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ABSTRACT  

During the operation of a ground source heat pump (GSHP), the ground acts as a heat sink and heat source in cooling and heating modes, respectively. 
When the heating and cooling loads are extremely unbalanced, ground temperature can slowly migrate up or down in the long term, diminishing the 
GSHP system’s performance, and eventually causing the system to fail. This failure occurs when the ground can no longer accept or provide more heat for 
a building. Therefore, a method to mitigate thermal imbalance is needed. 

Previous studies in the literature examine the effects of borehole configurations in geo-exchange. However, no study has been done to analyze the effects of 
varying borehole lengths in a bore field. The objective of this study is to examine the effects on thermal performance from changing the length of individual 
boreholes while retaining the same total borehole length. In this paper, the four centre boreholes in a 4x4 borehole system were shortened and the length of 
the remaining boreholes was recalculated to meet the total required ground loop length. A 20 year operation was simulated for a school building model 
with centre borehole lengths of 100 m, 80 m, and 50 m and separation distances of 3 m, 4 m, and 6 m, to study the benefits of shortening the centre 
boreholes. The results demonstrate that by adjusting the length of the centre boreholes, separation can be reduced. 

INTRODUCTION  

Ground-source heat pump (GSHP) systems use the ground as a stable heat transfer medium to provide heating 
and cooling for a building. Heat is extracted/released into the ground during heating and cooling modes, respectively. 
Because the ground, approximately 10 m beneath the surface, remains at approximately the same temperature 
throughout seasonal fluctuations, it is a stable medium for heat transfer. When the heating and cooling demands of a 
building are balanced, ground temperature remains steady over time. However, when heating and cooling demands of 
a building are greatly imbalanced, ground temperature can slowly climb or decline. An increase (or decrease) in ground 
temperatures can cause a degradation in system performance because of the inefficient heat transfer temperatures. 
Many systems in the past had to stop operation because of low system efficiencies, making them uneconomic to 
operate. 

Borehole configurations can play a major role in ground temperature changes. In many cases, borefield sizing is 
determined based on peak heating and cooling demands. Compensation for thermal imbalance is more of an 
afterthought and much more complex in practice. The problem of ground temperature change is still a problem in 
many installations due to costly overdesigns or degredation in functionality. Borehole performance is immediately 
affected by neighbouring boreholes (Koohi-Fayegh and Rosen 2012). Borehole systems with small separation 
distances experience more thermal interference between neighbouring boreholes than systems with greater separation 
distances (Koohi-Fayegh and Rosen 2012). The increase in separation distance can also increase the percentage of 
temperature restoration due to the reduction in borehole thermal interference (Yuan, et al. 2016). In addition, the 
temperature distribution of the borehole field can also be affected by borehole separation distances. When studying 
the temperatures at the centre, side, and corner of the borehole field, the greatest change in temperature can be found 
in the centre of the configuration. However, when borehole separation distances are increased, the difference between 



 
 

the temperatures at these locations are reduced (Yuan, et al. 2016). 
While borehole separation is important in the design of geo-exchange, studies have shown that borehole 

separation distance is not the only factor that contributes to thermal imbalance. The study described in Law and 
Dworkin (2016) showed that by varying the aspect ratio of borehole configurations, ground temperature changes can 
be slightly alleviated. The increase in borehole field perimeter was able to slightly lower the changes in ground 
temperature due to the larger area available for heat to dissipate to the surrounding soil. The decrease in ground 
temperature change can allow the system to operate efficiently for a longer period of time.  

In an array of boreholes, the centre boreholes of the configuration are most affected by thermal imbalance due 
to neighbouring borehole interactions. These boreholes are the least effective because of the poor heat transfer 
temperatures in the surrounding soil. A method to alleviate ground temperature change is to remove inner boreholes 
(Bayer, et al. 2014). In this method, the least effective boreholes (inner boreholes) were removed from the borehole 
field to prevent thermal accumulation in the centre of the borehole fields. The results in Bayer, et al. (2014) showed 
that the cavity created by the removal of inner boreholes contributed to better heat transfer, resulting in smaller 
changes in ground temperature. This method moves the location of thermal accumulation away from the centre of the 
borehole field. 

