
RESEARCH ARTICLE

NUCLEAR FACTOR Y, Subunit C (NF-YC)
Transcription Factors Are Positive Regulators
of Photomorphogenesis in Arabidopsis
thaliana
Zachary A. Myers1☯, Roderick W. Kumimoto1☯¤a, Chamindika L. Siriwardana1, Krystal

K. Gayler1, Jan R. Risinger2¤b, Daniela Pezzetta1¤c, Ben F. Holt III1*

1 Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States

of America, 2 Bioo Scientific, Austin, Texas, United States of America

☯ These authors contributed equally to this work.

¤a Current Address: Department of Plant Biology, University of California Davis, Davis, California, United

States of America

¤b Current Address: Invitae Corporation, San Francisco, California, United States of America

¤c Current Address: Department of Applied Genetics, Freie Universität, Berlin, Germany

* benholt@ou.edu

Abstract
Recent reports suggest that NF-Y transcription factors are positive regulators of skotomor-

phogenesis in Arabidopsis thaliana. Three NF-YC genes (NF-YC3, NF-YC4, and NF-YC9)

are known to have overlapping functions in photoperiod dependent flowering and previous

studies demonstrated that they interact with basic leucine zipper (bZIP) transcription fac-

tors. This included ELONGATED HYPOCOTYL 5 (HY5), which has well-demonstrated

roles in photomorphogenesis. Similar to hy5 mutants, we report that nf-yc3 nf-yc4 nf-yc9 tri-

ple mutants failed to inhibit hypocotyl elongation in all tested light wavelengths. Surpris-

ingly, nf-yc3 nf-yc4 nf-yc9 hy5 mutants had synergistic defects in light perception,

suggesting that NF-Ys represent a parallel light signaling pathway. As with other photomor-

phogenic transcription factors, nf-yc3 nf-yc4 nf-yc9 triple mutants also partially suppressed

the short hypocotyl and dwarf rosette phenotypes of CONSTITUTIVE PHOTOMORPHO-

GENIC 1 (cop1) mutants. Thus, our data strongly suggest that NF-Y transcription factors

have important roles as positive regulators of photomorphogenesis, and in conjunction with

other recent reports, implies that the NF-Y are multifaceted regulators of early seedling

development.

Author Summary

Light perception is critically important for the fitness of plants in both natural and agricul-
tural settings. Plants not only use light for photosynthesis, but also as a cue for proper
development. As a seedling emerges from soil it must determine the light environment
and adopt an appropriate growth habit. When blue and red wavelengths are the dominant
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sources of light, plants will undergo photomorphogenesis. Photomorphogenesis describes
a number of developmental responses initiated by light in a seedling, and includes short-
ened stems and establishing the ability to photosynthesize. The genes regulating photo-
morphogenesis have been studied extensively, but a complete picture remains elusive.
Here we describe the finding that NUCLEAR FACTOR-Y (NF-Y) genes are positive regu-
lators of photomorphogenesis—i.e., in plants where NF-Y genes are mutated, they display
some characteristics of dark grown plants, even though they are in the light. Our data sug-
gests that the roles of NF-Y genes in light perception do not fit in easily with those of other
describedpathways. Thus, studying these genes promises to help develop a more complete
picture of how light drives plant development.

Introduction

Plants utilizemultiple properties of light, such as intensity, quality, and direction, to guide
growth and development [1]. The effects of light on plant development are exemplified by the
transition of seedlings from dark growth (where they exhibit skotomorphogenesis) to light
growth (photomorphogenesis). This transition is crucial for plant viability and is characterized
by the inhibition of hypocotyl elongation, the expansion of cotyledons, and the accumulation
of photosynthetic pigments. In Arabidopsis thaliana, several different classes of photoreceptors
mediate light perception, including the phytochromes, which perceive red and far red light,
cryptochromes, phototropins, and LOV (Light, Oxygen, or Voltage) domain proteins, which
are blue light receptors, and UV RESISTANCE LOCUS 8, the most-studiedmorphogenic pho-
toreceptor for UV-B light [2–6]. Of these receptors, the photomorphogenic transition is pri-
marily controlled through the actions of the phytochromes and the cryptochromes [7].
Through their combined actions, signaling cascades are initiated that significantlymodify the
expression of at least two thousand genes in Arabidopsis [8].

While sustained photomorphogenic growth requires the actions of multiple phytochromes
and cryptochromes, the initial signaling cascade is established primarily through phyA, which
accumulates to high levels in darkness [9]. Upon activation by far red light, phyA is imported
into the nucleus through interactions with FAR RED ELONGATED HYPOCOTYL1 (FHY1)
and FHY1-LIKE (FHL) [10]. The physical interaction of phyA with FHY1/FHL is also neces-
sary for phyA to bind further downstream transcription factors that regulate light signaling
[11, 12]. The function of phyA, as well as the photomorphogenic downstream transcription
factors, is modulated at multiple levels, including through phyA-mediated protein phosphory-
lation and targeted, proteasome-mediated degradation. The ubiquitination and targeting of
many photomorphogenic proteins for proteasome degradation is regulated through the actions
of CONSTITUTIVEPHOTOMORPHOGENESIS 1 (COP1). In the light and in response to
the initiation of phytochrome-mediated signal transduction, COP1 protein is excluded from
the nucleus, allowing the accumulation of photomorphogenesis-promoting transcription fac-
tors [13–15].

One of the most significant targets of COP1 is HY5, a relatively small bZIP transcription
factor that regulates photomorphogenesis by activating a large number of further downstream
transcription factors [16–18]. HY5 has also been identified as an integrator of pathways not
directly related to light signaling, including hormone signaling (abscisic acid (ABA) and brassi-
nosteroids), apoptosis, and temperature acclimation [19–22]. Unlike many other genes
involved in the light signaling cascade, the phenotypes of hy5 mutants are not wavelength-spe-
cific [18, 23]. Other COP1 targets, including the bHLH transcription factor LONG
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HYPOCOTYLIN FAR-RED 1 (HFR1) and the MYB transcription factor LONG AFTER
FAR-RED LIGHT 1 (LAF1), function in a wavelength-dependentmanner; while both hfr1 and
laf1 mutants have reduced responses to far red light, only hfr1 has a visible phenotype in blue
light, and neither mutant exhibits phenotypes in red or white light [24–28]. Further elucidation
of the light-signaling cascade has revealed a handful of other transcription factors whose func-
tion is necessary for normal photomorphogenic growth and are also regulated by COP1,
including the B-box (BBX) containing proteins SALT TOLERANCEHOMOLOG 2 (STH2/
BBX21) and LIGHT REGULATED ZINC FINGER1/STH3/BBX22, the bHLH proteins
PHYTOCHROMERAPIDLY REGULATED 1 (PAR1) and PAR2, and theMutator transpo-
sase-like FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED
RESPONSE 1 (FAR1) [29–32]. Thus, light perception, and the associated photomorphogenic
signaling cascades, converges at a small suite of transcription factors just downstream of a
COP1-mediated hub. From these terminal transcription factors it appears that the signal cas-
cade immediately fans out to thousands of light-regulated genes [33, 34].

While significant progress has beenmade identifying and characterizing transcription fac-
tors functioning at this COP1-mediated hub, there are likely to be undiscovered pieces in this
puzzle. No combination of downstream transcription factor mutants that can phenocopy the
phyA mutant has been identified—e.g.,when grown in far red light, the hypocotyls of hy5 hfr1
laf1 triple mutants are ~60% as long as the phyA mutant [35]. While this triple mutant has sig-
nificantly longer hypocotyls than any of the single mutants or double mutant combinations,
residual far red light perception is clearly still present. This is in contrast to fhy1 fhl double
mutants which appear phenotypically identical to both phyA mutants and dark grown plants
for hypocotyl elongation [10, 36, 37]. One explanation is that the downstream transcription
factor components are already known, but the right combination of mutations has yet to be
assembled in a single genotype. For example, as with hy5 hfr1 laf1 plants, hy5 sth2 sth3 mutants
are also additively defective in light perception [30], but no hy5 hfr1 laf1 sth2 sth3 higher order
mutant has been reported. Alternatively, additional transcription factor components may
remain unknown. Following two recent publications [38, 39], we report here additional strong
evidence for the involvement of NUCLEAR FACTOR Y (NF-Y) transcription factors in light
perception.

