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Abstract
Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy.

We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC)

marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker

for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive prop-

erties, whereas its radioprotective property has not been studied. The aim of this study was

to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem

cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a

6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before

TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to

TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival

respectively. Animals were also subjected to overall survival studies following TBI. In pre-

IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold

increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased

expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin

treated mice compared to controls. We also observed increased survival of mice treated

with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; pre-

vents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ulti-

mately promotes overall survival. Given the anti-cancer activity of pectin, our data support a

potential role for dietary pectin as an agent that can be administered to patients receiving

radiation therapy to protect against radiation-induces mucositis.
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Introduction
Radiotherapy is one of the three major treatment modalities used to eradicate malignant solid
tumors. When ionizing radiation (IR) is used to treat abdominal and pelvic tumors, severe side
effects (largely due to gut mucosal damage) are common. The resultant mucosal ulceration
(mucositis), pain, and related sequel are a cause of significant morbidity [1]. Gastrointestinal
mucositis results in symptoms, which include: nausea and vomiting; pain; diarrhea; constipa-
tion; increased frequency and urgency of defecation; and rectal bleeding [2, 3]. It affects
between 40% and 100% of patients undergoing treatment for their cancer, causing distress,
debilitation, and occasionally death [1, 4, 5]. Massive intestinal crypt loss results in an extensive
breakdown of the gut mucosal barrier. Because IR also impairs the bone marrow-derived
immune response, susceptibility to overwhelming infection causes significant morbidity and
mortality. Prevention or treatment of radiotherapy-induced adverse effects would improve
quality of life for patients and perhaps increase cancer curability by allowing for more intense
therapies [6].

The adult intestinal epithelium is continuously and rapidly replaced by cell replication
within the crypts of Lieberkühn, and subsequent migration of their progeny takes place onto
the villus epithelium in the small intestine, or onto the surface epithelium in the colon [7, 8].
Doublecortin-like kinase 1 (Dclk1), is a microtubule associated protein kinase, that is pre-
dominantly expressed in quiescent cell populations at the +4 location of the intestinal crypt,
and occasionally in crypt based columnar cells [9, 10]. Dclk1 is also expressed on villus epi-
thelial cells and has recently been shown to mark Tuft/Brush cells [11, 12]. While their precise
role is uncertain, recent publications have implicated Tuft/Brush cells in chemosensing
through taste transduction-related proteins [11, 13]. Crypt Dclk1+ cells did not undergo apo-
ptosis in the intestine at 6 h following 6 Gy total body IR (TBI) based on histological observa-
tion and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. It
was further demonstrated that at 24h post 6 Gy IR, Dclk1+ cells underwent apoptosis and
mitosis within the intestinal crypt region [9]. These data suggest that the 24h time point may
be an ideal time point to assess the effects of IR on Tuft/brush cell deletion. Furthermore,
although surviving Dclk1+ cells underwent mitosis 24h, 7 and 10 days post-IR, the cells
retained BrdUrd labeling at the +4 position in the intestinal crypt, indicating that they under-
went proliferation at least once following IR-induced injury [10]. These data suggest that
Dclk1+ cells may act as rescue or reserve stem cells upon high-dose IR. Recently, we have
demonstrated that mice with intestinal and colonic specific knockout of Dclk1 had an
impaired regenerative response following high-dose TBI [14]. Dclk1 knockout mice died
early compared to wild type littermates [14].

Agents given before the radiation treatments are termed radioprotectors, where as agents
given after treatment are termed radiation mitigators [15]. Pectin is a highly-complex branched
polysaccharide fiber, rich in galactoside residues and present in all plant cell walls [16]. A
reduction in the growth of colon tumors implanted in mice after oral administration of pectin
has been demonstrated [17]. However, the role of pectin as a radioprotector and its effect on
stem cell survival has not been studied in detail.

