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ANALYTICAL DIPOLE MOMENT FUNCTIONS FOR DIATOMIC MOLECULES: 

APPLICATION TO CARBON MONOXIDE (CO)

BY: LOC BINH TRAN

MAJOR PROFESSOR: J. N. HUFFAKER

ABSTRACT

The dipole moment of the ground electronic state (X̂ Z*) of CO 

as a function of the internuclear distance is determined using experimen

tally deduced rotationless vibrational transition moments. For this pur

pose, the dipole moment function is expanded in series of powers of the 

variables u, y, and z, where u=r-r^, y=l-exp(-au), and z=exp(au)-l, and 

exact Morse matrix elements of these quantities are used in computation.

Using a standard factorization technique, we derive exact matrix elements 
2 3of y, y , and y . For higher powers of y, we use matrix multiplication. 

The eigenfunctions of the perturbed Morse oscillator (PMO) are obtained 
by the method of matrix diagonalization. Morse and PMO cubic dipole 

moment functions in u, y and z are then determined for CO.

We require the y-series expansion to satisfy the condition that 

the infinite sum of its coefficients M^ vanishes. Then, expressing M^ as 

some function of the index n and several parameters, we fit this function 

to a few known transition moments and obtain an infinite y-series repre

sentation with the correct asymptotic behavior for the CO dipole moment. 

We found three functional forms for M^ that produce infinite series re

ducible to closed formsThese new forms are adjusted further by a cor
rective term so that they obtain the correct general behavior at both 

large r and small r. The various CO dipole moment functions finally are 

used to predict hot-band transition moments.

IX



ANALYTICAL DIPOLE MOMENT FUNCTIONS FOR DIATOMIC MOLECULES:
APPLICATION TO CARBON MONOXIDE (CO)

CHAPTER I 

INTRODUCTION

In the past several years there have been considerable in

terest in and extensive work on the determination of the electric di

pole moments of diatomic molecules as functions of the internuclear 
distance. The dipole moment function is of great importance since its 

knowledge is necessary for many physical applications. It may be de

termined by either of the two general approaches: ab initio (or theo

retical) and empirical (or experimental).

In the ab initio calculation of molecular properties, and of 

the dipole moment in particular, the knowledge of electronic wavefunc

tions is essential. With advanced computer technology, these wave- 

functions are becoming available with high accuracy. They are usually 

obtained by either the Hartree-Fock (H-F), or configuration interac
tion (Cl), or multi-configuration self-consistent (MCSCF) method, or 

modifications of these methods. Typical works on theoretical dipole 

moment functions for diatomic molecules are those by Liê ^̂  and Kirby- 

Docken and Liû ^̂  for the ground state (X̂ Z*) of the HF and CO molecu

le respectively.



The electric dipole moment operator for a molecule is de

fined as the vector sum

ü(ïi.ïa) = %  - I  (1-1)
ct

where e is the usual electronic charge, is the atomic number of 

the ath nucleus, ^  the center-of-mass (c.m.) coordinate of the ath 

nucleus, r^ the c.m. coordinate of the ith electron, and the double 

underlining bar refers to the coolectivity of these coordinates. The 

coordinate system used here is fixed to the molecule at its center of 
mass and rotates with it. For a diatomic molecule, the z-axis is 

usually chosen to coincide with its internuclear axis.

In the Born-Oppenheimer approximation, the molecular wave- 

function for a diatomic molecule, considered as a rotating oscillator, 

may be expressed as the product of an electronic, a vibrational, and 

a rotational factor:

'f'NC£i>£) = (6,W  (1.2)

where n, v, and J are electronic, vibrational, and rotational quantum 

numbers respectively, N = (n,v,J), £ is the internuclear axis vector, 

and the electronic part depends on r parametrically. For clarity and 

convenience, we have omitted the magnetic quantum number m^ to be as

sociated with the rotational factor in the above expression.

In an ab initio calculation, the approximation (1.2) is usu

ally assumed and then the "electric dipole moment" of a diatomic mole

cule in a particular electronic state n is given by the expectation 

value of the z-component of the electric dipole moment vector M(£̂ .r) 

in this electronic state.



M(r) = e [ l | | (1.3)
a

where is the z-coordinate of the ith electron and the nuclei are on 

the z-axis.

On the other hand, the empirical approach takes account of 

the fact that the probability of transition between two molecular 

states (n, v, J) and (n’, v', J') is proportional to the absolute 

value squared of the corresponding matrix element of the electric

dipole moment operator M:

= . (1.4)

In Eq. (1.4), the integration over the electronic wavef une- 
fe1tions produces a quantity (r) which depends on r:

= M^^*C£iîl)M(r.,r)i(;^?(r^;r)d^ . (1.5)

The integration over the rotational functions can be carried 

out independently, yielding a factor S , called the Honl-London fac

tor. Hence, Eq. (1.4) can be written as

I^NN'I^ = ' I " n n ' I ̂ ' d-6)

Assuming that the lower molecular state is labelled by (n, 

v,J) and the upper state labelled by (n',v',J'), then for the rotating 

oscillator model, we have

Sjj, = J for the P branch, 

and Sj j, = J+1 for the R branch.



For electronic transitions, n  ̂n', one usually assumes that 

varies slowly with r according to the Franck-Condon principle, so 

that it may be replaced by an average value • In this case, Eq. 

(1.6) becomes

where q^,, called the Franck-Condon factor, is defined by

%v' = l/*nvJ

For rotation-vibration transitions within the same electronic

state, n = n‘, may vary considerably with r, and hence should not—nn
be taken out of the integral in Eq. (1.6). In this case, if the z-

(e)axis is also the internuclear axis, the magnitude of (r) is equal 

to the dipole moment function M(r) defined in Eq. (1.3):

M^®)(r) = M(r) . nn

Thus, for convenience we rewrite Eq. (1.6) in the form

|Ryj'J'|= = Sj'̂ '|<vj|M(r)|v'J'>|2 (1.9)

where an electronic state is implied and |vJ> = the vibra

tional eigenfunction.
v'J'The square of the quantity R^j is commonly known as the 

line strength and the matrix elements of M(r) are called dipole tran

sition matrix elements or simply transition moments. From the measure

ments of intensities of rotation-vibration transitions vJ v'J', the 

squares of matrix elements <vj[M(r)|v'J'> can be deduced, from which



the functional dependence of the electric dipole moment M(r) on r may be 

determined.
To see how dipole transition matrix elements relate to quan

tities measured in experiments, we shall discuss the absorption and 

emission of spectral lines.

1. Absorption of Radiation

The theory of infra-red light absorption by diatomic mole-
f4")cules was treated in full detail by Crawford and Dinsmore.^ We re

produce here some important steps and formulas from their work.

When a beam of monochromatic light of frequency v passes 

through an absorbing medium of infinitesimal thickness dx, its inten

sity decreases according to the following law of light absorption,

dl = -I a dx (1.10)
V V V

where = a(v), having units of cm'̂ , is called the absorption coeffi

cient at frequency v and is proportional to the molecular density of 

the absorbing material.
Suppose that there are two different energy levels 1 and 2, 

level 1 being lower than level 2, and that there are degenerate states 

m and n having these energies respectively. Then a transition between 

any two states m and n gives a single spectral line of frequency

 ̂'’mn ~ ' ^ 1 2 = (Ê -Egj/h, where m = l,2,...,g^ and n = 1 , 2 , . . . , g^;

gj and being degeneracies of levels 1 and 2 respectively.

According to Einstein's theory, the probability that a tran
sition m ->• n will take place is given by

P = p B ^mn mn



where p , having units of erg*cm , is the energy density of the inci-
_2dent beam and is related to the energy flux (in units of erg*cm *

sec” )̂ by

'v ' V  •

and is the Einstein transition probability of absorption.

If there are molecules in the state m at the lower energy 

level, then the rate of energy absorption, that is the energy absorbed 

from the incident beam of 1 cm̂  cross section for the transition m ■> n, 

is

Therefore, if the lower level 1 has population and de

generacy gĵ, then the total intensity of absorption due to all 

transitions 1 -»■ 2 is

“ . 1  “ 'v>n.n • m,n

where

1̂2 " gi m!n 

is the total probability coefficient of absorption.

Comparing Eqs. (1.10) and (1.11b), we get

“v = ^ V l 2 -  0-12)

While spontaneous emission, being isotropic, can be neglect

ed, induced emission cannot because it is in the direction of the



inducing radiation. Therefore, if this effect is included, the net 

should be less than that in Eq. (1.12):

%  " ̂  Vl2^^ - . (1.13)

The Einstein coefficient is related to the line strengthmn
^mn (i'G") the square of matrix element of the dipole moment M)

hence.

where

and

h 2 =  I ’■mn- "-’4c)m,n

Tmn = l<®|Mln>l̂  • d-14d)

Substituting Eq. (1.14b) into Eq. (1.13) yields 

8tt̂ v„„ N, -hv__/kT

For rotation-vibration transitions v,J v’,J* in diatomic 

molecules, application of Eq. (1.15) gives

where

gj = 2J + 1 ,

and

Tyĵ ' = I = I <vJm|M(r) |v'J'm'>
m,m' m,m'



is the total line strength.

The quantity measured in experiments is the integrated absorp-
V 'tion coefficient or total intensity» , which theoretically is equal 

to

•

r J,J'

where
-E,/kT

' io
is the rotational partition function and is dependent on v and is 

the total number density of absorbing vibrating molecules present at 

pressure P and temperature T and is related to the concentration N^j 
of molecules at a state (v,J) by

-E j/k T

\  — z  •r

In practice, Eq. (1.17) may be replaced by an integral:

Ay = Ja(v)dv .

Another measured quantity is the total intensity of the nth 

harmonic vibrational band observed at Vq approximately; it is obtained 

by summing the intensities A^^" over all values of v:

v r C "

where N is the total molecular concentration and is the vibrational



partition function.

-■ ■ i

2. Emission of Radiation .

If there are molecules in the state n, then the intensity

of a spectral line in emission by the transition n -> m is defined by
f 31the energy emitted by the source per second^ and given by

where is the Einstein transition probability of spontaneous emis

sion and is related to the matrix element of the electric dipole mo

ment by

64ir‘*v̂

being equal to defined by Eq. (1.14d).
Thus, if the upper level 2 has population and degeneracy

then the total intensity of emission 1̂  ̂for the transition 2 1

is

=21 = T  W  19c)

where the total Einstein coefficient A2 J is given by

1 r .

8 2

with ^ 2 1  - ^ 2 2  Eq. (1.14c).
Comparison between Eqs. (1.14b) and (1.19d) gives the rela

tion between the Einstein coefficients Â ^̂  and
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° ÏT
Thus we have seen that the absolute values squared of the 

mattix elements of the dipole moment M(r) can be deduced from certain 

experimentally measured quantities. Molecular beam resonance experi

ments and microwave experiments yield the matrix elements of M(r) 

which are diagonal in v, while infrared absorption experiments give 

matrix elements which are off-diagonal in v.

In our present work, we are concerned with two problems: 

first determining the dipole moment M(r) as a function of the inter

nuclear distance r for diatomic molecules from experimental data on 
vibrational dipole matrix elements, and second using an extrapolation 

technique to obtain the correct asymptotic behaviors of M(r). Our 

formalism is then applied to carbon monoxide (CO).

The empirical approach requires that some assumption about 

the form of M(r) must be made. This assumption may be valid over a 
small range of r. When n independent dipole matrix elements are known, 

the usual procedure is to choose a function M(r;ĉ ) depending on a 

set of n parameters ĉ , i = l,...,n, which then may be determined by 

solving a system of linear or non-linear equations:

<v|M(r;ĉ ) |v'> = .

Usually a limited amount of experimental data is available, 

and this is insufficient to determine a unique dipole moment function 

since there would be an infinite number of functions which agree with 
the experiments.
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So far only three choices for the functional form of M(r) are 

found in the literature, namely:

i) Expansion of M(r) in a Taylor series about the equilibrium 

internuclear distance r̂ . In practice, the series must be truncated 

giving the polynomial approximation. This approach has been the most 

commonly used, and there have been a great deal of works ^^^based

on it.
ii) Expansion of the product M(r)t|;̂ (r) in terms of a number

of orthonormal vibrational eigenfunctions so that M(r) can be

written in the form
1 5 N ^ ,(r)

For V = 0, this equation determines M(r); but for v > 0, because of 

the zeros of it is subject to certain restrictions. This method 

was first proposed by Trischka and Salwen̂ ^^̂  who called it the "wave- 

function approximation". It has been applied to HCl and DCl molecu

les by Herman and R u b i n a n d  to OH, HCl, and CO by Cashion.^^^^
iii) Linear combination of exponential functions e'̂ î :

N _
MCr) = % C.e V

i=l ^
where the parameters Ĉ  and â  are to be determined through 2N empiri- 

rical dipole matrix elements. This form was suggested by Chakraborty, 

Pan and C h a n g , b u t  they and Learnerretained only one term of 

the expansion in their works related to electronic band strengths.

Although the Taylor series method is the simplest and most 

obvious way to analyze transition intensities, it has the serious 

drawback of being convergent over a small region about r^fat most.
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0 < r < 2r^). The effect of its divergence for larger limits its use 

to low vibrational levels with v less than about 10 for CO.

The "wavefunction approximation" seems to be more powerful 

than the Taylor esqpansion because in principle, if the con^lete set 

of wavefunctions is included, it is valid over the whole range 

0 r < 0 0. Trischka and Salwen^^^^ showed that the dipole moment 

function M(r) can be completely determined if all the matrix elements 

<v|M(r)|v*> in a given column or row are given. Their method, however, 

has not been widely applied because it also requires a sufficient 

amount of experimental data. Besides, the convergence of the wavefunc

tion expansion and the effect of neglecting the continuum have not 

been investigated yet.

Since there are only a few works applying what we call the 

"exponential approximation", one can conclude little about its useful

ness. However, from a mathematical point of view, some remarks 

can be made. If all the parameters and â  have non-zero values, 

then M(r) = 0 at r = «> and M(r) at r = 0 is the sum of all coefficients 

Ĉ . If one parameters, say â , vanishes then M(r) = at r = <».

Thus, this exponential combination has a finite value at r = » while 

the Taylor expansion blows up. This approach, however, does have some 

disadvantages. Because the parameters â  are unknowns, the system of

equations to be solved is non-linear. In addition, matrix elements 
-a.r

involving e  ̂ are generally difficult to evaluate.

In the present work, in addition to considering u as the

variable for the Taylor expansion of M(r), we introduce two new

variables y = 1 - exp(-au) and z = exp(au) - 1, where u = r - r̂  and
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a is a characteristic of the Morse potential function [Eq. (3.1a)], in

order to obtain an expansion of M(r) in powers of y and an expansion in

powers of z. The choice of z is suitable and convenient because the

calculation of matrix elements of any power of z can be made easily by

application of a recursion relation obtained by Huffaker and Dwivedi.

The choice of y for expanding M(r) may be justified by the fact that the
(21)perturbed-Morse-oscillator (PMO) potential which is a power series 

of y has been proven to be an extremely accurate model for the effec

tive vibrational potential for diatomic molecules and much superior than 

the Dunham potential which is an expansion in powers of u.

Mathematically, the y-expansion is a particular case of the 

"exponential expansion" in which all parameters â  are integral multi

ples of the Morse parameter a. Therefore, the y-series has the proper

ty that its value at r = » is the sum of all expansion coefficients.

By requiring this sum to vanish at r = »» we can force the dipole moment 

function to have a correct asymptotic behavior. Besides, the y-expan- 

sion involves a linear system of equations and the matrix elements of 

y can be easily calculated using exact formulas.

The relationships between coefficients of the three expansions 

of M(r) in powers of u, y and z are given in Chapter II. In Chapter 

III we present formulas for matrix elements of these variables and 

derive the exact expression for the off-diagonal elements of y.

The cubic dipole moment functions in u, y, and z are obtained 

for CO in Chapter IV, using Morse-oscillator wavefunctions and per

turbed-Morse-oscillator (PMO) wavefunctions.
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Chapter V presents a technique of generating all coeffi

cients in the y-expansion of M(r), using two additional parameters 

which are to be determined by iterations so that the dipole moment 
function M(r) will display the correct asymptotic behavior at both 

large r and small r. The most interesting feature of this technique 

is that it permits one to reduce the various infinite series expan

sions of M(r) into compact analytical forms. Chapter VI lists dipole 

matrix elements calculated from these various y-expansions of M(r).

Appendix A gives formulas to calculate coefficients of a 

power series resulting from raising another power series to any power.
2 3In Appendix B, exact expressions for matrix elements of y and y are 

derived by the factorization technique. This makes use of several re

sults that have been obtained by Infeld and Hull̂ ^̂  ̂and are listed in 
Appendix C.



CHAPTER II
RELATIONS BETWEEN COEFFICIENTS OF VARIOUS EXPANSIONS 

OF THE ELECTRIC DIPOLE MOMENT

For covalently-bonded diatomic molecules, there are two gen

eral types of dipole moment functions M(r) as shown in Fig.