NF-Y transcription factors consist of three unique proteins, called NF-YA, NF-YB, and
NF-YC, and each is encoded by a small family of ~10 genes in Arabidopsis (this expansion is
mirrored in other sequenced plant species, including monocots and dicots; [40, 41]). None of
the NF-Y subunits is thought to regulate transcription independently; instead, the mature
NF-Y transcription factor is composed of one of each subunit type and all three subunits con-
tribute to DNA binding. NF-YB and NF-YC initially form a dimer in the cytoplasm that trans-
locates to the nucleus where a trimer is formed with NF-YA [42–46]. Thus, regulation of any
one NF-Y subunit can alter the function of the entire complex. Following nuclear assembly of
the mature complex, NF-Ys bind DNA at CCAAT-containing cis regulatory elements and are
typically positive regulators of gene expression [47]. Although the generalized characterization
of NF-Ys (largely from animal and yeast systems) describes them as binding DNA in the proxi-
mal regions of promoters, recent data suggests that they also bind more distal regions of pro-
moters to regulate gene expression [48, 49]. In the animal lineage, each NF-Y is usually
encoded by only one or two genes and the functional consequences of expandedNF-Y gene
families in the plant lineage remains only modestly explored. Nevertheless, much progress has
beenmade in recent years describing the roles of individual NF-Y subunits in the control of
specific processes, especially the control of photoperiod-dependent flowering through interac-
tions with CONSTANS (CO) [50–52], various functions in the development of nitrogen-fixing
root nodules in legume species [53–55], and abscisic acid signaling during germination and
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early seedling establishment, often mediated by interactions with bZIP transcription factors
[38, 39, 56–58].

Relevant to NF-Y roles in photomorphogenesis and light perception, little is currently
known. However, NF-YA5 and NF-YB9 were previously implicated in regulating blue light-
dependent transcript accumulation for LIGHT-HARVESTING CHLOROPHYL A/B BIND-
ING PROTEIN [59] and NF-Y complexes were also shown to bind and regulate the expression
of the spinach photosynthetic gene AtpC [60]. Further, the promoters of a number of light sig-
naling components were bound by LEC1/NF-YB9 (LEAFYCOTYLEDON1 [61, 62]) in chro-
matin immunoprecipitation experiments, including light harvesting and chlorophyll binding
proteins (e.g., LHCA1 and LHCB5) and transcriptional regulators of light perception (e.g.,
HY5, HY5 HOMOLOG (HYH), and HFR1) [38]. Finally, alterations in hypocotyl elongation
resulting from bothNF-YB loss of function and inducible overexpression have been observed
[38, 63], including the recent report that LEC1/NF-YB9 regulates skotomorphogenesis through
physical interaction with PHYTOCHROME-INTERACTING FACTOR 4 [39].

Previous work in our lab identified physical interactions betweenNF-YC and HY5, as well
as other bZIP proteins [57]. Here we extend these initial observations to show that these same
NF-YC proteins (NF-YC3, 4, and 9) are broad spectrumregulators of light perception. Interest-
ingly, in the same way that HY5, HFR1, and LAF1 can physically interact, but still appear to
signal through independent pathways, hy5 nf-yc mutants also show additive—even synergistic
—light perception defects. This manuscript characterizes several photomorphogenesis-related
phenotypes of nf-yc mutants and proposes that NF-Y complexes constitute a novel component
of the light signaling cascade, functioning at least partially independent of HY5, HFR1, and
LAF1.We further demonstrate that nf-yc mutants can partially suppress several cop1 mutant
phenotypes and that proteasome regulation of NF-Y complexes during light perception is miti-
gated through NF-YA subunits. Similar to the multiple regulatory roles of HY5 in light percep-
tion and abscisic acid (ABA) signaling, our cumulative research on these three NF-Y proteins
demonstrates that they have essential roles in photoperiod-dependent flowering, ABA percep-
tion, and light perception.

Results

Inhibition of hypocotyl elongation in short day, white light, and several

individual light wavelengths, requires NF-YC

We initially observed slightly elongated hypocotyls in plate grown nf-yc3-1 nf-yc4-1 nf-yc9-1
triple mutants (hereafter nf-yc triple, [51]). These visual differences primarily appeared in
plants grown for shorter day lengths. To quantify these observeddifferences, we compared nf-
yc triplemutants to their parental Columbia (Col-0) ecotype under continuous white light
(cWL), short day (SD, 8hrs light/16hrs dark), and continuous dark (cD) conditions (Fig 1A–
1D). While cWL and cD grown nf-yc triplemutants were not significantly different from Col-0,
SD grown seedlings had moderately elongated hypocotyls (~50–60% longer, Fig 1B and 1C).
To de-convolute the contributions of individualNF-YC genes, we additionally examined hypo-
cotyl elongation for the six possible single and double mutants from the three mutant alleles.
Modest differences were observed for only the nf-yc3 nf-yc9 double mutant (Fig 1B), although
we note that this mutant phenotype was inconsistent in additional experiments. Overall, the
data suggested that NF-YC3, NF-YC4, and NF-YC9 were collectively necessary for the suppres-
sion of hypocotyl elongation. Supporting the genetic data showing overlapping functions, all
three genes were strongly expressed in the hypocotyl with peak expression in the vascular col-
umn (S1 Fig).
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To determine whether the hypocotyl elongation defects were wavelength specific, we addi-
tionally examined the same suite of mutants grown in continuous blue (cB), far red (cFR), and
red (cR) light conditions (Fig 2A–2C). In cFR conditions, no significant differences were
observed.However, in cR and cB light the nf-yc triplemutants were ~50% longer than Col-0.
Additionally, significant hypocotyl elongation defects were observed in some single and double
mutants (ranging from ~18–29% longer that Col-0). As with the SD white light measurements,
differences in the single and double mutants in cB and cR light were less robust between
repeated experiments than for the nf-yc triple mutants. Interestingly, longer hypocotyls were
always associated with the presence of the nf-yc9mutant allele—somewhat unexpected as the
nf-yc3-1 and nf-yc4-1 alleles are strong knockdowns while the nf-yc9-1 allele retains ~20–25%
normal expression levels (S2 Fig and [51]). Collectively, these data demonstrate that NF-YCs
are broad spectrumregulators of light perception.

FLIM-FRET analysis confirms the HY5 by NF-YC9 physical interaction

NF-Y complexes are known to associate with bZIP transcription factors in both plants and
animals [46, 64–66]. Relevant to light perception, we previously reported a modest yeast
two-hybrid (Y2H) interaction betweenNF-YC4 and NF-YC9 with HY5 and a non-interac-
tion with NF-YC3, although we assumed the inability to detect an NF-YC3 interaction was
likely due to its autoactivation problems in the Y2H system [57]. To further confirm this

Fig 1. NF-YC3, 4, and 9 contribute redundantly to suppression of hypocotyl elongation in white light.

