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Abstract
The blood-retinal barrier (BRB) functions to maintain the immune privilege of the eye, which

is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pig-

ment epithelial (RPE) cells which limit transport within the retinal environment, maintaining

retinal function and viability. Retinal microvascular complications and RPE dysfunction

resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB

that compromise barrier function. Diabetes is the major predisposing condition underlying

endogenous bacterial endophthalmitis (EBE), a blinding intraocular infection resulting from

bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE

cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer

BRB may be associated with EBE development. To disrupt the RPE component of the outer

BRB in vivo, sodium iodate (NaIO3) was administered to C57BL/6J mice. NaIO3-treated and

untreated mice were intravenously injected with 108 colony forming units (cfu) of Staphylo-
coccus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed

in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the inci-

dence was higher following S. aureus infection. Invasion of the eye was observed in control

mice following S. aureus infection, but not in control mice following K. pneumoniae infection.

Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE

barriers after infection with an exoprotein-deficient agr/sarmutant of S. aureus suggested
that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1,

and for permeability of this in vitro barrier. Our results support the clinical findings that for

both pathogens, complications which result in BRB permeability increase the likelihood of

bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB
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permeability is not required for the development of EBE, but toxin production may facilitate

EBE pathogenesis.

Introduction
The blood-retinal barrier (BRB) is a component of ocular immune privilege and serves to pro-
tect the delicate, nonregenerative neural retina from the immune system and bloodborne path-
ogens. The BRB consists of inner (endothelial cells, pericytes, and astrocytes) and outer (retinal
pigment epithelial cells) components. The retinal pigment epithelium (RPE) consists of a single
layer of cuboidal pigmented cells whose specific functions are critical for neural retina homeo-
stasis. The RPE maintains the retinal environment by limiting transport across the retina, thus,
maintaining a tight barrier to choroidal bloodborne substances [1,2]. The endothelial cells lin-
ing the capillaries supplying the retina with oxygen and nutrients form the inner BRB, which
exhibits selective permeability to small molecules, and is virtually impermeable to large macro-
molecules [3]. During the development of diabetes and its ocular complication diabetic reti-
nopathy, changes occur in the BRB which result in greater vascular permeability and loss of
RPE function [4–20].

Diabetes is the leading predisposing condition for the development of endogenous bacterial
endophthalmitis (EBE) [21], a severe, often blinding intraocular infection emanating from the
bloodstream [21–27]. In 60% of cases of EBE, an underlying condition is present, and diabetes
is present in 33% of those cases [21]. EBE occurs at a frequency of approximately 2% to 8% of
all cases of endophthalmitis. Patients with EBE typically present with ocular pain, blurring or
loss of vision, a hypopyon, an insufficient fundus view, and photophobia. Infection of the eye
via this route can result in vision loss, and in the worst-case scenario, enucleation or eviscera-
tion of the globe. EBE can also affect both eyes at the same time, causing bilateral blindness.
Jackson et al. [21] reported in a recent review of 342 EBE cases from 1986 to 2012 that the
median final visual acuity after EBE was 20/100. In 44% of these cases, visual acuities were
worse than 20/200. In approximately 24% of all cases examined, patients required evisceration
or enucleation of the globe. Associated mortality in these EBE cases was 4% [21]. The leading
causes of Gram-negative and Gram-positive EBE are Klebsiella pneumoniae and Staphylococcus
aureus, respectively [21–27]. Despite antibiotic and surgical intervention, the clinical outcome
for patients with EBE continues to be poor [21].

