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ABSTRACT

Our current capability to accurately predict the per-
formance of a reservoir given a detailed description of its
heterogeneities, calls for an urgent need for an efficient
method of describing these non-conformities at any given lo-
cations in a reservoir.

In this study, a suitable approximaticn algorithm was
developed for use in the estimation of reservoir performance
prior to waterflooding operations. This algorithm, a two
dimensional cubic spline, constructs a smooth, and continuous
function of the given data values. This smooth function with
continuous first and second derivatives, removes the 'wiggly'
and undulating characteristics often present in most poly-
nomial approximations.

A number of tests using varying degrees of data con-
tamination shows that the model has the potential to reduce
bad data effects. It was also shown that the model can be
used to easily determine the reservoir floodable volume, the
water injection schedule for secondary recovery operations,
and an overall waterflooding performance.

The prediction method makes use of flow capacity dis-

tributions in a heterogeneous reservoir.
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CHAPTER I
INTRODUCTION

Our present capability to accurately predict the per-
formance of a reservoir given a detailed description of its
heterogeneities, calls for an urgent need for an improved de=-
scription of these non-conformities at given locations in a
field. Good waterflood engineering can be achieved by a pre-
cise and quantitative description of these reservoir hetero-
geneities. This need has become more critical particularly
now that the industry has turned its attention to the low
permeability regions of the field. Since it is now certain
that the probability of obtaining a homogeneous reservoir
structure is remote, experts are developing different mathe-
matical models to define reservoirs in terms of their inten-
sive properties. This is just part of the unending effort
by researchers to continuously evaluate factors affecting
waterflood performance in order to reduce operating costs
and increase ultimate recovery. In practice, a reservoir may
be non-uniform in all its intensive properties such as pore
size distribution, wettability, connate water saturations,
crude properties, permeability, porosity and thickness. This

study recognizes the last three parameters: permeability,
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porosity and thickness as important tools needed in the plan-
ning of waterflood projects when we have available core
analysis data. Various techniques for describing a reser-
voir by means of these basic properties are well documented
in the literature.

Kruger (18] was the first to quantitatively describe
areal permeability distributions using observed differences
in well production history. Jacquard and Jain [13] used
field pressure data in their numerical téchnique model.

Jans [14] developed a regression analysis technique ana used
pressure interference test data. Johnson et al published a
method (15], "Pulse testing," for describing reservoir flow
properties between wells. Their technique showed promise

for providing a measure of storage capacity (¢h), and forma-
tion flow capacity (kh). Hutchinson [11] suggested that for-
mation outcrop be carefully examined to obtain information

on such factors as continuity of zones of specific perme-
ability,vextent of shale breaks, and the degree of stratifi-
cation.

The use of core data in the study of reservoir proper-
ties has been controversial. Kruger [l18] remarked that
the use of core analysis and/or well flow tests give sparse,
spotty, and doubtful information that are difficult to inter-
pret. However, Miller and Lenta [20] by use of a 'Posi-
tional Approach' method' had diéproved this belief. Using the

positional approach model, they were able to determine the



layering properties of Cotton-Valley resexrvoir project from

core data obtained from different wells. Skov, et al9 also

reported success when they used a similar technique to match
the performance of a number of fluid injection projects.

1.1 Review of Previous Waterflood Applications
Using Core Data

One of the earliest attempts to use a two-dimensional
approach of parameter distributions to predict waterflood
performance in depleted or nearly depleted reservoirs was by
Stiles [28]. He studied the lateral flow of fluids in forma-
tions of irregular permeability. He represented patterns of
irregularities by a smoothed permeability distribution curve
and a flow capacity distribution curve. The permeability
values were arranged in order of decreasing values. Dimension-
less values of permeability ratios were plotted against the
cumulative thickness (ratio). Similarly he plotted dimension-
less capacity ratio against cumulative thickness (ratio).

He also calculated water cut values and recovery values using
appropriate equations. Water Cut-Recovery Curve was then used
to predict the behavior of a well. The prediction model, how-
ever did not consider the structural nature of the reservoir
under study. To obtain better results, such other factors as
the shape of field, the structural position of the individual
wells, and well spacing should be considered by the model.

In his two dimensional approach Johnson [16] used a

graphical representation of porosity and permeability
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distribution to predict waterflood performance. His technique
was able to predict cumulative water injected and cumulative
01l produced in terms of percent water-cut by use of permea-
bility-porosity relationship. Classifying the reservoir per-
meability data (from core analysis) in order of decreasing
values, he made a plot of cumulative flow capacity versus the
logarithm of the corresponding cumulative volume. He observed
that the above plot is similar to the plot of logarithm of
cumulative oil recovery versus water cut. By this finding,
Johnson [16] is confirming the work of Stiles [28]. He also
observed that in highly stratified reservoirs, adjusting the
slope of the flow capacity-volume curves for mbbility ratio
will produce a slope approximating the slope of the performance
curve (figure 1).

Here again, Johnson [16] did not consider the effect of
the well structure and pattern. The accuracy of his work may
be limited.

Schmalz and Rahme [25] studied the degree and the magni-
tude of variation in waterflood performance with variation in
permeability profile. Using several precise mathematical re-
gression models such as straight lines of varying slope and/or
various continuous curves, they calculated a composite group
of waterflood predictions under constant reservoir conditions.

By obtaining a plot of Lorenz coefficient versus per-
cent recovery (of recoverable oil), they made a preliminary

quantitative estimate of the expected performance of a flood,
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given only the permeability data. This general review shows
the extent to which core data can be stretched to profit the
petroleum industry. That oil wells perform in accordance with
their joint parameter distributions has been demonstrated [14,

16, 20, 25, 28].

1.2 Review of Literature on Selective Plugging

In most 0il reservoirs, the oil saturated formations
have strata of varying permeabilities and thicknesses. In the
waterflood process, the more permeable stratz are depleted of
0il first, and thereafter they continue to take large quanti-
ties of water even though they produce no more oil. This sit-
uation eventually results in large quantities of water circu-
lating through depleted formations. This results in an
unnecessary expense in the way of water costs and pumping.
High back pressure in the vicinity of the producing well will
interfere with the flow of oil from the less permeable strata.

Selective plugging is a practical method for preventing
the wasteful circulation of water through most permeable
strata. It generally involves the injection of dispersed
solids and semi-solids of such a particle size that they will
enter the pores of the most permeable strata (or factures).
The dispersed solids will travel some distance and then stop.
Particles keep building up behind this stop point until they
form a plug which stops the flow of water into the strata.

Wayne et al, [32] reported an unusually high degree of success
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over a variety of field conditions using selective plugging
technique. Joseph [17] reported the case history of a number
of field tests as successful.

However, his procedure has some major drawbacks:

1. Where there is no bedding planes to isolate the
plugged zone, the injection water may go round the
surface plug and enter the zone of highest permea-
bility. This means waste of a large quantity of
water.

2. An injection well may develop a backflow which will
wash away the surface plugging chemicals and thus
reopen the offending zone to accept flood water
again.

3. Field trials are limited since operators are reluc-
tant to treat the formation selectively when they
cannot determine quickly the location and effective=-
ness of such a treatment.

4, Selective plugging chemicals can get so costly that
the application of the technique becomes uneconomic,

5. Irregular absorption of chemicals to the formation
rock can cause the blocking of the wrong zones --
hence defeating the purpose of the technique.

In view of these difficulties and the fact that the

first stage of selective plugging requires an accurate know-
ledge of waterflood profile, the method of this study proves

advantageous and superior. All we need to know in this
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investigation is the core data, then from the interpolation

algorithm and the resulting graphical display oi the reser-

voir parameter, we can isolate zones of interest where spe-

cial treatment may be necessary.



CHAPTER II

MAPPING AND VARIOUS INTERPOLATION PROCEDURES

2.1 Contour Mapping

Contouring is a way of representing pictorially val-
ves of a variable at various points in a study area. Contour
maps are frequently used to obtain detailed pictorial repre-
sentation of a function of two variables whose values are
known at discrete points.

In geographical research, contour maps are used to
represent terrain surfaces. 1In crystallography, contour maps
are employed extensively to map electron density. Imaginary
surfaces comprising of a continuum of all possible parameter
values can be employed in reservoir engineering studies to
map reservoirs parameter distributions. Unlike the surface
treﬁd analysis employed in geographical studies, contour
mapping in petroleum engineering studies is difficult to
obtain due to the problem of limited data resources. Thus,
we must therefore rely on some kind of an approximation theory
to generate the much needed data matrix by interpolation.
procedure.

The approximation technique considered suitable for
this sort of investigation is one that would represent the

data information as a continuous function of two variables.
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The continuity condition is desirable to eliminate the presence
of maxima points at the nodes of given data points, and the
existence of saddle points at the unknown data points -- both
of which are present in other interpolation methods. The re-
sult is a curve, smooth and differentiable at all points.
This mathematical approach is also considered noise free --
resulting in smooth contours.

Contour plotting involves the drawing of contour lines
through equal values in a two-dimensional surface. A contour
plotting algorithm [29] may be constructed by following con-
tours from some starting points until they either close or
intersect a boundary. Alternatively each cell of the grid
can be examined in turn and then all contours found inside the
cell are drawn.

Linear or non-linear interpolation procedures may be
used in the execution of a contour. All contours intersecting
the boundaries are drawn first and then all contours which do
not intersect the boundaries are drawn later.

The contouring algorithm modified and used in this study
is due to Synder [29]. It is presented under the Statistical

Analysis System [24].

2.2 The Three Dimensional Projection

A conceptual surface is often obtained when a function
whose points are related by some two-dimensional system of
co-ordinates is associated, point to point, with the cor-

responding value of variable, Zi’ say. The implication



11

of the above is that as many conceptual surfaces are possible
as there are variables.

In engineering, the determination and variation of
these conceptual surfaces can be related to the variation of
corresponding non-spatial functions from point to point.
This variation can be regarded as the flow on the conceptual
surface, and thus, the generation of this conceptual surface
can replace the physical system.

In petroleum engineering, this conceptual surface
can range from flow capacity (kh) to flow volume (¢h). An
understanding of how the peaks, pits and beds associated
with these projections are related to one another, will give
the engineer the desired insight into the flow of the non-
spatial variable.

A sequence of points in three-space iS usually con-
nected together by linear interpolation between adjacent
points. The three dimensional plot adopts a masking tech-
nique. Those lines or portions of lines which should be
hidden by previous lines are masked. This means that lines
in the foreground in the positive Z-direction are plotted
before lines in the background. A line or portion of a line
is hidden if it lies within the region bounded by previously
plotted lines.

