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Abstract
Streptococcus pyogenes chromosomal island M1 (SpyCIM1) integrates by site-specific

recombination into the 5’ end of DNAmismatch repair (MMR) genemutL in strain

SF370SmR, blocking transcription of it and the downstream operon genes. During expo-

nential growth, SpyCIM1 excises from the chromosome and replicates as an episome,

restoringmutL transcription. This process is reversed in stationary phase with SpyCIM1 re-

integrating intomutL, returning the cells to a mutator phenotype. Here we show that elimina-

tion of SpyCIM1 relieves this mutator phenotype. The downstreamMMR operon genes,

multidrug efflux pump lmrP, Holliday junction resolution helicase ruvA, and DNA base exci-

sion repair glycosylase tag, are also restored to constitutive expression by elimination of

SpyCIM1. The presence of SpyCIM1 alters global transcription patterns in SF370SmR.

RNA sequencing (RNA-Seq) demonstrated that loss of SpyCIM1 in the SpyCIM1 deletion

mutant, CEM1Δ4, impacted the expression of over 100 genes involved in virulence and

metabolism both in early exponential phase, when the SpyCIM1 is episomal, as well as at

the onset of stationary phase, when SpyCIM1 has reintegrated intomutL. Among these

changes, the up-regulation of the genes for the antiphagocytic M protein (emm1), streptoly-
sin O (slo), capsule operon (hasABC), and streptococcal pyrogenic exotoxin (speB), are
particularly notable. The expression pattern of the MMR operon confirmed our earlier

observations that these genes are transcribed in early exponential phase but silenced as

stationary phase is approached. Thus, the direct role of SpyCIM1 in causing the mutator

phenotype is confirmed, and further, its influence upon the biology of S. pyogenes was
found to impact multiple genes in addition to the MMR operon, which is a novel function for
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a mobile genetic element. We suggest that such chromosomal islands are a remarkable

evolutionary adaptation to promote the survival of its S. pyogenes host cell in changing

environments.

Introduction
Prophages and prophage-like elements are universal components of the genomes of Streptococ-
cus pyogenes (group A streptococcus), with the published genome sequences having between
two and eight examples in each strain [1–12]. These important mobile genetic elements (MGE)
provide a substantial contribution of genetic material to their hosts, often representing ~10%
of the total genome. Streptococcal prophages generally follow the typical genetic organization
of lambdoid phages with genes organized for coordinated expression of the establishment of
lysogeny or for the expression of early and late genes in the lytic cycle [13, 14]. Importantly,
superantigens and other streptococcal virulence factors are components of these prophage
genomes. In addition to typical prophages, other MGEs are present in the S. pyogenes genomes
that include insertion sequence (IS) elements, transposons, and chromosomal islands.

Recently, we demonstrated that a prophage-like MGE in the S. pyogenesM1 genome strain
SF370 acted as a genetic switch that controlled the expression of the DNAmismatch repair
(MMR) genemutL as well as additional downstream genes. These genes are encoded on a poly-
cistronic mRNA along withmutS, and the result of this regulation caused a growth-dependent
mutator phenotype [15]. This MGE, which was originally annotated in the genome as pro-
phage SF370.4 and is now named SpyCIM1 (Streptococcus pyogenes chromosomal island M1),
mediated expression of the MMR operon through a process of dynamic excision and re-inte-
gration from the 5’ end of themutLORF. During a state of rapid cell division, the prophage ele-
ment excises from the bacterial chromosome and replicates as a circular episome, allowing the
normal expression ofmutL and the downstream genes. When the cells approach stationary
phase and division slows, the episomal form re-integrates into its attachment site inmutL,
silencing the expression ofmutL and downstream genes. This cycle of excision and re-integra-
tion results in the cell switching between a complex mutator and normal phenotype [15]. This
system is remarkable in that not only is MMR regulated by this MGE, but it also controls a
multiple drug efflux pump (lmrP), a Holliday junction helicase subunit (ruvA), and a compo-
nent of base excision repair (tag). We extended this original observation to demonstrate that
the frequent carriage of related SpyCI elements in the genomes of other S. pyogenes strains also
was associated with a mutator phenotype [16].

The prophage-like element SpyCIM1 differs from typical integrated streptococcal pro-
phages in a number of characteristics. Genetic modules for lysogeny, regulation, and DNA rep-
lication are readily identified by homology to these regions in other prophages, but no capsid
or packaging structural genes, lysis genes, or virulence genes seem to be present. Further, Spy-
CIM1 and related elements found in other S. pyogenes genomes are smaller than typical strep-
tococcal prophages, having a range between 13 kb to 17 kb in length [15, 16]. At first glance,
such an element might be classified as a defective prophage as indeed it originally was [1, 14].
However, SpyCIM1 is a member of a sizeable group of elements in Gram-positives that follow
a similar genetic organization, and it is unlikely that each chromosomal island resulted from
independent prophage decay in these different genera of bacteria. So, as proposed by Novick
and colleagues [17, 18], these phage-like chromosomal islands probably represent a separate
class of mobile genetic elements.

Our previous studies showed that strains with SpyCI had a higher mutation rate and other
phenotypic changes compared to strains lacking these MGEs; however, these earlier studies
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were limited to comparing S. pyogenes SpyCI+ strains to similar but genetically distinct ones
lacking a SpyCI integrated intomutL [16]. Thus, the association between SpyCI carriage and a
mutator phenotype was inferential and not proven due to the lack of isogenic strains for this
MGE. In this report we demonstrate that the removal of SpyCIM1 from strain SF370SmR
relieves the mutator phenotype by decreasing the mutation rate as well as increasing resistance
to ethidium bromide, UV irradiation and ethyl methanesulfonate, which result from the resto-
ration of constitutive expression ofmutL, lmrP, ruvA, and tag. Further, loss of SpyCIM1 also
altered global gene expression patterns, which were unique to growth phases of the cell. These
studies confirm the impact this phage-like chromosomal island has upon its host and will be
the springboard for future studies about this remarkable genetic system.

Materials and Methods

Strains and bacterial growth conditions
Bacterial strains and plasmids used in these studies are described in Table 1. Escherichia coli,
used for vector propagation, was grown in Luria-Bertani (LB) broth (Difco) containing 50 μg/
ml kanamycin sulfate (Amresco, Solon, OH). S. pyogenes strains were grown in Bacto Todd

Table 1. Strains, plasmid, and oligonucleotide primers used in this work.

