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ANALYTICAL DIPOLE MOMENT FUNCTIONS FOR DIATOMIC MOLECULES:
APPLICATION TO CARBON MONOXIDE (CO)
BY: LOC BINH TRAN
MAJOR PROFESSOR: J. N, HUFFAKER
ABSTRACT

The dipole moment of the ground electronic sfate (X12+) of CO
as a function of the internuclear distance is determined using experimen-
tally deduced rotationless vibrational transition moments. ' For this pur-
pose, the dipole moment function is expanded in series of powers of the
variables u, y, and z, where usr-T_, y=l-exp(-au), and z=exp(au)-1, and
exact Morse matrix elements of these quantities are used in computation.
Using a standard factorization technique, we derive exact matrix elements
of y, yz, and y3. For higher powers of y, we use matrix multiplication.
The eigenfunctions of the perturbed Morse oscillator (PMO) are obtained
by the method of matrix diagonalization. Morse and PMO cubic dipole
momgnt functions in u, y and z are then determined for CO.

We require the y-series expansion to satisfy the condition that
the infinite sum of its coefficients M vanishes. Then, expressing M as
some function of the index n and several parameters, we fit this function
to a few known transition moments and obtain an infinite y-series repre-
sentation with the correct asymptotic behavior for the CO dipole moment.
We found three functional forms for Mn that produce infinite series re-
ducible to closed forms. These new forms are adjusted further by a cor-
rective term so that they obtain the correct general behavior at both
large r and small r. The various CO dipole moment functions finally are

used to predict hot-band transition moments.
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ANALYTICAL DIPOLE MOMENT FUNCTIONS FOR DIATOMIC MOLECULES:

APPLICATION TO CARBON MONOXIDE (CO)

CHAPTER I

INTRODUCTION

In the past several years there have been considerable in-
terest in and extensive work on the determination of the electric di-
pole moments of diatomic molecules as functions of the internuclear
distance. The dipole moment function is of great importance since its
knowledge is necessary for many physical applications. It may be de-
termined by either of the two general approaches: ab initio (or theo-
retical) and empirical (or experimentalj.

In the ab initio calculation of molecular proﬁerties, and of
the dipole moment in particular, the knowledge of electronic wavefunc-
tions is essential. With advanced computer technology, these wave-
functions are becoming available with high accuracy. They are usually
obtained by either the Hartree-Fock (H-F), or configuration interac-
tion (CI), or multi-confiéuration self-consistent (MCSCF) method, or
modifications of these methods. Typical works on theoretical dipole

0

moment functions for diatomic molecules are those by Lie and Kirby-

(2)

Docken and Liu for the ground state (X12+) of the HF and CO molecu-

le respectively.



The electric dipole moment operator for a molecule is de-

fined as the vector sum
Mz;,R) = el NR, - 1r) (1.1)
o i

where e is the.usual electronic charge, Na is the atomic number of
the ath nucleus, Ba the center-of-mass (c¢.m.) coordinate of the ath
nucleus, Ei the c.m. coordinate of the ith electron, and the double
underlining bar refers to the coolectivity of these coordinates. The
coordinate system used heré is fixed to the molecule at its center of
mass and rotates with it. For a diatomic molecule, the z-axis is
usually chosen to coincide with its internuclear axis.

In the Born-Oppenheimer approximation, the molecular wave-
function for a diatomic molecule, considered as a rotating oscillator,
may be expressed as the product of an electronic, a vibrational, and

a rotational factor:

WD = 42 apon’ @ = n ey enRee 0

nv

where n, v, and J are electronic, vibrational, and rotational quantum
numbers respectively, N = (n,v,J), r is the internuclear axis vector,
and the electronic part depends on r parametrically. For clarity and
convenience, we have omitted the magnetic quantum number m, to be as-

J

sociated with the rotational factor wgr) in the above expression.

In an ab initio calculation, the approximation (1.2) is usu-
ally assumed and then the 'electric dipole moment" of a diatomic mole-
cule in a particular electronic state n is given by the expectation

value of the z-component of the electric dipole moment vectorvﬂﬁgi,zj

in this electronic state,



M(r) = e[} NaRa - Z <¢£e)1zi|w£e)>] (1.3
a i

where zg is the z-coordinate of the ith electron and the nuclei are on
the z-axis.

On the other hand, the empirical approach takes account of
the fact thaﬁ the probability of transition between two molecular
states (n, v, J) and (n', v', J') is proportional to the absolute
" value squared of the corresponding matrix element BNN' of the electric

dipole moment operator M:

L]

|giMyy,dT| 2,

= lfw(n) le')drfw(e) (e)dr |2 (1.4)

Ry |2

In Eq. (1.4), the integration over the electronic wavefunc-

tions produces a quantity yéﬁ?(r) which depends on r:
w9 = 11" ong, r)w(.)Qgisz)dgi . (1.5)

The integration over the rotational functions can be carried
out independently, yielding a factor SJJ, called the Honl-London fac-

tor. Hence, Eq. (1.4) can be written as

e |2 = 5550100 (00 (yax)? (1.6)

Assuming that the lower molecular state is labelled by (n,
v,J) and the upper state labelled by (n',v',J'), then for the rotating
oscillator model, we have
S330

and Syg0

J  for the P branch,

J+1 for the R branch.



For electronic transitions, n # n', one usually assumes that

Mgﬁz varies slowly with r according to the Franck-Condon principle, so
that it may be replaced by an average value ﬁﬁg?. In this case, Eq.
(1.6) becomes
2 wile) 2
Rgwe 12 = S50 B0 P 1.7)

where Ayt called the Franck-Condon factor, is defined by

gy = L) 000 gl - -9

nvJ ‘ntv'J!

For rotation-vibration transitions within the same electronic
state, n = n', yﬁ:) may vary considerably with r, and hence should not
be taken out of the integral in Eq. (1.6). In this case, if the z-
axis is also the internuclear axis, the magnitude of Més)(r) is equal

to the dipole moment function M(r) defined in Eq. (1.3):
(e) -
Mnn (r) = M(») .

Thus, for convenience we rewrite Eq. (1.6) in the form

lR v'J!

SNz 2 s T eva M) [vrars|? (1.9)

where an electronic state is implied and |vJ> = wézg(r), the vibra-
tional eigenfunction,

The square of the quantity RVX'J' is commonly known as the
line strength and the matrix elements of M(r) are called dipole tran-

sition matrix elements or simply transition moments. From the measure-

ments of intensities of rotation-vibration transitions vJ =+ v'J', the

squares of matrix elements <vJ|M(r)|v'J'> can be deduced, from which
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the functional dependence of the electric dipole moment M(r) on r may be

determined.

To see how dipole transition matrix elements relate to quan-
tities measured in experiments, we shall discuss the absorption and

emission of spectral lines.

1. Absorption of Radiation

The theory of infra-red light absorption by diatomic mole-

(4)

cules was treated in full detail by Crawford and Dinsmore. We re-
produce here some important steps and formulas from their work.
When a beam of monochromatic light of frequency Vv passes

through an absorbing medium of infinitesimal thickness dx, its inten-

sity Iv decreases according to the following law of light absorption,
dl =-1¢.d 1.10
v \)0‘\) x ( )

where o, = a(v), having units of cm'l, is called the absorption coeffi-

cient at frequency v and is proportional to the molecular density of
the absorbing material.

Suppose that there are two different energy levels 1 and 2,
level 1 being lower than level 2, and that there are degenerate states
m and n having these energies respectively. Then a transition between

any two states m and n gives a single spectral line of frequency

VEV =V, = (El-EZ)/h, where m = 1,2,...,g

mn and n = 1,2,...,8

1 2}
g and g2 being degeneracies of levels 1 and 2 respectively.
According to Einstein's theory, the probability that a tran-

sition m + n will take place is given by

pmn = p\)an



where oy having units of erg'cm'3, is the energy density of the inci-
dent beam and is related to the energy flux Iv (in units of erg'cm'2°

sec'l) by

I\) =p,C >

and an is the Einstein transition probability of absorption.

If there are Nm molecules in the state m at the lower energy
level, then the rate of energy absorption, that is the energy absorbed
from the incident beam of 1 cm? cross section for the transition m -+ n,

is
@I) =-1 PNB dx. (1.11a)
Vv mn y ¢ mmn

Therefére, if the lower level 1 has population Ny and de-
generacy g, then the total intensity of absorption I12 due to all

transitions 1 + 2 is

a1, = § (@r) .,
\Y] m,n Vv mn
_op
dI = -I, "= N;B, dx (1.11b)
where
B,, = L B

12 g; m,n mn

is the total probability coefficient of absorption.

Comparing Eqs. (1.10) and (1.11b), we get
o, =—N,B . (1.12)

While spontaneous emission, being isotropic, can be neglect-

ed, induced emission cannot because it is in the direction of the



inducing radiation. Therefore, if this effect is included, the net o
should be less than that in Eq. (1.12):

_ hy v -ﬁv/kT , .
o, = N1B12(1 e ) . (1.13)

The Einstein coefficient an is related to the line strength

Tmn (i.e., the square of matrix element of the dipole moment M) by(s)
B =8 g (1.142)
mn  3h? ‘mn °’ )
hence,
1 83
B,, = — . B = m5— T s (1.14b)
12 g, m.n mn 3h g 12
where
le = ¥ T ? (1.14¢)
m,n
and
T = |<m|M|n>|% . (1.144)
Substituting Eq. (1.14b) into Eq. (1.13) yields
8t®v__ N -hv__/kT
=__m 1 - mn
) = Fe g le(l e ) . (1.15)

For rotation-vibration transitions v,J -+ v',J' in diatomic

molecules, application of Eq. (1.15) gives

VAN A
ACANIP: LA AN .Nl‘lTV'J'U e /kT) (1.16)
vJ 3he” “vJ g5 vJ )
where
g5 = 27 + 1,
and
v'J! viJtm'
T = } T = ) <vim|M(z)|v'I'm'>
vJ m, ;' vJm mm'



is the total line strength.

The quantity measured in experiments is the integrated absorp-

1
tion coefficient or total intensity, Az , which theoretically is equal

to
v! v'J!
A = z s
Vo gt CyJ
viJ?
N ~-E./kT -hy /kT
v _ 87 v vJ! j v'J! vJ
A, = GEHE 7 ) Vvg &3¢ Tyg @ -e ) @.17)
T J,J' .
where
Z -EJ/kT
Z = g.e
T 350 J

is the rotational partition function and is dependent on v and Nv.is
the total number density of absorbing vibrating molecules present at
pressure P and temperature T and is related to the concentration NVJ
of molecules at a state (v,J) by

-EJ/kT

In practice, Eq. (1.17) may be replaced by an integral:
v'
A, = [a(v)dv .

Another measured quantity is the total intensity of the nth
harmonic vibrational band observed at vg approximately; it is obtained

by summing the intensities Az+n over all values of v:

v+n
m) _ v+n 8rd N ven ven "B/ KT -hv, /KT
A = z AV = (mf—) Z v Tn e (1 - € )
v=0 v v=0 (1.18)

where N is the total molecular concentration and ZV is the vibrational



partition function,
-E_/kT
Z = 2 e V

v=0

2. Emission of Radiation .

If there are Nn molecules in the state n, then the intensity
of a spectral line in emission by the transition n + m is defined by

the energy emitted by the source per'second(s)‘and given by

I =—7NA (1.19a)
nm ¢ mam

where Anm is the Einstein transition probability of spontaneous emis-

sion and is related to the matrix element of the electric dipole mo-
ment by

64t*y3
_ nm
A= — Tnm , (1.19b)
nm 3hc

Tnm being equ?l to T o defined by Eq. (1.14d).
Thus, if the upper level 2 has population N2 and degeneracy

gz, then the total intensity of emission I 1 for the transition 2 - 1

2
is
I = — N,A (1.19¢)

where the total Einstein coefficient A21 is given by

1

64n“v§1
) m,n

A

21 A

nm

T,y (1.19d)

3hc2g2’
with T21 = le in Eq. (1.14c).

Comparison between Eqs. (1.14b) and (1.19d) gives the rela-

tion between the Einstein coefficients A,, and B1

21 2’



c3 g2

B, = ( )
grhe® 81 21

12

(1.20)

Thus we have seen that the absolute values squéred of the
matrix elements of the dipole momenf M(r) can be deduced from certain
experimentally measured quantities. Molecular beam resonance experi-
ments and microwave experiments yield the matrix elements of M(r)
which are diagonai in v, while infrared absorption experiments give
matrix elements which are off-diagonal in v.

In our present work, we are concerned with two problems:
first determining the dipole moment M(r) as a function of the inter—
nuclear distance r for diatomic molecules from experimental data on
vibrational dipole matrix elements, and second using an extrapolation
technique to obtain the correct asymptotic behaviors of M(r). Our
formalism is then applied to carbon monoxide (CO).

The empirical approach requires that some assumption about
the form of M(r) must be made. This assumption may be valid over a
small range of r. When n independent dipole matrix elements are known,
the usual procedure is to choose a function M(r;ci) depending on a
set of n parameters Cs» i =1,...,n, which then may be determined by

solving a system of linear or non-linear equations:

<V|M(r;ci)|v'> = Uy

Usually a limited amount of experimental data is available,
and this is insufficient to determine a unique dipole moment function
since there would be an infinite number of functions which agree with

the experiments.
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So far only three choices for the functional form of M(r) are
found in the literature, namely:

i) Expansion of M(r) in a Taylor series about the equilibrium
internuclear distance To- In practice, the series must be truncated
giving the polynomial approximation. This approach has been the most

(6-14)based

commonly used, and there have been a great deal of works
on it.
ii) Expansion of the product M(r)wv(r) in terms of a number

of orthonormal vibrational eigenfunctions wv,(r) so that M(r) can be

written in the form

1 N _c N q)vv(r)

For v = 0, this equation determines M(r); but for v > 0, because of
the zeros of wv’ it is subject to certain restrictions. This method
was first proposed by Trischka and Salwen(ls) who called it the ''wave-

function approximation'. It has been applied to HC1 and DCl molecu-

les by Herman and Rubingl6) and to OH, HC1l, and CO by Cashion.(17)

. . . . ‘Y . . =a.r
iii) Linear combination of exponential functions e ar.,

N
M(x) = ) Cie-ai
i=1

r

where the parameters Ci and a; are to be determined through 2N empiri-
rical dipole matrix elements. This form was suggested by Chakraborty,

Pan and Chang,cls) (19)

but they and Learner retained only one term of

the expansion in their works related to electronic band strengths.
Although the Taylor series method is the simplest and most

obvious way to analyze transition intensities, it has the serious

drawback of being convergent over a small region about re(at most,
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0<r < Zre). The effect of its divergence for larger limits its.use
to low vibrational levels with v less than about 10 for CO.

The "wavefunction approximation" seems to be more powerful
than the Taylor expansion because in principle, if the complete set
of wavefunctions is included, it is valid over:the whole range |

(15) showed that the dipole moment

0 <r <o, Trischka and Salwen
function M(r) can be completely determined if all the matrix elements
<V|M(r)|v'> in a given column or row are given. Their method, however,
has not been widely applied because it also requires a sufficient
amount of experimental data. Besides, the convergence of the wavefunc-
tion expansion and the effect of neglecting the continuum have not
been investigated yet.

Since there are only a few works applying what we call the
"exponential approximation", one can conclude little about its useful-
ness. Howeve?, from a mathematical point of view, some remarks
can bg made. 1If all the parameters Ci and a; have non-zero values,
then M(r) =0 at r = «» and M(r) at r = 0 is the sum of all coefficients

Ci' If one parameters, say a, vanishes then M(r) = C1 at r = o,
Thus, this exponential combination has a finite value at r = « while
the Taylor expansion blows up. This approach, however, does have some
disadvantages. Because the parameters a; are unknowns, the system of
equations to be solved is non-linear. In addition, matrix elements
involving e-air are generally difficult to evaluate.

In the present work, in addition to considering u as the

variable for the Taylor expansion of M(r), we introduce two new

variables y = 1 - exp(-au) and z = exp(au) - 1, where u=r1 - Te and
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a is a characteristic of the Morse potential function [Eq. (3.la)], in
order to 6btain an expansion of M(rj in powers of y and an expansion in
powers of z. The choice of z is suitable and convenient because the
calculation of matrix elements of any power of z can be made easily by
application of a recursion relation obtained b} Huffaker and Dwivedi.(zo)
The choice of y for expanding M(r) may be justified by the fact that the
perturbed-Morse-oscillator (PMO) potentiaI(ZI) which is a power series
of y has been proven to be an extremely accurate model for the effec-
tive vibrational potential for diatomic molecules and much superior than
the Dunham potential which is an expansion in powers of u.

Mathematically, the y-expansion is a particular case of the
“exponential expansion" in which all parameters‘ai are integral multi-
ples of the Morse parameter a. Therefore, the y-series has the proper-
ty that its value at r = «» is the sum of all expansion coefficients.
By requiring this sum to vanish at r = = we can force the dipole moment
function to have a correct asymptotic behavior. ‘Besides, the y-expan-
sion involves a linear system of equations and the matrix elements of
y can be easily calculated using exact formulas.

The relationships between coefficients of the three expansions
of M(r) in powers of u, y and z are given in Chapter II. In Chapter
11T we present formulas for matrix elements of these variables and
derive the exact expression for the off-diagonal elements of y.

The cubic dipole moment functions in u, y, and z are obtained
for CO in Chapter IV, using Morse-oscillator wavefunctions and per-

turbed-Morse-oscillator (PMO) wavefunctions.
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Chapter V presents a technique of generating all coeffi-
cients in the y-expansion of M(r), using two additional parameters
which are to be determined by iterations so that the dipole moment
function M(f) will display the correct asymptotic behavior at both
large r and small r. The most interesting feature of this technique
is that it permits one to reduce the various infinite series expan-
sions of M(r) into compact analytical forms. Chapter VI lists dipole
matrix elements calculated from these various y-expansions of M(r).

Appendix A gives formulas to calculate coefficients of a
power series resulting from raising another power series to any power.
In Appendix B, exact expressions for matrix elements of y2 and y3 are
derived by the factorization technique. This makes use of several re-
sults that have been obtaiﬁed by Infeld and Hull(zz) and are listed in

Appendix C.



