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ABSTRACT

In this study problems of heat and mass transfer in a geothermal 

reservoir are solved numerically by the finite element analysis for devel­

opment of geothermal exploration. The problems under investigation are 

unsteady free convection within a magma body and a two phase Stefam prob­

lem associated with moving boundaries. These geological phenomena require 

a large amount of computer storage as a result of the need to provide in­

creased resolution near a small interesting area of the huge domain. Thus, 

a consideration to reduce the number of unknown variables is necessary; the 

penalty method of finite element analysis is employed to solve the time 

dependent free convection problem. The purpose of the unsteady free con­

vection model is to investigate the effect of convection on the temperature 

and streamline distribution within a geothermal reservoir (magma body).

The one dimensional, two phase Stefan formulation, which has dependent 

melting temperature on depth, is developed by the finite element method 

after using the Duvaut's transformation to resolve the discontinuity of 

the temperature gradient on the solid-liquid interface. This model is 

used to investigate the effect of the latent heat of fusion on the solidi­

fication of magma.

In a time dependent free convection model, convection is generated 

by density changes due to temperature variations. The results of this 

study show that the convection gives larger temperature gradients at the 

upper portion of the magma than the lower portion. Consequently, the heat
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transported from the bottom of the magma by convection prevents the roof 

of the magma body from freezing, or slows the freezing process at the up­

per portion of the magma, until almost all of the lower portion of the 

magma is frozen.

The conductive moving boundary model developed in this study indi­

cates that the solidification of magma takes more time when the latent 

heat of fusion is considered. The convective moving boundary model shows 

that the temperature gradients in the upper portion of the magma are more 

steep than those in the lower by transporting the heat at the bottom up­

ward.
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NOMENCLATURE

C Specific heat

D Domain

d Characteristic length

Dg, 30^ Domain of element, boundary of element

g Gravitational acceleration

H . G . ., F., K.. Coefficients of matrix 
1] 1] 1 1]
I, G Global functional, penalty functional

K Thermal conductivity

Z, L Latent heat per volume, latent heat per mass

N Interpolation function

n , n Components of unit normal vector in x and y
* ^ direction

P Pressure

P(x) Position function of the interface

Pr Prandtl number

Ra Rayleigh number

S(t), M(t), I(t) Solid domain, melted domain, solid-liquid
interface

T Temperature

^1’ 1̂* ^1 ' ®1 ’ Values of essential boundary condition
lb Transformation temperature

tj, tg, tg Values of natural boundary condition

T̂ , T̂  Temperatures at hot and cold wall

U, V Velocities in x and y directions
y Ç Ç g Functions of initial conditions

X, y Cartesian coordinates in two dimensions

IV



a Thermal diffusivity

8 Coefficient of thermal expansion

V Slope of the Clapeyron curve

6 Variational operator

3D Boundary of the domain

E Penalty parameter

P, Density, reference density

Ç, r) Natural coordinates

0 Non-dimensionalized temperature .

V Kinematic viscosity

(JÜ VortiLity

V Stream function

[F] Force vector

[K] Stiffness matrix

[M] Mass matrix

( )̂ , ( )y First derivative of each subscript

V Gradient operator 
2V Laplacean operator

, I Values of gradient at the interface
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CHAPTER I 

INTRODUCTION

During the last decade geothermal energy has received much atten­

tion as a way to meet future energy needs under the assumption of the ul­

timate depletion of fossil fuel energy. The advantages of geothermal 

energy over fossil fuel energy are a wide variety of applications, a clean 

form of energy, and the immense amount of potential energy stored in the 

earth’s interior. These advantages provide an impetus for the development 

of geothermal exploration. In addition, a substantial amount of hot li­

quid rock, called magma, rises along the deep cracks in the earth's crust 

to the depth where it can be tapped by available drilling techniques.

Thus, geological or mechanical efforts to utilize a geothermal reservoir 

as an energy resource have been attempted.

A sequence of stages of intrusion, upward heat transfer, and so­

lidification of hot rock (batholith) have been studied to help assess 

geothermal reservoirs in terms of the temperature profile and the size of 

batholiths. Numerous analytical and numerical solutions for the behavior 

of the magma have been derived by many authors such as Jaeger (1961), 

Shimazu (1961), McKenzie (1968), Richter (1973), and Korio (1979). The 

solutions from previous works are not general enough to describe this me­

chanism because of some oversimplified assumptions, such as no convection 

effect and no phase change considerations.
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In this paper, the formation of a geothermal reservoir associated 

with a magma chamber, which is an important criterion for the development 

of geothermal exploration, will be studied as a heat transfer problem 

with moving boundaries.

The problems of the present study will now be described. As an 

initial condition a batholith, a molten phase of rock, at a known temper­

ature and at a known mode is intruded into the country rock at a given 

temperature. After the intrusion, it is subject to the geothermal gra­

dient. The phase change is determined by the melting temperature. This 

description represents the boundary conditions of the present problem.

The physical properties of the batholith and the country rocks are 

assumed to have the same values. The molten portion behaves as a laminar 

incompressible Newtonian fluid under the Boussinesq assumption.

The problem under consideration may be characterized as a free 

convection problem with moving boundaries. Thus, the problem is divided 

into two parts to be analyzed systematically.

i-l. Time Dependent Free Convection Model 

The purpose of this model is to investigate the heat transfer me­

chanism of the magma and country rock governed by not only the conductive 

heat equation outside the magma but also the convective heat transport in­

side the magma which most previous workers disregarded. From the geologi­

cal point of view, the convective heat transfer produced by any temperature 

variations is necessarily a transient phenomenon because the temperature 

gradient decreases eventually by conductive heat loss through the country 

rock and convective heat transfer. Then, the molten phase of magma finally 

becomes solidified after a period of a time.



The convection effect of a magma can give different shape to the 

batholith depending upon the geological situation. Shaw (1965) pointed 

out that the forced convection of granitic magma can result in the forma­

tion of dikes under certain conditions; on the other hand, a stock-like 

batholith can be formed by natural convection. Therefore, the effect of 

the convective heat transfer inside the batholith on the formation of the 

batholith should be considered with the same degree of importance as the 

conductive heat transfer. In this model, the general mechanisms govern­

ing the motions and temperatures of a magma are formulated mathematically, 

and the formulated equations are analyzed numerically. The governing 

equations consist of the continuity equation, momentum equation, energy 

equation, and equation of state.

The governing equations are formulated variationally by using the 

penalty method (*) and are discretized by the finite element method with 

respect to space, and furthermore discretized by the finite difference 

method with respect to time.

After the finite element method emerged as one of the most effec­

tive tools of numerical analysis for structural and solid mechanics, its 

application to the fluid problem was demonstrated for the first time by 

Taylor and Hood (1974), and later refined by Zienkiewicz and Gallagher 

(1975), and Reddy (1979-b).

A finite element method based on the penalty functional formula­

tion is developed for the unsteady free convection problem in Chapter II.

* The penalty method, originated from R. Courant (1945), is developed by 
Zienkiewicz and Heinrich (1973), Reddy (1979), et al., for application to
fluid dynamics.



Reddy and Satake (1980) showed that the penalty formulation has more com­

putational advantages than the direct velocity-pressure formulation (Taylor, 

1975)by reducing the number of unknowns. In the penalty formulation the 

pressure term can be dropped by imposing the incompressibility condition 

as a constraint into the variational formulations associated with the 

governing equations.

It is necessary to note that these mathematical formulations are 

derived under the Boussineseq assumption. This model is used to calculate 

the temperatures and velocity field inside the batholith.

1-2. Moving Boundary Problem 

Immediately after the intrusion of magma into the country rock, 

the magma is assumed to have sufficient heat to melt the country rock 

which it contacts. The position of the magma-country rock interface is 

determined by the conduction equation or the energy equation including 

the effect of the latent heat which is liberated or absorbed with phase 

changes. The characteristics of the phenomena considered herein are es­

sentially the same as the Stefan problems treated from the point of view 

of the heat balance.

The essential assumptions for the treatment of a Stefan problem

are:

1, The existence of a transformation temperature at which 

one phase changes to another with emission or absorp­

tion of latent heat

2. The existence of a moving intersurface of separation 

between two phases.



The analytical solutions known by Jaeger (1961) and Tikhonov 

(1963) are applicable for one dimensional and one phase Stefan problems 

since the solutions are obtained by using special characteristics of one 

dimensional case. In order to solve two phase and two dimensional Stefan 

problems, numerical approaches are needed. The discontinuity of the tem­

perature gradient, which is the principal cause of difficulty in the nu­

merical approaches to Stafan problems, is resolved by introducing the 

Duvaut’s transformation (1976). Since the development of the Duvaut's 

transformation, Atthey (1973) and Crowley (1977) solved numerically for 

one dimensional and two phase Stefan problems, and Ichikawa (1977) and 

Kikuchi (1977) analyzed the water-ice cases, for which the transformation 

temperature is constant (zero), by various nimerical methods.