Strains Genotype/Relevant characteristics Reference

SF370 emm1 (contains prophages ϕSF370.1, ϕSF370.2, ϕSF370.3, and SpyCIM1) [1, 14, 15]

SF370SmR Spontaneous streptomycin resistant derivative of SF370 [19]

CEM1KRΔ Spy2136 SF370SmR ΔSpy2136::(aacA-aphD) / (rpsLWT)) [19]

CEM1Δ4 SF370SmRΔSpyCIM1; cured of SpyCIM1 [19]

MGAS5005 emm1 (SpyCI-free M1 strain) [21]

K56 emm12 (SpyCI-free M12 strain) [22]

Plasmids Description

pFWKR Counter-selection vector with janus cassette, (aacA-aphD) / (rpsLWT)) between MCS for phage elimination [19]

pFWKR- Spy2136 pFWKR with flanking regions of Spy2136 for inactivation of SpyCIM1 primase gene [19]

PCR Primers Sequence Product size

mutSL-L 5' AATCGCCAGT TCCTGATGTC 1361 bp

mutSL-R 5' GGGCTGCTGA TGATTTGATT

int4-L 5’ GTCGCTGTCT CATTTGATAG AGCTT 401 bp

int4-R 5’ CCAACAAGGA GTATTGCTAG GGC

qRT-PCR Primers Sequence Product size

nga_RT-L 5' ACGTTAGCCG CAAATACCAC 89 bp

nga_RT-R 5' GCTTGTAACG TGGGAAGCTC

slo-RT-F 5' AAGCTCCGCC ACTCTTTGTGA 103 bp

slo-RT-R 5' GCACTAAAGG CCGCTTCAAC 3'

norA_RT-L 5' AAACGACGAC CAAACACCTC 102 bp

norA_RT-R 5' TCAGACTAGC CAGGCAGGAT

emm RT-L 5' GCAAAACTAA GAGCTGGAAA 139 bp

emm RT-R 5' TAGTTTCCTT CATTGGTGCT

speB RT-L 5' AGCAGTTGCA GTAGCAACACAT 141 bp

speB-RT-R 5' CTCCTTGATT CAAAAGGCATTC

hasB_RT-L 5' TCCTCAAACG CTAATTGAAGC 92 bp

hasB_RT-R 5' CCCGCTCTTC TAAGACGTTG

16S_rRNA-L 5’ AGCGTTGTCC GGATTTATTG 126 bp

16S_rRNA-R 5’ CACTCTCCCC TTCTGCACTC

doi:10.1371/journal.pone.0145884.t001
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Hewitt Broth (Becton, Dickinson and Company, Sparks, MD) supplemented with 2% Bacto
yeast extract (THY medium) at 37°C or Brain Heart Infusion media (BHI) (Himedia Laborato-
ries, India) at 37°C with the addition of the appropriate antibiotics (Sigma); growth was deter-
mined by monitoring the absorbance at 600 nm. Strain SF370SmR is a streptomycin resistant
derivative of strain SF370, containing a spontaneous mutation in the rpsL gene [19]. No differ-
ences between SF370 and the streptomycin resistant derivative were observed with respect to
growth rate or in the various biological assays employed [19]. Chemically defined media
(CDM) was prepared as described in the literature [20].

Elimination of SpyCIM1 from S. pyogenes SF370SmR
A two-step phage counter-selection method using a Janus cassette was used to derive isolates
that lost SpyCIM1 from the genome of SF370SmR; the complete details are described in Euler
et al. [19]. In this strategy, the initial introduction of the Janus cassette results in the loss of
streptomycin resistance and the acquisition of kanamycin resistance through replacement of
the SpyCIM1 primase gene. Loss of the primase leads to instability of SpyCIM1 following exci-
sion, which promotes loss of this element. Curing of SpyCIM1 is then detected by a loss of
kanamycin resistance with a concomitant restoration of streptomycin resistance. The SmR /
KanS mutants identified following this process were then verified for the complete loss of the
SpyCIM1 by PCR (using primers mutSL-L and mutSL-R to amplify the SpyCIM1 attachment
site), Southern blot hybridization analysis (with SpyCIM1 specific gene probes), DNA
sequence analysis, and PFGE analysis [19]. The resulting mutant strain, CEM1Δ4, no longer
contained the integrated SpyCIM1 DNA in the streptococcal chromosome; further, the loss of
SpyCIM1 restored the precisemutS-mutL junction seen in SpyCI-free strains of S. pyogenes.

Chromosomal DNA Isolation, Sanger sequencing, and analysis
Isolation of streptococcal DNA was performed as previously reported [15, 23]. For isolation of
stationary phase genomic DNA, a single colony of each S. pyogenes strain was used to inoculate
5 ml of fresh THY or BHI broth, which were allowed to grow>16 hours at 37°C in 5% CO2

before DNA isolation unless stated otherwise. Automated DNA sequencing was performed at
the University of Oklahoma Health Sciences Center Laboratory for Genomics and Bioinfor-
matics. Prior to sequencing, PCR products were treated with shrimp alkaline phosphatase and
exonuclease I by incubation at 37°C for 60 min, followed by inactivation of the enzymes by
heating at 85°C for 15 min or cleaned with the Wizard SV Gel and PCR Clean-Up System (Pro-
mega, Madison, WI). Sequencing was performed using the same primers that were used for
PCR. PCR and Quantitative real-time PCR (qRT-PCR) were done as previously described [15,
16], using the primers listed in Table 1.

Southern blot analysis
DNA was isolated from strains SF370SmR, CEM1Δ4, MGAS5005, and K56. Following diges-
tion with HindIII, the generated fragments were separated on a 0.8% agarose gel with 0.5X tris-
borate-EDTA (TBE) buffer and transferred to nylon membrane using standard methods [24].
A probe covering the SpyCIM1-free junction between mutS and mutL in strain MGAS5005
was prepared by PCR amplification of this region using primers MutSL-L and MutSL-R and
the DIG-[11]-dUTP PCR labeling kit from Roche Life Science (Indianapolis, IN), following the
manufacturer’s recommended protocol. Hybridization, washing, and detection of the probe
bound to the blot was done also following the recommended protocol.
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Determination of the spontaneous mutation rate
A fluctuation test based on the Luria and Delbrück assay [25, 26] was used to determine the
spontaneous mutation rates of S. pyogenes strains as previously described [15]. Briefly, THY
broth was inoculated with an isolated colony of the strain to be tested and incubated overnight
at 37°C. The overnight culture was diluted 1:104 into 41 ml fresh THY broth such that the final
cell density is<1000 cells/ml. The culture was dispensed as 1 ml aliquots into 31 sterile culture
tubes. The cultures were grown for 24 hours at 37°C to achieve maximum cell density. One cul-
ture was used to determine total CFU by serial dilutions plated on THY agar, while the remain-
der were each mixed with 3.0 ml melted 0.6% agar in water (45°C) and overlaid onto THY agar
plates supplemented with 2 μg/ml ciprofloxacin. After the agar overlay hardened, the plates
were incubated at 37°C for>48 hours to allow appearance of antibiotic resistant mutants. The
mutation rate with confidence limits was calculated for each strain using the software package
ft (P.D. Sniegowski, Univ. Pennsylvania [27]). The data collected was averaged to determine
mutation rate in mutations/generation (μ). Each determination was done at least three times.

Sensitivity of strains to UV irradiation
The sensitivity of S. pyogenes strains to killing by UV irradiation from a calibrated 254 nm ger-
micidal lamp (120 μW/cm2) was done as previously described [15]. Serial dilutions (ten-fold)
of cells were exposed to UV light for up to two minutes in 30 second increments, in a darkened
room to prevent photoreactivation, and were subsequently incubated overnight at 37°C to
allow appearance of survivors. UV irradiation assays were conducted a minimum of three
times per strain to confirm results.

