COMPUTATION OF RADIATION CONFIGURATION

FACTORS BY CONTOUR INTEGRATION

By
RICARDO de BASTOS
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1959

Submitted to the faculty of the Graduate School of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
August, 1961

0 SU

Collection

Thesis Approved:

ACKNOWLEDGEMENT

I am grateful to have had the opportunity to receive my graduate study here at Oklahoma State University. I would like to thank Dr. James H. Boggs for awarding me the graduate assistantship that made it possible to do so.

I especially would like to thank my adviser, Dr. John A. Wiebelt, for his guidance, advice, and encouragement, and for the countless hours he willingly spent with me during the past year.

I also would like to thank Professor William Granet for his personal interest in the problems encountered in the development of the computer programs, and for the valuable advice and assistance he gave me.

I want to express my thanks to the Sandia Corporation for the financial sponsorship of the project, and to the many people who contributed to the successful completion of this thesis.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. EXISTING METHODS FOR COMPUTATION OF RADIATION CON- FIGURATION FACTORS 6
III. CONTOUR INTEGRATION 9
IV. ADAPTION OF CONTOUR INTEGRATION TO AN ELECTRONIC DIGITAL COMPUTER 20
V. PLANE-TO-PLANE PROGRAM 25
VI. CYLINDER-TO-PLANE PROGRAM 31
VII. SPHERE-TO-PLANE PROGRAM 38
VIII. CONE-TO-PLANE PROGRAM 45
IX. SUMMARY AND CONCLUSIONS. 53
X. RECOMMENDATIONS FOR FUTURE STUDY 58
SELECTED BIBLIOGRAPHY 60
APPENDIX
A Vector Identity 61
B Correlation Between Radiation and Illumination 64

LIST OF TABLES

Table Page
I. Plane-to-Plane Program 29
II. Cylinder-to-Plane Program. 36
III. Sphere-to-Plane Program. 42
IV. Cone-to-Plane Program. 50
V. Computer Program Results 56
VI. Correlation Between Radiation and Illumination
Quantities 66

LIST OF FIGURES

Figure Page

1. Geometric Illustration of Configuration Factor 2
2. Illustration of Vector Concepts for Radiation 10
3. Contour Integration for Surface S 16
4. Contour Integration for Polygon Source 17
う. Plane-to-Plane Configuration 27
5. Block Diagram of Plane-to-Plane Program. 28
6. Cylinder-to-Plane Configuration. 34
7. Block Diagram of Cylinder-to-Plane Program 35
8. Sphere-to-Plane Configuration. 40
9. Block Diagram of Sphere-to-Plane Program 41
10. Horizon Decision for Cone. 46
11. Cone-to-P1ane Configuration. 48
12. Block Diagram for Cone-to-Plane Program. 49

CHAPTER I

INTRODUCTION

It is quite a simple matter to obtain the net exchange of thermal radiation between two black surfaces separated by nonabsorbing media once several factors are known, i.e., the temperatures of the surfaces under consideration, and the geometric relationship of the surfaces. All bodies at temperatures above absolute zero will continuously radiate heat to their surroundings, even though they may at the same time be absorbing more heat than they emit. The net exchange between a black body and its surroundings is merely the difference in the energy radiated from the body and the energy received from the surroundings.

In order to determine the net energy exchange between two bodies, the shape and orientation of the bodies must be considered. The object of this study was to provide a rapid and accurate determination of the geometric relationship between various surfaces. This relationship is referred to as the configuration factor. The configuration factor from surface A_{1} to surface A_{2}, written as F_{1-2}, is defined as the fraction of radiant flux leaving surface A_{1} directly incident on surface A_{2}.

To obtain a mathematical expression for the geometrical relationship between two surfaces, consider a small element of surface dA_{1} on A_{1} (see Fig. 1). If a hemisphere is placed over dA_{1} with dA_{1} at the center, the hemisphere will intercept all of the radiation beams emitted by the