Ahem and Turcotte (1979), who corrected Shimazu's results (1961) 

investigated the effect of convection by simulating this phenomenon with 

a one dimensional finite difference model. In their model the rate of 

convection was obtained from Rossby's experimental equation showing that 

the Nusselt number is a function of the Rayleigh number.

In the present study we will extend the application of the Stefan 

principles to a problem which has a changing melting temperature with depth 

and includes the convective effect. The finite element scheme is employed 

to solve the problem numerically. First of all, to determine the effect 

of latent heat on the solidification of magma with migration, the one di­

mensional conductive moving boundary formulation is constructed using the 

conduction equation. To analyze the upward magma migration mechanism 

simulated by Ahern (1978) and Shimazu (1961) which used the finite differ­

ence model, the development of moving boundary formulation including the



convective terms is necessary. To my knowledge, the moving boundary model 

constructed for the energy equation is the first such approach to the 

Stefan problem. It is impractical because of the technical difficulty 

caused by the domain iteration procedure to extend the model at hand to 

the two dimensional analysis of magma migration by introducing moving 

boundary conditions into the unsteady free convection model.



CHAPTER II 

FREE CONVECTION FORMULATION

2-:!. Governing Equations

After the magma is intruded into country rock, a large body of hot 

magma is surrounded by cold country rock which has been subject to the geo­

thermal gradient. This temperature variation gives rise to variations in 

the properties of the magma, such as the density and viscosity. All mobil­

ization or transport mechanisms in the magma are produced by these mechan­

ical or thermal instabilities (density and viscosity variations) (Spera, 

1980).

The transport mechanisms can be generally classified into two 

types: forced convection, the mass transfer of fluid as a result of an

externally applied force; and free convection which results from the gra­

vitational force on a fluid with inconsistent density due to temperature 

gradients. In the present study, free convection, which is physically 

analogous to the present problem is of prime concern.

Since analysis including the full effects of the variations of 

physical properties associated with free convection flow is so complicated, 

the Boussinesq approximation will be used. In the Boussinesq approxima­

tion, "Variations of all fluid properties other than the density are ig­

nored completely. Variations of the density are ignored except as they 

give rise to a gravitational force" (Tritton, 1977). Thus, time dependent
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two dimensional flow of a laminar Newtonian, Boussinesq, incompressible 

fluid will be considered in the present investigation. The relevant momen­

tum equations (Navier-Stokes equations) are given as follows since incom­

pressibility conditions are satisfied in an approximate sense in the penalty 

method.

“t * "“x * = - I  " V y î

+ UV̂  + Wy = - J  ̂v[2Vŷ y + (Uy + V̂ )̂ ] + gBCT - Tjj) (2)

in D

where p is density, v kinematic viscosity, g gravitational acceleration,

B thermal expansion coefficient, reference temperature, U horizontal 

velocity, V vertical velocity, P pressure, D domain. It is necessary to 

note that Û , Û , Uy, V.̂ , V ,̂ Vy, T̂ , P^, Py, ( )y, ( denote first de­

rivatives with respect to each subscript and U , U , T , T arex,x' y,y* x,x’ y,y
second derivatives with respect to x,y, respectively.

The continuity equation can be written as

+ Vy = 0 in D (3)

The energy equation is

* UT^ * VTy = ♦ Ty_y) in D (4)



where a is isotropic thermal diffusivity. Equation 4 does not include the 

viscous-energy-dissipation term due to friction in the fluid because the 

effect of that term is negligibly small for most engineering applications 

where the flow velocities are small COzisik,1977).The derivation of Navier- 

Stokes equations from Newton's 2nd law, the continuity equation and the 

heat conduction equation are described in Appendix 1,

The boundary conditions are:

T = Tj

U = Uj in 3Dj (5)

V =

tj = MCUy * * C2m . Vy - £)iiy in f6)

where n , n are normal derivatives to the boundaries: X y

^1’ ^1’ ^1 values of essential (Dirichlet) boundary conditions

of temperature and velocities.

tj, tg, tg the values of natural (Neumann) boundary conditions 

of each variable.



9Dj denotes the portions of the boundary on which the variables 

are specified.

90^ denotes the portions of the boundary on which the tractions 

of the variables are specified.

Initial conditions associated with the governing equations are given as 

U(x,y,o) = Ù(x,y)

V(x,y,o) = V(x,y) (7)

T(x,y,o) = T(x,y)

where U, V, T are initial functions of velocities and temperature respec­

tively.

It is usually convenient to nondimensionalize the governing equa­

tions by the dimensionless parameters and variables for the usual treat­

ment of the thermal flow problems.

T - T
X = x*d, y = y*d, U = U* ,̂ V = V*^, 0 =d' d' T, - Th c

7 ^2  
P = pV p*, t = t*—a

where d is a characteristic length, U a characteristic velocity, a tem­

perature at hot wall, a temperature at cold wall and the starred quan­

tities denote the dimensionless variables, 9 is dimensionless temperature. 

The stars on the variables will be omitted for convenience hereafter.

10



By introducing the following nondimensional parameters:

Pr = — Prandtl number

gB(T - T^)d^
^  ^  Rayleigh number.

we can rewrite the governing equations as:

+ UD̂  + TOy -  -  Pr . + %  + V ,)y ) (8)

L  +  OT + --P „ +  Pr . (2V, ^ + m + V J J  + 8a , Pr . 0t X y y y»y y x x

u + V - 0 CIO)X y

0̂  + U . 0̂  + V . .6j, - 0;,, + 0y_y Cll)

in D
with boundary conditions

t i  -  (2Pr . -  P)n^ + Pr . (U  ̂ +

t% = Pr . CUy + \)\ + (2Pr . Vy -  P)Hy in  (12)

11



0 - 0.

U -  ü. in  3D, (13)

The initial conditions become

0 (x,y,o) » 0 (x,y)

ü(x,y,o) - ü(x,y) (14)

V(x,y,o) - V(x,y)

2-2 . Penalty Functional Formulation 

The finite element formulation is derived from the Rayleigh-Ritz- 

Galerkin philosophy of constructing approximation functions whose linear 

combinations represent the unknown solutions. The introduction of the 

Galerkin integrals which do not require the construction of a functional 

is necessary in the problem where the convective (nonlinear) terms are 

important. Furthermore, problems which need large computer storage re­

quire another consideration to reduce the number of unknowns. Thus, the 

penalty formulation, which was refined by Zienkiewicz (1975) and Reddy 

(1979-a), is employed to solve the system of equations defined by (1), (2), 

(3), and (4). The penalty method consists of incorporating the penalty 

function into the variational formulation associated with these equations.

12



The penalty function corresponds to the incompressibi1ity condition which 

is appended with the penalty term. Thus, the approximate solution converges 

into the true solution as the constraint is satisfied more closely.

Hence

+ <”y +

+ IVj. + u.v^ + v.Vy + Pr . [2Vy y + (Uy + ^ Ra . Pr . 6 ]6V

+ [U^ + Vylfip

+ [ê  + u0 + ve - e r- e ise I do - o (is)t X y X,x y,y J

By use of integration by parts

[U. 6ü + (Ü . Ü + V . U )6U + Pr . [2U^6U + (U + V^)6ü ] X y x x y x y

+ [V.ÔV + (U . + V . V )6V + Pr . [2V„6V^ + U + V )6V ]u X y y y y x x

- Pr . Ra . 0ÔV

+  [6j.Ô0 +  (U0^ +  V8y)60 T. r. 0y60y]

]- [PC6U + 07,) + (Ü + V )6p] I dDX y X y

13



+  I . [Pr . [2U^5ü , +  (U +  V^)6ü . +  2V 6V .
3D '

+  CUy +  V^)fiV . ]

+ [p6ü . + p6V . Hy + + 6yNy] dS (16)

For the moment, le t*s  examine the following term

1 (P5U . n 
JsDi

-  \ PC&D +  «V ) dD +  I  (P5U . n +  P6V . n^) dS (17)X y* I ar X y

Since the arbitrary functions U, V satisfy the incompressibility 

condition, the first term vanishes. The second term disappears when 

the velocity is specified on the boundary. Thus, pressure does not 

appear in the penalty method. The above variational statements can 

be rewritten in penalty formulation forms

61 + 6G - 0 (18)

where 61 - \ [U.6U + (U . Ü + V . D )6U + Pr . [2ü 6U + (Ü + V )6U ] Ijjt X y x x ' y x y *

+ [V. 6V + (Ü . V , + V . V )6V + Pr , [2V 6V + (U + V )6V^) t  X y y y y x x

-  Pr  , Ra . 06V . [ Bf  68 +  ( U . 0 +  V , 6 ) 60 ^ 0 60X y X y

0 60]dD y
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+ \ Pr . [2ü^6ü . + CUy + V^)$ü . «y + 2Vy6V . Ry

+ CUy + V^)5V . + [e^N  ̂+ SyiiyldS (19)

G = f  I OĴ  + V )^dD (20)
 ̂ /d *  y

where G is the penalty function and e is penalty parameter. Zienkiewicz 

(1977) and Reddy (1979-a) proved theoretically that the penalty function 

converges to zero as e goes toward infinity. In other words, the approx­

imate solution converges into the actual solution as c is increased to 

infinity. But, in practical computation the selection of the value for 

E is crucial to yield accurate results. In the penalty method, the pres­

sure is obtained by

P -  -E(U^ + Vy) (21)

because the pressure corresponds to the Lagrange multiplier which is asp 

sociated with the incompressibility constraint in this system.