Growth inhibition by ethidium bromide
The resistance of strain SF370SmR or CEM1Δ4 was done using a modification of a previously
reported method [28]. An overnight culture of S. pyogenes grown in THY broth at 37°C was
diluted in fresh media to an absorbance at 600 nm of ~0.05. Incubation was continued at 37°C
until A600 nm = 0.3, and then the culture was diluted as before into fresh media containing 0, 1,
1.5, 2.5, or 5 μM ethidium bromide. The concentration of the ethidium bromide stock was
determined using the extinction coefficient (�) at 480 nm = 5680 M-1 cm-1 [29]. Each culture
was grown as ten replicates (200 μl each) in a Bioscreen-C Automated Growth Curve Analysis
System (Growth Curves US, Piscataway, NJ) at 37°C without shaking. The absorbance at 600
nm for each culture was measured every 15 minutes for a total of 24 hours. The 3 replicates of
each condition where averaged and normalized to the cultures not treated with EtBr using the
software package Graphpad Prism 4 (GraphPad Prism Software, La Jolla, CA).

Ethyl methanesulfonate (EMS) mutagenesis
EMS mutagenesis was done using a modification of a previously described method [30]. THY
broth (5 ml) was inoculated with a single colony of SF370SmR or CEM1Δ4 and incubated over-
night at 37°C. The overnight culture was diluted into fresh THY (1:20 dilution) and grown at
37°C for two hours. A portion (0.5 ml) was spread on a THY agar plate containing 2 μg/ml cipro-
floxacin and allowed to dry for 30 minutes. The EMS stock solution (1.145 g/ml; Sigma-Aldrich,
St. Louis, MO) was diluted into sterile water to give a final working solution of 1 μg/ml; 15 μl of
this solution was spotted on a sterile paper disk and placed in the middle of the agar plate that
had been spread with the S. pyogenes strain. For a control, a paper disk that been spotted with dis-
tilled water was placed on a parallel agar plate for each strain. After overnight incubation at 37°C,
the appearance of ciprofloxacin resistant mutants were tabulated.
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Global transcriptional analysis
Overnight cultures of SF370SmR and CEM1Δ4 were diluted 1:20 in filter sterilized (0.22μ)
THY broth. The cultures were grown at 37°C or at 39°C to early log phase (A600 ~0.25) or to
late log phase (A600 ~0.55). The cells were harvested by centrifugation, resuspended in 1 ml of
RNALater (Ambion #AM7021, Life Technologies, Grand Island, NY, U.S.A.) and stored at
4°C. To process the cells for RNA extraction, the cells stored in RNALater were collected by
centrifugation (8000xg for 5 min. at 4°C), and the pellets were resuspended in 200μL of RNA
Storage Solution (1 mM Sodium Citrate, pH 6.4). The streptococci were lysed by incubation
for 5 min at room temperature with PlyC Lysin (provided by V.A. Fischetti). All subsequent
steps were performed at 4°C. RNA was extracted using Trizol Reagent (Life Technologies) and
chloroform, using the manufacturer’s recommended protocol. The RNA pellets were dissolved
in water (Molecular Grade Water, G-Biosciences #786–293, St. Louis, MO, U.S.A.) and quanti-
fied using a Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific Inc, Wilmington,
DE, U.S.A.). The RNA samples were stored at -75°C until needed for further processing. Before
RNA sequencing analysis, 16S and 23S ribosomal RNA was removed the samples by using a
MicrobExpress kit (Ambion #AM1905) following the manufacturer’s protocol. The quality of
the enriched mRNA samples was confirmed using an Agilent 2100 BioAnalyzer (Agilent Tech-
nologies, Inc., Santa Clara, CA, U.S.A.). The samples were converted to cDNA using Super-
script II (Invitrogen, Carlsbad, CA) and random hexamer priming by following the
manufacturer’s protocol. Library construction and whole transcriptome analysis was done at
the Laboratory for Molecular Biology and Cytometry Research core facility at the University of
Oklahoma Health Sciences Center using an Illumina MiSeq Next-Generation Sequencer and
following the manufacturer’s recommended protocols (Illumina, Inc., San Diego, CA).
Sequence reads were referenced to the S. pyogenes SF370 genome, and analysis was done using
the software package GeneSifter (Geospiza, Inc. Seattle, WA). A likelihood ratio test was used
to calculate the ratio of SF370SmR RNA to CEM1Δ4 RNA for each gene in the SF370 Genbank
annotation. A Benjamini and Hochberg correction was applied to the data. The GEO accession
for the datasets is record GSE75633. For mapping of mRNA and determination of polycistronic
operons, the software package Rockhopper (http://cs.wellesley.edu/~btjaden/Rockhopper/)
was used [31].

Results

Elimination of SpyCIM1 from the genome of strain SF370
Our previous studies showed that SpyCIM1 controls a growth-dependent mutator phenotype
in the S. pyogenesM1 serotype SF370 through a dynamic process of excision and re-integration
into a unique site in DNAMMR genemutL (S1 Fig). These studies suggested that having Spy-
CIM1 was associated with an increased mutation rate as well as sensitivity to lipophilic antimi-
crobials, UV irradiation, and DNAmethylating agents [15, 16]. To confirm these results we
chose to eliminate this chromosomal island and create an isogenic strain that would be wild
type for the MMR operon. A two-step phage counter selection method was developed to derive
isolates that had lost the 13.5 Kbp SpyCIM1 from the genome of SF370; this process has been
described in detail elsewhere [19]. The initial step in the elimination process was the selection
for a spontaneous streptomycin resistant derivative of SF370. This strain, SF370SmR, was used
for all subsequent studies that compared it to the isogenic mutant, CEM1Δ4, cured of Spy-
CIM1. As shown in Fig 1, the loss of SpyCIM1 from the MMR operon could be confirmed by
PCR and Southern blot. DNA was isolated from cells after overnight incubation at 37°C, a con-
dition where we previously showed that SpyCIM1 would be integrated into the bacterial
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chromosome at attB [15]. The SpyCIM1 bacterial attachment site (attB) is the first 16 bases of
themutL ORF and begins 131 bases downstream of themutS ORF. Under typical PCR condi-
tions, this region can only be amplified if the chromosomal island is absent from the genome
during logarithmic growth, when SpyCIM1 excises and replicates as an episome [15]. However,
during stationary phase of growth the presence of the 13.5 Kbp of SpyCIM1 in the SF370SmR
genome prevents normal amplification of this product by PCR. The removal of SpyCIM1 in
the CEM1Δ4 mutant allowed for amplification of themutS-mutL junction during both loga-
rithmic and stationary phases of growth as occurs in SpyCIM1-free strains like MGAS5005
(Fig 1A). The loss of the chromosomal island also caused a change in the DNA hybridization
pattern to this same region, with CEM1Δ4 having the same pattern as SpyCIM1-free strains
(Fig 1B). The elimination of SpyCIM1 from the chromosome and the restoration of the normal
DNA sequence observed in CEM1Δ4 was confirmed by DNA sequencing (not shown). Also,
no SpyCIM1 genes could be amplified by PCR in strain CEM1Δ4, confirming that the element
is lost and not translocated to a new site on the SF370SmR chromosome (not shown). Further,
PFGE analysis of CEM1Δ4 digested genomic DNA showed no aberrant genomic DNA rear-
rangements were caused by the loss of SpyCIM1 [19].