Our previous studies suggest that during diabetes, a compromised BRB serves as a portal for
bacteria to gain access to the eye from the bloodstream [28,29]. We reported that an increased
incidence of K. pneumonaie and S. aureus EBE in a diabetic murine model correlated with the
length of time following diabetes induction with streptozotocin (STZ) [28,29]. This increased
EBE incidence also correlated with greater vascular permeability in the eyes of STZ-induced
diabetic mice [28,29]. Our results supported clinical reports that diabetes is a predisposing risk
factor for the development of EBE [28,29]. However, diabetes progression results in a myriad
of other host changes, including immunological deficits such as the inability of inflammatory
cells to phagocytize K. pneumoniae and S. aureus [30,31]. To dissect the specific mechanisms
that underlie EBE development, we sought to divorce BRB permeability from the immunologi-
cal changes that occur during diabetes progression. Specifically, we hypothesized that dysfunc-
tion of the RPE, a component of the outer BRB which is altered during the development of
diabetes, facilitates the development of EBE. To test this hypothesis, we selectively induced
RPE degeneration using sodium iodate (NaIO3), an oxidizing agent that exerts toxicity specifi-
cally towards the RPE [32] and is a neurodegenerative insult [33]. In the present study, EBE
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incidence after infection with S. aureus and K. pneumoniae in NaIO3-treated mice was compa-
rable to the incidence observed in the diabetic EBE models [28,29]. In control mice, S. aureus
infection resulted in EBE, but K. pneumoniae infection did not. Furthermore, we observed that
S. aureus exoprotein production was associated with a disruption in ZO-1 staining and
increased permeability of an in vitro RPE barrier. Our results therefore suggest that alterations
in the RPE component of the outer BRB may serve as a mechanism by which K. pneumoniae
and S. aureus EBE develops, but these alterations are not required for S. aureus EBE to occur.

Results

Permeabilization of the RPE with sodium iodate
To determine whether alterations specifically in the RPE resulted in an increased incidence of
EBE, we first disrupted the RPE of C57BL/6J mice with sodium iodate (NaIO3) [1,2,32]. The
extent of damage to and resulting permeability of the RPE barrier was visualized in vivo by
fluorescein angiography. After 24 hours, significant changes in RPE pigmentation were
observed in NaIO3-treated mice (Fig 1C), but not in PBS-treated mice (Fig 1A). The retinal
vasculature and optic nerve tissue in these eyes appeared normal. Wang et al. observed similar
effects in retinal tissue following treatment of C57BL/6J mice with 20 and 30 mg/kg NaIO3

from 1 to 8 days after injection [32]. NaIO3 treatment resulted in extensive leakage of fluores-
cein dye into the vitreous relative to PBS-injected mice. In PBS-treated mice, the fluorescence
from the AK-FLUOR dye (Fig 1B) demarcated the retinal and/or choroidal vasculature, distin-
guishing it from adjacent areas and structures. In Fig 1D, diffuse fluorescence resulting from
increased permeability and leakage of the dye was observed in NaIO3-treated mice.

To quantify the extent of permeability of the RPE in NaIO3-treated and untreated mice, a
modified Evans Blue dye assay was employed to measure albumin leakage into the retina [34].
Eyes from mice treated with sodium iodate allowed a greater concentration of albumin into the
retina compared to that of untreated mice (Fig 1E, P = 0.01). Together, these results demon-
strated that NaIO3 disrupted the barrier properties of the RPE and rendered mouse eyes per-
meable to AK-FLUOR and albumin 24 hours following treatment.

RPE dysfunction and incidence of S. aureus and K. pneumoniae EBE
To establish a link between RPE dysfunction and the development of EBE, groups of mice were
infected 24 hours after intraperitoneal injection of either PBS or NaIO3. These data are

Fig 1. Blood-retinal Barrier Breakdown in NaIO3-treatedmice. (A-D) Funduscopic imaging of mouse eyes
24 hours after injection of either PBS or NaIO3. In PBS-injected mice (A and B), the fluorescence from the
AK-FLUOR dye demarcates the retinal and/or choroidal vasculature and distinguishes it from adjacent areas/
structures. In NaIO3-injected mice (C and D), note the diffuse fluorescence resulting from increased outer
BRB permeability and leakage of the dye. (E) Albumin leakage into the retina after injection of either PBS or
NaIO3 was quantified using a modified Evans Blue protocol. Bars represent mean ± standard deviation (SD)
for N� 5 animals for all groups. A two-tailed t-test was used to assess significance between PBS-injected
and NaIO3-injected mice (P = 0.01).