Fig. 1. Geometric Illustration of Configuration Factor
area $d A_{1}$. A point directly above $d A_{1}$ on the hemisphere will see $d A_{1}$ without distortion, but any other point on the hemisphere will see the projected area of $d A_{1}$, i.e., $d A_{1} \cos \beta_{1}$ where β_{1} is the angle between the normal to dA_{1} and the line connecting the center of dA_{1} with the point on the hemisphere. The radiant energy emitted from $d A_{1}$ per unit of time can be determined from the definition of radiation intensity. Radiation intensity, I, is defined as the radiant energy emitted by a surface per unit solid angle, per unit time, and per unit area of emitting surface perpendicular to the direction of the ray. The energy emitted from dA_{1} reaching an area dA_{2}^{\prime} on the hemisphere is then

$$
\begin{equation*}
\mathrm{dq}_{1-\mathrm{H}}=I \cos \beta_{1} \mathrm{dA}_{1} d \omega_{1-H} \tag{1.1}
\end{equation*}
$$

where $\quad d_{1-H}=$ radiant energy emitted from $d A_{1}$ per unit time
$I=$ intensity of radiation as defined above $\beta_{1}=$ angle between ray and normal to dA_{1} $d \omega_{1-H}=\frac{d A_{2}^{\prime}}{r^{2}}$ solid angle subtended at $d A_{1}$ by $d A_{2}^{\prime}$ on the

$$
\mathbf{r}=\text { radius of hemisphere }
$$

If surface A_{1} is assumed to be a diffuse emitter, where the intensity, 1 , is independent of the direction of the ray, the total energy emitted per unit time by A_{1} will be

$$
\begin{equation*}
Q_{1-H}=I \int_{H} \cos \beta_{1} \cdot d \omega_{1-H} d A_{1} \tag{1.2}
\end{equation*}
$$

where the integration is performed over the hemisphere. If dA_{2} is take as a surface element on A_{2}, the subtended solid angle $d \omega_{1-2}$ is the projected area of $d A_{2}$ in the direction of the incident radiation divided
by the distance between $d A_{1}$ and $d A_{2}$ squared or

$$
\begin{equation*}
\mathrm{dq}_{1-2}=\frac{I \cos \beta_{1} \cos \beta_{2} d A_{1} d A_{2}}{s^{2}} \tag{1.3}
\end{equation*}
$$

where, $\quad \beta_{2}=$ angle between normal to dA_{2} and incident radiat $S=$ distance between $d A_{1}$ and $d A_{2}$.
Integrating equation (1.3) over both surfaces, the total energy I unit time leaving surface A_{1} and reaching surface A_{2} is

$$
\begin{equation*}
Q_{1-2}=I \int_{A_{1}} \int_{A_{2}} \frac{\cos \beta_{1} \cos \beta_{2} d A_{1} d A_{2}}{s^{2}} \tag{1.4}
\end{equation*}
$$

From the definition of the configuration factor and equations (1.2) a (1.4) there is obtained,

$$
\begin{equation*}
F_{1-2}=\frac{I \int_{A_{1}} \int_{A_{2}} \frac{\cos \beta_{1} \cos \beta_{2} d A_{2}}{S^{2}}}{I \int \cos \beta_{1} d A_{1} d \omega_{1-H}} \tag{1.5}
\end{equation*}
$$

The denominator of equation (1.5) integrated over a hemisphere yields $\pi A_{1} I$, so the mathematical expression for the configuration factor fo surfaces A_{1} and A_{2} becomes:

$$
\begin{equation*}
F_{1-2}=\frac{1}{\pi A_{1}} \int_{A_{1}} \int_{A_{2}} \frac{\cos \beta_{1} \cos \beta_{2} d A_{1} d A_{2}}{s^{2}} \tag{1.6}
\end{equation*}
$$

Equation (1.6) has been evaluated for a number of configurations, how ever, for many geometrical relationships and for curved surfaces, the analysis becomes quite complex and tedious. Integration of equation (1.6) can be accomplished by dividing the surfaces into small sub-are and numerically evaluating the double integral obtained. The method in this study to obtain the configuration factor was obtained from al approach outlined in reference (1). The method involves subdivision
of one of the surfaces into small areas and subsequent computation of irradiation of the second surface by the subarea. This computation involves the evaluation of a contour integral, and the procedure is repeated for each small area, resulting in the average configuration factor from all of the small areas of the subdivided surface to the second surface.

By the use of the reciprocal relationship,

$$
\begin{equation*}
A_{1} F_{1-2}=A_{2} F_{2-1} \tag{1.7}
\end{equation*}
$$

where,

$$
\begin{aligned}
A_{1} & =\text { Area of surface } 1 \\
A_{2} & =\text { Area of surface } 2 \\
F_{2-1} & =\text { Configuration factor from surface } 2 \text { to surface } 1
\end{aligned}
$$ the configuration factor for surface 2 to surface 1 can be obtained if the areas of the surfaces in question and the configuration factor for surface 1 to surface 2 are known.

