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Abstract
Fifteen different ligands, including heparin (Hep), are cleared from lymph and blood by the

Hyaluronan (HA) Receptor for Endocytosis (HARE; derived from Stabilin-2 by proteolysis),

which contains four endocytic motifs (M1-M4). Endocytosis of HARE•Hep complexes is tar-

geted to coated pits by M1, M2, and M3 (Pandey et al, Int. J. Cell Biol. 2015, article ID

524707), which activates ERK1/2 and NF-κB (Pandey et al J. Biol. Chem. 288, 14068–79,

2013). Here, we used a NF-κB promoter-driven luciferase gene assay and cell lines

expressing different HARE cytoplasmic domain mutants to identify motifs needed for Hep-

mediated signaling. Deletion of M1, M2 or M4 singly had no effect on Hep-mediated ERK1/

2 activation, whereas signaling (but not uptake) was eliminated in HARE(ΔM3) cells lacking

NPLY2519. ERK1/2 signaling in cells expressing WT HARE(Y2519A) or HARE(Y2519A)

lacking M1, M2 and M4 (containing M3-only) was decreased by 75% or eliminated, respec-

tively. Deletion of M3 (but not M1, M2 or M4) also inhibited the formation of HARE•He-

p•ERK1/2 complexes by 67%. NF-κB activation by HARE-mediated uptake of Hep, HA,

dermatan sulfate or acetylated LDL was unaffected in single-motif deletion mutants lacking

M1, M2 or M4. In contrast, cells expressing HARE(ΔM3) showed loss of HARE-mediated

NF-κB activation during uptake of each of these four ligands. NF-κB activation by the four

signaling ligands was also eliminated in HARE(Y2519A) or HARE(M3-only;Y2519A) cells.

We conclude that the HARE NPLY2519 motif is necessary for both ERK1/2 and NF-κB sig-

naling and that Tyr2519 is critical for these functions.

Introduction
Heparin (Hep) is a highly sulfated anionic glycosaminoglycan consisting of repeating disaccha-
ride units, containing N-acetylglucosamine and glucuronic acid or iduronic acid. Hep binds to
many different matrix components, cell surface and soluble proteins; e.g. 22% of total plasma
proteins bind to Hep [1]. Hep also binds to many growth factors (e.g. FGF-2, PDGF and HGF)
and their receptors [2,3]. Unfractionated high mass Hep (UFH) and low mass Hep (LMWH)
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are highly prescribed anticoagulant drugs for prevention and treatment of thromboembolic
diseases [4]. Hep has also been clinically used to prevent recurrent early pregnancy loss due to
antiphospholipid syndrome, a complication associated with blood clotting in pregnant mothers
that leads to miscarriage [5].

The activities of HARE and Stab2 (the full-length receptor) were discovered in the early
1980s by Laurent and co-workers [6–10] as the clearance receptors that remove HA from the
vascular and lymphatic circulatory systems. HARE and Stab2 are highly expressed in the sinu-
soidal endothelial cells (SECs) of liver and lymph node [11–14], the main organs responsible
for systemic clearance of multiple ligands from blood and lymph fluid, respectively. HARE and
Stab2 function as the primary scavenger receptors for the systemic clearance of HA, Hep
[15,16] and 13 other ligands [13,17–24] including phosphatidylserine (apoptotic cells), derma-
tan sulphate (DS), chondroitin, chondroitin sulfate types A, C, D and E, and oxidized or acety-
lated LDL (AcLDL). The 190-kDa HARE isoform is generated by proteolysis of the full-length
Stab2 receptor and is not a splice variant [25,26]. HARE begins at Ser1135 and ends at the C-ter-
minal Leu2551 of full-length Stab2 [13,27]; therefore, both proteins are functional endocytic
receptors with different N-terminal domains and identical C-terminal, transmembrane and
cytoplasmic domains. HARE is expressed more highly than full-length Stab2 in liver and
spleen, with about two-thirds of Stab2 processed to HARE [12,14].

Macrophages express HARE/Stab2, which serve as apoptotic cell receptors [28]; these
mobile macrophages in tissues and immobile SECs in lymph node and liver provide comple-
mentary multi-ligand clearance systems. The major function of these constitutively recycling
scavenger receptors is to remove their ligands by coated pit-mediated endocytosis and deliver
them to SEC lysosomes or macrophage phagosomes for degradation [29–31]. The two recep-
tors are highly expressed in spleen [11] and bone marrow [32], where their function is less
obvious; perhaps mediating local ligand turnover in tissues undergoing matrix remodeling.
HARE/Stab2 are also expressed in corneal and lens epithelium, mesenchymal heart valve cells,
ependymal brain ventricle cells, prismatic epithelial cells covering renal papillae, and oviduct
[33]. In lymph nodes, and likely in liver and bone marrow as well, HARE is a homing receptor
for metastatic tumor cells with surface HA coats [34], which is a common phenotype of aggres-
sive cancers.