The upper curve (a) shows the general behavior of the dipole moment of 

a class of diatomic molecules that have unique polarity like HCl. The 

lower curve (b) is typical of a molecule such as CO which undergoes a 

reversal of polarity at certain value of r. In both cases, the dipole 

moment approaches zero as the molecule dissociates into neutral atoms.

In case of CO, if the positive direction points from 0 to C, 

then by definition positive values of M(r) indicate the polarity C^O” 

while negative values refer to the polarity CO*. Discussions on the 

reversal of sign of the CO dipole moment can be found in papers by Mul- 

liken̂ ^̂ ) and Huo.^^^^ For small r, the polarity may be expected, 

since the triple bond C”=0* is then the strongest. As r becomes lar

ger, the polarity should be reversed, since C*+0 then has considera
bly lower energy than C"+0*.

At the present, most theoretical and experimental treatments 

of the dipole moment can give information about it only over a limited 

range of r about the equilibrium r̂ , and none provides a detailed pic

ture of the dipole moment over the whole range of r. Theoretically,the 

general behavior of M(r) is expected to be

15
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M(r) -> 0 for r ->■ 0 and r -»■ ».

Although the behavior of M(r) at very small values of r has 

never been fully understood, we assume that the above general asympto

tic behavior is correct and try to find functions satisfying these con

ditions to represent the dipole moments of diatomic molecules.

As mentioned in Chapter I, M(r) is commonly expanded in a 

Taylor series as
00

M(r) = M(u) = mg +  ̂ m u^ (2.1)
n=l "

where u = r - r , and e

If r is expressed in units of cm and electric charge in

units of esu, then M(r) has units of esu-cm. For molecules, M(r) is
-18usually expressed in units of Debye (abbreviated D), where 1D= 10 esu 

.cm. Thus, if r is in units of Â (lA = 10 -̂ cm) then the Taylor coeffi

cient m has units of D*A'̂ . n
The Taylor series (2.1) is valid only for |u| < r̂ , that is,

over a small range of r: 0 < r < 2r̂ . In practice, only a finite num

ber of coefficients m^ can be determined through empirical dipole ma

trix elements. Even if a large number of these coefficients can be 

calculated, the Taylor expansion does not provide any information on 

the dipole moment beyond the distance 2r^ because the series diverges 

there. Although there is no theoretical justification for using the 

Taylor expansion of M(r), this choice is convenient and sometimes can
C25')predict transitions probabilities in quite good agreement with
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experiments. However, this requires extremely accurate intensity data. 

Up to the present, for CO there are only three reliable measured vi

brational absorption intensities: those for the fundamental and the

first two overtone bands. Therefore, the cubic dipole moment function 

in u for CO is usually determined. This is satisfactory for many 
practical purposes but inadequate for detailed analysis of fine struc

ture of intensity bands.

As alternative approaches, the dipole moment function can be 

expanded in an infinite series of powers of the variable y or z in

troduced earlier:

M(y) = Mo + I M y" , (2.2)
n=l "

or

M(z) = To + I T z" , (2.3)
n=l

where M and T have units of Debye (0). n n
The expansion M(y) is valid only for |y| < 1, or 

-1 < 1 - e""" < 1

from which we get

r̂  - ^ &n2 < r < 00 . (2.4a)

In particular, for CO the range for y-expansion is
0.84 X < r < 00 . (2.4b)

Similarly, the expansion range for M(z) is determined by 

Izl < 1 ,

or

-1 < e"" - 1 < 1 ,

thus by
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- 0 0 < r < Tg + ̂  £n2 . (2.5a)

For CO, this gives

0 < r < 1.42 A . (2.5b)

Mathematically, the y-expansion and z-expansion of any func

tion of r, and of M(r) in particular, are analytical continuations of 

its u-expansion from the limited range 2r̂  over an infinite range 

toward the positive side and an infinite range toward the negative 

side of r respectively. Of course, all three expansions represent the 

same function within the "overlap range", which is

r - — 2n2 < r < r + — &n2 , e a e a

and for CO,

0.84 Â < r < 1.42 Â .

The y-series, which has the longest positive expansion range,
seems to be the most useful of all. In fact, it has one advantage

that, at r=oo, since y=l, it becomes
00

M(y=oo) = Mg + 2 M (2.6)
n=l "

Therefore, one may force the function M(y) to satisfy the 

large-r asymptotic behavior by imposing the condition

M(y=oo) =  ̂ M = 0 . (2.7)
n=0 "

This is done in Chapter V.

The z-model, despite its smallest positive portion of expan

sion range, offers more convenience because the matrix elements <v|z"|v'> 

can be evaluated very easily by a recurrence formula as stated in 

Chapter I.
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We shall now derive the relations between coefficients 
f2 1 1M , and T . Huffaker has obtained these relations for the casen' n

of the Dunham potential and PMO potential. In the light of his gen

eral appro; 

tionships.

eral approach,we find an alternative way to obtain these rela-

1. Relations between m and M  n-----n
Defining t = e and using the binomial expansion, we write

y" = (1 -t)" = 1 + 1  . (2 .8 )
k=l ^

Substituting the series representation of t,

= e'^" = 1 + 1  (-1)* S  (au)* , (2.9)
m=l

into Eq. (2.8), one gets

y" = 1 + I (-1 )* (?) + Î  I (-1 )^** (5 ̂  (au)* .
k=l m=l k=l

The sum of the first two terms in the right-hand-side of this

equation is the value of y^ given by Eq. (2.8) for t=0, thus is equal

to zero, yielding

y" = I Aj (au)* (2.10)
m=n

where a ” are two-dimensional coefficients given by

C  ' X  t2 .1 1 a)

where (ĵ) is the binomial coefficient,

n!
Q  = (n-k)! k! > (2 .1 1 b)
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0! = 1 .
We note that the lowest power in the expansion [Eq. (2.10)]

of y” is n and

= 1 ; (2 .1 1 c)

hence,

(n-k)! k!? rn-ril Ici = 1 • (2.lid)k=l

Putting Eq. (2.10) into Eq. (2.2) and changing the order of 

summations, then comparing to Eq. (2.1) we finally get
m_ m  ̂

a n=l
Alternatively, we can write y^ as a series in power n,

y"= [% 4 1 ^  .m=l "•

and use Eq. (A.9) in the Appendix A to obtain an induction relation

for A" : m

for m > n, and starting with a” = 1 .

Coefficients can also be calculated inductively in terms
of coefficients iii bym

n- 1

M = m - y A®M , (2.14a)n m n m

or directly by
" ,mM = I B™m . (2.14b)

^ m:l " m

The coefficients B™ can be obtained either by inversion of

the matrix of coefficients A " or by an inductive relation similar tom '
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Eq. (2.13):
n- 1

Ik=m
where n > m and B™ = 1.m

2. Relations between m and T  n-----n
Using the same technique as before, we write

v" = . 1 * Î g  (au)" ,
m=l

and

z" = (v-1 )* = (-1 )" (1 -v)* ,

z" =(-!)" Y  I [(-1)’' 0  Scau)"*
m- 1  k=l ”•

+ Ï  I [(-1 )"*^ (JJ) ^ICau)"* .
m=n k=l

The coefficient in the first bracket in the above equation 

vanishes, reducing it to

z"= I C" (au)" (2.15)m m=n
where is given by

c; . (J, g  (2.16)

which can be related to the coefficient in Eq. (2.11a):

C  = <  •

Substituting Eq. (2.15) into Eq. (2.3), then comparing the 
resulting equation to Eq. (2.1), we finally obtain
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\  = C ’-n-a n=l

Inversely, T can be written in terms of m by ’ n m

I = Î D % ^  (2.18a)
m=l

where coefficients D™ can also be calculated by inversion of the ma-n
trix of coefficients or by an inductive formula similar to Eq. 

(2.14c),
n- 1

k=m

Note that a relation similar to Eq. (2.14b) also can be ob

tained from Eq. (2.17).

3. Relations between M and T -------------------- n-----n
First we express the relations between y and z; from

, -au j au , ,y = 1 -e and z = e -1 , one has

y = z(l+z)'^ , (2.19a)

and

or

z = y(l-y)"l . (2.19b)
Then using the binomial formula, we can write,

y" = ! , (2 .2 0 a)
n=l ^

y” = I c-i)"'’"(j;:i)z"'. (2 .2 0 b)
m=n

Substitution of this expression into Eq. (2.2) gives

M(r) = I  I  
n= 0  m=n
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which can be rearranged into

00  ̂ m

Thus we obtain

where

m
’■«= P. 2 1 a)n= 0

which can be cast into an inductive form:

. C2.21C)

We note that can be expressed equivalently as 

m V m 1

\  = I t-« ( ; ) V k  • (2 .2 2 )K=0

To obtain the expression of in terms of T̂ , we write

a” - y^i-y)-" = Î (;%)y"
n=m

and substitute it into Eq. (2.3); then rearranging and comparing to 

Eq. (2.2), we get

M„= Î h ” t^ (2.23a)
m= 0

where

or
»n” = ( J i  “ (m-ijTrii;)! • (2-23W

Hj = . (2.23c)n m- 1  n

Also note that G = H ̂  = 1.m n
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M(r)

0

M(r)

0

Fig. 2.1. General shape of the dipole moment function. Curve 

(a) for a molecule with unique polarity, HCl, for example. 

Curve (b) for a molecule with reversal of polarity, CO, for 
example.



CHAPTER III
MORSE-OSCILLATOR MATRIX ELEMENTS OF u, y, AND z

1. Factorization Treatment of The Morse Oscillator

The Morse function

Vjj(r) = D[exp(-2au) - 2exp(-au)] (3.1a)

where u = r-r̂ , r is the internuclear distance, r^ is the point of 

minimum potential, and D the well depth, is frequently used to describe 

the internuclear potential energy for diatomic molecules because of its 

many advantages:

First, considering that it has only three parameters, the 

Morse function fits the empirical potential curves for diatomic mole

cules like CO quite well at fairly low vibrational levels. Second, it 

supports a finite number of bound states, allowing us in some cases to 

use matrix representations in solving many problems. Third, the Morse 

function has correct behavior at very large r:

V̂ (r) -> 0 as r 00 .

At r = 0, where the potential should have a positive pole,

V̂ (0) = D[exp(2arg) - 2exp(arg)

which is between lOOD and 10,0000 for many molecules; in particular, 

for CO, Vĵj(O) = 1900. These values are large enough that they produce

25
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nearly the same effect as infinity on the energy levels and wavefunc- 

tions.

Another important advantage is that the Schroedinger equa

tion representing the vibrational motion of the nuclei in a diatomic 

molecule with the Morse potential,

[-exp(-2au) + 2epx(-au)]ij; + = 0 , (3.1b)

(-00 <  u  <  oo)

is exactly solvable by two approaches: the confluent hypergeometric

method^^^^ and the factorization method.
Although Morse eigensolutions of the above equation are de

fined over the whole range of r (or u), they may be considered to vanish 

over the negative range of r because of very large value of V^(0 ), so 

that their normalization may be considered as the "physical" normali

zation, i.e.,
00 00

/ .
-0 0  0

For the same reason, matrix elements using Morse wavefunctions may be 

evaluated over the whole range of r instead over the physical positive 

range for many diatomic molecules.

Using a variation of the factorization method, Huffaker and 

Dwivedî ^̂  ̂obtained two useful recursion relations, one of which per

mits very easy calculation of some matrix elements. Since their tech

nique of evaluating matrix elements can be extended to other matrix 

elements we shall require, we recall in the following some important 

results from their work.
f2 2 1Infeld and Hull (hereinafter referred to as IH) showed
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that the substitutions

s +3s = (2pD)̂ /aJi , (3.2a)

m2 = -2pE/(ah)̂  , (3.2b)

X = -au + &n(2s + 1) (3.2c)

allow one to transform Eq. (3.1b) into the form

+ (s + %)e*]R(x) - mZR(x) = 0 . (3.3)

f2 2 1According to IH, the above equation is of Type B fac

torization with characteristic functions

k(x,s) = %exp(x) - s ,
and

L(s) = -s2 .

L(s) being a decreasing function of s, Eq. (3.3) is a class 
f221II problem for which IH obtained the following results:

The eigenvalue:
-m2 = L(&) = -(&)2 (3.4)

which gives & = m̂ .

The normalized key solution:

R̂ (̂x) = r~^(2m)exp(mx - ̂ ê ) (3.5a)

which satisfies the first-order differential equation

- m + ̂ ]Rn,"*(x) = 0 . (3.5b)

The normalized s-changing operators:

^n,"(s) = [(s-m) (s+m)]' |̂̂ ê  - s ± ^  (3.6a)

which act on s according to
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' (3-«W

(3-60

Since s ^ m, the quantity v = s - m must be a positive inte

gral number which can be identified as the vibrational quantum number.

Substituting ra = s - v into Eq. (3.2b), we get the expression for vi

brational eigenenergies:

Ey = -D + (s + %)y(v + %) - %y(v + 3s)2 (3.7)

where

Y = (ha%)/p .

The recursion relation:

Eliminating d/dx in Eqs. (3.6b) and (3.6c), one obtains the 

recursion relation

(3.8a)

where
A® = 2s + 1 , (3.8b)

= [(s-m)(s+m)]^ . (3.8c)

The orthonormality condition:

A solution and its corresponding eigenfunction ip_̂ can be

obtained via the key solution by applying Eq. (3.6b) repeatedly a 

total number of (s-m) = v times. Solutions R̂  ̂are orthonormal accord

ing to
00

/ V  f3.9a)

corresponding to the "physical" orthonormality condition:
00

/ " '̂ v',v • (3.9b)
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To relate R ® and ijj we write m

= Cv*v'

dx = -adu , (3.10a)

and substituting these relations into Eq. (3.9a), we get for v' = v

aĈ  = 1

from which
.

hence.

r/  = . (3.10b)

Huffaker and Dwivedi^^^^ showed that the substitutions

R(x) = exp(y/2) W(y) , (3.11a)

X = &n[y(s + h)] (3.11b)

transform Eq. (3.3) into

—  + - %(s + W = 0 (3.12)
dy2 y y2

which can be recognized as a type F equation with characteristic func

tions
m - H 1k(y,m-%) = y 2 (m - '

2L(m-̂ s) - -^(m - %)

Since L(m-%) is an increasing function of m, Eq. (3.12) is 

classified as a Class I problem for which Huffaker and Dwivedi^^^^ 

obtained the following results:

The eigenvalues:

X. = L(& + 1) = - hil + 1)"^ = - %(s + (3.13)
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from which we see that A = s - Jj.

The normalized key solution:

= (s + ;^-(s+l)r-%2(s + 3^y®'^%xp[- 2(s^+ ?s)̂ (3.14a)

which satisfies the equation

- s V t  -

The normalized m-changing operators:

. -  h V t  * é}
which generates W-functions with different m according to

=%'"(m)Wg'" , (3.15b)

W "" =.^"(m)W . (3.15c)s s s

The orthonormality condition:

/""s>s"‘‘y =  «s'.s (3-16)
-0 0

The relationship between and is given by

Ws*(y) = [4m(s + %2]-^exp(y)R^^(x) . (3.17)

The normalized m-changing operators acting on 

Substituting the relation (3.17) and

dy = (s + Jj)ê dx 

into Eqs. (3.15a, b, c), we obtain

C  = ' (3 .18a)
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C l  ' ^s*'“) C  (3.18b)
where

{»«" - lîC V  * A} .(3.180

% - w  ' k . . i ) ( : ' : a r _ . . i ) ] ' {(" - «»-=■ -

- = "  A }  ' (3.184)

The recursion relation:

Eliminating e"̂ (d/dx) in Eqs. (3.18c, d), one obtains a se

cond recursion relation connecting solutions with different m,

4'V'CC-CCi *CiCi (3-19»)
s ______s + %

%  ” 2(m-3i)(m + 32)’

C  = 4 ( 5 ^ ^  c  - . (3.19b)

Eqs. (3.19a, b, c) can be rewritten in terms of the Morse 

eigenfunctions, using Eqs. (3.2c) and (3.10b):

(ê *̂ - l)4)y = + By+i'Cv+i (3.20a)
where

\  : )%  : : ) "  ■ (3 -i» «

8 v '  • (3.200

Eqi (3.20a) is a very important result because it permits 

easy calculation of the matrix elements <v'|z^lv> for any power n.

It served as a basis for a treatment of the perturbed-Morse oscilla- 
tor.(2 1 )
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2. Signs of the Morse Eigenfunctions
Eq. (3.4) for the eigenvalues and the condition that s-m must 

be an integer show that a Morse oscillator has a finite number of bound 

states, which is approximately equal to the quantity s defined in 

Eq. (3.2a). For CO, this number is about 77.

If the Morse radial equation [Eq. (3.1b)] is solved by the 

usual confluent hypergeometric method, the relative phases of the 

various eigenfunctions are completely arbitrary. When one uses the 

factorization method, however, this arbitrariness is removed, since 

one generates all eigensolutions by repeated application of either a 

class I operator or a class II operator on the corresponding key solu

tion.