doi:10.1371/journal.pone.0154560.g001
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summarized in Table 1. At 96 hours postinfection with K. pneumoniae, 3 out of 10 NaIO3-
treated mice developed EBE. One eye from each mouse was infected. The mean K. pneumoniae
cfu per eye among the NaIO3-treated mice was 3.04 x 102. None of the control mice infected
with K. pneumoniae developed EBE. At 96 hours postinfection with S. aureus, 6 out of 10
NaIO3-treated mice (6 eyes) developed EBE and 2 out of 10 control mice (2 eyes) developed
EBE. The mean S. aureus cfu per eye was 2.72×102 for the NaIO3-treated mice, and 2.48×102

for the control mice. NaIO3-induced RPE permeabilization resulted in a 30% K. pneumoniae
EBE incidence, similar to the 27% K. pneumoniae EBE incidence that we previously reported
for mice rendered diabetic for 5 months [28]. NaIO3-induced RPE permeabilization also
resulted in a 60% S. aureus EBE incidence, similar to the 58% S. aureus EBE incidence we
observed in our 3-month diabetic mice [29].

Assessment of EBE incidence in NaIO3-treated mice 6 days after infection with both patho-
gens (Table 2) revealed a 20% incidence of K. pneumoniae EBE and a 50% incidence of S.
aureus EBE, but no infections in the control mice. After 6 days postinfection, the mean cfu per
eye for the K. pneumoniae-infected mice was 1.16 x 102, and for S. aureus-infected mice was
2.58×102. These results indicated that intraocular infection with either K. pneumoniae or S.
aureus can occur after specific disruption of the RPE component of the outer BRB in nondia-
betic mice at incidences similar to that reported in diabetic mice [28,29]. Similar to what we
observed previously [29], S. aureus caused EBE even when the BRB was intact in control mice
not treated with NaIO3, while K. pneumoniae did not cause infections in these mice.

Table 1. Incidence of K. pneumoniae and S. aureus EBE at 4 days postinfection in control and NaIO3-treatedmice.

Control,K. pneumoniae
infected

NaIO3 treated,K.
pneumoniae infected

Control,S. aureus
infected

NaIO3 treated,S. aureus
infected

Number of mice infected 10 10 10 10

Deaths during infection course 0 0 0 0

Number euthanized prior to 96 hours
post-infection

0 0 0 0

Number surviving after 96 hours
post-infection

10 10 10 10

Mice with EBE 0 3 2 6

% Infected of Survivors 0 30 20 60

Mean CFU/eye 0 3.04 x 102 2.48×102 2.72×102

Standard Deviation 0 (±3.42×102) (±2.77×102) (±3.12×102)

doi:10.1371/journal.pone.0154560.t001

Table 2. Incidence of K. pneumoniae and S. aureus EBE at 6 days postinfection in control and NaIO3-treatedmice.

Control,K. pneumoniae
infected

NaIO3 treated,K. pneumoniae
infected

Control,S. aureus
infected

NaIO3 treated,S. aureus
infected

Number of mice infected 5 5 5 5

Deaths during infection course 0 0 0 1

Number euthanized prior to 96 hours
post-infection

0 0 0 0

Number surviving after 96 hours
post-infection

5 5 5 4

Mice with EBE 0 1 0 2

% Infected of Survivors 0 20 0 50

Mean CFU/eye 0 1.16 x 102 0 2.58×102

Standard Deviation 0 0 0 (±14)

doi:10.1371/journal.pone.0154560.t002
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Wang et al. reported significant effects of NaIO3 treatment on the scotopic and photopic b-
wave ERG responses, showing almost complete elimination of ERG responses at 8 days follow-
ing treatment [32]. In our previous study [29], we reported no changes in ERG responses 4
days following infection with S. aureus in diabetic animals, likely due to the low numbers of
bacteria detected in those infected eyes [28,29]. In the current study, ERGs were not performed
on infected mice because of the anticipated low numbers of bacteria in these eyes and because
the interpretation of any observed ERG decrease could be potentially confounded by the effects
of NaIO3 treatment.