It has become clear that HARE and Stab2 have additional functions other than just ligand
clearance. These receptors also respond to a sub-set of ligands by stimulating cell signaling
pathways leading to activation of ERK1/2 and NF-κB and downstream gene expression
changes [35,36]. Park et al. [28] found that phagocytosis of apoptotic cells by activated macro-
phages is mediated by HARE/Stab2 binding to phosphatidylserine and this interaction stimu-
lates signaling that leads to the synthesis and release of TGF-β, an anti-inflammatory cytokine.
HA, Hep, DS and AcLDL show very similar profiles for ERK1/2 and NF-κB activation, but
chondroitin sulfate types A, C, D and E are not signaling competent [37]. Hep activation of
NF-κB mediated gene expression occurs with an apparent Km of 20 nM for the cellular
response, consistent with the binding affinity of Hep for HARE (Kd ~20–60 nM). Small-to-
intermediate mass HA can induce cell signaling pathways and modulate biological responses
such as angiogenesis, wound healing and tumorigenesis [38–40]. Although HARE binds and
internalizes all sizes of HA, only binding to 40–400 kDa HA (not smaller or larger sizes of HA)
stimulates HARE-mediated cell signaling, leading to activation of ERK1/2 and NF-κB-medi-
ated gene expression [35,36]. These findings support a role of HARE•ligand signaling as part of
a proposed “Tissue-Stress Sensor” system during various physiological challenges [29].

The HARE cytoplasmic domain (CD) contains four endocytic motifs (M1, M2, M3 and
M4) that target HARE•ligand complexes to coated pits; M1, M3 and M4 mediate HA uptake
[41], whereas M1, M2 and M3 mediate Hep endocytosis [42]. Here we used stable cell lines
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expressing a panel of CD mutants to investigate which of the three motifs involved in HARE•-
Hep complex internalization is needed to activate cell signaling leading to increased ERK1/2
phosphorylation and NF-κB activation. We found that HARE and ERK1/2 are in complexes
during Hep uptake and that only the M3 motif (NPLY2519) was essential for ERK1/2 activation.
Deletion of the HARE M3 motif or mutation of Tyr2519 also decreased or eliminated NF-κB
activation leading to gene expression stimulated by Hep as well as HA, DS and AcLDL.

Materials and Methods

Cells, plasmids and reagents
Stable Flp-In 293 (HEK) cell lines expressing 190 kDa wildtype (WT) HARE, various CD
mutants of HARE or empty vector (EV) were created as previously described [16,35,41]. Flp-In
293 cells do not express endogenous HARE mRNA or protein and they have a single unique
recombinase-mediated gene insertion site [43,44]. Thus, all the cell lines used had only a single
insertion at this same correct site [45] and the cohort of cell lines used is as genetically identical
as can be obtained. Lipofectamine 2000, Lipofectamine LTX and PLUS reagents, glutamate,
zeocin, hygromycin B, DMEM and Fetal Bovine Serum (FBS) were from Invitrogen (Carlsbad,
CA). Dual Luciferase (LUC) Reporter Assay System (E1960; Plasmid vector pGL4.32[luc2P/
NF-κB-RE/Hygro]) and Luminometer Glomax 20/20 were from Promega (Madison, WI).
Renilla luciferase Plasmid pRL-TK was a gift from Dr. K. Mark Coggeshall (Oklahoma Medical
Research Foundation). UFH (unfractionated) was from Celsus (Cincinnati, OH) or Sigma
(St. Louis, MO) and LMWH (Lovenox) was from Baxter Pharmaceuticals, LLC (Bloomington,
IN). Based on size-exclusion chromatography coupled to multi-angle laser light scattering [15],
the weight-average molar masses of the preparations used were 13.5 kDa (UFH) and 3.5 kDa
(LMWH). Goat anti-V5 polyclonal antibody (Ab; IgG) was from Bethyl Labs (Montgomery,
TX). Rabbit anti-phospho-ERK1/2 (p44/42; Thr-P(202) and Tyr-P(204), anti-ERK1/2 and
mouse anti-actin Abs were from Cell Signaling (Beverly, MA). Goat anti-rabbit IgG-HRP, don-
key anti-goat IgG-HRP, and donkey anti-mouse IgG-HRP were from Santa Cruz Biotechnol-
ogy (Dallas, TX). Other materials, reagents, and kits were obtained as described [35]. Unless
specified, all other reagents were the highest purity grade available from Sigma (St. Louis, MO).
Complete Medium contained DMEM plus 8% FBS and 100 μg/ml hygromycin B. Preincuba-
tion Medium was DMEM without FBS or hygromycin. Lysis Buffer contained 20 mM Tris, pH
7.2, 1 mM sodium orthovanadate, 3 mM benzamidine, 2 mM sodium pyrophosphate, 5 mM
sodium fluoride, 2 mM EGTA, 5 mM EDTA, 1 μg/ml of protease inhibitor cocktail (#P8340;
Sigma, St. Louis MO) and 0.5% (v/v) Nonidet P-40. Transfection medium, blocking buffer,
PBS, stripping buffer, and other buffers were described previously [36,37].