First, in the class I problem, if the key solution is

given as in Eq. (3.14a) then the corresponding function is

Rĝ (x) = (positive const.) e^^ exp(-%e*) , (3.21a)

and the corresponding Morse function is

^̂ (r) = (positive const.) e"^^" exp[-(s+ye"^^] . (3.21b)

We see that both these functions approach zero positively as

r tends to 0  or +<»:

and ipo ^ ----   O"̂ (3.22)s
r 0

or r + 0 0

Other solutions R  ̂and ip with different m  and v can be ob- m V
tained from R̂  ̂and ip by using either Eq. (3.18b) or the class I re

cursion relations (3.19a) and (3.20a). The last equation can be
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rewritten in the form

ê “ - 1 - A , B .
= t----- B--- — - [-F-1V 2 • (3-23)V V

As r 0 0, so that the term in e^^ is predominant, we have

.au

which by induction, leads to

gVau

and hence.
, +$y(r) X— '— ' 0 . (3.24a)

r -» + 0 0

This means that all class I Morse eigenfunctions are positive 
for very large r. Since ip_̂ has v nodes, its sign at r = 0 is given by 

(-1 )̂ , that is,

i|,̂(r) (-1)̂  0* ,. (3.24b)
r -+ 0

Now in the class II treatment, the key function and the 

corresponding Morse function (which is the ground state wavefunc-

tion of another Morse oscillator described by s' = s-v) are

R̂ (̂x) = (positive const.) exp(mx - îjê ) , (3.25a)

and

(})o”̂ Cr) = (positive const.) exp [(s-v) au - (s+%Je"*"] , (3.25b)

which clearly have the same asymptotic behaviors as and ipo,

and  . (3.26)
r ->■ 0  or +“
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Then, in a similar manner, the r = behavior of other solu

tions, and with different s, can be seen by rewriting the

class II recursion relation as
X ,s-l , B ,

m m

from which one sees that

m m  m
hence.

and

4» O'" , (3.27a)
r 0

— v-ZC-l)'' 0+ . , (3.27b)
X -*■ + 0 0

Thus, all class II Morse eigenfunctions begin with positive

values at very small r and from the above results we obtain the rela

tion between class I and class II Morse wavefunctions:

= (-1)̂  . (3.28)

This means that eigenfunctions of the two classes are the

same for even values of v and have opposite sign for odd values of v.

The difference in sign between class I and class II Morse 

wavefunctions, of course, results in the difference in sign between 

Morse matrix elements of any function f(r). Using the relation (3.28), 

one obtains immediately

<*^/^)|f(r)|,|,J^)> = (-l)''''̂ '<.|;,/” |̂f(r)|i)j,,f“ ^> . (3.29)
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3. Matrix Elements of u 

In Chapter I we have mentioned that in the analysis of in

tensities of rotation-vibration or rotationless vibration transitions 

of diatomic molecules the dipole moment is usually expanded in a Tay

lor series of the variable u = r - r̂ . Thus, in the Morse oscillator 

model, the vibrational matrix elements of powers of u are important 

quantities. Morse matrix elements of u and û  have been analytically 

evaluated by several a u t h o r s b y  the usual integration method.

The formula for u is in a rather simple closed form, but that for û
f 311is quite complicated. Herman and Rubin^ were able to obtain a 

general formula from which it is possible to extract matrix elements 

of higher power of u for the rotating Morse oscillator (Morse-Pekeris). 

However, even their expression for matrix elements of u is very compli

cated. Herman, Rothery and Rubinsucceeded in reducing it to a 

considerably simplified form, only after a great deal of algebra. Up 

to the present, formulas obtained by integration for powers of u higher 
than the quadratic are not suitable for numerical calculation.

The factorization method provides a more powerful and 

more elegant technique than the integration method for the evaluation

of matrix elements in many eigenvalue problems. Using this procedure, 
(22' jIH worked out the exact expression for the off-diagonal Morse 

matrix elements of x, the variable related to u by Eq. (3.2c). Huffa

ker and Dwivedî ^̂  ̂then obtained the diagonal Morse matrix elements 

of X, thus completing the evaluation of the full x-matrix in the 

Morse basis of bound state eigenfunctions. From these, the matrix 

elements of u are easily obtained, as shown by the following:
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3a. Diagonal matrix elements of u
Huffaker and Dwivedi^̂ ^̂  showed that

s-m
<m|x|m> = ijj(2m) - % .[̂ inTTT̂  ’ (3.30a)

k=l 
or

<m|x|m> = 2ijj(2m) - ipCs + m + 1) + ̂  (3.30b)

where ip is the dlgamma function defined by

.  1 dr, .
ij,(z) = 1----^  (3.31a)

(̂z) l(z) 4:

with the properties:

ij;(z+l) = *(z) + Y , (3.31b)

and
n ,

ij)(z+n) = i|;(z) + I  [g + n - k̂  ’ (3.31c)
k=l

or
n- 1  ,

= *(z) + I [7 ^ ]  . (3.31d)
k= 0   ̂  ̂*

Using the relation (3.2c) between x and u and the relation 

(3.10b) between and we get from Eq. (3.30) the non-diagonal

matrix elements of u

<v 1 V 1

|u|v> = - [&n(2s+l) - *(2s-2v) - 2(s-V)+k  ̂ ’ (3.32a)

or

<v|u|v> = 1 [£n(2s+l) - 24̂ 2s-2v) + 4^2s-v+l) + 7 7̂ 7 ]̂ • (3.32b)

f 281According to Dunham, the digamma function ipCz) can be 

approximately with very high accuracy for z > 50 by

ip(z) = Zn(z - h) . (3.33)
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Therefore, if this approximation is applied to the gamma 

function ij;(2s-2v) in Eqs. (3.32a, b), the required condition should be

and for CO,

V < 51 . (3.34a)

For the digamma function i|j(2s-v+1) in Eq. (3.32b), we should

have

hence for CO,

V $ 2 s + 1 ,

V < 154 . (3.34b)

Thus, the digamma function iJj(2s-v+1) may be approximated 

by Eq. (3.33) for all bound states of CO, while values obtained by this 

approximation for ij)(2 s-2 v) become increasingly less accurate when v 

exceeds the value of about 51. Since levels have been measured only 

up through v=37, the approximation should be satisfactory.

3b. Non-diagonal matrix elements of u
(22)Off-diagonal matrix elements of x were obtained by IH in

the form

where it is assumed that m > m' or v < v'.

From this, non-diagonal matrix elements of u follow,

We note that all diagonal matrix elements of u are positive 

while all off-diagonal elements are negative as shown by Eqs. (3.32b)
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and (3.36). These values are also listed in Table 3.1 for 0 £ v £ 9 

and 0  £ V' £ 9.

4. Matrix Elements of y 

4a. Diagonal matrix elements of y

Huffaker and Dwivedi^^^^ also obtained diagonal elements of 

e^ in a very simple form,

<m|e^|m> = 2m (3.37)

from which diagonal matrix elements of e"^^ and y are obtained:

<v|e-="|v> = , (3.38)

<v|y|v> = . (3.39)

4b. Integral lR„i?>

Evaluation of the off-diagonal matrix elements of y requires

the knowledge of this integral. Let us denote the overlap integral of
s s * s s ̂two functions and R̂ , m' ‘ using the s-raising and

lowering operators and their mutual adjointness, we can write

00

- OO

' s \ "  p  - (s+1 ) * .
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Thus, by induction, this equation gives
p ® p S-1 p ID

C i ’'  =
m m " ■ m
s kRecalling that = [(s-m)(s+m)]^ as defined by Eq. (3.8c),

the constant (denoted by C) in the square brackets in Eq. (3.40a) can

be expressed as

_ _ r (s-m) ir (s+m'+l)F(2 m+l) .h
'• (m-m'-l) ! (s-m+1 ) ! r(s+m+2 ) r(m+m' ) ̂

The integral is given by Eq. (C.Sa) in Appendix C.

Thus, substituting the value of C and the expression of this integral 

into Eq. (3.40), then after some reduction we obtain

4c. Non-diagonal matrix elements of y

Multiplying both sides of the class II recursion relation 

(3.8a) by , integrating with respect to x and using the orthonor

mality of R-fimctions, one gets

The B-factor and the integral in the right-hand side of this 

equation can be replaced by their expressions to yield

which then leads to the matrix elements of e~^^ and y:

<v|e ^^|v’> = -<v|y|v'> , (3.43)
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<v|ylV> = - ^  . (3.44)

Comparison between matrix elements of y and u shows that 

they are related to each other by

<v|y|v*> = —  <v|u|v'> . (3.45)

Also, as for the u-matrix, all diagonal matrix elements of 

y are positive while all off-diagonal elements are negative. To give 

some idea of the magnitude of the y-matrix elements, we list these in 

Table 3.2 for CO and for 0 £ v ̂  9 and 0 £ v' £ 9.

S. Numerical Calculation of Matrix Elements of Any Power of u, y,

and z

The set of bound state and continuum state Morse wavefunc

tions forms a complete set in terms of which a function of r can be 

expanded. In practical calculations, this complete set, however, has 

to be truncated so that one has finite and discrete matrix representa

tions. Therefore, for diatomic molecules with many bound states, one 

may retain only a reasonably large number of bound states in the Morse 

basis. For CO which has about 77 bound states, Huffakerfound 

that, for a given v, the basis size M is at least v + 14 so that the 

effect of truncation is insignificant. For M = 48, the matrix dia- 

gonalization yields highly accurate perturbed-Morse-oscillator (PMO) 

eigenfunctions up to v = 30. Thus, for CO at least, it is reasonable

to neglect all continuum states and make the approximation
N
I  |v><v| = I (3.46)
v= 0
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where I is the unit operator and N ̂  48.
As seen before, a matrix representation of z can be easily- 

obtained from the class I recursion relation (3.20a) and thus has a 

simple tridiagonal form:

Z =
Bj Aj Bg

Bg Ag Bg

Noting that

y = 1 - (z + 1)"^ ,

matrix representation of y can be produced numerically from that of z
(21)by taking the matrix representation of the above equation, i.e., 

by inverting the matrix representing (z + 1 ).

For CO, matrix size 50x50 is adequate to give highly accu

rate values for y-matrix by inversion method. If the full size 76x76 

is used, values obtained are nearly the same as those by exact formu

las. Also, note that, since the inversion method involves class I 

wavefunctions while the exact calculation makes use of class II func

tions, values of y-matrix elements obtained by the two methods differ 

in sign according to Eq. (3.29):

CDw (-Dv+v' (II)
w '

Exact formulas for matrix elements of ŷ  and ŷ  are derived 

in Appendix B. Formulas for higher powers of y can be obtained by the 

same technique, but are increasingly lengthy and complicated. There

fore, matrix multiplication appears to be more appropriate and conve-
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nient. In this method, the approximation (3.46) permits one to write

N
<v1 (r)IV'> =  ̂ <vIIX><XIf^IV'>

X=0

where p + q = n, and f(r) is u, or y, or z, or any function of r.

To maintain good accuracy, one can use exact expressions for 

matrix elements of the first three powers of y, from which one can ob

tain matrix elements for higher powers using matrix multiplication.
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TABLE 3.1. Morse 

.408287 -2 means .408287-10

matrix elements 
2

of u for 0 ̂  V and v' 9. The entry

X 0 1 2 3 4

0 .408287 -2 -.337712 -1 -.193399 -2 -.181451 -3 -.221872 -4
1 -.337712 -1 .123346 -1 -.479160 -1 -.337182 -2 -.366500 -3
2 -.193399 -2 -.479160 -1 .207130 -1 -.588783 -1 -.480001 -2

3 -.181451 -3 -.337182 -2 -.588783 -1 .292238 -1 -.682123 -1
4 -.221872 -4 -.366500 -3 -.480001 -2 -.682124 -1 .378702 -1
5 -.324605 -5 -.502711 -4 -.585272 -3 -.623816 -2 -.765184 -1
6 -.543705 -6 -.808384 -5 -.882366 -4 -.836017 -3 -.769143 -2
7 -.101513 -6 -.146745 -5 -.153775 -4 -.136598 -3 -.111713 -2
8 -.207533 -7 -.293896 -6 -.299435 -5 -.255361 -4 -.195798 -3
9 -.458702 -8 -.639467 -7 -.638254 -6 -.529214 -5 -.389563 -4X 5 6 7 8 9
0 -.324605 -5 -.543705 -6 -.101513 -6 -.207533 -7 -.458702 -8

1 -.520711 -4 -.808384 -5 -.146745 -5 -.293896 -6 -.639467 -7
2 -.585272 -3 -.882365 -4 -.153775 -4 -.299435 -5 -.638254 -6
3 -.623816 -2 -.836017 -3 -.136598 -3 -.255361 -4 -.529214 -5
4 -.765184 -1 -.769143 -2 -.111713 -2 -.195796 -3 -.389563 -4
5 .466562 -1 -.841036 -1 -.916211 -2 -.142747 -2 -.266275 -3
6 -.841036 -1 .555861 -1 -.911497 -1 -.106515 -1 -.176621 -2
7 -.916211 -2 -.911497 -1 .646417 -l' -.977752 -1 -.121603 -1
8 -.142747 -2 -.106515 -1 -.977752 -1 .738950 -1 -.104062 +0
9 -.266275 -3 -.176621 -2. -.121603 -1 -.104062 +0 .832834 -1
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TABLE 3.2. Morse matrix elements of y for 0 < v and v* < 0.X 0 1 2 3 4

0 .647508 -2 -.796825 -1 -.906659 -2 -.126754 -2 -.205280 -3

1 -.796825 -1 .194252 -1 -.111574 +0 -.155984 -1 -.252618 -2

2 -.906659 -2 -.111574 +0 .323754 -1 -.135277 +0 -.219083 -1

3 -.126754 -2 -.155984 -1 -.135277 +0 .453256 -1 -.154611 +0

4 -.205280 -3 -.252618 -2 -.219083 -1 -.154611 +0 .582757 -1

5 -.372901 -4 -.458893 -3 -.397976 -2 -.280859 -1 -.171069 +0
6 -.744470 -5 -.916147 -4 -.794530 -3 -.560714 -2 -.341527 -1
7 -.161046 -5 -.198206 -4 -.171894 -3 -.121309 -2 -.738884 -2

8 -.373748 -6 -.459936 -5 -.398880 -4 -.281497 -3 -.171458 -2

9 -.922950 -7 -.113578 -5 -.985011 -5 -.695140 -4 -.423405 -3X 5 6 7 8 9

0 -.372901 -4 -.744470 -5 -.161064 -5 -.373748 -6 -.922950 -7
1 -.458893 -3 -.916147 -4 -.198206 -4 -.459936 -5 -.113578 -5
2 -.397976 -2 -.794530 -3 -.171894 -3 -.398880 -4 -.985011 -5

3 -.280859 -1 -.560714 -2 -.121309 -2 -.281497 -3 -.695140 -4
4 -.171069 +0 -.341527 -1 -.738884 -2 -.171458 -2 -.423405 -3
5 .712259 -1 -.185423 +0 -.401158 -1 -.930885 -2 -.229877 -2

6 -.185423 +0 .841761 -1 -.198136 +0 -.459774 -1 -.113538 -1
7 -.401158 -1 -.198136 +0 .971262 -1 -.209511 +0 -.517376 -1
8 -.930885 -2 -.459774 -1 -.209511 +0 .110076 +0 -.219761 +0
9 -.229877 -2 -.113538 -1 -.517376 -1 -.219761 +0 .123027 +0



CHAPTER IV
CUBIC DIPOLE MOMENT FUNCTIONS IN u, y, AND z

Although there have been numerous determinations of dipole 

moments of diatomic molecules as functions of the internuclear separa

tion using intensity data, this problem is still of considerable im

portance and interest. In this empirical approach, the correctness of 

the results depends on three factors:

i) Reliability and sufficiency of the experimental data; 

ii) Accuracy of the internuclear potential used, whether 

analytical or numerical;

iii) Reasonable form chosen for the dipole moment.

The first condition appears to be a major concern. The very 

small number of experimental data points per molecule usually limits 

the choice of form for the dipole moment to a Taylor series expansion 

which, in turn, requires the measurements to be highly accurate. In

frared absorption experiments are frequently performed to provide abso

lute intensities of individual lines^^’̂ ^’̂ ^’̂ ^̂  or integrated inten- 
f33-351sities of the lines in a given vibrational transition, as well

as in electronic transitions. This measurement technique is not accu
rate when the population of the lower level is so low that emission 

transition is possible. In this case, emission e x p e r i m e n t s a r e  

more preferable.

45



46

Two techniques have been developed for determining the coef

ficients of the dipole moment expansion. The first procèdure^®^ makes 

direct use of the integrated absorption intensities at low temperature 

for various vibration bands and requires the evaluation of rotation- 

vibration matrix elements. The secondextracts the squares of rota- 

tionless dipole matrix elements from individual line intensities 

using least-squares fit and thus involves only purely vibrational 

eigenfunctions in the calculation of the expansion coefficients. In 
the latter approach, it is usually assumed that the square of the 

rotation-vibration matrix element <vJ|M(r)|v'J'> may be factorized in 

the form

|<vJ|M(r)|VJ*>12 E M5^,(m)r = l^vv'■ % v '

where

v̂v' " <v|M(r)|v'>

is the rotationless dipole matrix element and (m) is called the 

Herman-Wallis factor representing the rotation-vibration interaction, 
and

m = J + 1 for R branch, 

m = -J for P branch.