S. aureus-induced alterations in an in vitro human outer BRB are
exoprotein-dependent
We previously reported that S. aureus, but not K. pneumoniae, caused a significant reduction
in immunoreactivity of the tight junction protein ZO-1 between cultured human RPE cells in
our in vitromodel of the outer BRB, suggesting that S. aureus is able to directly disrupt the
expression and/or organization of tight junctions between RPE cells [29]. Disruption of ZO-1
immunostaining correlated with changes in the permeability of our in vitro outer BRB model
to both FITC-dextran conjugate molecules and to live S. aureus [29]. Because RPE dysfunction
was necessary for invasion of K. pneumoniae but not S. aureus into the eye from the blood-
stream, the question arose whether RPE alterations were the direct result of S. aureus exopro-
tein production. We therefore examined the ability of an agr/sar quorum sensing-deficient,
exoprotein-deficient mutant of S. aureus [35] to alter ZO-1 immunoreactivity. Immunofluores-
cence microscopy revealed that infection with wild type S. aureus caused progressive disruption
in ZO-1 staining over time (Fig 2, panels A-C), while infection with the agr/sar-deficient
mutant (Fig 2, panels E-G) or two ocular isolates of S. epidermidis (Fig 2, panels D and H) did
not. The percent of ZO-1 immunopositivity of RPE monolayers infected with wild type S.
aureus was significantly less than in RPE monolayers infected with the agr/sar-deficient mutant
or two ocular isolates of S. epidermidis (P<0.0001, Fig 2, panel I). These results suggested that
the observed changes in ZO-1 immunostaining after infection with wild type S. aureus were
dependent on exoprotein production. RPE viability was greater than 95% at all time points, as
determined by trypan blue staining [29].

Intact monolayers of human RPE cells in 0.4 micron transwells were infected with wild type
S. aureus or the agr/sar-deficient mutant and diffusion of FITC-4-kDa-dextran across the bar-
rier and into the bottom chamber was assessed by fluorescence spectrometry (Fig 2, panel J).
No significant differences in RPE monolayer permeability were observed after 4 or 6 hours of
infection with the two strains. However, after 8 hours, the fluorescence intensity was significantly
greater in the bottom chamber of RPE monolayers infected with wild type S. aureus (p<0.0001)
compared with that of RPE monolayers infected with the exoprotein-deficient mutant. These
results indicated that S. aureus could disrupt ZO-1 and the permeability of our in vitro human
outer BRB in an exoprotein-dependent manner. Taken together, these findings substantiate our
observation that the greater incidence of S. aureus EBE compared to K. pneumoniae EBE corre-
lates with the capacity of S. aureus to directly disrupt RPE tight junctions, and suggests that S.
aureusmigration across the outer BRB may be facilitated by its toxic exoproteins.

Discussion
Endogenous bacterial endophthalmitis is an often devastating bacterial infection of the eye
originating from remote sites in the body. This disease is associated with a number of underly-
ing conditions, but diabetes is a frequent risk factor [21]. During the development of diabetic
retinopathy, there is degeneration of and an increase in the permeability of the BRB. We
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previously reported that the environment created by a compromised BRB promoted the entry
of bloodborne pathogens into the eye. In mice with STZ-induced diabetes, we previously
observed 24% (3-month) and 27% (5-month) incidences of K. pneumoniae EBE [28]. We also
observed S. aureus EBE among 3-month (58% incidence) and 5-month (33% incidence) dia-
betic mice. Although the frequency of S. aureus EBE in 5-month diabetic mice was comparable
to previous observations for K. pneumoniae EBE, the incidence of S. aureus EBE in 3-month
diabetic mice was 2.5-fold greater. We found no K. pneumoniae EBE in control (nondiabetic)
or 1-month diabetic mice, but observed a 7% and a 12% incidence of S. aureus EBE in these
same groups, respectively. These data implied that S. aureus was capable of invading the eye
regardless of the degree of BRB integrity, and raised the possibility that S. aureusmight directly
affect the outer BRB, resulting in infection of the eye. Jung et al. recently reported that 9% of S.
aureus bacteremia patients developed ocular infections [36], but only 30% of those had diabe-
tes as an underlying condition [36]. The S. aureus EBE cases in that study were primarily asso-
ciated with infective endocarditis, providing clinical support for our hypothesis that S. aureus
can cross the BRB and invade the eye in the absence of diabetes-related changes to the BRB.
Our hypothesis is also supported by findings in a murine model of hematogenous S. aureus
meningitis [37]. Sheen et al. reported that S. aureus was capable of crossing the blood-brain
barrier (BBB) and infecting the brains of normal CD-1 mice [37]. After tail vein injection of 2 x
108 cfu of S. aureus, bacteria were detected in the brains of 7 out of 9 infected animals at con-
centrations ranging from approximately 102 to greater than 106 cfu per gram of brain tissue at
96 hours postinfection [37]. Although no eyes were analyzed in that study, these findings dem-
onstrate that S. aureus can infiltrate intact barriers of the central nervous system.