Elimination of SpyCIM1 reverses the mutator phenotype
We previously demonstrated that the presence of SpyCIM1 correlated with a mutator pheno-
type that was evidenced by an increase in the spontaneous mutation rate and an increase in
sensitivity to UV irradiation, due to the inhibition ofmutL and ruvA expression, respectively
[15]. For these studies, the appearance of spontaneous resistance to ciprofloxacin was used to
determine these rates since resistance results from a limited number of specific single nucleo-
tide changes in gyrA or parC [32, 33] and thus provides a good readout for observing spontane-
ous point mutations. As shown in Fig 2, the elimination of SpyCIM1 from SF370SmR caused a
reversal of both mutator phenotypes. Using a modified Luria and Delbrück fluctuation test, the
spontaneous mutation rate (mutations per generation) for parental strain SF370SmR was

Fig 1. Elimination of SpyCIM1 (ϕ370.4) from its host strain. A. The prophage-free attB region can be
amplified from a SpyCI-free M1 strain MGAS5005 and from SpyCIM1 cured strain CEM1Δ4, but not from the
parental SF370SmR strain, where this region is interrupted by the presence of the 13.5 kb chromosomal
island in the stationary phase cells. The arrow indicates the size of the expected 1361 bp PCR product
following the loss of SpyCIM1. Lane 1 is a no template PCR control.B. Probing of a Southern blot of HindIII
digested chromosomal DNA with amutS-mutL probe showed SF370SmR has an altered pattern due to the
presence of the integrated SpyCIM1 chromosome (indicated by the arrow), compared to CEM1Δ4, which has
an identical hybridization pattern with SpyCIM1-free strains MGAS5005 and K56. MW: Kilobase molecular
weight marker (Life Technologies, Grand Island, NY).

doi:10.1371/journal.pone.0145884.g001
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Fig 2. A. The loss of SPyCIM1 reverses of the mutator phenotype in SF370SmR. The rate of spontaneousmutation to ciprofloxacin resistance for
isogenic strains CEM1Δ4 (SpyCIM1-) and SF370SmR (SpyCIM1+) was determined by fluctuation test, and the rate of mutations per generation (μ)
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determined to be 1.6 X10-5, a value similar to our previous estimates [15, 16]. Elimination of
SpyCIM1 resulted in a 200-fold decrease in the mutation rate (Fig 2A), similar to S. pyogenes
strains lacking SpyCIM1, which ranged from 10−9 to 10−10 mutations per generation in our
previous studies [15, 16].

In similar fashion, the loss of SpyCIM1 resulted in an increased resistance to killing by UV
irradiation, reflecting the restoration of ruvA expression (Fig 2B). Comparing the survival of
CEM1Δ4 to SF370SmR shows that SF370SmR has between 102 and 103 fewer survivors in the
stationary phase for a given irradiation time. Interestingly, sporadic survivors were seen in
SF370SmR at higher cell dilutions but not in CEM1Δ4 following longer irradiation times (>1
min), perhaps resulting from the mutator phenotype of strain SF370SmR (Fig 2A). The appear-
ance of these isolated survivors in only the SpyCIM1+ strain, SF370SmR, was observed in every
replicate of this experiment (not shown). By contrast, no clear difference is seen between the
two strains at mid-logarithmic growth when SpyCIM1 is extrachromosomal. Interestingly,
mid-logarithmic SF370SmR cells appear more resistant to UV irradiation at the longer expo-
sures, a phenomenon that may be related to the global transcriptional changes described
below. However, at stationary phase the loss of ruvA function appears dominant and clearly
differentiates the phenotype of the two strains.

The lmrP gene is a member of the operon interrupted by the presence of SpyCIM1. The
encoded protein is a member of the major facilitator superfamily (MFS) of drug efflux proteins
and has a hydropathy profile that predicts LmrP to be an integral membrane protein with 12
transmembrane regions [36]. A homolog of this gene is found in Lactococcus lactis, providing
resistance to ethidium bromide and other antimicrobial compounds [37, 38]. Strains
SF370SmR and CEM1Δ4 were grown in the presence of increasing concentrations of EtBr (0 to
5 μM) over a 24-hour period, and cell growth was monitored by the absorbance of the culture
at 600 nm. In the absence of EtBr, both strains achieved>85% of the culture’s maximum den-
sity after 4 hours (Fig 3) and similar absolute culture densities (not shown). Similarly, neither
strain grew appreciably at concentrations of 5 μM EtBr. In the SpyCIM1-free strain CEM1Δ4,
the addition of EtBr up to 1.5 μM reduced the final density of the culture only by 10%, and
while 2.5 μM EtBr resulted in a substantial reduction in growth, the culture still achieved a den-
sity of 70% of the untreated cells. By contrast, when compared to CEM1Δ4, strain SF370SmR
showed a marked increase in sensitivity to EtBr. Treatment with 1.0 μM resulted in nearly 20%
growth reduction, and cultures treated with 2.5 μM achieved a 60% growth reduction com-
pared to untreated cells. Furthermore, the rate of growth of SF370SmR was markedly slowed
under these conditions, requiring over 12 hours to achieve maximum density. Thus, the
removal of SpyCIM1 from SF370SmR to allow constitutive expression of lmrP resulted in a
marked increase in resistance to EtBr.

In E. coli, two 3-methyladenine-DNA glycosylases are present in the genome, encoded by
alkA and tag [39]. These glycosylases are key components of base excision repair (BER), cor-
recting a variety of alkylated bases that might lead to mutations; as seen with the mutagen

was calculated. For each strain, 30 parallel cultures were established with ~1,000 CFU/culture, grown for 24 h at 37°C, and plated individually on
selective media. After 48 to 96 h of incubation, colonies were enumerated, andmutation rates with 95% confidence limits were calculated using
the maximum likelihood estimation technique as implemented by the program ft [27, 34, 35]. SpyCIM1-free strain CEM1Δ4 showed a 200-fold
reduction in the rate of spontaneousmutation as compared to SF370SmR. B. Enhanced resistance to UV irradiation following loss of SpyCIM1.
Ten-fold dilutions of strains SF370SmR and CEM1Δ4, which were growing in either logarithmic or stationary phase, were spotted onto an agar plate and
exposed to 254 nm UV light (120 μW/cm2) for 0 to 120 sec. At logarithmic phase, when SpyCIM1 is excised from the chromosome [15], there was little
difference in UV sensitivity between the strains. However, at stationary phase when SpyCIM1 is integrated intomutL, SpyCIM1 containing strain SF370SmR
showed >100-fold more killing than isogenic strain CEM1Δ4, which lacks this element and is consistent with the restoration of ruvA expression. The protocol
was performed in a darkened room to prevent photoreactivation. In the figure, the time in seconds (0–120) and the dilution factor of the cells are shown on the
x-axis and y-axis, respectively.

doi:10.1371/journal.pone.0145884.g002
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Fig 3. Resistance to ethidium bromide in S. pyogeneswith and without SpyCIM1. Strains SF370SmR (lower panel) and its SpyCIM1 cured derivative
CEM1Δ4 (upper panel) were grown at 37°C in THY broth with increasing concentrations of ethidium bromide (0, 1, 1.5, 2.5, and 5 μM). Each culture was
grown in ten replicates, and growth was monitored every 15 minutes for 24 hours by the absorbance of the cultures at 600 nm. The data is presented as
percentage of maximum growth observed for each strain without EtBr. Error bars, which were uniformly very small, are not shown for clarity of presentation.
The numbers by each line indicate the concentration (μM) of EtBr in each culture.

