xf for dif-
ferent b. But for illustration purposes, results for only

FCD = 10 are presented.

7.2 Effect of Non-Darcy Flow in the Fracture

It is also the objective of this work to study the
effect of turbulent flow and fracture height on the pro-
ductivity of a fractured well. It was shown in a previous
section that a turbulent factor (§) is needed to include
the effect of non-Darcy flow within the fracture. Since
the results are presented in the dimensionless form, a
dimensiohless pseudo-pressure drop is presented (mDT).

This is similar to the dimensionless constant presented by
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Guppy et al. This parameter takes into account the
pseudo-pressure drop as well as the turbulent flow factor.
The dimensionless pseudo-pressure drop for turbulence is

defined as:

DT RTu_w

I
and in field units
=12
10.478 x 10 Mkak[m(p)I - m(p)_.]

n _ wif

DT
Tqu

If My is very small (0), the flow in the fracture
is laminar. In this case, the pressure drop must be very
small. Consequently, the fluid velocity within the frac-
ture is small. When My is greater than zero, a non-Darcy
flow takes place in the fracture.

In this section, the effect of turbulent flow within
a finite conductivity vertical fracture in which the frac-
ture height is less than formation thickness is examined.
A quantitative result in terms of dimensionless parameters
are obtained using the numerical model.

Figures 7-7 to 7-18 are the graphs of reciprocal
dimensionless rate (l/qD) for dimensionless fracture con-
ductivity (FCD) ranges from 1 to 100. 1In these runs, b

is less than unit and My varies from O to 1. It should
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be mentioned that for b = 1 and Mpym = 0, the results are
comparable with type curves. When My > 0, a significant
reduction in the flow rate is obtained for any value of
fracture conductivity. This non-Darcy flow effect is clearly
noticeable at the early time data. Low and moderate fracture
conductivities (FCD from 1 to 10) showed relatively small
turbulent effect when Mg is greater than zero. On the
other hand, high fracture conductivities yield a more sig-
nificant turbulent effect for any value of b. This can be
seen in Figures 7-16 to 7-18 at early time. Basically, a
high conductivity fracture has a high fracture permeability
which causes a very high fluid velocity. Since the turbu-
lent effect depends on fluid velocity, it becomes more
significant in the case of a high conductivity fracture.

As is evident from all results, when Dnp > 0, the
fracture with non-Darcy flow effect behaves as if it had

lower conductivity.

7.3 Closure Pressure Effect

The closure pressure is defined as the difference
between bottom-hole treating pressure and the average pres-
sure in the fracture. The closure pressure has a signifi-
cant effect on the productivity of a fractured well and
should be considered. As the fractured well starts pro-
duction, the average pressure in the resérvoir and fracture

decreases. Thus, the closure pressure increases with time
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causing crushing of the proppant, and therefore, the frac-
ture flow capacity is reduced significantly. As a result
of that, the fracture permeability decreases with time.

The model considers the effect of changing closure
pressure as well as the effect of fracture height and tur-
bulent flow. The closure pressure is determined at each
cell in the fracture. Laboratory data for fracture con-
ductivity versus closure pressure and proppant concentra-
tion for different proppants are used to calculaté a new
fracture permeability at each time step.

Using data of Table 7.1, computer run was made to
study the effect of closure pressure when b < 1 in computing
actual fracture flow capécity.

Figure 7-19 presents the results of this run. As can
be seen, there is a significant reduction in the flow rate
with time when the closure pressure effect is included. 1In
this particular example, since 'the purpose is to study the
effect of closure pressure, the flow in the fracture is
assumed to be Laminar. This will eliminate the non-Darcy
flow effect. In addition, the fracture height to the for-
mation height ratio is 0.75 for both runs (with closure
and without closure pressure effect). Thus, one may be
able to justify that the reduction in the well productivity
is caused by the closure pressure effect only as shown in