CHAPTER II
RELATIONS BETWEEN COEFFICIENTS OF VARIOUS EXPANSIONS

OF THE ELECTRIC DIPOLE MOMENT

For covalently-bonded diatomic molecules, there are two gen-
eral types of dipole moment functions M(f) as shown in Fig. 2.1.(17’23)
The uppér curve (a) shows the general behavior of the dipole moment of
a class of diatomic molecules that have unique polarity like HCl. The
lower curve (b) is typical of a molecule such as CO which undergoes a
reversal of polarity at certain value of r. In both cases, the dipole
moment approaches zero as the molecule dissociates into neutral atoms.

In case of CO, if the positive direction points from 0 to C,
then by definition positive values of M(r) indicate the polarity cto”
while negative values refer to the polarity c70*. Discussions on the
reversal of sign of the CO dipole moment can be found in papers by Mul-

(23) and Huo.(24) For small r, the polarity may be expected,

liken
since the triple bond C"=0" is then the strongest. As r becomes lar-
ger, the polarity should be reversed, since c*+0” then has considera-
bly lower energy than C +0'.

At the present, most theoretical and experimental treatments
of the dipole moment can give information about it only over a limited
range of r about the equilibrium T and none provides a detailed pic-

ture of the dipole moment over the whole range of r. Theoretically,the

general behavior of M(r) is expected to be

15
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M(r) ~0 for v + 0 and r » .

Although the behavior of M(r) at very small values of r has
never been fully understood, we assumé thaf the above general asympto-
tic behavior is correct and try to find functions satisfying these con-
ditions to represent the dipole moments of diatomic molecules.

As mentioned in Chapter I, M(r) is commonly expanded in a
Taylor series as

-}

M(r) = M(u) =m, + ¥ mnun (2.1)
n=1
whereu=r - re, and
_ 1 [dn'M(r)]
n n! n *
dr T=T,

If r is expressed in units of cm and electric charge in
units of esu, then M(r) has units of esu.cm. For molecules, M(r) is
usually expressed in units of Debye (abbreviated D), where 1D= 10'18esu
.cm. Thus, if r is in units of A (14 = 1078cm) then the Taylor coeffi-
cient m_has units of p-A"", ‘

The Taylor series (2.1) is valid only for |u| < Ty that is,
over a small range of r: 0 <r < Zre. In practice, only a finite num-
ber of coefficients m can be determined through empirical dipole ma-
trix elements. Even if a large number of these coefficients can be
calculated, the Taylor expansion does not provide any information on
the dipole moment beyond the distance Zre because the series diverges
there. Although there is no theoretical justification for using the

Taylor expansion of M(r), this choice is convenient and sometimes can

-predict transitions probabilities in quite good agreement(zs) with
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experiments. However, this requires extremely accurate intensity data.
Up to the present, for CO there'are only three reliable measured vi-
brational absorption intensities: those for the fundamental and the
first two overtone bands. Therefore, the cubic dipole moment function
in u for CO is usually determined. This is satisfactbry for many
practical purposes but inadequate for detailed analysis of fine struc-
ture of intensity bands.

As alternative approaches, the dipole moment function can be
expanded in an infinite series of powers of the variable y or z in-

‘troduced earlier:

n

M) = Mo + ] My, (2.2)
n=1

or

M(z) = To + ) Tnzn, (2.3)

n=1
where Mn and Tn have units of Debye (D).
The expansion M(y) is valid only. for lyl <1, or

au

-1<1-e"<1

from which we get
r - l-2,n2 <r <o, (2.4a)
e a

In particular, for CO the range for y-expansion is
0.84 A <r <o, (2.4b)
Similarly, the expansion range for M(z) is determined by
lz| <1,
or
A1<e®a1<1,

thus by
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1
o < T <T, + E-znz . (2.5a)

For CO, this gives
0<r<1.42R. (2.5b)
Mathematically, the y-expansion and z-expansion of any func-
tion of r, and of M(r) in particular, are analytical continuations of
its u-expansion from the limited range 2re over an infinite range
toward the positive side and an infinite range toward the negative
side of r respectively. Of course, all three expansions represent the

same function within the '"overlap range", which is

1 1
Ty - E-an <r<r, ¢+ 3-2n2 R

and for CO,
0.84 R <r<1.42% .
The y-series, which has the longest positive expansion range,
seems to be the most useful of all. In fact, it has one advantage

that, at r=«, since y=1, it becomes

[> <]
M(y=e) = Mg + ) LI (2.6)
n=1
Therefore, one may force the function M(y) to satisfy the

large-r asymptotic behavior by imposing the condition
o]
M(y==) = § M =0. 2.7)
n=0

This is done in Chapter V.

The z-model, despite its smallest positive portion of expan-
sion range, offers more convenience because the matrix elements <v|zn|v'>
can be evaluated very easily by a recurrence formula as stated in

Chapter I.
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We shall now derive the relations between coefficients mos
Mn’ and Tn' Huffaker(ZI) has obtained these relations for the case
of the Dunham potential and PMO potential. In the light of his gen-
eral approach,(26) we find an alternative way to obtain these rela-

tionships.

1. Relations between m_ and M,1

. s : -au . . . . .
Defining t = e and using the binomial expansion, we write

n o_ n _ th k.n,. .k
y = (1-t) =1 + kil (51) (k)t . (2.8)

Substituting the series representation of t,
o]

=1+ ¥ -1"
m=1

km

k ~-kau
¢ m!

t = (au)m s (2.9)

into Eq. (2.8), one gets

n © n m
Pa1e 1 SOLN ¢ IR D I 5D Ll cy S P

m=1 k=1
The sum of the first two terms in the right-hand-side of this
equation is the value of yn given by Eq. (2.8) for t=0, thus is equal

to zero, yielding
=]
y'= 1 Ay ()" (2.10)
m=n
where A; are two-dimensional coefficients given by
n ty m+k k
A = ) (-1 () = (2.11a)

where (2) is the binomial coefficient,

n n!
(k) = m-XT kT ° (2.11b)
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0! =1.
We note that the lowest power in the expansion [Eq. (2.10)]

of yn is n and

An =1; (2.11¢)
hence,

n
Z -n* R_—k)—,—?—_ 1. (2.11d)

Putting Eq. (2.10) into Eq. (2.2) and changing the order of

summations, then comparing to Eq. (2.1) we finally get

_ m m

mo=-—= )] AM . (2.12)
a =

Alternatively, we can write yn as a series in power n,

n=[2(1) (au)],
m=1

and use Eq. (A.9) in the Appendix A to obtain an induction relation

for A"
m

m-1
n _ 1 m-k+1 .n(m-k+1) - k,, n
S = N G ey sy e L (2.1%)

for m > n, and starting with A: = 1,

Coefficients Mn can also be calculated inductively in terms

of coefficients ﬁm by

n-1
- m
M o=m Zl. AM (2.14a)
or directly by
n
M =5 B™n . (2.14b)
no oo nnm

The coefficients B_ can be obtained either by inversion of

the matrix of coefficients A

m
n
n . . . <.
m ©°F by an inductive relation similar to
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Eq. (2.13):

g . _1_“51 [An-k1) - k

m
.n-k+1 18

k

where n > m and B:: = 1.

2. Relations between m_ and T,1

Using the same technique as before, we write
k v K

v o= (eau)k =1+ ) X

T (an)” ,
m=1 "~

and

2" = (v-1)" = D" AN,

N
1]

n a2 k n, k" m
(-1 E 2 (-1 (k) Eﬁﬂ(au)
m-1 k=1 )

oo n m
+ 1L (D™ @ X@o™ .
m=n k=

(2.14c¢)

The coefficient in the first bracket in the above equation

vanishes, reducing it to
n Y .n m
z = ) c, (aw
m=n

where C;l is given by

L n+k .n km
I oM K

¢ -
k=1

m

which can be related to the coefficient A;l in Eq. (2.1la):

n _ m+n , N
C, =1 AL

(2.15)

(2.16)

Substituting Eq. (2.15) into Eq. (2.3), then comparing the

resulting equation to Eq. (2.1), we finally obtain



Inversely, Tn can be written in terms of ﬁm by

noo
= ¥ D 'm (2.
m=1 m

where coefficients Dsl can also be calculated by inversion of the

trix of coefficients CJ‘ or by an inductive formula similar to Eq.

(2.14¢),
p® n+k m(n-k+1) - kqpm
z n-k+1 ]Dk (2.

Note that a relation similar to Eq. (2.14b) also can be

tained from Eq. (2.17).

3. Relations between M_ and T_1

L

First we express the relations between y and z: from

y = 1-e"2 and z = ¢®¥-1, one has
y = z2(l+2)7 (2
and
-1
z = y(1-y) " . 2.
Then using the binomial formula, we can write,
2 (-DREEL 2
n=1
or
z (- 1)m—n(m-l)zm . (2

m=
Substitution of this expression into Eq. (2.2) gives

=] (<]

M) = § 1 -D™P™hH:"m

m-n n

M moon ' :
-ﬁ-:-z ctr . (2.17)

18a)

ma-

18b)

ob-

.19a)

19b)

.20a)

.20b)
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which can be rearranged into

o0 m .
M) = ] { ] D™D ]} M. ] T

m=0 \ n=0 m-nn m=0

Thus we obtain

m -
T = nZO Gn? M (2.21a)
where
n _ m-n m-1, _ m-n (m-1)!
Gm = (-1) (m_n) = (-1 I HCEI : (2.21b)

which can be cast into an inductive form:

ﬁ‘]Gm . (2.216)

We note that Tm can be expressed equivalently as
m
o k m-1
Tm = kZo (-1)7( X )Mm_k . (2.22)

To obtain the expression of Mn in terms of Tm’ we write

m

2" = yM(1-y) " = -1yn

n-m”

=
1} o~
4 8

and substitute it into Eq. (2.3); then rearranging and comparing to

Eq. (2.2), we get

- m
Mn =} Hn Tm (2.23a)
m=0
where
m _ .n-1, _ (n-1)!
Hn - (n-m) T (n-m! ° (2.23b)
or

HE = (R (2.23¢)

n m-1 n

n

m
Also note that Gm = Hn = 1.



M(T)
(a)
M(1)
(b)
0
T

Fig. 2.1. General shape of the dipole moment function. -Curve
(a) for a molecule with unique polarity, HC1l, for example.
Curve (b) for a molecule with reverszl of polarity, CO, for

example,



CHAPTER III

MORSE-OSCILLATOR MATRIX ELEMENTS OF u, y, AND z

1. Factorization Treatment of The Morse Oscillator

The Morse function(27)
VM(r) = D[exp(-2au) - 2exp(-au)] (3.1a)
where u = r-re, r is the internuclear distance, re is the point of
minimum potential, and D the well depth, is frequently used to describe

the internuclear potential energy for diatomic molecules because of its
many advantages:

First, considering that it has only three parameters, the
Morse functiqp fits the empirical potential curves for diatomic mole-
cules like CO quite well at fairly low vibrational levels. Second, it
supports a finite number of bound states, allowing us in some cases to
use matrix representations in solving many problems. Third, the Morse
function has correct behavior at very large r:

VM(r) >0 as 1 >oo,

At r = 0, where the potential should have a positive pole,

VM(O) = D[exp(23re) - 2exp(are)

which is between 100D and 10,000D for many molecules; in particular,

for CO, VM(O) = 190D, These values are large enough that they produce

25
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nearly the same effect as infinity on the energy levels and wavefunc-
tions.

Another important advantage is that the Schroedinger equa-
tion representing the vibrational motion of the nuclei in a diatomic

molecule with the Morse potential,

d%y = 21D : 2
aa¥-+ ?%r [-exp(-2au) + 2epx(-au)]y #+ %%-Ew =0, (3.1b)

(== < u < )
is exactly solvable by two approaches: the confluent hypergeometric

(27) and the factorization method.(zo’zz)

method
Although Morse eigensolutions of the above equation are de-
fined over the whole range of r (or u), they may be considered to vanish
over the negative range of r because of very large value of VM(O), so
that their normalization may be considered as the 'physical" normali-

zation, i.e.,

f_w ¥ Y, du = {)wvwv,dr =8, -

For'the same reason, matrix elements using Morse wavefunctions may be
evaluated over the whole range of r instead over the physical positive
range for many diatomic molecules.

Using a variation of the factorization method, Huffaker and
Dwivedi(zo) obtained two useful recursion relations, one of which per-
mits very easy calculation of some matrix elements. Since their tech-
nique of evaluating matrix elements can be extended to other matrix
elements we shall require, we recall in the following some ihportant

results from their work.

Infeld and Hull(zz) (hereinafter referred to as IH) showed
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that the substitutions

s +% = (ZuD);i/aﬁ , | (3.2a)
m; = -2uE/(ah)? , (3.2b)
X = -au + gn(2s + 1) - (3.2¢)

allow one to transform Eq. (3.1b)into the form

d2R(X) , [%e2X & (s + %)eXJR(X) - mR(X) = O . (3.3)
dx2 3
According to IH,(ZZ) the above equation is of Type B fac-

torization with characteristic functions

k(x,s) = %exp(x) - s ,
and
L(s) = -s? .
L(s) being a decreasing function of s, Eq. (3.3) is a class
I1 problem for which IH(22) obtained the following results:

The eigenvalue:

-m;'= L(R) = -(0)2 (3.4)
which gives 2 = mz.
The normalized key solution:
Rmm(x) = P-%(Zm)exp(mx ) (3.5a)

which satisfies the first-order differential equation

[ex d.,m _
T -m+ IR () =0 . (3.5b)

The normalized s-changing operators:

3¥§mt(s) = [(s-m)(s+m)]'%{%ex -5z é%} (3.6a)

which act on s according to
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s _ - s-1
R =¢& (IR, (3.6b)
R = FOMOL IS (3.6¢)

Since s > m, the quantity v = s - m must be a positive inte-
gral number which can be identified as the vibrational quantum number.
Substituting m = s - v into Eq. (3.2b), we get the expression for vi-

brational eigenenergies:

E, = -D+ (s +3)y(v+3 - k(v+ 1) 2 ' (3.7)

where
y = (ha?)/u .

The recursion relation:

Eliminating d/dx in Eqs. (3.6b) and (3.6c), one obtains the
recursion relation

X, S S. S s. s-1 s+l s+l

e Rm = A Rm + Bm Rm + Bm Rm (3.8a)
where
AS =2s +1, (3.8b)
s 5
Bm = [(s-m) (s+m)]™* . (3.8¢c)

The orthonormality condition:

A solution Rms and its corresponding eigenfunction wv can be
obtained via the key solution Rmm by applying Eq. (3.6b) repeatedly a
total number of (s-m) = v times. Solutions RmS are orthonormal accord-

ing to

[ RIRdx =8 (3.9a)

corresponding to the "physical" orthonormality condition:

[+ <}
% byrbydr = 8, (3.9b)
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To relate Rms and wv we write

s
Rm CJ@’
dx = -adu, (3.103a)

and substituting these relations into Eq. (3.9a), we get for v' = v

ac: = 1
v
from which
cC = :a."!5 :
v
hence,
s ok
R, = a -y, (3.10b)

Huffaker and Dwivedi(zo) showed that the substitutions

R(x) = exp(y/2) W() , (3.11a)
x = 2afy(s + %] (3.11b)
transform Eq. (3.3) into
2
W, A -y v Zy=o (3.12)

dy2 Yy y2
which can be recognized as a type F equation with characteristic func-

tions

m-% 1
y ~2m-%)°

Hm - %72 .

k(y,m-%)

L(m-%)

Since L(m-%) is an increasing function of m, Eq. (3.12) is
classified as a Class I problem for which Huffaker and Dwivedi(zo)
obtained the following results:

The eigenvalues:

Ag = L2 +1) = - %4+ D72 = x(s + B (3.13)
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from'which we see that ¢ = s - k.

The normalized key solution:

wss = (s + %ﬂ'(5+1)r'%2(s . %9y5+%exp[- ETEXZ'iﬁﬂ

which satisfies the equation

(s -4 1 d.0 s _ .
| y 25 -1° dy]ws =0.

The normalized m-changing operators:

9y c —2m -y fn-% 1 d
s [(s +m(s - m+ ]E Y

which generates W-functions with different m according to
Wl & e ™
s S s
m _ - m-1
Ws -jzi (m)Ws .

The orthonormality condition:

* m
/ wsTws dy = 65',5

The relationship between Wsm and Rms is given by

W) = [n(s + 2] exp (IR, (x)

The normalized m-changing operators acting on Rmi:

Substituting the relation (3.17) and

dy = (s + %)exdx

into Eqs. (3.15a, b, c), we obtain

s _ - S
Rm N ézg (m)Rm-l ’

m-1 ° dy[

(3.14a)

(3.14b)

(3.15a)

(3.15b)

(3.15¢)

(3.16)

(3.17)

(3.18a)
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s + s
RS = &R, | (3.18b)
where

ng;+(m) - [ 4(m - D(m - ¥? ]% {ée—x s+ X RS é%} (3.180)

m(s + m}{s - m + 1) 2m - 1

. mn 332 % X _s+X
fﬁs (m) = [(m_l)(I:Tm)(s-m+1)] {(m‘l)e T m -1
X Edf}' | | ' (3.18d)

The recursion relation:

Eliminating e'x(d/dx) in Eqs. (3.18c, d), one obtains a se-

. . . . s . . '
cond recursion relation connecting solutions Rm with different m,

~X, S S, S S, S S, S
Rm =0y Rm + Bm Rm-l + Bm+1Rm+1 (3.19a)
s _ s+ %
% "2m-Hm+H °’
%
s 1 (s +m)(s -m+ 1)
Bh "Tm - U nm - D 1. (3.19b)

Eqs. (3.19a, b, c) can be rewritten in terms of the Morse

eigenfunctions, using Eqs. (3.2c) and (3.10b):

(eau - l)wv = Avwv + vav-l + Bv+1wv+1 (3.203)
where
_2ls + W (v +E) ~-viv+1)
A, = GG+%-Vvi(s - %-v) ° (3.20b)
%
_ s + % v(2s + 1 - V)
by [5 + k- v][(s -vi(s +1- v)] (3.20¢)

Eq. (3.202) is a very important result because it permits
easy calculation of the matrix elements <v'|zn]v> for any power n.

It served as a basis for a treatment of the perturbed-Morse oscilla-
tor.(ZI)
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2. Signs of the Morse Eigenfunctions

Eq. (3.4) for the eigenvalues and the condition that s-m must
be an integer show that a Morse oscillator has a finite number of bound
states, which is approximately equal to the quantity s defined in
Eq. (3.2a). For CO, this number is about 77.