doi:10.1371/journal.pone.0145884.g003
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EMS, which alkylates the O6 of guanine, leading to the formation O6-methylguanine causing
G�C! A�T transitions [40, 41]. While no homolog has been identified in S. pyogenes to a
known Gram-negative or -positive 3-meA DNA glycosylase II (alkA), a homolog of tag is
located in the S. pyogenesMMR operon that would be controlled by SpyCIM1. Thus, the S. pyo-
genes tag gene product may play an essential role in the repair of alkylated bases, and its inhibi-
tion by SpyCIM1 could lead to an increased sensitivity to EMS or other DNA alkylating
mutagens, resulting in an increased appearance of spontaneous mutations. Strains SF370SmR
and CEM1Δ4 were treated with EMS to observe the appearance of chemically induced muta-
tions leading to ciprofloxacin resistance. As shown in Fig 4, elimination of SpyCIM1 results in
~3-fold decrease in the appearance of spontaneous ciprofloxacin resistance in strain CEM1Δ4
after EMS treatment. Remarkably, even in the absence of EMS, SF370SmR still produced a few
dozen spontaneous resistant mutants while CEM1Δ4 produced none. These studies show the
increased sensitivity to induced mutagenesis by alkylating agents as well as the general mutator
phenotype conferred by the presence of SpyCIM1.

SpyCIM1 alters global transcription patterns in S. pyogenes
The studies presented here as well as our previous work argue that the expression of the MMR
operon is controlled by the integrative state of SpyCIM1. Therefore, the global transcription
patterns of SF370SmR and CEM1Δ4 were determined to observe whether the SpyCIM1 molec-
ular switch might have an impact upon gene expression elsewhere in the S. pyogenes genome.
Overnight growth of the two strains in CDM at 37°C suggested that their cell surface properties
differed since SF370SmR had a “clumpy” phenotype (typical of high M protein surface expres-
sion) [42] while CEM1Δ4 did not (S2 Fig). RNA was isolated from SF370SmR and CEM1Δ4 at
the initiation of logarithmic growth (early log phase; EL) and again late in logarithmic growth
just before the cells entered stationary phase (late log phase; LL). High-throughput next genera-
tion RNA sequencing (RNA-Seq) was used to map and quantify the transcriptomes of these
strains at those growth stages (Fig 5, Table 2, and S2–S6 Tables). The expression of the MMR
operon was found to be the same in both strains at EL, in agreement with previous studies that
demonstrated that SpyCIM1 excises from the chromosome and replicates as an episome at this
time [15]. By LL the expression of the downstreamMMR operon genes were depressed in
SF370SmR by the re-integration of SpyCIM1, again in agreement with previous results. Analy-
sis of the transcripts identified by RNA-seq allowed construction of a transcriptional map of
SpyCIM1 (S4 Fig).

Surprisingly, the presence of SpyCIM1 correlates with global transcriptional changes in S.
pyogenes with genes showing differential basal expression in EL, LL, or both (Fig 5A, Table 2,
and S2 Table). While some of these global changes may be related to the differential expression
of the MMR operon, other changes must map directly back to SpyCIM1 since in EL strains
SF370SmR and CEM1Δ4 differ only by the presence or absence of the extrachromosomal form
of this chromosomal island. Several key virulence genes have altered expression in SF370SmR;
perhaps the most striking is the>11-fold higher expression of the major antiphagocytic M1
protein gene (emm1) in SF370SmR as compared to CEM1Δ4 in both EL and LL. The hyal-
uronic capsule operon (hasABC) is also more highly expressed in SF370SmR during EL as well
as the virulence operon encoding NADase (nga) and streptolysin O (slo). Other SF370SmR
genes were strongly depressed in EL as compared to CEM1Δ4, particularly the genes for the
homolog of the MFS antibiotic resistance pump norA [43] and for lactate oxidase (lctO). The
down-regulation of lctOmay promote survival in SF370SmR by preventing lethal self-intoxica-
tion by H2O2 production [44]. Interestingly, norA, although depressed in EL, is more highly
expressed in SF370SmR in LL. Inhibition of NAD-dependent malic enzyme MaeE has recently
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been linked to both S. pyogenes survival in low pH and to increased virulence [45], and this
gene has nearly a 10-fold LL reduction in SF370SmR. Many changes related to metabolic path-
ways are also observed in the transcriptome of SF370SmR. The mannose/fructose phospho-
transferase (PTS) operon (Spy1057-Spy1060) is down regulated in SF370SmR in EL, while an
oxalate:formate antiporter (Spy1392), which is another MFS efflux protein, is strongly down
regulated in LL (by ~27-fold). Many other metabolic changes are seen in SF370SmR, including
depression of purine metabolism; the details are presented in S3 and S4 Tables.

Transcriptional patterns of cells grown at 39°C were examined also (Fig 5B, Table 2 and S2
Table). This temperature was chosen to mimic alterations in transcription that might result
from growth in a febrile human. The M-protein (emm1) remained more highly expressed in
SF370SmR regardless of growth phase or culture temperature. Similarly, the capsule operon
(hasABC) remained more highly expressed in EL while L-lactate oxidase (lctO), the arginine
deiminase operon, the multidrug resistance protein norA homolog, and the 67 kDa myosin-
crossreactive streptococcal antigen were all decreased in expression in SF370SmR during EL at
either 37° or 39°C. Other genes were altered in expression in a temperature dependent fashion,
including several global transcriptional regulators. Transcriptional regulator Rgg3 has
increased expression at 37°C during late log growth but not at 39°C while RopB (Rgg1) and
ComR (Rgg4) are repressed by the presence SpyCIM1 in early log growth at 37°C and late log
growth at 39°C, respectively. The most dramatic shift in expression, however, occurs in the
gene for SpeB, which is increased over 140-fold in SF370SmR over CEM1Δ4 at 39°C in late log
cells; qRT-PCR from the same cDNA preparations confirmed this difference in expression
between the strains (S7 Table). To determine if this induction in speB expression was reproduc-
ible, three independent cultures of both strains were grown at 39°C, and samples were removed
for RNA isolation at EL and LL as before. An additional sample was taken one hour after LL.
The cDNA from these RNA samples were used as template for qRT-PCR to determine the
expression of speB and other genes showing differential expression (S8 Table). In agreement
with the RNA-seq data, this analysis confirmed the enhanced expression of speB as well as the
differential expression of nga, slo, norA, emm, and hasB (S8 Table). Taken together, these
results argue that SpyCIM1 encodes some mechanism that alters the transcription program of
SF370SmR in a way that extends beyond only regulation of the MMR operon.

Discussion
In these studies, we demonstrate how the elimination of SpyCIM1 from the chromosome of S.
pyogenes strain SF370SmR resulted in a decreased spontaneous mutation rate and increased
resistance to ethidium bromide, UV irradiation, and EMS mutagenesis, by allowing constitu-
tive expression of the MMR operon. Our previous studies relied on inference to demonstrate
the impact of SpyCIM1 on the host phenotype through the comparison of unrelated strepto-
coccal isolates [15, 16]. The present studies provide direct evidence for the SpyCIM1 associated
mutator phenotype using isogenic strains that differed only by the presence of this chromo-
somal island. Further, these studies show that elimination of SpyCIM1 alters global transcrip-
tion in the host streptococcus cell, and that these changes could potentially reduce virulence.
Thus, the data provide important new information on the emerging field of Gram-positive
phage-like chromosomal islands that alter the host bacterium’s phenotype.