Hypocotyl lengths are shown for plants grown for five days on B5 media in A) cWL, B-C) SD, or D) cD

conditions. No differences were detected at earlier time points in cD-grown plants. Statistically significant

differences (or lack thereof) are represented by lettering above bars (error bars represent 95% confidence

intervals). Statistical differences were determined by ANOVA (P<0.01) and subsequent multiple

comparisons by either Tukey’s (cWL) or Dunnett’s (SD, cD) procedures. Scale bar in C) represents 2mm.

doi:10.1371/journal.pgen.1006333.g001
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Fig 2. NF-YC3, 4, and 9 are necessary for suppression of hypocotyl elongation in both cB and cR

light. Hypocotyl lengths are shown for five day old plants grown on B5 media in A) cB (38μmol m-2 s-1), B)

cFR (5μmol m-2 s-1), and C) cR (6μmol m-2 s-1). Statistically significant differences between groups (or lack

thereof) are represented by lettering above bars (error bars represent 95% confidence intervals). Statistical

differences were determined by standard ANOVA (p<0.01) when variances were not significantly different

(cFR and cR) and Kruskal-Wallis ANOVA (non-parametric test, p<0.05) when variances were unequal (cB).

Subsequent multiple comparisons were performed by either Tukey’s (cFR, cR) or Dunn’s (cB) procedures,

respectively.

doi:10.1371/journal.pgen.1006333.g002
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Y2H data, we performed transient interaction assays in Nicotiana benthamiana (Fig 3A–
3C). We utilized fluorescence lifetime imaging (FLIM) and fluorescence recovery after
photobleaching (FRAP) to detect fluorescence resonance energy transfer (FRET) between
epitope-taggedNF-YC and HY5 proteins. In these experiments, HY5 or NF-YB2 (positive

Fig 3. FRET-FLIM analysis shows a strong NF-YC9 by HY5 physical interaction. FRET experiments

were conducted in tobacco leaves through transient 35S-driven overexpression of NF-YCs tagged with

mCer3 and HY5 or NF-YB2 tagged with YFP. A) Nuclei expressing both mCer3 and YFP constructs were

assayed for FRET through both FRAP and FLIM. B) A FRAP curve representative of a positive FRET result

between two known interacting proteins, NF-YB2 and NF-YC9. Fluorescence intensity was calculated

relative to the pre-photobleached intensity of each fluorescent protein. Yellow bars represent the timing of

photobleaching events. C) FLIM was employed to detect FRET through lifetime measurements before and

after acceptor photobleaching (FRAP) within the same nucleus. Each point is an independent combination of

mCer3- and YFP-tagged proteins, and represents the shift in fluorescent lifetime elicited by acceptor

photobleaching. Scale bar in A) represents 5μm. Error bars in B-C) represent 95% confidence intervals with

an n� 3.

doi:10.1371/journal.pgen.1006333.g003
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control for interaction with NF-YC) were translationally fused to enhanced yellow fluores-
cent protein (YFP, [67]) and assayed for FRET against NF-YC3, 4, and 9 fused to modified
cerulean 3 (mCer3, [68]). By comparing fluorescence lifetimes of the donor (mCer3), pre-
and post-photobleaching of the acceptor (YFP), we could infer whether or not chosen pro-
tein pairs were closely physically associated. Direct physical interaction between proteins
was indicated by a significant increase in the lifetime of mCer3 upon YFP photobleaching
[69]. Fluorescence recovery of both mCer3 and YFP was monitored during acceptor photo-
bleaching, and was used as an internal control for balancing the destruction of YFP signal
and the preservation of mCer3 signal during experimentation (Fig 3B). After identifying a
proper photobleaching regimen, in pairs of known interacting proteins we observed that
mCer3 signal would increase over the course of the initial photobleaching event, but not over
subsequent treatments (Fig 3B). This was consistent with what is expectedwhen observing
FRET, as a significant majority of the acceptor (YFP) is destroyed in the initial photobleach-
ing event, and further photobleaching events have a reduced effect on the already diminished
pool of YFP.

As a positive interaction control, we initially tested NF-YB2:YFP by NF-YC3, 4, and 9:
mCer3 and were able to consistently detect significantly increasedmCer3 fluorescence lifetimes
after YFP photobleaching (Fig 3C). This is consistent with previous publications showing
strong Y2H and in vivoNF-YB by NF-YC interactions [51, 52, 70–72]. As a negative control
for each interaction test, we demonstrated that when NF-YB2 lacked the YFP fusion, mCer3
lifetimes were not altered after a photobleaching treatment (Fig 3C). Substituting HY5:YFP for
NF-YB2:YFP demonstrated that NF-YC9 could consistently physically interact with HY5;
however, no FLIM-FRET interaction was detected betweenNF-YC3 or NF-YC4 and HY5.
Thus, it remains possible that HY5 only interacts with a subset of the light perception-regulat-
ing NF-YC proteins describedhere (see Discussion).

NF-YC and HY5 genetically interact to suppress hypocotyl elongation in

white light

With the knowledge that at least some NF-YCs can physically interact with HY5, we generated
nf-yc triple hy5 mutants and examined them for hypocotyl elongation phenotypes in both SD
and cWL (Fig 4A–4C). Surprisingly, in SD conditions the nf-yc triple hy5 mutants were con-
siderably longer than either parental mutant line, suggesting that the previously observed
NF-YC roles in hypocotyl elongation were at least partially independent of HY5. Even more
strikingwas the strongly synergistic increase in hypocotyl elongation in cWL in the nf-yc triple
hy5 mutants over both mutant parents (Fig 4C). Compared to parental Col-0, dark grown
plants showed no differences in hypocotyl elongation for any of the mutant genotypes (Fig
4D). Rescue assays confirmed that each gene (NF-YC3, 4, 9 and HY5) was capable of signifi-
cantly suppressing the nf-yc triple hy5 elongated hypocotyl phenotype (S3 Fig). Collectively,
these data demonstrated that the presence of HY5masked the effects of the nf-yc triplemutant
on hypocotyl elongation, especially in cWL conditions. These results are not trivially
explained by cross regulation betweenNF-YC and HY5 as their transcription levels are only
altered in their own mutant backgrounds (S2 Fig). Finally, because some commercial white
light sources contain contaminating UV radiation, we additionally examined hypocotyl
lengths of cWL-grown plants grown under Mylar to filter out UV light. In accordance with
previous work, hy5 mutants were longer in the absence of UV [73]; however, no difference
was detected in the nf-yc triplemutant, and while not statistically significantly different, a
minor difference observed in nf-yc triple hy5 mutants can be completely accounted for by the
loss of HY5 (S4 Fig).

NF-YC Roles in Light Perception
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NF-YC3, 4, and 9 and HY5 have both shared and independent

regulatory targets

To further dissect the genetic relationship betweenNF-YC and HY5, we compared the tran-
scriptome profiles of seven day old, cWL grown nf-yc triple, hy5, and nf-yc triple hy5 mutant
seedlings using RNA Sequencing (RNA-Seq, NCBI GEO accession GSE81837).

When compared to wild type, hy5 mutants had 1,368 up-regulated and 941 down-regulated
genes, whereas analysis of differentially expressed genes in the nf-yc triplemutant showed a
smaller set of 645 up-regulated genes and 493 down-regulated genes (at least 1.5 fold, adjusted
p< 0.05, S1 Table). Direct comparison of the hy5 and nf-yc triple down-regulated genes
showed substantial overlap, with approximately 40% of the nf-yc triple down-regulated genes
being contained in the hy5 data set (Fig 5A). Gene-ontology (GO) analysis for genes down-reg-
ulated in both the nf-yc triple and hy5 mutants identified enrichment in many categories
involved in photomorphogenesis and early seedling development, including response to light
stimulus and pigment biosynthetic processes (S2 Table). Comparison between up-regulated
gene sets yielded similar results with ~50% shared between the nf-yc triple and hy5 (Fig 5B).
GO enrichment analyses of genes up-regulated in both nf-yc triple and hy5 yielded categories

Fig 4. Light perception is synergistically defective in nf-yc triple hy5 mutants. Hypocotyl lengths are

shown for five day old plants grown on B5 media in A-B) SD, C) cWL, and D) cD. Statistically significant

differences were determined and described in Fig 2. Scale bar in B) represents 2mm.

doi:10.1371/journal.pgen.1006333.g004
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in cellular stress responses and cellular responses to hormones, including ethylene, salicylic
acid, and jasmonic acid (S3 Table).