The three dimensional algorithm modified and used in
this study is due to Watkins [31]. His algorithm was modi-
fied under the SAS [24]. The algorithm accepts three dimen-

sional data in various forms rotated in three dimensional
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space. The projection of the resulting figure is plotted on

to the x-y plane.

2.3 Available Interpolation Technigues

To be very effective, a good interpolation algorithm
should provide some or all of the following conditions:
1. It should reduce estimation errors to a minimum
and give exact values at the data points.
2. It should be simple and manageable so that the
evaluation of data points is not tedious.
3. The interpolation function should be nice and
continuously differentiable.
Two-dimensional approaches briefly discussed in this
study include:
The multi-quadric approach
The trend surface model
The normal distribution model
The triangular model
Unfortunately most of the above models are inadequate

for use.

2.4 Multiquadric Equations of Topography
10

and Other Irregular Surfaces

This is an analytical method that involves the sum-
mation of equations of quadric surfaces having unknown co-
efficients. The guadric surfaces are located at significant
points throughout the region to be mapped. Contoured multi-

quadric surfaces are compared with topogranhy and other
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irregular surfaces from which the multiquadric equation was
derived.

Topography can be represented by various analytical,
numerical, and digital methods, in addition to the classical
contour map.

Earliest work in topography solved thé problem stated
thusly: given continuous topographic information in a certain
region, reduce it to an equivalent set of discrete data example
spherical harmonic coefficients or digital terrain incre-
ments.

My study among others [10,23] is concerned with the
procedural inverse of the above statement, thus: given a
set of discrete data on a topographic surface (or reservoir
parameter), reduce it to a satisfactory continuous function

representing the topographic surface (or reservoir parameter).

2.5 The Multi-Quadric Model

The‘multi—quadric model is an approach introduced by
Hardy [10] for obtaining the equations of irregular surfaces.
This technique has been modified for the purpose of this re-
view to be applicable to cases of heterogeneous reservoirs.
The procedure requires a set of discrete reservoir data.
The algorithm reduces the data into a satisfactory continuous
function representing a quadric surface having unknown coef-
ficients. The summation of a number of quadric surfaces will
give the profile of the physical system.

Consider a function Z with co-ordinates X and Y from
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a class of quadric surfaces Q,

el
1=

where Ai is a constant determining the algebraic sign or
flatness of the quadric term.
For a multi-quadric surface defined by circular

hyperboloids in two sheets: 2(1) becomes
- 2 2 3
_ . _ F3
zy = E A [(xJ. X0+ (YJ. Y.)" + Cl] 2(2)
i=1

For the case of cones and straight lines segments

C = 0 and -2(2) becomes

Zn 2 2.1
i=1
For an ellipse (Ellipsiod), 0 <C <1, a good approxi-

mation is considered here to be C = .5

Then

_i - 2 _ 2 z

Z__i = Ai [(Xj Xi) + (Yj Yi) + 0.5] 2(4)
i=1

If we assume that reservoir parameter are normally distribut-

ed; (Gaussian distribution) we have: assumptions similar to

this has been reported [10, 11, 14, 23].

__i _ 2 _ 2 3
loger = Ai [(Xj Xi) + (Yj Yi) + .5]
i=1
2(5)
7. = -[zu[(x'—x‘2 (Y. - v.)2 + .5]%
i~ e-lhjr WXy = Xy + Wy =%y -S1%]
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n 1 [(xj - X7+ (YJ - Y )T o+ 5]
-._::EE e
Zj = Ci -£2 2(7)
i=1
2 2
n [-(X, - X,)° = (Y, - Y.)° + 0.5]
or 2, = > C, e J = ] = 2(8)
i=1
Where A is the average spacing between data point positions
(ﬁx = Ay = A), equation 2(8) is similar to 2(4) but -it has

been modified to handle normally distributed random vari-
ables consisting of reservoir parameters for an elliptical

system.

-r2/A2
2(8) is the same as f(t) = ZIce 2(8a)
Thus a circle of radius r is a theoretical contour contain-
ing essentially all the variables of the population.

The solution of 2(8) will yield

AX = B 2(9)
where
.C “
1
(32 = X 2(10)
o
b n g
and
A o=
F{l
: = 2i =B 2(11)
Z
n
The matrix [A;4] = A (which is nxn) 2(12)

from 2(8) - 2(12)
X = A_lB 2(14)

When the known values of Ci are substituted into equation 2(8)
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we have the required equation of the surface - which fits
the data points exactly and provides a logical interpolation
at intermediate points. However, the real problem in multi-
quadric approach is the placement of a saddle in a region
with no data information. Questions regarding the continuity
of the first and second derivatives of the function may be
raised.

One important aspect of the multivariate approach
is that it can handle cases where the data points are irregu-

larly distributed.

2.6 The Triangular Approach

Bengtsson and Nordbeck (2) recommended partitioning
the domain under study into triangles having data points as
vertices. A plane is then passed through the values at each
of the data points. The approach calls for ordered or ran-
dom data with series of triangles having data point at each
vertex (see figure 2.0). Each side of the triangle is subdi-
vided into "J" equal parts. Hence the number of vertices
for any triangle is given by

N=(J + 1)(J + 2)/2 vertices 2(15)

2.7 Trend Surface Model

A Trend Surface is a statistically derived equation
to explain variations in given data values distributed regu—
larly or irregularly in X-Y space. It displays data by fit-
ting a continuous surface which can be described by a poly-

nomial equation. The parameters for an equation representing
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® Triangle Vertex - Surface value known (data point)
- Triangle Vertex - Surface value unknown

Fig2.0 - Triangular Approach
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a surface is estimated by use of least squares fit. Hence
the surface is fitted to data values in such a way that the
sum of the squared deviations between the given values at
data points position and the value of the -computed surface
at same points are minimized. A contour map displays data
as a continuous surface interpolated from discrete data as
a function of the distance of neighboring data points and
their associated values. The difference between a contour
map and a Trend Surface map using same data is the Residual
map. A perfect £it is unlikely using this model.

Equations describing Trend Surfaces can be linear,
guadratic, cubic-~et cetera (figure 2.1).

The general form of the above surfaces using polyno-
mial representation has been noted by Krumbein [19].

V+B4U2+B5UV+BV2+

U+ B 6

£(z) = Bl + B

2 3

B.u® + Bu?v + Bgv?y 4 BgV3 2(16)

Figure 2.1 gives the relationship of four orders of two-
dimensional polynomial curves to their three dimensional
counterparts [19].

It was pointed out [8] that the lower order surfaces
are very effective in isolating important local trends from
those that exist over a larger area while .the higher order
surfaces will reflect the Z-values very accurately. Trend
Surface analysis is therefore considered as a filter which

filters an input signal. The surface then represents the



Two = dimensional

Three - dimersionol
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LINEAR QUADRATIC CUBIC QUARTIC

[} v
2v04dy Zeovdyecut 2r orbueciled® Zraedyeculedideau®

Zocobuscy Tecoburcvidutscurefi? Zecabuecvrdlpeny Zicoebue - enseengle
sft egecetmante?

Fig. 2.1 Two and three dimensional representative

of surface trend analysis (19).
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result of this filtering process. As the order of the sur-
faces gets higher, the quantity of the input data that passes
through the filter gets bigger.

Figure 2.2 shows a trend surface map of Woods and Wood-
ward counties in Oklahoma. Raw data for this program was
obtained from Dwight's Natural Gas Data7 and modified appro-
priately for Symap Program.8 For the interest of this review,
figure 2.2 shows what happens to the data distribution when
the order of surfaces is varied from one to six. When the
order of the surfaces is one, very few data enter through
the.filter but when the order of the surfaces is increased
to six, more data enter the system for analysis. Hence more
description of the data is reflected in the latter.

Figure 2.3 is a contour map of a theoretical surface
using Symap Method.8 The contour plot shows how the relative
heights of the theoretical can be displayed for informational
purposes. Figure 2.4 is a trend surface analysis applied to
an oil bearing structure in Lost Springs area of Kansas.2
It is important to note that using a trend surface model, one
can identify oil»bearing structure. This being the case, the
study of trend surface capabilities seems to be a cause worth
taking. But the trend surface procedure has a big handicap.
It is an inexact method and is only fairly acceptable when
the number of data points is large. But since in Petroleum
engineering we are faced with the problem of limited data

information, trend surface analysis is not very suitable.



[T
Perereres:

Iz

A;: order one B: orier three C: order six

Trend surface analysis for original gas in place in

Fig. 2.2
Woods and Woodward counties using symap program(®>
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Fig. 2.4: Trend surface analysis applied to oil bearing
structure in Lost Spring arsa of Kansas.

(ref. 22).
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Exact interpolation methods give exact values at data
point positions. Two types of exact interpolation methods
exist. One employs a single global function in describing a
surface. The other uses a piecewise procedure. The approach
of the former is generally unacceptable because of problems
of "unmanageable complexity" associated with it, when data

values get very large.27

The latter is popular for its sim-
plicity and ease of use. Many problems mask the results of
most exact interpolafion procedures. If the interpolating
algorithm is one that does not have continuous derivatives,
the interpolated points can develop saddle points, and unne-
cessary minima points.

The weighted average approach introduced in Chapter III
was designed to correct most of the defects in exact interpo-
lation procedure. It is adequately suited for heterogeneous
reservolir application since it can comfortably handle irregu-
larly spaced data. Similar procedure has been followed else-

where,27 but Shepard worked on topographic surfaces instead

of reservoir parameters distribution.



CHAPTER III

Theory of the Weighted Averages

The weighted average procedure is an exact interpo-
lation method which puts into consideration a number of fac-
tors which affects interpolated parameters in a reservoir.
Such factors as distance between data points, the direction
of a desired interpolation value from the given data points,
the length and effect of discontinuities as they affect the
interpolation point, and the direction of the desired unknown
parameter value from the given data point locations, have
been considered in the formulation of the governing equation.
The governing equation is simply stated as:

N

£(z) = ?; (W323)/ 3w 3(1a)

The result of this fermulation is a curve that passes
through all the given data points. The curve is continuous
and so is its first and second derivatives. These properties
make an investigation of this algorithm worthwhile especially
when considering the estimation of reservoir parameters using

data points that are irregularly positioned.

24
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3.1 The weighting technique 27

Define a basic interpolation function as

N

£(B) = 102 (@)% 20/02 4,73 3(1)
i=1 i=1
where:
di = distance from point of interpolation to data
point position
P; = interpolation point
Z2; = data point value.

Implication of the inverse square distance expression used
in 3(1):

higher weighting is placed on nearby data points with
the result that the effect of far away data points is negli-
gible. What this means is that depending on the point of

interpolation, only nearby data points influence our results.