Figure 7-19.
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Table 7-1

Reservoir and Fluid Property Data

effective permeability, md 0.5
formation porosity 0.1
initial reservoir pressure, psi 5000
bottom-hole treating pressure, psi 6000
bottom-hole flowing pressure, psi 2500
bottom hole temperature, °OF 250
well spacing, acres 160
wellbore radius, ft 0.5
gas gravity 0.65
gas viscosity, cps 0.021
fracture length, ft 1320
fracture flow capacity, md-ft 2 19800
proppant concentration, 1lb/1000 ft 1500
net pay, ft 40
fracture height, ft 30
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7.4 Layered Formations

The stratified formation is the most common tyvpe of
heterogeneous reservoir. The hydraulic properties of
porous media in them vary from one layer to another. Al-
though the study of fluid behavior of multi-layered reser-
voirs is important, it becomes more complicated whgn the
well is intercepted by a finitely conductive fracture.

A rather simple case is that of two layers in bounded
reservoir. The interface boundary conditions between layers
could be either with cross flow or without cross flow. 1In
the first case, the only connection between layers occurs
at the well and via the fracture. For the second boundary
condition, there is a créss flow throughout the interface
as well as the fracture. ZEach layer is homogeneous. In
addition, the initial reservoir pressure is the same for
the two layer system.

Many papers47’55 have dealt with layered reservoirs
with or without cross flow for unfractured formatioms. So
far, no numerical studies of layered media in fractured
system have been presented. Therefore, another objective
of this work is to present the numerical results of layered
formation in the fractured reservoirs.

Some of the dimensionless variables willi be used
throughout this discussion for convenience. These variables

are defined as:
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Figure 7-20 is the plot of reciprocal dimensionless
time, l/qD, versus the dimensionless time, thf’ on loga-
rithmetic scale for h1/h2 of one and dimensionless fracture
conductivity of FCD of ten. The permeability ratio kl/kz
is the parameter of interest in this graph.

Figure 7-20 shows that for the early time period,
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permeability ratios at 1, 5 and 10 follow one curve. This
indicates that the layered system behaves as an equivalent
homogemeous system with average parameters, ¢, h, and K.
It also indicates that at the early time period, the flow
behavior is independent of the permeability ratio for spe-
cific values of dimensionless fracture conductivity. It
should be mentioned that this behavior was noticeable for
all runs over a wide range of fracture conductivities.

Figure 7-21 presents the numerical results of the
long time solution for a twg layer system. This graph is
for FcD of 10 and xe/xf of 5. The permeability ratio
k1/k2 is varied from 1 to 50. The late time data indicate
the effect of boundary which is expected since the reser-
voir is assumed to be bounded. The late time solution also
indicates that the fractured layered system behaves exactly
as an equivalent homogeneous system. Similar results can
be obtained for different values of dimensionless fracture
conductivity and xe/xf.

On Figures 7-20 and 7-21 the effect of heterogeneity
formation is shown for fractured system. Both the early and
late time solutions yield the same results. The interesting
observation is that the performance of a two-layer fractured
reservoir with crossflow can be obtained by that of a single-
layer reservoir. The equivalent single layer reservoir
must have the same pore volume, wellhead and bottom hole

conditions. In addition, the equivalent system must have
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FéD’ k, ¢ and h.

On Figure 7-22 the effect of the ratio kl/kz on the
actual well performance is shown. The flow rate is plotted
. versus production time for crossflow case. The permeability
in one zone is decreased and the remaining parameters are
held constant. As it can be seen on Figure 7-22 with in-
creasing k1/k2 ratio the production rate is reduced signi-
ficantly. This implies that with decreasing the permeabil-
ity in one zone, the production rate is decreased.

The effect of varying the ratio h1/h2 ifor a parti-
cular set of parameters is shown on Figure 7-23. The per-
meability ratio is t and fracture flow capacity is held
constant. The ratio of hl/h2 is changed while the total
thickness remained constant. A higher flow rate at early
time is obtained with increasing hl/hz ratio as shown in
Figure 7-23. The same results can be obtained for differ-
ent permeability ratios. It should be mentioned that the
communican between the layers is not that significant
factor because there is a connection at the fracture faces.

