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ABSTRACT

In this study problems of heat and mass transfer in a geothermal
reservoir are solved numerically by the finite element analysis for dével-
opment of geothermal exploration, The problems under investigation are
unsteady free convection within a magma body and a two phase Stefam prob-
lem associated with moving boundaries. These geological phenomena require
a large amount of computer storage as a result of the need to provide in-
creased resolution near a small interesting area of the huge domain. Thus,
a consideration to reduce the number of unknown variables is necessary; the
penalty method of finite element analysis is employed to solve the time
dependent free convection problem. The purpose of the unsteady free con-
vection model is to investigate the effect of convection on the temperature
and streamline distribution within a geothermal reservoir (magma body).

The one dimensional, two phase Stefan formulation, which has dependent
melting temperature on depth, is developed by the finite element method
after using the Duvaut's transformation to resolve the discontinuity of
the temperature gradient on the solid-liquid interface. This model is
used to investigate the effect of the latent heai of fusion on the solidi-
fication of magma.

In a time dependent free convection model, convection is generated
by density changes due to temperature variations. The results of this .
study show that the convection gives larger temperature gradients at the

upper portion of the magma than the lower portion. Consequently, the heat
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transported from the botiom of the magma by convection prevents the roof
of the magma body from freezing, or slows the freezing process at the up-
per portion of the magma, until almost all of the lower portion of the.
magma is frozen,

The conductive moving boundary model developed in this study indi-
cates that the solidification of magma takes more time when the latent
heat of fusion is considered. The convective moving boundary model shows
that the temperature gradients in the upper portion of the magma are more
steep than those in the lower by transporting the heat at the bottom up-

ward,
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CHAPTER I
INTRODUCTION

During thé last decade geothermal energy has received much atten-
tion as a way to meet future energy needs under the assumption of the ul-
timate depletion of féssil fuel energy. The advantages of geothermal
energy over fossil fuel energy are a wide variety of applications, a clean
form of energy, and the immense amount of potential energy stored in the
earth's interiof. These advantages provide an impetus for the development
of geothermal exploration. In addition, a substantial amount of hot 1li-
quid rock, called magma, rises along the deep cracks in the earth's crust
to the depth where it can be tapped by available drilling techniques,
Thus, geological or mechanical efforts to utilize a geothermal reservoir
as an energy resource have been ;ttempted.

A sequence of stages of intrusion, upward heat transfer, and so-
lidification of hot rock (batholith) have been studied to help assess
geothermal reservoirs in terms of the temperature profile and the size of
batholiths. Numerous analytical and numerical solutions for the behavior
of the magma have been derived by many authors such as Jaeger (1961),
Shimazu (1961), McKenzie (1968), Richter (1973), and Koro (1979). The
solutions from previous works are not general enough to describe this me-
chanism because of some oversimplified assumptions, such as no convection
effect and no phase change considerations.
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In this paper, the formation of a geothermal reservoir associated
with a magma chamber, which is an important criterion for the development
of geothermal exploration, will be studied as a heat transfer problem
with moving boundaries.

The problems of the present study will now be described, As an
initial condition a batholith, a molten phase of rock, at a known temper-
ature and at a known mode is intruded into the country rock at a given
temperature. After the intrusion, it is subject to the geothermal gra-
dient. The phase change is determined by the melting temperature. This
description represents the boundary conditions of the present problem.

The physical properties of the batholith and the country rocks are
assumed to have the same values. The molten portion behaves as a laminar
incompressible Newtonian fluid under the Boussinesq assumption,

The problem under consideration may be characterized as a free
convection problem with moving boundaries. Thus, the problem is divided

into two parts to be analyzed systematically.

1-1. Time Dependent Free Convection Model

The purpose of this model is to investigate the heat transfer me-
chanism of the magma and country fock governed by not only the conductive
heat equation outside the magma but also the convective heat transport in-
side the magma which most previous workers disregarded. From the geologi-'

cal point of view, the convective heat transfer produced by any temperature

variations is necessarily a transient phenomenon because the temperature
gradient decreases eventually by conductive heat loss through the country
rock and convective heat transfer. Then, the molten phase of magma finally

becomes solidified after a period of a time.



The convection effect of a magma can give different shape to the
batholith depending upon the geological situation., Shaw (1965) pointed
out that the forced convection of granitic magma can result in the forma-
tion of dikes under certain conditions; on the other hand, a stock-like
batholith can be formed by natural convection. Therefore, the effect of
the convective heat transfer inside the batholith on the formation of the
batholith should be considered with the same degree of importance as the
conductive heat transfer. In this model, the general mechanisms govern-
ing the motions and temperatures of a magma are formulated mathematically,
and the formulated equations are analyzed numerically, The governing
equations consist of the continuity equation, momentum equation, energy
equation, and equation of state,

The governing equations are formulated variationally by using the
penalty method (*) and are discretized by the finite element method with
respect to space, and furthermore discretized by the finite difference
method with respect to time,

After the finite element method emerged as one of the most effec-
tive tools of numerical analysis for structural and solid mechanics, its
application to the fluid problem was demonstrated for the first time by
Taylor and Hood (1974), and later refined by Zienkiewicz and Gallagher
(1975), and Reddy (1979-b).

A finite element method based on the penalty functional formula-

tion is developed for the unsteady free convection problem in Chapter II.

* The penalty method, originated from R, Courant (1945), is developed by
Zienkiewicz and Heinrich (1973), Reddy (1979), et al., for application to
fluid dynamics.



Reddy and Satake (1980) showed that the penalty formulation has more com-

putational advantages than the direct velocity-pressure Iformulation (Taylor,

1975)by reducing the number of unknowns. In the penalty formulaticm the
pressure term can be dropped by imposing the incompressibility condition
as a constraint into :the variational formulations associated with the
governing equations.

It is necessary fo note that these mathematical formulations are
derived under the Boussineseq assumption. This model is used to calculate

the temperatures and velocity field inside the batholith.

1-2., Moving Boundary Problem

Immediately after the intrusion of magma into the country rock,
the magma is assumed to have sufficient heat to melt the country rock
which it contacts. The position of the magma-country rock interface is
determined by the conduction equation or the energy equation including
the effect of the latent heat vhich is liberated or absorbed with phase
changes, The characteristics of the phenomena considered herein are es-
sentially the same as the Stefan problems treated from the point of view
of the heat balance,

| The essential assumptions for the treatment of a Stefan problem
are:

1, The existence of a transformation temperature at which

one phase changes to another with emission or absorp-
tion of latent heat

2. The existence of a moving intersurface of separation

between two phases,



The analytical solutions known by Jaeger (1961) and Tikhonov
(1963) are applicable for one dimensional and one phase Stefan problems
since the solutions are obtained by using special characteristics of one
dimensional case, In order to solve two phase and two dimensional Stefan
problems, numerical approaches are neededa., The discontinuity of the tem-
perature gradient, which is the principal cause of difficulty in the nu-
merical approaches to Stafan problems, is resolved by introducing the
Duvaut's transformation (1976). Since the development of the Duvaut's
transformation, Atthey (1973) and Crowley (1977) solved numerically for
one dimensional and two phase Stefan problems, and Ichikawa (1977) and
Kikuchi (1977) analyzed the water-ice cases, for which the transformation
temperature is constant (zero), by various numerical methods.

Ahern and Turcotte (1979), who corrected Shimazu's results (1961)
investigated the effect of convection by simulating this phenomenon with
a one dimensional finite difference model, In their model the rate of
convection was obtained from Rossby's experimental equation showing that
the Nusselt number is a function of the Rayleigh number,

In the present study we will extend the application of the Stefan
principles to a problem which has a changing melting temperature with depth
and includes the convective effect, The finite element scheme is employed
to solve the problem numerically. First of all, to determire the effect
of latent heat on the solidification of magma with migration, the one di-
mensional conductive moving boundary formulation is constructed using the
conduction equation. To analyze the upward magma migration mechanism
simulated by Ahern (1978) and Shimazu (1961) which used the finite differ-

ence model, the development of moving boundary formulation including the



convective terms is necessary. To my knowledge, the moving boundary model
constructed for the energy equation is the first such approach to the
Stefan problem, It is impractical because of the technical difficulty
caused by the domain iteration procedure to extend the model at hand to
the two dimensional analysis of magma migration by introducing moving

boundary conditions into the unsteady free convection model.



CHAPTER 11
FREE CONVECTION FORMUTATION

2-1. Governing Equations

After the magma is intruded into country rock, a large body of hot
magma is surrounded by cold country rock which has been subject to the geo-
thermal gradient. This temperature variation gives rise to variations in
‘the properties of the magma, such as the density and viscosity. All mobil-
ization or transport mechanisms in the magma are produced by these mechan-
ical or thermal instabilities (density and viscosity variations) (Spera,
1980).

The transport mechanisms can be geﬁerally classified into two
types: forced convection, the mass transfer of fluid as a fesult of an
externally applied force; and free convection which results from the gra-
vitational force on a fluid with inconsistent density due to temperature
gradients, In the present study, free convection, which is physically
analogous to the present problem is of prime concern.