A great deal of effort^^’̂ ^’̂ ^’̂ ^ c o m b i n e d  with modern 

equipment and techniques has been made to obtain highly accurate inten

sity data for the fundamental (0-1) band and the first two overtone 

(0-2 and 0-3) bands of CO (X̂ Z), from which reliable absolute values 

of the corresponding rotationless transition moments have been deduced. 

Three sets of these empirical quantities for CO are listed in Table
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4.1 together with less accurate values for some low hot bands. Also 

shown are the values averaged over the three sets of values for

and and uncertainties reported by Toth, Hunt, and Plyler̂ ^̂

on their values for these quantities. These averaged values shall be 

used in all our calculations.

In Chapter III we showed how the eigenfunctions and some 

matrix elements for the Morse oscillator can be easily obtained.

Since this model is good only for low vibrational levels, v < 10 for 

CO, we shall also use the perturbed-Morse-oscillator [PMO] potential 

energy which is expressed by
N

VpMo(r) = Dy + D I b y  (4.1)
n=4

where y = 1 - e u = r - r̂ , and the first term represents the un

perturbed Morse oscillator.
The PMC potential function was shown by Huffaker^^^^ to be 

a useful model for describing diatomic molecules (within the framework 

of the Born-Oppenheimer approximation) as accurately as the potential 

obtained via the RKR method. Using the WKB method, Huffaker^^^^ was 

able to extract from the spectral data the coefficients b^ from b^ up 

to b^ 2  0̂1" the ground electronic of CO, together with the three para
meters that he used to characterize the equivalent (unperturbed) Morse 

oscillator:

p = ar̂  , (4.2a)

a = s + % = ‘ (4.2b)

T = ^  . (4.2c)
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In Huffaker's energy-related works, these quantities are more 

convenient than the usual Morse parameters, a, r̂ , and D; but in our 
study we shall use the latter set of characteristics. Therefore, we 

list in Table 4.2 empirical values obtained by Huffaker^^^’̂ ^̂  for the 

first set of parameters and corresponding values for the second set.

Next we shall describe a technique employed by Huffaker to 

produce eigenfunctions of the perturbed Morse oscillator.

1. PMO Eigenfunctions for CO

These eigenfunctions have been obtained analytically by per- 

turbation-method calculations,̂ ^̂ ^̂  which included the effects of PMO 
coefficients from b^ to b^ only. If a larger number of these coeffi

cients is to be included, finite perturbation theory is impracticable

as the complexity of the perturbation formulas increases geometrically 

with increasing order of terms.

Therefore, in order to obtain more accurate eigenfunctions, 

matrix diagonalization was used by Huffaker.̂ ^̂ ®̂  In this technique, 

it is necessary to neglect the continuum of unbound states of the Morse 

oscillator and retain a certain number M of bound states in order to 

have a finite and discrete matrix representation. For CO where the 
total number of bound states is about 77, we choose M=48 which is 

adequately large to yield very accurate eigenfunctions and not too 

large for numerical calculations.

The Hamiltonian of the perturbed Morse oscillator can be

written as

H = H° + H' (4 .3a)
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is the unperturbed Hamiltonian of the equivalent Morse oscillator, and
N

H' = D % by" (4.3c)
n=4 "

is the perturbation Hamiltonian consisting of a finite sum of terms.

The unperturbed Hamiltonian H® has eigenfunctions (})̂ and 

eigenvalues satisfying the Schroedinger equation

The eigenvalue Ê , which is the pure Morse matrix element, 

can be obtained from Eq. (3.7) and written in the form

E; = . (4.4)

The eigenfunctions and eigenvalues of the unperturbed system

are related by

%  = E/v •

From Eq. (4.3a), the perturbed Hamiltonian matrix element 

H^, in the basis of the equivalent Morse oscillator can be written

"vV = C '  + «W- (4.5)
where Ĥ ,̂ may be called the "perturbation" matrix element:

N
= D % b^<v|y |v'> . (4.6)

n=4
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The finite matrix representation of the PMO Hamiltonian is 

then diagonalized to produce eigenvectors, expressing PMO eigenfunc

tions as linear combinations of Morse eigenfunctions. Since the per

turbed Hamiltonian matrix is nearly diagonal and its eigenvalues are 

known experimentally, eigenvectors can be produced by a simple proce

dure. Calling the unnormalized eigenfunction corresponding to 

eigenvector and eigenvalue Ê , we can write

Ÿ = Y D ,(b ,V w '  v'

Then choosing = 1, one obtains the other components of

Dy by solving the set of (M - 1) inhomogeneous linear equations

■ ^v'^v"v*^^w' ~ ~^vv" (4.7)

by matrix inversion.

Consistency can be checked by comparing

%  ~ ^vv'^w'

to the eigenvalue Ê . If the difference between E^ and E^ is more 

than the desired accuracy, one replaces E^ in Eq. (4.7) by and 
repeat the process until the desired accuracy degree is reached. Fi

nally, the normalized eigenfunctions are obtained in the form

\ = I Cvv.*v. (4.8)v'

where
. C = “v
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A conçjuter code has been written by Huffaker to solve this 

problem for PMO eigenfunctions for CO. The results were found to be 

good for V £ 28 and J £ 160. We use his program to obtain rotation

less (J = 0) PMO eigenfunctions for all calculations in this work.

2. Various Cubic Dipole Moment Functions for CO 

With a few reliable experimental data, and with accurate 

PMO eigenfunctions available, our next task is to solve for the co

efficients of the cubic dipole moment functions in u, y, and z for CO:

M(u) = mo + miu + mgU^ + mgû  ,

M(y) = Mq + Miy + May + Mgŷ  ,

M(z) = To + TiZ + TgZ^ + TgẐ  .

(4.9a)

(4.9b)

(4.9c)

Since at r = r̂ , u = y = z = 0, we have

M(r̂ ) = mo = Mo = To ,

which is called the permanent dipole moment of the molecule.

For convenience, let us denote all three variables of u, y, 

and z by a single letter q and write

M(q) = Mo + Piq + F̂ q̂  + Paq̂  . (4.10)

Then the coefficients Pi, P2 , and P3 can be determined sim

ply by solving an inhomogeneous set of three linear equations which 

can be written in the matrix form:

(4.11)
2 3 'qoi qoi qoiPi' Wo 1

qo2 qo2 qo2 P2 =Wo 2
.̂03 *lo3 ̂03.P3 .Po 3.
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where

Qov = <0|q”|v> , n = 1, 2, 3, ,

is the Morse or PMO matrix element of q".

Now, another problem one usually faces is an ambiguity in the 

dipole moment function M(q) which arises from the fact that spectral 

intensity measurements determine only the absolute magnitudes and not 

the algebraic signs of the matrix elements. Consequently, one has 2  ̂

possible cubic dipole moment functions M(q) for each variable q. In 

general, if K coefficients in the expansion of M(q) are to be determined, 

and if the sign of M has been fixed, then the number of solutions will 

be 2 \

In most experiments, only the absolute magnitude of the per

manent dipole moment Mq may be determined. By observing the Stark ef
fect on microwave transitions, Burruŝ ^̂  ̂obtained the value of 0 . 1 1 2

± O.OOSD for Mfl. Other measurementsgave the value 0.114 D. In
f48 491the past few years, molecular beam electric resonance spectroscopy ’ 

has been used to provide data from which Muenter^^^^ could extract a 

more accurate value and also determine the sign for Mo :

Mo = -0.1222 D (4.12)

with the negative sign indicating the C 0̂  orientation.

Further, the negative sign of Mo has been confirmed by an ab 

initio calculation of Billingsley and Krausŝ ^̂  ̂using the optimized 
valence configurations multiconfiguration self-consistent-field method 

(OVC MCSCF), and by Toth et al. who found that the negative value 

of Mg gave the best agreement between the calculated and observed 

values of the Herman-Wallis factors.
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To remove the ambiguity on the dipole moment function, one 

usually fixes the sign of the coefficient Pi and selects signs of poi» 

Po2 , and po3 for which the corresponding dipole moment function is the 

most physically reasonable. We shall assume that the CO dipole moment 

function has the behavior about r^ as shown in Fig. 2.1, curve (b), so 

that Pj has positive value, i.e., the curve has positive slope at r . 

Since at low vibrational levels the contribution to the dipole matrix 

element comes mainly from values of M(r) over a small region

about r̂ , we have found a way to fix the signs of poi, P0 2 » and po3 by 

approximating M(q) as a linear function in q,

M(q) = Mo + Piq ,

so that

’■*0 vy = < 0 | M ( q ) = Pl<0|q|v>^°^^® < 0 (4.13)

because all off-diagonal Morse matrix elements of u and y have been 

shown to be negative in Chapter III, Eqs. (3.36) and (3.45). Also, the 

condition (4.13) implies that Class II Morse eigenfunctions are used.

Thus, we shall give negative signs to the empirical dipole 

transition moments yoi , yo2 , and yos, and also to yi3 , y24, and yss 

for hot bands.

2a. Results Using Morse Eigenfunctions

M(u) = -0.1222 + 3.0908U - 0.1986u% - 2.378lu^ , (4.14)

M(y) = -0.1222 + 1.2930y + 0.6127y= + 0.2171y^ , (4.15)

M(z) = -0.1222 + 1.2933Z - 0.6837z^ + 0.2709z® . (4.16)
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Using the above dipole moment functions, we calculated poo, 

the vibrationally averaged dipole moment at v = 0 , and found that it is 

negative for CO. Therefore, the empirical value for poo as listed in 

Table 4.1 should be given negative sign: poo = -0.1098 D. Then, from
this value, we can recalculate the permanent dipole moment by

3
Po = yoo - I Pi<0 |q"|0 > (4.17)

n=l

where Pq denotes the new calculated value. Values of Po, Pi, Pa, and 

Pg for different Morse cubic dipole moment functions are recorded in 

Table 4.3. Values of Pq differ only at the fourth decimal digit, so 

for all three models we may take Po = -0.1212 D.

2b. Results Using PMO Eigenfunctions

M(u) = -0.1222 + 3.0925 u - 0.2046 û  - 2.5203 û  , (4.18)

M(y) = -0.1222 + 1.2937 y + 0.6113 ŷ  + 0.2041 ŷ  , (4.19)

M(z) = -0.1222 + 1.2940 z - 0.6847 ẑ  + 0.2636 ẑ  . (4.20)

The permanent dipole moment is also recalculated using these

PMO cubic functions. Values obtained are listed in Table 4.3, and they 

differ very little from those obtained previously. Graphs of the 
various PMO cubic dipole moment functions are shown in Fig. 4.1.

3. Discussions

Comparison between Morse and PMO for Po, Pi, Pa, and Pa of the 

same cubic expansion M(q) shows that the effect of the PMO eigenfunc

tions increases with increasing order of the coefficients. Indeed, 

this effect appears on the fifth, third, second, and first decimal
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digit of Pfl, Pi, Pz, and P3 respectively. It can be explained by the 

fact that the difference between corresponding Morse and PMO eigenfunc

tions increases with the vibrational quantum number v.

If we use the dipole matrix elements deduced by Young and 
Euchus,(^) we obtain the following PMO cubic dipole moment function 

M(u) for CO:

M(u) = -0.1222 + 3.0912 u - 0.1221 u^ - 2.4680 u® (4.21)

which agrees fairly well with their result obtained using the RKR 

potential and numerical techniques:

M(u)^^ = -0.112 + 3.11 u - 0.15 û  - 2.36 û  . (4.22)

Comparing Eq. (4.21) to the PMO dipole function (4.18) ob

tained by using the set of averaged dipole matrix elements, we see 

that the second terms differ very little but the third and the fourth 

terms show significant differences. This is because in the two sets

of data, Poo is the same and poi and po2 are changed. Therefore, as
(17)Cahion indicated, if the overtone matrix elements are not known 

accurately then the cubic dipole moment function may not be more useful 

than the linear approximation. Fortunately, averaged values of the 

three dipole transition moments used in our work come from reliable 

sources.

The effect of truncating the series expansion to the cubic 

power also can be examined. Suppose that the cubic polynomial

M(u) = mo + miu + maû  + mgû

were an exact expression of the dipole moment; then its equivalent
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expansion in powers of y is

M*(y) = Mo + y M.* ŷ  (4.23a)
i=l

where is given by Eq. (2.14b),

[.*= y B.J m. (4.23b)
1 1 :

where N = j for i £ 3 and N = 3 for i > 3, and = m̂ /â

For the cubic dipole function (4.18) with

mi = 3.0925 , m2 = -0.2046 , m 3 = -2.5203 ,

the coefficients Nt of its equivalent infinite power series in y are 

listed in Table 4.4. We see that the three coefficients

M* = 1.2937 , M* = 0.6110 , M* = 0.2109

are very closed to the corresponding coefficients of the PMO cubic di

pole moment function M(y), Eq. (4.19):

Ml = 1.2937 , M2 = 0.6113 , M 3 = 0.2041 .

Clearly, this shows that the truncation of the power expan

sion of M(y) at the cubic term does not have a serious effect on calcu

lated values of the retained coefficients and that the effect is most

pronounced on the last coefficient M 3 .

In the same manner, we can obtain the equivalent infinite 

z-series for the cubic function M(u), the equivalent u-series with 

coefficients shown in Table 4.4 for the PMO cubic function M(y), 

and so on. In any case, the first three coefficients after the zero-
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order term of the equivalent infinite series do not deviate considera

bly from those of the corresponding cubic approximation.

Hie y-expansion representing the cubic dipole moment func

tion in Eq. (4.19) shows an interesting feature. As shown in Table 

4.4, the first three coefficients after Mg are positive and all others 

from M| are negative while those in the last column alternate in 

signs from m|. If we graph the coefficients M* versus the ordinal 

number n, we get a curve as shown in Fig. 4.2. There is a minimum at 

n = 14, and as n ■> «> M* does not vanish. Therefore,
00

Mn + y M* = -00 ,
n=l "

that is, the coefficients M* form a diverging series.

This result may be explained by the fact that, due to the

truncation of the Taylor series, coefficients of higher order than m 3

are excluded from the expression of M* in Eq. (4.23b). Therefore,

from a theoretical consideration, we may infer that, had all Taylor

coefficients m been exactly known, then all coefficients M would be n n
also exactly known and they would satisfy the condition that their

infinite sum including Mg should vanish. This condition constitutes

a basis for an extrapolation technique we shall use later to generate

all coefficients M from the first few ones, n
A final point to be made is that at r = 0 the Morse and PMO 

cubic dipole moment functions have values -0.456 and -0.251 respec

tively, suggesting that the PMO eigenfunctions give better dipole 

functions than the Morse eigenfunctions and the behavior M(r = 0) = 0 

should be expected for CO.
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TABLE 4.1. Experimentally deduced purely vibrational dipole matrix 

elements in absolute values (units of Debye).

Ref. #0 0 Poi 1*0 2 1*0 3

(8 ) 0.104 0.625x10"^ 0.383x10"^

0.104 0.653x10"^ 0.424x10"^
(9) - 2 _3± 0 . 0 0 2 ± 0 .0 1 0 x1 0 ± 0.060x10

(1 0 ) 0.1098 0.104 0.638x10'^ 0.384x10“̂

Aver. 0.1098 0.104 0.639x10'^ 0.397x10'^

Ref. #13 #24 #35

(1 0 ) _ 0.114x10"! 0.164x10"! 0.214x10"!
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TABLE 4.2. Two sets of Morse parameters and an additional set of 

related constants.

p = 2.6971864555362350 

O = 77.2191124730286411 

T = 83774.5923674853693 cm-1

a = 2.3904392015124602 A

r^= 0.1128322550027498 A

D = 83774.5923674853693 cm

Reduced mass for CO: 

Speed of light: 

Planck’s constant: 

Afomic unit mass

y = 6.8562087141 amu

c = 2.99792458x10® m/s 
-34h = 6.626176x10

lamu = 1.6605655x10 •27
J/s

kg
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TABLE 4.3. Empirically calculated coefficients of cubic dipole moment 

functions in u, y, and z, using Morse and PMO eigenfunc

tions respectively.

Expansion
+ Po Pi P2 P3

M(u)
Morse

PMO

-.12125

-.12124

3.0908

3.0925

-.1986

-.2046

-2.3781

-2.5203

M(y)
Morse

PMO

-.12125

-.12124

1.2930

1.2937

.6127

.6113

.2171

.2041

M(z)
Morse

PMO

-.12124

-.12123

1.2933

1.2940

-.6837

-.6847

.2709

.2636
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TABLE 4.4. Coefficients of the infinite power series in y equiva

lent to the PMO cubic dipole moment function M(u), and 

coefficients m* of the infinite power series in u equi\ 

lent to the PMO dipole moment function M(y).

n
<

(Truncated) (Infinite)
«n

(Truncated) (Infinite)

1 3.09254 1.29368 1.29375 3.09262
2 -0.20462 0.61103 0.61134 -0.20302
3 -2.52029 0.21091 0.20413 -2.61700
4 0.13831-1 -0.11380
5 -0.93996-1 8.82847
6 -0.15760 -19.08000
7 -0.19697 25.92200
8 -0.22206 -27.21335
9 -0.23825 23.84022

1 0 -0.24865 -18.13796
1 1 -0.25517 12.27972
1 2 -0.25901 -7.52017
13 -0.26098 4.21533
14 -0.26161 -2.18211
15 -0.26127 1.05053
16 -0.26024 -0.47303
17 -0.25870 0.20016
18 -0.25679 -0.79907-1
19 -0.25462 0.30201-1
2 0 -0.25226 -0.10839-1

The last negative digit refers to the power of 10.
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MCr)

M(z)
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-1.
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-2.