Cell Culture and Hep stimulation of ERK1/2 Activation
Cells were grown in complete medium till confluence and then plated in individual 35 mm tis-
sue culture plates as described [46] and grown for at least 2 days (to 80–90% confluence) before
experiments. Cells were washed with sterile PBS, incubated in fresh medium without serum for
1 h at 37°C, washed and then incubated at 37°C in fresh serum-free medium containing 10 μg/
ml (709 nM) UFH for the indicated times. Time-zero values were in the absence of heparin or
other ligands. Cells were then washed with ice-cold PBS and lysed with Lysis Buffer. The cell
lysates were collected, stored on ice, vortexed repeatedly, and then centrifuged at 12,000xg for
10 min at 4°C to remove cell debris. Protein concentration in each cell lysate supernatant was
determined by the method of Bradford [47] or Brown et al [48]. Samples (25 μg cell lysate pro-
tein) were subjected to 10% SDS-PAGE [49] and Western analyses [50], as described [37] [45],
by first detecting phospho-ERK1/2 (pERK1/2) and then stripping the transfer membranes to

HARE•HEP Activation of ERK & NF-κB Requires the NPLY Motif

PLOS ONE | DOI:10.1371/journal.pone.0154124 April 21, 2016 3 / 19



remove bound Ab and detecting total ERK1/2 (tERK1/2). To normalize protein load differ-
ences among wells, membranes were again stripped and reprobed with anti-actin Ab. Detec-
tion of bound primary Abs was with anti-goat or anti-rabbit IgG-HRP, as appropriate, and
development using an enhanced chemiluminescence substrate and exposure to autoradiogra-
phy film. Band densities were scanned into digital files and quantified as integrated densitome-
try values (i.e. the sum of all pixel values minus background correction) using an Alpha
Innotech FluoroChem 8000 imaging system (Alpha Innotech Corp., San Leandro, CA). ERK1/
2 activation is expressed as the ratio of pERK:tERK with the control treatment (with or without
Hep) or time set as 100%. Each quantified signal for ERK1/2 activation was then normalized to
the signal for Actin. For these signaling studies, replicate plates were incubated in the absence
of ligand for up to 90 min, under the experimental conditions used, to verify that basal ERK1/2
activation levels were not significantly altered.

Co-Immunoprecipitation of ERK1/2 and HARE. Cells were grown to confluence,
washed, collected and lysed as noted above. Goat Ab against V5, to detect HARE variants that
contain the V5 epitope at the C-terminus (2 μg/ml), or nonimmune control goat Ab was added
to cell lysate (300 μg protein) and incubated with rotation for 2 h at 4°C. Immune complexes
were then collected by adding 30 μl of 250 μg/ml Protein A/G Plus Agarose resin and incubated
overnight at 4°C with gentle mixing by rotation. The resin was washed three times with ice
cold Lysis Buffer, the pellet was resuspended in 20 μl of 2x sample buffer [49], boiled for 3 min
at 90°C and then subjected to SDS-PAGE, electro-transfer and Western blot analysis. Bound
proteins were then detected by immunoblotting using anti-tERK1/2 Ab or anti-V5 Ab.

Cell culture and LUC plasmid transfection
Transfection Medium contained DMEM with 8% FBS without antibiotics. Cells stably express-
ing HARE (WT or CD mutants) or EV were grown to near-confluence in Complete Medium,
plated in 12-well tissue culture plates, and maintained in Complete Medium for at least 48 h
prior to experiments. At 50–60% confluence, the medium was replaced with Transfection
Medium 10 min prior to transfection. Transfection complexes were generated in serum-free
medium by mixing Lipofectamine LTX and PLUS reagents with 1 μg/ml firefly LUC vector
pGL4.32(luc2P/NF-κB-RE/Hygro) and 0.5 μg/ml Renilla luciferase vector (pRL-TK). Tran-
siently transfected cells were grown for 18 h before use.

Ligand stimulation of NF-κB activated gene expression
Cells were transiently transfected with firefly and Renilla LUC vectors as above, washed once
each with sterile PBS and DMEM without serum, and then incubated in fresh serum-free
DMEM for 1 h at 37°C. The medium was then removed and serum-free DMEM with the
appropriate type and concentration of ligand was added, as indicated, and the cells were incu-
bated at 37°C for 4 h. Time-zero values were in the absence of any ligand. The medium was
removed by aspiration and cells were processed (below) to determine HARE-mediated NF-κB
activated LUC gene expression. The cells were washed with sterile PBS, scraped and harvested
in serum-free medium and centrifuged at 12,000 x g for 1 min. Supernatants were removed
and cell pellets resuspended in 150 μl serum-free medium and assayed for LUC activity using a
Dual-Luciferase Assay System following the manufacture’s protocol as described earlier [35].
The amount of firefly and Renilla LUC activity in each sample was measured and recorded as
relative light units using a luminometer Glomax 20/20 (Promega). The ratio of firefly:Renilla
LUC activities in each lysate sample was calculated and normalized to untreated cells as control
(defined as 1.0). Results are expressed as the mean ± SEM fold-change in firefly:Renilla LUC
activity.
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Statistical Analysis
Data are presented as the mean ± SEM based on three independent experiments, each per-
formed in triplicate (n = 9). Western Blot data are presented as the mean ± SEM based on three
independent experiments (n = 3). For statistical comparisons, data were first analyzed by a
one-way ANOVA, and any significant difference in the group was then assessed by individual
pair-wise post hoc Tukey’s HSD tests using GraphPad Prism v5 statistical software (GraphPad
Software, Inc., San Diego). Pair-wise comparisons were made between EV and HARE cells
treated with the same ligand concentration and then with HARE cells plus ligand versus EV
cells without ligand. Only sample sets considered statistically significant in both cases are indi-
cated with a symbol (�, p< 0.05; ��, p< 0.005; ���, p< 0.001).