Another method to alleviate the effects of thermal imbalance is to alter borehole configurations in the axial 
direction. Examples of this method include the installation of inclined boreholes (Marcotte and Pasquier 2009). 
During the construction phase of a GSHP system, instead of drilling boreholes vertically into the soil, boreholes can 
be drilled on an incline, away from the centre of the borehole field. A dip angle was defined as the angle at which the 
borehole is oriented away from the vertical direction. A reduction in temperate changes was observed by changing the 
dip angle of the boreholes (Marcotte and Pasquier 2009). In addition, borehole length savings were also achieved 
(Marcotte and Pasquier 2009). The inclination of boreholes pose a beneficial design in geo-exchange because their 
installation does no incur a greater cost in construction. 

While most simulation methods use the superposition of g-functions to determine the temperature distribution 
in a borehole field, these studies neglect axial effects. Axial effects are important in the simulation of boreholes 
especially in short borehole systems with unbalanced loads (Marcotte, et al. 2010). A study by Marcotte, et al. (2010) 
compared finite and infinite line-source models for the same borehole system. The infinite line-source model 
predicted a single temperature for the entire length of borehole, however, the finite line-source model predicted a 
gradient of temperatures approaching the infinite line-source temperature as the depth of the borehole increased. In 
the prediction of percentage borehole freezing, the discrepancy between the infinite and finite line-source models was 
48% (Marcotte, et al. 2010). Due to the large discrepancies in the results of the two models, it is important to consider 
axial effects, especially in shallow boreholes. 

Studies have indicated the importance of studying borehole separation distances, borehole configurations, and 
axial effects; there is a need to combine the effects of all three aspects in a borehole field. Borehole designs typically 
consist of various borehole field layouts of uniform length boreholes. However, no study has been done to assess the 
effect of operating a GSHP system with boreholes of varying length.  

In this study, a 4x4 borehole configuration was studied. The four centre boreholes in the 16 borehole system 
were shortened and the length of the remaining boreholes was recalculated to maintain system capacity. A finite-
element model was created to demonstrate the operation of a 16 borehole system with varying borehole lengths. The 
simulation was computed for a 20-year operating duration at hourly time-steps. Ten cases were simulated, each with 
different combinations of centre borehole length and borehole separation distance. 

METHODOLOGY 

This study consists of finite element modelling of alternative borehole configurations. The alternative borehole 
arrangement is illustrated in Figure 1. The centre four boreholes (depicted in grey) are shortened and the remaining 
boreholes (depicted in black) are extended relative to a base case. The borehole lengths used in this study are 



summarized in Table 1. For example, in the ‘80’ configuration, the four centre boreholes are each 80 m in length and 
the remaining boreholes are each 106.67 m. 

 

Figure 1 Alternative borehole arrangement layout 

The test case is a high school building located in Toronto, Canada that had a GSHP considered. The GSHP 
was designed to meet 100% of the building’s heating and cooling capacities. The peak loads of the building are 170 
kW and 145 kW for cooling and heating, respectively. The “normal” sizing process is to determine the required 
ground loop length using the method presented by Kavanaugh & Rafferty (1997) for equal borehole lengths.  

 
Table 1.   Borehole Lengths Summary 

Borehole configuration Inner borehole length (m) Outer borehole length (m) 
100 100 100 
80 80 106.67 
50 50 116.67 

First, hourly heating and cooling demands of a building were processed to obtain hourly borehole wall heat 
fluxes. Then, a finite element geometry as illustrated in Figure 1 was created in COMSOL Multiphysics (COMSOL 
Inc., 2016). Hourly heat fluxes were applied to the borehole walls to simulate a borehole providing heating and 
cooling for a building. The operation of the system was simulated for a 20 year period with hourly time steps. The 
results of the simulation are presented in the following sections. 

Model Set Up 

The method employed to determine the hourly heat flux is the same as the one used in (Law and Dworkin, 
2016). The variation in COP during the operation of the GSHP was not considered in this study. Since the purpose of 
this study was to compare the various ground loop configurations, constant COPs were used since they would affect 
the test cases similarly. Although applying variable COPs may change the quantitative results, it is unlikely that they 
will greatly impact the qualitative comparisons presented in this study. Hourly heating and cooling demands were 
processed into hourly heat fluxes using MATLAB (MathWorks Inc., 2016). Positive heat flux represents the release of 
heat into the borehole field and negative heat flux represents the extraction of heat from the borehole field. The 
hourly heat flux was calculated by determining the hourly “ON” and “OFF” cycles of the heat pump. For every hour 
that the heat pump is turned “ON”, the maximum heating or cooling capacity is provided. For every hour that heating 



 
 

or cooling is not required, the system turns “OFF”. Residual heating or cooling from the previous hour can be used to 
supply the building with heating or cooling when the system is “OFF”. For example, if 10 kWh of heating is the 
capacity of the heat pump and the heating demand of the building for the first two hours are 5 kWh each, the GSHP 
can turn “ON” for the first hour and be “OFF” for the second hour. The same approach as in (Law and Dworkin, 
2016) was taken to calculate the hourly heat flux, upon determining the “ON” and “OFF” cycles of the heat pump. 