Here, we report that dietary citrus pectin is a radioprotective agent, prevents IR-induced
deletion of ISCs, facilitates crypt regeneration, and promotes overall animal survival. Fur-
thermore, we observed increased expression of ISC-related genes Dclk1, Notch1, Lgr5, Bmi1,
and Msi1 in the small intestine of mice treated with pectin compared to control animals,
indicating their potential involvement role in the ISC niche response following radiation
injury.
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Materials and Methods

Experimental animals
Six to eight-week-old female C57BL/6 mice (The Jackson Laboratory, Bar Harbor, ME) were
used in the experiments. Mice were housed under controlled conditions, including a 12-h
light-dark cycle, with ad libitum access to food and water. This study was carried out in strict
accordance with the recommendations in the Guide for the Care and Use of Laboratory Ani-
mals of the National Institutes of Health. The protocol was approved by the Committee on the
Ethics of Animal Experiments—Institutional Animal Care and Use Committee (IACUC), the
University of Oklahoma Health Sciences Center (protocol # 12-104-H). Animals were caged
together in a Hepa filter topped cages to prevent infection, easy access to water and food, and
all efforts were made to minimize suffering.

Pectin treatment
For the ‘pre-IR’ experiments, adult C57BL/6 mice were placed on a 6% citrus pectin diet
(TD.97202) [18] (Harlan Laboratories Inc., USA) with additional 0.5% pectin (Sigma-Aldrich,
St. Louis, MO) in their drinking water for one week prior to IR. For ‘post-IR’ experiments,
mice were placed on pectin diet and pectin water immediately after the IR treatments. Control
animals received control diet (control diet had similar ingredients to that of pectin diet, but
lacking pectin) (TD.97201) (Harlan Laboratories Inc., USA) and normal drinking water. All
the animals in the pectin groups (pre-IR and post-IR) received pectin diet and pectin water
until euthanasia or death.

Gamma Radiation
Mice were exposed to TBI 14 Gy gamma ionizing radiation (IR) with air pumped into the
chamber during exposure. A Gammacell 40 137Cs gamma irradiator was used with a dose rate
of 0.8 Gy IR per minute. Dosimetry measurements were performed using Fricke Dosimetry
systems. Measured absorbance dose was: Central Dose Rate (0.790 Gy/min ± 2.9%); 3 o’clock
position (0.804 Gy/min ± 3.8%); and 7 o’clock position (0.808 Gy/min ± 2.7%). The experi-
ments were performed within 6 months of the dosimetry analysis. All IR treatments were
begun in the morning. Animals in pectin group continued to receive pectin post-IR. Two hours
before euthanasia, each mouse was intraperitoneally injected with 5-bromo-2’-deoxyuridine
(BrdUrd, Sigma Aldrich, St. Louis, MO, 200 μl of 5 mg/ml BrdUrd solution in PBS). The exper-
imental design is schematically presented in Fig 1 [9, 10].

Immunohistochemistry
Heat-induced epitope retrieval was performed on 4-μm formalin-fixed, paraffin-embedded
sections utilizing a pressurized Decloaking Chamber (Biocare Medical LLC, Concord, CA) in
citrate buffer (pH 6.0) at 99°C for 18 min. Slides were incubated in 3% hydrogen peroxide at
room temperature for 10 minutes. After incubation with primary antibody (anti-Dclk1 c-ter-
minal ab31704, 1:8000 dilution or anti-BrdUrd ab6326, 1:300 dilution [Abcam, Cambridge,
MA]) overnight at 4°C, slides were incubated in Promark peroxidase-conjugated polymer
detection system (Biocare Medical LLC) for 30 min at room temperature. After washing, slides
were devolved with Diaminobenzidine (Sigma—Aldrich) [9, 10]. Slides were examined on the
Nikon Eclipse Ti motorized microscope paired with the DS-Fi2 color digital cameras utilizing
DIC enhanced PlanApo objectives operated by the NIS-Elements Microscope Imaging Soft-
ware platform (Nikon Instruments, Melville, NY).
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Microcolony assay
Following the IR treatment, animals were euthanized at 3.5d (84h). The whole intestine was
fixed and distal jejunum was subjected to BrdUrd immunostaining. The number and width of
surviving crypts in the intestine were measured. A surviving crypt was defined as containing
five or more adjacent, BrdUrd-positive nuclei [10]. The circumference of a transverse section
of intestine was used as a unit of length, and the number of crypts in each circumference was

Fig 1. Schematic presentation of experimental design.C57BL/6 mice in the control group (A) or the pectin treated group (B) were fed with control or
pectin diet 168h prior to 14 Gy TBI (n = 3 in each group). One set of mice were euthanized at 24h post-IR for IHC and mRNA analysis. A second set were
given BrdUrd at 82h post-IR and then euthanized at 84h for the microcolony assay. The final set of mice was subjected to overall animal survival studies up to
288h post-IR—times of death were noted.

doi:10.1371/journal.pone.0135561.g001
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recorded. Ten circumferences per mouse (0.5 to 1 cm apart) and three mice per experimental
group were assessed [10]. All the 30 cross-sections were averaged together and represented.