If the Morse radial equation [Eq. (3.1b)] is solved by the
usual confluent hypergeometric method, the relative phases of the
various eigenfunctions are completely arbitrary. When one uses the
factorization method, however, this arbitrariness is removed, since
one generates all eigensolutions by repeated application of either a
class I operator or a class II operator on the corresponding key solu-
tion,

First, in the class I problem, if the key soiution WS5 is

given as in Eq. (3.14a) then the corresponding function Rss is

Rss(x) = (positive const.) e exp(—%ex) , (3.21a)

and the corresponding Morse function is
Po(r) = (positive const.) g~ 58U exp[-(s+%)e'au] . (3.21b)

We see that both these functions approach zero positively as
r tends to 0 or +ew:

RSS and Yo _—~— 0" (3.22)

r-+0

or
T > 4o

Other solutions RmS and wv with different m and v can be ob-
tained from RsS and ¥ by using either Eq. (3.18b) or the class I re-

cursion relations (3.19a) and (3.20a). The last equation can be
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rewritten in the form

. 2% .1 -4 B
- -1
wv = [ Bv v 1]wv_1 _ [_‘é_v_]wv_z . (3.23)

.- au <
As r + », so that the term in e U is predominant, we have

g2
s mu S
which by induction, leads to
vau

e £ ’
wv(r) T +> 4o [Bva—l"’Bl]w0

and hence,

P (1) —~— 0" . (3.24a)
T &> +x

This means that all class I Morse eigenfunctions are positive
for very large r. Since wv has v nodes, its sign at r = 0 is given by
(-1)Y, that is,

v .+
b, (1) ~ (-1)" 0 . (3.24b)
r+0

Now in the class II treatment, the key function Rmm and the
corresponding Morse function wﬁ-v (which is the ground state wavefunc-

tion of another Morse oscillator described by s' = s-v) are
Rmm(x) = (positive const.) exp(mx - %ex) s (3.25a)

and

wf'v(r) = (positive const.) exp[(s-v)au - (s+3)e 2] ,  (3.25b)
which clearly have the same asymptotic behaviors as Rss and Yo,

Rm"‘ and Y3 ¥V ————— 0" ., (3.26)
T > 0 or +
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Then, in a similar manner, the r = «.behavior of other solu-
tions, Rms and wvs-v with different s, can be seen by rewriting the

class II recursion relation as
s-1
B

X s-1
s _ e =~ A s-1 _ . m s-1
»Rm = = g S ]Rm [—s ]Rm
m m
from which one sees that
s e (S-MX m
Rm ) ~—1 S S-1 m+1]Rm ’
X +4+0 B "B «s.B
m m m
hence,
p 5V ~—0", (3.27a)
v
r >0
and
Y 5V(r) ~~ -1V o' . (3.27Db)
v T > +©

Thus, all class II Morse eigenfunétions begin with positive
values at very small r and from the above results we obtain the rela-

tion between class I and class II Morse waﬁefunctions:

R SN (3.28)

This means that eigenfunctions of the two classes are the
same for even values of v and have opposite sign for odd Qalues of v.

The difference in sign between class I and class II Morse
wavefunctions, of course, results in the difference in sign between
Morse matrix elements of any function f(r). Using the relation (3.28),

one obtains immediately

@, Pl le, P> = (09 Wiempy, D> 0 G
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3. Matrix Elements of u

In Chapter I we have mentioned that in the analysis of in-
tensities of rotation-vibration or rotationless vibration transitions
of diatomic molecules the dipole moment is usually expanded in a Tay-
lor series of the variable u=r1 - T Thus, in the Morse oscillator
model, the vibrational matrix elements of powers of u are important
quantities. Morse matrix elements of u and u? have been analytically
evaluated by several authorsczs'so) by the usual integration method.
The formula for u is in a rather simple closed form, but that for u®

(31) were able to obtain a

is quite complicated. Herman and Rubin
general formula from which it is possible to extract matrix elements

of higher power of u for the rotating Morse oscillator (Morse-Pekeris).
However, even their expression for matrix elements of ﬁ is very compli-
cated. Herman, Rothery and Rubin(zz) succeeded in reducing it to a
considerably simplified form, only after a great deal of algebra. Up
to the present, formulas obtained by integration for powers of u higher
than the quadratic are not suitable for numerical calculation.

The factorization method(zz)

provides a more powerful and
more elegant technique than the integration method for the evaluation
of matrix elements in many eigenvalue problems. Using this procedure,
IH(ZZ) worked out the exact expression for the off-diagonal Morse
matrix elements of x, the variable related to u by Eq. (3.2¢). Huffa-

ker and Dwivediczo)

then obtained the diagonal Morse matrix elements
of x, thus completing the evaluation of the full x-matrix in the
Morse basis of bound state eigenfunctions. From these, the matrix

elements of u are easily obtained, as shown by the following:
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3a. Diagonal matrix elements of u

Huffaker and Dwivedi(zo) showed that

S-m

<m|x|m> = y(2m) - kxl I?ET%TT? s (3.30a)
or
<o|x|m> = 2p(2m) - Y(s + m + 1) + zl—m (3.30b)
where { is the digamma function defined by
r! dr
(= __1 ()
U)(Z) - P(z) - r(z) dz (3.313)
‘with the properties:
V) = (D) + 2, (3.31b)
and
n 1 :
U’(Z+n) = UJ(Z) + kzl [m] s (3.31C)
or
n-1 1
= 9(2) + kZO T - (3.31d)

Using the relation (3.2c) between x-and u and the relation
(3.10b) between Rms and ¢v" we get from Eq. (3.30) the non-diagonal

matrix elements of u

Vv
<v|u|v> = % [an(2s+1) - P(2s-2v) - kzl izgf%j;ij s (3.32a)
or
<vlulv> = L [in(2s+1) - 29(25-2v) + P(25-v+1) + m—tx] . (3.32D)
a 2(s-v)

(28)

According to Dunham, the digamma function Y(z) can be
approximately with very high accuracy for z 4 50 by

P(z) = n(z - %) . (3.33)
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Therefore, if this approximatior is applied to the gamma
function P(2s-2v) in Eqs. (3.32a, b), the required condition should be
VSs- 25 ,
and for CO,
v <51, (3.34a)
For the digamma function Y(2s-v+1) in Eq. (3.32b), we should
have
v 2s +1 ,
hence for CO,
v 5154 . (3.34b)
Thus, the digamma function {(2s-v+1) may be approximated
by Eq. (3.33) for all bound states of CO, while values obtained by this
approximation for Y(2s-2v) become increasingly less aceurate when v
exceeds the value of about 51. Since levels have been measured only

up through v=37, the approximation should be satisfactory.

3b. Non-diagonal matrix elements of u

0ff-diagonal matrix elements of x were obtained by IH(ZZ) in

the form

2 [(s—m')! T(s+m'+1)

.t
(m-m') (m+m') *(s -m) ! T (s+m+1) m'm] (3.35)

<m|x|m'> =

where it is assumed that m > m' or v < v'.

From this, non-diagonal matrix elements of u follow,

2 v!! T(2s-v'+1)
a(v'-v) (2s-v'-v) " v! T (2s-v+1)

(s-v')(s--v)];s . (3.36)

<vlu|v'> = -

We note that all diagonal matrix elements of u are positive

,..!—-4‘:‘
while all off-diagonal elements are negative as shown by Egqs. (3.32b)
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and (3.36). These values are also listed in Table 3.1 for 0 <v <9

and 0 < v' < 9.

4. Matrix Elements of y

4a. Diagonal matrix elements of y
(20)

Huffaker and Dwivedi also obtained diagonal elements of

X . .
e in a very simple form,
b3
<m|e”|m> = 2m (3.37)

from which diagonal matrix elements of e and y are obtained:

wle™ > = 2, (3.38)
Y+
<v|y|v>'— sV L (3.39)
s+l,, s
4b. Integral <R ]Rm,>

Evaluation of the off-diagonal matrix elements of y requires
the knowledge of this integral. Let us denote the overlap integral of
1 ! ’
two functions RmS and Rm? by Kmsa? . Then, using the s-raising and
bl

lowering operators and their mutual adjointness, we can write

o]
s+l,s _ - S S
xm,m, [_m%m (s+1) R ° R | dx ,

-
Sqp + s

f R, gﬁ; (s+1) Ry dx ,

-0

-
S

s+1,-1 [ R s {ex - (s+1) + é%}Rm' dx ,

= (B~ ")

m m

-C0
= (B s/Bs+1)'m R SR s-1 d
TV m [ m m' X
-CO

1

s+l,s [ S+l S,S-
> = (Bm'/Bm )Km,l;l' .

m,m’
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Thus, by induction, this equation gives

s . s-1 m
B, B ... B
s+1,s m! “m' ' m! m,m-1
K T o= K 3.40a
m,m' [B S+l Bms . Bmm +1] m,m' ( )

Recalling that BmS = [(s-m)(s+m)]% as defined by Eq. (3.8c),
the constant (denoted by C) in the square brackets in Eq. (3.40a) can

be expressed as

C = (s-m) !T (s+m'+1)T (2m+1) L
- [(m-m'-l) Y (s-m+1) IT(s+m+2) T'(m+m') 1.

The integral Kmsaf-l is given by Eq. (C.8a) in Appendix C.
2
Thus, substituting the value of C and the expression of this integral

into Eq. (3.40), then after some reduction we obtain

(s-m)! T(s+m'+1)
(s-m+1)} IT (s+m+2)

s+l s_ _ -
<R IRm,> = [ 4m'm]”? . ' (3.41)

4c. Non-diagonal matrix elements of y

Multiplying both sides of the class II recursion relation
(3.8a) by Rm? , integrating with respect to x -and using the orthonor-

mality of R-functions, one gets

R 5> .

s+l s+1 1
m'

<R °|e"|R 5> = B *T'aR
m m m “m

The B-factor and the integral in the right-hand side of this

equation can be replaced by their expressions to yield

(s-m') IT(s+m'+1)

-
o) Tlsrme) ™™ (3.42)

<mjeX|m'> = [

which then leads to the matrix elements of e 2" and y:

<v|e-aulv'> = -<v|ylvt> , (3.43)
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vl r(25-v'+1)
vl T(2s-v+1)

wlylv'> = - — [

" (s-v')(s-v)];5 . (3.44)

‘ Comparison between matrix elements of y and u shows that

they are related to each other by

a(v'-v)(2s-v'-v)
2s + 1

<v|y|v'> = <vlulvt> . (3.45)

Also, as for the u-matrix, all diagonal matrix elements of
y are positive while all off-diagonal elements are negative. To give
some idea of the magnitude of the y-matrix elements, we list these in

‘Table 3.2 for CO and for 0 < v <9 and 0 <Vv' < 9.

S. Numerical Calculation of Matrix Elements of Any Power of u, y,

and 2

The set of bound state and continuum state Morse wavefunc-
tions forms a complete set in terms of which a function of r can be
expanded. In practical calculations, this complete set, however, has
to be truncated so that one has finite and.discrete matrix representa-
tions. Therefore, for diatomic molecules with many bound states, one
may retain only a reasonably large number of bound states in the Morse
basis. For CO which has about 77 bound states, Huffaker(ZIe) found
that, for a given v, the basis size M is at least v + 14 so that the
effect of truncation is insignificant. For M = 48, the matrix dia-
gonalization yields highly accurate perturbed-Morse-oscillator (PMO)
eigenfunctions up to v = 30, Thus, for CO at least, it is reasonable

to neglect all continuum states and make the approximation

N
ZO fvo<v| = 1 (3.46)
V=
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where I is the unit operator and‘N > 48,

As seen before, a matrix representation of z can be easily
obtained from the class I recursion relation (3.20a) and thus has a
simple tridiagonal form:

A, By
Z = B, A, B,

Noting that
y=1-(+D17,
matrix representation of y can be produced numerically from that of z
by taking the matrix representation of the above equation,(21) i.e.,
by inverting the matrix representing (z + 1).

For CO, matrix size 50x50 is adequate to give highly accu-
rate values for y-matrix by inversion method. If the full size 76x76
is used, values obtained are nearly the same as those by exact formu-
las. Also, note that, since the inversion method involves class I
wavefunctions while the exact calculation makes use of class II func-
tions, values of y-matrix elements obtained by the two methods differ

in sign according to Eq. (3.29):

(1) _ vev! o (II)
wi - ("1) YWI

Exact formulas for matrix elements of y* and y® are derived
in Appendix B. Formulas for higher powers of y can be obtained by the
same technique, but are increasingly lengthy and complicated. There-

fore, matrix multiplication appears to be more appropriate and conve-
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nient. In this method, the approximation (3.46) permits one to write
: N
<[ @) |v'> = ) <v|fP|a><n|£Yvr>
A=0

where p + q = n, and f(r) is u, or y, or z, or any function of r.
To maintain good accuracy, one can use exact expressions for
matrix elements of the first three powers of y, from which one can ob-

tain matrix elements for higher powers using matrix multiplication.
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TABLE 3.1. Morse matrix elements of u for 0 < v and v' < 9. The entry

.408287 -2 means .408287-10"2.

AN 0 | 2 3 4

0 | .408287 -2 -.337712 -1  -.193399 -2  -.181451 -3  -.221872 -4
1 |-.337712 -1 .123306 -1 -.479160 -1 -.337182 -2  -.366500 -3
2 |-.193399 -2 -.479160 -1  .207130 -1  -.588783 -1  -.480001 -2
3 |-.181451 -3 -.337182 -2  -.588783 -1  .292238 -1  -.682123 -1
4 {-.221872 -4  -.366500 -3 -.480001 -2 -.682124 -1  .378702 -1
5 |-.324605 -5 -.502711 -4  -.585272 -3  -.623816 -2  -.765184 -1
6 |-.543705 -6 -.808384 -5 -.882366 -4 -.836017 -3 -.769143 -2
7 |-.101513 -6  -.146745 -5  -.153775 -4  -.136598 -3 -.111713 -2
8 |-.207533 -7  -.293896 -6 -.299435 -5 -.255361 -4 -.195798 -3
9 |-.458702 -8  -.639467 -7 -.638254 -6 -.529214 -5 -.389563 -4
N 5 6 7 8 9

0 |-.324605 -5 -.543705 -6 -.101513 -6 -.207533 -7  -.458702 -8
1 |-.520711 -4 -.808384 -5 -.146745 -5 -.293896 -6 -.639467 -7
2 |-.585272 -3 -.882365 -4 -.153775 -4 -.209435 -5  -.638254 -6
3 |-.623816 -2  -.836017 -3  -.136598 -3  -.255361 -4 -.529214 -5
4 |-.765184 -1 -.769143 -2  -.111713 -2  -.195796 -3 -.389563 -4
5 | .466562 -1 -.841036 -1 -.916211 -2  -.142747 -2  -.266275 -3
6 |-.841036 -1  .555861 -1 -.911497 -1 -.106515 -1 -.176621 -2
7 |-.916211 -2 -.911497 -1  .646417 -1 -.977752 -1 -.121603 -1
8 |-.142747 -2 -.106515 -1 -.977752 -1  .738950 -1 -.104062 +0
9 |-.266275 -3 -.176621 -2, -.121603 -1 -.104062 +0  .832834 -1
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TABLE 3.2. Morse matrix elements. of y for 0 < v and v' < 0.

= 0 1 2 3 4

0 .647508 -2 -.796825 -1  -.906659 -2 -.126754 -2 .205280 -3
1 .796825 -1 .194252 -1 -,111574 +0 -,155984 -1 .252618 -2
2 .906659 -2 -.111574 +0 .323754 -1  -.135277 +0 .219083 -1
3 .126754 -2 -,155984 -1 -,135277 +0 .453256 -1 .154611 +0
4 .205280 -3 -.252618 -2  -.219083 -1 -.154611 +0 .582757 -1
5 .372901 -4 -.458893 -3  -.397976 -2  -.280859 -1 .171069 +0
6 .744470 -5 -.916147 -4  -,794530 -3  -.560714 -2 . 341527 -1
7 .161046 -5 -.198206 -4 -.171894 -3  -,121309 -2 .738884 -2
8 .373748 -6 -~ -.459936 -5 -,398880 -4 -.281497 -3 .171458 -2
9 .922950 -7 -.113578 -5 -.985011 -5 -.695140 -4 .423405 -3
" 5 6 7 8 9

0 .372901 -4  -.744470 -5 -.161064 -5 -,373748 -6 .922950 -7
1 .458893 -3 -.916147 -4  -.198206 -4 -.459936 -5 .113578 -5
2 .397976 -2 -.794530 -3  -,171894 -3  -,398880 -4 .985011 -5
3 .280859 -1  -.560714 -2 -.121309 -2  -.281497 -3 .695140 -4
4 .171069 +0  -.341527 -1  -.738884 -2  -,171458 -2 .423405 -3
5 .712259 -1  -.185423 +0 -.401158 -1 -.930885 -2 .229877 -2
6 .185423 +0 .841761 -1  -.198136 +0 -.459774 -1 .113538 -1
7 .401158 -1  -.198136 +0 .971262 -1  -.209511 +0 .517376 -1
8 .930885 -2  -.459774 -1  -.209511 +0 .110076 +0 .219761 +0
9 .229877 -2 -.113538 -1  -,517376 -1  -.219761 +0 .123027 +0




CHAPTER IV

CUBIC DIPOLE MOMENT FUNCTIONS IN u, y, AND z

Although there have beeri numerous determinations of dipole
moments of diatomic molecules as functions of the internuclear separa-
tion using intensity data, this problem is still of considerable im-
portance and interest. In this empirical approach, the correctness of
the results depends on three factors:

i) Reliability and sufficiency of the experimental data;

ii) Accuracy of the internuclear potential used, whether
analytical or numerical;
iii) Reasonable form chosen for the dipole moment.

The first condition appears to be a major concern. The very
small number of experimental data points per molecule usually limits
the choice of form for the dipole moment to a Taylor series expansion
which, in turn, requires the measurements to be highly accurate. In-
frared absorption experiments are frequently performed to provide abso-

lute intensities of individual lines(9’13’14’25)

(33-35)

or integrated inten-
sities of the lines in a given vibrational transition, as well
as in electronic transitions. This measurement technique is not accu-
rate when the population of the lower level is so low that emission

(36,37) ..

transition is possible. In this case, emission experiments
more preferable.

