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ABSTRACT 
The correct design of borehole fields requires the correct evaluation of the transient ground thermal response in time, but also the accurate estimation of the 
borehole (BHE) thermal resistance, expecially the grout contribution. Generally, the borehole thermal resistance is considered as steady-state; however, 
when considering the borefield hourly response to the building variable thermal loads, also the transient behavior of the grout thermal resistance plays an 
important role, which is quite often neglected. This study analyzes, with a dimensionless approach, the transient grout thermal resistance, with particular 
attention devoted to the effect of the boundary condition imposed to the internal tubes, namely imposed heat flux, imposed temperature and imposed 
convective coefficient, the last being the real operating conditions. In addition, the effects of grout to ground thermophysical properties and of shank spacing 
are analysed. The steady state numerical results are also compared with literature correlations. Finally, numerical evidences are given to demonstrate that 
the usual approach of calculating the overall BHE resistance just summing the grout resistance, numerical obtained by imposing a temperature on the tube 
surface, to the convective one can lead to meaningful errors at low Biot numbers. 

 

INTRODUCTION 

Ground Coupled Heat Pumps (GCHPs) are a high efficiency solution for building conditioning in the 
framework of energy saving and environmental protection. In most applications the heat pump is coupled with the 
ground by means of Borehole Heat Exchangers (BHEs) and it takes advantage of the favourable ground temperatures 
for high efficiency heating and in cooling heat transfers. The most complete way for analysing the thermal behaviour 
of the GCHP system as a whole is an hourly approach, able to forecast and optimize the system response to variable 
thermal loads. 

This approach is quite different from the methods commonly used to size and examine the operating behaviour 
of the BHE field, since the typical approach is to consider the ground response to simplified heat load profiles, 
typically with a monthly time step. In this framework, it is a common practice to use a two resistances scheme to 
model the thermal behaviour of a BHE field. In particular, the first resistance depicts the thermal response of the 
ground, intrinsically variable in time, and is commonly described by proper Temperature Response Factors (TRF), 
also known as g-functions. On the contrary, the second resistance represents the BHE thermal behaviour (Yavuzturk 
and Spitler 1999; Zeng, et al. 2003; Marcotte and Pasquier 2008) and is frequently considered constant in time. 
Lamarche et al. (2010) presented a wide review of methods and correlations to evaluate the borehole thermal 
resistance, focusing in particular on the grout thermal resistance. More recently Javed and Spitler (2016) compared a 



 
 

wide range of models for calculating borehole thermal resistance and recommended suitable methods also for water 
filled boreholes. 

The aim of this work is to analyze the transient behavior of the grout thermal resistance by means of numerical 
simulations performed in COMSOL Multiphysics environment. The modelled domain is a 2D cross section of the 
BHE and the modelling is performed by introducing proper dimensionless quantities. Different aspects are 
considered, including the effects of the thermal conductivity and heat capacity values, in terms of grout to ground 
ratio: the dimensionless grout thermal resistance appears to be a function of both these ratios but reaches a constant 
steady-state value for specific threshold values of the radius based Fourier number. 

A special attention has been devoted to the investigation of the influence of the boundary condition applied on 
the pipes side of the BHE: imposed heat flux, imposed temperature and imposed convective coefficient. For a U-pipe 
BHE, due to its non-axialsymmetrical geometry, the choice of the proper boundary conditions is revealed to be 
important, because it significantly influences not only the transient trend of the BHE thermal resistance but also its 
steady state value. 