3.2 Conceptual procedure of the method

Define a standard radius as:

0.5
rg = |, (F)
m
where
A ='ﬂh2 = area of the largest circle enclosing
the reservoir
np = Number of data points to be used in the

interpolation
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N = Total number of data points

To successfully interpolate a value for Pi we do the follow-
ing:
(1) Specified minimum number of points required for
interpolation (nmin)
(2) Maximum number of points required for interpolation

(Npay)
i < . -> = . . = N
(3) if np Dmin np Pmin’ dl dmln
> -> —1 =
if N5 7 Dpax © Bp ¥ Ppax’ d; = dpay
Nnin ¥ Prax
f < =
if npin np < Doy -» np 5

From figure 3.1,

we shall find an interpolated value of p by weighting
the values at the data point positions while accounting for
the following parameters.

(a) distance

(b) direction

(c) slope

(d) presence of discontinuity.

The overall weightings will give an estimate for P;.

Boundary conditions: The boundary can be completely

defined by assuming an impermeable boundary layer. This
means that flow capacity, flow volume or rock permeability

will be treated as zero at the boundary.
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If however, a flow boundary is assumed then some values

of permeability defining the boundary should be provided.

/\Y . \ Va 3
~ \
'Y -1
_‘7 '3 ~ L
/
3 x >
[
- x
g > !
X !
7 x X
- . x ;
- x x /
{ ' /
- x x
A " v 1 x l/
- — .
J ¢ Reservoir
P . X
2 x ® / Boundary
| X 12
Aok y
- X A f/
/7‘/\ ‘/N\ ”\’}-
~——r+' " Data points

Figure 3.1: Conceptual procedure for the interpolation
of reservoir data.

If li is a weighting function defined as :

3(2a)

li = l/di, di# 0
Then 3(l) becomes
£p) = |1a? z) /321 3(2)
Restrictions !
— . -

0 if 4, > rp

f(p) = ;
f(.8rp) if di > 0.5 rp 3(3)
Zi if di = 0
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3.2 Vectorial weighting:

where

let S; be a directional weighting term

where 0 < Si <1
N
3
g = s./ a 3(4)
bR 1 i=1 b
J#L
§; = % (l-cos®), and is such that
§; = 0 for points in same direction
§; = 1l for weighting in opposite direction.
S; = % (l-cos9) . 3(5)
cos@ = Angle D; P Dj
Dy 2 %5, ¥; = data point Coordinate 1
D:J H xj, yj = data point Coordinates j
P = P(x, y) = interpolation point x, y
-> ->
cose = Di P . Dj . P
cos® = o AX.. AX + Ay..Ay 3(6)
didj i j i 745

where: di’ dj are distances of P from data point

positions Di’ Dj

Axi, ij are coordinate differences from P.

Thus Axi = (x-xi).
Let the new weighting function be W,

W, (1+g) =1 1+ g% 3(7)

1

& -
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Then
- -
N
p .
iil (Wizi)/iilwi if di # 0
£(P) = 3(8)
Zi if di #0 L
3.3 ~ Continuity Weighting
let
N
: p
pt = 1 223 ax, 3(9)
k=0 dk
i=o
N
. jo) .
qd = I QE% - dy, 3(10)
k=0 dk
i=o
where: pl = weighting of derivative of Z with respect
x dirZ
qJ = weighting derivative of Z in y - dirZ
dk = distance between any two data points con-
tained in Pn.
Let. M = (p12 - qu)O.S

define an increase

in data point value:

- (nl J
AZ; = (P Ax; + @’ Ay;) (X)) 3(12)
_ o
where Ai =z 3(13)
i
c; = o + ,di‘
A
_ A max
¢ = R 3(14)
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Nh = Maximum number of data points allowable
for each point interpolation

The final equation is

N N g
zpwz'/ zpn "if d. # 0
N M Ww. 1 .
£(z) = [|i=1 * 1 4i=1 % 1 3(15)
7. if d. = 0
A kR 1
] —

3.4 Influence of Discontinuities

If dc is the length of discontinuity and di is the
length from P to data point position
Then
2, .2,0.5
| - .
di = (di + dc) 3(17)
This value of distance in 3(17) is then used in 3(2), 3(3) and

3(4).
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3.6 Practical Example Problem

Find an interpolated value of flow capacity at a point
P with co-ordinates at the origin, given the values at two
other points A(2,0) with kh value 300 md-ft, and B(4,0) with

k, value 500 md-ft.

h

Solution:
cosine 0 = (0-4) (0+2)/(4) (2) = -1 or © = 180°
S. = %)2) = 1.0

gl = sl/dl = 4

92 = =%
_ 1 _ 5
Wl = mz (1+%) = Y
1
W, =3
P, = ‘292229%)(4) = 22.22
(4+2)
6
2
pt = 1P = 33.33
b= (33.33% + 090-5 = 33,33
200
« = 33373 = 0.6
C, = 0.6 + 4 = 4.6
Cy = 0.6 +2=2.6
_ 0.6 _
A, = gg = 0.13043
Ay = 0:6 _ 4.23077

N
.
(<)}
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Az, = ((22.22) (4) + 0) (0.13032) = 11.59262
8z, = ((11.11) (2) + 0)(0.23077)) = 5.1277
Z'l =12 + 42, = 500 + 11.59262 = 511.59262
Z'y = 2y +8Z, = 300 + 5.1277 = 305.1277
wW.2'; + W, 2
f(p) = 717 1 2 2 _ 5 1l
i I =€z (511.59262) + (§)(305.1277)
1 2
2 431
64 * 8
£(P) = 39.97 + 38.141 _ 384.54

El 1
624 7 3
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An example of a case where a discontinuity exists:

(dc = 3 units)

aj = (a2 + 32)0.3

ag = (16 + o> =5
ag = (4+9)°%5 =3.61
L, = 1/5 =0.2

1, =(1/3.61)= 0.277

with these new values of Ll and L2 we can calculate the

required interpolation function.
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NOMENCLATURE—WEIGHTED AVERAGE

distance from interpolation point to data point
position

An interpolation point

data point value

Area of the largest circle enclosed by the data
points

Number of data points to be used in the interpolation
process

Total number of data points

Maximum number of points needed for interpolation
Minimum number of points required for interpolation
weighting function associated with distance
directional weighting symbol

Data point position

distance of P from data point positions

a weighting function
Angle made by Dy P Dj
Constant

Max. number of data points allowable for each point
interpolation.

Partial derivatives of Z with respect to X,Y
respectively

equivalent distance used to account for discontinuity
effect

a function of Pl,qj.



CHAPTER IV
THEORY OF THE CUBIC SPLINE

Any third degree polynomial function which is continu-
ous on an interval a <X <b, and has continuous first and
second derivatives is referred to as a cubic spline.

For many years draftsmen used thin splines to smoothly
connect points of interest in a given surface. These con-
nections were made possible by means of weights or 'ducks'
attached at specified points. Figure 4.1 is an example of
what happens to a spline under various load conditions.

The forces tending to bend the spline can be accounted

for by the Bernoulli-Euler Law:

YY" (x) = SM(x) 4(1)

Y"(x) = M(x) 1/EI 4(la)
EI Y"(x)= M(x)
where:

M(x) = Bending moment

Y" (x) = Function Deflection

E = Young's modulus of Elasticity

I = Geometric moment of Inertia

a = Proportionality symbol

35
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L
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¢‘* >g
. -1
l” g \‘
L dd \\.
(2)
P P
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()

Figure. 4.1: Deflection of a continuous beam under
various load conditions.
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4.1 Reasons for the Cubic Spline Study

Since conventional polynomial approximations produce
results that are highly inflected, the cubic spline approach
is desirable for more reliable results. Whereas conventional
polynomial approximations give simple continuous function, the
cubic spline approach gives a continuous function whose first
and second derivatives are continuous. These additional prop=-
erties make the cubic spline approach capable of handling
derivative dependent functions such as velocity in potential
flow, and slopes to streamline curvature. The cubic spline
approach can smooth the surface and also can represent curved
sections with very few nodes.

An improved reservoir description is possible by assum-
ing that the reservoir parameter forms smooth spline surfaces
which are continuous. The nature of these surfaces may repre-
sent the degree of communication between different rock layers.

The two dimensional spline interpolator is a function
of co-ordinate axes. Since reservoir heterogeneity can vary
entirely with the co-ordinate axes, the spline approach is a
good asset to reservoir engineers.

Finally interpolation using the cubic spline properties
is currently very popular, particularly for interpolating

relatively noise-free tables of physical data.
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4.2 . Interpolation Using Cubic Soline

Due to the infleclLed or "wiggly” character often de-
veloped by the conventional polynomial interpolation, the
cubic spline function is developed to produce smoother con-
tours. In view of this, conditions for an interpolating cu-

bic spline have been given as follows:

a) F.(X.]) = £(X.) Function £(X.) is continuous
it 7i i -+ i
. b) Fi(xi+l) = f(Xi+1) at data point Value, Fi(xi) .
c) Fi (Xi) = F (xi-l) R Derivatives of X, same when
d) F."(X,) = F" (X, .) X. is approached from both
i i i-1 i . .
directions.

All four conditions indicate that both the function,

and its first and second derivatives are continuous in the

interval XO< X< Xn.