Fig. 4.1. Solid, dashed, and dash-dotted curves represent
the PMO cubic dipole moment functions M[u), M(y), and M(z) 
respectively.
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Fig. 4.2. Graph of coefficients of the equivalent y-series

versus the number n.



CHAPTER V
ANALYTICAL DIPOLE MOMENT FUNCTIONS WITH CORRECT ASYMPTOTIC BEHAVIOR

1. Introduction

The main objective of the present work is to produce approxi

mate values for unknown coefficients of the y-series expansion of the 
dipole moment Mfr) from a few known coefficients or given intensity 

data, in such a way that the infinite sum of coefficients M^ vanishes:
00

Mo + I M = 0 , (S.lj
n=l

so that the dipole moment function exhibits the correct asymptotic be

havior as r becomes very large (i.e. the molecule approaches disso

ciation) .

The behavior of equivalent y-expansion coefficients M* with 

respect to the index n as shown in Fig. 4.2 or Table 4.3, Chapter 111, 

suggests that the coefficients M^ also have the same general behavior 

for small values of n, but as n -> », M^ must tend to zero in such a way 

that the asymptotic condition (5.1) is satisfied.

Therefore, in order to generate values for unknown coeffi

cients M̂ , n > 4 for CO, we assume a functional form for M̂ , i.e., we 
express

Mj, = F(n, Cl, C2 , ..., Cĵ , 3) (5.2)

64
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where F is a function of the index n and the parameters Cj, Cg,

Cĵ, and g. The function F is subject to the asymptotic condition

Mo + I F(n, Ĉ , e) = 0 (5.3a)
n=l

where stands for the set of M parameters {Cj, Cg, Cĵ}. Thus,
the series generated by the function F is convergent and must satisfy 

a necessary condition

Lim F(n, Ĉ , g) = 0 . (5.3b)
n ->■ 00

The parameter g will be determined by the asymptotic condi

tion (5.3b), and M parameters are to be determined from N empirical 

dipole matrix elements or N given y-expansion coefficients M̂ .

Therefore, this problem can be solved by either of the following two 

approaches :
i) Indirect method: One first determines the first N coeffi

cients other than Mq using N known values of by solving a sys

tem of inhomogeneous linear equations of the form

I  <v|y"|v'>M^ = Pyy, , (5.4)

as has been done in Chapter IV.
The parameters {Cĵ } are then obtained by fitting the function 

F(n, Cĵ, g) to N coefficients M̂ , subject to the asymptotic condition 

(5.3a) which will determine g. In cases where F(n, Ĉ , g) is linear 

in and non-linear in 3, and M = N, one has a system of linear equa

tions

F(n, Cl, C2, ..., Ĉ , 3) = , n = 1, ..., N. (5.5)



66

which one solves for the C-parameters for each trial value of g. This 

iteration will continue until the asymptotic condition (S.3a) is 

satisfied within a desired accuracy degree. One then obtains a new di- 

pole-moment expansion in powers of y,
N L

M*(y) = Mo + I M y" + I  (5.6)
n=l i=N+l ^

which has been truncated so that a sufficiently large number of newly

produced coefficients is retained.

In the second step, the new coefficients are included

in Eqs. (5.4) which now become

N L .
I  <v|y |V>M = y , - I M. <v|y |v'> . (5.7)
n=l i=N+l

The above procedure is then repeated over and over until the 
difference between the old set and the new set of parameters {Ĉ ,g} or 

coefficients M? falls within a desired degree of accuracy.

ii) Direct method: In this approach, we express matrix ele

ments of M(r) directly in terms of the parameters Ci, ..., Ĉ , and g:

L
<v|M(r)]v'> = Mo5̂ y, + I F(n,Ci,Cz,...,C^,g)<v|y |v'>

n=l
(5.8)

Then, using N experimental data y^^,, we determine the set 

of parameters {Ĉ ,g} by the least-squares method for the case M < N,

being always subject to the asymptotic condition (5.3a). If M = N and

F(n,Ĉ ,g) is linear in but non-linear in g, we determine these 
parameters by iterating g and solving a system of linear equations.
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2. Functional Forms For Coefficients M  n
In principle, it is possible to find an infinite number of

functions of the variable n which fit known coefficients M or transi-n
tion moments and simultaneously satisfy the asymptotic behavior

(5.3a). We, however, are interested in those functions that are sim

ple enough and contain a few parameters so that our problem can be

handled easily by analytical or numerical methods.

We have found various simple generating functions for 

with n > 0  as follows:

= F H n , C i , C 2 , C 3 , 3 )  = ( C l  + nCz + n f C s j e ' ^ "  , ( 5 . 9 A )

= F 2 ( n , C i , C 2 , C 3 , 6 )  = (C l  + ^  , ( 5 . 9 B )

= F 3 ( n , C i , C 2 , C 3 , 3 )  = ( C l  + ^  + n C g i e " ^ "  , ( 5 . 9 C )

S F4(n,Ci,C2,C3,g) = (Cl + ^  + ’ CS.9D)

(Cl + C2)e ^ , n = 1
= F=(n,Ci,C2,C3,3)

(Cl  ̂ ^ 2 '
( 5 . 9 E )

where g is now a positive parameter and the superscript refers to dif

ferent models of function or coefficient.

All five above generating functions produce convergent series,
i.e.,

Mo + I M “ = S , a = 1, 2, ..., 5 , (5.10)
n=l "

where S is a finite value. This can be easily shown: for a finite
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number k positive or negative, we see that

lim e“^] < 1
n  ^  CO n e ^  n - > o o

which leads to

Lim [ ^ ]  < 1
n  4 - CO m “  n

which is a sufficient condition for convergence of the series

In order to produce a dipole moment function with correct 

asymptotic behavior, the model series must also fulfill the condi

tion (5.3a), that is, we must have S = 0 in Eq. (5.10). Although the 

first model function gives a dipole moment function in a closed 

form which is simpler than those resulted from other models, this 

model is not suitable for CO because we cannot find values of the para
meters Cj, Cg, Cg, and g for which S = 0 so that the corresponding 

dipole moment- function vanishes at infinite r. The other model func

tions work well for CO.

We shall show that the proposed generating functions produce 

closed-form dipole moment functions. First, for convenience, we ex
press all five model functions in a general form:

= (Sn' + Sn̂  Cz + ĝ = Ca)B (5.11a)
where

B = e"G , 0 < B < 1 , (5.11b)

gn' = 1 , (5.11c)

ĝ 2  = n, 1/n , (5.lid)
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' ÎTfînr ’ 55^ • (S'ils)
Substituting Eq. (5.11a) into the y-expansion of M(r), we

obtain

M“(y) = Mo + Cl I (By)" + C; % gJ(By)" + C, % g_'(By)" 
n=l n=l n=l "orn= 2

(5.12)

Defining Y = By, the first sum in the above equation can be 

reduced to a single term:

Î y" = . (5.13a)
n=l

The second sum in Eq. (5.12) can also be reduced to one term:

For ĝ  ̂= n, we have

I nV" = Y I  nY"-^ = B A  ( ^ y") = ^  , . (5.13b)
n=l - n=l n=l U  - ïj

For ĝ  ̂= 1/n , we have

“ yn
I —  = -&n(l - Y) . (5.13c)

n=l
Except for ĝ  ̂= n~̂ , the third sum in Eq. (5.12) can also 

be compressed into a compact term for other models:

\ = a W r  • (5.13d)

= Liz(Y) = YÇ(2.1,Y) , (5.13e)

where Li2 (Y) is called the dilogarithm^^^^ and ç(2,l,Y) is the Lerch
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f521zeta function. General forms of these functions are

Lî Cx) = / X Li^ j(x) dx : polylogarithm of order n ;

or

and

0

ç(s,i,x) = - I — ;
^ k=l k®
“ k 

ç(x,a,x) = I
k=0 (k + a)®

For = l/n(n+l) and ĝ  ̂= l/n(n-l), we obtain

I - B) -1 ' cs.uf)

f (1 - B)An(l - B) . (5.13g)
n= 2

Using these expressions (5.13a-g), the series expansions

(5.12) of the dipole moment, except for model F̂ , can be reduced to 

analytical closed forms:

M ‘(y) = ». • C. ^  » C, . C, . (S.14A)

Nf(y) = Mo + Cl - C2 £n(l-By) + C3 Liz(By) , (5.14B)

M»(y] = Mo + Cl ît^-C 2 An(l-By) + C3 , (5.14C)

Mf(y) = Mo + Cl ^  - C2 Zn(l-By) + Co[l + (^)&n(l-By)] , (5.14D)

(y) = Mo + C i j ^  - C2 &n(l-By) + Cs[By + (l-By)Jln(l-By) ] . C5.14E)M®

The as>Tnptotic condition (5.3a) now also can be written in 

the same compact forms by letting y = 1 in the above expressions for
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M“(y). We note that the first dipole moment function in Eq. (5.14A) is 

simpler than the other ones.

Since all the above functions are linear in Cj, Cg, and C 3 , 

but non-linear in B or g, analytical and numerical determinations of 

these parameters are not very complicated using the procedure described 

in the Introduction of this chapter. We choose to use the direct ap

proach by fitting these functions directly to the experimental transi

tion moments. However, to find the zero-order approximation values 

for the parameters and g, we fit the model functions to the known 
coefficients Mj, Mg, and Mj of the PMO cubic dipole moment function in

y.
In cases where there are more intensity data than parameters 

Ĉ , the method of least-squares fit as described below should be used.

3. Minimization of Errors 

Denoting the pair of vibrational quantum numbers (v,v') by 

V, then using the general forms (5.11a) and (5.12), the matrix elements 

of the dipole moment function can be expressed as

M
^  = <v|M(r) |v'> = I ^m '  ̂f v' , (5.15a)

m=l

where M = 3 in our case, and 

L
In=l

where L is the number of terms retained in the expansion.

Qvm = I [<vly"|V> B" ĝ ™] (5.15b)

Calling N the number of empirical transition moments 

available, then if N = M, the parameters are obtained by solving 

a system of inhomogeneous linear equations:
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M

V  %  ’ V = 1, 2, N . (5.16)

The parameter g is determined by iteration until the asymptotic con

dition (5.3) is satisfied.

If N > M, one forms the quantity 

N
E =  I (5.17)

v=l
where the weighting factor w^ is the inverse of the standard deviation 

0 ^ describing the uncertainty associated with the corresponding ŷ .

Substituting the expression (5.15a) of into Eq. (5.17),

we obtain

N M
G = I [ I \  Qvm ^m - ”v V  • v=l m=l

This quantity can be minimized with respect to the by 

establishing

Ip- = 0 , m = 1 , 2 , ..., M , 
m

from which one obtains M linear equations in the form 

M
 ̂ lom ^m = .... M , (5.19a)m=l P ™ P

where

V  = » v ' % p  V  (5 .19W

which is symmetric, and

N
Pp = I V  Pv Qvo ’ V = 1 , 2, .... N . (5.19c)

V=1 ^
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If the quantity E defined by Eq. (5.17) does not depend 

linearly on then the problem should be solved numerically. For 

this purpose, a general computer code has been written by Huffaker^^^^ 

to handle a minimization problem involving more than 3 parameters.

4. Numerical Results for CO (X̂ Z*)

4a. Dipole moment function with correct large-r behavior

We first carry out the zero-order approximation by fitting 

the various generating functions [Eqs. (5.9A) - (5.9D)] to the 

calculated coefficients Mj, and Mg of the PMO cubic dipole moment 

function in y given by Eq. (4.19). Then for each value of g or B, we 

solve the following inhomogeneous linear equations for Cj, Cg, and Cg:

1 gi" gi'

1 g2̂  g2̂

1 g3̂  g3®

-1 Cl

-2Cz MzB

C 3. MaB”^

(5.20)

where the general expression (5.11a) has been used.
The parameter g is iterated until the asymptotic condition 

(5.1) is satisfied within the desired accuracy. Final values obtained 

for the set of parameters {Ci, Cz, C 3 ,  g} for different models F̂ , F̂ , 

F**, and F® are listed in Table 5.1 together with values given by other 

calculations. From these parameters, coefficients M^ are calculated 

and plotted against the index number n in Fig. 5.1, and graphs of 

various corresponding dipole moment functions in reduced forms are 

shown in Fig. 5.2.
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To take account of the effect of higher order terms in the 

y-expansion, we next fit the generating functions directly to the em

pirical transition moments yoi> Ho2 > dos» Pis, Pz4 , and yas, whose 
values are given in Table 4.1. In this case, if all six matrix ele

ments are used, the minimization method as described in the previous 

Section should be employed. If only three matrix elements yoi, yoa, 

and yo3 are used, then the parameter can be evaluated also by 

solving a system of three homogeneous linear equations:

Qii Qi2 Qi3
Q21 Q22 Q23
Q31 Q32 Q33

Cl' Po X
C2 P0 2

• C3 , ,Po 3

V
n ’ V = v'

(5.21)

where

Qym = \  <Oly"|V>Bn=l

The parameter g is obtained by iteration as usual.

Using both ways of calculations, without and with minimiza

tion, values of parameters Ci, Ca, C 3 ,  and g  are obtained and listed 

in Table 5.1 for different generating functions. Coefficients are 

then calculated and plotted versus n in Fig. 5.3 and Fig. 5.4 for the 

two cases respectively. Various dipole moment functions in reduced 

forms M̂ Cy), M̂ (y), M**(y), and M®(y) are also plotted in Fig. 5.5 

for the case without minimization and in Fig. 5.6 for the case with 
minimization.

4b. Dipole moment functions with correct large-r and small-r behaviors 

Since the dipole moment function as an infinite expansion in 

powers of y is not convergent for r < 0.84 A in case of CO, this series
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displays wrong behavior at small r, having very large negative values 

as depicted in Figs. 5.2, 5.5, and 5.6 for the function M̂ Cr) given by 

Eq. (5.14B). However, it is interesting to see that the other dipole 

moment functions (r), m"* [r], and (r) in closed forms given by Eqs. 

(5.14C-5.14E) have much less exaggerated values at small r. This 

suggests that by some adjustment one can force their representative 

curves to pass through the origin. We found that this can be done 
by adding to the closed-form dipole moment function one extra term 

which is either

Mg y , (5.22a)

or

Mg y(l - y) , (5.22b)

where Mg is an additional adjusting parameter to be determined by 

iteration.

Then, in each iteration of Mg, the whole calculation proce

dure used in the preceding Section is carried out to obtain the cor

rect large-r behavior of the dipole moment function. This iteration 

is repeated until its value at r = 0 is as close to zero as desired. 

Since the dipole moment function M̂ (y) [Eq. (5.14B)] cannot be reduced 

to a completely closed form, the above technique of small-r behavior 

correction is not applicable to this function as it is to M^(r),

M̂ (r), and M®(r). The two modes of small-r behavior correction as 

expressed by (5.22a) and (5.22b) are performed for the cases of non

minimization and minimization. Values obtained for M for differentc
closed-form functions are recorded in Table 5.2. From the set of para

meters {Ci, Cz, Cs, 3, Mg} obtained using minimization, coefficients
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are evaluated and plotted in Fig. 5.7 for the M^y correction and in 

Fig. 5.8 for the M̂ y(l-y) correction. Graphs of corresponding closed- 

form dipole moment functions having correct large-r and small-r beha

viors are shown in Figs. 5.9 and 5.10. For comparison, the plot of coef

ficients M* [Fig. 4.2] of the y-series equivalent to the PMO cubic di

pole moment function in u and graph of this function are reproduced in

related Figures. In addition, the dipole moment function for CO ob-
f 21tained numerically by Kirby-Docken and Liu using an ̂  initio cal

culation is plotted in Fig. 5.11 for comparison with results obtained
4for the "best" function M (y) using the least-squares fit with M^y and 

M̂ y(l-y) corrections respectively.
It should be mentioned that the PMO vibrational eigenfunc

tions obtained by the diagonalization technique (Chapter IV) have been 

used in all calculations in this Chapter.

5. Analysis of Numerical Results

We have now obtained several analytical functions representing
1 +the dipole moment for CO in the ground electronic state (X Z ). As 

shown in various graphs, all these functions agree quite well with
O o

each other within a small range of r about r̂ , 0.85 A < r < 1.5 A.

For smaller r and larger r, they reveal significant discrepancies 

whose effect will be discussed in Chapter VI. Thus, the question now 

is :which functional form will best represent the CO dipole moment? Be

fore trying to answer this question, let us analyze the numerical 

values as depicted by plotted curves for different calculations. 