THEORETICAL BACKGROUND 

The borehole thermal resistance Rb includes different contributions, namely the convective resistance of the 
fluid, the conductive resistance of the pipes and the conductive resistance of the grout. The first two resistances can 
be easily calculated, whereas the evaluation of the third requests analytical correlations or numerical simulations 
(Figure 1). In this paper the analysis is devoted exclusively to the grout thermal resistance Rgt, which is typically the 
main contribution; the usual approach to obtain the effective borehole thermal resistance Rb is to add the convective 
and pipe contributions Rfp to Rgt (Eq. 1 and 2, single U case), even if this can result in meaningful errors, as discussed 
later in this paper. 
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In the following, the main correlations to evaluate the grout thermal resistance are presented. Considering the 
borehole radius rb, the external pipes radius rp, the half shank spacing d, the ground volume radius rg, and the grout and 
ground thermal conductivities kgt and kg, respectively, the following dimensionless variables are introduced: 
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Figure 1 Sketches of the thermal resistances. 
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Paul (1996) proposed a very simple correlation, in which the dimensionless grout thermal resistance Rgt* 
depends on the ratio of pipe to borehole radius rp*, and on the half shank spacing between the pipes d (0 and 1 are 
constants, whose values depend on the distance d, see Figure 2): 
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Hellstrom (1991) proposed the so called ‘line source formula’, depending also on the ratio of grout to ground 
thermal conductivities k*, by means of the parameter : 
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Bennet et al. (1987) proposed a complex algorithm, called ‘multipole method’ for calculating the overall thermal 
resistance Rb. Based on Eq. 1 formulation, the Bennet expression (first-order approximation) can be rearranged as: 
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Neglecting the pipe contribution, the dimensionless convective resistance can be expressed as: 
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where the Biot number is here defined as b gtBi h r k  . 

Finally, Sharqawy et al. (2009) more recently suggested the following simple correlation: 
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       Case A: d * = 0.289         Case B: d * = 0.367; 0.5    Case C: d * = 0.695 
0 = 20.10; 1 = 0.9447         0 = 14.44; 1 = 0.605           0 = 21.91; 1 = 0.3796 

 
Figure 2 Present paper test cases for single U pipe heat exchanger. 
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These correlations are based on the assumption that the borehole thermal resistance can be determined for 
quasi-steady state conditions and depends mainly on geometrical parameters and on grout and ground thermal 
conductivities. On the contrary, the first order approximation of the Bennet et al. correlation takes into account, for 
the evaluation of the grout thermal resistance, also the convective resistance contribution that influences the 
temperature field in the grout domain. 

 
GOVERNING EQUATIONS AND NUMERICAL MODEL 

In this paper single U-pipe BHE is considered, with rb = 7.62 cm and rp = 2.1 cm (rp* = 0.275) (based on 
commercially available geothermal probes). Four different shank spacing values are considered, namely d * = 0.289; 
0.367; 0.5; 0.695; the first value leads to a configuration like case A of Figure 1, the second and third values to a 
configuration like case B, and the last one to a configuration like case C. 

The model analyzes a 2D cross section of the BHE and the considered domains are the grout and an 
appropriate surrounding portion of ground. The grout thermal resistance is assumed to be time dependent; thus, the 
differential equations in the grout and the ground are, respectively: 
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Three different boundary conditions have been imposed at the surface between pipes and grout, namely 

imposed heat flux per unit length 'Q , imposed temperature Tp and convective heat transfer with imposed fluid 

temperature Tf  and convective coefficient h: 
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The external boundary of the computational domain, which is a circle with radius rg, is considered isothermal 

,grT T             (14) 

where Tgr, is the undisturbed ground temperature. 
Continuity conditions hold at the interface grout to ground, and the initial condition is T = Tgr, on the whole 

computational domain. 
The study and the equation solution are developed in a dimensionless form, introducing different dimensionless 

variables, depending on the boundary conditions. Thus, the following dimensionless time  * and temperatures T * are 

defined:     
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By introducing also the dimensionless quantity:  
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it is possible to rewrite Eqs. (11), (12), (14) in the following dimensionless form: 
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The dimensionless initial condition is T * = 0 everywhere in the domain. 
The different boundary conditions become: 

  *

* *
* *

1

4S
p

T
k r

   n          (21a) 

* 1T             (21b) 

 * * *( 1)
S

T Bi T     n          (21c) 
 