Figure 4.2 shows a linear function of the second deri-

vative M .
(x)

MXT

- e W e -

i~1 xn’ i +1

Figure 4.2:. Linear relation of M(x) vs X

~><—- -————J
x
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By linear interpolation, define the second derivative

of the interpolation function at any point X as

x—xJ._1
S"(x) = My, + ;;:;;:1 My - My 4] 4(2)
(xj-x) X=X3_4
S"(x) = M, —_—— . M, — 4(3)
-1 h. h.
J i 30
where
h. = R
i X xJ_1
(x;-x) (x-x;_q) (3)
S"(X) = M, , =——=——— 4+ M, 4(3
-1 h. h.
J j J i
Integrate with respect to (x—xj_l) or (xj-X)
(xj--x)2 mj(x-xj_l)2
S'(x) = -Mj—l Zhj + 2hj + Cl 4(4)
integrating again we nave
Mj_l(xj—x)3 mj(x-xj_l)3
S(x) = 3y + &h, + Cpx=x;_4) + Cy
4(B)
at x = X .1 S(x) = Yj_l;ﬁ(B) becomes
M (x.-x. )~
j=1""3 j=-1
YJ—l = 6hj + mj(O) + Cl(O) + C2 L[C]
C2 =YYy — % 4ol
when x=x., S(x) = Yj
Mjhz
YJ = Mj—l(o) + = * Cl(hj) +C,
Mjhz 5
Cihy = Yy - == - Y, ) + M, Eg
Y.-Y M.=M. h.
1 h 6 =

Putting in values of C, and C, in 4 (B) we have:

2
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2
M. (x.—x)3 (x=-x. )3 M n.
s(x) = ==t _J VIR 1.2 S SV bt SN S
= &h, j &h; j-1 6
X.=-X Mjhj2 X=X
j )+ (Yj - 3 ) j=1 e GF]
hj hj

Now we can list the equations that obtain

X=X. .
J=i 2 om0 1 eeeca-=
S"(x) = M. M, - M, 4(2)
(x) jo1 * . { i J_1] (
(x,-x) X=X . ,
SU(X) = M, , ——de— 4 M, —dt 4(3)
j-1 hj J hj 2
2 (x-x, ,) Y.=Y.
S'(x) = -M._ (xj_X) + M, 2hJ_l + -3 hJ .
J ——EE;—— J j
(M.—M._l)
S h - - == 4(4)
(x,-x)° (x-x _1)3
S(x) =My ) —sn— * M —en, — * (Yo T
] ]
2 2
M h, (x.-%x) y.-M.h, X=X _
j-1"3 ) ] + ( J J ] ) ( 3 l) ——4(5)
6 hj 9] hj
or
MJ_1 (xJ.-x)3 Mj (x-xj_l)3
S(x) = 5 { hj - (xj-X)hj] + =5 [___H;___- -
X.-X X=X
=1,
(x-xj_l)hj] + Yj—l( o ) + Yj( e ) 4(6)
J J
Putting the condition S;_l = S;(xj) in 4(4) we have
h. h, Y.-Y.
' _ _J j_j-1 - -
Sj-l(xj) = =z Mj-l + =% Mj + hj 4(7)
-M, Y Y. (M, .-M.)
! — J j+1 3 Jj+l 3
sj(xj) = —= hj+1 + 0 + e = hJ+1
j+l
h. h.
! - j+1, j+1 j+1 " ___
sjcxj) = Mj( z) MJ+1( =) H 4(8)

Equating 4[F] and .4(8) we have:
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Y., _-Y.
- j+1 ]
h Mj—l + A(hj+hj+1)“J + hj+1Mj+1 6 T
j+1
YY1 4(9)
h.
J
b, hj+1 [. +1 YJ
M + 2M. + M =16[
hJ+hj+1 -1 j hj+hj+1 j+1 hJ+l hj+1+hj)
Y —Yj 1
— ] 4(10)
hj(hj+l+hj)
or My o 2My o RiMy g s dj 4(11)
where:
. hj
Uy = s—————— = 1-A, 4(12)
3 hj+hj+1 J
h,
A, = j+1 4(13)
J h.+h,
i j+1
-
Y. .-Y.)/h, Y-Y. h,
j hj+1+hj hj+1+hj

Applying boundary conditions to 4(l1]) at boundaries

j=0, and j=N:

A -—
\uo )M_1 + ZMO + thl = do 4(15)
NMN-l + ZMN + ANMN+1 = dN 4(16)
Solve for MO’ Ml’ M2, e e e ey MN_1 by matrix using

Gauss-Elimination
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Knowing Mj

can now apply our interpolation function:

(3 = 0,1,....,N), we

3
) M. _ (x. = x)° - -
gx) = =L | hylxy = =)
3

h.
J

X.=X X=X .
Yi_ 3 j=-1
+Jl[hj]+yj[hj ]

We can now interpolate values of interest.

3
M. |(x - x:_4)

— —
2 Ao 0 e « « « 0 0 0 Mo
My 2 Al . . . 0 0 0 Ml
0 0 0 c e o o 2 An-2 0 Mn-Z
0 0 0 « . - Boq 2 An-Z Mn-l
0 0 0 0 n H2 M

n
— L7

4.3 Sample Problem for one dimensional spline

(Irregularly distributed data points)

ol

[

n-2

n-1

(STRE e TR o

4(18)

Obtain an approximate valuve for g(7), and g(10) by

interpolation (Table 4.l1). Given a natural spline boundary

conditions (M1=M6=0).

Divide eguation 4(9) by h.

j+1 and we get
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Jg+2(h + h., )[]+ My,
_G[Trﬂz _J;_J-_ 4(19)

j+l) 3+1)

For:
J=2; hj=4; hj+l=37 Yj_l=4; szlo; Yj+1=15
4 7 _ [s 1] _ 1
?[Mj-l]’* E[Mj]+ Ms41 = 6 Lg - 7] = 3 4(20)
Since Ml = 0 4(20) becomes:

21 M2 + 6 M3 = 2 -0 4(21)
For:
i=3; h] =3; hJ+l =3; yj_l=10; yj=15; yj+l=8

M2 + 2 M3 + M4 = =8 4(22)
For:
i=4; hj=3; hj+l=4; yj_l=15: yj=8; yj+l=3

3 7 M, + M_ = 13 4(23)

vy M3 + 7 4 5 =5

18 M3 -+ 84 M4 + 24 M5 = 39 4(24)
But Ml = M5 =0

18 M3 + 84 M4 = 39 4 (25)
from 4(21) and 4(22) we get

-36 M3 -21 M4 = 168 4(26)

4 x (4(25)) + (4(26))
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-126 My = 711
My = -5;643
4(27)
M, = 1.673
M, = 1.612

Ml = M5 = 0.0

Since we want to interpolate the function value when X, = 7.0,
we must use the cubic approximation to the interval between
j=2, and j=3 (or 6 < x < 9)

From equation 4(18), we can calculate g(7) using node

j=2
Thus:
hj = 4; hj+l = 3; xj—l = 2; xj = 6; xj+l =9
yj = 10; yj+l = 15
g(mn = M [(6-7)3 -4 (6-7)]
6 4

M 3
+ 2 (7-2)" _ -

2 o2t g 2]
6-7 [7-2]
+ 4 [}7TJ+ 10 T

g(7) = 0 + 3.02 + 11.5 = 14.52

Using linear interpolation g(7) = 11.86

Exact value is 14.0

M 3
Similarly g(10) = 6_2 [(:9_;_10) - 3(9-10—)]
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M l 3 ’
3 ](10=-6) (10-6)
+ = = - 3 =

+10 329 + 15 (10-6)

3
2812y (2 2/3) + ("2:54) (B2 - 12) - 22+ 20
6
g(lo) = 8.61
By linear interpolation g(10) = 12.7
Exact value is g(l9) = 9.3

Figure 4.3 shows how the one~dimensional method of this
study approximates the original curve. The closeness of the
values obtained to the exact values explains the quality of
this approach as compared to other approaches such as linear
interpolation method. The method of this study is recom-

mendable to problems dealing with curvatures, etcetera.

Table 4.1. Sample Data.

3 X Y;
1 2 4
2 6 10
3 9 15
4 12 8
5 16 3
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y N MM M MM

0 2 3/7 0 0 Ml
0 4/7 2 X 0 M2
0 0 % 2 4/7
7 My
My
.MSJ
Solutions:
Ml = 0.0
M2 = 1,612
M3 = 5.643
M5 = 0.0
g(10) = 8.61

Exact solution g(10) 9.3

By Linear interpolation g(l0) = 12.7
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Legend:
[ - given data point
® - linear interp.

15 @ - cubic spline int
original curve

10
5
0
X =
Figure 4.3 Comparison of the result of sample calc.

and linear interpolation with original
curve.
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4.4 Two Dimensional Spline Approach

In the one dimensional spline procedure, we constructed
an interpolating spline of the form g(x) as a function of a
single variable x. In the two dimensional approach, our
interpolating spline will be a function S(x,y) which is depen-
dent on the x and y co~ordinate axes. However, the two dimen-
sional approach is essentially an extension of the one dimen-
sional case applied in two dimensions. The major difference
between the one dimensional method and the two dimensional
approach is that the latter is mesh dependent as can be seen
later in this development.

The procedure for the two~-dimensional development of
the cubic spline interpolation is similar to that of the two
dimensional linear interpolation. Both use the basic theory
of Hilbert Space [1l]. Because of its simplicity, one can
present the development of the two-dimensional linear inter-

polation first for illustrative purposes.

4.4, (a) Two-Dimensional Linear Interpolation

The procedure for obtaining the two dimensional linear
interpolation is represented in figure 4.4. First, carry
out linear interpolation along the x-axis to obtain values
for fA and fB' Then interpolate between fA and fB linearly
along the y direction while keeping x constant to obtain the

approximation value f£(x,y) o
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|
f. Ay I Py f. .
X Al S L ii+l
T 7e T
: Legend:
| - known data pt.
A, ' ® - unknown data
I
I
I
|
f f(x,y) fB
X ‘“'ﬂ"i‘“%"l -
|
b, |
|
Amﬁ+hj 1 AJ%ﬁ+Lj+|
Xisi T JD T
|
y- y

Figure 4.4 2-Dimensional linear interpolation
(rectangular mesh system).
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Derivations: x. < x <xi+l; y
Let Ax = X - X7 AY =y - Yj
by = %541 ~ %
by, = ¥i41,4417 Y
By
fa = fig* 0,578, 5) (5562
X X
A A
£, = (1 g ) £.u =(—=—) £, -
A Ax+bx ij Ax+bx i+l1,3
Similarly
A A
Fo o= (= =2 )Ff, ...+ () ... .
B Ax+bX i,j+1 Ax+bx i+l,3+1
A
£ay) = £ + (15 = ) 5550)
y Y
f(x,y) = (1 - B)fA + BfB
where:
A Ax
6= K—¥B— r TR
Y Y X X
then
fA = (1 - a)fij + afifl,j
fp= (1 = f; 50 vofi, 441
£(x,y) = (1 - B (1 - a)fij + B(lL - o)f

+ a(l- B)f,

i+l,3

+ (aB)fi

i,3+1

+1,3+1

i <Y< Y5

4(28)

4(29)

4(30)

4(31)

4(32)

4(33)

4(34)

4(35)
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4.4.(b) Cubic Spline Interpolation in Two-dimensions:

The two dimensional spline interpolation like its two
dimensional linear counterpart will first interpolate values
of Sar Spr S¢ and Sb in the x-direction while holding y axis
constant. The one dimensional spline approach is further
applied in the y-direction using known values of fA' fB’ fc
and fD to obtain an estimate of S(x,y) at the desired points.

The interpolating function is as given in 4(6) for x

axis:
- 3 .
M, (x;-X)
_ i-1 i
- - 3 b
P O G T ) (X%i-1)0y
b h.
| B J
+ fi-l (——32——) + fi (———HI———) 4(36)

where fi are the function values (Figure 4.5).

By putting appropriate values of distances A, B, C, D ,we can

determine fA’ fB' fc, fD where x is such that %51 <X <X

j-17 f = F¢ fo ® Eyup fp E £y

NOTE: fA z £

These values thus determined form new data points for

a one-dimensional interpolation along the y-axis.
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Legend:
. @~ known data pt.