45
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Two techniques have been developed for determining the coef-

(8)

ficients of the dipole moment expansion. The first procedure makes
direct use of the integrated absorption intensities at iow temperature
for various vibration bands and requires the evaluation of rotation-
vibration matrix elements. The secondcg) extracts the squares of rota-
tionless dipole matrix elements from individual line intensities

using least-squares fit and thus involves only purely vibrational
eigenfunctions in the calculation of the expansion coefficients. 1In
the latter approach, it is usually assumed that the square of the

rotation-vibration matrix element <vJ|M(r)|v'J'> may be factorized in

the form

|<va M) |v1at> |2 = o6, () |2 = [y |2F . ()
where

Wyt = <v|M(r) |v'>

is the rotationless dipole matrix element and Fvv'(m) is called the

Herman-Wallis factor representing the rotation-vibration interaction,

and
m=J+ 1 for R branch,
m= -J for P branch.
(9,13,14,25,34-38)

A great deal of effort combined with modern
equipment and techniques has been made to obtain highly accurate inten-
sity data for the fundamental (0-1) band and the first two overtone
(0-2 and 0-3) bands of CO (X'I), from which reliable absolute values

of the corresponding rotationless transition moments have been deduced.

Three sets of these empirical quantities for CO are listed in Table
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. 4.1 together with 1es§ accurate values for some low hot bands. Also
shown are the values averaged over the three sets of values for Hor1°
Ho2° and Moz and uncertainties reportéd by Toth, Hunt, and Plyler(g)
on their values for these quantities. These averaged values shall be
used in all our calculations. |
In Chapter III we showed how the eigenfunctions and some

matrix elements for the Morse oscillator can be easily obtained.
Since this model is good only for low vibrational levels, v < 10 for

CO, we shall also use the perturbed-Morse-oscillator (PMO) potential

energy which is expressed by

N
n
Vpyo(*) =Dy + Dn§4b Y (4.1)

where y = 1 - e-au, Us=T-T, and the first term represents the un-

perturbed Morse oscillator.

The PMO potential function was shown by Huffaker(21) to be
a useful model for describing diatomic molecules (within the framework
of the Born-Oppenheimer approximation) as accurately as the potential
obtained via the RKR method. Using the WKB method, Huffaker(44) was
able to extract from the spectral data the coefficients bn from b4 up

to b62 for the ground electronic of CO, together with the three para-

meters that he used to characterize the equivalent (unperturbed) Morse

oscillator:
p=ar,, (4.2a)
5
G=s+k= (2:2) , (4.2b)
=2 (4.2c)
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In Huffaker's energy-related works, these quantities are more
convenient than the usual Morse parameters, a, L and D; but in our
study we shall use the latter set of characteristics. Therefore, we
list in Table 4.2 empirical values obtained by Huffaker(44’45) for the
first set of parameters and corresponding values for the second set.

Next we shall describe a technique employed by Huffaker to

produce eigenfunctions of the perturbed Morse oscillator.

1. PMO Eigenfunctions for CO

These eigenfunctions have been obtained analytically by per-
turbation-method calculationSEZIC) which included the effects of PMO
coefficients from b4 to b7 only. If a larger number of these coeffi-
cients is to be included, finite perturbation theory is impracticable
as the complexity of the perturbation formulas increases geometrically
with increasing order of terms.

Therefore, in order to obtain more accurate eigenfunctions,
matrix diagonalization was used by Huffakefﬁz%e) In this technique,
it is necessary to neglect the continuum of unbound states of the Morse
oscillator and retain a certain number M of bound states in order to
have a finite and discrete matrix representation. For CO where the
total number of bound states is about 77, we choose M=48 which is
adequately large to yield very accurate eigenfunctions and not too
large for numerical calculations.

The Hamiltonian of the perturbed Morse oscillator can be

written as

H=H +H (4.3a)
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where

h d?

Ho = -z—u-d—r-z- + Dy2 . (4'3b)

is the unperturbed Hamiltonian of the equivalent Morse oscillator, and

-~ N
n
H' =D ] by (4.3c)
n=4
is the perturbation Hamiltonian consisting of a finite sum of terms.

The unperturbed Hamiltonian H® has eigenfunctions b, and

eigenvalues Es satisfying the Schroedinger equation
0, = g0
B, = Eyoy

The eigenvalue Es, which is the pure Morse matrix element,

can be obtained from Eq. (3.7) and written in the form-

B0 = KO, = D[Z(vg ¥ _ (";2%)2]5

vv! vv' (4.4)

The eigenfunctions and eigenvalues of the unperturbed system
are related by

HWV = EVWV .

From Eq. (4.3a), the perturbed Hamiltonian matrix element

va, in the basis of the equivalent Morse oscillator can be written

vav = Hs-vv + H"Nl (4.5)
where H&v' may be called the '"perturbation' matrix element:

N

H! , =D nz4 bn<v|yn{v‘> . (4.6)
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The finite matrix representation of the PMO Hamiltonian is
then diagonalized to produce eigenvectors, expressing PMO eigenfunc-
tions as linear combinations of Morse eigenfunctions. Since the per-
turbed Hamiltonian matrix is nearly diagonal and its eigenvalues are
known experimentally, eigenvectors can be produced by a simple proce-
dure. Calling ?V the unnormalized eigenfunction corresponding to

eigenvector Qv and eigenvalue Ev, we can write
T - b
¥, § ot Oy

Then choosing va = 1, one obtains the other components of

Pv by solving the set of (M - 1) inhomogeneous linear equations

V'Z#V (HV"V' - EVGVHV')DWI = 'vau ' 4.7)

by matrix inversion.

Consistency can be checked by comparing
Ev - VE, HVV'DW'

to the eigenvalue E,- If the difference between Ev and EV is more
than the desired accuracy, one replaces Ev in Eq. (4.7) by Ev and
repeat the process until the desired accuracy degree is reached. Fi-

nally, the normalized eigenfunctions are obtained in the form
¥, = ‘Zﬂ Cop1 0y (4.8)

where
Dv
C .

v %
[VZ' (D)7
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A computer code has been written by Huffaker to solve this
problem for PMO eigenfunctions for CO. The results were found to be
good for v < 28 and J < 160. We use his program to obtain rotation-

less (J = 0) PMO eigénfunctions for all calculations in this work.

2. Various Cubic Dipolé Moment Functions for CO

With a few reliable experimental data, and with accurate
PMO eigenfunctions available, our next task is to solve for the co-

efficients of the cubic dipole moment functions in u, y, and z for CO:

M(u) = mp + myu + mpu? + mgu® , (4.9a)
M(y) = Mg + My + Mpy? + Mgy® (4.9b)
M(z) = Ty + Tyz + Tp22 + Ty2% . : (4.9¢)
Since at r = T, u=y=z= 0, we have
M(r,) =mg = Mg =Top ,

which is called the permanent dipole moment of the molecule.

For convenience, let us denote all three variables of u, Y,

and z by a single letter q and write
M(q) =M, + Pyq + P2q* + Pyq® . (4.10)

Then the coefficients P, P,, and P3 can be determined sim-
ply by solving an inhomogeneous set of three linear equations which
can be written in the matrix form:

Q1 951 9d:1]{P: Ho1
Q2 952 qdz2|{P2| = [uo2 (4.11)
993 q§3 qgs P, Hos
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where

qgv = <0[qn|v> , n=1,2,3, ...,

is the Morse or PMO matrix element of qn.

Now, another problem one usually faces is an ambiguity in the
dipole moment function M(q) which'arises ffom the fact that spectral
intensity measurements determine only the absolute magnitudes and not
the algebraic signs of the matrix elements. Consequently, one has 23
possible cubic dipole moment functions M(q) for each variable q. In
general, if K coefficients in the expansiqn of M(q) are to be determined,
and if the sign of M has been fixed, then the number of solutions will
be 2K.

In most experiments, only the absolute magnitude of the per-
manent dipole moment My may be determined. By observing the Stark ef-

(46)

fect on microwave transitions, Burrus obtained the value of 0.112

+ 0,005D for My. Other measurements(47)'gave the value 0.114 D. 1In

the past few years, molecular beam electric resonance spectroscopy(48’49)

(50)

has been used to provide data from which Muenter could extract a

more accurate value and also determine the sign for My:
Mp = -0.1222 D (4.12)

with the negative sign indicating the C 0" orientation.
Further, the negative sign of M; has been confirmed by an ab

initio calculation of Billingsley and Krauss(SI)

using the optimized
valence configurations multiconfiguration self-consistent-field method
(OVC MCSCF), and by Toth et al.(g) who found that the negative value

of M, gave the best agreement between the calculated and observed

values of the Herman-Wallis factors.
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To remove the ambiguity on the dipole moment function, one
usually fixes the sign of the coefficient P; and selects signs of ug1,
Moz, and yo3 for which the corresponding dipole moment function is the
most physically reasonable. We shall assume that the CO dipole moment
function has the behavior about r, as shown in Fig. 2.1, curve (b), so
that P, has positive value, i.e., the curve has positive slope at r .
Since at low vibrational levels the contribution to the dipole matrix
element W, comes mainly from values of M(r) over a small region
about T, We have found a way to fix the signs of yp;, Uo2, 2nd Y3 by

approximating M(q) as a linear function in q,

M(qQ) = Mg + P1q ,

so that

By = <0|M(q) [v>°TS€ = py<0|q|v>MOTSE < o (4.13)

because all off-diagonal Morse matrix elements of u and y have been
shown to be negative in Chapter III, Eqs. (3.36) and (3.45). Also, the
condition (4.13) implies that Class II Morse eigenfunctions are used.
Thus, we shall give negative signs to the empirical dipole
transition moments jgi , Mo2, and ypa, and also to w13, M2y, and uss

for hot bands.

2a. Results Using Morse Eigenfunctions

M(u) = -0.1222 + 3.0908u - 0.1986u® - 2.3781u’ , (4.14)
M(y) = -0.1222 + 1.2930y + 0.6127y2 + 0.2171y® , (4.15)
M(z) = -0.1222 + 1.2933z - 0.6837z% + 0.2709z3 . (4.16)
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Using the above dipole moment functions, we calculated ugg,
the vibrationally averaged dipole moment at v = 0, and found that it is
negative for CO. Therefore, the empirical value for oo as listed in
Table 4.1 should be given negative sign} Moo = -0.1098 D. Then, from
this value, we can recalculate the permanent dipole moment by

3
Po = oo - ) P1<0|q"|0> (4.17)
n=1
where Py, denotes the new calculated value. Values of Py, P;, P2, and
P, for different Morse cubic dipole moment functions are recorded in

‘Table 4.3. Values of Py differ only at the fourth decimal digit, so

for all three models we may take Py = -0.1212 D.

2b. Results Using PMO Eigenfunctionmns

M(u) = -0.1222 + 3.0925 u - 0.2046 u® - 2.5203u® , (4.18)
M(y) = -0.1222 + 1.2937 y + 0.6113 y* + 0.2041 y® , (4.19)
M(z) = -0.1222 + 1,2940 z - 0.6847 z2 + 0.2636 z° .  (4.20)

The permanent dipole moment is also recalculated using these
PMO cubic functions. Values obtained are listed in Table 4.3, and they
differ very little from those obtained previously. Graphs of the

various PMO cubic dipole moment functions are shown in Fig. 4.1.

3. Discussions

Comparison between Morse and PMO for Py, Pi1, P2, and P3 of the
same cubic expansion M(q) shows that the effect of the PMO eigenfunc-
tions increases with increasing order of the coefficients. Indeed,

this effect appears on the fifth, third, second, and first decimal
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digit of Py, P;, P,, and P3; respectively. It can be explained by the
fact that the difference between corresponding Morse and PMO eigenfunc-
tions increases with the vibrational quantum number v.

If we use the dipole matrix elements deduced by Young and
Euchus,(S) we obtain the following PMO cubic dipole moment function

M(u) for CO:
M(u) = -0.1222 + 3.0912 u - 0.1221 u? - 2.4680 u® (4.21)

which agrees fairly well with their result obtained using the RKR

potential and numerical techniques:
M(wYE = -0.112 + 3.11 u - 0.15 u® - 2.36 u® . (4.22)

Comparing Eq. (4.21) to the PMO dipole function (4.18) ob-
tained by using the set of averaged dipole matrix eleménts, we see
that the second terms differ very little but the third and the fourth
terms show significant differences. This is because in the two sets
of data, ugo is the same and Ug; and upp are changed. Therefore, as

Cahion17)

indicated, if the overtone matrix elements are not known
accurately then the cubic dipole moment function may not be more useful
than the linear approximation. Fortunately, averaged values of the
three dipole transition moments used in our work come from reliable
sources.

The effect of truncating the series expansion to the cubic

power also can be examined. Suppose that the cubic polynomial
M(w) = mp + mqu + mpu® + myu’

were an exact expression of the dipole moment; then its equivalent
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expansion in powers of y is

L .
MA(y) = Mg + § M2 v (4.23a)
i=1
where Mi is given by Eq. (2.14b),
N j -
* =
Mi jZl Bi mj (4.23b)

where N = j for i <3 and N = 3 for i > 3, and EB = mj/aJ.

For the cubic dipole function (4.18) with
m; = 3.0925 , m, = -0.2046 , my; = -2.5203 ,

the coefficients M; of its equivalent infinite power series in y are

listed in Table 4.4. We see that the three coefficients
M: = 1.2937 , M; = 0.6110 , M} = 0.2109

are very closed to the corresponding coefficients of the PMO cubic di-

pole moment function M(y), Eq. (4.19):
M; = 1.2937 , M, = 0.6113 , My = 0.2041 .

Clearly, this shows that the truncation of the power expan-
sion of M(y) at the cubic term does not have a serious effect on Calcu-
lated values of the retained coefficients and that the effect is most
pronounced on the last coefficient Mj;.

In the same manner, we can obtain the equivalent infinite
z-series for the cubic function M(u), the equivalent u-series with
coefficients shown in Table 4.4 for the PMO cubic function M(y),

and so on. In any case, the first three coefficients after the zero-
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order term of the equivalent infinite series do not deviate considera-
bly from those of the corresponding cubic approximation.

The y-expansion representing.the cubic dipole moment func-
tion in Eq. (4.19) shows an interesting feature. As shown in Table
4.4, the first three coefficients after M, are positive and all others
from Mf are negative while those in the last column alternate in
signs from m%. If we graph the coefficients M; versus the ordinal
number n, we get a curve as shown in Fig. 4.2. There is a minimum at

n =14, and as n > M; does not vanish. Therefore,
(o]
Mg + ¥ M = -,
n=1

that is, the coefficients M; form a diverging series.

This result may be explained by the fact that, due to the
truncation of the Taylor series, coefficients of higher order than m,
are excluded from the expression of M; in Eq. (4.23b). Therefore,
from'a theoretical consideration, we may infer that, had all Taylor
coefficients m been exactly known, then all coefficients Mn would be
also exactly known and they would satisfy the condition that their
infinite sum including M, should vanish. This condition constitutes
a basis for an extrapolation technique we shall use later to generate
all coefficients Mn from the first few ones.

A final point to be made is that’at r = 0 the Morse and PMO
cubic dipole moment functions have values -0.456 and -0.251 respec-
tively, suggesting that the PMO eigenfunctions give better dipole
functions than the Morse eigenfunctions and the behavior M(r = 0) = 0

should be expected for CO.



TABLE 4.1. Experimentally deduced purely vibrational dipole matrix
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elements U in absolute values (units of Debye).

Ref. Hoo o1 Ho2 Hos
-2 -3
(8) 0.104 | 0.625x10 0.383x10
-2 -3
0.104 | 0.653x10 0.424x10
) _2 -3
: £ 0,002 |+ 0.010x10™° |+ 0.060x10
(10) | 0.1098 | 0.104 | 0.638x107% | 0.384x10"3
Aver.| 0.1098 | 0.104 | 0.639x107%| 0.397x1073
Ref. 13 H2y Hsas
(10) | 0.114x107! | 0.164x107! | 0.214x1071
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TABLE 4.2. Two sets of Morse parameters and an additional set of

related constants.

p = 2.6971864555362350

g = 77.2191124730286411

T = 83774.5923674853693 cm™

a = 2.,3904392015124602 R

T= 0.1128322550027498 K

D = 83774.5923674853693 cm-1
Reduced mass for CO: M = 6.8562087141 amu
Speed of light: c = 2.99792458><108 m/s
Planck's constant: h = 6.626176x10" % J/s
Atomic unit mass lamu = 1.6605655x10™27 kg
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TABLE 4.3. Empirically calculated coefficients of cubic dipole moment
functions in u, y, and 2z, using Morse and PMO eigenfunc-

tions respectively.

Expansion P P P P
+ 0 1 2 3

Morse | -.12125 3.0908 -.1986 -2.3781

M(u)
PMO -.12124  3,0925 -.2046 -2.5203
Morse | -.12125 1.2930 6127 2171

M(y)
PMO -.12124  1.2937 6113 2041
Morse | -.12124 1.2933 -.6837 2709

M(2)
PMO -.12123  1.2940 -.6847 2636
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TABLE 4.4. Coefficients M; of the infinite power series in y equiva-
lent to the PMO cubic dipole moment function M(u), and
coefficients m; of the infinite power series in u equiva-

lent to the PMO dipole moment function M(y).

m M; Mn m;

n| (Truncated) {(Infinite) (Truncated) (Infinite)
1 3.09254 1.29368 1.29375 3.09262

2 -0.20462 0.61103 0.61134 -0.20302
3 -2.52029 0.21091 0.20413 -2.61700

4 0.13831-1 -0.11380

5 -0.93996-1 8.82847
6 -0.15760 -19.08000

7 -0.19697 25.92200

8 -0.22206 -27.21335

9 -0.23825 23.84022
10 -0.24865 -18.13796
11 -0.25517 12.27972
12 -0.25901 -7.52017
13 -0.26098 4,21533
14 -0.26161 -2.18211
15 -0.26127 1.05053
16 -0.26024 -0.47303
17 -0.25870 0.20016
18 -0.25679 -0.79907-1
19 -0.25462 0.30201-1
20 -0.25226 -0.10839-1

The last negative digit refers to the power of 10.
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Fig, 4.2. Graph of coefficients Mn of the equivalent y-series

versus the number n.