To further investigate the regulatory relationship betweenHY5 and the NF-YCs, we ana-
lyzed genes that were either significantly up-regulated or down-regulated in nf-yc triple hy5
mutants (S1 Table). These data sets were then sub-divided into four groups based on the level
of differential gene expression in the nf-yc triple hy5 mutant relative to both nf-yc triple and
hy5: Group I)Genes differentially expressed more in the nf-yc triple hy5 mutant than both nf-
yc triple and hy5; Groups II-III)Genes differentially expressedmore in the nf-yc triple hy5
mutant compared only to the nf-yc triple (II) or hy5 (III); andGroup IV)Genes not differen-
tially expressed compared to either the nf-yc triple or hy5 (i.e., still differentially expressed in
the quadruple mutant relative to wild type, but no change from nf-yc triple and hy5 (Fig 5C
and 5D)). GO enrichment analyses of these four groups represent putative biological processes
that NF-YCs and HY5 regulate cooperatively (genes more differentially expressed in nf-yc triple
hy5 than parental lines) and independently (genes not differentially expressed in nf-yc triple
hy5 relative to nf-yc triple and/or hy5 (S2 and S3 Tables)).

Fig 5. RNA-Seq analysis identified both shared and independently regulated targets for NF-YCs and

HY5. Overlap between genes significantly A) down-regulated or B) up-regulated at least 1.5-fold in the nf-yc

triple, hy5, and nf-yc triple hy5 backgrounds, relative to Col-0. Genes significantly differentially expressed in

all three genotypes were then broken into regulatory groups according to the level of C) down-regulation or

D) up-regulation in the nf-yc triple hy5 mutant relative to both nf-yc triple and hy5.

doi:10.1371/journal.pgen.1006333.g005
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Analysis of genes significantlymore down-regulated in the nf-yc triple hy5 mutant (relative
to its parental genotypes) identified several over-represented categories, including flavonoid
biosynthesis and polyol metabolic processes (S2 Table). Among genes up-regulated to a similar
level in the nf-yc triple hy5, nf-yc triple, and hy5 data sets, and consistent with the synergistic
hypocotyl phenotype of the nf-yc triple hy5 mutant, was a significant enrichment for genes
involved in cell wall organization, cell wall biogenesis, and cell wall macromoleculemetabolic
processes (S3 Table). Taken together, these data identify putative targets and biological pro-
cesses regulated both cooperatively and independently by NF-YCs and HY5, solidifying the
existence of a complex functional relationship.

Longer hypocotyls in nf-yc triple hy5 mutants is largely a function of

greatly increased cell elongation

Previous research established that the elongated hypocotyls in hy5 mutants are directly related
to increased epidermal cell length [18]; therefore, we additionally examined individual files of
epidermal cells along the hypocotyls of nf-yc triple hy5 mutants for total cell number and mean
cell length (Fig 6A–6C). The mean length of individual epidermal cells in hy5 (82μm) was
~90% greater than Col-0 (43μm), while cells in the nf-yc triplemutant measured only ~15%
longer than Col-0. Reflecting the synergistic hypocotyl elongation phenotypes of nf-yc triple
hy5 mutants, the epidermal cells of the quadruple mutant (158μm) were ~270% longer than
those measured in Col-0. Total epidermal cells in the quadruple mutant were also increased
>60% compared to Col-0. Therefore, the very long hypocotyls of nf-yc triple hy5 mutants can
be explained by a combination of comparatively modest increases in cell count and highly
increased cell elongation.

NF-YC hypocotyl elongation phenotypes in monochromatic light are

additive with HY5 and do not completely overlap with those of HFR1 and

LAF1

HY5 regulates photomorphogenesis regardless of wavelength, whereas HFR1 and LAF1 are
more specific to FR light responses [24–28]. To better compare the spectrumof nf-yc mutant
defects to these other transcription factors, we first examined both the nf-yc triple and nf-yc tri-
ple hy5 lines in cB, cFR, and cR over a gradient of light intensities (Fig 7A–7C). Under all but
the lowest cB fluence rates, the nf-yc triple hy5 mutants had significantly longer hypocotyls
than all other lines (Fig 7A). Considering our previous observation that nf-yc triple light per-
ception defects were only apparent in SD conditions (Fig 1B), it was somewhat surprising to
find that nf-yc triple hy5 defects in cB were most pronounced at the highest light intensities
(Fig 7A).

The nf-yc triple hy5 mutants were significantly longer than their nf-yc triple and hy5 parental
lines under all cFR conditions (Fig 7B). One possible cause for defects in FR light perception
could be differential expression ofHY5,HFR1, or LAF1 in nf-ycmutants—i.e., NF-Y complexes
could control the expression of these genes. S2 Fig shows that HY5 is not differentially
expressed in an nf-yc triple background in cWL and we additionally examined the expression
ofHY5,HFR1, and LAF1 in cFR grown plants. Consistent with previous reports [35, 74], mod-
est differences inHY5,HFR1, and LAF1were either insignificant or not reproducible in
repeated expression analyses in the various mutant backgrounds (Fig 7D). We conclude that
nf-yc mutant phenotypes are not likely related to simple changes in the expression of these
well-known regulators of light perception. Further, as discussed below, nf-yc triplemutants
appear to have a different spectrumof light defects than either hfr1 or laf1 mutants.
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Under low fluence rate cR and cFR, the nf-yc triplemutant alone had significantly longer
hypocotyls than Col-0, which is similar to hy5 (Fig 7B and 7C). However, hfr1 and laf1 are only
reported to have defects in cFR (hfr1 and laf1) and cB light (hfr1). To confirm these previous
reports with our experimental conditions, we directly compared hfr1 and laf1 to nf-y mutants
under low fluence rate cR (Fig 7E and 7F). As previously reported, hfr1 and laf1 appeared iden-
tical to wild type Col-0 plants, whereas the nf-yc triplemutants were consistently ~40% longer
than Col-0 and similar to hy5 mutants. We additionally compared the nf-yc triple to hfr1 and
laf1 in SD conditions (Fig 7G and 7H). As expected, the hfr1 and laf1mutants appeared pheno-
typically identical to Col-0, while the nf-yc triple, hy5, and nf-yc triple hy5 mutants were all sig-
nificantly longer. Collectively, our data suggests that NF-YCs regulate hypocotyl elongation via
an independent pathway(s) fromHY5, and at least partially independent of HFR1 and LAF1,
with broad roles in light perception at variable fluence rates.

Fig 6. Synergistically longer hypocotyls in nf-yc triple hy5 mutants are a function of moderately

more cells and greatly increased cell elongation. Single linear files of hypocotyl epidermal cells were both

A) counted and B) measured for mean length. Plant were grown in cWL and measurements were taken on

five day old plants. C) Example hypocotyls for each genotype near the cotyledon junction—blue color marks

a representative single cell in each genotype. Arrows point to typical epidermal cells for each genotype.