&
3

J‘
—

®- unknown ‘ata pt.

1
1‘-'
L

— te  mede  c—— - Gm—. —— s -

=3

X,Y)

-
g
@

X
|
45t
{
I
|
(O
|
|

—

‘)

At

&+2—*?* T

Yj-1

-—ﬁ

W e e e e e ade e

Yj+2

<
Ly

~
—
-+

Figure 4.5 Two Dimensional Spline
Interpolation (mesh system).
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Let S*(y) represent an independent interpolation along

the y-axis.

-

S* - . - .
(y) 3 E (v Y)hj—

- Y = Yi_ '
+ £, (——3=1, 4(37)

hy

+
h

Where fj are the function values represented by

£ £ £. and fD

A’ "B’ “C

y is such that Y4-1 <y < Y5

Since fA' fB' fC and fD are functions of x, then S*(y)

is a function also of x
S*(y) = S(x,y).

Theoretically we can look at the overall relationship as a
product of two one dimensional splines given by the relation
(from 4(6))-
3 3 )
S*(y) = S(x,y)= :EE :E: Ki' (x-x.)l(y-y.)J 4(38)
— - 3j i 3
i=0 j=

where Kij is the coefficient. to be determined.
Alternatively we can apply a Hilbert Space theory to the

problem.
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4.5 Theoretical vValidation of the Procedure

Outlined by Use of Hilbert Svace Theory [1]

Let Lx’ L, represent two differential operators in a

Y v
rectangular mesh, Rij’ operating in the x and y directions

respectively.
= m m=-1
L, = An(x) D, + Am_l(x) Dy, +...+ A D(x) 4(39)
= n n-1
Ly = Bn(y) DY + B _1(y) Dy +....+ B D(y) 4(40)
where:
. th th . .
Am (x), Bn(y) posses continuous m ", n derivatives
respectively.
Dx’ Dy = partial derivatives with respect to x, y
respectively.
Then
L. L, S (x,y) =0 4(41)
=0 4(42)

Ly. ].y S (x,y)

If the fundamental solutions of the above are given by Ui(x),
qj(y) respectively
Then we can solve for S(x,y) from the Ui(x) solution.

S(x,y) = A, (x) Ui(x) 4(43)

putting this value of S(x,y) into the second equation will

give the relation for the y-direction [cross product relation]

. m n .
S(XIY) = Z Z Ai Ui (X) Bj Uj (Y) 4(44)
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where:
Ay Bj are functions of x,y respectively with the pro-
perty of continuous nth derivatives. m,n are no. of
terms in x,y respectively

Ui(x), Uj(y) are functions of x, and f respectively

However looking at equation 4(6) one can rightly say this:

3 3
— PR SN |
S(x,y) = ;2{ ;E: ij(x X )7 (y Yj) 4 (45)
i=o0 ij=o0
where:
Ki,j = £(£(x,y), Pij' qij: eij) 4(46)

f(x,y) is the functional cubic equation in x and y

Pij = partial derivation of the interpolation
equation with respect to x
qij = partial derivative of the interpolation

equation with respect to y

eij = Second derivative of the interpolation

equation with respect to x,y.

Finally we can define the coefficient kij thusly:
3 3
kij = Z E Cij . l/Hij 4(47)
i=o 3Jj=o
where:
f(x,y) Rij
9,3 ®1]
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i3 ZB 23: ["i]i[hﬂj 4(49)

H =
i=o j=o
where:
h;, =x; - x; 4 4(50)
hy =y -y | 4(51)
The computation of Pi,j' qi,j and ei,j are presented in the

succeeding pages.

4.6 Computation of Derivatives

The partial derivatives needed at each of the four

corners of the subrectangle are defined thus:

Let
_ 4&s
Plj T Tx
= 88 :
qij = 5y 4 (52)
e . 8%
ij =~ ydx

Then as in 4(10) for Pij:

+ 2(8X;_, + 8X;) Py + AX,P,

8% 1P5-1,5 3 iTi+1, 5

1 . -
G[Axi ©s541,5-vi,3) = 5x,_, Ci,3 Ui-l,jﬂ 4(53)
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In y-direction :_ qij

AY . . . + Ay. Ay, . . Ay .g. .
§=194,9-1 * 2(8¥5y * A¥4) qy g+ BY495 44

I N ! )
=8 [‘A"‘Yj ©i,3017%,5) ~ w7 Ciy Ui,j—lﬂ 3(54)

for second derivative eij:

8Rj-1%3-1,5 * 285 j+aXg)e;q +aX85. 5

=6 [ - -1 -
=6 [Axi (Q541,37935) X, (Qj 5 qi-l,j’] 4(55)
Equations 4(52) through 4(55) can be solved indepen-
dently using a tridiagonal matrix as in 4(17) to calculate

values for Pi" qij and eij respectively.

j
Thus:
— Ir 1 r A
2 %, 0 ...0 0 0 Po do
b2 A{+ .0 0 0 Py dy
. . . . . . o :
oo ) R - =1 4(56)
0 0 0 .. 2 A5 0 Pp-2l |9m-2
0 0 0 . oM 2 A, Po-1 dn-1
0 0 o ..0 0 2 P ] a
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Similar approach can be used to obtain qij and eij
The above is equivalent to
AX =D 4(57)
x =a"p 4(58)
where:
X = Pysr Pys o o o oy Py 4 (59)
D = dy, 45y « « « «y Q4 4(60)

The divided difference version for calculating the partial

derivatives can also be used to simplify calculations.

§s ’
§x = Pi3 T 854,535 = Si,5) 7/ Ryyq -Xy) 4(61)
§S  _ _IS: . _S.. 1 _
5y © 9y i,3+1 i3 7/ Y441 Y5 4(62)
5%s
Syox =55 = [P, 5417 Pi5] /(¥5417Y5) 4(63)
4(64)

(Q541,5 ~ 93350 7 Kypq7%;)
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4.7 Sample Problem for two-dimensional Spline
Interpolation (regularly distributed Data Points)

Obtain an approximate value at £(1.5,1.5) using a two-
dimensional cubic spline interpolation. Data values are
tabulated in table 4.2.

Assume a natural spline condition.

Solution:

Start the solution by noting that

A==k

a, = ._q = 2f, + £,

37 35 3 * Fyed)
hy = hy,y = 1.0

a. Interpolate x first, and then y.

(see figure 4.6 and table 4.3)
b. Y first then x (figure 4.7 and table 4.4)

The two values obtained by reversing the axes are same.
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Table 4.2: Two Dimensional Interpolation Method

3
Xi 0 1 2 3
0 4 6 8 12
1 9 10 18 20
2 15 16 30 32
3 7 8 14 16

Table 4.3: Solution values--interpolation
of X, first.
M1 M2 M3

Y My, gy (1.5)

0.0 7.2 |-11.8 (0.0 12.98

0.0 5.433{-15.73{0.0 24.644

J
0
1{0.0| 8.8 [-23.2 /0.0 13.9
2
3

0.0}17.6 |-46.4 |0.0 27.8

Interpolate in the x direction:
from gx(l.S), M2 = 18.743, M3 = =-16.065, f(x,y)= [19.6 ]

Table 4.4: Solution values--interpolating
y first, then x.

| X. my m, m, m, gy(l.S)

1 0 0.0 0.0 0.0 0.0 7

2 1 0.0}13.6 |-12.4 0.0 13.925

4 3 0.0 9.6 -8.410.0 10.925

Interpolate in the x direction using value of
gy (1.5): M, = 11.72, My = -34.43, f(y,x) = [19.6 ]
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30 O

-~ y=1.5
-

25| o

/ £(1.5,1.5) = 19.6 <«

X =
y-)-

Figure 4.6 Interpolation along x axis, first
and then along y axis.
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25 |

£(1.5,1.5)z19.6 <

1 1

Figure 4.7

~ b - - -

5 2 3 4
X >

y-)-

Interpolation along y axis
first and then x axis.
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NOMENCLATURE FOR THE CUBIC SPLINE FUNCTIONS

y(x) = functional value of x
y"(x) = Second derivative of y with respect to X

y'(x) = first derivative of function y with respect

to X
M(x) = 'Bending moment' function
E = Young's modulus of Elasticity
I = Geometric moment of Inertia
o = Proportionality symbol

C,.,C, = constants of integragion

B A = constants

dj = n x 1 matrix

Mj = "Bending moment" at node j -+ a constant

yj = functional value at node j

hj = interval constant between node at j and node

at j-1

g(x) = One-dimensional interpolation function

S(x,y)= Two-dimensional interpolation function
B’ fc, fD = Interpolation values obtained by interpola-

tion along the yx-axis.
a,B = Proportional constants in the two dimensional
linear interpolation
fi’j = Two-dimensional functional values at coordinate

nodes i,J.

S*(y) = An interpolating function along the y-axis.
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Coefficient matrix

Differential operators in x and y

= functions in x, and y possessing continuous

th

m and nth

derivatives respectively
fundamental solutions of sets of equations in
the x, and y directions.

Partial derivative of the interpolation equa-
tion with respect to x

Partial derivative of the interpolation equa-
tion with respect to y.

Partial derivative 6f the interpolation equa-
tion with respect to x, y

Coefficient Matrix
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CHAPTER V
MODEL TESTING

In order to show the superiority of this study model
over some of the conventional approaches, a few tests were
run. The first test, figure 5.1, is a plot that compares
the quality of the lLagrange interpolator with the one dimen-
sional approach of this study. The results are tabulated in
fable 5.1, and figure 5.1 is the resulting plot. A compari-
son of both plots with the original curve shows that the
one-dimensional method of this study is a much closer approx-
imator than the Lagrange polynomial interpolator. One of
the possible reasons for this outcome is the fact that the
first and the second derivatives of the method of this study
are continuous. These properties make it easier for the Spline
model to closely approximate curvatures than the conventional
polynomial approximations.

The two dimensional approach of this study was also
compared with the two-dimensional Hermite'interpolation
method. Hermite interpolation method has a continuous first
derivative. Figure 5.2 A is the result of the Hermite inter-
polation method while figure 5.2 B is the result of interpo-
lation using the method of this study. Data for this test

is presented in table 5.2. A comparison of both methods shows
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Table 5.1. Data for Comparison of Lagrange
interpolation method versus the
method of this study.