Starting with Fig. 5.1 for the zero-order approximation, one sees 

considerable differences between corresponding coefficients M^ given
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by various generating functions for 4 n £ 14. Since the first few 

coefficients M* after MJ may differ slightly from the true values, 

one may expect that a good generated-M^ curve should be close to the 

"equivalent M*" curve for n < 6. Clearly, the and F** curves, 

which are closest to the M* curve at small n, would most likely pro

duce the best representations of the dipole moment for CO. Indeed, 

as shown in Fig. 5.2, the M‘*(r) curve has small-r behavior much 

closer to that of the cubic M(u) curve than M̂ (r) and M®(r) curves, 

and the last function shows largest deviation at both small r and 

large r. Since the function M̂ (r) cannot be reduced to a closed

form, its graph displays a wrong behavior at small r; but its large-r

behavior is quite good, being very close to that of M^(r). Noting 

that the M̂ (r) curve lies above the M‘*Cr) at large r, one can infer

that, if the closed form of M̂ (,r) was knovm, then its representative

curve would also lie above the M̂ (r) curve at small r and hence would 

have even better small-r behavior than M'*(r). However, since M̂ (r) 

is irreducible to a closed form, it is useful only for the large-r 

behavior analysis, and the functional form M“*(r) becomes the most 

appropriate for describing the dipole moment over the whole range 

of r. We also note that the minima of curves in Fig. 5.1 and the 

minima and maxima of M®(r) curves are shifted increasingly to the 

right in the order F̂ (n), F**Cn), F̂ (n), and F®(n), and the order 

M̂ Cy), M'*(y), and M®(y), respectively.

The effect of including a large number of higher order terms 

in y is shown to be small in Fig. 5.2 by the fact that the various 

zero-order approximation dipole moment functions deviate slightly
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about from the PMO cubic function M(u). Further, little improve

ment is made on results by calculation using three and six-data point 

fittings as shown by Figs. 5.3-5.6 where the curves are almost the same 

as those obtained by the zero-order approximation. The new results, 

of course, give better dipole moment values at r about r̂ . In both 

cases of data fitting, the small-r behavior of the dipole moment curves 

change very little as compared to the zero-approximation results.

The two modes of small-r correction bring about significant 

inçrovement on the CO dipole moment functions. In general, the M^y 

correction yields better results than the M̂ y(l-y) correction, since 

the curves plotted in Figs. 5.7 and 5.9 for the former case are closer 

to each other than the curves shown in Figs. 5.8 and 5.10 for the latter 

case. We also see that the dipole moment function (r) corrected by 

the M̂ y(l-y) term changes sign a second time near r=0, which we do not 

expect. Finally, agreement is excellent between our "best" analytical
4dipole moment functions M (r) obtained using M^y and M ŷ(l-y) correc

tions with minimization and the numerical dipole moment function deter-
(2)mined by Kirby-Docken and Liu using an ̂  initio method, as can 

be seen in Fig. 5.11. We note that the curves obtained by the two 

methods do not coincide but have nearly the same slope at r about r̂ .

From the above analysis, one may conclude that the functional 
form M̂ (r) is better than the other alternative models in representing 

the CO dipole moment in the sense that it gives better small-r behavior 

and is also quite simple to use conveniently.
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TABLE 5.1. Values of the parameters Ĉ , Ĉ , Ĉ , g and B for different 

generating functions. For each parameter and each model function, the 

seven numbers correspond respectively to: a) the zero-order approxi

mation, b) the large-r behavior correction without minimization, c) 

the large-r behavior correction with minimization, d) the large-r and 

small-r behavior correction using M^y without minimization, e) the 

large-r and small-r behavior correction using M^y with minimization, 

f) the large-r and small-r behavior correction using M̂ y(l-y) without 

minimization, g) the large-r and small-r behavior correction using 

M̂ y(l-y) with minimization.

Param.
p“ p2 p2 p4 pS

(a) .145964 .307664 .169765 .847423-1
(b) .141476 .297095 .163783 .842746-1
(c) .142172 .297828 .164488 .849194-1

6 (d) (*) .244844 ' .144613 .123565
(e) (*) .245993 .145509 .124320
(f) (*) .285370 .158605 .885459-1
(g) (*) .286182 .159360 .892025-1

(a) .864118 .735163 .843863 .918749
(b) .868076 .742973 .848926 .919179
Cc) .867472 .742429 .848328 .918586

B (d) (*) .782827 .865357 .883764
(e) C*) .781927 .864582 .883097
(f) (*) .751739 .853333 .915261
(g) (*) .751129 .852689 .914660



80

TABLE 5.1 (continued)

Param>s^^ p: p4 p5

(a) -1.102545 2.337736 -1.579703 -.425785
(b) -1.054344 2.162822 -1.493841 -.422965
(c) -1.060839 2.171860 -1.502591 -.426184

C, (d) C*) .753355 -1.143460 -.796463
(e) C*) .764099 -1.153872 -.802462
(f) (*) 1.867305 -1.403022 -.443644
(g) (*) 1.876751 -1.412200 -.446967

(a) 5.084945 .338275-1 8.403582 1.833947
(b) 4.915706 .140312 8.017195 1.830492
Cc) 4.935633 .135526 8.052700 1.834672

C, (d) C*) 1.628770 5.849976 3.434898
(e) (*) 1.623208 5.894921 3.451069
Cf) (*) .366308 7.523692 1.797786
(g) C*) .361325 7.561464 1.801646

(a) -2.485333 -.611751 . -10.581506 .466134
(b) -2.371062 -.561987 -9.998919 .458113
(c) -2.383407 -.564916 -10.050183 .460622

Cg (d) (*) -.285138 -5.794522 -.278459
(e) C*) -.288409 -5.863409 -.281748
(f) C*) -.495403 -9.188876 .675131
(g) C*) -.498431 -9.243763 .679329

(*) The functional form (5.14B) is not completely closed, so the 
small-r correction cannot be carried out.

Last negative digits refer to powers of 10.
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TABLE 5.2. Values of the parameter in small-r behavior correction 

terms M^y and M ŷ(l-y) for different closed-form dipole moment func

tions .

M"(r)M (r)

-1.038042-.271955-.347906
without minimization

-1.045216-.270699-.347476
with minimization

y(i-y) .543606-1-.870230-2130409-1
without minimization

y(l-y)
.547315-1-.865950-2-.130206-1

with minimization
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Fig. 5.1. Plots of various generating functions F (n) for CO

obtained fitting 3 known coefficients M̂ , and M̂ . Dash-
2crossed, solid, dash-dotted, and dotted curves represent F (n), 

F̂ (n), F̂ (n), and F̂ (n) respectively. The dashed curve shows

coefficients of the y-series equivalent to the PMO cubic 

dipole moment function in u for CO.
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\\

r(A)

Fig. 5.2. Graphs of CO dipole moment functions with correct

large-r behavior, obtained by the zero-order approximation.
2Dash-crossed, solid, dash-dotted, and dotted curves are M (r), 

M̂ (r), M̂ Ĉr), and M̂ (r) respectively. The dashed curve repre

sents the PMO cubic dipole moment function in u for CO.



84

Fig. 5.3. Plots of various generating functions F (n) for CO 

obtained for correct large-r behavior using 3 dipole matrix 

elements. Dash-crossed, solid, dash-dotted, and dotted curves 

show F̂ (n), F̂ (n), F̂ (n), and F̂ (n) respectively. The dashed 

curve represents coefficients M* of the y-series equivalent to 

the PMO cubic dipole moment function in u for CO.
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Fig. 5.4. Plots of various generating function F°̂ (n) for CO

obtained for correct large-r behavior fitting 6 dipole matrix

elements. Dash-crossed, solid, dash-dotted, and dotted curves
2 3 4 5show F (n), F (n), F (n), and F (n) respectively. The dashed

curve represents coefficients M* of the y-series equivalent
to the PMO cubic dipole moment function in u for CO.
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Fig. 5.5. CO dipole moment functions with correct large-r
behavior obtained without minimization. Dash-crossed, solid,

2 3 4dash-dotted, and dotted curves represent M (r), M (r), M (r), 

and (r) respectively. The dashed curve is the PMO cubic 

dipole moment function in u for CO.
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M“(r)

Fig. 5.6. CO dipole moment functions with correct large-r

behavior obtained with minimization. Dash-crossed, solid,
2 3 4dash-dotted, and dotted curves represent M (r), M (r), M (r), 

and M̂ (r) respectively. The dashed curve is the PMO cubic 

dipole moment function in u for CO.
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Fig. 5.7. Plots of various generating functions F*̂ (n) for CO

obtained using M^y correction with minimization. Dash-crossed
2 3 4solid, dash-dotted, and dotted curves are F (n), F (n), F (n), 

and F̂ (n) respectively. The dashed curve represents coeffici

ents M* of the y-series expansion of the PMO cubic dipole mo

ment function in u for CO.
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F"(n)

•••

Fig. 5.8. Plots of various generating functions F*̂ (n) for CO

obtained using M^y(l-y) correction with minimization. Dash-
2crossed, solid, dash-dotted, and dotted curves are F (n), 

F̂ (n), F̂ (n), and F̂ (n) respectively. The dashed curve repre

sents coefficients M* of the y-series expansion of the PMO 

cubic dipole moment function in u for CO.
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Fig. 5.9. Graphs of various CO dipole moment functions with 
correct large-r and small-r behaviors obtained using M^y cor
rection with minimization. Solid, dash-dotted, dotted, and 
starred curves represent M^(r), M̂ (r), M̂ (r), and the PMO 
cubic dipole moment function in u.
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rCA)

Fig. 5.10. Graphs of various CO dipole moment functions with
correct large-r and small-r behaviors obtained using M̂ y(l-y) 
correction with minimization. Solid, dash-dotted, dotted, and 
starred curves represent M̂ (r), M̂ (r), M̂ (r), and the PMC cubic 
dipole moment function in u.
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1.

0 .
r(A)

1.

Fig. 5.11. Solid curve (-- ): function M̂ (r), using M y(l-y)

correction with minimization. Dash-dotted curve (-•-): func

tion M (y), using M^y correction with minimization. Dotted
( 2 ')curve result obtained by Kirby-Docken and Liu .



CHAPTER VI
CALCULATIONS OF ROTATIONLESS VIBRATIONAL TRANSITION MOMENTS

The various CO dipole moment functions obtained in Chapters 

IV and V can now be used to predict hot-band transition moments. In 

this computation, we use the series forms of the dipole moment, instead 

of its closed and reduced forms given by Eqs. (5.14A) - (5.I4E), be

cause matrix elements of fairly large powers of y can be evaluated very 

easily. Using the PMO eigenfunctions obtained by matrix diagonaliza- 

tion as linear combinations of pure Morse wavefunctions (Chapter IV),

M, PMO

where M, taken to be 48, is the size of the truncated Morse basis. We 

express the matrix element of a dipole moment function M(y) (written 

as a power series in y) as a linear combination of pure Morse matrix 

elements of powers of y:
L M

<v|M(y)|v'> = = Mod + I I C C <i|y"|i>M ,V V,v i,j=o V,1 V ,j n

where Av = v' - v and L is the number of terms retained in the y-series 

and is chosen to be 20, which is sufficiently large to give nearly cor

rect large-r behavior and not too excessive dipole moment values at 
very small r.
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Numerical results obtained for jjq®, Ns® and are

listed in Table 6.lA;values for v = 5, 10, 15, 20 and Av = 0, 1, 2, 3,

4 are given respectively in Table 6.IB, 6.1C, 6.ID, and 6.IE. In each 

column of a Table are displayed values of a given transition moment 

obtained by different groups of calculations, defined as follows:

Group a: including cubic dipole moment functions in u, z,

and y respectively;

Group b: including y-series expansion M̂ (y) whose reduced

form (5.14b) has correct large-r behavior and is determined without 

minimization, and y-series expansions M (̂y), M**(y), and M®(y) whose 

closed forms have correct behavior at both large r and small r and 

are determined using the M^y correction without minimization;

Group c: including y-series expansions M^(y), M'*(y), and

M®(y) obtained using the M^yCl-y) correction without minimization.
Group d: representing M̂ (y) obtained using minimization,

and M̂ (y), M'*(y), and M®(y) obtained using minimization and M^y cor

rection;

Group e: representing M̂ (y), M‘*(y), and M®(y) obtained using

minimization and M̂ y(l-y) correction;

Group f: experimental value by Roux̂ ^̂ ^ or value calculated

by Bouanicĥ ^̂ ^ who used the dipole moment as a quartic power series 

in u and applied the perturbation method to an eight power Dunham 

potential.

We see that, except for the cubic dipole function in z, re

sults obtained using all other functions are generally in excellent 

agreement with each other and with results experimentally deduced by
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Roux or calculated by Bouanich, for v £ 20 and Av £ 4. The discrepancy 

between the values of transition moments arising from different calcu

lations become larger as v and Av iiicrease. The difference between 

values obtained from various y-series expansions is quite negligible 

for V £ 20 and Av £ 4, because their large-r behaviors are nearly the 

same. However, the difference between these values and those given 

from the cubic expressions are appreciable for the same ranges of v 

and Av, showing that the large-r behavior of the dipole moment is of 

importance. Therefore, to obtain more reliable calculated transition 

moments, the correct large-r behavior of the dipole moment should be 

taken into account. This may be further justified by the fact that 

the cubic dipole moment function in z, which has very bad large-r 

behavior [see Fig. (4.1)], gives nearly correct transition moments 

only for v £ 4 and Av £ 4 and therefore is useless for the analysis of 

transitions at higher levels. Also, since the large-r behaviors of 

Nf(y) and M**(y) are closer to each other than to those of M̂ (y) and 

MS(y), they give transition moments in better agreement with each 

other than with other values. For the same reason, dipole moment func

tions with correct small-r behavior determined by the M^y correction 

yield results agreeing with each other better than those arising from 

functions corrected by the M̂ y(l-y) term.

On the other hand, the wrong small-r behavior of the y-series 

expansion does not produce a serious effect on the calculated transi

tion moments for v £ 20 and Av £ 15, since increasing the number of 

terms of the truncated y-series from 20 to 40 does not cause an appre

ciable change in the results. This may be explained by the fact that
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the Morse wavefunctions vanish as r tends to zero much faster than as 

r tends to infinity.

Finally, since the matrix'diagonalization, which is equiva
lent to the infinite-order perturbation method, provides highly accu

rate PMO eigenfunctions, we believe that transition moments calculated 

using these eigenfunctions and cubic dipole moment functions in u and 

y should be better than those obtained by Bouanich using the Dunham 

potential and the finite-order perturbation method.
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TABLE 6.1A. Comparison of purely vibrational matrix elements of various 

dipole moment functions for CO : (a) PMO cubic functions in u,

z, and y, (b) expansions in powers of y with reduced forms having cor

rect large-r and/or small-r behavior, obtained using M^y correction 

without minimization, (c) using M̂ y(l-y) correction without minimiza

tion, (d) using M^y with minimization, (e) using M̂ y(l-y) with minimi

zation, and (f) functions by B o u a n i c h o r  experimental dipole matrix 

e l e m e n t s .