Scale bar = 100μm.

doi:10.1371/journal.pgen.1006333.g006
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Fig 7. nf-yc mutants have broad light perception defects that are at least partly independent of HY5

and do not completely overlap with those of HFR1 and LAF1. Fluence rate curves for hypocotyl lengths

are shown for five day old plants in A) cB, B) cFR, and C) cR light conditions (see symbols key in A). D)

qPCR of HFR1, LAF1,and HY5 in key genetic backgrounds. E-F) Quantification and images of typical

phenotypes for mutants grown in low fluence rate cR (4.8μmol m-2 s-1). Scale bar in F = 2mm. G-H)

Quantification and images of typical phenotypes for mutants grown in SD, white light conditions. Scale bar in

H = 2mm. Statistically significant differences were determined as described in Fig 2.

doi:10.1371/journal.pgen.1006333.g007
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Loss of NF-YC function partially suppresses cop1 mutant phenotypes

In the dark, HY5, HFR1, and LAF1 are all targeted for degradation by the proteasome in a
COP1-dependentmanner [28, 75, 76]. COP1 mutants (cop1) have short hypocotyls and other
photomorphogenic phenotypes even when grown in the dark, and these phenotypes are par-
tially suppressed in hy5 cop1, laf1 cop1, and hfr1 cop1 double mutants [75, 77, 78]. Therefore,
we examined if the nf-yc triplemutation could also suppress the short hypocotyl phenotype of
dark-grown cop1-4mutants. Similar to cop1 hy5, an nf-yc triple cop1mutant had ~80% longer
hypocotyls than the cop1 single mutant when grown in constant darkness (Fig 8A). Because
cop1-4mutants are known to have reduced rosette diameters (dwarf phenotype) and early
flowering [79], we further characterized these phenotypes in nf-yc triple cop1mutants. For
rosette diameter, the nf-yc triplemutant was once again able to partially suppress cop1 (Fig 8B).
One possibility is that this suppression is simply a function of nf-yc triplemutants being late
flowering—i.e., because they are later flowering, the rosettes have time to achieve a greater
diameter prior to the phase change to reproductive growth. However, a control cross between
cop1 and an even later flowering constans mutant (the alternatively named co-sail or co-9 allele
[80]) had no impact on rosette diameter when crossed to cop1-4. This suggests that nf-yc loss

Fig 8. Multiple cop1-4 mutant phenotypes are partially dependent on NF-YC genes. Partial

suppression of cop1 mutant phenotypes are quantified for A) dark-grown seedling hypocotyl elongation, B)

rosette diameter, C) flowering time, and D) relative FT expression levels. Statistics and labeling as in Fig 2,

except FT expression statistics which were calculated using qBase software (Biogazelle).

doi:10.1371/journal.pgen.1006333.g008
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of function alleles genuinely suppress the small cop1 rosette diameter phenotype and that this
particularNF-YC function is genetically separable from its role in flowering time.

Finally, we also tested whether the nf-yc triplemutant could suppress the early flowering
phenotype of cop1 (Fig 8C). The nf-yc triple cop1mutant plants floweredmoderately, but sig-
nificantly, later than Col-0, intermediate to the early flowering cop1-4mutant and late flower-
ing nf-yc triplemutant. This result is not surprising as an important role for COP1 in flowering
is to suppress CO function via protein degradation [79, 81]. Because CO and NF-Y function
together to regulate photoperiod-dependent flowering [49, 52, 57, 82], the basis of early flower-
ing in cop1 is largely a function of CO protein (and potentially NF-Y, see below) hyper-accu-
mulation [79, 81]. Measurements of FLOWERING LOCUS T (FT) expression—the regulatory
target of CO and NF-Y function in flowering time—perfectly correlated with expectations
from the flowering time measurements (Fig 8D).

Like HY5, HFR1, and LAF1, NF-YA proteins are degraded in the dark

NF-YC regulation of light perception appears to share many parallels with HY5, HFR1, and
LAF1, including the suppression of cop1mutant phenotypes [75, 77, 78]. As with these other
photomorphogenic transcription factors, it is tempting to speculate that NF-YC proteins might
be targets of COP1-mediated proteasome degradation in the dark. However, this does not
appear to be the case as native antibodies to both NF-YC3 and NF-YC4 show modest fluctua-
tions, but largely stable accumulation throughout both short day and long day cycles (S5 Fig—
recall also that expression of any one NF-YC from a native promoter rescues the mutant phe-
notype, S3 Fig). Nevertheless, NF-YC proteins functionwithin the context of a heterotrimeric
complex and reduction of the NF-YA or NF-YB components could also disrupt activity.

In this regard, overexpression of most NF-YAs leads to small, dwarf phenotypes that are not
unlike those observed for cop1mutants [58, 83]. In fact, when we examinedNF-YA overexpres-
sing plants (35S promoter driven; previously described in [58]), they were found to have signif-
icantly shortened hypocotyls in both cD and cR conditions (Fig 9A). While shortened
hypocotyls in cD is a classic constitutive photomorphogenic phenotype, expressing p35S:
NF-YA hypocotyl lengths in cR as a percentage of cD growth additionally showed that most of
these plants were specifically, additionally defective in red light perception (Fig 9A).

While it is unknownwhich of the 10 Arabidopsis NF-YAs is natively involved in hypocotyl
elongation, two recent publications suggested that NF-YA2 may be found in complex with
NF-YC3, 4, and 9 [84, 85]. Therefore, using qPCR, we examined the expression of NF-YA2 in
24hr cWL or after 24-48hrs of cD and found that expression was strongly down-regulated in
cD (Fig 9B). At the same time we compared NF-YA2 expression to a subset of otherNF-YA
genes—NF-YA1, 7, 9, and 10.NF-YA10 is the most closely related paralog toNF-YA2 (encod-
ing 63% identical full length proteins, [86]) and it showed the same pattern of down-regulation
in cD. However, the less related NF-YA1 and 9 genes (proteins are 42% identical to each other,
but only 23–24% to NF-YA2) remained stably expressed in cD, whileNF-YA7 was actually up-
regulated. Thus, expression of theNF-YA gene family in response to cD is quite variable, and
suggests potential for light regulated accumulation and depletion.

To determine if NF-YA proteins might be targets of degradation in the dark, we examined
the accumulation of NF-YA2 and NF-YA7 expressed from constitutive 35S promoters. We
chose to use a constitutive promoter to differentiate between changes in protein accumulation
due to reduced gene expression (see Fig 9B) versus active protein degradation processes.
NF-YA2 protein accumulation was strongly reduced in cD conditions, even when expression
was driven from the 35S promoter, suggesting an active degradation process (Fig 9C). This was
in stark contrast to NF-YA7 which maintained stable protein accumulation in the dark. To
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determine if the proteasome was involved in the process, we additionally performed cell-free
protein degradation assays (as previously described [87]) and determined that NF-YA2 was
rapidly degraded (Fig 9D). However, the addition of the proteasome inhibitor MG132 strongly
reduced the apparent degradation of NF-YA2 protein. We note that NF-YA7 also degraded in
an MG132 dependent manner in these cell-free assays, suggesting that it can also be targeted
by the proteasome for degradation, even if darkness may not be the driving force (Fig 9B and
9C). Collectively, these data suggest that NF-YAs can also regulate light perception and are tar-
geted for proteasome mediated degradation, perhaps controlling the overall stability of the
NF-Y complexes necessary to suppress hypocotyl elongation in the light.

Fig 9. NF-YAs represent the light/dark cycle regulated components of NF-Y complexes. A) NF-YA

overexpression causes constitutive photomorphogenesis phenotypes as well as cR light perception defects.