Since analysis including the full effects of the variations of
physical properties associated with free convection flow is so complicated,
the Boussinesq approximation will be used. In the Boussinesq approxima-
tion, "Variations of all fluid properties other than the density are ig-
nored completely. Variations of the density are ignored except as they
give rise to a gravitational force" (Tri;ton, 1977). Thus, time dependent
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two dimensional flow of a laminar Newtonian, Boussinesq, incompressible
fluid will be considered in the present investigation. The relevant momen-
tum equations {(Navier-Stokes equations) are given as follows since incom-

pressibility conditions are satisfied in an approximate sense in the penalty

method.
: _ 1 ,
U + U, + VU =P+ vtzux’x+ (uy+vx)y] (¢
Vt+uvx+wy=-'1_l> sv[2V. _+ (U +V).]+gB(T-T3 (2)
* Yy yoy VUt Vil 8 o

in D

where p is density, v kinematic viscosity, g gravitational acceleration,
B thermal expansion coefficient, To reference temperature, U horizontal
velocity, V vertical velocity, P pressure, D domain. It is necessary to
note that Ut’ Ux’ Uy, VI’ Vi, Vy, Tt’ Px’ Py, ( )y’ ( )x denote first de-

rivatives with respect to each subscript and U e

U T T ar
XX Y,y xX,x Y,y
second derivatives with respect to x,y, respectively.

The continuity equation can be written as
U +V =0 in D (3)
The energy equation is

Tt + U‘I‘x + VTY = a(Tx’x + Ty,y) in D 4)

8



where o is isotropic thermal diffusivity. Equation 4 does not includs the
viscous-energy-dissipation term due to friction in the fluid because the
effect of that term is negligibly small for most engineering applications
where the flow velocities are small (0zisik,1Y77).The derivation of Navier-
Stokes equations from Newton's 2nd law, the continuity equation and the
heat conduction equation are described in Appendix 1.

The boundary conditions are:

T =T
U =1 in 3D, o (5)
AL A

~ P
tl = (2v . Ux p)nx + v(Uy + Vx)ny
P .
t2 = v(Uy + Vx)nx + (2v . Vy - EJny in 8D2 ' (6)
t, =

3 a(T%px+ Tyny)
where n, ny are normal derivatives to the boundaries:

T,, U, V

1° Yo Yy the values of essential (Dirichiet) boundary conditions

of temperature and velocities.

ty, tys T4 the values of natural (Neumann) boundary conditions

of each variable,



3D1 denotes the portions of the boundary on which the variables

are specified.

3D2 denotes the portions of the boundary on which the tractions

of the variables are specified.

Initial conditions associated with the governing equations are given as

U(x,y,0) = U(x,y)
V(x,y,0) = V(x,y) 7
T(x,y,0) = '?(x,y)

where G, G, % are initial functions of velocities and temperature respec-
tively.

It is usually convenient to nondimensionalize the governing equa-
tions by the dimensionless parameters and variables for the usual treat-

ment of the thermal flow problems.

T-T
o o c
Xx=x*d, y=y*d, U= U*E3 V= V*a3 o= T
h c
2
P = szp*, t= t*%r

where d is a characteristic length, U a characteristic velocity, Th a tem-
perature at hot wall, Tc a temperature at cold wall and the starred quan-
tities denote the dimensionless variables, ©§ is dimensionless temperature.

The stars on the variables will be omitted for convenience hereafter.

10



By introducing the following nondimensional parameters:

v
Pr = o Prandtl number

3
gB(T - To)d

Ra = vo Rayleigh number,

we can rewrite the governing equations as:

Ut+uux+vuy_- -P_+ Pr . (ZUix-l- (Uy+vx)y) (8)

V. +UV +V_=-P_+Pr. (2
t x ¥ Wy =B+ Pr. (2, o

+ O +)) +Ra, Pr. @
Ux+Vy=0 (10)

8 +U .0 +V .8 =6 _+ '
t x bV o8y =0ty an

“in D
with boundary conditions

t; = (2Pr . U - l’)nx + Pr . (By + Vx)ny
= n - '
t, Pr . (Uy + Vx) - (2pPr . Vy 1’)“y in 3D2 (12)
ts

=0n 406 n
XX yy

11



1 in 8D1 (13)

The initial conditions become
6(x,y,0) = 0(x,y)
~
U(x,y,0) = U(x,y) ' ' ‘(14)

V(x,y,0) = ‘;(x.y)

2-2. Penalty Functional Formulation

The finite element formulation is derived from the Rayleigh-Ritz-
Galerkin philosophy of constructing approximation functions whose linear
combinations represent the unknown solutions. The introduction of the
Galerkin integrals which do not require the construction of a functional
is necessary in the problem where the convective (nonlinear) terms are
important, Furthermore, problems which need large computer storage re-
quire another consideration to reduce the number of unknowns. Thus, the
penalty formulation, which was refined by Zienkiewicz (1975) and Reddy
(1979-a), is employed to solve the system of equations defined by (1), (2),
(3), and (4). The penalty method consists of incorporating the penalty
function into the variational formulation associated with these equations.

12



The penalty function corresponds to the incompressibility condition which
is appended with the penalty term, Thus, the approximate solution converges
into the true solution as the constraint is satisfied more closely.

Hence

+ . . . : - . - . . .
n[wt V.U +V.U 4P -Pr. [20,  + (U +V) 160

+IV_ +UV_ +Vv.W +p ~Pr . [2V
t x y Py . | 7,5

. +(Uy+vx)#-.-,na . Pr . 0]8V

+ [Ux + Vy]Gp

+ [et + uex + Vﬁy - ex . ey’y](se ]dD =0 @as)

D[[Utau + (U . ux +Vv, Uy)GU + Pr . [2U,'t<SUx + (Uy + Vi)wy]
+ [Vtav + (U . Vx +vV, vy)sv + Pr . [2vy<svy + Uy + vk)svx]
- PI' . R-a . eav

+ [etoe + 'caex + VSy)GB - excex - Byv66y‘]

- [P(GUx + Gvy) + (,Ux + Vy)Gp] ] db
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+ a'ﬁ[?r . [20,80, By + (U +V )60 . n + 2V &V . B

+ (Uy + Vx)W ..nx]
+ [péU . n_+ pov . ny + B;Nx + eyNy] das (16)
For the moment, let's examine the following term

-\ P(BU_+ &V.) dD +
x y

(PSU . n + P8V ., n ) dS an
D - X y

o

Since the arbitrary functions U, V satisfy the incompressibility
condition, the first term vanishes, The second term disappears when
the velocity is specified on the boundary. Thus, pressure does not

appear in the penalty method, The above variational statements can

be rewritten in penalty formulation forms

I+ 866=0 (18)
where §I = D[Uté‘U + (U . Ux +V. U&)GU + Pr . IZUiGUé + (U& + Vx)ény]
+ [vtcv + @. vx +VvV. vy)av + Pr , [zvysvy + (uy + vx)av*]

-Pr,Ra. 08V . [6. 80+ (U. 9; +V, By)GO - e#cey

-9 8
ycSB]dD
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+ | Pr. (208U . m 4 (U + VD LTy 4270V LBy

3D
n
+ (Uy + VISV . By] + [ON + eyny]ds , (19)
= E 2 ' ¢
6=13 Dcux + vy) dD. (20)

where G is the peﬁalty function and € is penalty parameter. Zienkiewicz
(1977) and Reddy (1979-a) proved theoretically that the penalty function
converges to zero as € goes toward infinity. In other words, the approx-
imate solution converges into the actual solution as € is increased to
infinity. But, in practical computation the selection of fhe value for
€ is crucial to yield accurate results. In the penalty method, the pres-

sure is obtained by

P = -e(U, + V) (21)

because the pressure corresponds to the Lagrange multiplier which is as~

sociated with the incompressibility constraint in this system.

'2-3. 'Finite Element Formulation

The finite element method was introduced as a tool of numerical
approximation for the problems associated with structural mechanics.
The applications of the finite clement method to the problems of fluid
flow have only been developed in recent years,

The finite element method assumes that the governing equations

over a given global domain hold in each subdomain, called a finite element.

15



Thus, the relevant equations for a typical element are derived from the
global governing equations using the variational method, Then, the unknown
primitive variables U, V, 6 are approximated by a series of interpolation
functions (or shape functions) in each element. As a result, the associated
equations for a typical element are discretized in matrix form. The global
approximations over the given domain are constructed by assembling these |
elements at the continuous interelement boundaries.