Function yo® yi® yz" ys® yif®
cubic in u -.10986 - 11215-1 -.16083-1 -.21051-1 -.26136-1

a cubic in z -.10987 - 11172-1 -.15927-1 -.20679-1 -.25400-1
cubic in y -.10986 - 11213-1 -.16069-1 -.21013-1 -.26054-1

M*(r) -.10987 - 11213-1 -.16076-1 -.21035-1 -.26107-1
M̂ (r) -.10986 - 11218-1 -.16089-1 -.21062-1 -.26152-1

b M“(r) -.10987 - 11213-1 -.16075-1 -.21033-1 -.26102-1
M̂ Cr) -.10987 - 11209-1 -.16064-1 -.21011-1 -.26066-1
M̂ (r) -.10986 - 11225-1 -.16110-1 -.21103-1 -.26221-1

c M\r) -.10986 - 11216-1 -.16084-1 -.21051-1 -.26133-1
M̂ Cr) -.10987 - 11200-1 -.16036-1 -.20956-1 -.25974-1

M̂ (r) -.10987 - 11224-1 -.16091-1 -.21055-1 -.26131-1
M'(r) -.10987 - 11228-1 -.16103-1 -.21081-1 -.26176-1

d M“(r) -.10987 - 11223-1 -.16090-1 -.21052-1 -.26127-1
M®(r) -.10987 - 11220-1 -.16079-1 -.21031-1 -.26091-1
M̂ (r) -.10987 - 11234-1 -.16123-1 -.21120-1 -.26242-1

e M‘‘(r) -.10987 - 11226-1 -.16098-1 -.21070-1 -.26156-1
M̂ Cr) -.10990 - 11211-1 -.16053-1 -.20978-1 -.26002-1

f Experimental -.1098 - 114 -1 -.164 -1 -.214 -1 *
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TABLE 6.IB (continued)
Function

i
Ms' , ys’ ys® ys®

cubic in u .13840 -1 -.25236 -.31345 -1 -.33944 -2 -.36077 -3
a cubic in z .14981 -1 -.25363 -.30043 -1 -.41317 -2 -.29968 -4

cubic in y .13978 -1 -.25260 -.31194 -1 -.35554 -2 -.36375 -3

M̂ Cr) .13884 -1 -.25241 -.31295 -1 -.34204 -2 -.35043 -3
M̂ Cr) .13812 -1 -.25235 -.31366 -1 -.34010 -2 -.36477 -3

b Mf(r) .13891 -1 -.25241 -.31289 -1 -.34196 -2 -.34850 -3
MfCr) .13947 -1 -.25245 -.31234 -1 -.34297 -2 -.33625 -3

M:(r) .13705 -1 -.25227 -.31470 -1 -.33849 -2 -.38793 -3
c M'̂ Cr) .13843 -1 -.25238 -.31335 -1 -.34126 -2 -.35906 -3

M®(r) .14090 -1 -.25255 -.31095 -1 -.34509 -2 -.30432 -3

(r) .13826 -1 -.25237 -.31324 -1 -.34218 -2 -.34942 -3
M®(r) .13755 -1 -.25231 -.31395 -1 -.34022 -2 -.36400 -3

d Mf(r) .13831 -1 -.25238 -.31319 -1 -.34209 -2 -.34763,-3
M̂ Cr) .13888 -1 -.25242 -.31264 -1 -.34310 -2 -.33530 -3

M̂ Cr) .13655 -1 -.25224 -.31495 -1 -.33861 -2 -.38710 -3
e M“(r) .13786 -1 -.25234 -.31364 -1 -.34139 -2 -.35814 -3

M®(r) .14023 -1 -.25251 -.31128 -1 -.34524 -2 -.30316 -3

f Bouanich .139 -1 -.252 -.3135 -1 -.333 -1 -.314 -3
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TABLE 6.1C (continued)
Function yio® yi“ . yiT Mu'*

cubic in u .13671 -.33524 -.59332 -1 -.86930 -2 -.12764 -2
a cubic in z .14959 -.34835 -.49318-1 -.13469 -1 -.76609 -5

cubic in y .13830 -.33714 -.58270 -1 -.93480 -2 -.13594 -2

M̂ (r) .13715 -.33567 -.59017 -1 -.88258 -2 -.21528 -2
M̂ Cr) .13667 -.33527 -.59322 -1 -.87578 -2 -.12692 -2

b Nf(r) .13718 -.33569 -.56000 -1 -.88209 -2 -.12491 -2
Nf(r) .13753 -.33596 -.58781 -1 -.88519 -2 -.12326 -2

M̂ (r) .13603 -.-3479 -.59713 -1 -.87154 -2 -.12997 -2
c M‘*(r) .13689 -.33547 -.59176 -1 -.88015 -2 -.12638 -2

Nf(r) .13838 -.33661 -.58247 -1 -.89137 -2 -.11864 -2

(r) .13700 -.33557 -.59070 -1 -.88321 -2 -.12509 -2
M̂ (r) .13652 -.33517 -.59377 -1 -.87638 -2 -.12677 -2

d Nf(r) .13702 -.33558 -.59055 -1 -.88271 -2 -.12472 -2
Nf(r) .13737 -.33586 -.58838 -1 -.88582 -2 -.12308 -2

M®(r) .13590 -.33470 -.59760 -1 -.87213 -2 -.12981 -2
e M‘*(r) .13675 -.33538 -.59228 -1 -.88077 -2 -.12620 -2

Nf(r) .13821 -.33649 -.58309 -1 -.89206 -2 -.11843 -2

f Bouanich .137 -.335 -.5935 -1 -.861 -2 -.115 -2
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TABLE 6.ID (continued)
Function

.1.
Uis® ms* Pis’ Pis* Pis*

*
cubic in u .25611 -.39169 -.90618 -1 -.16518 -1 -.30723 -2

a cubic in z .32006 -.45356 -.48599 -1 -.34090 -1 -.33391 -3
cubic in y .26265 -.39834 -.87165 -1 -.17942 -1 -.34110 -2

M̂ (r) .25795 -.39341 -.89538 -1 -.16887 -1 -.30510 -2
M̂ Cr) .25642 -.39214 -.90288 -1 -.16775 -1 -.30396 -2

b • Nf(r) .25801 -.39344 -.89511 -1 -.16873 -1 -.30450 -2
M=(r) .25905 -.39426 -.89014 -1 -.16912 -1 -.30411 -2

M̂ Cr) .25460 -.39074 -.91136 -1 -.16746 -1 -.30483 -2
c Mf(r) .25719 -.39281 -.89901 -1 -.16856 -1 -.30513 -2

M=(r) .26157 -.39620 -.87811 -1 -.16980 -1 -.30172 -2

M̂ (r) .25766 -.39321 -.89614 -1 -.16903 -1 -.30494 -2
M:(r) .25613 -.39194 -.90366 -1 -.16791 -1 -.30382 -2

d Nf(r) .25771 -.39323 -.89593 -1 -.16889 -1 -.30436 -2
M®(r) - .25875 -.39405 -.89096 -1 -.16928 -1 -.30396 -2

M̂ Cr) .25435 -.39057 -.91201 -1 -.16761 -1 -.30472 -2
e M̂ Cr) .25691 -.39261 -.89976 -1 -.16872 -1 -.30499 -2

M®(r) .26123 -.39597 -.87901 -1 -.16997 -1 -.30154 -2

f Bouanich * * * * *

(*) Bouanich did not list values for these hot bands.
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TABLE 6.IE (continued)
Function

■l-
yzo® yz” yzo"

cubic in u .36833 -.42733 -.12517 -.27194 -1 -.60994 -2
a cubic in z .59848 -.64272 -.10866 -.78321 -1 -.15015 -2

cubic in y .38655 -.44420 -.11713 -.29425 -1 -.69517 -2

Nf(r) .37386 -.43228 -.12238 -.27959 -1 -.61329 -2

b M:(r) .37030 -.42941 -.12378 -.27876 -1 -.60581 -2
Nf(r) .37396 -.43232 -.12236 -.27932 -1 —.61226 -2
Nf(r) .37627 -.43411 -.21248 -.27928 -1 -.61473 -2

Mf(r) .36642 -.42649 -.12517 -.27966 -1 -.60250 -2
c M“Cr) .37217 -.43097 -.12302 -.27960 -1 -.61103 -2

M'(t) .38180 -.43834 -.11939 -.27886 -1 -.61793 -2

Mf(r) .37339 -.43197 -.12247 -.27990 -1 -.61341 -2
M̂ Cr) .36982 -.42909 -.12387 -.27908 -1 -.60592 -2

d Nf(r) .37346 -.43198 -.12246 -.27964 -1 -.61237 -2
MS(r) .37577 -.43377 -.12159 -.27960 -1 -.61485 -2

M®(r) .36602 -.42622 -.12525 -.27995 -1 -.60265 -2
e Nf(r) .37171 -.43066 -.12311 -.27991 -1 -.61117 -2

Mf(r) .38125 -.43796 -.11950 -.27919 -1 -.61803 -2

f Bouanich .369 -.427 -.125 -.273 -1 -.567 -2



CHAPTER VII 

CONCLUSION

We have demonstrated in this work that the factorization method 

provides a powerful technique for evaluating Morse matrix elements of 

the variables u, y, and z, and some of their powers, which are required 
for the determination of cubic dipole moment functions in u, y, and z. 

Our work also shows that the factorization combined with the matrix 

technique (matrix multiplication and matrix diagonalization) perhaps 

forms the most elegant and efficient approach for finding accurate 

PMO eigenfunctions as well as for determining various dipole moment 

functions in series form for a diatomic molecule such as CO, which 

fulfills the condition of having a sufficiently large number of bound 

states.

For many practical applications, the PMO cubic dipole moment 

functions in u and y are adequate. If information on the dipole mo

ment over a small range of r about r^ is all one needs, then one could 

use the cubic polynomial in z, for it is the most convenient, although 

it has very bad behavior at large r.
An important aspect of our work is that an infinite series ex

pansion in powers of y can be determined for the CO dipole moment 

from a few items of intensity data by assuming that its coefficients 

M^ other than M̂  are a certain function of the index n in such a way
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that their infinite sum including Mq vanishes. In this manner, the

dipole moment function as an expansion in powers of y has the correct

general asymptotic behavior as r goes to infinity. Five choices for

the functional form of are proposed, of which four are applicable
2to CO. Except the form containing the term in 1/n , these generating 

functions have the interesting feature that they produce infinite 

series reducible to simple closed forms which can then be adjusted 

further to produce reasonably good behavior at small r.

Excellent agreement between our results for dipole moment 

•functions or calculated transition Moments and results from other 

sources illustrates the accuracy, convenience, and efficiency of our 

method, at least for CO.

Since the correct large-r behavior and the small-r behavior 

of the dipole moment function plays a critical role in the prediction 

of accurate transition moments at high vibrational levels and for 

large Av, we suggest that the closed forms, M (̂y), M‘*(y), and M®(y) 

should be employed directly in the calculation of transition moments. 

For this purpose, exact Morse matrix elements of (1-By)” , (1-By)~ , 

and Jln(l-By) need to be evaluated. Matrix elements of inverse powers 

of (1-By) may be easily computed numerically using matrix inversion 

and multiplication. Although we feel that it is possible to find from 

the factorization method a certain way to obtain exact matrix elements 

of Jln(l-By), this task seems to be much more difficult than the evalua

tion of matrix elements of some powers of y as done in Appendix B.



APPENDIX A 

POWER OF A POWER SERIES

Suppose that y is a function of x and expressed as a series 

(finite or infinite) in powers of x,

y(x) = I A x ” , (A.l)
n=0

Raising y to a power p, we get ŷ  which is also a power 

series in x but with different coefficients :

z(x) = yP = [ % A x”]P = I  B P x” (A.2)
n=0 ” n=0 ”

where the superscript in B̂ P refers to the power p in yP.

Taking the logarithmic derivatives of both sides in Eq.

(A.2) one obtains

1 d(yP) _ 1 dz 
p dx 2 dx '

or
py'z = yz' .

Hence,

or

P[ I kA^x^"^][ ^ B Px"*] = A^^^H I ’
k=l ra=0 k=0 ^ m=l

I  I (pk - m)A B P = 0 (A. 3)
k=0 m=0
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Letting n = k + m and changing the order of summation in Eq. 

(A.3), we get

i ( I [P(n - m) - ° . (A.4)
n=0 m=0 •'

We see that the coefficients of all powers of x in the above

equation must be identically zero giving

I  [pCn - m) - m]A^_^ sj  = 0 (A.5)
m=0

from which we obtain the recursion relation:

-  ” 3V m  B m *  : %  >  0 . ( A . 6 )m=0

Noting that in the expansion of (Aq + Aix + Agx^ + ...)P the 

zero-order term in x is (Ag)P, we find

BoP = (Ao)P . (A.7)

. Thus, starting with the coefficient BqP, the recursion rela

tion (A.6) permits one to calculate all other coefficients B̂ P very 

easily in terms of coefficients Â .

Particular Case Ap = 0:

Of course, BpP also vanishes. In this case, Eq. (A.5) re

duces to

n _
I  [p(n - m) - m]A^_^ sj = 0 (A. 8)
m=l

which can be rearranged to give the recursion relation:

' - ( S ^  J p  b/  ■ " > P • (A-9)
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Since in the expansion of (Aix + Agx  ̂+ ...)̂ » the lowest- 

order term is CAi)̂  x̂ , we have

BpP = (Ai)P , (A.10)

and
B^P = 0 for n < p ,

that is.

[ Ï  v " ’*' ' I v ” •n=l " n=p "

This explains why the index m runs from p in Eq. (A.9)



APPENDIX B

EXACT MATRIX ELEMENTS OF AND y=

We shall use the following notation for various matrix ele

ments

4:m: '  = L  C  V  ' (S 1»)

<::: ■ - f  c  «j'

<::: = <::: = .
where R̂  ̂is the eigensolution of the class II differential equation 

(3.3), p is à positive integer, and f(x) is an arbitrary continuous 

function satisfying the condition: f(x) R̂  ̂(x) ->■ 0 as x -> ±<».

We use the convention m ̂  n' (or v £ v') if not otherwise 

specified. We shall first derive a general recurrence relation for the 

matrix element (B.la) of any function f(x).

Using the mutually adjoint properties of the s-raising and 

lowering operators in Eq. (3.6a), we integrate by parts and write:

4:% : '  / ”  c  (s')  (=-"s)
-0 0

107



108

-00

* (= - :')V' /” C  ff) "m''"'
-CO

—00

which then can be written in the recurrence form: 

where

f'Cx) = -̂ 1 " - and = [(s-m) (s+m) .

In particular, for f(x) = e^^ we have f'(x) = pe^* and Eq. 

(B.2a) gives

K ' X ’ ’  ' C  V ' C m : ' ' " '  * Ü+s-s')B,J'jp:.s:-l . (B.3) 

Writing s' = s - n where n is an integer, Eq. (B.3) becomes

Interchanging s and s' = s - n in the above equation yields 

a similar recurrence equation:

= Cm"" V ) V  - c.4b)

Interchanging m and m' in Eq. (B.4a), we get another recur

rence relation alternative to Eq. (B.4b):

= C j  + (p + n) . (B .4 o
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Again, if we interchange s and s' = s - n in the above equa

tion, we obtain a recurrence relation alternative to Eq. (B.4a):

Next, using the above recurrence relations, we shall evaluate

several "intermediate" integrals that arise in deriving exact expres

sions for matrix elements of and ŷ .

1. Integral <R ""|eP*|R  ______m ' ' m'

m ̂  m' , p > 0

Putting s - m, s' = m+p, and f[r) = e^* in Eq. (B.2a), we

have

d x ,
-00

which must vanish according to Eq. (3.5b):

.  0 . (B .5 )

The above result can also be obtained by using Eq. (B.4a) 

where we let s - m, n = -p, and noting that

" (B '6)

since there is no eigenfunction Rm
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2. Integral <R ®"P|eP^|R_____________ m I ‘ m'

m ̂  m' , s-p > m

From Eq. (B.4b), we can write for p = n

= (const) •

Repeating application of this relation to its right-hand side

over and over a total of (s - p - ra) times, one finally gets

= (con̂ t)

which certainly vanishes due to Eq. (B.5). Thus,

= 0 . m>m- . (B.7)

In particular, for p = 1, we have

= 0 • (: »)

3. Integral <R s^nuPXij^ ŝ__________   m ' ' m'

m ^ m ' ,  n > p , s - n > m

First, using Eq. (B.4b), we write for n = p + 1

The second integral in the right-hand side vanishes accord
ing to Eq. (B.7). Thus, we have

= (const)

which, by induction, leads to
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because of Eq. (B.5).

In similar fashion, we can show that

- » >

and therefore, inductively we obtain

JP s-n,s _Q n > p ,  s - n > m .  (B.9)m,m' j r j

In particular, for p = 1, the above equation gives

4. Integral <R “leP̂ lR m I ' m'

m > m * ,  n > 0 , m - n > 0 

Putting s = m in Eq. (B.4a) and using Eq. (B.6), we obtain

= C" + P) •

Applying this relation over and over (m-n-l-m') times, we 

finally obtain

TP m,m-n _ . (n+p)(n+p+l)...(m-m'+p-1)  ̂ m,m' 
m,m' ~ m-n „ m-n-1 _ m'+l-* m,m' ' (B-Haj

®m'
The factor in the square brackets of the above equation, 

denoted by C, can be written in the form

r - (m-m'+p-l)! r P(2m'+1) . h
(m+p-1)! '■(m-m'-m) !r(m+m'-n+l)J * (.B.tioj
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The integral is given by Eq. (C.4) in Appendix C.

Therefore, Eq. (B.lla) can be expressed as

Tp m,m-n _ (m-m'+p-l) ! r 2m'r̂ (m+m'+p)_____ Jg , ,
Ĵ m,m' - (n+p-1)! (̂m-ra'-n) !r(m+m'-n+1)r(2m) J

In particular, for p = 1, this equation becomes

, m,m-n _ (m-m*) ! r 2m'r̂ (m+m'+l)_____
m,m' n! ‘■(m-m'-n) !r(m+m'-n+l)r(2m)-' * I • J

The following relation between Eq. (B.12) and Eq. (B.13) can be ob

tained :

p-1 BJP m,m-n _ . m' -, j  m,m-n
m,m' n+i m,m' ' (g.14)

We also obtain the relation

T in,m-n _ 1 m., 2 m,m-n _ (m-m') (m+m') ^ m,m-n , rt
V m '  - F l^m') ^ m , m ' ------n----- ^m,m'

where " | "> is given by Eq. (C.7) or Eq. (C.9) in

Appendix C.

For convenience, we write several particular cases of Eqs. 
(B.12) and (B.13) for later use.