 

Test case and simulation properties 

The test case used in this analysis is a school building with slightly unbalanced heating and cooling loads. While 
a variation in borehole lengths can slightly reduce the effects of thermal imbalance, highly unbalanced loads are not 
recommended due to their large thermal impact on the soil. The net heating and cooling demands of this building can 
be found in Figure 2. The heating and cooling demands of the school building exhibit an interesting pattern in which 
the cooling demands drop significantly in the summer months when the occupancy of the school is low. 

 

Figure 2 Net heating and cooling demands of a school building. 

Using the same calculation method as outlined in (Law and Dworkin, 2016), the hourly heat fluxes were 
determined based on the hourly heating and cooling demands. The GSHP system was sized to its maximum heating 
and cooling capacities. The flow rate in all boreholes are considered to be constant and at system capacity. A simple 
on-off logic is used to maintain building comfort. Although variable speed pumps with varying system capacity are 
now available, in practice the majority of systems still operate in on-off scenarios using single speed pumps. Since the 
characteristic time of heat dissipation through the ground is much greater than that of on-off switching, the impact of 
this assumption is expected to be negligible. At each hour, it was determined whether the system was “ON” for 
heating, “ON” for cooling or “OFF” for both. It was assumed that turning the system “ON” would supply a building 
with its maximum capacity. 

The heating and cooling systems’ “ON” and “OFF” conditions were determined for each of the 8760 hours of 
the year and hourly heat fluxes are calculated based on these conditions. The hourly heat fluxes for the school 
building are presented in Figure 3. Lines in dark gray represent positive heat flux where heat is transferred into the 
ground. Lines in light gray represent negative heat fluxes where heat is extracted from the ground. “ON” and “OFF” 
cycles of the system can be observed in Figure 3 by the occasional spacing between hours. 



 

Figure 3 Hourly heat flux of school building 

The simulation was conducted in COMSOL Multiphysics for a 20 year period at hourly time steps (COMSOL 
Inc., 2016). At each hour, the boundary heat flux condition at the borehole walls are updated with the hourly heat 
fluxes calculated in the previous step. A quarter of the simulation domain was created to model 4 operating boreholes. 
Symmetry conditions were applied to two faces to mirror the domain. Using the symmetry conditions, a 16 borehole 
system can be simulated by only modelling 4 boreholes. This simplification of geometry allowed for a reduction in 
computation time. Open boundary conditions were applied to the remaining faces to model far-field conditions. 

The simulation was repeated for 9 different cases of borehole configurations. The configurations are selected 
based on combinations of different borehole spacing and centre borehole length as presented in Table 2. For 
example, case 2 is a 16 borehole installation in a 4x4 configuration. The inner 4 boreholes in the system are 80 m in 
length and the remaining 12 are 106.67 m in length. The 3 m borehole spacing indicates that the boreholes are spaced 
3 m apart from each other.  

	
Table 2.   Borehole configurations 

Case Borehole spacing (m) Centre borehole length (m) 
1 3 100 
2 3 80 
3 3 50 
4 4 100 
5 4 80 
6 4 50 
7 6 100 
8 6 80 
9 6 50 
10 5 50 

 

RESULTS 

Borehole wall temperature 

In this simulation the temperature at a point near the borehole wall is studied. This temperature is extracted 



 
 

from a point 1 cm away from the borehole wall (point A). The location of 1 cm was chosen because it is very close to 
the borehole wall, and therefore can represent borehole wall temperature. A parallel line 1 cm away from the borehole 
wall was considered along each borehole and the average temperatures of those lines were calculated. The yearly 
average borehole wall temperature were calculated and summarized in Figure 4.  

In Figure 4, three cases are presented. The three cases have centre borehole lengths of 100 m and vary in 
separation distance (3 m, 4 m, or 6 m). Figure 4b and Figure 4c are similar for centre borehole lengths of 80 m and 50 
m, respectively. From the figures, it is evident that the borehole wall temperatures are highest in the case with the 3 m 
separation distance and lowest in the case with the 6 m separation distance.  