We can intro&uce the following interpolation functions of the var-

iables U, V, and @ over the subdomain
U = miNi(x’Y)
V= EViNi(x,y) (22)

6 = I6,N, (x,y)

where Ni denotes the interﬁolation function corresponding to node i and
Ui’ Vi, Bi, the values of variables at the ith node of the element. By

substituting equation 22 into equation 18, we obtain

N, +

isUi De[Uj,t“.ANj .nN£,+ (UZUij’x + VEUj 5,74
€ . (ZUij’x + szNj’y)Ni’x'+ Pr . [2Ni;szij,x +
GU;N, |y + IVyNy Ny yldxdy
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TOV5 | perast + Nyt ¥ OBV o+ VN, O,

Pr . [2 (

Ny gty BNy g+ TN ON, 2]

-Pr ,Ra. 0 ., 1\3+e Ni’y(Z‘Vij"x-l- ZVij’y)]dxdy

+ 2680, 6. .N Ny 4+ (UIB,N, - + VION, N + N, %O N

pe 3 13 b ) PN I 1,x" ) 3=
+ T
Ni’y eJNj sy]dXdy
- I8u t,N,dS - I6V t,N,dS ~ 60, ]t N.dS (23)
i 3De 171 i 3De 2°% 1 /7371
where
= . n .
tl (2pr . Ux P + Pr(Uy + vx)ny
= n . - .
t, l?r(Uy + Vx) x + (2i"r.§ly P) ny (24)

- n
ty= (6. + eyny)

R BDe denote a domain of element, and a boundary of element

respectively, Collecting the coefficients of the variables GUi, GVi

and aei respectively, we can have the foliowing matrix forms
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]
o f o] Jm +er.r2e’ 4 621 + e.ct'pr.c? + e.¢'Y ju| |t
. + ------ v — - L — - .- e : =
. U
o M [v| [pr.c® + e.6tim+ prir2e? + 611 + e.6? ¥

(16,1 + (8 + 6L + 621[6] = [F°]

where ={(U .N, . +V.N, ). Nididy

Byy 5% 1,5

N, N xdy

1 .
77 1,8,

N dxdy

\.’\\.—-—‘\

N
4,y 3,y

N

N dxd
1,x 3,y

(7]
o
L
[
\—'-\

N N d
1,74 ,x3%9Y

tlﬂids ,

(7]
gl N

. .-
\.———-\\_——\

tNds + |Pr . Ra.# « Ny dxdy

2

!
[T XY
"
\""\

t3NidS

i
e U
n
\_—‘-\

e
Mij Ni + Ny dxdy

(25)

(26)‘
@7
(28)
(29)
(30)
(31
(32)

G

(35)

One of the important steps in the finite element analysis is the selec-

tion of the interpolation functions associated with the shape of an element.
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Zienkiewicz (1979) showed that quadrilateral elements give more accur-
ate solutions than the triangular elements in the penalty formulation.
Also, linear interpolation functions and the more refined meshes have com-
putational advantages over the high order interpolation functions because
of the difficulty of the integration. Thus, a bilinear quadrilateral in-

terpolation function is used in the present formulation:

N

1° ﬁg (b-x) (a=y)

N

, = op (043 @-y)
(36)

Ny = z2p (b+x) (a+y)

N, = o (0-X) (a+y)

where N1 N2 N3, and N4 are interpolation functions at nodal point 1, 2,
] L
3, and 4 in the element,
Y
N (-a,b Ni(a,b)
X
N3 (-a,-b) N, (a,-b)

Figure 2-1, The Rectangular Element
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The nonlinear term in the matrix [H] féquires an iterative technique which
computes the value at the (m+l)th iteration, assuming the values at the
mth iteration to be known, until the computed values show sufficient con-
vergence,

The finite element equations discretized with respect to space
should be discretized further with respect to time for time dependent
problems.

There are generally two discretization methods for time dependent
problems. The interpolation function is regarded as being dependent upon

space as well as upon time such that:

U(x,t) aN; (x,t)
3% e U (37)

The second method involves the temporal uperator being introduced as the

time derivative of a variable at a node from the relation

8U(§,t) BUi(t]
— = Ni(%f) e (38)

In the present study the second approach is employed for the time approx-
imation. An advantage of the second method over the first method is the
decrease in computational dimensions requiring the finite element in time
(Chung, 1978),

Hence, we can rewrite equations 25 and 26 in standard matrix form

[MI[Y,] + [KWIU] = [F] (39)
20



where [M] is conventionaily called the mass matrix, U unknown solution
vector, [K] stiffness matrix, [F] force vector. The finite difference

schemes for time dependent problems is given by
8 v Wy * (-0) & (U, = (U, - U/t (40)

where ( )t denotes the derivative with respect to time, 9n+1’ Un are un-
known variables at the n+l, and nth time step. |
The following values of 6 are generally used for time dependent

problems,

0, forward-difference
1/2, Crank-Nicholson
2/3, Galerkin
1, backward-difference
The Crank~-Nicholson and Galerkin schemes will be tested for convergence

and accuracy in the present study. From equation 40, we obtain:
MI(U), + [KIU =F_atnth time step (41)
[M](Un+1)t + [l(]UM1 = F ,; at (n+1)th time step (42)

Multiplying equation (40) with [M], then substituting equations 41 and 42

into 40, we have

[IM) + At[K(Uml)]e]iUm_}S = [[M] - aelxqula - 01y}
(43)
+ At[6F 1 + (1 - O)F,]
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The dependence of .the [K] matrix which contains convective terms (non-
linear terms) on the solution at n+lth time step requires an iterative

procedure.

2-4, Stream Function

The stream function, ¥, is a useful variable for the analysis of
the two dimensional flow. The stream function can be Jetermined from the
vorticity equation once the velocity field is known., From the relation-

ship between the stream function and the velocity variables, we have

U=
WY
(44)
V=Y
X
The vorticity equation is defined by
w= - -V) (45)
Therefore,
o -
(46)

Uy - V)

The Galerkin integral is applied to equation (46) to develop the finite

element formulation,

D(—W¥,x - wy,y +U - V. )6¥dxdy = 0 47)
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Integrating by parts,

VEY +VY &Y + (U - -
'{D[ Sy ‘Py. v (Uy V) 8¥dxdy

- YooY . N +VY &Y. -
aD( x < yé Ny_)dS. 0 (48)
The boundary terms vanish since ihe value of the stream function at the

boundary is zero. If we assume the following inierpolation fumnctions for

¥, U, and V, in each element respectively

YeIYN, U=ION, VeIVN (49)

substituting equation 49 into equation 38, we obtain

8Y {‘Pj(N N, +N ) +

i X 1,x jsyJinY
(50)
vV.N - U.N =
(j 5x Y j’y)Ni}dxdy 0
Coliecting the coefficients of G‘i’i, we can eiq:ress the above equation in

matrix form

K] {¥} = {F} (51)
where Kij = (Nj,xNi,x + Nj’yNi'y)dxdy (52)
Fi = - (viNi,x - Uiui,y)Nidxdy (53)
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The time dependent, two-dimensional, free convection model, which has
been formulated for the first time using the penalty method of finite
element analysis, is employed to investigate the heat transfer mechanism
of the magma and country rock, primarily the convective heat transport
inside the magma. The advantage of this method is that the number of
variables is reduced and computation time is correspondingly reduced.

The results of this wodelling will be given and discussed in Chapter 1V,
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CHAPTER III

MOVING BOUNDARY FORMULATION

Immediately after the intrusion of magma into the country rock,
the magma may have sufficient heat to melt the country rock which it con-
tacts. Also, if the melting takes place along the Clapeyron curve, along
which the melting temperature increases with depth, the magma may move up-
ward by melting the country rock above the intrusion and freezing the
batholith near its lower boundary [Shimazu (1961), Ahern et al.; (1979,
1981)]. The ascent rate of the solid-liquid interface was calculated by
Ahern and Turcotte (1979) by using the one dimensional finite difference
convective upwelling model, suggesting that the position of the interface
is determined by conduction as well as convection including the effect of
latent heat, |

This section will develop the conductive moving boundary model to
investigate the effect of latent heat on the solidification of magma with-
out convection. The magma becomes solidified along the moving solid-liquid
interface where the phase change occurs by liberating or absorbing the la-
tent heat, The phenomenon of interest is analogous to the Stefan problem
from the point of view of the heat balance, The importance of the moving
boundary problem is based on the following points: 1) a domain of the

solution of the governing equation is unknown and must be determined as
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part of the solution procedure and 2) a discontinuity of the temperature
gradient on the solid-liquid interface, which is the principal cause of
difficulty in numerical approaches to the Stefan problem. The first dif-
ficulty is resolved by the domain iteration procedure which is repeated.
until the solutions from the assumed domain converge to the solutions
from the computed dor.iy:. The second difficulty is overcome by transform-
ing the discontinuous teﬁperature to the continuous variable defined by
Duvaut. Since the development of the Duvaut's transformation, numerical
approaches to Stefan problems have been investigated by Atthey (1973) and
Crowley (1977) for one dimensional and two phase cases, and Ichikawa
(1979) and Kikuchi (1979) for water-ice cases with a fixed freezing tem-
perature. The analytical solutions obtained by Jaeger (1961) and Tikhonov
(1963) are applicable for one dimensional and one phase Stefan problenms,
not all are extensible to two dimensional and two phase cases. In the
present study the application of the Stefan principles will be extended
to a problem which has a changing melting temperature with.depth., The
finite element scheme is employed to solve the problem numerically. The
essential assumptions for the treatment of a Stefan problem are:

1. The existence of a transformation temperature at which
changes from one phase to ancther result in emission or
absorption of latent heat.

2. The existence of a moving intersurface of separation
between the two phases.

The above assumptions are satisfied in the following manner in this study.

The transformation temperature is given by:
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=3
=]
=)
c

mo Y N (54)

where P is pressure, Tmo the transformation temperature at the surface, y
the slope of the Clapeyron curve, p density and y depth.