Results

HARE uptake of LMWH activates NF-κBmediated gene expression but
only at high doses
We previously found that 50 nM UFH stimulates ERK1/2 and NF-κB activation about
~2.5-fold compared to untreated WT or EV control cells [37]. The apparent Km value (~20
nM) of this cellular response is consistent with the high binding affinity (Kd = 20–60 nM) of
larger Hep for HARE [15]. Disrupting clathrin coated pit assembly greatly decreases signaling,
indicating that HARE•Hep complexes are competent for signaling only after targeting to
coated pits and endocytosis; cell surface complexes are unable to activate signaling. Since
LMWH drugs are widely used to treat patients, it was important to determine if HARE bind-
ing to LMWH also stimulates ERK1/2 and NF-κB activation. Unlike UFH, HARE-mediated
uptake of LMWH did not stimulate ERK1/2 phosphorylation (data not shown) in cells
expressing WT HARE, even with 2.9 μM LMWH (10 μg/ml). This result was not surprising,
based on the lower affinity of HARE for LMWH, and indicates that higher concentrations of
LMWHmight be required in order to detect ERK1/2 activation or that Western blot assays
are not sensitive enough. In contrast, NF-κB activated gene expression was stimulated in WT,
but not EV, cells incubated with increasing concentrations of LMWH (Fig 1). A significant
dose-dependent increase in HARE-mediated NF-κB activation in WT cells occurred with a
1.5-fold stimulation at 2 μM LMWH (p< 0.005). Since LMWH is cleared by the renal system,
whereas UFH is cleared by HARE-Stab2, in vivo these latter receptors would interact almost
exclusively with UFH. The following experiments, therefore, utilized the more physiologically
relevant UFH.

ERK activation during HARE•Hep uptake requires the NPLY motif
To determine which of the four HARE endocytic motifs (M1-M4) are important for down-
stream ERK1/2 activation, we used single-motif mutant cell lines in which one of these HARE
CDmotifs was deleted. Controls validating the experimental protocol used included showing
that ERK activation levels in cells with EV (lacking HARE) or vector with WT HARE showed
no significant changes (p>0.05) during 60 min of incubation in serum-free medium in the
absence of Hep (Fig 2A and 2B). Thus, as expected ERK activation levels are at a constant back-
ground level (i.e. basal) in cells either not expressing HARE or expressing HARE but without a
stimulating ligand. The experimental protocol and incubation conditions do not cause ERK
activation. The levels of HARE, total ERK1/2 and actin were also assessed by Western blot
analysis in the seven cell used (Fig 2C). Quantification of the results (n = 4), with each protein
normalized to actin, showed that the ratios of HARE:tERK1/2 among the cell lines were not
significantly different (p>0.05) thanWT (Fig 2D).
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We recently found that three of these four motifs (M1, M3 and M4) are involved in coated
pit mediated endocytosis of HARE•Hep complexes [42]. A different motif subset (M1, M2 and
M3) are involved in uptake of HARE•HA complexes [41]. ERK1/2 activation in single-motif
HARE mutant cells incubated with UFH was determined at different times by Western blot
analyses to detect pERK1/2, tERK1/2 and actin (Fig 3A). HARE•HAmediated activation of
ERK1/2 occurs in a bi-phasic manner with time, with an increasing response for up to 30 min
and then a return to baseline by 45–60 min [36]. In contrast, quantification of replicate experi-
ments (Fig 3B) showed that HARE•Hep activation of ERK1/2 reached maximal values by 5
min and remained at this level for at least an hour in WT cells and in cells expressing HARE
ΔM1, ΔM2 or ΔM4mutants. Deletion of M1, M2 (as expected) or M4 did not significantly
alter ERK1/2 phosphorylation compared to WT; each cell line showed a similar time-course
for a ~2–3 fold increase in ERK1/2 activation relative to time-zero, mock-treated control
(p< 0.05 at each time). In contrast, deletion of the M3 motif abolished the ability of UFH to
stimulate HARE-mediated ERK1/2 activation compared to WT or the three other single-motif
deletant cell lines (Fig 3B). The results show that M3 is required for modulation of downstream
signal transduction cascades initiated by HARE•Hep endocytosis.