Animal survival study
Following the IR treatment mice in the pre-IR pectin and post-IR pectin groups were kept on
pectin diet and pectin water and mice in control group were kept on normal diet and water and
monitored for survival (n = 6 in each group). An animal was considered to be in distress if it
experiences any one of the following: loss of 25% or more body weight, unthriftness (inability
to walk, run, eat or drink properly) due to injury or becomes moribund or lethargic, were
euthanized immediately. Those mice displaying bloody stools, wounds, or any other symptoms
that affect posture or appear to be uncomfortable was euthanized immediately. Death is not
the endpoint of the study and no surgeries were performed.

For euthanasia mice were given CO2 from gas compressed in cylinders. Death was con-
firmed by physical examination, ensured by an adjunctive physical method such as thoracot-
omy or cervical dislocation.

To minimize the sufferings, all the animals had easy access to food and water, were moni-
tored every 6–8 hours, and weighted everyday. Overall survival was defined as the time interval
between the completion of IR and the final euthanasia.

Real-time polymerase chain reaction (RT-PCR) analyses
Total RNA isolated from mouse intestines (24h post-IR) (n = 3 per group and one sample per
mouse) was subjected to reverse transcription with Superscript II RNase H—Reverse Tran-
scriptase and random hexanucleotide primers. The complimentary DNA (cDNA) was subse-
quently used to perform real-time (RT) reverse transcriptase-PCR by SYBR chemistry using
gene specific primers and JumpStart Taq DNA polymerase (Sigma-Aldrich, St. Louis, MO).
The data was normalized with β-actin. The changes in mRNA were expressed as fold change
relative to control with ± SEM value (� p< 0.01) [19–22]

The following primers were used:

β-actin:. forward: 5'-GGTGATCCACATCTGCTGGAA-3',
reverse: 5'-ATCATTGCTCCTCCTCAGGG-3';

Dclk1:. forward: 5'- CAGCAACCAGGAATGTATTGGA -3',
reverse: 5'- CTCAACTCGGAATCGGAAGACT-3';

Msi1:. forward: 5’-CAGTTTCGGACCTATCTCTGAGGT-3’
reverse: 5’-AAGGTGATGAAACCAAAACCCCT-3’

Notch1:. forward: 5'-CGGGTCCACCAGTTTGAATG-3',
reverse: 5'-GTTGTATTGGTTCGGCACCAT-3'.

Lgr5:. forward: 5’-CAGTTTCGGACCTATCTCTGAGGT-3’
reverse: 5’-AAGGTGATGAAACCAAAACCCCT-3’

Bmi1:. forward: 5'-CGGGTCCACCAGTTTGAATG-3',
reverse: 5'-GTTGTATTGGTTCGGCACCAT-3'.
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Statistical analysis
Real-time PCR Data was analyzed using the Student’s t test for comparison of mean values
between groups. Results were reported as average ± SEM.

Since survival time was observed in every mouse (i.e., no censoring), side-by-side box plots
were generated to graphically present the data. Median survival time and its 95% confidence
interval (CI) for mice in Pectin and control groups were reported. These survival data were also
summarized using the Kaplan-Meier curves and compared based on the log-rank test. The SAS
software (version 9.3, Cary NC) was used for analyzing the survival data.

A two-sided p-value of< 0.05 defines statistical significance.

Results

Pectin increases crypt survival following IR injury
To investigate the effects of dietary pectin on radiation-induced ISC/crypt survival, we fed
C57BL/6 mice with pectin diet for one week before subjecting them to 14 Gy TBI (n = 3). A
schematic representation of the experimental design is provided in Fig 1. We observed an aver-
age of 1.48 surviving crypts per cross section in mice treated with IR alone (Fig 2A, 2B and 2E).
In the pectin-pretreated animals, we observed a 4.5-fold increase in surviving crypts (7.88
crypts) per cross section (Fig 2B, 2D and 2E). Whereas in the pectin-posttreatment experiment,
we did not observe any differences in the number of surviving crypts between the pectin-post-
treated and control animals (data not shown).