The results of this study are in the form of four electronic computer programs in the Fortran language. The programs were written for the IBM 650 digital computer, but with small additions, they can be made compatible with IBM 704 Fortran. By simply specifying the geometric descriptions required to define the surfaces as the input of the programs a configuration factor will be obtained that is reasonably accurate for engineering applications. A provision has also been provided in the program to increase the accuracy of the result as required.

CHAPTBR II

EXISTING METHODS FOR COMPUTATION OF RADIATION CONFIGURATION FACTORS

There are several methods by which configuration factors can be computed, however, they mainly are limited to specialized shapes and geometrical relationships, and may involve making some simplifying assumptions. Some of the methods and approaches are discussed here along with their limitations.

As previously mentioned, equation (1.6) can be evaluated numerically by subdividing the surfaces involved into small areas and evaluating the double integral obtained. This method involves considerable calculations, and it is impracticable for any but very simple surfaces. D. C. Hamilton and W. R. Morgan have developed the configuration factor equations for several geometrical relationships in reference (2). A series of curves and tables are presented as the results of numerical evaluation of the equations. The configuration factors are given as functions of dimensionless ratios of the describj geometrical parameters of the configurations. Results are tabulated for planes intersecting at various angles, and for configurations inve ing plane, line and point sources. Configuration factors are also git for cylinders with point and line sources. The information presented, be very useful in certain cases, but due to the mathematical complexid
involved in obtaining the configuration factors, the geometrical relat ionships presented are limited to specialized cases.

The tabulated results in reference (2) can be extended to a certain extent to cover more general geometrical configurations by the use of geometric flux algebra. With the aid of several basic rules of flux algebra, Hamilton and Morgan show how the configuration factors , a nonintersecting and nonparallel segments of planes can be expanded functions of the configuration factors for intersecting planes. By dividing the planes into pairs of areas with known configuration facte the desired configuration factor can be found arithmetically from the known factors. This method is limited to isothermal surfaces, also tl geometrical relationship must be reducible to known relationships. Tl procedure involves, in some cases, the squaring and adding of mubers differing by several orders in magnitude which in turn are obtained fi a graph. The error in the final result may therefore be many times tl error in reading the curves.

William H. McAdams, in reference (3), pp. 66-68, develops a methc by which the configuration factor can be evaluated directly for some classes of irregular surfaces. Areas of infinite extent in one direci generated by a straight line moving always parallel to itself, will hi identical cross sections on planes normal to the infinite dimension. one of these cross sections he constructs lines representing tangents between pairs of points, reducing the surface into an equivalent simp: enclosure. From a simple relationship between the lines drawn to redi the complex surface to the equivalent simple surface he obtains the

```
configuration factor.
```

If one of the surfaces is small in relation to the other and can considered a point source, the unit sphere method can be used. A hem: phere of unit radius is constructed about the point source, and the projection of the second surface is obtained on the surface of the hemisphere. This projection is then transferred to the base of the hemisphere. The configuration factor is then the projected area on t l base of the hemisphere, divided by the area of the base, or π. The u_{1} sphere method is useful for simple geometrical configurations, but in many cases the method does not lend itself readily to mumerical calculations.

Other methods of obtaining the configuration factor exist, emplo ing photography, mechanical integrators, or some type of optical projection. These methods require specialized equipment or models, and can be time consuming.

CONTOUR INTEGRATION

As was pointed out in the preceding chapter, no readily availal method exists for obtaining the configuration factors for all types surfaces and which does not involve extensive computation or errorinducing simplifying approximations. In many cases difficulty arise: from the evaluation of the double integral (1.6). It is possible through the use of vector calculus to replace the double integral of (1.6) with a single integral, saving a considerable amount of labor.

In reference (1), the author describes a method whereby the substitution is made possible. It has been developed for the calculation of illumination from light sources, but it can be readily adapted for radiation heat transfer calculations. In order to demonstrate the vector relationships of thermal radiation, consider a point source, S, placed at the origin of a system of co-ordinates (st Fig. 2). If the intensity of the source in the direction of point P is I, then the irradiation of a surface $d A_{2}$ parallel to the $x-y$ plang from a point source is

$$
\begin{align*}
G^{\prime} & =I \cos \theta_{z} d \omega \tag{3.1}\\
& =I \cos \theta_{z} d A_{2}
\end{align*}
$$

where $\quad I=$ intensity of source along T

$$
\mathbf{r}=\text { distance from source to point } P
$$

[^0]