Secondly, the position of the transformation surface is determined
by the difference of heat flux across the surface. In other words, the
locaticn of the interface can be written in finite difference form at the

time t = nAt;

D -l -1
polge—— =k . VT - KT (55)
S
where T is temperature, Ki thermal conductivity of the ith phase, L latent

heat per mass, and ls, ' denote the value of temperature gradient at
L i

the solid side of the surface, and the liquid side of the surface Tespec-
tively. The discontinuity of the temperature gradients in the matching
condition is the principal difficulty in any numerical or analytical meth-
od. Thus, an innovative concept is needed to overcome this discontinuity.
The method introduced by Duvaut (1976) transforms the discontinuous tem-
perature field to a continuous variable which determiné?the phase of the
material, Thus, the continuous variable can be differentiated over the
whole domain., The continuous variable is denoted as the melting index

for convenience,
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3-1, Governing Equation

We can generally formulate our problem by heat equations with the

boundary conditions, initial conditions, and matching conditions as follows:

C;T, =V . K,VT in D (56)
S(t) = {xeD : T(x,t) < Tm} (57)
M(t) = {EED’ T(g,:) > Tm} (58)
I(t) = {xeD: T(x,t) = Tm} : (59)

where Ci’ Ki are mass heat capacity and heat conductivity of the ith phase
respectively (i=1, solid; i=2, melted phase), D whole domain, S(t) solid
domain, M(t) melted domain, I(t} interface in which phase change occurs,

Tm transformation temperature, x Cartesian coordinate.
-~
Boundary conditions are

T=T on anl (60)

where T1 is the boundary condition and oD, is an area specified by the es-

sential boundary condition.,
Initial conditions are

T= Tso(x,y,o) in S(t) (61)

T = Tlo(x,y,o) in M(t) (62)
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Matching conditions are

n n-1
X =X

poLi = — kv o L™ | on g (63)
i i L
In the problem where the melting temperature is dependent on the depth,
the following transformation of variables is developed to satisfy princi-

ples of Duvaut's transformation. From equation 54 we can have the follow-

ing relationship

T(x,y,t) = T(X,¥,t) - Tn(y) (64)

where T is a new temperature variable,

Transforming the governing systems using equation 64, we obtain:

governing equation,
o

.20 . N
C,T, = K,V°T in D (65)

initial condition,

T

i

Ty o (X5¥50) - Tm(y) in D(t) (66)

—3
|

= TLO(X,y,O) = Tm()') in L(t) (67)

boundary condition,

T = T1 - Tm(y) in 9D (68)
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and matching condition,

[K . VT (69)

°
.
[l
H
1
7
3;
]
-
]
-~
<3
L |
1]

since Tm(y) 1is linearly dependent on y, where [ ] denotes the difference
of the temperature gradients between the solid side and the melted side.
The matching condition can be related to the position of the interface by

the following development, If the equation X = I(t) is given,

dx

- dI(t)
dt dt (70)

Thus, we can rewrite the equation X = I(t) inversely

t=17000 = PO (71)

By substituting the relationships 70, 71 into the matching condition, we

have

6.L Qééil = [K,.VT] (72)

dt
p.L [Ki° vT] EI_&T

. él:z)
= [K;. V7] ax
= [K,.VT] . WP (x) (73)
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Hereafter we will omit the dots on the Eemperature for convenience.

5.2, Duvaut's Transformation

We transform the governing equafions associated with discontin-
uous temperature gradients to continuous variasbles definmed by Duvaut
(19753 as follows:

t .
8(x,t) = | K, .T(x,7)dT (74)
o
For instanée, if the phase changes from solid to solid, the first deriva-
tive of 6;
t

Ve (§,t) = V.Ki’r(g,‘r)d't (75)
o}

the second derivative of 0;

_ t
v.ve(lc',vt) = V.VKiT(g,r)dt
[o]

= "ClT(E)O) + ClT(?.I,T). (76)

If the phase change goes from solid to liquid, we have

P(x) ' t
0(x,t) = Kl.T(x,T)dT + . K2.T(x,T)dT 77)
~ o ~ - ,“) -~

.~ .

The first derivative of the first term in equation 77 is obtained by
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using Leibnitz rule;

P(x)
Ve (’f’ t) = K1VT (§,T)dt + KlT (§,P(§) )h .VP({E)
.0 8

t . .
+ R, VT (x,1)dT - xzr(x,r(x).} VP (X)
P (%) - B | A -

t
) K VT(x,t)dT (78)
o

‘\

since the temperature T is zero on I(t) (interface). The second de-

rivative of 6(X,t) is

P(x)
V.Ve(g,t) j V.K, VT(x,T)dT + K VT(x P( z)) .VP(§)
[+ S

P(x) L

j V.K VT(x T7)dTt - K VT(x P(x)) .VP({()
(t

/ VK VT(x T)dt + {KVT(x,P(x)] VP (x)
o

= -C]_T(.’f’o) + C2T(§,t) + 2 _ (79)

where £ = p...L.

The subscript denotes the phase: 1=1 is the solid and i=2 is the melted

phase.
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Figure 3-1 The schematic representation of a
phase change on the domain (i=j=1: solid i=j=2 liquid)

The domains are determined from the melting temperature as follows
S(t) = x: 6,(x,t) <0 ' (80)

L(t) = X Bt(f,t) >0 (81)

The governing equations can be rewritten in each case;
From the solid phase to solid phase,

V.8 (x,t) = ~C;T(x,0) + C,T(x,t) (82)
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from the solid to the melted

V.V0(x,t) = ~C,T(x,0) + C,T(x,t) + £

.

from the melted to the melted
v.ve(f;:) - 'CZT(f’n) + czr(g,t)
from the melted to the solid
V;Ve(g,t) = -CZT(g,O) + ClT(g,t) - L.
We can rewrite the governing equations explicitly as follows:

c

26, (x,0) - V.V8(x,0) = £,

+ C,T(x,0)
N J b I

where

i=3j=1 at the solid phase

i=j3=2 at the melted phase
I = 0 £
i1 Je o
The initial condition becomes

. t _ _
T(x,y,t) = (T (x,y,0) - THI(Y))dT in S(t)
o 80 g .
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t
T(x,y,0) = ) (T, (%,y,0) = Tm(y))dt in L(t) (88)
o .

the boundary condition,

t
0(x,y,t) = ( (Tl - Tn(y))dr BD1 (89)
jo
the matching coﬁdi;ion,
8(x,y,t) =0 : on I(t) (90)

3-3, . Finite Element'Formulatibn

The variational formulation associated with the governing equa~

tions will use the Galerkin integral method.

C
D[(K o, - ex’x - ey'y -9 -c.T(x,y,ojaedxdy =0 (91)

where C, K and 2 are expressed in matrix form. After integrating the

second and third terms of equation 91 by parts, we obtain;

€Ce. -C
D[K etse + 9x68x + eysey ~ 28§ =C.T(x,y,0)60]dxdy

- 6n +0n)é =
an(x?‘ yy) 6ds = 0 (92)

Assuming that the integral equation holds in each element,. the fimction

6 can be'interpolated by
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0= ZBij x,y), 66 = ZGGiNi(x,y) : (93)

where Ni’ N. are the interpolation functions corresponding to node i,j re-

spectively and 8,,86 i the values of the variable at the ith and jth node

j’

of the element.

Hence

C
(Y:] 5 [K (Zej th)N + eij’xNi + eij’yNi’y +
¢4 +C.T(x,y,0))Ni]dxdy =0 (94)

Since the function 68 i is arbitrary, we have

< Mo, } + [6™ + ) {6} = F' + ¥ (95)

Mij = Ni . Nj dxdy (96)

N  4xdy 97)

GE i N 3.y dxdy (98)

- N, dxdy (99)
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Fi = |C . T(x,y,o)Ni . dxdy (100)

The next step in the development is to discretize the finite element for-

-mulation with respect to time by the finite difference scheme (refer.to

Chapter II).

Thus we have

C Cc
”M(Ri) g + At.s.[RTEY = [[m(-ii)n - bt.(1-s). [RIY6}
1

+ At[s;{Fl(zij)n+1 + Fz(cj)n+l} + (1-s) {Fl(zij)n

+ rz(cj)n}] (101)

c

where'ii, zij in the bracket indicates the domain corresponding to each
i

time iteration,

The time dependent, one-dimensional conductive moving boundary

model developed herein is employed to determine the effect of latent heat

on the solidification of magma with migration. The convective moving

boundary model, which includes the convection effect, will be developed to

investigate the possibility of upward migration of a magma body in Chapter
5.