The M3 motif is required for HARE to form complexes with ERK1/2
We found previously that HARE and ERK1/2 form stable complexes in the absence, or the
presence of HA, as detected by co-immunoprecipitation [36]. To determine if complexes
between HARE and ERK1/2 are also present during HARE•Hep uptake, we treated WT or EV
cells with or without a saturating amount of UFH (37-times apparent Km) and performed co-
immunoprecipitation assays using Abs against HARE or tERK1/2 (Fig 4). HARE was detected
using anti-V5 Ab to detect this C-terminal epitope. Western analysis of WT lysates showed

Fig 1. Lowmass Hep stimulates HARE-mediated NF-κB activated gene expression less effectively
than UFH.Cells expressing EV (white bars) or WT (black bars) HARE were grown and transfected with LUC
recorder gene plasmids as described in Methods. The cells were incubated at 37°C for 4 h with 100 nM UFH
or increasing concentrations of LMWH, as indicated, and then processed and analyzed for relative LUC
activities. Values are the means ± SEM (n = 9) of the ratio of the two LUC activities determined from three
independent experiments, with the value for unstimulated cells set as 1.0. Values for p comparedWT cells
with EV cells for each condition (*, p < 0.05; **, p 0.005) using ANOVA.

doi:10.1371/journal.pone.0154124.g001
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that HARE co-precipitated with anti-ERK1/2 Ab in the absence of UFH (Fig 4A). Immunopre-
cipitates were prepared fromWT and single-motif deletant lysates using anti-HARE-V5 Ab
and blots were probed with anti-tERK1/2 Ab (Fig 4B). ERK1/2 was co-immunoprecipitated
from cells expressing WT and HARE ΔM1, ΔM2, and ΔM4 CDmutants. ERK1/2 was not
detected in immunoprecipitates from HARE(ΔM3) or EV cell lysates or in WT lysate immuno-
precipitated with control nonimmune IgG. These results indicate that the observed complexes
were specific and dependent on the presence of both HARE and ERK and that ERK1/2 also co-
purified from cells expressing single-motif deletion mutants of HARE in which only M1, M2
or M4 were missing. Thus, HARE•ERK1/2 complex formation does not require these motifs
(Fig 4C). Interestingly, ERK1/2 association with HARE(ΔM2) may be greater thanWT,
although this response was variable and not significant (p> 0.05). However, ERK1/2

Fig 2. Basal ERK1/2 levels are stable and HARE expression levels are similar in all cell lines. A. WT and EV cells were cultured and then pre-incubated
in serum-free medium for 1 h and further incubated for the indicated times in the absence of ligands. The cells were then processed to assess pERK1/2,
tERK1/2 and actin as noted for the cell culture and Hep stimulation protocol in Methods. B. Blots (n = 3) were quantified and the pERK1/2:tERK1/2 ratios at
each time were normalized to actin and are presented as percent ± SEM of the time-zero value. Normalized pERK/tERK ratios for either EV or WT cells were
not significantly different from time-zero values at any time (p>0.05; unpaired Student’s t-test). C. Equal amounts of lysate protein from the indicatedWT or
mutant HARE cell lines were subjected to 8% SDS-PAGE, followed byWestern blotting to detect HARE (with anti-V5 Ab), tERK1/2 and actin. D. Blots (n = 4)
were quantified and the HARE and tERK levels, each normalized to actin content, are presented as a percent ± SEM of WT. No significant difference was
found for the HARE or tERK content of any HARE variant compared to WT (p>0.05; unpaired Student’s t-test).

doi:10.1371/journal.pone.0154124.g002
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Fig 3. TheM3motif is required for HARE•Hep-mediated ERK activation.Cells stably expressing EV or
WT or the indicated HARECDmutant (ΔM1, ΔM2, ΔM3 or ΔM4) were grown, processed and then incubated
with 10 μg/ml (709 nM) UFH for 0–60 min, as indicated, and processed as described in Methods. A. Equal
amounts of cell lysate (25 μg) were resolved in 10% SDS-PAGE and transferred to nitrocellulose
membranes. Western blot analysis was performed with Ab against pERK1/2 (top panels). The same
membranes were stripped and reprobed with Ab against tERK1/2 (middle panels) and then with anti-actin Ab
(bottom panels). B. Blots from three independent experiments (n = 3) were digitized by scanning and
densitometry analysis was performed to determine the pERK:tERK ratios, which were normalized to actin
levels. The results are presented as mean percent ± SEM of the normalized pERK:tERK ratio compared with
the time-zero (mock addition) value as 100%. An asterisk indicates that all time points for the WT, ΔM1, ΔM2,
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and ΔM4 samples (but not the EV or ΔM3 samples) were significantly different than their respective time-zero
values (p < 0.05).

doi:10.1371/journal.pone.0154124.g003

Fig 4. The HAREM3motif is required to form complexes with ERK.Cells stably expressing EV, WT or
the indicated single-motif deletion HARE CDmutant were grown and processed as described in Methods and
then incubated with or without 10 μg/ml (709 nM) UFH for 20 min and processed as in Fig 1. A. EV andWT
cells were treated as in Fig 3 and Methods but in the absence of Hep or other ligands and cell lysates (300 μg
of protein) were incubated with anti-tERK1/2 Ab. Immunoprecipitates were subjected to SDS-PAGE and
Western blot analysis and blotted proteins were analyzed for HARE using anti-V5 Ab. B. HARE from equal
amounts of lysate (300 μg of protein) from the indicated cells was incubated with goat anti-V5 Ab (2 μg/ml)
andWT extract was also incubated with nonimmune control goat Ab (IgG). The immunoprecipitates were
subjected to SDS-PAGE andWestern blot analysis as described in Methods. Blotted proteins were analyzed
using anti-tERK1/2 or anti-V5 Ab as indicated. C. Blots from independent experiments (n = 3), as in panel B,
were scanned, digitized and densitometry analyses were performed to determine ERK:HARE ratios. The
data are presented as mean ± SEM percent of the tERK:HARE ratio compared to WT as 100%. Samples with
significant differences are indicated: **, p < 0.005.

doi:10.1371/journal.pone.0154124.g004
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association with HARE was decreased by 67% if the M3 motif was missing (p< 0.005). We
conclude that M3 is the most important endocytic motif for HARE•ERK1/2 association and is
required for normal cellular levels of complex formation. The decreased association of HARE
(ΔM3) with ERK1/2 likely explains the inability to activate ERK1/2 (Fig 3B).