To account for the constitutive photomorphogenic phenotypes of NF-YA overexpressing plants, relative

percent growth in cR was determined by dividing cR hypocotyl length by cD hypocotyl length and multiplying

by 100. NOTE: Because of their cop1-like, dwarf phenotypes, seed numbers are limited for NF-YA

overexpressing plant. Thus, we chose to focus on cR light perception because of the relatively strong light

defects measured for the nf-yc triple (Fig 2C). Statistically significant differences were determined as

described in Fig 2. Error bars represent 95% confidence intervals. B) Expression of select NF-YA genes after

24-48hrs darkness relative to cWL. Error bars are SEM. C) Protein accumulation of 35S promoter-driven

NF-YA2 and NF-YA7 constructs in cWL compared to 24-48hrs cD. D) Cell free protein degradation assays

for NF-YA2 and NF-YA7, with and without the proteasome specific inhibitor MG132.

doi:10.1371/journal.pgen.1006333.g009
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Discussion

The physical and genetic relationships between the NF-YCs and HY5 are similar to those
reported for several other photomorphogenic transcription factors, such as HFR1 and LAF1,
where both are able to physically interact with HY5, but have clearly additive light perception
defects when combined in higher order mutants [24, 35, 77, 81]. While we observednf-yc triple
mutant phenotypes primarily in low-intensity monochromatic light, the most pronounced nf-
yc triple hy5 phenotypes (relative to both the nf-yc triple and hy5 mutants) were seen in high-
intensity monochromatic light. BecauseHY5 protein accumulation and activity are light-inten-
sity dependent [23], one possible explanation for this relationship, supported by our RNA-Seq
data, is that HY5 and the NF-Y complexes share a subset of regulatory functions.When nf-yc
triplemutants are grown in low light, HY5 function becomes essential for maintaining normal
photomorphogenesis; however, under these same conditions, HY5 is also increasingly targeted
for degradation and the nf-y-related photomorphogenic defect becomes apparent. Alterna-
tively, in saturating, high light conditions, the relative NF-Y contribution to photomorphogen-
esis is masked due to high accumulation and activity of HY5 and other photomorphogenic
transcription factors.

Are NF-YC by HY5 interactions important in light signaling?

Unexpectedly, while we were able to detect a physical interaction betweenNF-YC9 and HY5
through FRET-FLIM analyses, we were not able to detect an interaction betweenNF-YC3 or
NF-YC4 and HY5. This is surprising because the histone fold domains of NF-YC3, 4, and 9 are
nearly identical (in fact, NF-YC3 and NF-YC9 are identical [86]); however, the amino- and car-
boxy-terminal regions are more divergent and could be involved in the NF-YC by HY5 physi-
cal interaction. Because of the extreme spatial constraints required for FRET to occur, it is not
valid to conclude from these experiments that NF-YC3 and NF-YC4 cannot interact with HY5
[88, 89], and Y2H analyses did previously show a positive interaction betweenNF-YC4 and
HY5 [57].

The question also remains whether or not the ability of NF-YCs to physically interact with
HY5 is of biological importance relative to their specific functions in light signaling. Both HY5
and the NF-YCs are also regulators of ABA signaling [19, 57, 58] and it is possible that a physi-
cal interaction between them is only related to this or another undefined pathway. This possi-
bility is supported by the additive, and even synergistic,mutant phenotypes of the nf-yc triple
hy5 plants—i.e., if these proteins are physically interacting in a linear pathway or at a common
hub in light signaling, how does the quadruple nf-yc3 nf-yc4 nf-yc9 hy5 mutation result in these
synergistic phenotypes? Alternatively, arguing for the relevance of physical interactions in light
signaling, there is clearly a significant amount of overlap in the putative regulatory targets of
NF-YC3, 4, 9 and HY5. Similarly, it was also previously suggested that subsets of photomor-
phogenic responses might be regulated by combinations of both overlapping (where physical
interactions were relevant) and non-overlapping functions betweenHY5, HFR1, and LAF1
[35]. In future experiments, it will be informative to examine the stability of NF-YA proteins in
the presence or absence of these other transcriptional regulators as it was previously shown
that HFR1 and LAF1 were co-dependent for their protein stability (i.e., they required each
other to avoid proteasome-mediated degradation; [74]). Ultimately, deciphering these putative
cooperative versus individual roles remains an exciting challenge for future research.

Is there a separate pathway for NF-YC function in light perception?

While we have demonstrated that NF-YC3, 4, and 9 function at least partially independently of
HY5 in light perception, one pressing question is whether the NF-Y complex is functioning
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through other known light-responsive transcription factors, such as HFR1 or LAF1. Directly
addressing this hypothesis would require the creation of nf-yc triple hfr1 and nf-yc triple laf1
quadruple mutants; however, becauseHFR1 is linked toNF-YC9, traditional crossing tech-
niques would be prohibitively difficult. Therefore targeting of these loci in the nf-yc triple
mutant with CRISPR-Cas9 is currently underway. To support that the NF-YCs are functioning
separately, or at least differently, fromHFR1 or LAF1, we identified strong phenotypes in the
nf-yc triple mutant in SD- and low cR-grown seedlings,where hfr1 and laf1 showed no mutant
phenotype. Additionally, we found no differential expression ofHFR1 or LAF1 in cFR-grown
nf-yc triple mutants. These data suggest that the function of NF-YCs in light perception is at
least partially separable from the functions of HFR1 and LAF1.

Similar to the NF-YCs, both STH2/BBX21 and STH3/BBX22 function as photomorphogen-
esis-activating transcription factors over a broad range of light conditions and are also able to
physically interact with HY5 [29, 30]. It is possible that the NF-YCs are functioning in an
STH2/STH3-dependentmanner; however, phenotypes of sth2 sth3 double mutants and sth2
sth3 hy5 triple mutants suggest that this might not be the case. In contrast to the genetic rela-
tionship between the nf-yc triple and hy5, the hypocotyls of sth2 sth3 hy5 triple mutants were
not longer than hy5 in cR. Further, we observed the most severe nf-yc triple phenotypes in low-
intensity light while the sth2 sth3 mutant phenotypes were only observed in high-intensity
light [30]. Nevertheless, these observations do not preclude genetic interactions for subsets of
shared functions, similar to what we have already suggested with HY5.

When examining the protein domains of STH2/BBX21 and STH3/BBX22, it is tempting to
speculate that there may be indirect physical interactions with the NF-YC proteins as part of a
larger light perception complex. STH2 and STH3 have B-box domains, thus their alternate
BBX21 and BBX22 designations [90], and these domains are necessary for direct physical inter-
actions with HY5 [29, 30]. BBX proteins also often have so-calledCO, CO-LIKE, and TIMING
OF CAB (CCT) domains [90, 91]. For example, CO (BBX1) is a BBX-CCT protein and muta-
tions in either of these domains impacts its ability to regulate flowering time [92]. It is well-
established that NF-YC3, 4, and 9 can all physically interact with CO and the CCT domain is
both necessary and sufficient for this interaction [49, 51, 52]. While STH2 and STH3 do not
have a CCT domain, recent evidence demonstrated that BBX proteins can heterodimerizewith
other BBX proteins [93]. Therefore, it is possible that NF-Y complexes may interact with
BBX-CCT proteins via the CCT domain and recruit other non-CCT containing BBX proteins,
such as STH2 and 3, to these complexes.

Are NF-Y complexes activators of photomorphogenesis or

skotomorphogenesis? Or both?

In contrast to our genetic evidence showing that NF-Ys act as suppressors of hypocotyl elonga-
tion, NF-YB9/LEC1 appears to have the opposite role. This idea comes from recent evidence
demonstrating that inducible overexpression of NF-YB9/LEC1 also resulted in elongated hypo-
cotyls, suggesting that NF-YB9/LEC1might actually function as an enhancer of hypocotyl
elongation [38, 94]. Consistent with this finding, embryonic hypocotyls are shortened in lec1
mutants [62]. Further, recent data shows that the hypocotyls of both light and dark grown lec1
mutants are significantly shorter than wild type plants [39]. Interestingly, overexpression of a
repressor of photomorphogenesis—PHYTOCHROME-INTERACTING FACTOR 4—results
in elongated hypocotyls, but this phenotype is partially dependent on the presence of LEC1
[39]. These results raise a few interesting questions: why would NF-YB9 act opposite to the
NF-YA and NF-YC members of the complex (as reported here) and what mechanism would
allow this result? Considering these questions, it is important to remember that each NF-Y
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subunit—A, B, and C—is part of a 10 member family [41]. Thus, many unique NF-Y com-
plexes could theoretically form and, depending on their composition, actually act to competi-
tively suppress or enhance a given process. In this scenario, some members of a given NF-Y
family might enter a complex, but render it inactive, while other members of the same family
would have the opposite effect.