Fig. 2. Illustration of Vector Concepts for Radiation

$$
\begin{aligned}
\theta_{z} & =\text { angle from normal to } \mathrm{dA}_{2} \text { to } \mathrm{z} \text { axis } \\
\mathrm{dA}_{2} & =\text { area of surface } \mathrm{dA}_{2} .
\end{aligned}
$$

Since this is the irradiation of a surface whose normal is z direction, it will be denoted as $\mathbf{G z}$. Using the above reasoni values of the irradiation on surfaces at P whose normals are in y, and z direction are, respectively,

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}} \mathrm{x}^{\prime}=\frac{\operatorname{IdA}_{2}}{\mathbf{r}^{2}} \cos \theta \mathrm{x} \\
& \overrightarrow{\mathbf{G}} \mathrm{y}^{\prime}=\frac{\operatorname{Id} A_{2}}{\mathbf{r}^{2}} \cos \theta \mathbf{y} \\
& \overrightarrow{\mathbf{G}} \mathbf{z}^{\prime}=\frac{\operatorname{Id} A_{2}}{\mathbf{r}^{2}} \cos \theta z
\end{aligned}
$$

where $\theta x, \theta y, \theta z$ are the angles between r and the three co-ordil axes. The coefficient of the cosine term, $\frac{I d A_{2}}{r^{2}}$, is the same in three equations, and is equal to the irradiation of a surface pf pendicular to r. It follows that $\vec{G} x, \vec{G} y$, and $\vec{G} z$ are components vector whose magnitude is $\frac{I d A_{2}}{r^{2}}$ and whose direction is from S to
along r. In vector notation, the irradiation at P is

$$
\vec{G}^{\prime}=G_{x i}^{\prime}+G_{y j}^{\prime}+G_{z k}^{\prime}
$$

If \vec{r}_{1} is a unit vector along r,

$$
\overrightarrow{\mathbf{G}}^{\prime}=\overrightarrow{\mathbf{r}}_{1} \frac{\mathrm{IdA}}{2} \mathbf{r}^{2}
$$

If S is a surface rather than a point source, each element of th surface provides an irradiation vector $d \vec{G}$ at point P, and the tc
irradiation vector at P due to the entire source is the vector sum of all the component vectors. For a single area element dA_{1} of a surfac source A_{1},

$$
\mathrm{d} \overrightarrow{\mathrm{G}}=\frac{\mathrm{I} \cos \varphi \mathrm{dA}_{2} \mathrm{dA}_{1}}{\mathrm{r}^{2} \mathrm{dA}_{2}} \vec{r}_{1}
$$

where \vec{r}_{1} is a unit vector pointing from the particular element toward and φ is the angle between the normal to $d A_{1}$ and r. For the entire su face source,

$$
\vec{G}=I \int_{s} \vec{r}_{1} \frac{\cos \varphi d A_{1}}{r^{2}}
$$

Equation (3.8) gives the value of the irradiation on a plane normal t r at point P. The irradiation on any other plane at point P is obtai by multiplying the absolute value of \vec{G}, or $|\vec{G}|$ by the cosine of the a between \vec{G} and the normal to the plane.

Using the vector relationship in (3.8), it is now possible to ob an expression for the configuration factor for an arbitrary geometric relationship. The mathematical expression for the dot product betwee two vectors is,

$$
\overrightarrow{\mathbf{r}}_{1} \cdot \vec{n}_{1}=\left|\vec{r}_{1}\right|\left|\vec{n}_{1}\right| \cos \varphi
$$

where

$$
\begin{aligned}
& \left|\vec{r}_{1}\right|=\text { absolute value of vector } \vec{r}_{1} \\
& \left|\vec{n}_{1}\right|=\text { absolute value of vector } \vec{n}_{1} \text { normal to surface } S \\
& \varphi=\text { angle between } \vec{r}_{1} \text { and } \vec{n}_{1}
\end{aligned}
$$

If both \vec{r}_{1} and \vec{n}_{1} are unit vectors, (3.9) becomes

$$
\vec{r}_{1} \vec{n}_{1}=\cos \varphi
$$

Using the relationship (3.10) in equation (3.8) there is obtainial

$$
\vec{G}=I \int_{s} \frac{\vec{r}_{1}}{r^{2}}\left(\vec{r}_{1} \cdot \vec{n}_{1}\right) d A_{1}
$$