CHAPTER V

ANALYTICAL DIPOLE MOMENT FUNCTIONS WITH CORRECT ASYMPTOTIC BEHAVIOR

1. Introduction

The main objective of the present work is to produce approxi-
mate values for unknown coefficients of the y-series expansion of the
dipole moment M(r) from a few known coefficients or given intensity

data, in such a way that the infinite sum of coefficients Mn vanishes:
I .

M, + nzl Mn =0, (5.1)
so that the dipole moment function exhibits the correct asymptotic be-
havior as r becomes very large (i.e. the molecule approaches disso-
ciation).

The behavior of equivalent y-expansion coefficients M; with
respect to the index n as shown in Fig. 4.2 or Table 4.3, Chapter III,
suggests that the coefficients Mn also have the same general behavior
for small values of n, but as n +» «, Mn must tend to zero in such a way
that the asymptotic condition (5.1) is satisfied.

Therefore, in order to generate values for unknown coeffi-
cients Mn’ n > 4 for CO, we assume a functional form for Mn’ i.e., we

express

Mn = F(n, C1, C2, ..., CM’ B) (5.2)

64
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where F is a function of the index n and the parameters C,, Cp, ...,

CM, and B. The function F is subject to the asymptotic condition
My + nzl F(n, Cm’ ) =0 - (5.33)

where Cm stands for the set of M parameters {C;, C;, ..., CM}. Thus,
the series generated by the function F is convergent and must satisfy
a necessary condition

Lim F(n, Cm’ B) =0 . (5.3b)

n-> o
The parameter B will be determined by the asymptotic condi-

tion (5.3b), and M parameters Cm are to be determined from N empirical
dipole matrix elements Wyt OF N given y-expansion coefficients M.
Therefore, this problem can be solved by either of the following two
approaches:

i) Indirect method: One first determines the first N coeffi-

cients Mn other than M, using N known values of Byt by solving a sys-

tem of inhomogeneous linear equations of the form

(5.4)

N
21 <v|yn|v'>M = Wyt o

nt n
as has been done in Chapter IV.
The parameters {CM} are then obtained by fitting the function
F(n, CM, B) to N coefficients Mn’ subject to the asymptotic condition
(5.3a) which will determine B. In cases where F(n, Cm, B) is linear
in Cm and non-linear in B, and M = N, one has a system of linear equa-

tions

F(n, C1, C2, ..., Cm’ B) = Mn , n=1, ..., N. (5.5)
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which one solves for the C-parameters for each trial value of B. This
iteration will continue until the asymptotic condition (5.3a) is
satisfied within a desired accuracy degree. One then obtains a new di-

pole-moment expansion in powers of y,

N L .
MA) =Mg ¢ § Moy s ] Mry (5.6)
n=1 1=N+1

which has been truncated so that a sufficiently large number of newly
produced coefficients h%f is retained.
In the second step, the new coefficients Mf‘ are included

in Eqs. (5.4) which now become

N L ,
1
nzl iy veny =y - 1=E+1 My <vlyTive> .7

The above procedure is then repeated over and over until the
difference between the old set and the new set of parameters {Cm,B} or

coefficients Mz falls within a desired degree of accuracy.

ii) Direct method: In this approach, we express matrix ele-

ments of M(r) directly in terms of the parameters C;, ..., C,, and B:

M

L
<v|M(z)|v'> = Me§__, + } F(n,C1,Cz,...,C B <v]yt|vr>
vV n=1 M
(5.8)
Then, using N experimental data uvv" we determine the set
of parameters {Cm,B} by the least-squares method for the case M < N,
being always subject to the asymptotic condition (5.3a). If M = N and

F(n,Cm,B) is linear in Cm but non-linear in B, we determine these

parameters by iterating B and solving a system of linear equations.
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2. Functional Forms For Coefficients Mn

In principle, it is possible to find an infinite number of
functions of the variable n which fit known coefficients‘Mn or transi-
tion moments uvv, and simultaneously satisfy the asymptotic behavior
(5.32). We, however, are interested in those functions that are sim-
ple enough and contain a few parameters so that our problem can be
handled easily by analytical or numerical methods.

We have found various simple generatihg functions for Mn

with n > 0 as follows:

M1 = F'(n,C;,C,,Cs,8) = (C; + 0C; + n2Cg)e " (5.9A)
C -
M? = F2(n,C,,C,Co08) = (Cy + 2+ SyePR (5.98)
M ® = F3(n,C1,C,,Ca,8) = (Cy + 2+ nCye ™", (5.9C)
c C, . -Bn
b = p4 =
Mn = F (n’cl,CZ’C:i:B) (Cl + n n(n+1))e > CS-QD)
(Cy, + Cy)e B », n=1,
Mns = Fs(n’C1’C2:C3’B) =
_(_:_2_ C3 -Bn
(C; + el n(n-l))e , n>2,

(5.9E)
where B is now a positive parameter and the superscript refers to dif-
ferent models of function or coefficient.

All five above generating functions produce convergent series,

i.e.,
o«
Mg + Mn“ =S, a=1,2,...,5, (5.10)
n=1

where S is a finite value. This can be easily shown: for a finite
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number k positive or negative, we see that

)k o-8(n+1)

. (n+l X 1.k -fn
lim [ 1= 1lim [(1 +2) e "] <1
n+>o nK ¢7BM n->ow n

which leads to
o

M
[ n+1] <1

Lim
n->o Mn
which is a sufficient cbndition for convergence of the series Mna.

In order to produce a dipole moment function with correct
asymptoﬁic behavior, the model series Mna must also fulfill the condi-
tion (5.3a), that is, we must have S = 0 in Eq. (5.10). Although the
first model function F! gives a dipole moment function in a closed
form which is simpler than those resulted from other models, this
model is not suitable for CO because we cannot find values of the para-
meters C,;, C,, C;3, and B for which S = 0 so that the corresponding
dipole moment. function vanishes at infinite r. The other model func-
tions work well for CO.

We shall show that the proposed generating functions produce
closed-form dipole moment functions. First, for convenience, we ex-

press ali five model functions in a general form:

M= (g Cy+g?Co+ g’ Ciy)B (5.11a)
where

B=eP®, 0<B<1, | (5.11b)

gl =1, (5.11c)

g?=mn, 1/n, (5.11d)
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. 1 1 1 :
3~ a2
€' M 77 D) ? n(n-D) (5.11e)

Substituting Eq. (5.11a) into the y-expansion of M(r), we
obtain
o n S n s n
MiUy) =Mg +Cy § (BY)" +Cp § g 2(By)" +Cs ] g *(By)
n=1 n=1 n=1 ‘

or
n=2

(5.12)

Defining Y = By, the first sum in the above equation can be
reduced to a single term:

Y' = e— . (5.13a)

n=1

"The second sum in Eq. (5.12) can also be reduced to one term:

For gn2 = n, we have
w © ©
J nY*=y 7§ ay?lopd R G e S (5.13b)
A L a (L T-7
n=1l - n=1 n=1 .
For gn2 = 1/n , we have
Y = -l -Y) . (5.13¢)
n=1

-2

Except for gn3 =n ~, the third sum in Eq. (5.12) can also

be compressed into a compact term for other models:

[¢+]
z n2 Yn Y+ Y) .

L = (l—-Y-)_T . (5.13d)
Ty B % B an(1 - V)
R
= Lio(Y) = Y£(2,1,Y) , (5.13€)

(52

where Liz(Y) is called the dilogarithm ) and 7(2,1,Y) is the Lerch
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or

and
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.(2) General forms of these functions are
X 1
Lin(x) = [ x Lin_l(x) dx : polylogarithm of order n ;
0
o _k
X
Li ()= § =
n k=1 k"
1 s xk
z(s,1,x) == §J =
R I
o k
z(x,2,%) = X

k=0 (k + a)°

For gn3 = 1/n(n+1) and gn3 = 1/n(n-1), we obtain

-] n )

z1 n(:+1) = 5 Bygn(1 - B) - 1, (5.13f) -
n=

Of Y. (1 - B)&n(1l - B) (5.13g)
nep B(n-1) B ’ 18

Using these expressions (5.13a-g), the series expansions

(5.12) of the dipole moment, except for model F2, can be reduced to

analytical closed forms:

M (y)

M2 (y)

M3 (y)

M*(y)

M°(y)

Mo

Mo

Mo

Mo

By By By (1+By)
+ G 1-By + Cz (1-By]¥7+ Cs (1-By) s ° (5.14A)
¥ Cy ——-llfgy - Cz 2n(1-By) + Cs Liz2(By) , (5.14B)
+Cy <BY_ _C, in(1-By) + C3 X (5.14C)
P T-By - AR ST O L '
+C 2, 2 1-By
1 2L - C, an(1-By) + Cs[1 + (SE0n(1-By)1,  (5.14D)
1-By By
+ Ci=BY_ - C, n(1-By) + Cs3[By + (1-By)2n(1-By)] .  (5.14E)

1-By

The asymptotic condition (5.3a) now also can be written in

the same compact forms by letting y = 1 in the above expressions for
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M%*(y). We note that the first dipole moment function in Eq. (5.14A) is
simpler than the other ones.

Since all the above functioné are linear in C;, C,, and C,,
but non-linear in B or @, analytical and numerical determinations of
these parameters are not very complicated using the procedure described
in the Introduction of this chapter. We choose to use the direct ap-
proach by fitting these functions directly to the experimental transi-
tion moments. However, to find the zero-order approximation values
for the parameters Cm and B, we fit the model functions to the known
coefficients M,, M,, and M; of the PMO cubic dipole moment function in
y.

In cases where there are more intensity data than parameters

Cm’ the method of least-squares fit as described below should be used.

3. Minimization of Errors

Derioting the pair of vibrational quantum numbers (v,v'} by
v, then using the general forms (5.11a) and (5.12), the matrix elements

of the dipole moment function can be expressed as

y .
946v = <v|M(x) |v'> = mzl Up Cp» v - JRTANEN (5.15a)

where M = 3 in our case, and
. n n_m '
Qp = L [<viy'|v'>B" g 7] (5.15b)
n=1
where L is the number of terms retained in the expansion.
Calling N the number of empirical transition moments uvv'

available, then if N = M, the parameters Cm are obtained by solving

a system of inhomogeneous linear equations:
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M ,
mgl Q“m Cm=“v’ v=1l,2, ..., N. (5.16)
The parameter g8 is determined by iteration until the asymptotic con-
dition (5.3) is satisfied.
If N > M, one forms the quantity
N
E = vzl w,0r0, - u)12 (5.17)
where the weighting factor W, i; the inverse of the standar@ deviation
g, describing the uncertainty associated with the corresponding My
Substituting the expression (5.15a) of9’(6v into Eq. (5.17),
we obtain
N M
13=\)Z1 [mzl Wy Qun Cp = W, u\)]2 . (5.18)

This quantity can be minimized with respect to the Cm by

establishing

oE

'BT-=0, m=1, 2, ..., M,
m

from which one obtains M linear equations in the form

M
Yy T . C =R, p=1,2, ..., M, (5.19a)
m=p PM M P
where
fg 2
T = w.2Q (5.19b)
pm o 5V vavm

which is symmetric, and

N
- 2 =
"~ vZ1 Mty Qp e VEL 2 e N (5.19¢)
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If the quahtity E defined by Eq. (5.17) does not depend
linearly on Cm, then the problem should be solved numerically. For
this purpose, a general computer code has been written by Huffaker(45)

to handle a minimization problem involving more than 3 parameters.

4. Numerical Results for CO (X!r™)

4a., Dipole moment function with correct large-r behavior

We first carry out the zero-order approximation by fitting
the various generating functions Mna [Eqs. (5.9A) - (5.9D)] to the
calculafed coefficients M;, M,, and M; of the PMO cubic dipole moment
function in y given by Eq. (4.19). Then for each value of B or B, we

solve the following inhomogenesus linear equations for C,, C,, and Cjy:

-1
1 g2 g?[c M;B
-2
1 go% g2%||Ca| = [MzB (5.20)
- 1 g3® g3®)|Cs MaB-3

where'the general expression (5.11a) has been used.

The parameter B is iterated until the asymptotic condition
(5.1) is satisfied within the desired accuracy. Final values obtained
for the set of parameters {C;, C2, C3, B} for different models F2?, F3,
F*, and F° are listed in Table 5.1 together with values given by other
calculations. From these parameters, coefficients Mn are calculated
and plotted against the index number n in Fig. 5.1, and graphs of
various corresponding dipole moment functions in reduced forms are

shown in Fig. 5.2.
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To take account of the effect of higher order terms in the
y-expansion, we next fit the generating functions directly to the em-
pirical transition moments po;, Ho2s u63, H13s Hzu, and yzs, whose
values are given in Table 4.1. In this case, if all six matrix ele-
ments are used, the minimization method as deséribed in the previous
Section should be employed. If only three matrix elements ngi, Uoz»
and yo3 are used, then the parameter Cm can be evaluated also by

solving a system of three homogeneous linear equations:

Q11 Q2 Qi3]{Cy Ho1
Q21 Q22 Q23||C2] = {Ho2 (5.21)
Q31 Q32 Qs3||Cs Hos

where

L
Qp = 21 <0[yn|v'>Bn gnv , Vo =v' =1,2,3,
. n=

The parameter 8 is obtained by iteration as usual.

Using both ways of calculations, without and with minimiza-
tion, values of parameters C;, C,, C3, and 8 are obtained and listed
in Table 5.1 for different generating functions. Coefficients Mn are
then calculated and plotted versus n in Fig. 5.3 and Fig. 5.4 for the
two cases respectively. Various dipole moment functions in reduced
forms M2(y), M3(y), M*(y), and M5(y) are also plotted in Fig. 5.5
for the case without minimization and in Fig. 5.6 for the case with

minimization.

4b. Dipole moment functions with correct large-r and small-r behaviors

Since the dipole moment function as an infinite expansion in

powérs of y is not convergent for r < 0,84 A in case of CO, this series
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dispiays wrong behavior at small r,.having very large negative values
as depicted in Figs. 5.2, 5.5, and 5.6 for the function Mz(r) given by
Eq. (5.14B). However, it is interesting to see that the other dipole
moment functions Ms(r), M“(r), and Ms(r) in closed forms given by Egs.
(5.14C-5.14E) have much less exaggerated values at small r. This
suggests that by some adjustment one can force their representative
curves to pass through the origin. We found that this can be done
by adding to the closed-form dipole moment function one extra term
which is either

| Mc y , (5.22a)
or

M.yQ -y, (5.22b)

where Mc is an additional adjusting parameter to be determined by
iteration.

Then, in each iteration of Mc’ the whole calculation proce-
dure used in the preceding Section is carried out to obtain the cor-
rect large-r behavior of the dipole moment fuﬂction. This iteration
is repeated until its value at r = 0 is as close to zero as desired.
Since the dipole moment function Mz(y) [Eq. (5.14B)] cannot be reduced
'to a completely closed form, the above technique of small-r behavior
correction is not applicable to this function as it is to Ma(r),
M“(r), and Ms(r). The two modes of small-r behavior correction as
expressed by (5.22a) and (5.22b) are performed for the cases of non-
minimization and minimization. Values obtained for Mc for different
closed-form functions are recorded in Table 5.2. From the set of para-

meters {Ci1, C2, Cs, B, Mc} obtained using minimization, coefficients
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Mn are evaluated and plotted in Fig. 5.7 for the Mcy correction and in
Fig. 5.8 for the Mcy(l-y) correction. Graphs of corresponding closed-
form dipole moment functions having correct large-r and small-r beha-
viors are shown in Figs. 5.9 and 5.10. 'For comparison, the plot of coef-
ficients M; [Fig. 4.2] of the y-series equivalent to the PMO cubic di-
pole moment function in u and graph of this function are reproduced in
related Figures. In addition, the dipole moment function for CO ob-

(2)

tained numerically by Kirby-Docken and Liu using an ab initio cal-
culation is plotted in Fig. 5.11 for comparison with results obtained
for the "best' function M4(y) using the least-squares fit with Mcy and
Mcy(l-y) corrections'respectively.

It should be mentioned that the PMO vibrational eigenfunc-

tions obtained by the diagonalization technique (Chaptér IV) have been

used in all calculations in this Chapter.

5. Analysis of Numerical Results

We have now obtained several analytiqal functions representing
the dipole moment for CO in the ground electronic state (X12+).' As
shown in various graphs, all these functions agree quite well with
each other within a small range of r about T 0.85 R <r<1.5A.

For smaller r and larger r, they reveal significant discrepancies
whose effect will be discussed in Chapter VI. Thus, the question now
is;which functional form will best represent the CO dipole moment? Be-
fore trying to answer this question, let us analyze the numerical
values as depicted by plotted curves for different calculations.
Starting with Fig. 5.1 for the zero-order approximation, one sees

considerable differences between corresponding coefficients Mn given
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by various generating functions for 4 < n < 14. Since the first few
coefficients M; after M} may differ slightly from the true values,
one may expect that a good generated-Mn curve should be close to the
"equivalent M;" curve for n < 6. Clearly, the F? and F* curves,
which are closest to the M; curve at small n, would most likely pro-
duce the best representations of the dipole moment for CO. Indeed,
as shown in Fig. 5.2, the M*(r) curve has small-r behavior much
closer to that of the cubic M(u) curve than M3(r) and M%(xr) curves,
and the last function shows largest deviation at both small r and
large r. Since the function M?(r) cannot be reduced to a closed
form, its graph displays a wrong behavior at small r; but its large-r
behavior is quite good, being very close to that of M*(r). Noting
that the M?(r) curve lies above the M*(r) at large r, one can infer
that, if the closed form of M2(r) was known, fhen its representative
curve would also lie above the M*(r) curve at small r and hence would
have even better small-r behavior than M*(r). However, since M2(r)
is irreducible to a closed form, it is useful only for the large-r
behavior analysis, and the functional form M*(r) becomes the most
appropriate for describing the dipole moment over the whole range
of r. We also note that the minima of Mn curves in Fig. 5.1 and the
minima and maxima of Ma(r) curves are shifted increasingly to the
right in the order F3(n), F*(n), F2(n), and F5(n), and the order
M3(y), M*(y), and M5(y), respectively. |

The effect of including a large number of higher order terms
in y is shown to be small in Fig. 5.2 by the fact.that the various

zero-order approximation dipole moment functions deviate slightly
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about To from the PMO cubic function M(u). Further, little improve-
ment is made on results by calculation using three and six-data point
fittings as shown by Figs. 5.3-5.6 where the curves are almost the same
as those obtained by the zero-order approximation. The new results,

of course, give better dipole moment values at'r about r,- In both
cases of data fitting, the small-r behavior of the dipole moment curves
change very little as compared to the zero-épproximation results.