Fig 4. SpyCIM1 enhances the appearance of mutants following EMS treatment. Strains SF370SmR and CEM1Δ4 were spread on media plates
containing ciprofloxacin (3 μg/ml). A paper disk containing either 15 ng EMS or sterile water was placed in the center of the plate, which was then incubated
overnight at 37°C. The appearance of ciprofloxacin resistant mutants was observed in strain SF370SmR, even in the absence of EMS treatment (bottom
right); under the same conditions strain CEM1Δ4 produced no resistant mutants (top right). Both strains produced ciprofloxacin resistant mutants following
EMS treatment, but SF370SmR (bottom left) produced >3X as many resistant colonies as did SpyCIM1-free CEM1Δ4 (top left).

doi:10.1371/journal.pone.0145884.g004
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Fig 5. Elimination of SpyCIM1 alters global transcription patterns.RNA was isolated from SF370SmR or
CEM1Δ4 at the onset of logarithmic growth (Early Log) or immediately before the cells entered stationary
phase (Late Log); the cells were either grown at 37°C (panel A) or 39°C (panel B). Samples were then
analyzed by RNA sequencing (RNA-Seq). In the ratio of gene expression from SF370SmR compared to
CEM1Δ4 for values greater than 3 or less than -3 are plotted against the corresponding gene identification
number from the SF370SmR annotation [1]. The MMR operon showed that no difference in expression was
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The chromosomal island SpyCIM1 is a dynamically active phage-like element that alter-
nates between chromosomal and episomal states, which mediates phenotypic changes upon

observed between the strains during early log phase but that the transcription of these genes was inhibited in
SF370SmR at late log phase, in agreement with previous studies [15]; an expanded view of this region is
shown in S3 Fig. Notable genes whose expression was altered in SF370SmR or CEM1Δ4 are identified. The
ticks on the X-axis mark every 500 genes. Legend: Act–acetate CoA-transferase operon; act–
acetyltransferase Spy154; adhA–alcohol dehydrogenase; citM—Mg2+/citrate complex transporter; cspR -
23S rRNAmethyltransferase; CT- conserved transmembrane protein Spy0169; dap—diaminopimelate
epimerase; emm1 –M protein; glfP—glycerol uptake facilitator; grab—protein G-like alpha2-macroglobulin-
binding protein; has–hyaluronic acid capsule operon; His–histidine catabolism operon; Hyp–gene encoding a
protein of unknown function; lctO–lactate oxidase; MFS–uncharacterized major facilitator family protein
(Spy1392); MMR–MMR operon; ϕMTP–phage major tail protein; norA—antibiotic resistance protein NorA;
Nuc–nucleotide interconversions operon; pbuG—guanine-hypoxanthine permease; pncA—pyrazinamidase/
nicotinamidase; prtS—cell envelope proteinase PrtS; PTS—mannose/fructose PTS system operon; pur–
purine biosynthesis operon; sclA—collagen-like surface protein SclA; slo–streptolysin O operon; SpyCIM1 –

phage-like CI. The identification of the SpyCIM1 genes is described in S1 Fig and S1 Table.

doi:10.1371/journal.pone.0145884.g005

Table 2. Notable genes or operons whose transcription are altered by the presence of SpyCIM1. The numbers in parenthesis are the fold induction or
repression in transcription of strain SF370SmR as compared to CEM1Δ4. For operons, the induction or repression is the average fold change for the affected
genes. A likelihood ratio test was used to calculate the ratio of SF370SmR RNA to CEM1Δ4 RNA for each gene in the SF370 Genbank annotation. A Benja-
mini and Hochberg correction was applied to the data using the software package GeneSifter. Ratios greater than 3 or less than -3 are reported. Data are
taken from S2 Table.

Early Logarithmic Late Logarithmic

37°C 39°C 37°C 39°C

Induced1 M-protein (+11.1) M-protein (+11.4) M-protein (+12.2) M-protein (+5.0)

Capsule operon HasABC (+6) Capsule operon HasABC (+3) Major facilitator family
protein NorA (+3.1)

Protease SpeB (+143.9)

Collagen-like surface protein SclA
(+4.9)

Transcriptional regulator
Rgg3 (+3.8)

Streptolysin O operon (+3.0)

Chemokine protease ScpC (C5a
peptidase family) (+5.0)

Early Logarithmic Late Logarithmic

37°C 39°C 37°C 39°C

Repressed Arginine deiminase operon (-10.1) Arginine deiminase operon (-4.9) Purine biosynthesis
operon (-7.0)

Purine biosynthesis operon (-4.7)

67 kDa Myosin-crossreactive
streptococcal antigen (-5.3)

67 kDa Myosin-crossreactive
streptococcal antigen (-3.2)

Guanine-hypoxanthine
permease (-33)

Guanine-hypoxanthine permease
(-11)

L-lactate oxidase LctO (-24.3) L-lactate oxidase LctO (-15.9) Acetate CoA-transferase
operon (-14.5)

Capsule operon HasABC (-6)

Multidrug resistance protein NorA
homolog (-18.5)

Multidrug resistance protein NorA
homolog (-6.8)

Malic enzyme (MaeE)
(-9.8)

Smf family DNA processing
protein (-15)

Thioesterase family protein Spy1339
(-9)

Thioesterase family protein
Spy1339 (-38)

Nicotinate-nucleotide
pyrophosphorylase (-12)

Transcriptional regulator RopB/Rgg1
(-3.6)

D-lactate dehydrogenase (-5.2) Transcriptional regulator ComR
(Rgg4) (-4.1)

Alcohol dehydrogenase (-11.9) Histidine catabolism operon (-13) Ferrichrome ABC transporter
permease operon (-7.4)

ComYA (-5.9)

Protein G-like alpha 2M-binding
protein (GRAB) (-9)

PTS system mannose/fructose
family transporter operon (-18)

Acetyltransferase Spy1546 (-26)

doi:10.1371/journal.pone.0145884.t002
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the host bacterium. The penetrance of these phenotypes reflects the relative proportion of the
population that has SpyCIM1 in the excised or integrated form. Therefore, an observed pheno-
type might vary over time as environmental or physiological conditions could favor the inte-
grated or episomal state of SpyCIM1. An example of such changes was illustrated in Fig 4,
where the resistance to UV irradiation was essentially the same in cells having or lacking Spy-
CIM1 during logarithmic growth when SpyCIM1 was episomal. However, a distinct phenotype
became apparent when the cells were in stationary phase and SpyCIM1 was integrated into the
bacterial chromosome. It is probable that SpyCIM1 mobilization during normal cell division
results from an event that is linked to the cell cycle, but the process also appears to be inducible
by DNA damage since mitomycin C treatment promotes SpyCIM1 excision [15]. Little is
known about the details of SOS repair and its induction in S. pyogenes; indeed, no homolog of
LexA is readily identifiable. Therefore, the molecular control of SpyCIM1 mobilization either
triggered by SOS repair or by normal growth remains to be discovered.