The NPLY motif is required for HARE•Hep activation of NF-κBmediated
gene expression
We used single-motif deletion HARE-CD mutant cell lines to determine which, if any, of the
four HARE endocytic motifs is required for cell signaling leading to NF-κB activation. Dual-
luciferase reporter assays were performed with four different signaling ligands [37]; HA, Hep,
DS and AcLDL. Deletion of M1, M2 or M4 did not inhibit NF-κB activation and gene expres-
sion in the presence of any of these ligands (Fig 5A, 5B and 5D). Activation mediated by these
single-motif deletion mutants was similar to the activation in WT cells. As expected, LUC gene
expression in response to each of the four signaling ligands was significantly higher in WT or
these three mutant cells than in EV cells (p� 0.005). In contrast, none of the four signaling
ligands stimulated NF-κB activation or gene expression in HARE(ΔM3) cells (Fig 5C). These
results are consistent with the results seen for ERK1/2 activation (Fig 4B), indicating that the
M3 motif is also required for activation of HARE-mediated downstream cell signaling path-
ways leading to NF-κB activation.

Tyr2519 in Motif 3 is required for HARE•Hep mediated activation of
ERK1/2
Many studies have identified Tyr as the most important amino acid for NPXY function, since
it is usually phosphorylated in order to interact with cytoplasmic proteins required for signal-
ing that contain SH2 domains; these domains bind phospho-tyrosine (pTyr) within NPXY
motifs [51–53]. To verify that this amino acid in M3 of the HARE CD is needed for cell signal-
ing, we generated two stable HARE-expressing cell lines. One mutant contained a substitution
of Tyr2519 to Ala with no other CD changes; a HARE(Y2519A) mutant. The same Y2519A
change was also made in the M3-only CD mutant (i.e. ΔM1M2M4), in which only M3 is pres-
ent; HARE[M3-only(Y2519A)]. Previous endocytosis assays with HA [41] and Hep [42]
revealed that the Y2519A change alone, in a WT HARE background, does not impair endocy-
tosis, whereas cells expressing HARE[M3-only(Y2519A)] show completely impaired endocyto-
sis. Thus, in the absence of other endocytic motifs, Tyr2519 in M3 is required in order to
mediate HARE•ligand targeting to coated pits.

To assess the role of Tyr2519 in HARE•Hep-initiated ERK1/2 signaling, we incubated EV,
WT, M3-only, and the two Tyr-to-Ala mutant cells with UFH, and then determined pERK1/2
and tERK1/2 levels by Western analysis (Fig 6A). Quantification of replicate blots (Fig 6B)
showed 2.5-fold stimulations of ERK1/2 activation in WT and M3-only cells compared to EV
cells (p<0.001), whereas UFH-mediated stimulation was eliminated in M3-only(Y2519A) cells
and was decreased by 75% in WT(Y2519A) cells.

Tyr2519 in the M3 motif is required for HAREmediated activation of NF-
κBmediated gene expression in response to four signaling ligands
To assess the general role of Tyr2519 in NF-κB activation, the five cell lines used in Fig 6 were
incubated with Hep, HA, DS or AcLDL and reporter LUC gene expression was measured (Fig
7). Cells expressing the M3-only CD mutant showed significant activation of gene expression
(p<0.001) with each of the four signaling ligands compared to EV cells or WT cells not

HARE•HEP Activation of ERK & NF-κB Requires the NPLY Motif

PLOS ONE | DOI:10.1371/journal.pone.0154124 April 21, 2016 10 / 19



Fig 5. The HAREM3motif is required for NF-κB activated gene expression by multiple signaling
ligands. EV (white bars), WT (black bars) or cells expressing the indicated single-motif deletion HARE
mutant (gray bars) were grown and transfected with LUC recorder gene plasmids as described in Methods.
Cells were incubated at 37°C for 4 h with 100 nM HA, Hep, DS or AcLDL, as indicated, and then processed
and analyzed for relative activities of the two LUC enzymes as in Fig 1. Values are means ± SEM (n = 9) from
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exposed to ligand (Fig 7A). NF-κB activation of gene expression was slightly decreased,
although not significantly, in M3-only cells exposed to HA, DS or AcLDL, but activation was
significantly increased in each case compared to EV (p< 0.005). In contrast, increased NF-κB
mediated gene expression did not occur in the presence of any of the four signaling ligands in
either WT(Y2519A) cells (Fig 7B) or M3-only(Y2519A) cells (Fig 7C). Thus, the two CD
Tyr2519-mutants are not competent to initiate HARE•ligand mediated NF-κB activation.