The two modes of small-r correction bring about significant
improvement on the CO dipole moment functions. In general, the Mcy
correction yields better results than the Mcy(l-y) correction, since
the curves plotted in Figs. 5.7 and 5.9 for the former case are closer
to each other than the curves shown in Figs. 5.8 and 5.10 for the latter
case. We also see that the dipole moment function Ms(r) corrected by
the Mcy(l-y) term changes sign a second time near r=0, which we do not
expect. Finally, agreement is excellent between our 'best' analytical
dipole moment functions M4(r) obtained using Mcy-and Mcytl-y) correc-
tions'with minimization and the numerical dipole moment function deter-

mined by Kirby-Docken and Liu(z)

using an ab initio method, as can

be seen in Fig. 5.11. We note that the curves obtained by the two

methods do not coincide but have nearly the same slope at r about L
From the above analysis, one may conclude that the functional

form M4(r) is better than the other alternative models in representing

the CO dipole moment in the sense that it gives better small-r behavior

and is also quite simple to use conveniently.
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TABLE 5.1. Values of the parameters Cl’ C2, CS’ B and B for different
generating functions. For each parameter aﬁd each model function, the
seven numbers correspond respectively to: a) the zero-order approxi-
mation, b) the large-r behavior correction without minimization, c¢)
the large-r behavior correction with minimization, 4) the large-r and
small-r behaﬁior correction using Mcy without minimization, e) the
large-r and small-r behavior correction using Mcy with minimization,

f) the large-r and small-r behavior correction using Mcy(l—y) without

minimization, g) the large-r and small-r behavior correction using

Mcy(l-y) with minimization.

Param. Fa FZ F3 F4 Fs
(a) .145964 .307664 .169765 .847423-1
)] .141476 .297095 .163783 .842746-1
(@ - .142172 .297828 .164488 .849194-1

8 (d) (*) .244844 - .144613 .123565
(e) ) .245993 .145509 .124320
(£) (*) .285370 .158605 .885459-1
(8) * .286182 .159360 .892025-1
(a) .864118 .735163 .843863 .918749
(b) .868076 .742973 .848926 .919179
(c) .867472 .742429 .848328 .918586

B (d) (*) .782827  .865357 .883764
(e) (*) .781927 .864582 .883097
(£ * .751739 .853333 .915261
(g) (*) .751129 .852689 .914660
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TABLE 5.1 (continued)

Param. 4 FZ FS F4 Fs
(a) -1.102545 2.337736 -1.579703 -.425785
(b) -1.054344 2.162822 -1.493841 -.422965
(c) -1.060839 2,171860 -1.502591 -.426184
C1 (d) ) .753355 -1.143460 -.796463
(e) *) .764099 -1.153872 -.802462
(€3] (&) 1.867305 -1.403022 -.443644
(8) (™) 1.876751 -1.412200 -.446967
(a) 5.084945 .338275-1 8.403582 1.833947
(b) 4.915706 .140312 8.017195 1.830492
(o) 4.935633 .135526 8.052700 1.834672
C2 (d) (*) 1.628770 5.849976 3.434898
(e) (*) 1.623208 5.894921 3.451069
(H ™ .366308 7.523692 1.797786
(g) ) .361325 7.561464 1.801646
(a) -2.485333 -.611751 .=10.581506 .466134
(b) -2.371062 -.561987 -9.998919 .458113
(c) -2.383407 -.564916 -10.050183 .460622
C3 (4) (*) -.285138 -5.794522 -.278459
(e) ") -.288409 -5.863409 -.281748
(£) (%) -.495403 -9.188876 .675131
(g) (*) -.498431 -9.243763 .679329
(*) The functional form (5.14B) is not completely closed, so the

small-r correction cannot be carried out.

Last negative digits refer to powers of 10.
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TABLE 5.2. Values of the parameter Mc in small-r behavior correction

terms Mcy and Mcy(l-y) for different closed-form dipole moment func-

tions.
y M M (1) Mt (x) M (r)
c
M.y
¢ -.347906 -.271955 -1.038042
without minimization
Mc y
-.347476 -.270699 -1.045216
with minimization
M. y(1-y)
' -.130409-1 -.870230-2 .543606-1
without minimization
M. y(1-y)
-.130206~-1 -.865950-2 .547315-1

with minimization
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Fig. 5.1. Plots of various generating functions Fa(n) for CO
obtained fitting 3 known coefficients Ml’ MZ’ and MS' Dash-
crossed, solid, dash-dotted, and dotted curves represent Fz(n),
Fs(n), F4(n), and Fs(n) respectively. The dashed curve shows

*
coefficients Mn of the y-series equivalent to the PMO cubic

dipole moment function in u for CO.
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Fig. 5.2. Graphs of CO dipole moment functions with correct

large-r behavior, obtained by the zero-order approximation.
Dash-crossed, solid, dash-dotted, and dotted curves are Mz(r),
Ms(r), M4(r), and Ms(r) respectively. The dashed curve repre-

sents the PMO cubic dipole moment function in u for CO.
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Fig. 5.3. Plots of various generating functions Fa(n) for CO
obtained for correct large-r behavior using 3 dipole matrix

elements. Dash-crossed, solid, dash-dotted, and dotted curves
show Fz(n), Fs(n), F4(n), and stn) respectively. The dashed
curve represents coefficients M; of the y-series equivalent to

the PMO cubic dipole moment function in u for CO.
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Fig. 5.4.

Plots of various generating function Fa(n) for CO

obtained for correct large-r behavior fitting 6 dipole matrix
elements.

Dash-crossed, solid, dash-dotted, and dotted curves

4
show Fz(n), Fs(n), F (n), and Fs(n) respectively. The dashed
curve represents coefficients M; of the y-series equivalent

to the PMO cubic dipole moment function in u for CO.
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Fig. 5.5.

CO dipole moment functions with correct large-r

behavior obtained without minimization. Dash-crossed, solid,

dash-dotted, and dotted curves represent Mz(r), Ms(r), M4(r),

and Ms(r) respectively. The dashed curve is the PMO cubic

dipole moment function in u for CO.
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Fig. 5.6. CO dipole moment functions with correct large-r

behavior obtained with minimization. Dash-crossed, solid,

dash-dotted, and dotted curves represent Mz(r), Ms(r), M4(r),
and Ms(r) respectively. The dashed curve is the PMO cubic

dipole moment function in u for CO.
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Fig. 5.7. Plots of various generating functions Fa(n) for CO

obtained using Mcy correction with minimization. Dash-crossed

solid, dash-dotted, and dotted curves are Fz(n), F3(n), F4(n),

and Fs(n) respectively. The dashed curve represents coeffici-

ents M; of the y-series expansion of the PMO cubic dipole mo-

ment function in u for CO.
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Fig. 5.8. Plots of various generating functions Fa(n) for CO
obtained using Mcy(l-y) correction with minimization. Dash-
crossed, solid, dash-dotted, and dotted curves are Fz(n),
Fs(n), F4(n), and Fs(n) respectively. The dashed curve repre-
sents coefficients M; of the y-series expansion of the PMO

cubic dipole moment function in u for CO.
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*

Fig. 5.9. Graphs of various CO dipole moment functions with
correct large-r and small-r behaviors obtained using Mcy cor-
rection with minimization. Solid, dash-dotted, dotted, and
starred curves represent Ms(r), M4(r), Ms(r), and the PMO

cubic dipole moment function in u.
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x

Fig. 5.10. Graphs of various CO dipole moment functions with

correct large-r and small-r behaviors obtained using Mcy(l-y)
correction with minimization. Solid, dash-dotted, dotted, and

starred curves represent Ms(r), M4(r), Ms(r), and the PMO cubic
dipole moment function in u.
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M (1)
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Fig. §.11. Solid curve (—): function M4(r), using Mcy(l-y)
correction with minimization. Dash-dotted curve (-.-): func-
tion M4(y), using Mcy correction with minimization. Dotted

curve (...): result obtained by Kirby-Docken and Liu(z).



CHAPTER VI

CALCULATIONS OF ROTATIONLESS VIBRATIONAL TRANSITION MOMENTS

The various CO dipole moment functions obtained in Chapters
IV and V can now be used to predict hot-band transition moments. 1In
this computation, we use the series forms of the dipole momént, instead
of its closed and reduced forms given by Eqs. (5.14A) - (5.14E), be-
cause matrix elements of fairly large powers of y can be evaluated very
easily. Using the PMO eigenfunctions obtained by matrix diagonaliza-
tion as linear combinations of pure Morse wavefunctions (Chapter IV),

M

IVPMO> - .z
i=1

V,ili>

where M, taken to be 48, is the size of the truncated Morse basis. We
express the matrix element of a dipole moment function M(y) (written
as a power series in y) as a linear combination of pure Morse matrix

elements of powers of y:

L M
v+Av L1 Ny
VMO Jvr> = u, T = Mod o+ ) LGy Gy g <EIYTISM
n=1 i, j=0
where Av = v! - v and L is the number of terms retained in the y-series

and is chosen to be 20, which is sufficiently large to give nearly cor-
rect large-r behavior and not too excessive dipole moment values at

very small r.
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Numerical results obtained for 1y°, u;3, uz*, us® and p,b® are
-1isted in Table 6.1Ajva1ues for v = 5, 10, 15, 20 and AV = 0, 1, 2, 3,
4 are given respectively in Table 6.1B, 6.1C, 6.1D, and 6.1E. In each
column of a Table are displayed values of a given transition moment
obtained by different groups of calculations, defined as follows:

Group a: including cubic dipole moment functions in u, z,
and y respectively;

GrouE'b: including y-series expansion M2?(y) whose reduced
form (5.14b) has correct large-r behavior and is determined without
minimization, and y-series expansions M3(y), M“(y), and M5(y) whose
closed forms have correct behavior at both large r and small f and
are determined using the Mcy correction without minimization;

Group c: including y-series expansions M3(y), M*(y), and
M3(y) obtained using the McyCl-y) correction without minimization.

Group d: representing M2(y) obtained using minimization,
and M3(y), M*(y), and M°(y) obtained using minimization and My cor-
rection;

Group e: representing M3(y), M*(y), and M5(y) obtained using
minimization and Mcy(l-y) correction;

Group f: experimental value by Roux(ss) or value calculated
by Bouanichclo) who used the dipole moment as a quartic power series
in u and applied the perturbation method to an eight power Dunham
potential.

We see that, except for the cubic dipole function in z, re-
sults obtained using all other functions are generally in excellent

agreement with each other and with results experimentally deduced by
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Roux or calculated by Bouanich, for v < 20 and Av < 4. The discrepancy
between the values of transition moments arising from different calcu-
lations become larger as v and Av increase. The difference between
values obtgined from various y-series éxpansions is quite negligible
for v < 20 and Av < 4, because their large-r behaviors are nearly the
same. However, the difference between these values and those given
from the cubic expressions are appreciable for the same ranges of v
and Av, showing that the large-r behavior of the dipole moment is of
importance. Therefore, to obtain more reliable calculated transition
moments, the correct large-r behavior of the dipole moment should be
taken into account. This may be further justified by the fact that
the cubic dipole moment function iﬁ z, which has very bad large-r
behavior [see Fig. (4.1)], gives nearly correct transition moments
only for v < 4 and Av < 4 and therefore is useless for the analysis of
transitions at higher levels. Also, sincg the large-r behaviors of
M2(y) and.M“(y) are closer to each other than to those of M®(y) and
M3(y), they give transition moménts in better agreement with each
other than with other values. For the same reason, dipole moment func-
tions with correct small-r behavior determined by the Mcy correction
yield results agreeing with each other better than those arising from
functions corrected by the Mcy(l-y) term.

On the other hand, the wrong small-r behavior of the y-series
expansion does not produce a serious effect on the calculated transi-
tion ﬁoments for v < 20 and Av < 15, since increasing the number of
terms of the truncated y-series from 20 to 40 does not cause an appre-

ciable change in the results. This may be explained by the fact that
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the Morse wavefunctions vanish as 't tends to zero much faster than as
T tends to infinity.

Finally, since the matrix diagonalization, which is equiva-
lent to the infinite-order perturbation method, provides highly accu-
rate PMO eigenfun;tions, we believe that transition moments calculated
using these eigenfunctions and cubic dipole moment functions in u and
y should be better than those obtained by Bouanich using the Dunham

potential and the finite-order perturbation method.
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TABLE 6.1A. Comparison of purely vibrational matrix elements of various
dipole moment functions for CO (X12+): (a) PMO cubic functions in u,
z, and y, . (b) expansions in powers of y with reduced forms having cor-
rect large-r and/or small-r behavior, obtained using Mcy correction
without minimization, (c) using Mcy(l-y) correction. without minimiza-

tion, (d) using Mcy with minimization, (e) using Mcy(l-y) with minimi-

zation, and (f) functions by Bouanich(lo) or experimental dipole matrix
elementscss).
Function Ho® Th p2 st 8
()
cubic inu |-.10986 -.11215-1 -.16083-1 -.21051-1 -.26136-1
a| cubic in z |-.10987 -.11172-1 -,15927-1 -.20679-1 -.25400-1
cubic in y |[-.10986 -.11213-1 -,16069-1 -.21013-1 -.26054-1
M2(r) -.10987 -.11213-1 -.16076-1 -.21035-1 -.26107-1
M3(1) -.10986 -.11218-1 -.16089-1 -.21062-1 -.26152-1
b M*(1) -.10987 -.11213-1 -.16075-1 -.21033-1 -.26102-1
M3(1) -.10987 -.11209-1 '-.16064-1 -.21011-1 -.26066-1
M3(1) -.10986 -.11225-1 -.16110-1 -.21103-1 -.26221-1
c M* (1) -.10986 -.11216-1 -.16084-1 -.21051-1 -.26133-1
M3(T) -.10987 -.11200-1 -.16036-1 -.20956-1 -.25974-1
M2(1) -.10987 -.11224-1 -.16091-1 -.21055-1 -.26131-1
M3(x) -.10987 -,11228-1 -.16103-1 -.21081-1 -.26176-1
d M*(x) -.10987 -.11223-1 -.16090-1 -.21052-1 -.26127-1
M5(r) -.10987 -.11220-1 -.16079-1 -.21031-1 -.26091-1
M3(x) -.10987 -.11234-1 -.16123-1 -.21120-1 -.26242-1
e M*(1) -.10987 -.11226-1 -.16098-1 -.21070-1 -.26156-1
M5(T) -.10990 -.11211-1 -.16053-1 -.20978-1 -.26002-1
f | Experimental | -.1098 -.114 -1 -.164 -1 -.,214 -1 *
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6.1B (continued)

TABLE
Function us® us® s’ us® Us
)
cubic in u| .13840 -1 -.25236 -.31345 -1 -.33944 -2 -.36077 -3
a| cubic in z| .14981 -1 -.25363 -.30043 -1 -.41317 -2 -.29968 -4
cubic in y| .13978 -1 -.25260 -.31194 -1 -.35554 -2 -.36375 -3
M2 (1) .13884 -1 -.25241 -.31295 -1 -.34204 -2 -.35043 -3
M3 (1) 13812 -1 -.25235 -.31366 -1 -.34010 -2 -.36477 -3
bl M) .13891 -1 -.25241 -.31289 -1 -.34196 -2 -.34850 -3
M® (r) 13947 -1 -.25245 -.31234 -1 -.34297 -2 -.33625 -3
M3 () 13705 -1 -.25227 -.31470 -1 -.33849 -2 -.38793 -3
c| M@ 13843 -1 -.25238 -.31335 -1 -.34126 -2 -.35906 -3
M5 (1) 14090 -1 -.25255 -.31095 -1 -.34509 -2 -.30432 -3
M2 (1) .13826 -1 -.25237 -.31324 -1 -.34218 -2 -.34942 -3
M3 (x) .13755 -1 -.25231 -.31395 -1 -.34022 -2 -.36400 -3
d] (o) .13831 -1 -.25238 ~.31319 -1 -.34209 -2 -.34763.-3
M5 (1) .13888 -1 -.25242 -.31264 -1 -.34310 -2 -.33530 -3
M3 (1) .13655 -1 -.25224 -.31495 -1 -.33861 -2 -.38710 -3
el M) 13786 -1 -.25234 -.31364 -1 -.34139 -2 -.35814 -3
M® (1) 14023 -1 -.25251 -.31128 -1 -,34524 -2 -.30316 -3
£| Bouanich 139 -1  -.252  -.3135 -1 -.333 -1 314 -3
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TABLE 6.1C (continued)

Function u g’ Y10 mg? p1g® uot
cubic in u 13671 -.33524 -.59332 -1 -.86930 -2 -.12764 -2
a| cubic in z 14959 -.34835 -.49318'-1 -.13469 -1 -.76609 -5
cubic in y 13830 -.33714 -,58270 -1 -.93480 -2 -.13594 -2
Mz(r) 13715 -.33567 -.59017 -1 -.88258 -2 -.21528 -2
Ma(r) .13667 -.33527 -.59322 -1 -.87578 -2 -.12692 -2
b M*(x) 13718 -.33569 -.56000 -1 -.88209 -2 -.12491 -2
Ms(r) .13753 -.33596 -.58781 -1 -.88519 -2 -.12326 -2
M3(r) 13603 -.-3479 -.59713 -1 -.87154 -2 -.,12997 -2
c M“(r) 13689 -.33547 -.59176 -1 -.88015 -2 -,12638 -2
Ms(r) 13838 -.33661 -.58247 -1 -.89137 -2 -.11864 -2
Mz(r) 13700 -.33557 -.59070 -1 -.88321 -2 -.12509 -2
Ma(r) 13652 -,33517 -.59377 -1 -.87638 -2 -.12677 -2
d M“(r) 13702 -.33558 -.59055 -1 -,.88271 -2 -.12472 -2
Ms(r) 13737 -.33586 -.58838 -1 -,88582 -2 -.12308 -2
Ms(r) .13590 -~.33470 -.59760 -1 -.87213 -2 -~.12981 -2
e M"(r) 13675 -.33538 -.59228 -1 -.88077 -2 -.12620 -2
Ms(r) 13821 -.33649 -.58309 -1 -.89206 -2 -.11843 -2
£ | Bouanich .137 -.335 -.5935 -1 -.861 -2 -.115 -2
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TABLE 6.1D (continued)