Pectin treatment increases animal survival following IR injury
Pre-IR pectin treatment. C57BL/6 mice (n = 6) on control diet died at an average of 6.7

days (with a median value of 7 days and 95% CI = 5–7.5 days) after treatment, whereas mice
(n = 6) pretreated with pectin diet on average lived beyond 10 days (with a median value of 10
days and 95% CI = 9–12 days) post-14 Gy IR (Fig 3A, 3B and 3E). We observed a significant
difference (logrank p = 0.0008) in the survival curve of control and pectin-treated animals
(Fig 3A).

Post-IR pectin treatment. To demonstrate the effect of post-IR pectin treatment, animals
were initially treated with 14 Gy TBI and fed with control (n = 6) or pectin (n = 6) diet (S1 Fig).
Mice on control diet died at an average of 5.5 days (with a median value of 5.5 days and 95%
CI = 5–6 days) after radiation, whereas mice treated with pectin diet died at an average of 6.5
days (with a median value of 6.5 days and 95% CI = 6–7 days) post-14 Gy IR (Fig 3C, 3D and
3E). This difference in survival rates was statistically significant (logrank p = 0.0178) (Fig 3C).

Pectin protects ISCs following radiation injury
In order to demonstrate whether ISCs are protected and are responsible for the increased crypt
and overall survival of mice pretreated with pectin, we performed mRNA and protein analysis
of genes that are known to play an important role in stem cells. Results from our previous stud-
ies demonstrated that the number of Dclk1+ stem cells at 24h post-IR is an indicator of surviv-
ing crypts at 84h post-IR [22]. We used Dclk1 as the ISC marker. Previously, we demonstrated
that Dclk1+ cells undergo apoptosis at 24h post-high dose IR. Control and pectin-treated ani-
mals were euthanized at 24h post-IR. Intestines were then fixed and subjected to Dclk1 immu-
nostaining. In the IR-treated group, we observed an average of 6.6 Dclk1+ stem cells per cross
section (counted 10 cross sections per mouse and 3 mice in each group) (Fig 4A and 4C). The
pectin pre-treatment group had a nearly two-fold increase in crypt Dclk1+ stem cells (11.3 cells
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Fig 2. Treatment with pectin increased the number of surviving crypts 84h post-IR.C57BL/6 mice in the control group (A, B) or the pectin-treated group
(C, D) were subjected to TBI (n = 3 in each group). 82 h post-IR, these mice were injected with BrdUrd, then euthanized at 84h post-IR. The small intestines
were isolated, fixed, and processed. The presence of five to six BrdUrd positive cells grouped together indicated surviving crypts. Panel B is the high-
powered magnified images of the panel A and panel D is the high-powered image of panel C. The average number of surviving crypts per cross section was
counted for total of 30 cross sections and is presented in panel C. The values in the bar graph are given as average ± SEM and * denotes statistically-
significant differences (*p<0.01) compared to control.

doi:10.1371/journal.pone.0135561.g002
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Fig 3. Pectin delays radiation-induced death in mice. (A and B) Pre-IR pectin treatment: C57BL/6 mice were pretreated with either control or pectin diet
for one week prior to 14 Gy IR injury (n = 6 in each group). Overall survival of the animals is represented in the graph and the overall survival rate is
significantly higher among pectin pretreated mice compared to controls (A). Side-by-side box plot of overall survival data for pectin pretreated mice and
control mice (B). (C and D) Post-IR pectin treatment: C57BL/6 mice were subjected to 14 Gy IR injury and fed with control or pectin diet (n = 6 in each group).
Overall survival of the animals is represented in the graph and the overall survival rate is significantly higher among pectin post-treated mice compared to
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per cross section) (n = 3) (Fig 4B and 4C). These data suggest that pretreatment of mice with
pectin has protective effects against radiation-induced injury to ISCs.

Increased expression of intestinal stem cell genes following pectin pre-
treatment
Total RNA isolated from the intestines of 24h post-IR samples (n = 3) was subjected to RT-
PCR for stem cell related genes such as Dclk1, Msi1, Lgr5, Bmi1, and Notch1. We observed sig-
nificant upregulation of Dclk1 (1.5-fold) in mice pretreated with pectin compared to control
mice (Fig 5A). Similarly, we found significant upregulation of Msi1, an intestinal stem/progeni-
tor cell marker, in the pectin group compared to control (Fig 5B). We also observed a signifi-
cant upregulation of Notch1 (two fold) in the pectin group (Fig 5C). Additionally, we also
observed increased expression of putative ISC markers Lgr5 (1.76-fold) (Fig 5D) and Bmi1
(2.43-fold) (Fig 5E) in the pectin group. These data indicate that pectin treatment resulted in
an increase in stem cell-related genes, probably in the stem cells resulting in increased crypt
survival and overall survival.