Fig 2. Exoprotein-dependent alterations in ZO-1 immunoreactivity of cultured human RPE cells
infected with S. aureus. (A-H)Human ARPE-19 monolayers were infected with wild type S. aureus 8325–4
(A-C), an agr/sar-deficient mutant (E-G), or two ocular isolates of S. epidermidis (D and H), each at a
concentration of 104 cfu/ml, MOI = 0.02. After 4, 6, or 8 hours postinfection, monolayers were stained with
anti-ZO-1 and analyzed by immunofluorescence microscopy (10x magnification). (I)Quantitative analysis of
ZO-1 staining demonstrates the exoprotein-dependency of ZO-1 disruption during S. aureus infection. The y-
axes represent percent immunopositivity for anti-ZO-1 from 5 randomly-selected cells from each of N�10
separate fields (S. aureus 8325–4 infected RPE cells versus S. aureusRN6390 agr/sar infected at 8 hours
postinfection, *P<0.0001). (J) Alterations in the permeability of a cultured RPE barrier are dependent on S.
aureus exoprotein production. Intact monolayers of human RPE cells in 0.4 micron transwells were infected
with S. aureus 8325–4 or RN6390 agr/sar at a concentration of 104 cfu/ml (MOI = 0.01). After 4–8 hours of
infection, diffusion of FITC-4-kDa-dextran across the monolayer was assessed by fluorescence spectrometry
of media from the bottom chamber. After 8 hours, the fluorescence intensity in the bottom chamber media
was significantly greater after infection with 8325–4 than after infection with the agr/sar-deficient strain
(*P<0.0001). Values represent the mean concentration of the conjugate in the bottom chamber ± the SD
(N�3 at each time point) based on extrapolation from a standard curve of the fluorimetry of known FITC-
dextran concentrations.

doi:10.1371/journal.pone.0154560.g002
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NaIO3 treatment has been utilized as a model for RPE degeneration of the retina [38].
NaIO3 may increase the ability of melanin to convert glycine into toxic glucoxylate. NaIO3 also
inhibits the activities of various enzymes which contribute to cellular energy production (triose
phosphate, lactate, and succinyl dehydrogenases). [1,2]. NaIO3 has been shown to exert toxicity
to the RPE in a number of mammalian species, including mice [39]. Toxicity to other organs or
tissues has not been observed [2,32]. NaIO3 injection of 20 to 30 mg/kg in C57BL6/J mice
caused loss of retinal pigmentation and atrophy as early as 3 days after treatment [32]. Histo-
logical analysis revealed swelling of the RPE and migration of pigmented cells into the outer
segment during this time frame. No acute inflammation was reported [32]. Immunostaining
revealed loss of RPE65 8 days following treatment and reductions in scotopic and photopic b-
wave amplitudes that reached zero by day 8 [32]. These results showed that functional deficits
occurred as early as 1 day post-NaIO3 treatment, with significant morphological changes
occurring thereafter. Based on these results, we chose a concentration of 50 mg/kg of NaIO3

and infection at 24 hours after treatment as a sufficient dosage and length of time to affect func-
tional changes in the RPE.

In the current study, we established that direct disruption of the RPE component of the
outer BRB by NaIO3 led to increased RPE permeability and an increase in EBE incidence with
K. pneumoniae and S. aureus. The incidence of EBE due to each pathogen after NaIO3 treat-
ment was similar to what we observed in our diabetic mouse model, suggesting that disruption
of the RPE barrier facilitated the initiation and development of EBE. Our current results sug-
gest that an intact and functional RPE is critical for preventing infection with K. pneumoniae,
as evidenced by the lack of infection in control nondiabetic mice [28] and control mice not
treated with NaIO3. In contrast, our observations of S. aureus EBE in control nondiabetic and
untreated animals, albeit at a lower frequency than in diabetic and treated animals, suggests
that S. aureus is able induce outer BRB barrier dysfunction on its own.