Discussion
NPXY motifs, which are phosphorylated when functional, are present in the CDs of many cell
surface receptors (e.g. those for EGF, insulin, and HARE/Stab2) and interact with the pTyr-

three independent experiments for HARE CDmutant cells: ΔM1 (A), ΔM2 (B), ΔM3 (C) or ΔM4 (D). Values for
p are based on one-way ANOVA and pair-wise Tukey’s tests using pair-wise comparisons of HAREWT or
mutant cells with EV cells for each ligand: **, p < 0.005; ***, p < 0.001.

doi:10.1371/journal.pone.0154124.g005

Fig 6. Mutation of Tyr2519 in M3 decreases or eliminates HARE•Hep-mediated ERK1/2 activation.Cells
stably expressing EV, WT, or the M3-only (M3-o in panels), M3-only(Y2519A) or WT(Y2519A) HAREmutants
were grown and processed as described in Methods and then incubated with 709 nM UFH for 20 min and
further processed as in Fig 3. A. Western blot analyses show pERK1/2 (top panel), tERK1/2 (middle panel)
and actin (bottom panel). B. Blots from independent experiments (n = 3) were scanned, digitized and
densitometry analyses were performed to determine pERK:tERK ratios. The data, normalized to actin
content, are presented as mean percent ± SEM of the pERK:tERK ratio compared with EV cells as 100%.
Samples with significant differences to WT are indicated: ***, p < 0.001.

doi:10.1371/journal.pone.0154124.g006
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Fig 7. Tyr2519 in HAREM3modulates NF-κB activation and gene expression in response to
endocytosis of multiple ligands. Cells expressing EV (white bars), WT (black bars) or the indicated mutant
(gray bars) HARE were grown, transfected, and incubated at 37°C for 4 h as in Fig 5 with 100 nM of one of the
four signaling ligands: HA, Hep, DS or AcLDL. All cells were processed, and analyzed for relative LUC activity
as in Fig 1: M3-only, (A); WT(Y2519A), (B); or M3-only(Y2519A), (C). Values are means ± SEM (n = 9) of the
indicated ratio of the two LUC enzymes from three independent experiments, with the value of mock-treated
cells as 1.0. Values for p are based on one-way ANOVA and pair-wise Tukey’s tests using pairwise
comparisons of HAREWT or mutant cells with EV cells for each ligand: ***, p < 0.001.

doi:10.1371/journal.pone.0154124.g007
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binding SH2 domains of cytosolic signaling proteins [53]. NPXY motifs also target receptor•li-
gand complexes to coated pits for rapid internalization [41,54,55]. These early interactions
within signaling cascades ultimately lead to the control of multiple cellular responses such as
cytoskeleton organization, cell survival, proliferation and differentiation [56,57]. Mutation of
these NPXY sequences results in decreased internalization of receptor•ligand complexes
[41,54]. For example, CS-1 cells expressing NPXY sequence mutants of integrin α5β3 lose their
biological functions including attachment, spreading and migration on vitronectin-coated
plates [58].

The results reported here demonstrate that of the four HARE CD endocytic motifs involved
in coated pit targeting of UFH and other ligands, only the NPXYmotif (M3; NPLY) is required
for the ability to activate ERK1/2 and NF-κB signaling pathways (Figs 3 and 5). The NPLYmotif
was also critical to form stable HARE•ERK1/2 complexes (Fig 4), which occurs in the absence of
ligand [36], and are thus primed to be rapidly deployed in downstream cell signaling. We found
that Tyr2519 in the M3motif is needed for both the activation of ERK1/2 (Fig 6) and NF-κB
mediated gene expression (Fig 7). These results indicate that Tyr2519 in M3 can function as a
docking site for other cytosolic proteins to activate downstream cell signaling pathways. The
pTyr group in M3 is needed for ERK and NF-κB activation stimulated by ligand binding and
uptake, as well as any HARE-dependent contribution to basal activation of these signaling cas-
cades. The four HARE CD endocytic motifs are redundant in terms of supporting efficient coated
pit targeting for multiple ligands. Thus, while only the M3motif mediates both Hep uptake and
intracellular signal transduction, the M1 and M2 motifs also mediate the Hep clearance function.

The mechanism for clearance of subcutaneously injected Hep from the body depends on its
mass and binding affinity for plasma proteins [59] and HARE, which is the systemic clearance
receptor for Hep [15,16]. Recombinant cell lines expressing HARE, primary rat liver SECs or
purified recombinant HARE [15] bind to larger UFH (13–17 kDa) with high-affinity (Kd ~20
nM) and bind to smaller LMWH (3.5 kDa) with much lower affinity (Kd ~10 μM); HARE
binding affinity for larger Hep is 500-to-1,000 fold greater than for smaller Hep. Since smaller
Hep is effectively cleared by a renal mechanism, its lower affinity for the main Hep clearance
receptor does not present a problem physiologically for it to be cleared and removed rapidly.