Our previous research on ABA-mediated seed germination provides some precedence for
the above idea.We demonstrated that members of the same NF-Y family can act in opposing
manners, either enhancing or delaying germination when their expression is altered (both
NF-YA and NF-YC examples exist; [57, 58]). Similarly, some BBX proteins also show these
opposing functionalities. For example, BBX24 and 25 are hypothesized to interfere with BBX22
function by entering into non-functional complexes with HY5 [95]. Fitting this scenario nicely,
NF-YB9/LEC1, and its closest relative NF-YB6/LEC1-LIKE, are quite unique and very different
from the other eight NF-YB proteins in Arabidopsis. This includes 16 amino acid differences in
their highly conservedhistone fold domains that are completely unique to only this pair [96].
However, an alternative hypothesis must be considered related to the most recent lec1 data [39]:
lec1 shortened hypocotyls may not be developmental patterns related to loss of skotomorpho-
genesis or post embryonic in nature, but, instead, are lasting patterns laid down during embryo-
genesis. This possibility is supported by both the modest magnitude of the effects and the
finding that lec1 plants are short in all conditions (dark and light). This is not the case for the nf-
ycmutants reported here as they are indistinguishable from wild-type plants in the dark and
elongated in the light, clearly defining them as positive regulators of photomorphogenesis.

NF-Y complexes share the hallmarks of photomorphogenic transcription

factors

While the functional relationship between the NF-YCs and HY5 is similar to that observedwith
many other photomorphogenic transcription factors, the NF-YCs do not appear to be transcrip-
tionally or translationally regulated in a manner consistent with light-responsive proteins; how-
ever, because the NF-YCs act in the larger context of an NF-Y trimer, the physical properties
and regulatory components of the functional unit can be spread across multiple proteins. We
showed that several NF-YA subunits with photomorphogenic phenotypes are regulated by light,
and that NF-YA2 is targeted for degradation by the proteasome. Regulation of the NF-YA sub-
unit establishes NF-Y complexes as possessing all of the properties generally expected of photo-
morphogenic transcription factors, including DNA-binding capacity, the ability to physically
interact with other photomorphogenic factors, and a light-regulatedmechanism to modulate
function and abundance. While specificNF-YA subunits have not been conclusively identified
to natively regulate the inhibition of hypocotyl elongation, a recent publication showed that
over-expression of NF-YA2 led to earlier flowering [84]. This suggests that NF-YA2 could be
integrated into an NF-Y complex containing NF-YC3, 4, and/or 9, as each is also redundantly
involved in photoperiod-dependent flowering [51]; finally, an NF-YA2/NF-YB2,3/NF-YC9 tri-
mer has been identified through yeast three-hybrid analyses, and further verified through two-
way interaction assays (including BiFC and co-IP, [84]). The identity of photomorphogenic
NF-YB proteins remains unknown and it will interesting to determinewhich, if any, non-LEC-
type NF-YB will be positive regulators of photomorphogenesis.

Conclusion

The data presented here firmly establishes NF-Y complexes as positive regulators of photomor-
phogenesis, significantly extending recent findings [38, 39]. Future research on the potential
regulation of NF-YA proteins by the proteasome and the identity of photomorphogenic
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NF-YA and NF-YB will improve our current understanding. Although only discussed at a cur-
sory level here, research on NF-Y roles in flowering time demonstrate important interactions
with the BBX protein CONSTANS and suggest that NF-Y by BBX interactions may be general-
izable [49–52, 97]. Given the numerous roles for BBX proteins in light perception [29, 30, 95,
98–100], we predict that future studies will uncover BBX by NF-Y interactions that are essential
for light perception. This would be an exciting finding, significantly extending the regulatory
reach and capacity of the four interacting families of proteins.

Methods

Growth conditions and plant lines

All plants were of the Col-0 ecotype and were grown at 22C. Prior to starting germination on
plates or soil, seeds were cold-stratified in a 4C walk-in cooler in the dark for 2–3 days. Plants
grown in cWL were grown in a Conviron ATC13 growth chamber or a custom walk-in growth
chamber. Plants in single wavelength light experiments were grown in a Percival E30-LED
growth chamber after initial exposures to 4 hours of white light to induce germination. Plants
used in flowering-time experiments, rosette diameter measurements, and GUS staining were
grown in a previously-described soil mixture [51]. All other plants were grown on 0.8–2% agar
plates supplemented with Gamborg B-5 Basal Medium (PhytoTechnology Laboratories, prod-
uct #G398).Nicotiana benthamiana plants were grown under long-day conditions (16h light/
8h dark) at 22C in a Conviron ATC13 growth chamber. For UV experiments, plants were
grown in cWL for 5 days under a Mylar filter (Professional Plastics, catalog #A736990500) or
mock-filter.

GUS staining, rosette diameter measurements, and flowering time

experiments

GUS staining was performed as previously described on 5 day old soil-grown seedlings [86],
and images were taken on a Leica dissecting stereoscope. Flowering time was measured as the
total number of rosette and cauline leaves present shortly after bolting, and all genotypes exhib-
ited similar developmental rates. To quantify rosette diameter, plants were photographed from
above at the time of bolting, and the Feret’s diameter was measured, anchored at the tip of the
longest rosette leaf.

Hypocotyl length and cell length measurements

To measure hypocotyl elongation, seeds were sown onto B5 supplemented plates with 2% agar
and cold-stratified at 4C for 2 days. Before transfer to specific light conditions, all plates were
set at room temperature in continuous white light for 4 hours. Plates were grown vertically for
the duration of the experiments. Germination rates for the nf-y mutants under study were pre-
viously shown to be the same in B5 media and confirmed for the experiments reported here
[57]. To facilitate proper measurement, all plants were straightened on the plate before taking
pictures. Pictures were processed, and all individual hypocotyls were traced and measured in
FIJI [101].

For individual cell length and total cell number measurements of single files of hypocotyl
cells, seedlingswere grown on plates as described above for 5 days in cWL. Seedlingswere fixed
in an FAA solution and dehydrated through sequential 30-minute incubations in 90% and
100% ethanol [102]. Fixed and dehydrated seedlingswere individually mounted in the clearing
agent methyl salicylate [102], and immediately taken for measurement on a Nikon Eclipse
NI-U compoundmicroscope. Using differential interference contrast (DIC) optics, individual
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cell files were identified and measuredmanually through the NIS-Elements BR software
(Nikon), and pictures were taken at the hypocotyl-cotyledon junction for every seedling
measured.

qRT-PCR analyses

Total RNA was isolated from 7-day-old seedlings grown under cWL conditions and from
5-day-old seedlings grown under cFR using the Omega Biotek E.Z.N.A Plant RNA Kit (catalog
#R6827-01), and was DNase treated on-column with Omega Biotek’s RNase-free DNase set
(catalog #E1091). First-strand cDNA synthesis was carried out with Invitrogen’s SuperScript
III Reverse Transcriptase (catalog #18080–044) and supplied oligo dT primers. qRT-PCR was
performed on a Bio-Rad CFX Connect Real-Time PCR Detection System (http://www.bio-rad.
com/), using Thermo Scientific’s Maxima SYBR Green/ROX qPCRMaster Mix (catalog
#K0222). Each genotype was assayed with three independent biological replicates, consisting of
approximately 100mg of starting tissue each.White light grown seedlingswere normalized to
At2g32170, while far red light grown seedlingswere normalized to At3g18780 and At1g49240.
Statistical analysis and comparisons between samples was performed in the Bio-Rad CFXMan-
ager Software (http://www.bio-rad.com/) through use of the 2(−ΔΔCT) method.