In addition to its barrier function [40], the RPE provides the retina with a number of essen-
tial functions, including nutrient transport and waste removal, regeneration of the visual pig-
ment, and removal of photoreceptor outer segments. The RPE contributes to the normal
immune privilege of the eye and restricts bloodstream access to the sensitive neuroretina. Pit-
kanen et al. conducted a systematic study of the permeability of isolated bovine RPE [40]. This
group showed that the bovine RPE-choroid was 10 to 100 times less permeable to a series of
fluorescent probes of differing molecular masses (ranging from 376 to 77,000 Da) than the
sclera, and that the permeability of the RPE exponentially decreased with an increase in the
molecular radius of the fluorescent compounds [40]. These experiments demonstrated that the
RPE functions as a major permeability barrier to the choroidal vasculature due to the intracel-
lular tight junctions.

The RPE also shields the sensitive neural retina from pathogens circulating in the blood-
stream, and therefore disruption of the RPE could create a portal for bacteria in the fenestrated
choroidal capillaries to enter the eye. We previously reported a decrease in ZO-1 immunoreac-
tivity at the RPE borders of an in vitro human model of the outer BRB after infection with S.
aureus, but not after K. pneumoniae infection [29]. Disruption of ZO-1 immunostaining corre-
lated with a decrease in RPE barrier function, as measured by increases in FITC-conjugated
dextran permeability and S. aureus transmigration across the barrier at 6 and 8 hours following
S. aureus infection. These results supported our in vivo findings with K. pneumoniae and S.
aureus EBE, and suggested that S. aureus directly contributed to the development of EBE by
disrupting RPE barrier function. In the current study, infection of the in vitro human outer
BRB model with an exoprotein-deficient mutant of S. aureus [35] resulted in significantly less
ZO-1 alteration relative to a toxigenic S. aureus strain, suggesting a possible role for toxic exo-
proteins in altering the outer BRB. These results were similar to the toxin-dependent
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disruption of an in vitro RPE barrier by B. cereus [41]. S. aureus elaborates a number of exopro-
teins that are regulated by the agr quorum sensing system and include the α-, β-, γ-, and δ-tox-
ins, the Panton-Valentine leukocidin (PVL), enterotoxins B-D, exfoliative toxins A and B,
toxic-shock syndrome toxin-1, V8 protease, serine and cysteine proteases, phospholipase, sta-
phylokinase, and hyaluronidases [42–47, 48]. The sar-regulated factors include the δ-toxin,
coagulase, and the surface fibronectin binding proteins A and B [48]. Previous analysis of
experimental exogenous endophthalmitis initiated by toxin-deficient S. aureus demonstrated
that toxin production is very important to pathogenesis [49–51]. These toxins may directly
damage intraocular tissues and may factor into EBE pathogenesis by interacting with and dis-
rupting the RPE barrier, resulting in S. aureus invasion into the retinal vasculature. However,
enterotoxin A, that is regulated independently of agr, and enterotoxins B-D that can be elabo-
rated at higher levels independently of the agr system [59] could all potentially contribute to
this process. Sheen et al. [37] reported a correlation between S. aureus invasion across an in
vitro BBB model of human brain microvascular endothelial cells and the presence of cell-asso-
ciated liptotechoic acid (LTA) [37]. Deletion of ypfP, the gene encoding the glycosyltransferase
responsible for synthesizing the glycolipid moiety that anchors LTA to the cytoplasmic mem-
brane, resulted in decreased invasion in the in vitro BBB model and infection in the mouse
meningitis model [37]. These results suggested that S. aureusmight utilize factors other than
toxins to invade the central nervous system or, in our case, the eye via the outer BRB.

In summary, our models support the clinical findings that for both pathogens, complica-
tions which result in BRB permeability increase the likelihood of transmigration of K. pneumo-
niae and S. aureus from the bloodstream into the eye. RPE compromise is a key element of
EBE pathogenesis in this model, but it is clear that the mechanisms by which different patho-
gens cause EBE are unique to each species. Identifying the critical host and pathogen factors
that contribute to this blinding infection is critical when devising improved therapeutic strate-
gies for treating a disease that has experienced only incremental therapeutic success over sev-
eral decades.