Function upd® np3® pia’ it Hp 8°
¥
cubic in u| .25611 -.39169 -.90618 -1 -.16518 -1 -.30723 -2
a | cubic in z | .32006 -.45356 -.48599 -1 -.34090 -1 -.33391 -3
cubic in y | .26265 -.39834 . -.87165 -1 -.17942 -1 -.34110 -2
Mz(r) 25795 -.39341 -.89538 -1 -.16887 -1 -.30510 -2
Ma(r) 25642 -,39214 -,90288 -1 -.16775 -1 -.30396 -2
b M“(r) .25801 ~.39344 -,89511 -1 -.16873 -1 -.30450 -2
Ms(r) .25905 -.39426 -.89014 -1 -.16912 -1 -.30411 -2
Ma(r) .25460 -.39074 -.91136 -1 -.16746 -1 -.30483 -2
c M“(r) .25719 -,39281 -.89901 -1 -.16856 -1 -.,30513 -2
Ms(r) .26157 -.39620 -,87811 -1 -.16980 -1 -.30172 -2
Mz(r) 25766 -.39321 -.89614 -1 -,16903 -1 -.30494 -2
Ma(r) 25613 -,39194 -.90366 -1 -.16791 -1 -.30382 -2
d M“(r) .25771 -.39323 -~.89593 -1 -.16889 -1 -.30436 -2
Ms(r) ~1 .25875 -~.39405 ~,89096 -1 -.16928 -1 -.30396 -2
Ms(r) .25435 -.39057 -.91201 -1 ~-.16761 -1 -.30472 -2
e Mu(r) ,25691 -.39261 -,89976 -1 -.16872 -1 -.30499 -2
Ms(r) .26123 -,39597 -.87901 -1 -.16997 -1 -.30154 -2
f | Bouanich * * * * *

) Bouanich di

d not list values for these hot bands.
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TABLE 6.1E (continued)

290 21 22 23 24

Function Uz H20 Uz20 H20 H20
¥
cubic in u | .36833 -.42733 -.12517 -.27194 -1 -,60994 -2
a| cubic in z | .59848 -.64272 -.10866 -.78321 -1 -,15015 -2
cubic in y | .38655 -.44420 -.11713 -.29425 -1 -,69517 -2
M2(r) .37386 -.43228 -.12238 -.27959 -1 -.61329 -2
b M3 (1) .37030 -.42941 -.12378 -.27876 -1 -.60581 -2
M* (1) .37396 -.43232 -.12236 -.27932 -1 -.61226 -2
M5 (r) .37627 -.43411 -.21248 -.27928 -1 -.61473 -2
M3 (1) .36642 -.42649 -.12517 -.27966 -1 -.60250 -2
c M* (1) .37217 -.43097 -.12302 -.27960 -1 -.61103 -2
M5 (1) .38180 -.43834 -,11939 -.27886 -1 -.61793 -2
M2 (1) .37339 -,43197 -.12247 -.27990 -1 -.61341 -2
Mi(D) .36982 -.42909 -.12387 -.27908 -1 -.60592 -2
d M* (1) .37346 -.43198 -.12246 -.27964 -1 -.61237 -2
M5 (r) .37577 -.43377 -.12159 -.27960 -1 -.61485 -2
M3(1) .36602 -.42622 -.12525 -.27995 -1 -.60265 -2
e M* (1) .37171  -.43066 -.12311 -.27991 -1 -.61117 -2
M5(x) .38125 -,43796 -~.11950 -.27919 -1 -.61803 -2
f | Bouanich .369 -.427 -.125 -.273 -1 -.567 -2




CHAPTER VII

CONCLUSION

We have demonstrated in this work thét the factorization method
provides a powerful'technique for evaluating Morse matrix elements of
the variables u, y, and z, and some of their powers, which are required
for the determination of cubic dipole moment functions in u, y, and z.
Our work also shows that the factorization combined with the matrix
technique (matrix multiplication and matrix diagonalization) perhaps
forms the mogt elegant and efficient approach for finding accurate
PMO eigenfunctions as well as for determining various dipole moment
functions in series form for a diatomic molecule such as CO, which
fulfills the condition of having a suffidiently large number of bound
states.

For many practical applications, the PMO cubic dipole moment
functions in u and y are adequate. If information on the dipole mo-
ment over a small range of r about Te is all one needs, then one could
use the cubic polynomial in z, for it is the most convenient, although
it has very bad behavior at large r.

An important aspect of our work is that an infinite series ex-
pansion in powers of y can be determined for the CO dipole moment
from a few items of intensity data by assuming that its coefficients

Mn other than M0 are a certain function of the index n in such a way
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that.their infinite sum including MO vanishes. In this manﬁer, the
dipole moment function as an expansion in powers of y has the correct
general asymptotic behavior as r goes to infinity. Five choices for
the functional form of Mn are proposed, of which four are applicable
to CO. Except the form containing the term in 1/n2, these generating
functions have the interesting feature that they produce infinite
series reducible to simple closed forms which can then be adjusted
further to produce reasonably good behavior at small r.

Excellent agreement between our results for dipole moment
functions or calculated transition .oments and results from other
sources illustrates the accuracy, convenience, and efficiency of our
method, at least for CO.

Since the correct large-r behavior and the sﬁall—r behavior
of the dipole moment function plays a critical role in the prediction
of accurate transition moments at high vibrational levels and for
large Av, we suggest that the closed forms.M3(y), M*(y), and M3(y)
should be employed directly in the calculation of transition moments.
For this purpose, exact Morse matrix elements of (l—By)-l, (L-By)'z,
and 4n(1-By) need to be evaluated. Matrix elements of inverse powers
of (1-By) may be easily computed numerically using matrix inversion
and multiplication. Although we feel that it is possible to find from
the factorization method a certain way to obtain exact matrix elements
of &n(1-By), this task seems to be much more difficult than the evalua-

tion of matrix elements of some powers of y as done in Appendix B.



~ APPENDIX A

POWER OF A POWER SERIES

Suppose that y is a function of x and expressed as a series
(finite or infinite) in powers of x,
o
y(x) = nzo AX, | (A.1)
Raising y to a power p, we get yp which is also a power

series in x but with different coefficients:

2(x) = yP = [ Xo Anxn]p =1 Bnp x" | (A.2)
n=

where the superscript in Bmp refers to the power p in yP.
Taking the logarithmic derivatives of both sides in Eq.

- (A.2) one obtains

1 doyP) _1dz

yp dx z dx °
or
py'z = yz!
Hence,
[+ =} @ «©
k-1 p.m. _ k p.m-1
p[kz1 kA, x ][mgo B *x'] = [kZo A X ][mzl m x ],
or
I 1 (k- maAy Bmp <o (A.3)
k=0 m=0
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Letting n = k + m and changing the order of summation in Eq.
(A.3), we get
S pi.n-1
nzo { Y [p(n - m) - m]A nom B }x =0 . (A.4)

We see that the coefficients of all powers of x in the above

equation must be identically zero giving

Z [p(n - m -mlA__ BF=0 (A.5)

from which we obtain the recursion relation:

B P = nAomz [pn -m) -m]a__BP :n>o0. (A.6)

Noting that in the expansion of (Ag + A;x + Ayx® + ...)P the

zero-order term in x is (Ao)p, we find

= (AP . (A.7)

. Thus, starting with the coefficient Bop

, the recursion rela-
tion (A.6) permits one to calculate all other coefficients Bnp very

easily in terms of coefficients Ak'

Particular Case Ay = O:

0f course, Bop also vanishes. In this case, Eq. (A.5) re-
duceé to
T | p
Y [ptn-m - mjA__ B =0 (A.8)

m=1 m

which can be rearranged to give the recursion relation:

P 1 n-1 P
By = (m-p)Ar ! [p(n-mel) - mA _ne1 Bp TP (A.9)

m=p
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Since in the expansion‘of (Arx + Ax? + ...)p, the lowest-

order term is (Al)P xP, we have

Bpp = (Ap?, (A.10)

and

BP=0 for nc< P
n
that is,

[¥ Ax"P = 7§ BX".
n=1 ° n=p n

This explains why the index m runs from p in Eq. (A.9).



APPENDIX B

EXACT MATRIX ELEMENTS OF y? AND y®

We shall use the following notation for various matrix ele-

ments
1 1 ® '
S,S" _ «p S s's . S s
Fom = <Ry £ R 3 {m R £(x) R [ dx, (B.la)
1] s ? ® 3 s'
S,s' _ PX|, S'. . PX
me’m' = <R le IRm' > = {w R~ e R, dx, (B.1b)
1 1 1
3503 = 5155 = <R S|e¥|R T >,
m,m m,m m m

where Rms is the eigensolution of the class II differential equation
(3.3), p is 4 positive integer, and f(x) is an arbitrary continuous
function satisfying the condition: f£(x) Rms (x) + 0 as X » o,

We use the convention m > n' (or v < v') if not otherwise
specified. We shall first derive a general recurrence relation for the
matrix element (B.la) of any function f(x).

Using the mutually adjoint properties of the s-raising and

lowering operators in Eq. (3.6a), we integ::'ate by parts and write:

' o _ _
F:,’:p = | Rms f(r)g'e’;n, (s") Rm?' L ax ~ (B.2a)
3 -00
* + S LS |
ST~
. {m%m. (s R°£(x) RS T dx

[o ]
st.-1 b4 d s st-1
(B, ) {w (e -s"+ )R E(r) R dx ,

1%
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S,s' _ S 5 S! s'-1
Fomr = B )j 3‘(’, (m) R £(x) R 7 7 dx
- gt © LI
+(s-sNBT [ RSE@RT T dx

s'-1

=s' s
+ B, [ R f (x) R dx
-0

which then can be written in the recurrence form:

! sg S'ypS-1 s,s'-1 = s'_.s,s'-1
F;i;t = (Bm m' )Fm m's + (S'S')Fm:m' + Bm’ va’m'. (B.Zb)
where
- 9£(x) =S _ oSyl _ oo -
£1(x) = =35 and B " = (B ") " = [(s-m)(s+m)]* .

In particular, for f(x) = eP* we have fr(x) = pepx and Eq.

(B.2a) gives

s,s' _ S g §'yqpS-l,s'-1 _et\® S'pS,s'-1
JPm ot - (Bm Bm' )me,m' + (p+s-s )Bm' me,m' . (B.3)

Writing s' = s - n where n is an integer, Eq. (B.3) becomes

S,S-n _ S = S-n s-1,s-n-1 = S-n s,s-n-1
JPm o (Bm B ) me,m' + (p + n) Bm' me,m' . (B.4a)
Interchanging s and s' = s - n in the above equation yields
a similar recurrence equation:
s-n,s _ S-n = S s-n-1,s-1 =S s-n,s-1
me,m' = (Bm Bm,) me,m' + (p - n) Bm' me,m' . (B.4b)

Interchanging m and m' in Eq. (B.4a), we get another recur-

rence relation alternative to Eq. (B.4b):

gpS~MsS _ (B ? B s-n) JP s-n-1,s-1

wmt = By By ot + (p +n) ﬁms-n Jp s-n-1,s . (B.4c)

m,m'
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Again, if we interchange s and s' = s - n in the above equa-

tion, we obtain a recurrence relation alternative to Eq. (B.4a):

S,S-n _ S-n 5 S s-1,s-n-1 - 5 S s-1,s-n
me,m' (Bm, Bm ) me,m‘ + (p - n) Bm me,m‘ . (B.4d)

Next, using the above recurrence relations, we shall evaluate
several "intermediate'" integrals that arise in deriving exact expres-

sions for matrix elements of y? and y3.

1. Integral <R _"|eP*|r P>
m m

m>m' ,p>0

Putting s - m, s' = m+p, and f(r) eP* in Eq. (B.2a), we

have

-
m, m+ m X - m+
gp TP = [ R T PRI6 T(mep) R P dx

m,m'
-0
= mp o [y X d m +
=B, T !w {%e - (m+p) + EE} (R " eP¥) R TP dx

- & M+p ® X _ da m . px , m+p
Bm' [m {%e m + dx} Rm (e Rm' ) dx ,

which must vanish according to Eq. (3.5b):

m, m+
TP Poo. (B.5)

The above result can also be obtained by using Eq. (B.4a)

where we let s -~ m, n = -p, and noting that

- 1
JPme}’S =0 (B.6)

since there is no eigenfunction Rmm'l.
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s-pleplem?>

2. Integral <Rm

m>m', s-p>m

From Eq. (B.4b), we can write for p = n

s-p-1,s-1

S$=P,s _
JP *® = (const) me,m'

m,m'
Repeating application of this relation to its right-hand side

over and over a total of (s - p - m) times, one finally gets

S-p,S _ M, m+p
me,m' = (const) JPm,m'

which certainly vanishes due to Eq. (B.5). Thus,

S-p,S _ '
me,m' 6, m>m'. | (B.7)

In particular, for p = 1, we have

s-1,s _ s-1, X|p S_ _
Jm,m' = <R le lRmr> =0 . (B.8)

3. Integral <R s-nleple >
m m

m>m', n>p, S-n>nmn

First, using Eq. (B.4b), we write for n=p + 1

Jp s-p-1,s _ (B

s-p-1 5 s s-p-2,s-1 ='s (s-1)-p,(s-1)
' B /) JP B . JP

m m,m! m,m'

The second integral in the right-hand side vanishes accord-

ing to Eq. (B.7). Thus, we have

s-p-1,s
m,m'

s-p-2,s-1

JP ]
m,m

= (const) JP

which, by induction, leads to
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s-p-1,s
me,m'

m, m+p+1

= (const) me,m'

=0

because of Eq. (B.5).

In similar fashion, we can show that

I s-p-2,s

m,m’ =03

and therefore, inductively we obtain

JP S$-n, S =0

mom s, NM>p, sSs-n>m.

In particular, for p = 1, the above equation gives

J

s-n,s s-n
.00 = <R |
m,m

eX|R > =0
m

4. Integral <R IerlR -1

m>m', n>0

s m-n>0

(B.9)

(B.10)

Putting s = m in Eq. (B.4a) and using Eq. (B.6), we obtain

m,m-n _ = m-n m,m-n-1
me,m’ = (n + p) Bm, JPm,m'

Applying this relation over and over (m-n-1l-m') times

finally obtain

m,m-n _ ' (n+p) (n+p+1)...(m-m'+p-1)
me,m' [B m-n , m-n-1 m’+1] me m'

m! Bml se- O

, we

(B.11a)

The factor in the square brackets of the above equation,

denoted by C, can be written in the form

¢ = (memivp-1t T(2m'+1) L
T (m+p-1)1T (m—m'-m)!F(m+m'-n+1)] :

(B.11b)
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]
The integral JPmmé? is given by Eq. (C.4) in Appendix C.
R :

Therefore, Eq. (B;lla) can be expressed as

m,m-n _ (m-m'+p-1)! 2m' 72 (m+m' +p) X
me,m' T T (n+p-1)! [(m-mf:ﬁ)!r(m+m'-n+1)r(2m)] - (B.12)
In particular, for p = 1, this equation becomes
m,m-n _ (m-m')! 2m' 2 (m4m' +1)
Jm,m' Y [(m-m'—n)!F(m+m'-n+1)r(2m)] * (B.13)

The following relation between Eq. (B.12).and Eq. (B.13) can be ob-

tained:
m+i
gp MWD _ P&l [Bm' ] g mm-n
m,m’ . n+i m,m'
s i=1 ’ (B.14)
We also obtain the relation
m,m- 1 m m,m- -m' +m' m,m-
Tl = (82 KT iELEL%éﬂLELl-Km’mT T (B.15)
where Km?éT'n = <Rmm]RmT-n> is given by Eq. (C.7) or Eq. (C.9) in

Appendix C.
For convenience, we write several particular cases of Egs.

(B.12) and (B.13) for later use.

o

JmT;T-l = (81> KmTaT‘l (B.16a)
JmTﬁT'z =38 1 JmTéT-l (B.16b)
szTa?‘l = 58 7 B T2 KmTaT‘l ) (B.17a)
szTa?‘z =g80 @ BT KmTéT'l (B.17b)
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5. Integral (Rms ex[Rm?_1>

m > m'
Letting n = 1 and p = 1 in Eq. (B.4d), one obtains

s,s-1 _ s-1 = s s-1,s-2
Jm,m' - (Bm' Bm ) Jm,m'

(B.18a)

Applying this relation consecutively, we obtain, after (s-m)

times,
s-1 B s-2 B m
J s,s-1 _ [ m' m' m' ] m,m-1
m,m' B S s-1 B m+l® “m,m'
m m R |

(B.18b)

The coefficient in the square brackets can be written as

C=] (s-m'-1) IT(s+m'")T(2m+1) ]2
(n-m'-1) I (s-m) IT(s+m+1) "'(m+m') ’

m

Substituting this expression and that for Jmma,-l given by Eq.

into Eq. (B.18b), we obtain after some simplification,

s,s-1 _ _(m-m') (m+m")
m,m* [(s-m') (s+m') ]

(S-m')T(S+m'+1)]%

% [4m'm (s-m) IT(s+m+1)

which can be related to the off-diagonal matrix elements of e*

Eq. (3.42) by

S,s-1 _ mo2 5 S S,S
Jm,m' (Bm') Bm' Jm,m' )

Changing s into s + 1 in the last equation, we have

s+l,s
m,m'

+1 _ s,s

= M2 = S
J (B2 B, 55

6. Integral <R °|e*|R ?_2>
m m

m >m'

(B.16a)

(B.19a)

in

(B.19b)

(B.19¢c)
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Again Eq. (B.4d) gives, for n = 2 and p = 1,

5,52 _ (p 525 5) 5 51,5-3 5 5 s-1,5-2 . (B.20a)

B
Jm,m' m,m* - m “m,m'

m' m
Applying this recurrence relation repeatedly to the first
integral in the right-hand side of the above equation, we obtain after

the kth time,

J S,8-2 _ (B s-2 B 5-3_.. B s-k-l)(B S g s-1 i s-k+1) J s-k,s-k-2

m,m’ m' m' m' m m T m m,m'

- (B s-1 B s-2 . Bmf-k)(ﬁms Ems-l B s-k+1) 3 s-k,s-k-1

m' m! m m,m'
=s . s-1,s-2
- Bm Jm,m' . (B.20b)

Making use of Eq. (B.18a), we can reduce the second term in

the: above equation to

2™ term = B ?'1 J s,?-l
m m,m

Since this result is for a general value of k, we see that
all terms after the first term in Eq. (B.20b) are equal to the second

term. Therefore, we can write

= s-1 s,s-1
k Bm' Jm,m'

S,8-2

s-k,s-k-2
m,m' -

= (const) Jm,m'

which becomes for k = s - m

s-1 ;5 s,s-1 (B.20¢)

JS:82 . ¢ g mm-2 (s - m)B_] X
m m,m

m,m* m,m'
where the constant factor C is

(s-m'-2) (s+m'~-2) *(s-m'-3) (s+m'-3)...(m-m'-1) (m+m'-1) . %

C= emm oD D) o ) ) (D) (2 D)




115

-2 is given by Eq. (B.16b).