CHAPTER IV

A COMPARISON OF CONDUCTION MODEL VERSUS
FREE CONVECTION MODEL IN THE HEAT
DIFFUSION OF GEOTHERMAL RESERVOIR

‘4-1, Numerical Model

The part played by convection in the heat diffusion of the geo-
thermal reservoir has been a matter of speculation. Jaeger (1964) stated
that little evidence of convection exists in basic sheets less than 30 m.
thick but that convection does take place in the stock-like bodies of mag-
ma more than 30 m. in diameter. The phenomenon of interest can be simu-
lated by the motion of a laminar incompressible, Boussinesq, Newtonian
fluid (hot magma) confined in cold country rock. The physics of the prob-
lem plays a crucial role in constructing a reasonable model. The finite
element method is no exception., In this study the convection is generated
by a change of density due to the difference in temperature between hot
magma and cold country rock. The problem under consideration is as follows;
The geothermal reservoir is assumed to be a rectangular slab of magma 100
m. wide and 50 m. high located 100 m, below the surface (Figure 4-1). The
magma was initially intruded over the melting temperature into the coun-
try rock which had been subjected to a geothermal gradient, In this
model the effect of the geothermal gradient can be disregarded because
the temperature difference by geothermal gradients at that depth is ne-

gligibly small, The interface between the magma and the country rock
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is assumed to be impermeable for flow but not insulated for temperature,
The surface and vertical wall of the country rock is specified by zero
temperature and the lower one by zero temperature gradients, To simplify
modelling the physical parameters of the model are given in Table 4-1 and

are representative of acidic igneous rocks [Clark (1966), Stein et, al,

(1981)1.
TABLE 4-1
Physical Parameters of the Model
Parameter Value Description
K 0.01 cal/cm sec C Thermal Conductivity
C 0.25 cal/gm C Specific Heat
L 80 cal/gm Latent Heat of Fusion
p 3.0 gm/cm3 Density
g 1000 cm/sec2 Acceleration of Gravity
v 108 cm2/sec Viscosity of Magma
8 3.0 x 107> deg ¢! Coefficient of Thermal Expansion
3.6 deg C/Km Clapeyron Gradient

4-2. 'Numerical 'Procedure

The finite element equations are expressed by a set of algebraic
equations reduced from a continucus problem described by partial differ-
ential equations to a discrete problem, The element equations in (25) -
(35) are assembled to obtain the associated global algebraic equations
through the appropriate summation of equations for nodes common to adja-

cent elements.,
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In problems of interest where both the flow and heat equations
are strongly coupled, solution algorithms for the equations must have an
iteration procedure because of nonlinearity of coupling terms. The heat
and flow equations are solved in a cyclic marmer beginning with the heat
equation. The velocities for the first iteration are assumed to be zero
and the matrix coefficients are computed, Then, the heat equation is
solved for the teﬁperature. The velocities are obtained using the com-
puted temperature as the force terms for the flow equations and one cycle
of iteration is completed. This process is repeated until the solutions
at any two successive iterations satisfies with a specified convergence

criterion;

2
(Unew = Uo1d)” ~ (Vpew

2 2
Unew * vnew

2
- Vold)

< 0.1%

where U is a horizontal velocity, and V is a vertical velocity. An ap-
propriate time step to insure convergence and to avoid spurious oscilla-
tions in the solution is an important consideration, The 6 family approxima-
tions will be'tested,as a time stepping procedure for solutions of the time
dependent conduction model. Figure 4-2 shows that the Galerkin scheme

(6 = 2/3 in Equation 43) gives a smoother time approximation of tempera-
tures than Crank-Nicolson's (0 = 1/2) even at the point where temperature
changes most rapidly. The use of numerical integration is desiraﬁle to
evaluate various matrix coefficients in equations (25) — (35) with curved
boundaries, In addition, the "reduced integration" required by the pen-
alty method can also be obtained by using numerical integration. Details
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of the methodology are given in Appendix I. For further theoretical dis-
cussion of the reduced integration in the penalty method refer to
Zienkiewicz (1977), and Reddy (1979-a). In problems of interest where
temperature is a more dependent variable than pressure, the penalty par-
ameter € = 1015 is shown to give accurate results for this particular
model, The actual solution of the algebraic equations is accomplished
by a Gaussian Elimination. All of the computation is carried out on an
IBM 370/158 computer in double precision.

4-2-1. Arrangement of Meésh. The arrangement of mesh by physical under-

standing is a key step in the approximation of possible flow and temper-
ature patterns for the problem, The domain at hand is discretized using

a 25 x 16 mesh of quadrilateral elements. The mesh spacing is graded
finely in order to provide increascd resolution near the interface be-
tween the hot magma and cold country rock. The elements and nodes are
numbered from left to right and from the lower to the upper. (Figure 4-3).

4-2-2, Plotting., The program contains a plotting subroutine that allows

finite element meshes, nodal and elemental numbering, contour maps for
isotherms and streamlines to be drawn. The description of those methods
will be omitted since the generation of plotting follows standard proce-

dures.

4-3, Numerical Reésults and Discussion

The validity of finite element formulation for unsteady thermal
flow is checked by comparing finite difference solutions {Ahern, 1981)
with finite element results, Details of the comparison are given in Ap-

pendix III,
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In this section numerical resuiis for natural convection problems
are presented to demonstrate the effect of convection on the heat diffu-
sion of magma., The finite element conduction solutions are compared with
the finite element free convection results to discover how convection in-
fluences the temperature profile, The velocity field of a magma dépends
on the rheological characteristics of the fluid, thermal forces; and
viscous forces. To simplify the analysis, density differences arising
from the composition differences are disregarded. There is a critical
value for the onset of convection in hot fluid confined by cold country
rock, The critical value is conventionally represented by the Rayleigh
number which is considered to be the ratio of buoyancy forces developing
convection to viscous forces preventing flow. The magnitude of the
Rayleigh number depends on several variables: the viscosity (v), the
thermal expansion coefficient (B), the diffusivity of -he fluid (a), and
the size of the body and the temperature difference.

Below the critical value for the cnset of convection, the temper-
ature distribution is simply governed by conduction with no movement of
flow., Above that value, the temperature distribution begins to be influ-
enced by fluid motion. Basically, the larger the value, the more vigor-
ous the convection of the fluid.

Since the applicability of the model at hand is strictly limited
to a laminar flow, the turbulent flow of the magma is beyond the scope of
this investigation, Spera (1980) indicated that convection does not oc-
cur until the Rayleigh number reaches about 1500, Lipps (1971) showed
an appropriate criterion for the onset of turbulence is a modified Rayleigh

number [(D/L)3 * Ra] which is greater than about 104 . D/L is called an
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an aspect ratio where D is the height and L is the length of the liquid
(Figure 4-1). The onset of turbulent flow is known to depend upon the
aspect ratio as well as the Rayleigh number, Also, the critical value
of the modified Rayleigh number has a wide range which depends upon the
boundary conditions and the definition of turbulence, In the present

model the Rayleigh number ranges from 103 to 105 and a Prandtl number

108. Turbulent flow seems to be prevented because of large viscosity
even if it exceeds the critical modified Rayleigh number. The results
are presented in graphic form., These show the development of the patterns
of isotherms and streamlines.

Figures 4-4-B to 4-9-B show the development of isotherms by con-
duction as time advances, Figures 4-4-A to 4-9-A show the temperature
field with convection motion at each time increment, Of special interest
areFigures 4-8 and 4-9 which show that the convection model diffuses the
heat more rapidly than conduction does.

The convection motion begins due to buoyancy forces produced when
the temperature variations are introduced through temperature differences
between hot magma and cold country rocks (Figure 4-10): Hot liquid tends
to rise near the center, cold te fall along the cold boundary. In other
words, thin thermal boundary layers emerge on the interface between the
magma and the country rock., Thin thermal boundary layers, which become
cold because of loss of heat transfered into cold country rocks; fall
along the wall,

Therefore, the temperature gradients at the upper boundary of mag-

ma are larger than those at lower boundaries (Figure 4-5-A). A series of

thermal layers will emerge as the boundary layers convect in a circular
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motion, The isotherms distort progressively as the convective effects
become more apparent (Figures 4-6-A, 4-7-A)., As the speed of convective
currents increase, the cell breaks into two parts (Figure 4-11), A se-
condary cell broken from the original represents a set of streamlines
with anticlockwise circulation which occurs in the upper central region
of the magma (Figures 4-11, 4-12, 4-13), The speed of convective motion
decreases gradually with decreasing temperature. Then; secondary cells
disappear (Figure 4-14) and the original patterns of streamlines come
back (Figure 4-15), when the velocity of the convection flow decreases
with time. The patters of streamlines remain unchanged until the differ-
ence of temperature between the magma and the country rock is terminated.
In fact, the magma will be solidified by the freezing temperature long
before the temperature differences are eliminated, However, similar re-
sults would be obtained if the magma had been considerably hotter than
the melting temperature upon emplacement. In unsteady free convection
problem the magma is assumed to be kept in a liquid phase even when the
temperature in the magma goes below the melting temperature,

The effect of convection is shown by comparing the conduction
temperature profile with the convection temperature profile along the
representative lines A-A' and B-B' in Figure 3 (Figure 4-16). Figure
4-15 shows that the temperature distribution by the conﬁection model is
distorted by the fluid motion, while the isotherms of the conduction are
symmetrical to the representative line A-A'.

In summary, the rate of heat diffusion into ccuntry rock by the
convection model exceeds the value of conduction., The effect of convec-

tion on the motion of magma within the batholith gives larger temperature
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gradients at the upper boundary magma than those at lower ones. There is
a possibility that the heat transported upward by thermal convection
melts the roof of magma while freezing its lower parts when the effect

of latent heat is taken into consideration,
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Figure 4-6, Temperature distribution after 4.2 years from
(A) Convection model, (B) Conduction model.
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Figure 4-7, Temperature distribution after 6.2 years from
{A) Convection model, (B) Conduction model.
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Figure 4-9. Temperature distribution after 10.2 years from (4) Convection
model, (B) Conduction model.Note that convective heat transfer
exceeds condnctive heat transfer into contry rock from magma.
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Tzgure 4-10, Stream lines for convection model after 0.2 year
Note that flow is downward at the right edge of
the magma body.
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Figure 4-11. Streamlines for convection model after 2.2years
Note that the secondary convection cell in the
upper left portion of the magma body.
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Figure 4-12, Stream lines after 4.2 years,
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Figure 4~13. Stream lines after 6,2 years.
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Figure 4-14, Stream lines after 8.2 years. Note the secondary
cell is disappeared.
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Figure 4-15. Stream lines after 10.2 years. The convection motion
reaches the steady state.
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CHAPTER V

EFFECT OF THE LATENT HEAT ON
THE MIGRATION OF MAGMA

5.1, Convective Moving Boundary Formulation

To analyze the migration of the magma after the emplacement of the
the magma into the country rock, two complicated mechanisms are associated
with each other. One is free convection which is employed to determine
the distribution of the velocity and temperature within the magma and the
distribution of the temperature surrounding the magma chamber. The free
convection was investigated numerically in the previous chapters. The
other mechanism is a moving boundary mechanism used when the positiorn of
the solid-liquid interface is determined by the difference of heat flux
across it. The conductive moving boundary formulation, which is developed
in Chapter 3, is used to determine the effect of the latent heat on the
solidification of the magma without convection.