Y
X Original Lagrange This study
curve method

*2 4.0 4.0 4.0
*6 10.0 10.0 10.0
7 14.0 11.6 14.5

8 20.0 10.0 21.0
*9 15.0 15.0 15.0
10 9.5 _ | 9.3 8.8
11 -~ - -
*12 8.0 8.0 8.0
*16 3.0 3.0 3.0

*Supplied data points.
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A
20 |
Legend:
[J—-original curve
® - Lagrange method
15 A—this study

10
5
0
o 5 10 15 20
x <+

Figure 5.1. Comparison of Lagrange interpolation
method with the method of this study.
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Table 5.2: Reservoir data from Sitio Grand Field in New

Mexico (data of Perez (23)).

[ x Y ’ kh
2.95 12.3 L 0.4
4. 11 16.3
4 7 27
5 12.3 14.

5 8.8 19.4
5 5.3 6.5
6 11 4.2
6 7 10.0
7 12.3 0.31
7 8.8 11.2
7 5.3 6.82
8 11. 1.2
8 7 59.1
9 8.8 4.1
9 5.3 3.2
10 7 1.45
10 3.5 0.15
11 5.3 4.2




ewiviw -
:puasay

Sg2

-cm - -

L
m&lF.’— ll'.-l

O

Gh1°8§ ==--

56 °'Gh --~ee

PR,
- e,

peemomme e,

Wy
FOTFD

. et
LI L ISR 24 o’
Sreeeveevasaeres”

T4 tONIOTY

:0.5

3

5.%

69

4.3

'i.(l

“w

Fig 5:2b: this Study

AL

Fig 5.2: a: Hermite Interpolation.

Contour plots of the two-dimensional approach of

Fig. 5.2:

this study.and the Hermite Interpolation method.
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that the Hermite interpolation method exhibits some undersir-
able minima contour values which are absent in the contours
produced by the method of this study. The exhibition of
minima contour values (indicated by '*') is often referred
to as undulations. One big advantage of the model of this
study over the Hermite interpolator is the elimination of
excessive undulations often present in the latter. It can
be easily said that most polynomial approximations exhibit
excessive undulations which are caused by interpolated values
that are much smaller than the lowest available data values.

A test of how this model will behave in the presence
of real resérvoir parameter was carried out using data given
in table 5.2. The data was obtained from Sitio Grand FieL¥3
which is producing from limestone of Cretaceous age. It is
located in southeast Mexico. The results are shown in
figure 5.3. Figure 5.3 is a contour map showing the flow
capacity values at different positions of the field. This
sort of distribution is desirable especially for a researcher
who may need some flow capacity information at different
points in the field. A three dimensional plot is presented
in figure 5.4 . The three dimensional plot shows zones of the
field with peaks and pits. These phenomena elicit informa-
tion as to those areas of the field or reservoir where high
or low values of flow potential are expected.

Further tests were carriéd out using data from table 5.3.

The data is a waveform studies information given in ref. (4).
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Fig. 5.3:

Flaw-capacity distribution in the Sitio Grand

field. .
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Table 5.3: Wave form study data obtained from («).

Y

x 0e 00 5¢001060015,00204002540030.0035.0040,00

O 58¢206145047:9062.3034+6085,5038,2041,20a8.70
Se 2742080000 0,00813014,1028.5017.2020.2020.80
10. 22 +402245014.60220%0 4470 7420 1080 2010 2410
15, 21 ¢B020.5012.2C17460 580 760 0480 0,60 Go060
20, 16.8014,40 8,10 64,90 €42Q 0460 0,10 0.00 0.00
25 12400 83,00 5430 2490 Q400 0.00 2.00 0.00 0.00
30. 7440 4,80 1.40 0410 Ce30 Q0400 0,00 0480 0.00
25 3620 0670 0400 0e00 0400 I 00 0.00 0.00 0.00
a0, 0400 0000 0400 Q9400 0090 2.00 0.00 0.¢€0 0.00
a5, 0400 0400 0400 0400 0400 J00 J+00 0400 0e00
E1-1% 0400 0,00 0400 0400 0400 0400 0.00 0400 Q.00
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3-D plot of Flow-Capacity distribution--Sitio

Fig. 5.4:

Grand field
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Here again, higﬁ peaks indicating high wave conditions were
observed. Similarly, low pits indicating low wave condi-
tions were observed (figure 5.5). Since wave condition may
affect the way debris for off-shore hydrocarbon accumulation
are distributed in the ocean the approach of this study can
be used to influence the future of various off-shére prospect-
ing.

In an attempt to see what happens to the ability of
this model to approximate an original surface and identify
parameter 'high points', varying percentages of known error
were introduced into the original data constituting the known
surface. Figure 5.6 is the original data as given in table
5.3. Figure 5.7 is the result obtained using the model of
this study after replacing 5 percent of the original data
values by zeros. Zero values were purposely chosen in order
to amplify the results in each situation. Figure 5.7 (3) shows
smooth contours of the resulting surface. A comparison of
the contours of figure 5.7(?)and those of the original data
shows no marked differences, apart from the recognition that
the former are smoother contours.

Figure 5.7 (B)is a three dimensional projection of the
data. The three dimensional plot of figure 5.7 (B) carefully
identifies areas having very high and very low parameter
values which correspond to those indicated by the contours
of figure 5.7 (&. The importanee of the three dimensional

plot is to afford an easy recognition of anomalous portions
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Surface obtained by replacing 5% of data values

Fig. 5.7:

with zeros (extreme cases).
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of a field or reservoir where special attention may be
necessary.

Figure 5.8 shows the result of contaﬁinating 10 percent
of the original data. This was done as before by replacing
10 percent of the original data with zeros. Comparison of
the produced contours with the contours obtained using the
original data does not easily reveal any obvious differences.
The resulting contours and the corresponding three dimen-
sional display are very closely similar to those of figure
5.7. This means that the model of this study can closely
approximate the original data distribution even when 10 per-
cent of the data information are féulty.

A further test was carried out using 80 percent of the
correct data information and 20 percent data contamination.
The result of this operation is shown in figure 5.9. A com-
parison of this result with that of the original data shows
some little differences. However the actual positions of
the peaks and'pit;}were not basically changed. As the con-
tamination was increased beyond 20 percent, marked differ-
ences were observed. Figure 5.10 is the result of intro-
ducing a 30 percent contamination into the original data.
Two distinct contour maps are produced (figure 5.10A). The
three dimensional display of figure 5.10B shows peaks that
are much lower than the corresponding peaks in the previous

plots, and also the pits are diminished.
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Fig. 5.9: Surface obtained by replacing 20% of data values

with zeros (extreme cases).
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Fig. 5.10: Surface obtained by replacing 30% of data points

with zeros (extreme cases).
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CHAPTER VI

DISCUSSION AND PRACTICAL PETROLEUM ENGINEERING

APPLICATION OF THE PROPOSED MODEL

One of the aims of this study is to develop a practical
model that will aid petroleum engineers in the secondary oil
recovery operations.

In the application scheme for this model, contour maps.—
{29] have been used extensively to obtain detailed pictorial
representétion of a function of two variables whose values
are known at discrete points. Detailed discussion on contour
mapping has been covered in Chapter II, section 1. In reser-
voir engineering studies, imaginary surfaces comprising of a
continuum of all possible reservoir parameter values can be
mapped using the proposed model to display the distribution
of variables of interest in the reservoir. The distribution
of reservoir parameters when there is limited data informa-
tion is often obscure and difficult to obtain in the absence
of an appropriate approximation algorithm. The model of this
study has been considered appropriate for use in the study of
reservoir parameter distributions.

Similarly a three-dimensional model due to Watkins (31)
and modified under the SAS (24) has been employed to obtain

a conceptual surface representing appropriate reservoir
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parameter. In reservoir engineering, the determination and
variation of conceptual surfaces can be directly related to
the variation of some corresponding non-spatial functions
from point to point. This variation can be regarded as the
flow on the conceptual.surface, and thus, the generation of
this conceptual surface can replace the physical system. An
understanding of how the peaks, ‘pits’and 'beds’ associated with
these projections are related to the physical system may
relate to the reservoir engineer a. desired insight into
better ways to optimize his project.

Possibly the area of greatest uncertaiﬁty in designing
a waterflood project is the gquantitative overall knowledée
of the variation of rock properties within a reservoir.
Though other reservoir parameters such as porosity and con-
nate water saturation vary both areally and vertically within
a reservoir, the reservoir parameter whose variation is the
most important in influencing waterflood performance is per-
meability. Permeability is a measure of fluid transmissi-
bility of a rock. Several sources of obtaining good informa-
tion on permeability are available:
1. Direct measurements of permeability on cores removed

from wells-
2. Formation tests during drilling and production,
3. Transmissibilities obtainable from carefully run injec-
tion profiless.

4. Inferential information from well 10gs,
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6.1 Procedure for estimation of flood
performance using the results of
this model:

a) From the flow capacity distribution shown in
figures 6.1 and 6.2, obtain flow capacity wvalues
at fixed contour intervals (here a contour inter-
val of 6 md-ft is convenient).

b) Using a planimeter method, obtain floodable reser-
voir volume for the successive contour levels
selected.

c) Calculate water éut and oil recovery by using flow-
capacity values (cumulative fraction of the total
capacity), and a functional equation (simplifying

assumptions were made where necessary).

Derivation of functional equation:

Simplifying assumptions made in this derivation are:
1. flow rate is proportional to flow capacity.
2. each flow contour level has same values of ¢, sor’
krw' Keoe

3. Isothermal conditions exist throughout the reser-

voir.

The procedure of this mathematical analysis is similar
to that reported by Stiles (28). The major difference is this
model 'is using a volume weighted value of flow capacity

values to calculate the water cut, while Stiles used randomly

varying permeability values to obtain his water cut.
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Define water flow rate

k
*
qw = Di (uzw) 6.1
= (i= _ro, 1_
qd, = (i pi)( uo) (Bo) 6.2
water cut:
k
9, 1 5
fw = T = }2 L1 % 6.3
Ho  Pifmwy vy o) (froy 1
Ko °i Ho  Bg
£ = [1+x(1-p.):l -1 6.4
w i
where:
A = }:Eg - 11.‘2 . l_..
Ko Yo 8o
* —
p; = flow capacity (weighted value) at point, i

MoH,= oil and water viscosities respectively

krw' kro = relative permeabilities to water and
oil respectively.
V. = floodable volume for flow capacity level, i.

1
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Similarly
k
_ (1-p) (£2) (&9
£ = 1 Mo Bo

6.5
p k k
. rw ro, 1
i (___)+ (1=p.) (—2) =—
Huw i LS Bo

Sample Calculation: Contoured data from figure 6.1 is being

used to show how the model of this study can aid the reser-
voir engineer in the estimation of reservoir performance
prior to the start of water flooding operations. The neces-
sary data needed in this analysis are given as follows:

ko = 0-3, kg = 0.7, ¢ = 0.2, Sor = 0.25, s, = 0.3 and

g = 1.1

o

By using the flow capacity values given in table 6.1,
and the flow equation of 6.4 and 6.5, - obtain water cut,
and recovery values shown in table 6.1. Unit recovery for
this reservoir has been estimated to be 458.4 bbls/acre~ft
(see equation 6.6).