2-3. Finite Element Formulation 
The finite element method was introduced as a tool of numerical

approximation for the problems associated with structural mechanics.

The applications of the finite element method to the problems of fluid

flow have only been developed in recent years.

The finite element method assumes that the governing equations

over a given global domain hold in each subdomain, called a finite element.

15



Thus, the relevant equations for a typical element are derived from the 

global governing equations using the variational method. Then, the unknown 

primitive variables U, V, 0 are approximated by a series of interpolation 

functions (or shape functions) in each element. As a result, the associated 

equations for a typical element are discretized in matrix form. Hie global 

approximations over the given domain are constructed by assembling these 

elements at the continuous interelement boundaries.

We can introduce the following interpolation functions of the var­

iables U, V, and 8 over the subdomain

Ü - SD^N^(x,y)

V - EV^N^Cx.y) (22)

6 - Z8j,N̂ (x,y)

where denotes the interpolation function corresponding to node i and 

l>i, V̂ , 0̂ , the values of variables at the ith node of the element. By 

substituting equation 22 into equation 18, v?, obtain

"j - " l +  +
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Pr . + ( V j .t + «'/3.x»’l.rl

-Pr . Sa . 6 . H^ + CHj CCT.N j + ly N. y)ldidy

+ ZÔ6 . -"j - " i +

2ÔU. \ t.N.dS - m .  t»N.dS Z$0. It.N.dS 
^ l9De ^ ^ ^ /3De ^

(23)

where

- (2Pr . F  - p)*x + PrCU + V^)n^

tg - Pr(U + V ^ ) \ + C2?r.V - p) n (24)

tj - (e.-r + e/y)

Dg, 9Dg denote a domain of element, and a boundary of element 

respectively. Collecting the coefficients of the variables 6LL, 6V^ 

and 60. respectively, we can have the following matrix forms

17



M® 0
• +

0 M® t

H: + Pr.[2G^ + G^l + e.G^IPr.G^l + e.G^^
I

21 12* 2 1 2 Pr.G + e,G I H + Pr. [2G + G^] + e.G

_ 1D F

2V F
(25)

+ [H + G^ + G^][0] - [p3] (26)

where H .. «ij (27)

(28)

(29)

=ij - (30)

=ij ■ (31)

FJ -(t,N^dS (32)

tjNĵ dS + IPr . Ra. e , Nj #xdy (33)

M y  - jN^ . Nj , dxdy (35)

One of the important steps in the finite element analysis is the selecr 

tion of the interpolation functions associated with the shape of an element.

18



Zienkiewicz (1979) showed that quadrilateral elements give more accur­

ate solutions than the triangular elements in the penalty formulation. 

Also, linear interpolation functions and the more refined meshes have com­

putational advantages over the high order interpolation functions because 

of the difficulty of the integration. Thus, a bilinear quadrilateral in­

terpolation function is used in the present formulation:

^1 " 4aF (b-x)Ca-y)

(36)
^2 = lab ( W ( a - y )

^3 = 4iF (b+x)(a+y) 

4̂ = 45F (b-x)(a+y)

where N. N, N_, and N. are interpolation functions at nodal point 1, 2,ip Ô 4
3, and 4 in the element.

Figure 2-1, The Rectangular Element
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The nonlinear term in the matrix [H] requires an iterative technique which
computes the value at the (m+l)th iteration, assuming the values at the

mth iteration to be known, until the computed values show sufficient con­

vergence.

The finite element equations discretized with respect to space 

should be discretized further with respect to time for time dependent 

problems.

There are generally two discretization methods for time dependent 

problems. The interpolation function is regarded as being dependent upon 

space as well as upon time such that:

au(x,t) 9N^(x,t)
“5 t § F . u. (37)1

Tbe second method involves the temporal operator being introduced as the 

time derivative of a variable at a node from the relation

3U(x,t) au.(t)
= N, (X) — (38)at i «

In the present study the second approach is employed for the time approx­

imation. An advantage of the second method over the first method is the 

decrease in computational dimensions requiring the finite element in time 

(Chung, 1978).

Hence, we can rewrite equations 25 and 26 in standard matrix form

[M][U^] + [K(U)][U] = [F] (39)
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where I’M] is conventionally called the mass matrix, U unknown solution 

vector, [K] stiffiiess matrix, [F] force vector. The finite difference 

schemes for time dependent problems is given by

® • % + l \  + (1-9) ' (&)t = % + l  - Hn)/^" (40)

where ( ) denotes the derivative with respect to time, U ,, U are un- 

known variables at the n+1 , and nth time step.

The following values of 6 are generally used for time dependent 

problems.

0 , forward-difference 

1/2, Crank-Nicholson
6 =

2/3, Galerkin

1 , backward-difference

The Crank-Nicholson and Galerkin schemes will be tested for convergence 

and accuracy in the present study. From equation 40, we obtain:

[M](Uj)^ + [K]U^ = F^ at nth time step (41)

("n+l)t * at (n+l)th time step (42)

Multiplying equation (40) with [M], then substituting equations 41 and 42

into 40, we have

[[M] + AtlK(U^^j)]0](u^A = [[M] - At[K(U^)](l - 6) ] ^ ^
(43)

+ At[0F^^j + (1 - 0)F^]
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The dependence of the [K] matrix which contains convective terms (non­

linear terms) on the solution at n+lth time step requires an iterative 

procedure.

2-4. Stream Function 

The stream function, Y, is a useful variable for the analysis of 

the two dimensional flow. The stream function can be determined from the 

vorticity equation once the velocity field is known. From the relation­

ship between the stream function and the velocity variables, we have

U = Yy
(44)

V = -YX

The vorticity equation is defined by

w = -(Uy - V̂ ) (45)

Therefore,

V^Y = -w
(46)

= (Uy - v̂ )

The Galerkin integral is applied to equation (46) to develop the finite 

element formulation.

,jĵ "'̂ x,x " '̂ y,y ”*■ ̂ y " 0 (47)
22



Integrating by parts.

(U - V,))gYdxdy 7 *

, CY 6Y . N + V (Y . N )d5 -  0 (48)
3D * X y y

The boundary terms vanish since the value of the stream function at the 

boundary is zero. If we assume the following inlarpolation functions for 

Y, U, and V, in each element respectively

substituting equation 49 into equation 38, we obtain

(50)

Collecting the coefficients of ÔY^, we can express the above equation in 

matrix form

[Kl {Y> - {F} (51)

»h.r. K y  . + Nj_yIIyy)dxdy (52)

^  (53)
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The time dependent, two-dimensional, free convection model, which has 

been formulated for the first time using the penalty method of finite 

element analysis, is employed to investigate the heat transfer mechanism 

of the magma and country rock, primarily the convective heat transport 

inside the magma. The advantage of this method is that the number of 

variables is reduced and computation time is correspondingly reduced.

The results of this modelling will be given and discussed in Chapter IV.
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CHAPTER III

MOVING BOUNDARY FORMULATION

Immediately after the intrusion of magma into the country rock, 

the magma may have sufficient heat to melt the country rock which it con­

tacts. Also, if the melting takes place along the Clapeyron curve, along 

which the melting temperature increases with depth, the magma may move up­

ward by melting the country rock above the intrusion and freezing the 

batholith near its lower boundary [Shimazu (1961), Ahem et al., (1979, 

1981)], The ascent rate of the solid-liquid interface was calculated by 

Aliern and Turcotte (1979) by using the one dimensional finite difference 

convective upwelling model, suggesting that the position of the interface 

is determined by conduction as well as convection including the effect of 

latent heat.

This section will develop the conductive moving boundary model to 

investigate the effect of latent heat on the solidification of magma with­

out convection. The magma becomes solidified along the moving solid-liquid 

interface where the phase change occurs by liberating or absorbing the la­

tent heat. The phenomenon of interest is analogous to the Stefan problem 

from the point of view of the heat balance. The importance of the moving 

boundary problem is based on the following points: 1) a domain of the

solution of the governing equation is unknown and must be determined as
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part of the solution procedure and 2) a discontinuity of the temperature 

gradient on the solid-liquid interface, which is the principal cause of 

difficulty in numerical approaches to the Stefan problem. The first dif­

ficulty is resolved by the domain iteration procedure which is repeated 

until the solutions from the assumed domain converge to the solutions 

from the computed don.s:r;. The second difficulty is overcome by transform­

ing the discontinuous tençerature to the continuous variable defined by 

Duvaut. Since the development of the Duvaut’s transformation, numerical 

approaches to Stefan problems have been investigated by Atthey (1973) and 

Crowley (1977) for one dimensional and two phase cases, and Ichikawa 

(1979) and Kikuchi (1979) for water-ice cases with a fixed freezing tem­

perature. The analytical solutions obtained by Jaeger (1961) and Tikhonov 

(1963) are applicable for one dimensional and one phase Stefan problems, 

not all are extensible to two dimensional and two phase cases. In the 

present study the application of the Stefan principles will be extended 

to a problem which has a changing melting temperature with depth. The 

finite element scheme is employed to solve the problem numerically. The 

essential assumptions for the treatment of a Stefan problem are:

1. The existence of a transformation temperature at which 

changes from one phase to another result in emission or 

absorption of latent heat.