From the free convection model we have learned that the convection
motion of the liquid within the batholith results in larger temperature
gradients at the top of the magma than at the bottom. This convective mo-
tion inhibits the solidification of the upper part of thHe magma until the
freezing front which originated at the bottom reaches the top.

In order to investigate the possibility of upward migration of a
magma body, we must develop the convective moving boundary model. This
model has an energy equation which includes a convective term to govern
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the liquid domain, To my knowledge, the moving boundary model, which
takes the convective effect into consideration is the first approach of
this type to the Stefan problem. In the present model the moving bouidary
distinguishes the dcmain where convective heat transfer occurs from the
domain where conductive transfer takes place. In other words, the govern-
ing equation (56) remains unchanged when the domain is solid, but the gov-
erning equation on the liquid domain must include a convective term, which

is the energy equation.
Ci(Tf + UT;) =V.K .V in M(t) (567)

If the convective term in equation (56') keeps constant, the energy equa-
tion (56) associated with discontinuous temperature gradients can be trans-
formed to the equations with continuous variables defined by Duvaut.

Since the governing equation of the solid domain (conduction
equation) is transformed in Chapter 3, the transformation of the energy
equation governing the liquid domain is treated as follows:

First of all, the equation 56' is transformed by a new temperature
variable defined in equation 64 to satisfy principles of Duvaut's
transformation.

c, (T_+1U( Tx +4)) =V. Ki . VT

i t

where A =-2%§ since the first derivative of the melting temperature
Tm with respect to depth is constant. The primes on the temperature are .

omitted for convience.
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1f the phase changes from liquid to 1iquid, the first derivative of 6

defined in equation 74 is

T
Vo (x,t) = v .‘KiT(x,T)dT
(o]

the second derivative of 0 is

~

t
V . VK T(x,T)dT
o i

V. V8(x,t)

t

c, X (Tt + u( T+ A ))dt

-

ft
-CéT(x,o) + CéT(x,t) + C2 j

UCT# Addr (102)
(o] o

where the convective term U denotes the vertical velocity in the one di-

mensional system.

If the phase change goes from solid to liquid, we have

P(x) t
B(x,t) = KI . T(x,T)dT + KE « T(x,t)dT
o p(x)

the first derivative of 0 is,
p{x)
Ve (x,t) = Ki . VT(x,1)dT + KlT(x,p(x)) « Vp(x)
o S

t
+ sp KZ VT(x,T)dT - KZT(x,p(x)) o Vp(x)
(x) L

t
= 5 KiVT(x,T)dT
o
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since the temperature T is zero on the solid-liquid interface,

The second derivative of 8 is,

o)
V. Vo(x,t) = VKl o VT(x,T)dT + Kl « VI(x,p(x))} . Vp(x)
o S
¢
+ Vl(2 o VI(x,T)dT - K2 « VT(x,p(x))| - Vp(x)
Jp(X) L
jp(x)c T d i C, (T
= . o T.dT + +y
o 1 t p(x) AN (Tx+A)dT+2
= CITkx,p(x)) - T(x,0)] + G;[T(x,t) - T(x,p(x))]
o
+ C U(T+ A)ddr + &
2 oy x
t
= -C;T(x,0) + C,T(x;t) + G U( T+ A )T + 2 (103)
p(x)

If the phase changes from liquid to solid, we obtair

p(x)
7 . V8(x,t)

VKz o VT(x,T)dT + VK’1 . VT(x,T)dT

o p(x)

x)
u( TX+ Addt - 2 (104)
o]

-CzT(x,o) + CiT(x,t) + C2

If the phase changes from solid to solid, we obtain

V. Vex,t) = -CiT(x,o) + ClT(x,t) (105)
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Therefore we can rewrite the governing equations in each case to the fol-

lowing generalized governing equation

Ci _ _
ii'et(x’t) -V . V6(x,t) = zij + CjT(x,o) Fij

i =3 =1 at the solid phase
i =3 = 2 at the liquid phase
L..=¢4 0 2
1)

-2 0
Fll =0

= U(T + A )Tt
F,=¢C (T, X
P(x)

p(x)
F =c-25 U( T+ A )dt

21
[}
t
Fzz = Cy . u( 'rx+ A )d1

with the same matching condition as equation (80)
with the same initial condition as equations (87) (88)

with the same boundary condition as equation (89),

Also, the governing equation is discretized in matrix form using the finite

element procedure developed in Chapter 3.
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5-2, Numerical Procedure

Tne difference between regular boundary problems and moving boumd-
ary problems is basically that the ‘domain of the solution of the governing
equation is unknown and must be determined as a part of the solution. In
such a problem, additional information is required to relate the solution
of the equation to its domain of definition. The present problem links
each domain and the solution of the governing equation to every other do-
main and the corresponding solutions through the balance of the heat flux-
rate at the magma-country rock interface which involves the latent heat
of solidification,and the rate at which liquid is converted into solid.

To solve such a problem numerically an iteration procedure is needed for

the domain.

The iteration procedures are
1) The solutions are obtained from the governing equation corre- -
sponding to the assumed domain
2) The convergence is checked by comparing the solutions from the
assumed domain with the solutions from the computed domain
3) This procedure is repeated until the solutions from the com-
puted domain satisfy a specified convergence criterion.

The other procedures are the same as those developed in Chapter 4.

5-3, Numerical Examples

Example 1. First of all, the numerical results from the model developed
herein is compared with the known exact solution of a one-dimensional prob-
lem (Jaeger, 1964) for the accuracy and validity of the model., The problem

for comparison is illustrated in Figure 5-1. The magma with 1 Km chick-
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ness is assumed to be located 5 Km below the surface., The initial tem-
perature of the magma was 850 C which is slightly more than the melting
temperature at the surface (800 C). The phase of magma is determined by
the melting temperature which is dependent on depth. The temperature of
the surface is maintained at 0 C. In this problem the geothermal grad-
ient is not considered for comparison with the known analytical solution
which did not include the geothermal gradient effect and convection ef-
fect. The physical properties of the magma are the :same as those of the
country rock (Refer to Table 4-1), The latent heat of soiidification is
of the order of 80 Cal/g.

Jaeger presents the solution to the problem in terms of the iime

the magma with half width, d, takes to solidify,

where A is determined from equation

..)\2
Lym _ e
C(Ts - Td) - X + erfA)

L: Latent heat per mass
C: Specific heat

a: Thermal diffusivity

The numerical results from my model agree with Jaeger's solidification
time (Refer to Table 5-1)., Figure 5-2 to Figure 5-6 shows the tempera-
ture distribution as the solidification of magma proceeds through time.
In this problem the liquid phase of the magma is initially assumed to
consist of 10 meshes, After 345 years two of the meshes of magma, which
contact immediately with the country rock, are solidified (Figure 5-2).
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Figure 5-3 shows four of ten liquid phases of the magma solidified after
920 years, The temperatuie distribution after 1840 years, shown in Fig-
ure 5-4, incidates four of the ten meshes to remain in the liquid phase.
Figure 5-6 shows the temperature distribution of the complete solidifi-

cation of the magma after 4140 years.

TABLE 5-1

The Comparison of the Numerical Results and Exact Solutions
for Solidification of Magma Body

Half Width of

the Solidifying Magma Exact Solution Numerical Solution
(Unit: m) (years) {years)
100 150 160
200 610 600
300 1370 1400
400 2440 2520
500 3400 4100
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Example II, The problem under consideration is shown in Figure 5-7,

This problem is basically the same as the problem investigated in Example
II except that the geothermal gradient is included as a boundary condi-
tion of the country rock to describe the solidification of a magma in a
more general sense.

The purpose of this problem is to determine the effect of latent
heat on the solidification of the magma. The solidification time from
the moving boundary model is compared with the time from the conduction
model, Also, the temperature distribution from each model is illustrated
in graphic form for visual comparison.