Figure 6.4 shows the plot of oil recovery versus water
cut for the above field. The characteristics of the curves
are similar to those reported by Stiles (28) and Johnson
(16). A plot of flow-capacity versus o0il recovery is shown
in figure 6.5. A plot of flow capacity versus water cut is
presented in figure 6.6. It is interesting to note that the

three plots depicted in the above figures have similar char-

acteristics.
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Where V; = floodable volume for flow capacity level,i.
Table 6.1. alculation of Reservoir Performance
flow cap. water Recovery Recovery
cap. (cum.) (fraction cut (frac. of fraction
of total) (fract.) total) (cum)
-— 0.0 0.00 0.21 0.21
59 0.17 0.33 0.143 0.35
115.1 0.33 0.37 0.135 0.48
165.73 0.47 0.43 0.121 0.60
209.66 - 0.59 0.49 0.109 0.71
248.07 0.7 0.55 0.096 0.81
280.57 0.79 0.65 0.075 0.88
307.87 0.87 0.75 0.05 0.93
327.87 0.93 0.84 0.03 0.96
342.67 0.97 0.93 0.015 0.97
351.57 0.99 0.98 0.0043 0.98
354.57 1.00 1.00 0.0 1.00
S . - R
"Unit Recovery = 7758 ( o 5 SOBOM 6.6
o

DATA:

K

K

¢

rw = 0.3
= 0.2

1.1

458.4 bbls/acre-ft

S, = 0.3
Rso= 0.25
Bo = 1.1

Sweep eff = 0.95
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6.2 Determination of Reservoir Productive Volume
(Planimeter Technigue

A planimeter (model 80) was used to obtain the bulk
volume (Vb) on successive contour levels of the flow capacity
distribution. The results of the above measurements are
shown in table 6.2 Cumulative values of flow volume (frac-
tion of total) are plotted against cumulative values of flow
capacity. Figure 6.7, the result of this plot, shows that a
small increase in the floodable volume produces a sharp in-
crease in the flow capacity. Similar observation was reported
by Johnson (16) but he used '¢h' product instead of actual

reservoir volume.
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Tabhle 6.2.,Determination of Reservoir Productive Volume

Prod. Planim- |[*Planimeter Area (Ap)| Contour AV**
Cap. eter area (in2) (acres) | Interval

Md-ft units (md-£ft) [acre (ft-md)
8 1546 16.3 374 6

- 14 76 0.8 18.4 6 1178
20 108 1.14 26.1 6 134
26 48 0.51 11.6 6 113
32 15 0.16 3.6 6 46
38 1o 0.20 4.6 6 25
44 5 0.052 1.2 6 18
50 8 0.08 1.9 6 9.3
56 20 0.21 4.8 6 20
59 0 0 0 3 15

1558

* map scale:

l inch = 1000 £t, one inch square =

NOTE; Calibration constant for the planimeter

0.242 acres/unit

** yse the trapezoidal formula

_ kh
AV——Z'

(An+A

n+l)

95 units /(inch)? or (inch)2/95 unit

22.96 acres.



Cumulative Capacity
(fraction) =

95
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Cumulative Volume
(fraction of total) =

o
!

Figure 6.7 Plot of cumulative capacity
versus cunulative volume.
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Tgb;e 6.3. Calculation of Reservoir Volume

{Cum. fraction of total)

Flow Cap. Cum. Capaciiy Area Vol Vol Cum

(md) (fraction) (acres](Acre {{(fraction vol
ft) |of total) | (fract)

59 0.17 0 15 0.010 0.01
56 0.33 4.8 20 0.013 0.023
50 0.47 1.9 9.3] 0.006 0.029
44 0.59 1.2 18.0| 0.012 0.041
38 0.7 4.6 25 0.016 0.057
32 0.79 3.6 46 0.03 0.086
26 0.87 11.6 | 113 0.0725 0.158
20 0.91 26.1 | 134 '0.086 0.244
14 0.97 18.4 |]1178 .756 1.000
8 0.99 374 0 0 1.000
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6.3 Water Injection Plan: Waterflood injection scheme for

a reservoir such as the Sitio Grand field could be planned
as shown in table 6.4. The schedule is such that more in-
jection water is made available to areas of low flow capa-
city. This procedure will reduce problems of channelling
due to differences in permeability or flow capacity. The
underlying assumptions are (1) water injection is a func-
tion of flow capacity, floodable volume, and water cut.

(2) Water injection efficiency is 60%.

The water injection equation is given by @

i1 Pi Vi W3
I = 576 = 6.8
in ' 1
3j =20, v
ni=1 i 1

A plot of water injection versus watercut is shown

in figure 6.8.



Water injection (fraction of total) =+

98

.0
ol F
K
0.0l -
0.001 |-
0.000t L
0.0 0.2 0.4 0.6 0.8 .0
Water cut (fraction of total) =
Figure 6.8 Plot of water injection versus water cut.



99

Table 6.4. Water Injection Plan

p water floodable water Cum Water

(nd) cut (ggiggion) injection |inj (fraction)
0.17 0.33 0.01 0.001 0.0001
0.33 0.37 0.023 0.01 0.0014
0.47 0.43 0.029 0.02 0.004
0.59 0.49 0.041 0.041 0.009

0.7 0.55 0.057 0.075 0.019
0.79 0.65 0.086 0.151 0.039
0.87 0.75 0.158 0.353 0.085
0.92 0.84 0.2344 0.65 0.169
0.96 0.93 0.999 3.09 0.57

0.99 0.98 1.000 3.323 1.00
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'6.4 Limitations of this model

Since reservoir performance may be influenced by some
other unevaluated paraméters, this model's accuracy is
limited.

Many simplifying assumptions will tend to reduce the
guality of the model.

Unlike the selective plugging technique, the interpolation
part of this study does not redistribute injection water
profile. It only indicates its existence. However, the
capability of this model to indicate the flow capacity
profile, and hence the injection water profile, will be
profitably employed in selective plugging procedure by
taking advantage of those locations of the reservoir

that show relatively high flow capacity distributions.
Thus we can economically inject our costly chemicals only
in those zones that show abnormally high flow capacity
values. In that way we can avoid wasting our 'plugging’

chemicals on the zones where they are not needed.



CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

This model offers an easy and quick means of estimating
reservoir performance prior to the start of waterflood-
ing operations by providing flow capacity distribution
of the reservoir under study.

It offers an easy and quick means of .estimating actual
reservoir floodable volume.

The model is useful in the estimation and planning of
waterflood injection schedule.

It can be used in the description of reservoir parameter
distribution.

The model can be used to represent data as a continuous
surface.

The model can be used to interpolate data with a con-

termination level of less than 20%.

101
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RECOMMENDATIONS

More reservoir parameters should be incorporated into the
program so that better reservoir description could be ob-
tained.

Comparison of the performance results of this model should
be made with the actual reservoir performance in order to

evaluate the reliability of this model.



10.

11.

12.

13.

103

REFERENCES

Ahlberg, J. H., Nilson, E. N. and Walsh, J. L., "The
Theory of Splines and Their Applications." Math in
Science and Engineering, vol. 38, 266.(1965)

Bengtsson, B. E. and Nordbeck, S., "Construction of
Isarithms and Isarithmic Maps by Computers," University
of Lund, Sweden. BIT 4 87-105 (1964).

Birkhoff, G. and Garabedian, H. L., "Smooth Surface Inter-
polation." J. Math Physics 39 (1960), 258-268.

CACM Trans (Algorithm 474) Vol. 5, No. 2, June 1979,
page 241. :

Craig, F. F., "The Reservoir Engineering Aspects of
Waterflooding." SPE Monograph, Vol. 2, 101.

DeBoor, C., "A Practical Guide to Splines." Springer-
Verlag, N.Y. Heidelberg Berlin 1978.

DeWight's Natural Gas Well Prod. Histories DALLAS.
Jan. 1976.

Dougenik, J. A. and Sheehan, D. E. Symap User's Manual
Cambridge (Mass.) Lab. for Computer Graphics and
Spatial Analysis, Harvard University, 1975.

Elkins, L. F. and Skov, A. M., "Determination of Fracture
Orientation from Pressure Interference," Trans AIME,
(1960) 219, 301-304.

Hardy, R. L. Journal of Geophysical Research, Vol. 76,
No. 8, 1971.

Hutchinson, C. A. Jr., Polasek, T. L. Jr., and Dodge,
C. F., "Identification, Classification and Prediction
of Reservoir Non-Uniformity Affecting Production
Operations." J.P.T. (March 1961) 223-230.

International Mathematics and Statistics Libraries, Inc.
Edition 8, June 1980.

Jacquard, P. and Jain, C., "Permeability Distribution
from Field Pressure Data." SPEJ (Dec. 1965) 281-294.




14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

104

Jans, J. 0., "A Rapid Method for Obtaining a Two-
Dimensional Reservoir Description from Well Pressure
Response Data." Journ. Pet. Tech. (Aug. 1962) 909-912.

Johnson, C. R., Greenkorn, R. A. and Woods, E. G.,
"Pulse Testing: A New Method for Describing Reservoir
Flow Properties Between Wells." Journ. Pet. Tech.
(Dec. 1966) 1599-1604.

Johnson, J. P., "Predicting Waterflood Performance by
the Graphical Representation of Porosity and Perme-
ability Distributions." Journ. Pet. Tech. (Nov. 1965)
vol. 17, 1285.

Joseph, N. B., "Selective Plugging of Waterflood Input
Wells, Theory, Methods and Results." Journ. Pet. Tech.
(March 1957).

Kruger, W. D., "Determining Areal Permeability Distribu-
tion by Calculations." Journ. Pet. Tech. {(July 1961)
691-696.

Krumbein, W. C., "Regional and Local Components in
Facies Maps." Bull-American Assoc. of Petroleum
Geologists, 40, 2163-94 (1956).

Miller, M. G. and Lents, M. R., "Performance of Bodcaw
Reservoir, Collon Valley Field Cycling Projects New
Methods of Predicting Gas-Condensate Reservoir Per-
formance Under Cycling Operations Compared to Field
Data." Drilling and Prod. Practice, API (1947)
128-179.

Milne, W. E., "Numerical Calculus." Princeton U. Press.
Princeton, N.J., 1949, ch. 3.

Merriam, D. F. and Harbaugh, J. W. Trend surface analy-
sis of regional and residual components of geology sur-
vey. sp. Dist. 11, 1964.