J . y  = (m-m') (m+m') [2m' ,

J . y  = ' (B.16a)

C " '  = ^ "m-'' ' (8.16b)

J C ' " '  = V ) '  C ’"' •
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5. Integral

m > m*

Letting n = 1 and p = 1 in Eq. (B.4d), one obtains

= ( V  V )

Applying this relation consecutively, we obtain, after (s-m)

times,

B B s-2 B “
' 1;%- 3*1-1 C " '  •D_ B • . . Dm m  m

The coefficient in the square brackets can be written as

r = r (s-m'-l) !r(s+m']r(2m+l) -.2
‘■(m-m'-l) ! (s-m) irCs+m+l) r(m+m')

Substituting this expression and that for given by Eq. (B.16a)

into Eq. (B.lSb), we obtain after some simplification,

which can be related to the off-diagonal matrix elements of e^ in
Eq. (3.42) by

Changing s into s + 1 in the last equation, we have

= (=mT)' V  ' (='i9̂ )

6. Integral <R ^|e*|R ?_____________m ‘ ' m'

m >m'
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Again Eq. (B.4d) gives, for n = 2 and p = 1,

_ s,s-2 _ s-2 5  s. _ s-l,s-3 5 s y 3-1,s-2 . (B.20a)
V m '  " '• m' \  ■' “ m

Applying this recurrence relation repeatedly to the first 

integral in the right-hand side of the above equation, we obtain after 

the kth time,

j s,s-2 _ s-2 p s-3 p s-k-l^,g s = s-1 g s-k+1-. , s-k,s-k-2

- V  -  V  V  -  V ' ' )  C - ’"'''

Making use of Eq. (B.lSa), we can reduce the second term in 

the above equation to

2"'* term - _

Since this result is for a general value of k, we see that 

all terms after the first term in Eq. (B.20b) are equal to the second 

term. Therefore, we can write

<m'"' = - k V " '  <m'"'

which becomes for k = s - m

C ' ' "  = " - "I'm"' ■’m!;'"'

where the constant factor C is

P _ r(s-m' -2) (s+m' -2) • (s-m* -5) (s+m' -3)... (m-m' -1) (m+m' -1] 
'•(s-m) (s+ra) • (s-m-1) (s+m-1) ... (2) (2m+2) (1) (2m+l)
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and the integral is given by Eq. (B.16b).

The first term in the right side of Eq. (B.20c) then can be

written as

First term = ,

while, using Eq. (B.19b), the second term can be expressed as 

Second term = (s - m) (B J) ̂ bJ  bJ"^ .

These expressions permit us to write Eq. (B.20c) as

Replacing s by s + 2 in this equation, we have

7. Matrix Elements of ŷ

7a. Diagonal matrix elements of ŷ
2xDiagonal matrix elements of e have been obtained by Huffa- 

ker and Dwivedî ^̂ ^ in the form

<m|e^^|m> = A^<m|e^|m> = 4m(s + H) , (B.22)

from which one can easily obtain those for e and y^:

<v|e-^^"|v> = <v|e-^"|v> = , (B.23)
and

<v|y^|v> = <v|y|v> = • (B.24)
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7b. Non-Diagonal matrix elements of

The recursion relation (3.8a) permits us to write

V  = A' V  * e' e- rJ*'

from which we obtain

s,s _ .s , s,sj2 = A" j f + B f j  S'S-1 + B s+1 j S'S+1 _ (B.25)m,m* m,m' m' m,m' m' m,m'

The last integral in the above equation vanishes in view of 

Eq. (B.IO) while the integral  ̂is given by Eq. (B.19a or b).

Hence, we can write Eq. (B.25) as

or
2x<m|e |̂m'> = [2s + 1 + (m-m')(m+m')]<m|e^|m'> 

from which we obtain off-diagonal matrix elements of and ŷ :

<v|e-2^"|V> = [1 + (B.27)

and

<v|yZ|v'> = [1 - *-̂-'~2s^^^i^'~^^]<v|y|v'> (B.28)

where the off-diagonal matrix elements of and y are given by 

Eqs. (3.43) and (3.44).

8. Matrix Elements of ŷ

Using the recursion relation (3.8a) again, one can write

.BX R j  . A» .BX ,2X R^S-1 ,
■ A' - Bj e" [A:-l rJ‘1 . . bJ rJ)
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= A" Rj + Bj e:' R^'^ + Bj Rj]

+ Bj+i e=uf+iRjri + B.J+1 Rj + «»:*:].

which then gives, after some rearrangement,

JSmlm' =

+ (Bm* Bm'"') 'ml;,;"' + B.f) J.,:;:-'

+ + (8*?+! , (B.29)

where m > m'.

8a. Diagonal matrix elements of

For m = m', the last four integrals in Eq. (B.29) vanish ac

cording to Eq. (B.IO), yielding

- - "A')' * • »•“ )

where we have used Eq. (B.22). The above equation can be written more 

explicitly as

= M l  * 3(2s . _

from which we can obtain diagonal matrix elements of e"^^^ and ŷ :

<v|e-:*"|v> = , (B.31)
and

<v|y*|v>  = 1 *  [ i - L l ( 2 | î | L r , l ( s - ) i ] < v | y | v >  . (B.32)
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8b. Non-Diagonal matrix elements of

For m  > m ', the last two integrals in Eq. (B.29) vanishes be
cause of Eq. (B.IO), giving

+ (Bj B.f-') + (A'"' '

Replacing the first and the last two integrals in the right hand side 

of the above equation by their expressions given by Eqs. (B.26a), 

(B.21a), and (B.19b) respectively, we obtain

+ (B.33)
or

= 3s|l + 3(2s+1)2 - 4m'^ + (m-m') (m+ra')

X [8s - 2(s-m) + (m-m'-l) (m+m'-l) ]}
From this equation, we can find the expressions for off-diagonal matrix 

elements of e and ŷ :

<v|e v'> = Jĝl + 3(2s+l)z _ 4(s-v)^ + (v'-v)(2s-v'-v)

5-v'-v)]|<X [2 + 3(2s+l) + (v'-v) (2s-v'-v) ] y<vl e'̂ l̂ v'> (B.34)
and

<v|ŷ |v'> = jl + 3(2s+l)  ̂- 4(s - v)̂

+ (v'-v) (2s-v'-v) [(v'-v) (2s-v'-v) - 6s - .

(B.35)
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Note that, although we have fixed m' to be smaller than m, 

the expressions for non-diagonal matrix elements of e"^^^ and e^^ where 

p = 1, 2, 3, will reduce to those for diagonal matrix elements if we 

put m* = m.

Matrix elements of and confuted using exact formulas 

or matrix multiplication for 0 £ v _< 9 and 0 £ v' £ 9 are listed in 

Tables B.l and B.2. Also are given matrix elements of û  and u® ob

tained by matrix technique for 0 _< v £ 9 and 0 £ v' £ 9 in Tables B.3 

and B.4.
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TABLE B.l. Morse matrix elements of for G £ 

The last negative digit means power

V £ 9 and 0 

of 10.

< v' <9.

X 0 1 2 3 4

0 .647508 -2 -.103190 -2 .871435 -2 .243659 -2 .589255 -3

1 -.103190 -2 -.194252 -1 -.288980 -2 .145884 -1 -.475793 -2

2 .871435 -2 -.288980 -2 .323754 -1 -.525558 -2 .199223 -1

3 .243659 -2 .145884 -1 -.525558 -2 .453256 -1 -.800895 -2

4 .589255 -3 .475793 -2 .199223 -1 -.800895 -2 .582757 -1

5 .141917 -3 .129348 -2 .734105 -2 .248124 -1 -.110769 -1

6 .351989 -4 .342730 -3 .219838 -2 .101251 -1 .292876 -1

7 .907982 -5 .921726 -4 .631926 -3 .329366 -2 .130553 -1

8 .244200 -5 .255115 -4 .182394 -3 .101662 -2 .456642 -2

9 .684575 -6 .730331 -5 .537431 -4 .312462 -3 .150171 -2

X 5 6 7 8 9

0 .141917 -3 .351989 -4 .907982 -5 .244200 -5 .684575 -6

1 .129348 -2 .342730 -3 .921726 -4 .255115 -4 .730331 -5
2 .734105 -2 .219838 -2 .631926 -3 .182394 -3 .537431 -4

3 .248124 -1 .101251 -1 .329366 -2 .101662 -2 .312412 -3
4 -.110768 -1 .292876 -1 .130553 -1 .456642 -2 .150171 -2
5 .712259 -1 -.144076 -1 .333622 -1 .160861 -1 .600322 -2
6 -.144076 -1 .841761 -1 -.179613 -1 .370462 -1 .191789 -1

7 .333622 -1 -.179613 -1 .971262 -1 -.217057 -1 .403474 -1

8 .160861 -1 .370462 -1 -.217057 -1 .110076 +0 -.256135 -1
9 .600322 -2 .191789 -1 .403474 -1 -.256135 -1 .123027 +0
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TABLE B.2. Morse matrix elements of y for 0 < v < 9 and 0 < v' < 9'.X 0 1 2 3 4

0 .419267 -4 -.154785 -2 -.456158 -5 -.115582 -2 -.557575 -3

1 -.154785 -2 .541789 -3 -.433469 -2 -.235435 -4 -.219751 -2

2 -.456158 -5 -.433469 -2 .153500 -2 -.788337 -2 -.661351 -4

3 -.115582 -2 -.235435 -4 -.788337 -2 .301504 -2 -.120134 -1

4 -.557575 -3 -.219751 -2 -.661351 -4 -.120134 -1 .479540 -2

5 -.200493 -3 -.119641 -2 -.330027 -2 -.141306 -3 -.166153 -1

6 -.659359 -4 -.474288 -3 -.198686 -2 -.442950 -2 -.257743 -3

7 -.211330 -4 -.169338 -3 -.856278 -3 -.290741 -2 -.555662 -2

8 -.677740 -5 -.582806 -4 -.328524 -3 -.134834 -2 -.393537 -2

9 -.220217 -5 -.199057 -4 -.120468 -3 -.551572 -3 -.194866 -2

X 5 6 7 8 9

0 -.200493 -3 -.659359 -4 -.211330 -4 -.677740 -5 -.220217 -5

1 -.119641 -2 -.474289 -3 -.169338 -3 -.582806 -4 -.119057 -4

2 -.330027 -2 -.198686 -2 -.856278 -3 -.328524 -3 -.120468 -3

3 -.141306 -3 -.442950 -2 -.290741 -2 -.134834 -2 -.551572 -3
4 -.166153 -1 -.257743 -3 -.555662 -2 -.393537 -2 -.194866 -2

5 .740955 -2 -.216113 -1 -.423844 -3 -.665977 -2 -.504878 -2
6 -.216113 -1 .103110 -1 -2.69419 -1 -.647700 -3 -.772244 -2
7 -.423844 -3 -.269419 -1 .136732 -1 -.325585 -1 -.937089 -3

8 -.665977 -2 -.647700 -3 -.325585 -1 .174897 -1 -.384203 -1

9 -.504878 -2 -.772244 -2 -.937089 -3 -.384203 -1 .217539 -1
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TABLE B.3. Morse matrix elements of for 0 < V < 9 and 0 £ v' <9.X 0 1 2 3 4

0 .116094 -2 -.461129 -3 .158102 -2 .223231 -3 .333595 -4

1 -.461129 -3 .360007 -2 -.131785 -2 .271254 -2 .446259 -3

2 .158102 -2 -.130457 -2 .621876 -2 -.244713 -2 .379811 -2

3 .223231 -3 .271254 -2 -.244713 -2 .902465 -2 -.380886 -2

4 .333595 -4 .446259 -3 .379811 -2 -.380886 -2 .120258 -1

5 .554126 -5 .749597 -4 .705137 -3 .485238 -2 -.538208 -2

6 .101604 -5 .137000 -4 .130457 -3 .996354 -3 .587810 -2

7 .203277 -6 .272426 -5 .258685 -4 .200209 -3 .131663 -2

8 .439190 -7 .584914 -6 .552156 -5 .426332 -4 .284430 -3

9 .101604 -7 .134542 -6 .126242 -5 .969173 -5 .645363-4X 5 6 7 8 9

0 .554126 -5 .101604 -5 .203277 -6 .439190 -7 .101604 -7

1 .749597 -4 .137000 -4 .272426 -5 .584914 -6 .134542 -6

2 .705137 -3 .130457 -3 .258685 -4 .552156 -5 .126231 -5

3 .485238 -2 .996354 -3 .200209 -3 .426332 -4 .969173 -5

4 -.538208 -2 .587810 -2 .131663 -2 .284430 -3 .645363 -4

5 .152306 -1 -.715432 -2 .687536 -2 .166322 -2 .383294 -3
6 -.715432 -2 .186481 -1 -.911780 -2 .784337 -2 .203384 -2

7 .687536 -2 -.911780 -2 .222876 -1 -.112677 -1 .878090 -2

8 .166322 -2 .784337 -2 -.112677 -1 .261590 -1 -.136011 -1

9 .383294 -3 .203384 -2 .878090 -2 -.136011 -1 .302729 -1
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TABLE B.4. Morse matrix elements of u for 0 < v < 9 and 0 < v' <9.X 0 1 2 3 4

0 .172140 -4 -.121415 -3 .392909 -4 -.875307 -4 -.218416 -4

1 -.121415 -3 .113808 -3 -.360803 -3 .113888 -3 -.168956 -3
2 .392909 -4 -.360803 -3 .314325 -3 -.697097 -3 .226368 -3

3 -.875307 -4 .113888 -3 -.697097 -3 .627310 -3 -.112828 -2

4 -.218416 -4 -.168956 -3 .226368 -3 -.112828 -2 .160192 -2

5 -.467993 -5 -.481572 -4 -.257257 -3 .377145 -3 -.165664 -2
6 -.100819 -5 -.114103 -4 -.821780 -4 -.349496 -3 .566583 -3

7 -.226173 -6 -.267231 -5 -.221375 -4 -.123565 -3 -.442940 -3

8 -.533105 -7 -.644292 -6 -.535262 -5 -.344848 -4 -.171851 -3

9 -.132175 -7 -.161836 -6 -.137619 -5 -.928153 -5 -.514067 -4X 5 6 7 8 9

0 -.467993 -5 -.100819 -5 -.226173 -6 -.533105 -7 -.132175 -7

1 -.481572 -4 -.114103 -4 -.267231 -5 -.644292 -6 -.161836 -6
2 -.257257 -3 -.821780 -4 -.212374 -4 -.535262 -5 -.137619 -5

3 .377145 -3 -.349496 -3 -.123565 -3 -.344848 -4 -.928153 -5
4 -.165664 -2 .566583 -3 -.442940 -3 -.171851 -3 -.514067 -4

5 .162797 -3 -.228647 -2 .795008 -3 -.535155 -3 -.226512 -3
6 -.228647 -2 .233599 -2 -.302325 -2 .106270 -2 -.623925 -3

7 .795008 -3 -.302325 -2 .319725 -2 -.387341 -2 .136990 -2
8 -.535155 -3 .106270 -2 -.387341 -2 .422387 -2 -.484408 -2
9 -.226512 -3 -.623925 -3 .136990 -2 -.484408 -2 .542887 -2



APPENDIX C

EXPRESSIONS OF SOME INTEGRALS OBTAINED BY IH

We list below some important results obtained by by

the factorization method in connection with their evaluation of non

diagonal matrix elements of the variable x for a Morse oscillator.

We also make some extensions of their results. Like IH, we assume 

that m > m'.
First we have

I "m' V  ° ' (C.i)
-GO

Using the same technique, this integral can be generalized
into

-0 0

where n is an integer such that s - n ̂  m.

Next, we have

/ R R dx = --------   . (C.3)
[r(2m)rC2m’)]^

It is easy to show that

I R ■" eP=' R (c.4)
which obviously reduces to Eq. (C.3) for p = 0.
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We will show that

where is the digamma function defined by Eq. (3.31a).

gral as

Using the expression (3.5a) of we write the above inte-

X ™ = [r(2m)r(2m') ]"^ / [x.exp(m+m')x - 3sê ]dx ,
09

= (constant) / [exp(m+m’)x - he ]dx ,

r(m+m') 1 dr (m+m').
" [r(2m)r(2m')]'=

which will take the form of Eq. (C.5) if the notation of the digamma 

function is put in.

A more general form of the integral (C.5) is

/ R J  xP R j  dx = [r(2m)r(2m')]-^ dP^m+m')  ̂ (c.6)
d(m+m')P-00

Another important integral is

f D "> D m-n _ (m-m'-l) !  ̂ 2mT^(m+m') -,h
ra m' ' (n-1)! (̂m-m'-n)!r(m+m'+l-n)T(2m)  ̂ '

(c.:
In particular, for n = 1, Eq. (C.7) gives

i  C  ■ t2.’ . (C.8a)

and for n = 2,

/ C  Rm'"̂  dx = [(m-m'-l)(m+m'-l)]^ / R j  rJ'^ dx . (C.8b)
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Finally, the integral (C.7) can be conveniently expressed 

in terms of the integral (C.8a) and the B-coefficients by

< C l C >  =■ T^nrr [bJ-' b ... ”|R
(n-1) factors

or _ .
n-1 B "

<R “Ir = n (̂ l!— )<R "‘Ir >m ' m' . , 1  m ' m'1=1

where

= [(s-m) (s+m)]̂  .
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