. m,m
and the integral Jm,m'
The first term in the right side of Eq. (B.20c¢) then can be

written as

. : _ m, ml,, =5 = s-1 s,S
First term = %(Bm, B+ )" B, B, Jm,m' s

while, using Eq. (B.19b)}, the second term can be expressed as

ms =S s-1_s,s
Second term = (s - m)(Bm,)2 Bmv Bm' Jm,ﬁ' )

These expressions permit us to write Eq. (B.20c¢) as

56 "8 2 - (smy e D2

5,5-2 _ m' m' S,S
Jm,m' = I s o s-1 m,m’ (B.21a)
B [} B 1
m' m
"Replacing s by s + 2 in this equation, we have
mp m-1,o _ m, o
J S*2,s [%(Bm' Bt ) (s m+2)(Bm‘) ] 3558 (B.21b)
m,m' B S+2 B Ss+1 m,m' :
m m

7. Matrix Elements of y2

7a. Diagonal matrix elements of y?

Diagonal matrix elements of ezx have been obtained by Huffa-

(20)

ker and Dwivedi in the form

<m]e2x|m> = A5<m|ex|m> =4m(s + %) , (B.22)
from which one can easily obtain those for e~23 4nd y2:

<v|e'zau|v> = <v|e”®|v> = z - ; ,

(B.23)

and

<vly?|v> = <v|y|v> = E}%};% . (B.24)
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7b. Non-Diagonal matrix elements of y2

The recursion relation (3.8a) permits us to write

2x , S S X, S
e Rm' =A" e Rm' + Bm' e

S X, S-1 s+l x | s+l
.Rm' + Bm| € Rmr

from which we obtain

J2 S;S _ a5 7SS .Sy s,s-1 + B s+l J S,s+1

m,m! m,m’ m' “m,m' m' m,m" : (B.ZS)

The last integral in the above equation vanishes in view of

Eq. (B.10) while the integral Jmsa?-l is given by Eq. (B.19a or b).
‘Hence, we can write Eq. (B.25) as
S,S _ [aS m, 2 s,s
32, 5.0 = 14+ (B 2] 3 500, (B.26)

or

<m|e2xlm'> = [2s + 1 + (m-m') (m+nm') J<m|e™|m'>

from which we obtain off-diagonal matrix elements of e-2au and y?2:
<v]e_zaulv'> =1+ (v'-v)(ZS-vv;v)]<V|e-au|v,> (B.27)
2s +1
and
v'-v) (2s-v'-v
awly?|ve> = [ - SRSV 1y fyes (B.28)

where the off-diagonal matrix elements of e and y are given by

Egqs. (3.43) and (3.44).

8. Matrix Elements of y3

Using the recursion relation (3.8a) again, one can write

3x RS+ S 2x R s-1 + B s+l s+l

m' = m! m' 'm! m' m!

Ll
>
(]
>0



s 2x ., S S X ,s-1 s-l' s-1 s-2 [ s
=A" e Rm' +B, e [A R B+ Ry T +B, Rm,]
B S g St g Sl g s g st g Sy
m m m m m m

which then gives, after some rearrangement,

33507 = 4532525 + [(B ) + (Bm?*l

2 S,S
m,m' m’m' ) ] J

m,m’

+ (B S g s-l) J 5,5-2 + (As-l Bm?) J s,s-1

m' m' m,m' m,m'
s+l , s+l S,s+l s+l , s+2 S,s5+2
+ (A7 BT I+ (B BT T (B.29)

where m > m'.

8a. Diagonal matrix elements of y®

For m = m', the last four integrals in Eq. (B.29) vanish ac-

cording to Eq. (B.10), yielding

S,s _ Sy2 Sy2 s+l 27, S,S
33.°0% = [A92 + (B %)% + (87)19.°7° (8.30)

where we have used Eq. (B.22). The above equation can be written more

explicitly as

S,5 _ 2 _ 2 S5,S
33,05 = 5[+ 3025 + D? - 4n?19 5%,

3au

from which we can obtain diagonal matrix elements of e~ and y?3:
-3au 1+ 3(2s+1)2% - 4(s-v)? -
<vle lv> = [ (2?25)+ I)z(< v) J<vle au|V> s (B.31)

and

1 + 3(2s+1)2 - 4(s-v)?
wly}|v> =1+ [ ¢ 3221+1)2 (s-v) T<viylv> . (B.32)




118

8b. Non-Diagonal matrix elements of y3

For m > m', the last two integrals in Eq. (B.29) vanishes be-

cause of Eq. (B.10), giving

S+1 2

S
J3m mv = A° sz mv + [(Bmv) + (Bmc 1 Jm mc
s , s-1 s,S- 2 s-l S, s -1
+ (Bm' B v ) Jm o + (A ) J

Replacing the first and the last two integrals in the right hand side
of the above equation by their expressions given by Eqs. (B.26a),

(B.21a), and (B.19b) respectivély, we obtain

33,50 = 1A%+ B2 + (81 H 2+ (4% + 4% o s emy (30"
S CRG L [ A (.33)
or
JSmSm? = %{1 + 3(2s+1)2 - 4m'2 + (m-m') (m+m')
x {8s - 2(s-m) + (m—m'-l)(m+m'-1)]} Jmséf

From this equation, we can find the expressions for off-diagonal matrix

elements of e >2% and y3:

<v|e'sau|v'> = %{1 + 3(2s+1)2 - 4(s-v)2 + (V'-v)}(2s-v'-V)

x [2 + 3(2s+1) + (v'-v)(25-v'-v)]}<v|e-au|v‘> (B.34)

and

<v|yd|v*> =‘{1 + 3(2s+1)% - 4(s - V)2

+ (v'-v) (2s-v'-v) [(v'-V) (25-Vv'-V) - 65 - 11}*‘(§V2§+‘1r;>2 )

(B.35)
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Note that, although we have fixed m' to be smaller than m,
the expressions for non-diagonal matrix elements of e P and eP* where
p=1, 2, 3, will reduée to those for &iagonal matrix elements if we
put m' = m.

Matrix elements of y? and y® computed using exact formulas
6r matrix multiplication for 0 <v <9 and 0 < v' <9 are listed in
Tables B.1 and B.2. Also are given matrix elements of u? and u® ob-
tained by matrix technique for 0 < v <9 and 0 < v' < 9 in Tables B.3

and B.4.



TABLE B.1. Morse matrix elements of y? for 0 < v <9 and 0 < v' < 9.

120

The last negative digit means power of 10.

2.

» 0 1 3 4

0 | .6a7508 -2 -.103190 -2 .871435 -2 .243659 -2 .589255 -3
L |..103190 -2 -.194252 -1 -.288980 -2 .145884 -1  -.475793 -2
2 | .871435 -2 -.288980 -2 .323754 -1  -.525558 -2 ,199223 -1
3 | .243659 -2 .145884 -1 -.525558 -2  .453256 -1  -.800895 -2
4 | .589255 -3  .475793 -2 .199223 -1  -.800895 -2  .582757 -1
5 | .141917 -3  .120348 -2 .734105 -2  .248124 -1  -.110769 -1
6 | .351989 -4  .342730 -3  .219838 -2  .101251 -1  .292876 -1
7 | .907982 -5 .921726 -4  .631926 -3  .329366 -2  .130553 -1
8§ | .244200 -5  .255115 -4  .182394 -3  .101662 -2  .456642 -2
9 | .684575 -6  .730331 -5  .537431 -4  .312462 -3  .150171 -2
D 5 6 7 8 9

0 | .141917 -3  .351989 -4 907982 -5  .244200 -5  .684575 -6
1 | .129348 -2 342730 -3 .921726 -4 255115 -4  ,730331 -5
2 | .734105 -2 .219838 -2 .631926 -3  ,182394 -3  .537431 -4
3 | .248124 -1 .101251 -1  .329366 -2  .101662 -2  .312412 -3
4 |-.110768 -1  .292876 -1  .130553 -1  .456642 -2  .150171 -2
5 | .712259 -1  -.144076 -1  .333622 -1  .160861 -1  .600322 -2
6 |-.144076 -1 .841761 -1 -.179613 -1  .370462 -1  .191789 -1
7 | .333622 -1  -.179613 -1  .971262 -1  -.217057 -1  .403474 -1
8 | .160861 -1  .370462 -1 -.217057 -1  .110076 +0 -.256135 -1
9 | .600322 -2 .191789 -1  .403474 -1 -.256135 -1  .123027 +0
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matrix elements

TABLE B.2. Morse of y° for 0 Sv<9and 0 <v'<9'
R 0 1 2 3 4

0 .419267 -4  -.154785 -2  -.456158 -5 -.,115582 -2  -,557575 -3
vl -.154785 -2 .541789 -3  -.433469 -2  -.235435 -4  -,219751 -2
2 |-.456158 -5 -.433469 -2 .153500 -2 -.788337 -2 -.661351 -4
3 |-.115582 -2 _.235435'_4 -.788337 -2 .301504 -2 -.120134 -1
4 |}-.557575 -3 -.219751 -2 -.661351 -4  -.120134 -1 .479540 -2
5 |-.200493 -3 -.119641 -2  -.330027 -2 -.141306 -3 - -.166153 -1
6 |[-.659359 -4 -.474288 -3 -.198686 -2  -.442950 -2  -.257743 -3
7 |-.211330 -4  -.169338 -3  -.856278 -3  -.290741 -2  -,.555662 -2
8 |-.677740 -5 -.582806 -4 -.328524 -3 -.134834 -2  -,393537 -2
9 {-.220217 -5 -.199057 -4  -.120468 -3  -.551572 -3 -.194866 -2
V," 5 6 7 8 9

0 |-.200493 -3 -,659359 -4  -,211330 -4 -.677740 -5 -,220217 -5
1 {-.119641 -2 -.474289 -3  -.169338 -3  -.582806 -4 -.,119057 -4
2 }-.330027 -2 -,198686 -2  -,856278 -3  -.328524 -3  -.120468 -3
3 |[~-.141306 -3  -.442950 -2  -.,290741 -2  -,134834 -2  -.551572 -3
4 |-.166153 -1  -.257743 -3  -.555662 -2  -,393537 -2 -,194866 -2
5 .740955 -2 -.216113 -1  -.,423844 -3  -.665977 -2  -.504878 -2
6 |-.216113 -1 .103110 -1  -2.69419 -1 -,647700 -3 -.772244 -2
7 |-.423844 -3  -,269419 -1 136732 -1  -.325585 -1 -.937089 -3
8 -.665977 -2  -,647700 -3  -.325585 -1 .174897 -1  -.384203 -1
9 1-.504878 -2 -,772244 -2  -.937089 -3  -.384203 -1 .217539 -1
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TABLE B.3. Morse matrix elements of u2 for 0 <v<9and 0 <v' <9,

v

N 0 1 2 3 4

0 .116094 -2  -.461129 -3  .158102 -2  .223231 -3 .333595 -4
1 | -.461120 -3 .360007 -2  -.131785 -2  .271254 -2 .446259 -3
2 .158102 -2 -.130457 -2 .621876 -2  -.244713 -2 .379811 -2
3 .223231 -3 .271254 -2 -.244713 -2 .902465 -2  -.380886 -2
4 .333595 -4 .446259 -3  .379811 -2  -.380886 -2  .120258 -1
5 .554126 -5  .749597 -4  ,705137 -3  .485238 -2  -.538208 -2
6 .101604 -5  .137000 -4  .130457 -3  .996354 -3 587810 -2
7 .203277 -6  .272426 -5  .258685 -4  .200209 -3  .131663 -2
8 .439190 -7  .584914 -6  .552156 -5  .426332 -4  .284430 -3
9 .101604 -7  .134542 -6  .126242 -5  .969173 -5  .645363 -4
N 5 6 7 8 9

0 .554126 -5  .101604 -5  .203277 -6  .439190 -7  .101604 -7
1 .749597 -4  .137000 -4  .272426 -5  .584914 -6  .134542 -6
2 .705137 -3 .130457 -3  .258685 -4  .552156 -5  .126231 -5
3 485238 -2 .996354 -3 .200209 -3  .426332 -4 .969173 -5
4 | -.538208 -2 .587810 -2  .131663 -2  .284430 -3  .645363 -4
5 .152306 -1  -.715432 -2 .687536 -2  .166322 -2  .383294 -3
6 | -.715432 -2 186481 -1 -.911780 -2  .784337 -2 ,203384 -2
7 .687536 -2  -.911780 -2  .222876 -1 -.112677 -1  .878090 -2
8 .166322 -2 .784337 -2 -.112677 -1  .261590 -1 -.136011 -1
9 .383294 -3 .203384 -2  .878090 -2  -.136011 -1  .302729 -1
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TABLE B.4. Morse matrix elements of u3 for 0 <v<9and 0 <v' <9,

N 0 1 2 3 4

0 .172140 -4 .121415 -3 .392909 -4  -.875307 -4 -.218416

—
1

.121415 -3 .113808 -3

.360803 -3 .113888 -3 -.168956

2 .392909 -4 .360803 -3 .314325 -3 -.697097 -3 .226368

3 |-.875307 -4  .113888 -3 -.697097 -3  .627310 -3  -.112828
4 |-.218416 -4 -.168956 -3  .226368 -3 -.112828 -2  .160192
5 |-.467993 -5 -.481572 -4  -.257257 -3 .377145 -3 - -.165664
6 |-.100819 -5 -.114103 -4 -.821780 -4  -.349496 -3  .566583
7 |-.226173 -6  -.267231 -5 -.221375 -4 -.123565 -3  -.442940
8 |[-.533105 -7 -.644292 -6  -.535262 -5 -.344848 -4  -.171851
9 |-.132175 -7 -.161836 -6 -.137619 -5 -.928153 -5  -.514067
N 5 6 7 8 9

0 |-.467993 -5 -.100819 -5 -.226173 -6  -.533105 -7 -.132175
1 |-.481572 -4 -.114103 -4 -.267231 -5 -.644292 -6 -.161836
2 |-.257257 -3 -.821780 -4  -.212374 -4  -.535262 -5 -.137619
3 | .377145 -3 -.349496 -3  -.123565 -3 -.344848 -4  -.928153
4 |-.165664 -2  .566583 -3  -.442940 -3 -.171851 -3  -.514067

5 .162797 -3 .228647 -2 .795008 -3  -.535155 -3  -.226512

(o)}
t

.228647 -2 .233599 -2 .302325 -2 .106270 -2  -.623925

7 .795008 -3 .302325 -2 .319725 -2 -.387341 -2 .136990

(o]
]

.535155 -3 .106270 -2 .387341 -2 .422387 -2 -.484408

[le]
[}

.226512 -3 .623925 -3 .136990 -2 -.484408 -2 .542887




APPENDIX C

EXPRESSIONS OF SOME INTEGRALS OBTAINED BY IH

We list below some important results obtained by IH(ZZ) by
the factorization method in connection with their evaluation of non-
diagonal matrix elements of the variable x for a Morse oscillator.

We also make some extensions of their results. Like IH, we assume

that m > m'.

First we have

S s-1
f Rm, Rm dx =0 . (C.1)

into -
[ RSR5Max=0 (C.2)

where n is an integer such that s - n > m,

Next, we have

R™R™ gx = L(mm') . (C.3)
P m [r(2m)T(2m')]*

It is easy to show that

R m epx R T' - T'(m+m'+p) (C.4)
I, Pa m' o r(2mr(2n)]? |

which obviously reduces to Eq. (C.3) for p = 0.
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We will show that

[ RMxR™ax = —Lwm)
- n [r(2m)T(2m")]

L Y(m+m') (C.5)

where Y(m+m') is the digamma function defined by Eq. (3.31a).

Using the expression (3.5a) of Rmm, we write the above inte-

‘gral as
Xmmé?' = [I‘(Zm)I'(Zm')‘]';i [ [x.exp(mm')x - %e*]dx ,
= (constant)-aﬁﬁamj-[;[exp(m+m')x - %eXldx ,
I'(m+m') 1 dl'(m+m')

[r(zmr(2n')]* [Fmem™y dmen’)

which will take the form of Eq. (C.5) if the notation of the digamma
function is put in.

A more general form of the integral (C.5) is

© 3 4P
[ R™P R ™ax = [F(2mT(2n)]" 2 LLGemY) (C.6)
m m 1y P
- d(m+m?')
Another important integral is
® m. mn _ (m-m'-1)! 2m'T? (m+m') %
[w Rm Rm' dx = (n-1)! [(m-m'-n)!F(m+m'+l-n)F(2m)] :
(C.7)
In particular, for n = 1, Eq. (C.7) gives
© 1 ] 1rr 1
[ RPR T ax = [ope (mml-DIT{mim') % (C.8a)

m m T'(2m)

-C0

and for n = 2,

[ R RmT‘z dx = [(m-m'-1) (mém'-1) ] [ R RmT'l dx . (C.8b)
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Finally, the integral (C.7) can be conveniently expressed

in terms of the integral (C.8a) and the B-coefficients by

m, m-n_ _ 1 m-1 . m-2 m-n+l1 my, m-1
<Ry |Rm' > = 1) [Bm, Bv . By ]<Rm IRm' >
(n-1) factors
or m-i
n-1 B
R PR = 1 (B< PR ™,
m''m . i m'm
i=1
where

B S = [(s-m)(s*m)]* .
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