2. The existence of a moving intersurface of separation 

between the two phases.

The above assumptions are satisfied in the following manner in this study. 

Tiie transformation temperature is given by:

26



T = T + -m mo Y

T + • Smo Y (54)

where P is pressure, the transformation temperature at the surface, Y 

the slope of the Clapeyron curve, p density and y depth.

Secondly, the position of the transformation surface is determined 

by the difference of heat flux across the surface. In other words, the 

location of the interface can be written in finite difference form at the 

time t = nAt;

y" - v'n - 1 -1 (55)

where T is temperature, thermal conductivity of the ith phase, L latent 

heat per mass, and | denote the value of temperature gradient at

the solid side of the surface, and the liquid side of the surface respec­

tively. The discontinuity of the temperature gradients in the matching 

condition is the principal difficulty in any numerical or analytical meth­

od. Thus, an innovative concept is needed to overcome this discontinuity. 

The method introduced by Duvaut (1976) transforms the discontinuous tem­

perature field to a continuous variable which determine'the phase of the 

material. Thus, the continuous variable can be differentiated over the 

whole domain. The continuous variable is denoted as the melting index 

for convenience.
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3-1. Governing Equation 

We can generally formulate our problem by heat equations with the 

boundary conditions, initial conditions, and matching conditions as follows:

= V . K^VT in D (56)

S(t) ■ {xeD ; T(x,t) < Tm) (5 7)

M(t) = {xeD: T(x,t) > Tm} (58)

I(t) « {xeD; T(x,t) « Tm} (5 9 )

where C , are mass heat capacity and heat conductivity of the ith phase 

respectively (i=l, solid; i=2, melted phase), D whole domain, S(t) solid 

domain, M(t) melted domain, I(t) interface in which phase change occurs,

Tm transformation temperature, x Cartesian coordinate.

Boundary conditions are

T = Tj on 3Dj (60)

where is the boundary condition and 3D̂  is an area specified by the es­

sential boundary condition.

Initial conditions are

T = Tg^(x,y,o) in S(t) (61)

T = Tjjj(x,y,o) in M(t) (62)
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Matching conditions are

x“ -  x "-'
p . L At K. . Vt""^ on I(t) (63)

In the problem where the melting temperature is dependent on the depth, 

the following transformation of variables is developed to satisfy princi­

ples of Duvaut*s transformation. From equation 54 we can have the follow­

ing relationship

T(x,y,t) = T(x,y,t) - Tm(y) (64)

where T is a new temperature variable.

Transforming the governing systems using equation 64, we obtain :

governing equation.

r.2:C.T+ = K.v T I t  1
in D (65)

initial condition.

T = Tg^(x,y,o) - Tm(y) in D(t) (66)

T = T^^(x,y,o) - Tm(y) in L(t) (67)

boundary condition,

T = Tj - Tta(y) in 90 (68)
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and matching condition.
n n- 1X -r X .

p . L At k v̂t"
.n- 1

K^VT = [K . VT] (69)

since Tm(y) is linearly dependent on y, where [ ] denotes the difference 

of the temperature gradients between the solid side and the melted side. 

The matching condition can be related to the position of the interface by 

the following development. If the equation X = I(t) is given.

^  = dl(t) 
dt dt (70)

Thus, we can rewrite the equation X = I(t) inversely

t = l" (̂X) = P(X) (71)

By substituting the relationships 70, 71 into the matching condition, we 

have

P . L ^ ^ =  [K..VT] (72)

dtP.L - [K.. VT]

. d. X)
= [K,. VT]

[K^.VT] . VP(x) (73)
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Hereafter we will omit the dots on the temperature for convenience.

5-2. Duvaut*s Transformation 
We transform the governing equations associated with discontin­

uous temperature gradients to continuous variables defined by Duvaut 

(1975) as follows:

0(x,t) « \ K^.T(x,T)dT (74)

For instance, if the phase changes from solid to solid, the first deriva­

tive of 6 ;

V0(x,t) - j V.K^T(x,T)dT (75)

the second derivative of 6 ;

V.V0(x,t) - \ V.VK^T(x,T)dx

- -C^T(x,o) + Cĵ T(x ,t). (76)

If the phase change goes from solid to liquid, we have

fp(x) ft 1
0(x,t) - J K^.T(j,T)dT + \ .̂  K2 .T(x,T)dT (77)

The first derivative of the first term in equation 77 is obtained by
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using Leibnitz rule;

'?(%)
V0(x,t) = ) Kj^VI(x,T)dT + Kĵ T(x,P(x))

/-o

+ \ K-VT(x,T)dT - K,T(x,P(x)
/p(x) 2 ~ 2 ~ ~

.7P(X)

.VP(X)

A
)■

= I K VT(x,x)dT 
lo ^ ~

(78)

since the temperature T is zero on I(t) (interface). The second de­

rivative of 0(X,t) is

P(x)
V.V0(x,t) = j V.K,VX(x,T)dT + K-VT(x,P(x))

-  / _  J. -V ±  ~

+ ] V.K,VT(x T)dT - K,VT(x,P(x)) 
/p(x)  ̂ - 2 ~ 1

J
f t
\ VK^.VKx,

.VP(x)

.VP(x)

T)dT + [KVT(x,P(x)] . VP(x)

-C^I(x,o) + CgTCx.t) + £ (79)

whete £ = p ..L.

The subscript denotes the phase: i=l is the solid and i=2 is the melted

phase.
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i“ 2

1-2 , j- 2

Figure 3-1 The schematic representation of a 
phase change on the domain (i=j=l: solid i=j= 2 liquid)

The domains are determined from the melting temperature as follows

S(t) - x: 8^(x,t) < 0 

L(t) - x; 8^(x,t) > 0

(80)

(81)

The governing equations can be rewritten in each case; 
From the solid phase to solid phase.

V.V0(x,t) - -C.T(x,0) + C,T(x,t) (82)
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from the solid to the melted

V.V0(x,t) - -CiT(x.O) + C,T(x,t) + £ . (83)

from the melted to the melted

V.VeCx.t) - -C,T(x.O) + C,T(x,t) (84)"V Z TV Ù **

from the melted to the solid

V.V6 (x,t) - -C_T(x,0) + C.T(x,t) - £. (85)•w X •»» X

We can rewrite the governing equations explicitly as follows;

C
jp 6^(x,t) - V.V0(x,t) - Ay + CjT(x,0)

where

i ■ j » 1 at the solid phase 

i « j • 2 at the melted phase-l: :
The initial condition becomes

t

0 80

(86)

T(x,y,t) « j (T (x,y,o) - Tm(y))dT in S(t) (87)

34 •



T(x,y,o) * I (T^^(x,y,o) - Tta(y))dT in L(t) (88)

the boundary condition,

t -
6(x,y,t) - j (T^ - Tm(y))dT 3D^ (89)

the matching condition,

8(x,y,t) « 0  on I(t) (90)

3-5. Finite Element Formulation 
The variational formulation associated with the governing equa­

tions will use the Galerkin integral method.

8  ̂- 8^_x - 8y^y - £ -C.T(x,y,ojl60dxdy - 0 (91)

where C, K and £ are expressed in matrix form. After integrating the 

second and third terms of equation 91 by parts, we obtain;

8.66 + 8 66 + 6 66 - £66 :rG.T(x,y,o)66]dxdyI « t X X  y y

(8 n + 6 n )66dS - 0 (92)
3D y y

Assuming that the integral equation holds- in each element,, the ■fiaiction 

6 can be interpolated by
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0 = ZGjNj(x,y), 60 = Z60^N^(x,y) (93)

where N̂ , are the interpolation functions corresponding to node i,j re­

spectively and 0j,60^ the values of the variable at the ith and jth node 

of the element.

Hence

(A +C.T(x,y,d))N^]dxdy = 0 (94)

Since the function 60^ is arbitrary, we have

I  [M]{0j.} + [G** + G^] {0} = pi + (95)

=\Ni . Nj dxdy (96)

g“  dxdy (97)

j \ y  ■ \

L  . Kj

"I»!.? ' »j.y A"? (9:)

dxdy (99)
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= je . T(x,y,o)N^ . dxdy (100)

The next step In the development is to discretize the finite element for­
mulation with respect to time by the finite difference scheme (refer to 

Chapter II).