The basic difference between the two models is that the tempera-
ture corresponding to the latent heat of solidification, which is of the
order of

320° C = 03205 X calgL
* cal/g C

is added to the portion of the magma remaining in a liquid phase,

The results from the conduction model show that the complete
solidification of the magma is achieved after 880 years., If the latent
heat is considered in the solidification, the magma becomes solidified
to only two-fifths of the liquid phase after 800 years, completing the
solidification of the magma after approximately 4500 years. Figure 5-8
shows temperature distribution changing with time for the conduction
model. The temperature distribution for the conductive moving boundary
model is shown in Figure 5-9., As a result of the comparison of the two
models, the latent heat offusion gives a longer solidification time of

the magma.
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Example III. The purpose of this problem, which includes the convection
effect, is to demonstrate the possibility of inhibiting the freezing of
the top of the magma chamber until all of the magma is solidified com-
pletely. The boundary conditions and initial conditions are shown in Fig-
ure 5-7, In a one dimensional analysis of the problem a convective term
necessarily denotes the vertical velocity; This vertical velocity trans-
fers heat at the bottom to cause the freezing front to proceed upward.
The value of the velocity is assumed to be lm/year, large enough to show
the effect of convection in the magma body. Figure 5-10 shows the mode
of solidification of the magma for the convective moving boundary model.
The portions of the magma, which contact immediately with cold country
rocks, are frozen after 250 years. Then the bottom of the magma begins
freezing by removing heat at the floor upward due to convection in the
magma body. It is interesting to note the temperature gradients in the

upper portion of the magma to be more steep than those in the lower.
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of the magma solidified after 920 years from the conductive

moving boundary model.
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Figure 5-4. Temperature distribution showing four out of ten meshes
of the magma remained in liquid phase after 1840 years.
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Figure 5-5., Temperature distribution after 2980 years for the conductive
moving boundary model. Note that two out of ten meshes of
the magma remained in liquid phase.
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Figure 5~6. Temperature distribution showing the complete solidification
of the magma after 4140 years from the conductive moving
boundary model.
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Figure 5-8. Temperature distribution changing with time for the conduction model. (Unit: years)
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Figure 5-9. Temperature distribution changing with time for the conductive moving boundary model.Note that
the effect of latent heat gives longer solidification time of the magma.(Unit:years)
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CHAPTER VI
CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

Problems of the heat and mass transfer in geothermal resérvoirs
have been extensively treated in the literature of finite element analysis.
The problems under investigation in this study are unsteady free convec-
tion within a magma body and the two phase Stefan problem associated with
the moving boundary. In this geological problem which requires larger
computer storage created by the fine mesh discretization to provide increased
resolution near an interesting émall area of the huge domain, a considera-
ticn to reduce the number of unknown variables is necessary. The penalty
method of finite element analysis has been employed to solve the time de-
pendent viscous thermal flow (unsteady free convection). The purpose of
this study was to investigate the effect of éonvection on the temperature
and streamline distribution within a geothermal reservoir (magma chamber).
The one dimensional, two phase Stefan problems, which have dependent melt-
ing temperature on depth, have been solved by finite element method. This
method has used the Duvaut's transformation to resolve the discontinuity
of the temperature gradient on the solid-liquid interface which is a prin-
cipal difficulty of numerical approaches to Stefan problems. This model
has been employed to investigate the effect of the latent heat of fusion
on the solidification of the magma. The unsteady two dimensional conduc-

tion model developed in this study shows that
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1)

Galerkin scheme, one of the 6 family of approximation for a
time stepping procedure of the time dependent model, gives
a convergent and smooth time approximation of temperature
over Crank-Nicolson's even at the point where temperature

changes rapidly.

From the penalty finite element analysis of unsteady free convection

2)

(3)

(4)

(5)

(6)

)

The penalty parameter e=1015 showed to be desirable for this
problem where the témperatufé is a more dependent variable
than pressure and Prantdl number has a large value.

The convection is generated by a change of density due to the
difference in the temperature between hot magma and cold
country rock.

Below the critical Rayleigh number for the onset of convec-
tion (about 1500), the temperature distribution is simply
governed by conduction with no movement of flow, Above that
value, the larger the value, the more vigorous the convection
of the fluid.,

Turbulent flow seems to be prevented because of large vis-
cosity even if the modified Rayleigh number of this model
exceeds the critical value for the onset of turbulent flow
defined by Lipps (1971).

The rate of heat diffusion into the coﬁntry rock by convection
exceeds the value of conduction for the stock-like bodies of
magma more than 30 m, in diameter before the convection motion
dies out.

Hot magma tends to rise near the center, and cold magma tends

to fall along the boundary of country rock by thin thermal
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)
(10

boundary layers emerged on the interface between the magma
and the country rock.

As the speed of convective currents increase, a secondary
cell with anticlockwise circulation occurs in the upper cen-
tral region of the magma,

After 10.2 years the convection motion reaches a steady state,
The convection in the magma body gives larger temperature
gradients at the upper portion of magma than at lower por-
ticns indicating a possibility éf upward migration of the

magma.,

From the conductive moving boundary model

(11)

(12)

The numerical results from the model developed herein agree
with the analytical solutions by Jaeger (1961) of the magma.
The effect of latent heat of fusion gives longer solidifica-

tion time of the magma.

From the convective moving boundary model

(13)

(14)

(15)

A freezing front proceeds from the bottom to the top by
transferring heat at the bottom upward suggesting the possi-
bility of inhibiting the freezing of ihe top of magma body
until 211 of the magma is solidified completely.

The convection gives steeper temperature gradients in the
upper portion of the magma than those in the lower.

The effects of convection and latent heat of fusion would
play an important role on the mode of solidification of the

magma.

Finally, as a result of this study the following future research is recom-

mended ;
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()

To investigate the two dimensional analysis of upward magma
migration, the general formulation is recommended by intro-
ducing moving boundary conditions into the unsteady free
convection model.

The penalty finite element formulation devéloped herein can

be applied to the problems of flow in porous media.
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AFPENDIX I
DERIVATION OF THE GOVERNING EQUATION

1, Energy Equation

The relation between heat flux Q and temperature T is defined by

~

the Fourier law
T
Q= -K==

~

where x is a vector coordinate.

The general 3-D differential equation of heat conduction is de-

rived as follows . Let;

EI = net rate of heat entering by conduction into given element
EII = rate of energy generated in element
EIII = rate of increase of internal energy of element
EI can be expressed in mathematical form
9y

—> || & -——————%ian

Qx=quyAz Ax QX= -QT- X

i Qy = quxAz
0 ' > X

Figure I-1 Symbols for the Derivation of the Heat-Conduction Equation
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The rate of heat flow Q, in the x direction is given by:

Qx =q . Ay . Az at x
3Qx
Qx+Ax Q + Ax at x+Ax

The net rate of heat flow in x direciion is

3q

S
Qx‘ Qx+Ax— ax Ax . AY L] Az

Similarly, the net rate of heat flow in y, z directions are

9q,, .
- §§L AxAyAz
aq,
- —SZ——AXAYAZ
31, 39, 99
_ X y z
Thus EI = S 3y + = ) Ax . Ay.. Az
EII = rate of energy generation = F{x,y,z,t).Ax . Ay . Az where G is
a generating heat per unit time, per unit volume,
EIII = rate of energy storage in the element = p . C . gz Ax . Ay . Az

where p is density, C is specific heat.

Thus from the point of view of energy balance, we obtain EI + EII = EIII‘

B aqy DT
- (= Bx —5- )+ R
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Therefore, using the Fourier law,

K.VT+6G= p.C;%

2, Continuity Equation

The continuity equation is the equation for the conservation of
mass. If the continuity equation is explained in words, the sum of the
net rat.2 of mass flow entering element in the x direction and the net rate

of mass flow entering the element in the y direction equals zero.

Y o,
M+ —5? Ay
4
)
| oM,
1 ’ M.+ Ax
' x T ox
M, = pulylz | N WA}' 3
A
f]
]
! Ax
b-; -— wn o - e ’ b o o - ——
X . 4
1
M = pvAxAz
y
0 X

Figure I-2 Symbols for the Derivation of the Continuity Equation

88



The mass flow entering the element in the x direction, Fx may be expressed
as

Fx = Mx - Mx+Ax

where Mx =p., U, Ay . Az, Vis the velocity in x direction and

oM
Mx+Ax = Mx + '8T © Ax
oM -
= XA, . _ 8oV
Thus, Fx = 5% Ax = = =~ Ax , Ay . Az

Simiiarly, the mass flow entering the element in the y direction,Fy, may be
expressed as

= V)
Fy 5y Ax + Ay . Az

Requiring that the rum of the mass flows by zero gives

Fx+Fy=O
a(pu) . 3(pV) _
or X + 3y =0

3, The Momentum Equations

The momentum equations, or the Navier-Stokes equations, are de-

rived from Newton's second law.
F=M.a

where F: the external forqes
M: mass |

a: acceleration
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The external forces in a flow field consist of the body force and the sur-
face force., In this appendix the time dependent two dimensional momentum

equations are derived as follows:

M=p . Ax . Ay . Az \

The body forces are given as:

Fx . Ak . Ay . Az in x direction

Fy . Mx . Ay . Az in y direction,

acy
[oy + - Ay]
_—

Y
T
yX
[T)’X + —57- AX]
O'x(‘—] l
Ay BTxy
1 [ty * o )
Ax T 3
R — - -~ y [0 + -—,a% Ax]
/F T)’XE
Oy
o X

Figure I-3 A Schematic Representation of the Distribution of the Stresses
for the Derivation of the Momentum Equations
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The surface forces have two components depending on the acting direction;

normal stress, shear stress.