In addition to the primary clearance function of HARE and Stab2 to remove and degrade
multiple ligands, sometimes simultaneously [17], an unexpected finding was that ligand uptake
can also stimulate cell signaling pathways that activate ERK1/2 and NF-κB. Phagocytosis of
apoptotic cells by activated macrophages is mediated by HARE/Stab2 binding to phosphatidyl-
serine and this interaction stimulates signaling leading to the synthesis and release of TGF-β,
an anti-inflammatory cytokine [28]. We found that HARE-mediated HA uptake stimulates
activation of ERK1/2 [36] and also NF-κB [35], which leads to gene expression changes. HAR-
E•HA-mediated NF-κB activation is strikingly dependent on HAmass, occurring only with
HA of 40–400 kDa, despite the fact that all sizes of HA>2 kDa are endocytosed. Internaliza-
tion of HARE•Hep complexes also stimulates activation of ERK1/2 [45] and NF-κB [37].
Another surprising finding was that only a subset of ligands is capable of stimulating ERK1/2
and NF-κB signaling [37]. In addition to phosphatidylserine noted above, HA, Hep, DS and
AcLDL are all able to activate both signaling pathways. In contrast, chondroitin sulfates type A,
C, D and E do not stimulate either ERK1/2 or NF-κB signaling. Furthermore, HARE•HA sig-
naling requires the presence of a complex N-glycan at Asn2280in order to occur [46]. Cells
expressing a HARE(N2280A) mutant fail to signal in response to ongoing HA uptake, whereas
Hep, DS and AcLDL all activate ERK1/2 and NF-κB pathways normally. Thus, HA signaling
proceeds by a different mechanism than signaling mediated by other ligands. Although as yet
known, there is presumably biological significance to both the very narrow HA size-depen-
dence for signaling and the competence of only some ligands to activate signaling.
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These above observations indicate that additional consequences are involved upon binding
some, but not other, ligands. For example, ligand binding could stimulate protein oligomer for-
mation altering HARE conformation to induce interaction with another protein, and the new
complex could then activate the already bound ERK. Another possible mechanism is that con-
formational changes in the external HARE domain due to ligand binding are communicated
via the transmembrane domain to alter conformation of the cytoplasmic domain and to acti-
vate bound ERK.

Without ligand present, HARE is already in complexes with ERK, JNK and p38 [36]. Many
receptors are normally in preformed complexes with signaling proteins, in order to create
more rapid and controlled responses to the stimuli monitored by that receptor. The existence
of such complexes is strong evidence for a potential signaling role for the receptor. Especially
for constitutively recycling clearance receptors, such as HARE, that constantly recycle every
7–10 min [31,45] along a spatial and temporal pathway among multiple cellular compartments
(e.g. plasma membrane, early and late endosomal compartments and CURL), it makes sense
that signal-competent complexes are already assembled and ready to respond when bound
ligand-receptor complexes are internalized via a coated pit pathway. Many currently under-
stood signaling cascades consist of preformed complexes that are activated intracellularly dur-
ing internalization and endosomal trafficking [60,61]. Importantly, unlike hormone receptors,
systemic clearance receptors are constantly exposed to their ligands and their signaling cas-
cades are likely designed to sense changes in ligand levels, rather than just the steady-state pres-
ence of the ligand [29]

A significant question that remains unanswered is whether the HARE-mediated NF-κB and
ERK1/2 activation pathways are linked. Attempts to answer this important question by using
specific agents such as MEK inhibitors failed because both ligand-induced and TNF-α-induced
NF-κB activations were blocked by the necessary solvents, DMSO or ethanol; see supplemental
figure S4AB in reference [35]. Others have also reported that DMSO inhibits HA-fragment
induced NF-κB activation of inflammatory gene expression in mouse alveolar macrophage and
epithelial cells [62].

The redundancy of multiple endotcytic motifs in the HARE CD for targeting Hep to the
coated pit pathway indicates that this HARE clearance function is of primary importance. Sim-
ilarly, HA uptake by single-motif deletant mutants showed that a different subset of three
motifs (M1, M3, and M4) is also involved in total HA uptake [41]. Thus, for both HA and Hep,
each competent motif contributes to the total ability of HARE to mediate ligand uptake. The
loss of one motif, or even two, decreases but does not eliminate the ability of HARE to mediate
uptake of HA or Hep. In contrast, only the shared M3 motif is necessary and sufficient for both
ERK1/2 and NF-κB signaling in response to HA or Hep endocytosis. Although it has not been
directly tested, it is likely that a similar motif redundancy as seen for HA and Hep uptake also
exists for the HARE-mediated uptake of the two other ligands examined here; DS and AcLDL.
That the signaling functions of HARE•ligand uptake are only associated with the NPLY motif
and that not all endocytosed ligands stimulate signaling also indicate that clearance is the pri-
mary function of HARE.

Although signaling may be an evolutionally later or secondary HARE function, it is likely to
be important nonetheless. We previously proposed that HARE signaling in response to multi-
ple ligands constitutes a systemic Tissue-Stress Sensing System designed to monitor the turn-
over of components arising from different tissues, including dead cell debris and matrix
structural molecules [29]. In response to changes from the normal homeostatic levels of these
recorder molecules (e.g. due to injury or infection), lymph node and liver SECs and circulating
macrophages would secrete newly made cytokines and other factors to help affected tissues bat-
tle the stressing factor(s). If this proposed feedback system can be confirmed and understood,
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then there could be opportunities for development of strategies to enhance or diminish the
normal responses. Further studies are needed to determine what other HARE ligands are also
internalized using multiple motifs and are competent to stimulate signaling.
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