Materials and Methods

Animals and Ethics Statement
This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was
approved by the Institutional Animal Care and Use Committee of the University of Oklahoma
Health Sciences Center (Protocol numbers 12–100 and 13–086). Six week old C57BL/6J mice
were acquired from the Jackson Laboratory (Catalog 000664, Bar Harbor ME). Mice were
allowed to adjust to conventional housing two weeks prior to PBS/NaIO3 injection. Mice were
anesthetized with a cocktail of 85 mg ketamine/kg and 14 mg xylazine/kg prior to tail-vein
injections of bacteria.

RPE Permeabilization
Male C57BL/6J mice were intraperitoneally injected with sodium iodate (NaIO3, 50 mg/kg) to
induce RPE permeabilization [1,2,32]. Controls consisted of mice intraperitoneally injected
with PBS (pH 7.4).

Fluorescent Angiography
Male C57BL/6J control and NaIO3-injected mice were imaged at 24 hours postinjection using
a Micron III Retinal Imaging System (Phoenix Research Laboratories, Inc., Pleasanton, CA).
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Following general anesthesia, 0.002 mL of AK-FLUOR1 10% (100mg/mL) was injected intra-
peritoneally two minutes prior to fluorescein angiography [1,2,32].

Evans Blue Dye Vascular Permeability Assay
Albumin leakage from blood vessels into the retina was quantified using a modified Evans Blue
protocol [34]. NaIO3-treated or PBS-treated mice were anesthetized and 15 mg Evans Blue dye
(Sigma-Aldrich, St. Louis, MO) per kg was intraperitoneally injected. The Evans Blue dye leak-
age assay was performed as previously described [28]. The OD620 of the supernatants was mea-
sured and the concentration of Evans Blue was calculated from a standard curve. Pellets were
then solubilized in 0.2% SDS in PBS and protein concentrations measured using a BCA protein
assay. The concentration of Evans Blue in each sample was then normalized to the total protein
per sample. Results were expressed in micrograms of Evans Blue/mg total protein content.

Endogenous Bacterial Endophthalmitis (EBE) Model
A hypermucoviscosity (HMV)-negative K. pneumoniae endophthalmitis isolate (KLP02) [52]
and S. aureus strain 8325–4, a well-characterized prophage and plasmid-free strain derived
from the clinical ocular isolate 8325 [53], were utilized for our studies [28,29,52]. Both strains
were grown for 18 hours in brain heart infusion media (BHI; Difco Laboratories, Detroit, MI)
and subcultured in pre-warmed BHI to logarithmic phase. Bacteria were then centrifuged and
resuspended in phosphate buffered saline (PBS). EBE was established by injecting mice via the
tail vein with 108 colony forming units (cfu) in 100 μl PBS, as previously described [28,29]. At
4 and 6 days postinfection, both eyes from each mouse were harvested for bacterial
quantitation.

Bacterial Quantitation
Both eyes from each mouse were enucleated, placed into separate tubes of sterile PBS and 1.0
mm sterile glass beads and homogenized for 60 seconds at 5,000 rpm in a Mini-BeadBeater
(Biospec Products, Inc., Bartlesville, OK). Eye homogenates were serially diluted and plated in
triplicate on BHI agar plates for K. pneumoniae-infected mice, and tryptic soy agar (TSA) + 5%
sheep erythrocyte and mannitol salt agar plates for S. aureus-infected mice. After overnight
incubation at 37°C, the cfu per eye was determined as previously described [28,29,54,55].