 

Figure 4 Average temperature at point A for a) 100 m, b) 80 m, and c) 50 m centre borehole length configurations 

In Figure 4c, it is interesting to note that the temperature difference between the 3 m and 4 m separation 
distance is significantly greater than the temperature difference between the 5 m and 6 m cases. The rate of increase in 
ground temperature is higher when separation distance is small and is lower when the separation distance is greater. 
The rate of increase in ground temperature is higher when separation distance is small because there is less soil 
volume available between boreholes for heat to dissipate to. 

The effects of varying borehole lengths were also studied. The results are presented in Figure 5 for the cases 
with 4 m borehole separation distances. The plots for 3 m and 6 m separation distances are not presented in this 



analysis because of their similarities with Figure 5. In Figure 5, the average temperatures at point A were studied for 
three borehole configurations. It can be observed from the figure that the “50” configuration has a smaller increase in 
temperature compared to the “80” and “100” configurations over the 20 year study period. Thermal benefits in using 
the “50” configuration can be observed. Using the same amount of drilling and piping, over 20 years, the “50” 
configuration on average has a 0.5oC lower temperature than the “100” configuration. Due to the lower increase in 
borehole wall temperature, more effective heat transfer and better COP managemenent can occur. 

 

Figure 5 Average temperature at point A at 4 m separation distance 

Alternative designs 

In the hopes of developing ways to alleviate the effects of thermal imbalance, the ground temperature changes 
in all 10 configurations indicated in Table 2 were compared. Annual average temperatures were calculated for 20 years 
for each system and summarized in Figure 6. Based on the results in this figure, it can be noticed that ground 
temperature increases with decreasing separation distance and increasing centre borehole length. As borehole wall 
temperature increases, ground temperature also increases due to the heat dissipated from the borehole wall into the 
surrounding soil. Although in all cases, ground temperature increases as time increases, the overlapping/shadowing 
lines may lead to potential alternative designs. 

Several potential designs can be considered based on the results presented in Figure 6. If a GSHP system was 
originally designed with a uniform borehole field (100 m boreholes) with separation distance of 6 m (100, 6 in figure), 
alternative configurations can be determined using lines near the proposed design line in Figure 6. For example, a “50, 
6” design can be used to reduce the ground temperature increase.  

Alternatively, based on the simulation results, a “50, 5” design can be proposed. It can be observed that the 
behaviour of his line is very similar to the original “100, 6” design. This new design would decrease borehole spacing, 
allowing the system to be installed in a smaller space. This finding can provide potential designs for buildings that 
have property sizes that are determined to be insufficient for installation of GSHP systems. 



 
 

 

Figure 6 Summary of all simulation results 

CONCLUSIONS 

Although studies have previously been done to characterize the effects of borehole geometry in terms of 
borehole field arrangements and borehole separation distance, little research had been done to explore the effects of 
alternating the length of boreholes. To fill the knowledge gap in the study of borehole lengths, a series of simulations 
were performed in this work. 

The operation of a 4x4 configuration borehole field with varying borehole lengths and borehole separation 
distance was simulated. Although variable speed pumps are available, an on-off scenario with single speed pumps was 
modeled in this study as many systems still operate using this technology. Ten cases were studied and an increase in 
ground temperature near the borehole wall can be observed with the decrease of borehole separation distance. In 
addition, an increase in ground temperature near the borehole wall can also be observed with the increase of inner 
borehole depth. It was observed from the present results that alternative designs can be used to achieve the same 
ground temperature change with uniform borefield lengths. Specifically, it was found that the configuration with inner 
borehole length of 50 m at a separation distance of 5 m behaved similarly as the configuration with inner borehole 
length of 100 m at a separation distance of 6 m. This result indicates that borehole separation distance can be reduced 
by alternating the borehole lengths of a system. This reduction can allow GSHP systems to be installed in smaller 
spaces, which is beneficial to locations where land prices are high, or properties are dense.  

This study demonstrated the importance of the study of alternative borehole configurations. Alternative 
borehole configurations can be used to reduce the effects of ground thermal imbalance. To fill the knowledge gap 
present in this study, further study should be performed on the effects of alternating borehole lengths in other 
borehole field arrangements. The study of varying borehole lengths should be extended to incorporate different 
borehole field layouts. In addition, refined details should be added to the current model to develop models that are 
more representative of operating GSHP systems. Such details should include but not limited to fluid flow inside pipes, 
additional soil properties and varying COPs. 
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