Thus we have

C C,
[[M(^)^l +  At.s.fKjKe^^ - llM(^)^ - At.(l-s).lK]][e}^

+ AtIs.{F,(H,^)^, + F2 (Cj)^^} + (1-s) {F^(&ij)^

+ Fg(Cj)^}] (1 0 1)

"iwhere in the bracket indicates the domain corresponding to each
i

time iteration.

The time dependent, one-dimensional conductive moving boundary 
model developed herein is employed to determine the effect of latent heat 
on the solidification of magma with migration. The convective moving 
boundary model, which includes the convection effect, will be developed to 
investigate the possibility of upward migration of a magma body in Chapter 
5.
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CHAPTER IV

A COMPARISON OF CONDUCTION MODEL VERSUS 
FREE CONVECTION MODEL IN TOE HEAT 
DIFFUSION OF GEOTHERMAL RESERVOIR

4-1. Numerical Model 

The part played by convection in the heat diffusion of the geo­

thermal reservoir has been a matter of speculation. Jaeger (1964) stated 

that little evidence of convection exists in basic sheets less than 30 m. 

thick but that convection does take place in the stock-like bodies of mag­

ma more than 30 m. in diameter. The phenomenon of interest can be simu­

lated by the motion of a laminar incompressible, Boussinesq, Newtonian 

fluid (hot magma) confined in cold country rock. The physics of the prob­

lem plays a crucial role in constructing a reasonable model. The finite 

element method is no exception. In this study the convection is generated 

by a change of density due to the difference in temperature between hot 

magma and cold country rock. The problem under consideration is as follows; 

The geothermal reservoir is assumed to be a rectangular slab of magma 100 

m. wide and 50 m. high located 100 m. below the surface (Figure 4-1). The 

magma was initially intruded over the melting temperature into the coun­

try rock which had been subjected to a geothermal gradient. In this 

model the effect of the geothermal gradient can be disregarded because 

the temperature difference by geothermal gradients at that depth is ne­

gligibly small. The interface between the magma and the country rock
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is assumed to be impermeable for flow but not insulated for temperature. 

The surface and vertical wall of the country rock is specified by zero 

temperature and the lower one by zero temperature gradients. To simplify 

modelling the physical parameters of the model are given in Table 4-1 and 

are representative of acidic igneous rocks [Clark (1966), Stein et. al, 

(1981)].

TABLE 4-1 
Physical Parameters of the Model

Parameter

K
C
L
P
g

8

Y

Value

0.01 cal/cm sec C 
0.25 cal/gm C 
80 cal/gm33.0 gm/cm 
10 00 cm/sec^

1 0  ̂cm^/sec

3.0 X 10"^ deg C"^ 
3.6 deg C/Km

Description

Thermal Conductivity 
Specific Heat 
Latent Heat of Fusion 
Density
Acceleration of Gravity

Viscosity of Magma

Coefficient of Thermal Expansion 
Clapeyron Gradient

4-2. Numerical Procedure 

The finite element equations are expressed by a set of algebraic 

equations reduced from a continuous problem described by partial differ­

ential equations to a discrete problem. The element equations in (25) - 

(35) are assembled to obtain the associated global algebraic equations 

through the appropriate summation of equations for nodes common to adja­

cent elements.
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In problems of interest where both the flow and heat equations 

are strongly coupled, solution algorithms for the equations must have an 

iteration procedure because of nonlinearity of coupling terms. The heat 

and flow equations are solved in a cyclic manner beginning with the heat 

equation. The velocities for the first iteration are assumed to be zero 

and the matrix coefficients are computed. Then, the heat equation is 

solved for the temperature. TTie velocities are obtained using the com­

puted temperature as the force terms for the flow equations and one cycle 

of iteration is completed. This process is repeated until the solutions 

at any two successive iterations satisfies with a specified convergence 

criterion;

("ne. - "old)' - ("ne. ~ "old)' , ^

new new

where U is a horizontal velocity, and V is a vertical velocity. An ap­

propriate time step to insure convergence and to avoid spurious oscilla­

tions in the solution is an important consideration. The 0 family approxima­

tions will be tested ,as a time stepping procedure for solutions of the time 

dependent conduction model. Figure 4-2 shows that the Galerkin scheme 

(0 = 2/3 in Equation 43) gives a smoother time approximation of tempera­

tures than Crank-Nicolson's (0 = 1/2) even at the point where temperature 

changes most rapidly. The use of numerical integration is desirable to 

evaluate various matrix coefficients in equations (25) (35) with curved

boundaries. In addition, the "reduced integration" required by the pen­

alty method can also be obtained by using numerical integration. Details
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of the methodology are given in Appendix I. For further theoretical dis­

cussion of the reduced integration in the penalty method refer to 

Zienkiewicz (1977), and Reddy (1979-a). In problems of interest where 

temperature is a more dependent variable than pressure, the penalty par­

ameter e = 1 0^^ is shown to give accurate results for this particular 

model. The actual solution of the algebraic equations is accomplished 

by a Gaussian Elimination. All of the computation is carried out on an 

IBM 370/158 computer in double precision.

4-2-1. Arrangement of Mesh. The arrangement of mesh by physical under­

standing is a key step in the approximation of possible flow and temper­

ature patterns for the problem. The domain at hand is discretized using 

a 25 X 16 mesh of quadrilateral elements. The mesh spacing is graded 

finely in order to provide increased resolution near the interface be­

tween the hot magma and cold country rock. The elements and nodes are 

numbered from left to right and from the lower to the upper. (Figure 4-3), 

4-2-2. Plotting. The program contains a plotting subroutine that allows 

finite element meshes, nodal and elemental numbering, contour maps for 

isotherms and streamlines to be drawn. The description of those methods 

will be omitted since the generation of plotting follows standard proce­

dures.

4-3. Numerical Results and Discussion 

The validity of finite element formulation for unsteady thermal 

flow is checked by comparing finite difference solutions (Ahem, 1981) 

with finite element results. Details of the comparison are given in Ap­

pendix III.
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In this section numerical results for natural convection problems 

are presented to demonstrate the effect of convection on the heat diffu­

sion of magma. The finite element conduction solutions are compared with 

the finite element free convection results to discover how convection in­

fluences the temperature profile. The velocity field of a magma depends 

on the rheological characteristics of the fluid, thermal forces, and 

viscous forces. To simplify the analysis, density differences arising 

from the composition differences are disregarded. There is a critical 

value for the onset of convection in hot fluid confined by cold country 

rock. The critical value is conventionally represented by the Rayleigh 

number which is considered to be the ratio of buoyancy forces developing 

convection to viscous forces preventing flow. The magnitude of the 

Rayleigh number depends on several variables: the viscosity (v), the

thermal expansion coefficient (3), the diffusivity of he fluid (a), and 

the size of the body and the temperature difference.

Below the critical value for the onset of convection, the temper­

ature distribution is simply governed by conduction with no movement of 

flow. Above that value, the tençerature distribution begins to be influ­

enced by fluid motion. Basically, the larger the value, the more vigor­

ous the convection of the fluid.

Since the applicability of the model at hand is strictly limited 

to a laminar flow, the turbulent flow of the magma is beyond the scope of 

this investigation. Spera (1980) indicated that convection does not oc­

cur until the Rayleigh number reaches about 1500. Lipps (1971) showed 

an appropriate criterion for the onset of turbulence is a modified Rayleigh 

number [(D/L)^ * Ra] which is greater than about 10^ . D/L is called an
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an aspect ratio where D is the height and L is the length of the liquid

(Figure 4-1). The onset of turbulent flow is known to depend upon the

aspect ratio as well as the Rayleigh number. Also, the critical value

of the modified Rayleigh number has a wide range which depends upon the

boundary conditions and the definition of turbulence. In the present
3 5model the Rayleigh number ranges from 10 to 10 and a Prandtl number 

10®. Turbulent flow seems to be prevented because of large viscosity 

even if it exceeds the critical modified Rayleigh number. The results 

are presented in graphic form. These show the development of the patterns 

of isotherms and streamlines.

Figures 4-4-B to 4-9-B show the development of isotherms by con­

duction as time advances. Figures 4-4-A to 4-9-A show the temperature 

field with convection motion at each time increment. Of special interest 

areFigures 4-8 and 4-9 which show that the convection model diffuses the 

heat more rapidly than conduction does.

The convection motion begins due to buoyancy forces produced when 

the temperature variations are introduced through temperature differences 

between hot magma and cold country rocks (Figure 4-10): Hot liquid tends

to rise near the center, cold to fall along the cold boundary. In other 

words, thin thermal boundary layers emerge on the interface between the 

magma and the country rock. Thin thermal boundary layers, which become 

cold because of loss of heat transfered into cold country rocks, fall 

along the wall.