In Vitro Human Outer BRBModel
The in vitro human outer BRB model was established as previously described using human
ARPE-19 cells (CRL-2302, American Type Culture Collection, Manassas, VA) propagated and
maintained in Dulbecco modified Eagle medium (DMEM)/F12 (Life Technologies, Grand
Island, NY) supplemented with 10% fetal bovine serum (FBS, Life Technologies) [29]. S. aureus
strain 8325–4 and RN6390 agr/sar [49, 53, 35] were grown for 18 hours in BHI medium,
washed with PBS, and diluted into RPE cell culture medium. The parental strain RN6390 is a
direct descendant of 8325–4 [56] and the agr/sar-deficient mutant has been used to initiate
endophthalmitis in rabbits [49]. The ocular virulence of this quorum sensing-deficient double
mutant was significantly less than that of wild type S. aureus [49]. Tissue culture wells contain-
ing either glass coverslips or transwells with confluent monolayers of human ARPE-19 cells
were inoculated with the bacterial suspension to achieve a final concentration of 104 cfu/ml.
This represented a multiplicity of infection (MOI) of 0.02, or 1 bacterial cell per 50 RPE cells
on the coverslips, and an MOI of 0.01, or 1 bacterial cell per 100 RPE in the transwells.
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Following infection, bacterial growth was assessed at 2 hour intervals. Mock, uninfected cover-
slips or transwells were incubated with RPE cell culture medium only.

Immunocytochemistry
Infected RPE monolayers on coverslips were fixed in 100% methanol at -80°C for 30 minutes.
Coverslips were incubated once in TBS + 0.25% Triton-X100 for 10 minutes, followed by Protein
Block (DakoCytomation, Carpinteria CA) for 10 minutes at room temperature. Anti-ZO-1 anti-
body (Invitrogen, Carlsbad CA) was added to a final concentration of 15 μg/mL. The anti-ZO-1
antibody was removed and the coverslips were washed 3 times with PBS + 0.001% Tween 20.
Alexa Fluor 488 goat anti-mouse IgG (1:200 dilution) (Life Technologies, Eugene, OR) was
added and coverslips were incubated for 30 minutes at room temperature. After 3 washes with
PBS + 0.001% Tween 20, coverslips were mounted on glass slides with Vectashield Hard Set,
with DAPI (Vector, Burlingame, CA), and imaged by confocal microscopy (Olympus Confocal
FV500, Waltham, MA). The fluorescence intensity of ZO-1 staining at the periphery of individ-
ual RPE cells was quantified using Image J [29,57–59]. Briefly, N�10 random confocal images
were taken per group and N = 5 cells were chosen at random from each confocal image. The
edge of each cell was traced and a plot profile of intensity for each trace was generated (approxi-
mately 500–1000 points per trace). The percent ZO-1 immunopositivity for each cell was calcu-
lated as the fraction of points greater than 25% of the maximum intensity for each cell.
Percentages for each group were averaged and are presented as the mean ± SD for N�10 images
per group (S. aureus 8325–4, S. aureus RN6390 agr/sar and two Staphylococcus epidermidis ocu-
lar isolates [negative controls at equivalent concentrations] at 8 hours postinfection).

FITC-Dextran Conjugate Diffusion Assay
Tomeasure the degree of permeability of human RPE cell culture monolayers after infection
with S. aureus 8325–4 and RN6390 agr/sar, the diffusion of a 4 kDa fluorescein isothiocyanate
(FITC)-dextran conjugate across the monolayer was assessed by fluorescent spectrophotometry
as previously described [29]. Monolayers were cultured on 0.4 μm transwells and infected with
104 cfu/mL in RPE cell culture medium or medium alone for 4, 6, or 8 hours postinfection. Addi-
tion of hydrogen peroxide (H2O2, Sigma-Aldrich) to a final concentration of 30% for 30 minutes
served to permeabilize the monolayers and functioned as a positive control. The 4 kDa FITC-
dextran conjugate at 1 mg/mL were added to the transwells at each time point and incubated for
1 h at 37°C. Fluorescence was measured in the lower chamber by fluorescence spectroscopy, and
the concentration of the 4 kDa FITC-dextran conjugate that diffused across the monolayer was
calculated from a standard curve of known concentrations. Values are expressed as the mean
FITC-dextran conjugate concentration ± SD of N = 3 measurements per time point.

Statistics
All values represent the mean ± standard deviation (SD) of the bacterial counts in infected eyes,
Evans Blue dye values, and FITC-dextran conjugate concentrations. Two-tailed, 2-sample t-tests
were used for statistical comparisons between groups for the Evans Blue dye leakage and FITC-
dextran conjugate diffusion assays. The Mann-Whitney U test was used to assess levels of signifi-
cance in the ZO-1 immunopositivity assay. A P value of<0.05 was considered significant.
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