The analysis of the effects of the convective coefficient is carried out for Bi values equal to 10 and 50. 
In order evaluate the effect of the thermophysical properties of grout and ground, different combinations of the 

following values have been considered: k* = 0.3; 0.6; 1.0; 1.667; (ρc)* = 0.4; 0.7; 1.0. 
The dimensionless Eqs. (18)-(20), with the continuity conditions at the interface grout-ground, the initial 

condition and the boundary conditions (21) have been solved by means of COMSOL Multiphysics. 
A dimensionless time interval 4 * 510 10    is considered, which is divided into 4500 uniform time steps 

(each dimensionless time interval is equal to 0.002). 
A circular computational domain representing the ground volume is employed, with dimensionless radius 

rg* = 1000; an extensive check of the adequacy of this size of the computational domain has been already performed 
by Zanchini and Lazzari (2014), to which the present work refers. 

For the analysis of the mesh suitability, the criteria here adopted follows the work by Priarone and Lazzari 
(2014), even if in the present investigation the elements number is further increased for a more accurate calculation of 
temperatures and heat fluxes on pipes and BHE boundaries. Finally, an unstructured triangular mesh is chosen, which 
presents 200 uniformly spaced elements on each pipe boundary and 400 elements on BHE boundary, for an overall 
number of elements equal to about 24000. 

RESULTS AND DISCUSSION 

The transient behaviour of the dimensionless grout thermal resistance Rgt* is presented in Figures 3 and 4 for an 
intermediate value of the shank spacing (d * = 0.5). 

In particular, Figure 3 allows the effect of the boundary conditions to be appreciated: the trends are different 
for both the transient zone and the steady state values, with a different Forb value at which they reach the asymptote. 
The grout thermal resistance for imposed heat flux is lower for the small values of Forb whereas it reaches a 
considerably higher value in the steady state zone. The trends of Rgt* for the imposed temperature and convective 
boundary conditions seem to have a comparable behaviour, more similar for higher value of Biot number: in fact, for 
Bi = 50 (corresponding approximately to a convective coefficient h = 2000 W/m2K) the two curves nearly overlap. 



 
 

On the contrary, Figure 4 shows the effect of the dimensionless heat capacity for unit volume (c)* on the 
transient behaviour of the dimensionless grout thermal resistance Rgt*: increasing the (c)* value the grout thermal 
resistance is decreased for all the analysed boundary conditions here taken into account. Conversely, the 
dimensionless heat capacity (c)* does not affect the steady value of the dimensionless grout thermal resistance Rgt*, as 
expected from the steady formulation of the conduction equations. 

The steady values of Rgt* calculated by means of correlations (7, 8, 10) are reported in both Figures 3 and 4: Paul 
correlation provides a value of 0.95, much higher than all the numerical results and it is outside of the selected axis 
range. A very good agreement exists between numerical results and Bennet et al. estimations (Eq. 8) when in present 
simulations the convection boundary condition is applied. The value of Rgt* from Hellstrom correlation is intermediate 
between the imposed temperature and imposed heat flux numerical values, whereas the Sharqawy value is 
considerably lower than all the numerical results. 

Figure 5 compares the steady state values of Rgt* obtained by means of numerical simulations with those from 
literature correlations. In particular, Figure 5(a) analyses the effect of the dimensionless thermal conductivity k*, 
showing a small increase of Rgt* with it. On the contrary, in Figure 5(b) the dimensionless grout thermal resistance Rgt* 
decreases by increasing the dimensionless shank spacing d *. 
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Figure 3   Transient behaviour of the dimensionless grout thermal resistance Rgt

* for the three boundary conditions and for 
d* = 0.5, k* = 1, (c)* = 0.7. Comparison with literature correlation steady values (Rgt

*Paul = 0.95). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4    Effect of the dimensionless heat capacity (c)* on the transient behaviour of the dimensionless 
grout thermal resistance Rgt

* for the three boundary conditions for d* = 0.5, k* = 0.3, Bi = 10. Comparison with the 
literature correlation steady values (Paul 1996 value is out of the axis range: Rgt

*Paul = 0.95). 
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Figure 5    Steady state values of the dimensionless grout thermal resistance Rgt
*: (a) Influence of the dimensionless thermal 

conductivity k* (d * = 0.5, Bi = 10); (b) Influence of the dimensionless shank spacing d * (k* = 0.6, Bi = 10). 
 