Therefore, the temperature gradients at the upper boundary of mag­

ma are larger than those at lower boundaries (Figure 4-5-A). A series of 

thermal layers will emerge as the boundary layers convect in a circular
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motion. The isotherms distort progressively as the convective effects 

become more apparent (Figures 4-6-A, 4-7-A). As the speed of convective 

currents increase, the cell breaks into two parts (Figure 4-11). A se­

condary cell broken from the original represents a set of streamlines 

with anticlockwise circulation which occurs in the upper central region 

of the magma (Figures 4-11, 4-12, 4-13). The speed of convective motion 

decreases gradually with decreasing temperature Then, secondary cells 

disappear (Figure 4-14) and the original patterns of streamlines come 

back (Figure 4-15), when the velocity of the convection flow decreases 

with time. The patters of streamlines remain unchanged until the differ­

ence of temperature between the magma and the country rock is terminated. 

In fact, the magma will be solidified by the freezing temperature long 

before the temperature differences are eliminated. However, similar re­

sults would be obtained if the magma had been considerably hotter than 

the melting temperature upon emplacement. In unsteady free convection 

problem the magma is assumed to be kept in a liquid phase even when the 

temperature in the magma goes below the melting temperature.

Thé effect of convection is shown by comparing the conduction 

temperature profile with the convection temperature profile along the 

representative lines A-A' and B-B* in Figure 3 (Figure 4-16), Figure

4-15 shows that the temperature distribution by the convection model is 

distorted by the fluid motion, while the isotherms of the conduction are 

symmetrical to the representative line A-A*.

In summary, the rate of heat diffusion into country rock by the 

convection model exceeds the value of conduction. The effect of convec­

tion on the motion of magma within the batholith gives larger temperature
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gradients at the upper boundary magma than those at lower ones. There is 

a possibility that the heat transported upward by thermal convection 

melts the roof of magma while freezing its lower parts when the effect 

of latent heat is taken into consideration.
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Figure 4-1. A schematic representation of the problem under
investigation, showing only right half.
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Figure A-2-a.Temperature change with time at node 200.
Note the instability with the Crank-Nicholson schemes.

47



oo
0 - 1  
00 '

oo
o -

—

o oo

Q_
- ; Crank-Nicolson

o  -
CM ; Galerkin

o
o0.00 o.yo 0.80 l .20 L .60 2.00TIME
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Figure 4-2. The graphic comparison between Galerkin scheme (6=2/3) and
Crank-Nicolson scheme (6=1/2) of 6 family time approximation 
at nodes 200,277 where temperature changes sharply (Galerkin: 
hard line,Crank-Nicolson;dashed line).
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Figure 4-3. Elements (numbered within boxes) and nodes (numbered on corners) for the magma
body model.The variable grid spacing is a powerful advantage of the finite element 
method that allows increased resolution where needed with a relatively small 
numbered of nodes.
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Figure 4-4. 1'cnpcraturc distribution after C.2 year.
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Figure 4-5. Temperature distribution after 2.2 years from
(A) Convection model,(B) Conduction model. Note that the
temperature gradients are concentrated at the upper portion 
of the magma body.
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Figure 4-6. Temperature distribution after 4.2 years from
(A) Convection model,(B) Conduction model.
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Figure 4-7, Temperature distribution after 6.2 years from
(A) Convection model,(B) Conduction model.
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Figure 4-8. Temperature distribution after 8.2 years from
(A) Convection model (B) Conduction model.
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Figure 4-9. Temperature distribution after 10.2 years from (A) Convection
model,(B) Conduction model,Note that convective heat transfer
exceeds conductive heat transfer into contry rock from magma.
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Lgure 4-10, Stream lines for convection model after 0.2 year 
Note that flow is downward at the right edge of 
the magma body.

56



; Gravitational 
direction

Tnin=-0.24*10

interval=0.37*10

Figure 4-11. Streamlines for convection model after 2.2years 
Note that the secondary convection cell in the 
upper left portion of the magma body.
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Figure 4-12. Stream lines after 4.2 years.
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Figure 4-13. Stream lines after 6.2 years.
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Figure 4-14. Stream lines after 8.2 years. Note the secondary 
cell is disappeared.
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Figure 4-15. Stream lines after 10.2 years. The convection motion 
reaches the. steady state.
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CHAPTER V

EFFECT OF THE LATENT HEAT ON 
THE MIGRATION OF MAGMA

5-1. Convective Moving Boundary Formulation 

To analyze the migration of the magma after the emplacement of the 

the magma into the country rock, two complicated mechanisms are associated 

with each other. One is free convection which is employed to determine 

the distribution of the velocity and temperature within the magma and the 

distribution of the temperature surrounding the magma chamber. The free 

convection was investigated numerically in the previous chapters. The 

other mechanism is a moving boundary mechanism used when the position of 

the solid-liquid interface is determined by the difference of heat flux 

across it. The conductive moving boundary formulation, which is developed 

in Chapter 3, is used to determine the effect of the latent heat on the 

solidification of the magma without convection.

From the free convection model we have learned that the convection 

motion of the liquid within the batholith results in larger temperature 

gradients at the top of the magma than at the bottom. This convective mo­

tion inhibits the solidification of the upper part of“IHé magma until the 
freezing front which originated at the bottom reaches the top.

In order to investigate the possibility of upward migration of a 

magma body, we must develop the convective moving boundary model. This 

model has an energy equation which includes a convective term to govern
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the liquid domain. To my knowledge, the moving boundary model, which 

takes the convective effect into consideration, is the first approach of 

this type to the Stefan problem. In the present model the moving boundary 

distinguishes the domain where convective heat transfer occurs from the 

domain where conductive transfer takes place. In other words, the govern­

ing equation (56) remains unchanged when the domain is solid, but the gov­

erning equation on the liquid domain must include a convective term, which 

is the energy equation.

C_[T^ + UT^) = V . VI in M(t) (56’ )

If the convective term in equation (56') keeps constant, the energy equa­

tion (56) associated with discontinuous tençerature gradients can be trans­

formed to the equations with continuous variables defined by Duvaut.

Since the governing equation of the solid domain (conduction 

equation) is transformed in Chapter 3, the transformation of the energy 

equation governing the liquid domain is treated as follows:

First of all, the equation 56' is transformed by a new temperature 

variable defined in equation 64 to satisfy principles of Duvaut's 

transformation.

+ U( + A .)) = V . . VT

where A = since the first derivative of the melting temperature

Tm with respect to depth is constant. The primes on the temperature are 

omitted for convience.
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If the phase changes from liquid to liquid, the first derivative of 6 
defined in equation 74 is

V9(x,t) =l V. K.TCx,T)dT

the second derivative of 0 is

V . V0(x
A

,t) = V . VKjTCx,

r, Cg \ (Tt +u( T^+ A ))dT

= -C^TCx.o) + CgTCx A ).dT (102)

where the convective term U denotes the vertical velocity in the one di­

mensional system»

If the phase change goes from solid to liquid, we have

fp(x) 
0(x,t) =1 Kj I:T(x,T)dT + 1 K'- . T(x,T)dT)p(x) 2

the first derivative of 0 is.

V0
fpCx)

(x,t) = j Kj . VT(x,t)dT + KjT(x,p(x))

+ K VT(x,T)dT - K_T(x,p(x)))p(x) 2 2

Vp(x)

Vp(x)

VT(x,T)dT
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since the temperature T is zero on the solid-liquid interface.

The second derivative of 0 is.

V . V9(x,t) =
P(x)

o

■I

VKj . VT(x,T)dT + Kj . VT(x,pCx)) 

VKg . VI(x,T)dT - Kg . VT(x,p(x))

. Vp(x)

7p(x)

P(x)
Cj. . T dT + \ T + A )dx + £

o jpCx)

= Cj[T(x,p(x)) - T(x,o)] + Cg[T(x,t) - T(x,p(x))]

ft
+ C-\ u ( T + A ) d T  + £

jp(x)

= -CJ(x,o) + C,T(x,t) + c J  U( T + A )dT + 
 ̂ JpCx)

(103)

If the phase changes from liquid to solid, we obtain

Tp Cx)
V . V0(x 7K_ . VT(x,T)dT + I VK: . VI(x,T)dT 

0 2 )p(x) ^

= -CgT(x,o) + qi(x,t) + Cg 0< T / A )dT - £ (104)

If the phase changes from solid to solid, we obtain

V . V0(x,t) = -C^T(x,o) + CjT(x,t) (105)
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Therefore we can rewrite the governing equations in each case to the fol­

lowing generalized governing equation

7 . V6(x,t) = + CjT(x,o) - F.j

i = j = 1 at the solid phase

i j = 2 at the liquid phase

h j = 0 n 
-a 0

fii = 0

(

j:

U( T + A )dT
P(x)

F_ = C, U( T^+ A )dT

^22 = U( T^+ A )dT

with the same matching condition as equation (80)

with the same initial condition as equations (87) (88)

with the same boundary condition as equation (89),

Also, the governing equation is discretized in matrix form using the finite 

element procedure developed in Chapter 3.
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5-2. Numerical Procedure

Trie difference between regular boundary problems and moving bound­

ary problems is basically that the domain of the solution of the governing 

equation is unknown and must be determined as a part of the solution. In 

such a problem, additional information is required to relate the solution 

of the equation to its domain of definition. The present problem links 

each domain and the solution of the governing equation to every other do­

main and the corresponding solutions through the balance of the heat flux 

rate at the magma-country rock interface which involves the latent heat 

of solidification^and the rate at which liquid is converted into solid.