The surface forces are;

O ., T . at x in x direction

loj aT
0 +—X_ T 4+ XX
X ox >  yx 9x

at x + Ax in x direction

Thus, net surface forces in x direction is given:

Box aryx
C—§§'+-—§;—9Ax o« Ay . Az

It is necessary to note that the first subscript indicates the axis to
which the surface is perpendicular and the second subscript indicates the
direction of the shear stress. Similarly net surface forces in y direc-

tion are given:

a0 aT
Y L XY
( 5y + X JAX . Ay . Az

The next step in the development is to introduce the relationship between

the stresses and the velocity components

= pGij + Zuei.

O..
) J

for the Newtonian flow.
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ov. )

V.
1 i j - . ps - s
ij E-(§§; + axi), aij = 0 for i#j 6ij = 1 for i=j.

where e

Therefore

su
Opx = P+ W%

v
= =0 + 21 =—
cyy ) v 3y

su . ov."
= = — o S—
Tyx Txy u (ay ox

We can rewrite net surface forces in y directions

2
oP v 9 9u ., v
[-—a—y—+2u~a—y—2+u-a—x—('a—y+'§'x-)]Ax.Ay.Az

Thus the momentum equation is given in y direction

2
Dv _ ap oV 9 ,du , dv
°ﬁ?-Fy"a7*2“;;z'*"§;(w*s;)

In the free convection where the density changes due to temperature vari-

ztion, the effect of density variation should be considered.
p=p,* Ap

where P, is a reference density, Ap density variation. If we express the

gravitational acceleration by a potential

g=-Vd vwhere g = -gy, y is taken upward
Also, the relationship between Ap and T under Boussinesq approximation can be
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expressed as follows;
Ap="B.p°-AT
where B is the coefficient of expansion of the fluid, Thus, body force is

introduced to allow for the effect of gravity.

Using the above three quations, we obtain;

F =g
= (p, + A0)E
= ~(p, *+ bp)V®
= -V(p®) - o, « B AT . ¢

Then, if we included Apo¢ into the pressure term,

p'=P+p°<b

The mouentum equation is given under the Boussinesq assumption

2
Dv _ _ 9p' , . 3V _
pO ot " dy +].l-a?- P.g B . AT

The pressure change is negligible if the pressure does not impose expli-

citly in the boundary conditions (Tritton, 1977).

Thus, we can rewrite the momentum equation in y direction as follows:
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APPENDIX II

NUMERICAL INTEGRATION

The finite element method usuzlly introduces Gaussian Quadrature,
one type of numerical integration, to describe curved boundaries more ac-
curately. In the penalty method the numerical integration is necessary
to obtain the reduced integration. The transformation from the Cartesian
coordinates (x,y) to the curvilinear coordinates (£,n) is needed to eval-
uvate the coefficient matrix over the complicated domain.

If the unknown variable T and the shape of the elements x and y
are approximated by the interpolation functions expressed in terms of the

curvilinear coordinates (£,n), we have
T = T,N; (E,n) Y
X = XN; (€,m), Y = YN, (E,n) (2)
where Ni denotes the interpolation function corresponding to node i,

Furthermore, the interpolation function Ni(E,n) can be described in terms

of the Cartesian components (X,y) using the chain rule of differentiation.

NE XE Yg Nx
- - (3)
Nn Xn Yn Ny
9

5



Ny Nh

Xg Yg
Xy ()
n n
Substituting equations 2 into ear—g gmpute the Jacobian ma-
crix =
lo|
Therefore
K..
1)

(7

IO G(ti, T,
i j :
where Ti, Tj are Gaussian points

wi, wj are Gaussian weight factors,
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= a1 @

(5)

td
<

Substituting equations 2 into equation 5, we can compute the Jacobian ma-

trix
L R ¢ XN, .N.
lo]-]° ° Hilie Ml
X Y IXN; o TGN o
¥ N
N o L ] [ ] N
_ X2 Y2 1,¢ n,&
) * ) N L4 e @ N
X Y 1,g n,n
n n
Therefore
1 /1
K., =\N, N. dxdy= N. N,
ij g i,0,x 9% e 1,ENJ’ndet[J] d&dn
i j 1)

where Ti, Tj are Gaussian points

wi, wj are Gaussian weight factors.
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APPENDIX III
A COMPARISON OF FINITE DIFFERENCE METHOD AND FINITE
ELEMENT METHOD ‘FOR UNSTEADY FORCED CONVECTION MODEL

In this appendix the validity of the finite element model is checked
by comparing the finite difference sciutions* for unsteady forced convection
with finite element results.

In forced convection where mass transfer of fluid takes place as a
result of an externally applied force, the velocity is unaffected by the
temperature field.

The problem under consideration is illustrated in Figure III-1,
Initially, the walls are fixed and the dimensionless temperature is zero
at all points, For time greater than zero the top wall assures a temper-
ature of 1.0 and moves in a positive x direction with a velocity of 1,0,
The physical parameters used for the present model such as density, vis-
cosity, gravitational acceleration, and thermal diffusivity take the value
of a unit,

The domain of the present problem is discretized using a 10 * 10
regular sized mech of quadrilateral elements to match the discre:ization

employed by the finite difference model,

* .
The finite difference solutions is obtained from personal communication
with Ahern on May, 1981,
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The numerical results of the finite difference model and the finite
element model is a2fter the dimensioniess time 0.15 § 0.25 are illustrated
in Table II1I-1, III-2, In addition, the temperature and stream line dis-
tribution, which were obtained from both models after the ﬁimensionless
time 0.25, are plotted in Figure III-2, Figure III-3, Figure I1I-4, Figure
III-5, by using the SYSMAP plotting procedure for visual comparison. The

comparison shows that the results from both models agree.

98



v=1.0, V=0.0, T=1.0

111 121
100
U=0.0 U=
v=0.0 V=
T=0.0 T=
1 2 3
1 11

U=0.0, v=0.0, T=0.0

Figure III-1.Boundary and intial condtion,and mesh distribution of
the forced convection model.( Element and node numbering
from left to right,from down to up.)
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Figure 1II-3, Temperature distribution for finite element model after
dimensionless time 0,25,
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Figure III-4, Streamlines for finite difference model aftgr dimensionless

time 0.25.
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Figure III-5, Streamlines for finite element model after dimensionless
time 0.25.

-103



Table III-1, Numerical results after dimensjionless time 0,15 and 0,25 for finite
difference model, ( Numbering from left to right,from up to down),

TIME = A, 150 . - S, — ——
TEMRPERATURE (+Y BoWjrdARD)
n,n00N 0,00n n,noo0 0,000 n,N0n n, NN o0 o 000 n.a00 0_nnn gl
0,000 0,nN09 n,n17 n,noy n,.02q n N2y N 128 n, G?q Lo nhmr n, ona 0,000
n,n00 o,n2n n,037 0,081 0,060 n,N6x% 1 140 n,051 n_037 0,020 6,000
n,000 0,N3% n, 063 0,085 0,099 n,104 n 099 n, 085 0,065 0,_0zx 0,000
0,000 r,n51 n, 009G 0,130 0,151 n,15n r 151 0,130 0,096 n,9%51 0,000
0,000 0,077 0,143 0,191 0,227 . 0,230 7 "1___n 191 __ 0 143 n n77 n,noon
n,o000 0,115 n_,209 0,275 0,314 n.32n ¢ 513 0,275 6,209 0,118 0,000
0,000 0,174 0,305 0,389 0,435 _ N,450 __ ¢ 435 n,389 N3NS .. 0,174 0,000
n, 000 0,277 n 449 0,544 n,591 n,ANE 1591 n, o544 N, 449 n,277 0,000
0,000 0,87 277 N,7u9 n, 7834 n,79% v 74% 0,749 0,671_. _Nn,uR7 _0,000
0,500 1,000 1.0 1.00n 1,000 1.000 .000 1,000 1.000 1.00n0 0,500
L F".l_-'ICTH‘)'IT-'( et s !.,',;\-.3,“ T, = -
eoRn wenoRT LT oW Aaanr Land TEE0G T oleee oL0nn” 0o
N.000 -0in0n -fiagy  onimas onl06% -2neT - an3__-nl00z -ninni <0000 6o
d,0007 =0.0n DA LA lRAR A ATY TSALATA T L (g1l ens00A 0.6 -0t00i 07000
n.,000 w0 ,N03% -f‘.ﬂn‘) 0,017 D ) - Nag - 092 .1 '\17 .009 .n, 003 0.000
,N00 «0,00%5 =1,017 =0,008° =0,03%7 =-n, Thno T - ,di?“-& 620 <n_m7 38 0ng 0'053“—'
0.000 =-0,009 -OLD?G «J,03 wily 045 N I Y - ,08§ .n 0“5 _n.n,)" _0 nno 0.000
0,000 =0,013 =N.N37 =0,059 =0,073 =A.07h - 073 SA.059 -n.027 -n 014 0 000
0,000 =N.019 =0.048 <=0.073 «0."". =0.N07% . 048 =0, 073 -n.nua -_,,'n 9 0'000
0,000 0,026 <0,056 0,079 0,092 .n,fap “KH; BN Per 0. 19,0000
L. - a»
0,000 0,000 -N.050 .N.0a» ; ) - e <074 0,000
° Y _=lal 2 A7 -n,f) v -0 N70 . nAR -l 06?_ -n_.ﬂr\ﬂ -0 non 0.nnp
‘0,000 0,000 0,000 0,000 0,000 n.000 r.nno 8.000 0,000 a.000 " osnnn
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Table III-2. Numerical results after dimensionless time 0,25
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