Example output is presented in Appendix D.



CHAPTER VIII
CONCLUSIONS

In summary, the main objective of this study is to
present the numerical results of the three-dimensional
model for a fractured gas well. The behavior of a vertic-
ally fractured well is examined when the fracture height is
less than the formation thickness for both one and two
layers. For a single layer, the effects of non-Darcy flow
and closure pressure as well as fracture heights are con-
sidered. For a two-layer system, the ratio of fracture
height to formation thickness is assumed to be 1 and the
flow in the fracture is laminar. The parameters of in-
terest were the permeability ratio and the thickness ratio
of the two layers.

Most of the results are presented in the general
form of dimensionless variables. The following specific
conclusions are based on this work.

1. A numerically stable three-dimensional simu-

lator for a vertically fractured well with

finite conductivity is developed.
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A family of type curves for a well intercepting
a vertical fracture with finite conductivity and
producing at constant bottom hole flowing pres-
sure is presented. The parameter of interest
here is the ratio of fracture height to the for-
mation height.

The effect of combining turbulent flow and frac-
ture height on the performance of a vertically
fractured well with finite conductivity is in-
vestigated. A set of type curves is presented.
Closure pressure stress decreases the produc-
tivity of fractured well significantly in case
of high production rates.

For all times, the behavior of two layers in the
fracture system is similar to the single layer
when the average parameters (k, h, ¢) are used.
The productivity of fractured well is decreased
with increasing the permeability ratio kl/kz in
stratified system with crossflow.

Actual production rate of hydraulically frac-
tured well increaces with increasing the ratio
of heights hl/h2 in heterogeneous reservoirs.
Quantitative analysis of well performance con-
sidering fracture height and type of flow can be

obtained using type curves presented in this



124

study in conjunction with other available type

curves.



NOMENCLATURE

C transmissibility coefficient
Cg gas compressibility
E Young's modules of the materials
h formation thickness
Fc fracture conductivity
k formation permeability
L length
M molecular weight
m(p) pseudo-pressure function
m abbreviation for pseudo-pressure function
P pressure
q flow rate
gas constant (10.73)
RHS right hand side
T temperature
t time
w fracture width
X direction - x
y direction - y
b4 direction - =z
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Z gas deviation factor
v ‘ velocity
¢ porosity
H viscosity
p density
° turbulent factor
8 beta factor
A change

* Additional Subscripté
D dimensionless
DT dimensionless turbulence
e boundary
b ¥ | fracture
I reservoir conditions
i cells in y-direction
J cells in x-direction
2 cells in z-direction
‘sc standard conditions
n old time step
n+l new time step

We wellbore conditions
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APPENDIX A
MATHEMATICAL FORMULATION

The equation governing the single-phase flow of a
fluid through a porous medium can be developed by combining:

1. Conservation of Mass,

2, Darcy's flow equation, and

3. Equation of State.

Consider an element of a reservoir through which a
single-phase fluid is flowing in one direction (x-direction),
Figure A-1,

Mass Flow In = (pv)x AyAz

Mzzss Flow Out = (¢p)x+Ax AyAz

Mass Flow Accumulation = (¢p)t+At - (¢p)t AxXAyAZ
Then, at any instant;

Mass Flow In - Mass Flow Out = Mass Flow Accumulation

(pv) BYAT = (P py A2 = [(80),py = (00D, ] HGER2

Dividing by AxAyAz, we get:

—(QV)X+AX - (pv)x _ q) (—pt"‘At - p't)
AX - At

Take the limit as Ax, At go to zero;

3(pv) - _ 4 232 -
ox 3 d (A-1)
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Similarly,

a(g\;) = -, ?rec (A-2)

3‘3;) = - ¢ %% (A-3)
Then, for the three-dimensional flow

a(g;) a(g;) a(g\z)) = - ¢ ,?rg (A-4)
But, from Darcy's law

v = - % %% (A-5)