To solve such a problem numerically an iteration procedure is needed for 

the domain.

The iteration procedures are

1) The solutions are obtained from the governing equation corre­

sponding to the assumed domain

2) The convergence is checked by comparing the solutions from the 

assumed domain with the solutions from the computed domain

3) This procedure is repeated until the solutions from the com­

puted domain satisfy a specified convergence criterion.

The other procedures are the same as those developed in Chapter 4.

5-3. Numerical Examples 

Example 1. First of all, the numerical results from the model developed 

herein is compared with the known exact solution of a one-dimensional prob­

lem (Jaeger, 1964) for the accuracy and validity of the model. The problem 

for comparison is illustrated in Figure 5-1. The magma with 1 Km thick-
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ness is assumed to be located 5 Km below the surface. The initial tem­

perature of the magma was 850 C which is slightly more than the melting 

temperature at the surface (800 C). The phase of magma is determined by 

the melting temperature which is dependent on depth. The temperature of 

the surface is maintained at 0 C. In this problem the geothermal grad­

ient is not considered for comparison with the known analytical solution 

which did not include the geothermal gradient effect and convection ef­

fect. The physical properties of the magma are the same as those of the 

country rock (Refer to Table 4-1). The latent heat of solidification is 

of the order of 80 Cal/g.

Jaeger presents the solution to the problem in terms of the time 

the magma with half width, d, takes to solidify.

® 4aX^

where X is determined from equation

C(Tg - T̂ ) ■ A(1 + erfX)

L: Latent heat per mass

C: Specific heat

a; Thermal diffusivity

The numerical results from my model agree with Jaeger’s solidification 

time (Refer to Table 5,1), Figure 5-2 to Figure 5-6 shows the tempera­

ture distribution as the solidification of magma proceeds through time. 

In this problem the liquid phase of the magma is initially assumed to 

consist of 10 meshes. After 345 years two of the meshes of magma, which 

contact immediately with the country rock, are solidified (Figure 5-2).
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Figure 5-3 shows four of ten liquid phases of the magma solidified after 

920 years. The temperature distribution after 1840 years, shown in Fig­

ure 5-4, incidates four of the ten meshes to remain in the liquid phase. 

Figure 5-6 shows the temperature distribution of the complete solidifi­

cation of the magma after 4140 years.

TABLE 5-1
The Comparison of the Numerical Results and Exact Solutions 

for Solidification of Magma Body

Half Width of
the Solidifying Magma Exact Solution Numerical Solution

(Unit: m) (years) (years)

100 150 160
200 610 600
300 1370 1400
400 2440 2520
500 3400 4100
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Example II, The problem under consideration is shown in Figure 5-7.

This problem is basically the same as the problem investigated in Example 

II except that the geothermal gradient is included as a boundary condi­

tion of the country rock to describe the solidification of a magma in a 

more general sense.

The purpose of this problem is to determine the effect of latent 

heat on the solidification of the magma. The solidification time from 

the moving boundary model is compared with the time from the conduction 

model. Also, the temperature distribution from each model is illustrated 

in graphic form for visual comparison.

The basic difference between the two models is that the tempera­

ture corresponding to the latent heat of solidification, which is of the 

order of

is added to the portion of the magma remaining in a liquid phase.

The results from the conduction model show that the conçlete 

solidification of the magma is achieved after 880 years. If the latent 

heat is considered in the solidification, the magma becomes solidified 

to only two-fifths of the liquid phase after 800 years, completing the 

solidification of the magma after approximately 4500 years. Figure 5-8 

shows temperature distribution changing with time for the conduction 

model. The temperature distribution for the conductive moving boundary 

model is shown in Figure 5-9, As a result of the comparison of the two 

models, the latent heat effusion gives a longer solidification time of 

the magma.
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Example III. The purpose of this problem, which includes the convection 

effect, is to demonstrate the possibility of inhibiting the freezing of 

the top of the magma chamber until all of the magma is solidified com­

pletely. The boundary conditions and initial conditions are shown in Fig­

ure 5-7. In a one dimensional analysis of the problem a convective term 

necessarily denotes the vertical velocity. This vertical velocity trans­

fers heat at the bottom to cause the freezing front to proceed upward.

The value of the velocity is assumed to be l™/year, large enough to show 

the effect of convection in the magma body. Figure 5-10 shows the mode 

of solidification of the magma for the convective moving boundary model. 

The portions of the magma, which contact immediately with cold country 

rocks, are frozen after 250 years. Then the bottom of the magma begins 

freezing by removing heat at the floor upward due to convection in the 

magma body. It is interesting to note the temperature gradients in the 

upper portion of the magma to be more steep than those in the lower.
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Figure 5-2, Temperature distribution after 345 years for conductive
moving boundary model, Note that two portions of the magma, 
which contacts imediately with the country rock,is freezed. 
Initially liquid phase of the magma is assumed to consist of 
10 meshes.
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Figure 5-3. Temperature distribution showing four of ten liquid phases
of the magma solidified after 920 years from the conductive
moving boundary model.
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Figure 5-5. Temperature distribution after 2980 years for the conductive 
moving boundary model. Note that two out of ten meshes of 
the magma remained in liquid phase.
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CHAPTER VI

CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

Problems of the heat and mass transfer in geothermal reservoirs 

have been extensively treated in the literature of finite element analysis, 

The problems under investigation in this study are unsteady free convec­

tion within a magma body and the two phase Stefan problem associated with 

the moving boundary. In this geological problem which requires larger 

computer storage created by the fine mesh discretization to provide increased 

resolution near an interesting small area of the huge domain, a considera­

tion to reduce the number of unknown variables is necessary. The penalty 

method of finite element analysis has been employed to solve the time de­

pendent viscous thermal flow (unsteady free convection). The purpose of 

this study was to investigate the effect of convection on the temperature 

and streamline distribution within a geothermal reservoir (magma chamber).

The one dimensional, two phase Stefan problems, which have dependent melt­

ing temperature on depth, have been solved by finite element method. This 

method has used the Duvaut's transformation to resolve the discontinuity 

of the temperature gradient on the solid-liquid interface which is a prin­

cipal difficulty of numerical approaches to Stefan problems. This model 

has been employed to investigate the effect of the latent heat of fusion 

on the solidification of the magma. The unsteady two dimensional conduc­

tion model developed in this study shows that
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(1) Galerkin scheme, one of the 0 family of approximation for a 

time stepping procedure of the time dependent model, gives 

a convergent and smooth time approximation of temperature 

over Crank-Nicolson's even at the point where temperature 

changes rapidly.

From the penalty finite element analysis of unsteady free convection

(2) The penalty parameter e=10^^ showed to be desirable for this 

problem where the temperature is a more dependent variable 

than pressure and Prantdl number has a large value.

(3) The convection is generated by a change of density due to the 

difference in the temperature between hot magma and cold 

country rock.

(4) Below the critical Rayleigh number for the onset of convec­

tion (about 1500), the temperature distribution is simply 

governed by conduction with no movement of flow. Above that 

value, the larger the value, the more vigorous the convection 

of the fluid.

(5) Turbulent flow seems to be prevented because of large vis­

cosity even if the modified Rayleigh number of this model 

exceeds the critical value for the onset of turbulent flow 

defined by Lipps (1971).

(6) The rate of heat diffusion into the country rock by convection 

exceeds the value of conduction for the stock-like bodies of 

magma more than 30 m. in diameter before the convection motion 

dies out.

(7) Hot magma tends to rise near the center, and cold magma tends 

to fall along the boundary of country rock by thin thermal
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boimdary layers emerged on the interface between the magma 

and the country rock,

(8) As the speed of convective currents increase, a secondary 

cell with anticlockwise circulation occurs in the upper cen­

tral region of the magma,

(9) After 10,2 years the convection motion reaches a steady state,

(10) The convection in the magma body gives larger temperature

gradients at the upper portion of magma than at lower por­

tions indicating a possibility of upward migration of the

magma.

From the conductive moving boundary model

(11) The numerical results from the model developed herein agree

with the analytical solutions by Jaeger (1961) of the magma,

(12) The effect of latent heat of fusion gives longer solidifica­

tion time of the magma.

From the convective moving boundary model

(13) A freezing front proceeds from the bottom to the top by

transferring heat at the bottom upward suggesting the possi­

bility of inhibiting the freezing of :he top of magma body

until all of the magma is solidified completely,

(14) The convection gives steeper temperature gradients in the

upper portion of the magma than those in the lower,

(15) The effects of convection and latent heat of fusion would 

play an important role on the mode of solidification of the 

magma.