Global transcriptional analysis showed the basal expression of numerous genes is altered by
the presence of SpyCIM1. While notable differences could be seen between SF370SmR and
CEM1Δ4 in both EL and LL cultures, the role of SpyCIM1 is clearly evident in the EL compari-
sons when the two strains differ only by the presence of the extrachromosomal chromosomal
island in SF370SmR (Fig 5 and S2 Table). Thus, the transcriptional differences in EL do not
result from transcriptional inhibition of the MMR operon but from the presence of SpyCIM1
encoded gene products in the cell.

The global gene expression changes associated with SpyCIM1 appear to either occur inde-
pendently of target subsets of known S. pyogenes regulatory networks. For example, the Mga
regulon includes a number of virulence genes such as the M protein (emm1), C5a peptidase
(scpA), secreted inhibitor of complement (sic) and streptococcal collagen-like protein (scl1/
sclA) [46]. In EL, the expression of the emm1 is 11-fold and sclA ~5-fold higher in SF370SmR,
respectively, as compared to CEM1Δ4. By contrast, the C5a peptidase and Sic mRNAs are
expressed equally in both strains, as is the expression of Mga itself. Therefore, the differences in
gene expression seen between the two strains appears to step outside of the characterized regu-
latory networks in group A streptococci [46], suggesting that some SpyCIM1 encoded factor is
responsible. SpyCIM1 contains a number of genes encoding proteins with a predicted helix-
turn-helix (HTH) structure (S1 Table). The HTH products of genes Spy2125 and Spy2126
probably function as the repressor and antirepressor for SpyCIM1 integration and excision,
given their position and orientation in the genome that is analogous to the lysogeny module of
many prophages; however, there are other SpyCIM1 genes encoding HTH proteins (Spy2127,
Spy2134, and Spy2145) whose biological role is currently unknown. Mga binding sites are
reported to be diverse, having only 13.4% identity [47], and so some other DNA binding pro-
teins such as the ones encoded by SpyCIM1 could potentially target only a sub-set of this
regulon.

Many of these transcriptional changes may enhance virulence or survival. The increase in M
protein and capsule expression would be antiphagocytic while the repression of arginine deimi-
nase [48] and L-lactate oxidase [44, 49] at 37°C in EL may enhance virulence or prevent autoin-
toxication by hydrogen peroxide production, respectively. The expression of the exotoxin SpeB
is influenced by a number of S. pyogenes transcriptional regulators [50], and so, it is not sur-
prising that it and its co-transcribed genes are stimulated in expression under some conditions
(LL and 39°C), although the degree of induction seen was striking (>140-fold in SF370SmR as
compared to CEM1Δ4; Table 2); qRT-PCR confirmed this difference in expression from identi-
cal samples between the strains (S7 Table). This induction is specific for 39°C since no differ-
ences in expression between the two strains was observed for SpeB at 37°C. Further, while the
degree of induction was not as high as in the original experiment, growth of replicate cultures
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of both strains at 39°C confirmed the enhanced expression of speB (average fold induction in
SF370SmR over CEM1Δ4 = 18.3 ± 11.9), and the differential expression of the other genes ana-
lyzed (S8 Table). Since it has been demonstrated previously that the induction of speB is sensi-
tive to the growth state of the cell as well as environmental conditions [51–53], it is possible
that SpyCIM1, either directly or indirectly, alters the timing of speB expression in LL at 39°C,
leading to earlier expression of the gene in SF370SmR. Sampling of RNA from these cultures
one hour later eliminates this difference, and indeed, CEM1Δ4 has about a ~2 fold greater
expression of speB by this stage of growth (S8 Table). Future studies will be needed to clarify
the differences in kinetics of speB expression between SF370SmR and CEM1Δ4 in fine detail.

In E. coli, it has been reported that select RNA chaperones and a cold shock protein are
overexpressed to compensate for a mutator phenotype [54]. None of the potential DEAD
box helicase RNA chaperones (Spy0288, Spy1369, Spy1659, Spy1837, and Spy1415) were
altered in expression by the loss of SpyCIM1; however, cold-inducible RNA chaperone and
antiterminator protein Csp (Spy2077) was inhibited 5.5-fold in SF370SmR at 39°C in LL. Thus,
the inhibition of Csp may further enhance the SpyCIM1-associated mutator under these condi-
tions. These shifts in gene expression, which appear to cut across a number of known regula-
tory networks, may improve fitness of the SpyCIM1 host cell. The potential benefits to a host
bacterium following phage toxigenic conversion have been proposed many times [55–58], but
the lack of such an identifiable virulence factor in SpyCIM1 led to the suggestion that it was a
prophage remnant [1, 14]. While homologs of SpyCIM1 have been frequently observed in sub-
sequent S. pyogenes genomes, their descriptions as a nonfunctional cryptic element remained
until their role in regulating the MMR operon was discovered [15]. The results presented here
argue that the impact of SpyCI on streptococcal survival and virulence extends well beyond
controlling this operon.

Several qualifications must be considered in interpreting the transcriptional analysis data.
The populations of cells are not synchronous so many differences seen may be the average
expression of genes from cells that may be in different stages of growth; this situation is partic-
ularly important in SF370SmR where the population is undoubtedly a mixture of cells having
the integrated or episomal form of SpyCIM1 [15]. Further, the altered expression of some
genes may not be a direct result of some SpyCIM1-encoded gene product but result from the
altered expression of some other host gene or regulatory network by the chromosomal island.
Other differences in expression between cells grown at 37°C or 39°C may be due to enhanced
or accelerated mRNA turnover at the higher temperature. Some changes, however, must map
to altered promoter function caused either by a SpyCIM1 encoded product (protein or RNA)
or perturbation of some S. pyogenes regulatory network.

Altered expression was observed in some genes encoding known regulatory proteins, which
could contribute to the differing phenotypes. Comparing the expression of SF370SmR to
CEM1Δ4, ropB (rgg1; Spy2042) was inhibited>3X at 37°C and EL, rgg3 (Spy0533 [20]) was
increased>4X at 37°C and LL, and comR (rgg4; Spy0037) was inhibited>4X at 39°C and LL.
Interestingly, the RNA-seq data showed that RofA-like gene ralp3 [59], which has a frameshift
in SF370SmR, was expressed as a truncated transcript encoding amino acids 411 through 461
of the complete protein; the significance of this expression is unknown. Some of these shifts in
regulation may influence horizontal transfer in group A streptococci. Although our under-
standing of group A streptococcal transformation is at an early stage [60], the inhibition of
ComR (Rgg4) expression in SF370SmR at 39°C and LL might inhibit both competence and bio-
film formation as recently demonstrated [60]. Perhaps related to controlling horizontal trans-
fer, the Smf family DNA processing protein/DNA polymerase sliding clamp subunit (Spy1163)
is also inhibited under the same conditions, and this protein functions as a transformation-
dedicated DNA loader for RecA in S. pneumoniae [61]. Genes ComEC and ComEA, encoding
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homologs of the DNA translocation machinery channel protein in S. pneumoniae [62] are sim-
ilarly inhibited by these conditions. Since Marks and coworkers found that group A streptococ-
cal competence was highest at 34°C and decreased when the temperature was raised to 37°C
[60], it is perhaps not surprising that a further increase to 39°C would down-regulate any asso-
ciated genes. However, our transcriptional studies show that the presence of SpyCIM1 appears
to enhance this limitation to horizontal transfer at elevated temperatures.