What is now desired is the reduction of the surface integral (3 . a more easily evaluated line integral around the boundary or con of the surface S. This can be done with the use of Stokes' theo Stokes' theorem relates the surface integral of the curl of a ve quantity to the line integral of the quantity. Stated mathemati

$$
\int_{g} \vec{n}_{1} \cdot \operatorname{curl} \vec{A} d T=\int_{c} \vec{A} \cdot d \vec{s}
$$

where

$$
\begin{aligned}
\vec{A} & =\text { vector point function } \\
\vec{n}_{1} & =\text { unit normal to surface } S \\
d \vec{s} & =\text { an element of the contour of surface } S \\
d \tau & =\text { an element of area of surface } S
\end{aligned}
$$

If both sides of equation (3.11) are multiplied by an arbitrary vector \vec{N}, it becomes

$$
\overrightarrow{\mathrm{N}} \cdot \overrightarrow{\mathrm{G}}=\mathrm{I} \int_{\mathrm{s}} \frac{\overrightarrow{\mathrm{~N}} \cdot \overrightarrow{\mathrm{r}}_{1}}{\mathrm{r}^{2}}\left(\overrightarrow{\mathrm{r}}_{1} \cdot \overrightarrow{\mathrm{n}}_{1}\right) \mathrm{d} \mathrm{~A}_{1}
$$

Since dot multiplication is associative, i.e., $(t \vec{A}) \cdot \vec{B}=t(\vec{A} \cdot \vec{B})$, equation (3.13) can be rearranged as

$$
\overrightarrow{\mathrm{N}} \cdot \overrightarrow{\mathrm{G}}=\mathrm{I} \int_{\circledast} \overrightarrow{\mathrm{n}}_{1} \cdot\left[\frac{\vec{r}_{1}}{\vec{r}^{2}}\left(\overrightarrow{\mathrm{~N}} \cdot \overrightarrow{\mathrm{r}}_{1}\right)\right] \mathrm{dA}{ }_{1}
$$

It can be shown ${ }^{1}$ that

$$
\frac{\vec{r}_{1}}{r^{2}}\left(\vec{N}_{0} \vec{r}_{1}\right)=\frac{1}{2} \operatorname{curl}\left(\frac{\vec{r}_{1} \times \vec{N}}{r}\right)
$$

Using this relation, equation (3.14) becomes

$$
\vec{N} \cdot \vec{G}=I \int_{s} \vec{n}_{1} \cdot\left[\frac{1}{2} \quad \operatorname{curl}\left(\frac{\vec{r}_{1 \times \vec{N}}}{r}\right)\right] d A_{2}
$$

Using Stokes theorem with $\left(\frac{r_{1} \times \vec{N}}{r}\right)$ substituted for \vec{A} in equation (3 equation (3.16) becomes

$$
\vec{N} \cdot \vec{G}=\frac{I}{2} \int_{c}\left(\frac{\vec{r}_{1} \times \vec{N}}{r}\right) \cdot d \vec{s}
$$

The scalar triple product in (3.17) can be commated cyclically witho altering the sign, and since $\overrightarrow{\mathrm{N}}$ is constant with respect to the integration, (it is an arbitrary unit vector) equation (3.17) becomes

$$
\overrightarrow{\mathrm{N}} \cdot \overrightarrow{\mathrm{G}}=\overrightarrow{\mathrm{N}} \cdot \frac{I}{2} \int_{c}\left(\frac{\mathrm{~d} \overrightarrow{\mathbf{s}} \times \overrightarrow{\mathrm{r}}_{1}}{\mathrm{r}}\right)
$$

or, it follows,

$$
\overrightarrow{\mathbf{G}}=\frac{\mathrm{I}}{2} \int_{\mathrm{c}} \frac{\mathrm{~d} \vec{s} \times \vec{r}_{1}}{\mathrm{r}}
$$

The mathematical expression of the cross product in (3.19) is

$$
\left|\frac{\mathrm{d} \vec{s} \times \vec{r}_{1}}{\mathrm{r}}\right|=\frac{1}{\mathrm{r}} \sin \theta \mathrm{ds}
$$

where θ is the angle between vector $d \vec{s}$ and unit vector \vec{r}_{1}. Equation (3.20) gives the absolute magnitude of the cross product of the vecti

[^1]$\overrightarrow{d s}$ and \vec{r}_{1}. Setting this magnitude equal to $|\vec{d}|$ and substituting (3.20),
$$
\overrightarrow{\mathrm{G}}=\frac{I}{2} \int_{c} d \vec{\alpha}
$$
where $d \vec{\alpha}$ is a vector whose magnitude is equal to the angle inter by $\overrightarrow{d s}$ from point P and whose direction is perpendicular to the F and $\overrightarrow{d s} \quad$ (see Fig. 3). The vector $\vec{d} \vec{\alpha}$ points in the direction of of a right handed screw turned from $d \vec{s}$ to \vec{r}_{1}. Bquation (3.21) ε irradiation at a point P due to a surface source S in terms of z gral taken around the contour of the source. For surfaces with gonal boundaries, the $\vec{d} \vec{\alpha}$ vectors along one side of the figure al collinear and add directly.