Discussion
The two most radiosensitive human tissues that are also essential for sustaining life are the GI
epithelium and the hematopoietic progenitor cells in the bone marrow [23, 24]. Death due to
effects of IR on GI can be measured by the survival of the animal up to ten days post high-dose
IR; the greater the IR dose, the shorter the survival period. If animals survive more than ten
days after exposure, death is due to the loss of hematopoietic stem cells [23, 24]. The GI
response to acute radiation injury is the most extensively characterized model system for study-
ing injury-repair in the rodent. The continuous and rapid turnover of the GI tract explains its
unique sensitivity to high doses of IR. Following high dose IR (>8 Gy), GI stem/progenitor epi-
thelial cells are unable to multiply at a rate sufficient to replace dying cells. This failure results
in malabsorption syndromes, electrolyte imbalances, fluid loss, and bacterial infections [2, 3].
Agents that can prevent or attenuate epithelial stem/progenitor cell loss, as well as restore epi-
thelial integrity, would be ideal candidates for radioprotective drug development.

Radiation therapy for various cancers has been one of the most effective treatment options.
Patients undergoing radiotherapy suffer adverse effects as stated above. Prevention of damage
during treatment can be achieved by administering radioprotectors prior to radiation. Potential
use of chemicals to protect against the harmful effects of radiation was investigated after World
War II. These chemicals included amino-acid cysteine and thiol compounds [24]. One such
compound Amifostine (an organic thiophosphate), is a pretreatment for some patients under-
going radiation therapy. Amifostine has serious side effects however, including hypotension,
which seriously limits its use. Androstenediol has recently been proposed as a prophylactic
drug; however, the detailed toxicity evaluation for this drug is still in progress [25]. The high
toxicity of these compounds has created a demand for alternative nontoxic radioprotectors.

In this study, mice pre-treated with dietary citrus pectin (in animal feed and drinking water)
were subjected to high-dose IR (14 Gy). Pectin increased intestinal crypt survival and increased
expression of Dclk1, Msi1, and Notch1 (which play important roles in putative stem cells and
differentiation). Recently, we have demonstrated that mice with intestinal and colonic specific

controls (C). Side-by-side box plot of overall survival data for pectin post-treated mice and control mice (D). (E) Table represents the Median and the 95% CI
values in the pre-IR pectin treatment and post-IR pectin treatments. Control mice in the pre-IR pectin treatments had a median survival of 7 d with a 5–7.5 d
95% CI; Pectin treated mice had a median survival of 10 d with a 9–12 d 95%CI. In the post-IR pectin groups, control mice had a median survival of 5.5 d with
a 5–6 d 95%CI; pectin treated animals had a median survival of 6.5 d with a 6–7 d 95%CI. Both the groups had n = 6 mice.

doi:10.1371/journal.pone.0135561.g003
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Fig 4. Pectin treatment increased the number of surviving Dclk1 positive cells 24h post-IR. C57BL/6 mice in the control group (A) and the pectin-
treated group (B) were subjected to 14 Gy TBI. 24h post-IR, the small intestines were isolated, fixed, processed, and stained with anti-Dclk1 antibody (n = 3 in
each group). Dclk1 positive cells in cross section are indicated by arrows in panels A and B. The average number of Dclk1 positive cells per cross section
was counted for total of 30 cross sections and presented in panel C. The values in the bar graph are given as average ± SEM and * denotes statistically-
significant differences (*p<0.01) compared to control.

doi:10.1371/journal.pone.0135561.g004
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Fig 5. Pectin treatment increased Dclk1, Notch1, Msi1, Lgr5, and Bmi1 expression 24h post-IR. Total RNAs isolated from the small intestine after each
treatment were subjected to quantitative RT-PCR. Dclk1 (A), Notch1 (B), Msi1 (C), Lgr5 (D), and Bmi1 (E) mRNA expression following control and pectin
treatment are depicted. The values in the bar graph are given as average ± SEM and * denotes statistically-significant differences (*p<0.05) compared to
control (n = 3 in each group).