Transient transformation of Nicotiana benthamiana Leaves

The leaves of 4- to 6-week oldN. benthamiana were co-infiltratedwith Agrobacterium tumefa-
ciensGV3101 strains harboring either a YFP-fused protein or an mCer3-fusedprotein, in addi-
tion to the Agrobacterium strain C58C1 harboring the viral silencing suppressor helper
complex pCH32 [103]. Before infiltration into Nicotiana leaves, Agrobacterium cultures grown
overnight were treated with 200uM acetosyringone in a modified induction buffer for 4 hours
[104]. This induced culture was re-suspended in 10mMMES 10mMMgSO4 and directly infil-
trated into young leaves. All downstream analyses were conducted 2–4 days after initial
infiltration.

FRET-FLIM and FRAP analyses

FLIM data was acquired through time-correlated single photon counting (TCSPC) on a Lecia
TCS SP8 confocal laser scanningmicroscope using an HC PL APO 40x/1.10 water immersion
objective. Fluorescent protein excitation was achieved through use of a titanium-sapphire mul-
tiphoton laser (Chameleon, Coherent) operating at 120 femtosecond pulses of 858nm infrared
light. Fluorescence emissions were detected by non-descanned hybrid detectors (HyDs). Fluo-
rescence lifetimes of entire nuclei were fit to a single-exponentialmodel through the Sympho-
Time 64 (www.picoquant.com) software, and comparison of the fluorescence lifetimes before
and after FRAP was used to detect FRET. For FRAP analyses, YFP photobleaching was accom-
plished with a high-intensity Argon laser line at 514nm for 15 seconds, followed by recovery
imaging of both mCer3 (excited at 458nm) and YFP (excited at 514nm) every second for 5 sec-
onds. DescannedHyDs were used to detect mCer3 emission from 459nm to 512nm, and a
Photomultiplier Tube (PMT) was used to detect YFP emission from 512 to 562nm, with a 458/
514 notch filter in place. This process was performed a total of 3 times for each nucleus, and
bothmCer3 and YFP intensities were calculated relative to initial fluorescence intensity. FRAP
was conducted as an internal control during FLIMmeasurements, allowing us to assess the
level of YFP photobleaching and ensure that relatively little mCer3 was inadvertently
photobleached.
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Protein work

Total protein was extracted from 14-day-old plants by grinding in lysis buffer (20 mMTris, pH
8.0, 150 mMNaCl, 1 mM EDTA, pH 8.0, 1% Triton X-100, 1% SDS with fresh 5 mMDTT,
and 100 μMMG132). NF-YA-CFP/HA was probed with high affinity anti-HA primary anti-
body (cat#11 867 423 001; Roche) and goat anti-rat secondary antibody (cat#SC-2032; Santa
Cruz Biotechnology).NF-YC3 and NF-YC4 were detected by previously describednative anti-
bodies [51]. The Bio-Rad ChemiDocXRS imaging system was used for visualizing the protein
blot after incubations with ECL plus reagent (cat#RPN2132; GE Healthcare). Equivalent load-
ing and transfer efficiencywas determined by staining the protein blot with Ponceau S
(cat#P3504; Sigma-Aldrich).

RNA sequencing and analysis

Seedlings grown for seven days on B5 media in continuous white light. Total RNA was isolated
using the E.Z.N.A. Plant RNA Kit from (Omega Biotek, Cat#R6827). To ensure low levels of
contaminating ribosomal RNA, two rounds of poly-A mRNA purificationwere performed
using the μMACS mRNA Isolation Kit (Miltenyi Biotech, Cat#130-090-276). Indexed RNA-
Seq libraries were prepared from 100 ng of poly-A RNA startingmaterial using the NEXTflex
Illumina qRNA-Seq Library Prep Kit (Bioo Scientific, Cat#5130). Sequencing of 150 bp paired
end reads was performed on an Illumina HiSeq 2500 in rapid output mode at the Texas A&M
Agrilife Research Facility (College Station, TX). Sample de-multiplexing was performed using
CASAVA software v1.8.2 and bcl2fastq was performed using conversion software v1.8.4.

Resulting sequences were trimmed and quality checked using the pipeline detailed at the
iPlant Collaborative Discovery Environment (http://www.iplantcollaborative.org). Sequences
were mapped to the TAIR 10 representative gene models set using Burrows-Wheeler Aligner
[105, 106] within iPlant. Differential gene expression was determined using the Bioconductor
package edgeR [107]. Gene Ontology over-representation analyses were performed in AmiGO
2 version 2.3.2 [108, 109]. Raw sequencing data and the final differentially expressed gene lists
were deposited with NCBI’s Gene Expression Omnibus, accession number GSE81837.

Image processing and figure construction

All image processing and figure constructionwas performed in either FIJI, Photoshop (www.
adobe.com), or Prism (www.graphpad.com).

Accession numbers

Mutant lines used in this study, including references for their original derivation and descrip-
tion in the literature, are reported in S4 table [19, 24, 51, 110–114]. AGI identifiers for all genes
reported are also described in S4 Table.

Supporting Information

S1 Fig. NF-YC3, 4, and 9 are expressed during early seedlingdevelopment.Promoter-GUS
fusions for NF-YC3 (left), NF-YC4 (middle), and NF-YC9 (right) were used to analyze expres-
sion patterns in 5-day old plants.
(PDF)

S2 Fig. Validation of knock-out and knock-downalleles in higher-ordermutants. Expres-
sion levels of NF-YC3, NF-YC4, NF-YC9, and HY5 were observed in key genotypes used in
this study. Note that NF-YC9 is weakly expressed from the nf-yc9-1 allele, as previously
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reported [51]. Error bars represent SEM.
(PDF)

S3 Fig. Complementation of the nf-yc triple hy5 quadruplemutant long hypocotyl pheno-
type.Native-promoter driven NF-YC3, NF-YC4, and NF-YC9, as well as 35S promoter driven
HY5, are able to complement the nf-yc triple hy5 mutant hypocotyl phenotype in 5 day old,
cWL-grown plants. Error bars represent 95% confidence intervals.
(PDF)

S4 Fig. The nf-yc triplemutant does not have a hypocotyl elongation response to filtering
out UV light.Hypocotyl elongation was assayed in 5 day old, cWL-grown seedlings in the
presence or absence of a mylar filter. Error bars represent 95% confidence intervals. Significant
differences (and lack thereof)were detected through unpaired t tests (Col-0, nf-yc triple, hy5)
and an unpaired t test withWelch’s correction for unequal variances (nf-yc triple hy5). ���,
p< 0.01; n.s., not significantly different.
(PDF)

S5 Fig. NF-YC3 and NF-YC4 accumulate at relatively steady levels over a 24 hour cycle.
Proteins samples were extracted every four hours from both long day (16hr light, 8hr dark)
and short day (8hr light, 16hr dark) grown plants. Proteins were detectedwith previously
described, native antibodies [51].
(PDF)

S1 Table. Lists of all differentially expressed genes identified through RNA-Seq in nf-yc tri-
ple, hy5, and nf-yc triple hy5mutants.
(XLS)

S2 Table. GO Enrichment of down-regulatedgene sets and regulatory groupings identified
through RNA-Seq.
(XLSX)

S3 Table. GO Enrichment of up-regulated gene sets and regulatory groupings identified
through RNA-Seq.
(XLSX)

S4 Table. Allele designations, descriptions and references for all mutant lines used in this
study.
(XLSX)
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