Then, substituting in equation (A-4):
(———)l——— ) o-x,)
ooX uoy /. A u2oz =-¢<32> (A-6)

Using the Gas Law for Real Gases:

M _
P = ZRT (A-7)

we get

kPM P o (- EKPMaP ) a<_kpmap
8\~ ZmTex) , UZRToX) | WZBT3X

3x oy 9z

PM
_ 99\ZrT

at

Dividing by M/RT which is assumed to be constant;



8(kPBP) (kPaP) (kPaP)
UZ3X + uZoy + _HZoz~ _ 3 (2) (A-8)
9x oy 9z ot ‘=z
the pseudo-pressure is defined as:
P
2P
= = A-9
m(p) Pf oz 9P (A-9)
m
then
_m_ 2P
p 1V
using chain rule:
om _ om 3p
3x = 9p ox
Then
om _ 9pdp -
99X = UZdx (A-10)
dm _ 2pdp -
oy WZoy (A-11)
om _ 2podp -
3z  pZot (A-12)
dm _ 2pdp
at uZat

Now the right-hand size of Equatioun (A-8) can be written as:

2p[2) -y (L2 g 20/

d ot
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_ 1 9a(1/Z), 9p
-‘b(f +p ——gé—-) Tt

_ P
=¢ A (

Lol ol
1
N
SN
A
2

(A-13)

From the definition of the isothermal gas compressibility;

c =1_13z2 (A-14)

Substituting equations (A-10) through (A-14) into equation
(A-8), we have

9 om o om ) om

3% By 3% * 3y Ky 5y) t o3z By 5p)

= dm , 2qRT -
=¢uC, 5% *+ Sy (A-15)

For non-Darcy flow, the velocity of a fluid is given by

dk 9p

vV ¥ - —1-1— Ix (A-16)

where § is defined as:
1
== A-17
u

Thus, for the flow in the formation, we have:

d om ) om d om, _

3% (B¢ 3%) y (ky 55)-F33'(kz 32

bug am -

HC, 3 (A-18)
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and for non-Darcy flow in the fracture:

= ¢4uC, 37 + q (a-19)

The above equations represent the flow of gas in the forma-
tion and fracture at any point in the reservoir for any
instant.
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Makss Rate of Accumulation

AZ

Mass Rate in - Mass Rate in

(PV)4nx <= - —(ov),

\\\’/f‘-——— Ax ~____*J

Figure A-1. Gas Mass Balance on Element.



APPENDIX B

139



APPENDIX B

B-1. FINITE DIFFERENCE MODEL

The flow equation can be expanded in fully implicit
finite difference form as:

For formation:

n+1
1 [, m..,-m ok m. - m; 4 1
AX. + A j— A
X3 E *j+3 -t Ax5 4|
1 r m. 1 - M. m - m. n+l
+ i+ i_ k. i i-1
Ay i+3 Ayl+% i-% Ayi_%
1 [ Mgy — My Mo = Mg 4 ntl
+ — [k -k 7 =
. Bzg |74+ 254, g~ 2y 4 ]
n+1 n
_ n+1 Mi,5.8 " M50

For the fracture cell:

- - D+l
1 Mi+r ~ 04 My Mg
o | 6K, L, L (sk),_, S——t
Vi | i+d  8yy,g i-3 fy; ; |
( m m m my Tl
1 2: S 27 a1
| Oy w7 09y mg
L e .
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n

+1 m?f% B mijz
= (¢ u CT [ e ] (B-2)

g’ijk
Rearranging Equations B-1 and B-2, we have:

For formation cells:

CpMyyq ¥ Comyq *C3my,q +Cyamy_ g+ C5Myyy
+ 06 my_q - C7 mijz = RHS (B-3)
where:
. k.
C. = — ditd (R-4)
1 Ax. AX.
X5 B%¥541
k.
- j-%
Co Ax. Ax. (B-5)
J 7i-%
k.
c. = _it% (B-6)
3 Ayi Ayi+%
k.
c = i-% (B-7)
47 oy; &y,
Cc. = _;_jiiiL__ (B-8)
5 AZQ Azz+%
k
~ = "'%
C, = ———=— (B-9)
6 &2A%%
C7 = C1 + 02 + C3 + C4 + 05 + CG + C/At (B-10)
C= (¢ uc)ttl (B-11)

g’ij?
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BHS = -z mjj, + Q (B-12)
_ 2 gRT
= T (B-13)

Equation B-3 can be used for the fracture cells as
well as formation cells. In case of fracture cells, the
coefficients C1-Cg are modified to include the Non-Darcy
flow factor (s).

Sk.

C. = —__ it¥ (B-14)
1f Axi Axi+%

8ki 3
- {B-15)
2f Axi Axi_%

Q
]

ok

C.. = J+% (B-16)
3f Ayi Ayi+%
ak .—%
Car = Ty Ay, o (B-17)
Y55V 5-3
&k
+1
C = P (B-18)
51 Azk Azk+%
oK 3 (B-19)
Cpp = ' -
6f Azk Az._%

Also,

Lqg = Cyg * Cgp + Cgp + Cyp + Cgp + Cgy

+ C/At - : (B-20)
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B-2, Two-Point Approximation for Fluid Permeability:

As fluid and reservoir properties are only defined at
grid points, some technique must be used for approximating
interblock flow coefficients based on values at the grid
points. The term that makes up the flow coefficient is
the fluid permeability. Permeability changes rapidly enough
from grid block to grid block, especially at the fracture
faces, to cause a significant difficulty. Although several
weighting schemes have been tried for evaluating the permea-
bility at the upstream block face, only the two-point up-
stream scheme appears to be a useful tool in this model.
The two-point scheme provides a reduction in numerical dis-
persion of the pressure and stability of the solution. Thus,
at the planes (i+3%) the following approximation is used:

For flow in the minus x-direction:

AXJ‘+1
k. = k. - (k. - k..4) (B-21)
j+i j+1 ij+1 + ij+2 j+2 j+1
Ax
k. =k, - ¥—=—F——7 (k. - k. B-22
j-% j  Ax * ij+1 ( J+1 a> ( )
For flow in the plus x-direction:
Ax%
kj+% = kj t Ax ¥ Ax. 1 (kj - kj-l) (B-23)
J J-
Ax
k., o=k, + j=1 (B-24)

Equations B-21 through B-24 can be written for y and z
directions. The above equations describe linear extrapo-
lations for kj+$ based on values 2t two upstream grid points.
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B-3. Calculating the Real Gas Flow Rate:

Using Darcy's law for laminar flow,

v = - 1,127 x 10°2

= |t
%15

(B-25)
From Gas law:

P,v P,v
11 _ 2°2 (B-26)

ZlNTlR Zo 1 RT2
Thus, in field units,

T Z
p

_ 9gc Pgc

9= 56157 (B-27)

sC

Substituting Equation B-27 in B-25,

T Z
PA

asc Psc
5.615 T

3

= - 1.127 xp

=

dp
sC ax

Separate variables,

3
Agc Pgy T * 10 ;

5.615 * 1,127 k TSC A 0 P1

P
VA dp
by definition, the pseudo-pressure function is
P
m(p) = 2 S =% dp (B-28)

Then,
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2 qSC PSC T fL ix
5.615 x 1.127 x 10™° k Tgo A ©
P3 P..
2 P Rap. R
oz 9p o7 9P
P E
m m
Integrate both sides,
2 q P T L
5C_8C€ = m(p)y - m(p),
5.615 * 1.127 x 10°° j T_ A
Thus,
6.328 x 10™° k T~ A Am(p)
q = SC scf/D
SC 2P T L
substituting PSC and TSC:
_ 0.111925 k A Am(p) (B-29)

¢ © T L

These above equations provide the flow rate of gas at each
grid block around the wellbore.
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APPENDIX C
FLOW CHARTS

C.1 Flow Chart of Main Program

< INPUT >

h 4

READ DIMENSIONS Ax,Ay,Az,NX NY,NZ

y

READ K, ¢, Pi’ Pt «—1 FORMATIONS PROP.