doi:10.1371/journal.pone.0135561.g005
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knockout of Dclk1 had impaired regenerative response following high-dose TBI died early
compared to their wild type littermates [14]. Here, we observed increased numbers of Dclk1
+ cells and increased expression of genes (known to protect or play crucial role in ISCs) in the
intestine of the mice treated with pectin. We believe these protecting actions of pectin resulted
in increased crypt survival at 84h, and were responsible for maintaining the epithelial integrity
in the animal’s increased overall survival. This also was supported by our previous publication,
where that number of crypt Dclk1+ cells at 24h post-IR directly correlated with the crypt sur-
vival at 84h [22]. Additionally, we have demonstrated that inhibition of Notch signaling
resulted in nearly 50% reduction in the number of surviving crypt Dclk1+ cells at 24h and simi-
lar reduction in number of surviving crypts at 84h post-IR. These data indicated that Notch sig-
naling decreases ISC survival following IR treatment, suggesting an important role of Notch in
ISC-mediated crypt regeneration [22]. In this study, Notch mRNA was upregulated in the
mouse intestines after pectin treatment, suggesting that pectin might have protected the ISCs
and pathways regulating ISC survival.

Musashi-1 (Msi1), an RNA binding protein, is a putative intestinal stem/progenitor cell
marker and it is expressed in the stem cell zone of the mouse intestine [26–28]. Furthermore,
knockdown of Msi1 lead to mitotic catastrophe in tumor cells and resulted in inhibition of
Notch1, indicating that Msi1 regulates Notch signaling [29]. Previously, it has been demon-
strated that p21-/- mice had increased Msi1 in regenerative crypts (84h post-IR) compared to
its littermates [10]. Additionally, p21-/- mice had increased crypt survival (3-fold) compared to
its littermates [10]. These data taken together suggest that Msi1 may play an important role in
ISC-mediated regenerative crypts following IR injury. Due to these reasons, we wanted to
explore the expression levels of Msi1 in this study. We observed increased expression of Msi1
in the intestines of mice treated with pectin compared to control diet, supporting the conclu-
sion that pectin protected ISCs following lethal TBI. Furthermore, other putative ISC markers
Lgr5 (proliferative ISC) and Bmi1 (quiescent ISC) were also upregulated in the intestines of
mice treated with pectin compared to control, confirming that pectin indeed protected ISCs
following lethal TBI.

Previously published studies suggests that purified cellulose, 6% pectin or hemicellulose
fiber diets increased intestinal and colonic crypt height, and mitotic index [18, 30–32]. These
data taken together lead to our current hypothesis that 6% pectin would protect the intestinal
epithelial and stem cells against IR injury. Indeed, pectin treatment exerted radioprotective
properties by protecting the ISCs and ISCs-derived regenerative crypts following high dose IR.
This major outcome of the present study enabled us to directly determine the effects of radio-
protective and/or radiation mitigators on stem cell fate. Furthermore in our studies, we
observed significant anti-inflammatory property of pectin following bacterial infection [18,
30–32]. Based on that and the outcome of this study, we speculate that pectin protects the ISCs
and the intestinal epithelial cells against inflammation, hyperplasia of lamina propria and prob-
ably increases intestinal tight junction protein like ZO1, ZO2, Claudin1, and Claudin 7 (which
are downstream Dclk1)[14] to preserve the barrier. In conclusion, pectin was shown to be an
important candidate as a radioprotectant. Treatment with pectin had beneficial effects on gut
protection and overall survival following severe TBI. Additionally (given the anti-cancer activ-
ity of pectin), these data taken together support a role for dietary pectin as an agent that can
be administered to patients receiving radiation therapy to protect against radiation-induces
mucositis. As a future direction, we are in the process of evaluating the role of pectin on the
intestinal junction proteins, maintenance of barrier, and also on prevention of DNA damage
following IR injury. Additionally, we are also extending these studies to include varying doses
of pectin and IR (whole-body and abdominal-focused IR injury) to achieve an optimal protec-
tive dose of pectin. Finally, we are also evaluating the role of various synthetic compounds

Dietary Pectin Protects Intestinal Stem Cells

PLOS ONE | DOI:10.1371/journal.pone.0135561 August 13, 2015 12 / 15



(radiation mitigators) on ISC and crypt survival/regeneration using this established animal
model.
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S1 Fig. Schematic presentation of experimental design (post-IR pectin treatment). C57BL/6
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were administered BrdUrd at 82 h post-IR and killed at 84h. The other set of mice were sub-
jected to overall animal survival studies up to 288h post-IR—times of death were noted.
(TIF)
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