Perez-Rosales, C. "Use of Pressure Build up Tests in the
Description of Heterogeneous Reservoirs." Society of
Petroleum Eng. Journal No. 7451, Annual Fall Tech.
Conference Exhib. Oct. 1978, Houston.

SAS/Graph Users Guide - 1981 edition, 43-45.

Schmalz, J. 0. and Rahme, H. S. "Variation in Water-
flood Perform. with Variation in Perm. Profile."
Journ. Pet. Tech. (July 1950), 9.




26.

27.

28.

29.
30.

31.

32.

33.

105

Schoute, P. H., Goschensche, G. J., "Mehridimensionale
Geometrie @ Quatre." Leipsiz 1902.

Shepard, D. A., "A Two-Dimensional Interpolation Fuaction
for Irregularly Spaced Data." Proc. 1968 ACM Nat. Conf.,
517-524.

Stiles, W. E. "Use of Permeability Distribution in
Waterflood Calculations." Journ. Pet. Tech. (Jan.
1949).

Synder, W. V. ACM 531, vol. 4, no. 3 Sept. 1978, 290-294.

Tapia, R. A. and Guerva, V. "A Local Procedure for Error
Detection and Data Smoothirg." MRC Technical Summary
Report No. 1452. Maths Research Center University of
Wis-Consin, Sept. 1974.

Watkins, S. L. Algorithm no. 483, ACM Trans. vol. 1,
no. 3, Sept. 1975.

Wayne, F. W. and Joe, R. "Selective Plugging of Injec-
tion Wells by Insitu Reactions." Journ Pet. Tech.
(Jan. 1957).

Zieto, G. A. "Interbedding of Shale Breaks and Reservoir
Heterogeneities." Journ Pet. Tech. (Oct. 1965) 1223-
1228.




APPENDICES

106



APPENDIX A
FLOW CHART AND NOMENCLATURE FOR THE

SPLINT PREDICTION ALGORITHM
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s
Dimension .
2
[ Data \
¥

Iaitialize
Variables

b

Call Subroutine
Splint

t

Store Qutput
in Dis¢

1

Plotting Routines
G Contour, G3D

[ Write Out
Tirlpe

-
{ END i

i —Main.
Figure A-1l. Flow-chart for this medel
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SUB PROGRAM

.
[ saa

Subzoutines
SPLLU} to interpolate &
SFLEV] evaluate spline
the X~direction

Is interp NO
Coaplete
for NYC points

Subroutines
SPLCC{ to interp & eval
in f.ho Y=dirn

Is Interp in Y-dix NO
Cmplcn?

[ YES

RETURN

Figure A-2. Flow-chart for Subroutine Splint.
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NOMENCLATURE FOR TERMS USED IN THE PROGRAM

NX

NY

FS

IFD

NXL

NYL

SXL

SYL

SFL

SWK

IFR

Total number of elements in the input vector x
Number of elemeﬁts in the input vector y

Input vector of stretch nx

(x must be in ascending order)

Input vector of length NY

(y must be in ascending order)

NX by NY matrix comprising of values at points
specified by vectors X, and y.

Number of elements of FW in each row

Number of points along SXL where interpolaticn

are needed

Number of points along SYL where interpolation
are needed |

Vector of length NXL--Input co-ord. points.
(SXL must be order in ascending order)

Vector of length NYL--input

(SYL must be ordered in ascending order)
Matrix NXL by NYL containing the interpolated
values

A work vector of max. length the bigger of
(NX-1)*3 and ((NY-1)*3 + NY))

Is an error parameter.



APPENDIX B

SAMPLE PROGRAM



112

Table A-1: Input Data for Sample 2rogram

X O?;O $e0010¢0015.002040025,0030+0035.,0080.,00
O 58¢206105047,5062¢3034:5045.5038,2041.2041.70
Se 272040400 040041,3014,1028.5017.202042020480
10. 2204022:5014.6022450 4470 7,20 1680 2010 2410
1S. 21 eR020e501248017e60 S5¢80 7460 0480 04850 0.60
20, 164201340 8410 6690 €420 0460 0010 0400 0.00
5. 1200 8400 5430 2490 200 0+00 3400 04C0 0400
30. Te#0 4,80 1440 0010 T30 000 0,00 0.CO0 0.00
2Se 3¢20 070 0600 0400 000 2400 000 0400 0.00
40. 0¢00 Ge00 CeQ0 0000 CGe00 2400 Ge00 0.C0O0 0.00
25, 0400 0.00 000 0,00 0400 J4600 0400 000 0e00
S0e D¢00 0. 00 0¢00 0400 0,00 0400 0.,00 0,00 0,00
SXL 00 O0eS 100 15 260 205 300 3¢5 300 405 S0 S5¢5 660 645 760
SXL 7e¢5 860 8¢5 9¢0 9651000100511 00115126012:513601365146014,5
SXu 156015¢516e01606517e017¢5380018.515¢019¢52064020652140214522.0
SXL 2245234023524 002865250254526002€527027052840280529002%.5
Sxo 306030e53100316532¢0320¢533¢0033¢534.0344535,035.53640364537.0
SXL 27 652800384539¢033:540,080054100015020042,5430003:544,084,5
SxL 85.,005:20€00460547,007,548,048:5450049.550,.0
SYL 0¢0 0¢5 160 105 260 2¢5 300 3¢S 4¢0 4¢5 5.0 5¢5 660 605 7.0
SYL 2e5 240 8¢5 G0 55104010511 6011e51240124513.013e51440144S
SYL 15¢01%05160¢016¢517¢017¢51R¢0186515¢019¢5200.02045210021452240
SrL 22:523.0234528.024:525.0285¢526¢02€¢52700275286028:5290029.S
SYL 30e02065316031¢5324032¢53200234534403405354035¢53640360537.0

SYL 37.538.0784529.039.5400.0
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S58.2 61.A
S51.2 49,0
62e¢3 009
376 2.4
P, 2 7.7
43,5 42,9
62.8 59.8
7.2 5006
4.0 3261
43,3 a2.2
38.8 3.8
650 70.6
28,7 27.9
8.0 50.5
393 41,1
325 337
408 29,7
45.6 40.8
4G.1 S2.9
203 2742
IS5« 9 343

X376 A2

69«7 67,1
l1beb 20,1
Vel 34,4
39.1 39.1
300 3143
48,0 7.0
21«8 170
53.0 53.2
2642 2844
Mt 2743
35.0 35,1
S50 46,3
22.2 28.3
235 2141
33e6 3243
2P0 2945
64+0 oéel
Sel 247
2542 4108
28.5 3042

22.8 2340

114

AD oS £6e3 H7e3 676 €72 664

AR,a 8747 47,5 47.9 49,0 5047

S5He7 558 5244 4R, 9 42,3 41,8

4le2
373 37.8 37,8
AJ 8 a3e4 42,7
SA.S %3¢l AQe?
$3.8 5647 59.0
3l e2 31.2 22.1
409 36,56 2848
C0ea ale.l 417
799 70.0 68,1
203 30.0 32.8
405 42,5 8.8
42,3 42.9 42,9
2e.l 36,7 I5.8
388 5243 60.0
ASea J0e® 2648
5.7 87,1 56.9
227 20e00 2249

232 323 217

8350 4445 45.5 460

379 J8&.:4A
41e7 SEe3
aGed 43,0
60e4 6048
33.8 282
37.2 J¢€.3
42.2 42
653 6.9
36.8 408
38.2 31.8
42.% 8140
362 2700
6S¢6 662
238 23144
3S.4 %2.7

2

I%.2 37.3

Jled 3Jiea

I8.9 3G 352 91 3P.0

6385 50,0 33,8 4R, 2 41,4

S5 297 39,2 40? a3eH

30«8 27,0

3Re?7 I7eA 3646 35«3 I8
26! 330 JIe9 4.8 35,6
£35S 677 09.7 7De0 EE£46
132 10e5 93 926 11.4
Sl1e® 493 45.8 41,7 37.3
308 3360 J4e9 63 3é.9
2702 27l 2744 27.8 208.4
3%.0 365 3207 32.5 4.8
4301 J6e7 003 24,2 18,5
3443 3Ge 9 44,8 4N, S 5047
199 1908 2046 22,0 2440

2949 2948 DPALL 209 299

N

JO .4 31,

SUe2 2841 2440

JleB 3I3.8 J2.7

66ed €88 G149 S7.8 S2.3

3.1 %3

37 «# 33e4 29,1 25.0 21en

Ge0 1349 16508

31e7 32, 3244 31.9 311l

2 e84 24,0

2807 255 2t.a

459
39.0
6140
40.8
89,9
372
35.8
4206
57.9
ad .7
2%e7
605
27.9
Tiel
20e0
9.2
391
3146
37.2
LT
5041
24 .y
32.5
Jbe2
65,9
1S4
32.9
37.0
29 .2
$Se1
13.%5
Slel
2642
%3
32.8
7.0
2%.7
19,2
30.0

27.2

SFLISXL sSYL)
65e1 63e4 b1,
52.7 56.9 57.2
je.8 36.2 34,6
455 48,7 43,7
39.7 40,5 a1,2
655 68.1 6944
38.A 37 .4 38 .9
7.9 SS.C 516
3943 8142 8249
3SeS 28.% 35,7
025 6240 8143

»

S3e6 9.2 44,2

08e9 5247 35.9
287 2848 29,.¢
362 372 3649
IRT 29.8 40,0
7123 7062 679
2008 2247 23.8
25,1 40.9 I6.7
405 41,41 41,1t
3201 327 33Jem
36¢7 S0 58.7
310 25,7 2140
53e3 55.1 $5.2
S6e4 284 30,6
312 30.2 29.6
3648 I74) 37,2
61.9 8741 S1.6
2041 2%5.¢ 31,8
28.9 25.5% 23.1
368 257 385
3040 Z0.9 1.8
61.8 06.C 68,2
Feb G2 S.5
49:9 47 8 43,9
2846 30«8 32.7
2060 2%e0 JOed
3262 Jlea
3442 27.8
37.4 42,04
18.0 17,8 18.53
28e6 273 2%.%

2841 28,8 29.8%

S9e4 87,3 5Se1 S3e}

5Ge3 €10 6242 £2.7

33.8 23.9 2447 36.0

42.5 4.3 40,1 29.0

419 4256 8301 43,5

69e? 69,0 676 6505

373 38.8 1.1 439

47¢8 83.9 80.2 3648

8040 84,56 84,5 84,1

-
3663 366 373 8.0

2002 543 Hle0 €549

8005 365 33.2 0.5

SMel S0.0 5% 3 36.R°

Jlel 3249 IS4l 37.3

3%¢3 38+8 3I3.2 3365

0¢85 409 4140 40.9
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