¢

READ GEOMETRY, CAPACITY X h P F

f> "f’ "¢’ "¢
!

NORMALIZE
FRACTURE FLOW
CAPACITY DATA

YES
2 T, ag’ ow’ X
PUBLISHED CREATE GAS
CORRELATIONS > PROPERTIES [< P, m(p), u, B, C_
TABLE E
L
\ 4
MISCELLANEOUS
CALCULATIONS

y

WRITE INPUT
DATA
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O

CALC. ORIG. <

GAS INPLACE

9\

N
z
B

=AxAyAzdBg 4

WRITE GAS INPLACE
AND
LOOK UP TABLE

o

BEGIN MAIN
DO LOOP 500

¥

INCREASE TIME

STEP SIZE

CALCULATE CLOSURE
AND
TURBULENCE

y

A

CALL CONTRL
CALL GASP

CALCULATE MBE

Qg, P, Gy Gp
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LL.GE.200 YES
NO
SAVE DATA FOR
SUMMARY TABLE
'
YES / WRITE /

' SUMMARY
TABLE

X
( STOP )




C.2 Flow Chart
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of Subroutine CONTRL

ADJUST TIME

STEP

SIZE

ADJUST TIME

UPDATE P,
m(p)

STEP SIZE

CALL

GASP

CALL

SSOR

LCY=LCY+1
ITER=ITER+1

CALCULATE P

from

m(p)

RETURN

YES

ICUT=1CUT+1

NO
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C.3 Flow chart of SSOR

BEGIN LOOP

L

=L+1

et

L 4

CALL COEFF

CALL SOLV

4

k+1
m,
i

\ CALCULATE m(p)

=m, +w(m.—ml.()
1 1 1

YES

K.LE.NZ

CONVERGE

NO
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APPENDIX D

SAMPLE OUTPUT
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Tk THREE DIMENSIONAL SIMULATOR FOR A FRACTURED LAYERED GAS RESERVODIR

HIS IS A TESI FOR FCD=10 ,K1/K2=50

CLUSURE PRESSURE EFFELT HAS BEEN NEGLECTED.
INPUT DATA IS5 NOT CHECKED FOR POSSIBLE ERRORS
TURBULENT EFFECT HAS BEEN CONSIDERED.

CLTTNMIZICEL =TT

ZONE ONE 3

EFFECTIVE PERMEABILITYsesoscosnsocaconasoncescaa 0500 MD

FURMATIUN POROSITYeeeeaosvcecscnccssncanscnccancsvae 0,100
INITIAL PR:SSURE-...'-...-...."..-‘.'...." 5000. PSIA

LZONE TCOW 3
FFECTIVE PERMEABILITYeavecevevsessscovsnncceces 0,010 MD
O&MAIIDN PURUS‘IY.-..C.....‘..........'.‘....... 0.100
NITIAL PRESSUREecevecseccscacsceccncncscnnee 5000, PSIA
ET PAY.'-...'...‘..-....l'."'.‘."..'...‘-.' "o. ’-EET
UTTOM HOLE FLOWING PRESSUREcececavcencsccass 3000, PSIA
OrTUM HOLE rEMPERATURE...l..'..........".... 250. F
EuLBORE RADIUS‘I...-.I....‘......'.."."‘...0.. ad FEET
ELL SPA_CING..‘...'.-..‘...Q...‘...."..’...'.' lbU. A(—RES
RACTURE LENGTHeoooessenvse FEET
RACTURE FLUW CAPACITY.. MO—FT
KOPPANT CUNCENTRATION.. Lu/1000 SQ.FT
AS GKAV‘TY....."O‘.....'.. -‘.........-.0.....0.650

ORIGINAL GAS INPLACEs MHCF = 0.68E+05

...........

e m i w e m = i e —— e T fem e
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