Finally, as a result of this study the following future research is recom­

mended;
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(1) To investigate the two dimensional analysis of upward magma 

migration, the general formulation is recommended by intro­

ducing moving boundary conditions into the unsteady free 

convection model.

(2) The penalty finite element formulation developed herein can 

be applied to the problems of flow in porous media.
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ATPENDIX I

DERIVATION OF THE GOVERNING EQUATION

1. Energy Equation

The relation between heat flux Q and temperature T is defined by 

the Fourier law

q = - k | |

where x is a vector coordinate.

The general 3-D differential equation of heat conduction is de­

rived as follows . Let;

Ej = ! net rate of heat entering by conduction into given element 

Ejj = rate of energy generated in element 

Ejjj = rate of increase of internal energy of element 

Ej can be expressed in mathematical form

Ax

^  X

Figure I-l Symbols for the Derivation of the Heat-Conduction Equation
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The rate of heat flow in the x direction is given by:

. Ay . Az at x

The net rate of heat flow in x direction is

Ox ■ Qx+Ax = - . Ay . Az

Similarly, the net rate of heat flow in y, z directions are

AxAyAz

- -5T-

â x 8q 3q̂Thus Ej = C-g~ + -gp: + -JJ ) Ax . Ay.. Az

Ejj = rate of energy generation = F(x,y,z,t),Ax . Ay . Az where G is 

a generating heat per unit time, per unit volume.

3TEjjj = rate of energy storage in the element = p . C . Ax . Ay . Az 

where p is density, C is specific heat.

Thus from the point of view of energy balance, we obtain Ej + Ejj = E^^^.
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Therefore, using the Fourier law.

-K . V^T + G = p . C . ^

2. Continuity Equation

The continuity equation is the equation for the conservation of 

mass. If the continuity equation is explained in words, the sum of the 

net r&ti of mass flow entering element in the x direction and the net rate 

of mass flow entering the element in tlie y direction equals zero.

= puAy^

y * ” 5y

My = pvAxAz

Figure 1-2 Symbols for the Derivation of the Continuity Equation
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The mass flow entering the element in the x direction, may be expressed

as

fx = Mx ' "x+Ax

where = p . U . Ay . Az, V is the velocity in x direction and

3M
' ”x * -sr • ^  ■

Thus, ÛX = -  Ax . Ay , Az

Similarly, the mass flow entering the element in the y direction, Fy, may be 

expressed as

Fy = Ax . Ay . Az

Requiring that the um of the mass flows by zero gives

Fx - Fy = 0

3. The Momentum Equations

The momentum equations, or the Navier-Stokes equations, are de­

rived from Newton's second law.
F = M. . a

where F: the external forces

M: mass 

a: acceleration
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The external forces in a flow field consist of the body force and the sur­

face force. In this appendix the time dependent two dimensional momentum 

equations are derived as follows;

M = p . Ax . Ay . Az ^

The body forces are given as:

. Ax . Ay . Az in x direction

Fy . Ax • Ay . Az in y direction ,

+ -5y

xy

Ax

Figure 1-3 A Schematic Representation of the Distribution of the Stresses
for the Derivation of the Momentum Equations
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The surface forces have two components depending on the acting direction; 

normal stress, shear stress.

The surface forces are;

at X in X direction

at X + Ax in X direction

Thus, net surface forces in x direction is given;

STyx
(-37 + . Ay . Az

It is necessary to note that the first subscript indicates the axis to 

which the surface is perpendicular and the second subscript indicates the 

direction of the shear stress. Similarly net surface forces in y direc­

tion are given :

The next step in the development is to introduce the relationship between 

the stresses and the velocity components

for the Newtonian flow.
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where e.. = j  3̂ ^  + h j  = ° ®ij = '' "=j*

Therefore
3Ü= -o + zuXX = “P + 2y -ĝ

v  =

We can rewrite net surface forces in y directions

Thus the momentum equation is given in y direction

O K = " y - | * 2 y 0 . y 4 c 0 - | | )

In the free convection where the density changes due to temperature vari­

ation, the effect of density variation should be considered.

p = + Ap

where p^ is a reference density, Ap density variation. If we express the 

gravitational acceleration by a potential

g = - V$ where g = -gy, y is taken upward 

Also, the relationship between Ap and T under Boussinesq approximation can be
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expressed as follows;

Ap —  ~B » Pp « AT

where B is the coefficient of expansion of the fluid. TTius, body force is 

introduced to allow for the effect of gravity.

Using the above three quations, we obtain;

Fy = Pg

= (pQ + Ap)g

= “(Pq + Ap)V$

= -V(p^$) - Pp . B . AT . g

Then» if we included Ap^$ into the pressure term.

P* = P + p^$

The momentum equation is given under the Boussinesq assumption

The pressure change is negligible if the pressure does not impose expli­

citly in the boundary conditions (Tritton, 1977).

Thus, we can rewrite the momentum equation in y direction as follows:
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9/
3ŷ

g . 6 . AT

94



APPENDIX II

NUMERICAL INTEGRATION

The finite element method usually introduces Gaussian Quadrature, 

one type of numerical integration, to describe cuived boundaries more ac­

curately. In the penalty method the numerical integration is necessary 

to obtain the reduced integration. The transformation from the Cartesian 

coordinates (x,y) to the curvilinear coordinates (Ç,n.) is needed to eval­

uate the coefficient matrix over the complicated domain.

If the unknown variable T and the shape of the elements x and y 

are approximated by the interpolation functions expressed in terms of the 

curvilinear coordinates we have

T = T.NL(S,n) (1)

X = x^N^(ç,n), Y = YÆ(S,n) (2D

where N^ denotes the interpolation function corresponding to node i. 

Furthermore, the interpolation function N^(Ç,ti) can be described in terms 

of the Cartesian components (x,y) using the chain rule of differentiation.

N_ Xp Y- NC X

N X Y Nn n n V
(3)
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= [J]~̂N Ny n
(4)

where J is Jacobian matrix;

Xç Y;

Substituting equations 2 into em^ 

trix

(5)

^WDjite the Jacobian ma-

Therefore

= Z Z G(Ti, (7)

where xi, xj are Gaussian points

ui, o)j are Gaussian weight factors.
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= t j ] " 'N N
y n

(4)

where J is Jacobian matrix;

Xç Yç
(5)

Substituting equations 2 into equation 5, we can compute the Jacobian ma­

trix

1 =
X;- Y»S K
X Yn n

X, Y,1 1
X̂  Ŷ2 2
. . •
X Yn n 1

Therefore

,det[J] dÇdri

(7)

where xi, xj are Gaussian points

o)i, wj are Gaussian weight factors.
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APPENDIX III

A COMPARISON OF FINITE DIFFERENCE METHOD AND FINITE 
ELEMENT METHOD FOR UNSTEADY FORCED CONVECTION MODEL

In this appendix the validity of the finite element model is checked 

by comparing the finite difference solutions*for unsteady forced convection 

with finite element results

In forced convection where mass transfer of fluid takes place as a 

result of an externally applied force, the velocity is unaffected by the 

temperature field.

The problem under consideration is illustrated in Figure III-l. 

Initially, the walls are fixed and the dimensionless temperature is zero 

at all points. For time greater than zero the top wall assures a temper­

ature of 1.0 and moves in a positive x direction with a velocity of 1.0.

The physical parameters used for the present model such as density, vis­

cosity, gravitational acceleration, and thermal diffusivity take the value 

of a unit.

The domain of the present problem is discretized using a 10 * 10 

regular sized mech of quadrilateral elements to match the discretization 

employed by the finite difference model.

*
The finite difference solutions is obtained from personal communication 
with Ahem on May, 1981.
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The numerical results of the finite difference model and the finite 

element model is after the dimensionless time 0.15 S 0.25 are illustrated 

in Table III-l, III-2, In addition, the temperature and stream line dis­

tribution, which were obtained from both models after the dimensionless 

time 0.25, are plotted in Figure III-2, Figure III-3, Figure III-4, Figure 

III-5, by using the SYSMAP plotting procedure for visual comparison. The 
conçarison shows that the results from both models agree.
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Ill
U=1.0, V=0.0, T=1.0

U=0.0
V=0.0
T=0.0

100

1 2 3

121

U=0.0
V=0.0
T=0.0

11
U=0.0, V=0.0, T=0.0

Figure III-l.Boundary and intial condtion,and mesh distribution of
the forced convection model.( Element and node numbering 
from left to right,from down to up.)
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Figure III-2 . Temperature distribution for finite difference model after
dimensionless time 0.25.
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Figure III-3. Temperature distribution for finite element model after
dimensionless time 0.25,
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Figure III-5. Streamlines for finite element model after dimensionless
time 0.25.
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Table III-l, Numerical results after dimensionless time 0,15 and 0,25 for finite 
difference model, ( Numbering from left to right,from up to down).
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Table III-2. Numerical results after dimensionless time 0.25 
and 0.15 for finite element model*
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