 
One of the most interesting results of this analysis is the different values of the dimensionless grout thermal 

resistance Rgt* obtained by applying different boundary conditions on pipe side, namely imposed temperature or 
imposed convective coefficient. In fact, the non-assialsymmetry of the geometry leads to different temperature fields 
in the grout, as already stressed by a previous paper of this research group (Fossa and Dalla Pietà, 2011). 

Thus, the usual approach of simply adding the convective thermal resistance (often neglecting the pipe’s one) to 
the grout thermal resistance obtained by imposing a temperature boundary condition, is revealed to be uncorrect and 
leading to significant errors. On the other hand the comprehensive approach by Bennet et al. is able to efficiently 
describe the heat transfer characteristics when a convective boundary condition is applied. 

Figure 6 presents the results for a double U pipe, comparing the dimensionless grout plus convective thermal 
resistances R*gt+f  calculated with two different approaches. The value obtained by applying the imposed temperature 
boundary condition and then adding the convective thermal resistance significantly understimates the value obtained 
by directly applying the convective boundary condition, with an error that increases for low values of the Biot 
number. In particular, the average percentage relative error at the steady state asymptote is  = 3.4% for Bi = 50 and 
 = 10.7% for Bi = 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6    Effect of different boundary conditions on the dimensionless 
grout plus fluid thermal resistance R*

gt+f (rt
* = 0.263; d * = 0.592; k* = 0.6) 
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CONCLUSIONS 

In this paper the grout thermal resistance of a U pipe borehole is analysed by means of numerical simulations, 
by applying different boundary conditions to the internal pipe surfaces, namely imposed heat flux, imposed 
temperature and convective conditions with imposed convective coefficient. The study is carried out by using a 
dimensionless approach and it examines the effect of the ratio between the thermophysical properties of grout and 
ground, the effect of the shank spacing of the internal pipes, and the effect of the fluidodynamic regime inside the 
pipes by means of a Biot number parameter. 

The transient behaviour of the dimensionless grout thermal resistance reveals different trends for the three 
boundary conditions expecially for the imposed heat flux one, with a steady value higher than the others. The 
numerical results for convective conditions are similar to the imposed temperature ones, expecially increasing the Biot 
number (turbulent regime inside pipes). Moreover, the dimensionless heat capacity for unit volume plays an important 
role on the transient behaviour of the dimensionless grout thermal resistance, which increases as the the 
dimensionless heat capacity is decreased. 

The steady state value of the dimensionless grout thermal resistance has been calculated in terms of either the 
dimensionless thermal conductivity or dimensionless shank spacing and compared with literature correlations. As 
expected, the resistance slightly increases with grout thermal conductivity and it increases by decreasing the shank 
spacing. For the single U pipe case, the present numerical results revealed to be in very good agreement with Bennet 
et al. formula when the convective boundary condition is applied at pipe inner surface. 

The inaccuracy associated to calculating the grout thermal resistance with imposed temperature and then simply 
adding the convective thermal resistance is relevant, with an average percentage relative error with respect to the case 
of imposed convective boundary coefficient that increases by decreasing the Biot number. 

NOMENCLATURE 

Bi = Biot number (-) 

d = Half shank spacing (m) 

Forb = Fourier number based on rb 

h = Convective coefficient (W/m2K) 

k = Thermal conductivity (W/m∙K) 

'Q  = Heat transfer rate per unit length (W/m) 

r =  Radius (m) 

R = Thermal resistance (m∙K/W) 

ρc = Heat capacity per unit volume (J/m3K) 

T =  Temperature (K) 

 = time (s) 

Subscripts 

b = borehole 

conv = convective 

f =  fluid 

g =  ground 

gr, = undisturbed ground 

p = pipe 
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