The regulation of the gene expression in Gram-positive bacteria by small, phage-like chro-
mosomal islands is an emerging theme in prokaryotic biology [18, 63], and the examples that
have been identified so far modify host cell function in a variety of ways from toxigenic conver-
sion to gene regulation. We have shown here the direct impact SpyCIM1 has upon the expres-
sion of the MMR operon in S. pyogenes, but many questions concerning this system remain to
be answered. For example, the activation of SpyCIM1 excision appears to be linked to the onset
of cell division [15], but the cellular signals that trigger this event as well as the subsequent
molecular decision to re-integrate intomutL remain unidentified. However, the most interest-
ing field for exploration is how SpyCI promotes host fitness or survival, particularly in natural
human infections. The acquisition of a mutator phenotype appears to increase bacterial viru-
lence under some circumstances as a recent study of base excision repair mutants in Streptococ-
cus mutans demonstrated [64]. The dynamic nature of this chromosomal island may prove to
be an essential component of its relationship with S. pyogenes. Since MMR deficient strains are
frequently found in many bacterial species, it might be inferred that inactivation of this repair
system alone should not destabilize a cell. However, the one example we have of a defective and
permanently integrated SpyCI (in the M5 genome strain Manfredo) did not result in silencing
the MMR operon but rather demonstrated rescue of the operon through the evolution of a
cryptic promoter within the chromosomal island remnant [16]. This result suggests that
rounds of MMR operon expression and silencing may prove to have strong selective value,
allowing a phenotypic flexibility that is unobtainable with simple gene inactivation through
mutation. Thus, the dynamic control of this repair system by SpyCIM1 is an ideal method for
achieving the mutator phenotype while minimizing the risks associated with long-term
hypermutability.

In spite of decades of antibiotic therapy, S. pyogenes has shown a remarkable ability to main-
tain its niche as a major human pathogen; it has the ability to infect, colonize, and rapidly
adapt to multiple environments in the human body with different tissue tropisms, while peri-
odically producing novel strains associated with severe disease outbreaks. The novel, switchable
mutator phenotype coupled with global transcriptional changes conferred by the SpyCI ele-
ment may prove to be an important factor contributing to the adaptability and the evolutionary
robustness of this pathogen.

Supporting Information
S1 Fig. Model of SpyCIM1 regulation of the MMR operon in strain SF370. Phage-like chro-
mosomal island SpyCIM1 regulates the expression of an operon containing genesmutL, lmrP,
ruvA, and tag in response to cell growth [15, 16]. The presence of an integrated SpyCIM1
results in the cells adopting a mutator phenotype with regard to DNA mismatch repair
(MMR), multiple drug efflux, Holliday junction resolution, and base excision repair. In early
logarithmic phase, SpyCIM1 excises from the SF370 chromosome, restoring expression of
mutL and the downstream genes (insert). As the cells approach stationary phase, SpyCIM1 re-
integrates intomutL, silencing gene expression. This process of SpyCIM1 excision and integra-
tion causes the cells to alternate between a wild type and mutator phenotype. In the figure,
transcriptionally active MMR operon genes are black while inactive ones are gray. The
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identification and potential function of the SpyCIM1 genes are detailed in S1 Table). Adapted
from Nguyen and Scott [63], and used by permission.
(TIF)

S2 Fig. Clumping phenotype of SF370SmR following growth in CDM. Strains SF370SmR
and CEM1Δ4 were grown overnight at 37°C in CDM. Gentle shaking was used to simulta-
neously disperse each cell pellet, showing that SF370SmR had a clumping phenotype that
CEM1Δ4 lacked. The cultures were streaked on blood agar to confirm that both were pure cul-
tures of each starting strain.
(TIF)

S3 Fig. Expanded view of SpyCIM1 and MMR operon RNA-seq transcription patterns at
37° and 39°C. The data are taken from Fig 5. The first gene in the MMR operon,mutS, is not
shown since no differences in transcription were ever observed between SF370SmR and
CEM1Δ4. Only differences in transcription� ±3-fold are shown.
(TIF)

S4 Fig. Transcriptional map of SpyCIM1. Transcriptome analysis of mRNA from SF370SmR
allowed prediction of the messages encoded by SpyCIM1, including probable polycistronic
ones. The genetic map of SpyCIM1 is shown flanked by the MMR operon genes. Row A below
the genetic map shows the predicted mRNAs that match genes in the SF370SmR annotation.
Row B shows small RNAs that were detected by RNA-Seq but which are not included in the
Genbank annotation. The small RNA immediately upstream of the intmRNA encodes a small
peptide with a transmembrane domain. Prediction was accomplished using the software pack-
age Rockhopper [31].
(TIF)

S1 Table. The identification and probable function of SpyCIM1 ORFs. The protein IDs
refer to the ORF numbers in the published SF370 genome [1]. Products are predicted by
BLASTP homology of the encoded proteins to GenBank entries. Several additional ORFs have
been identified since the original annotation was prepared.
(PDF)

S2 Table. Transcriptome analysis of CEM1Δ4 compared to SF370SmR at early log (EL) and
late log (LL) growth phases. A likelihood ratio test was used to calculate the ratio of
SF370SmR RNA to CEM1Δ4 RNA for each gene in the SF370 Genbank annotation. A Benja-
mini and Hochberg correction was applied to the data using the software package GeneSifter.
Ratios greater than 3 or less than -3 are reported and were used to create the plot in Fig 5.
(PDF)

S3 Table. KEGGS analysis of the early log phase (EL) transcriptome comparison between
CEM1Δ4 and SF370SmR grown at 37°C. The analysis was done using GeneSifter as above.
(PDF)

S4 Table. KEGGS analysis of the late log phase (LL) transcriptome comparison between
CEM1Δ4 and SF370SmR grown at 37°C. The analysis was done using GeneSifter as above.
(PDF)

S5 Table. KEGGS analysis of the early log phase (EL) transcriptome comparison between
CEM1Δ4 and SF370SmR grown at 39°C. The analysis was done using GeneSifter as above.
(PDF)
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S6 Table. KEGGS analysis of the late log phase (LL) transcriptome comparison between
CEM1Δ4 and SF370SmR grown at 39°C. The analysis was done using GeneSifter as above.
(PDF)

S7 Table. Quantitative real-time PCR (qRT-PCR) validation of RNA-seq transcriptional
analysis. The cDNA preparations used for RNA-seq analysis were analyzed by qRT-PCR for
comparing the expression of nga, slo, norA, emm1, speB, and hasB in SF370SmR to CEM1Δ4 as
described in the Methods.
(PDF)

S8 Table. Reproducibility of gene expression differences between SF370SmR and CEM1Δ4
at 39°C. Three independent cultures of SF370SmR and of CEM1Δ4 were grown at 39°C; sam-
ples were harvested for RNA isolation when the culture density (A600 nm) was 0.2 (EL) and
again when the density was 0.5 (LL). An addition sample was harvested one-hour post LL (Sta-
tionary). After conversion of the RNA to cDNA, qRT-PCR was used to compare expression
levels of the listed genes between SF370SmR and CEM1Δ4. Values are the average and standard
deviation of the fold-difference between the two stains.
(PDF)
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