Consider a polygon source ABCDE (Fig. 4). In order to cor the irradiation at point P due to $A B C D E$ using contour integrati, proceed as follows. From equation (3.21), the contribution to 1 diation at P due to side $A B$ is

$$
\vec{\Delta}_{1}=\frac{I}{2} \int_{A B} d \vec{\alpha}
$$

Since $\mathbf{d} \vec{\alpha}$ is a vector perpendicular to the plane formed by $d \vec{s}$ an and all vectors $d \vec{\alpha}$ are collinear due to the straight line bound integration indicated in equation (3.22) becomes an ordinary sc Thus

$$
\vec{\Delta}_{1}=\vec{\alpha}_{1} \frac{I}{2} \int_{0}^{\varphi} d \alpha
$$

(3.23) becomes, after integration,

$$
\vec{\Delta}_{1}=\vec{\alpha}_{1} \frac{I}{2} \varphi_{1}
$$

Fig. 3. Contour Integration for Surface S

Surface 2

Fig. 4. Contour.Integration for Polygon Source
where $\vec{\alpha}_{1}$ is a unit vector perpendicular to the plane formed by \dot{c} and ω_{1} is the angle subtended at P by side $A-B$ of the polygon. the contribution to the irradiation at point P due to side $B C$ is

$$
\vec{\Delta}_{2}=\vec{\alpha}_{2} \frac{I}{2} \varphi_{2}
$$

where $\vec{\alpha}_{2}$ is a unit vector perpendicular to plane $P B C$ and φ_{2} is angle intercepted at P by side $B C$. For a polygon of n sides, $t 1$ irradiation at P is

$$
\vec{G}^{\prime}=\frac{I}{2} \sum_{i=1}^{i=n} \vec{\alpha}_{i} \varphi_{i}
$$

where $\vec{\alpha}_{i}$ is a unit vector normal to the i th plane. The direct: be always the direction dictated by the right hand rule for veci products. The use of equation (3.26) eliminates the need to in to obtain the irradiation at a point due to a source having a p c boundary.

Obtaining the configuration factor using equation (3.26) is matter. Equation (3.26) gives the irradiation at point P due to gonal source, and from the definition of the configuration fact simply becomes necessary to divide the total irradiation at poil the total flux emitted by the source. As in the denominator of (1.5), the total energy emitted by the source per unit time is : dividing this into the total flux reaching point P, the result

$$
F_{1-2}=\frac{1}{2 x} \sum_{i=1}^{i=n} \vec{\alpha}_{i} \varphi_{i} \frac{d A_{2}}{A_{1}}
$$

This equation is the basis of the method used to calculate conf: factors for several configurations in this report. As will be the next chapters, the method is readily adaptable for electron: computers and gives excellent results.

CHAPTER IV

ADAPTION OF CONTOUR INTEGRATION TO AN ELBCTRONIC DIGITAL COMPUTER

Abstract

The method outlined in the previous chapter lends itself rea computer calculation. The four computer programs presented in th port all use as a basis of calculation the formala (3.27). The t the programs is fairly simple. Formila (3.26) expresses the irra at a point due to a polygonal source. Since the configuration fa between two surfaces is usually desired, rather than between a pc a surface, it simply becomes necessary to obtain the irradiation sufficient number of points on one of the surfaces and add the re vectorially.

In each program, the surfaces are specified as to shape, si: location by co-ordinates on a cartesian system. The program div: of the surfaces into small subarea elements, and obtains the co-s nates of the center of each subarea. The center point of each st is considered as a point being irradiated by the second surface. tour integration theory is then applied to each center point in 1 the results are added vectorially. The final result is then the irradiation by the second surface on the surface defined by the points of the subareas, or for a sufficient number of points the

is the total irradiation by the second surface on the first surf
Once the co-ordinates of the center points are known, it is tively simple to apply the contour integration theory using the known procedures of analytic geometry. For example, consider a center point P on the subdivided surface. Assume also that the surface is a polygon $A B C D E$ of five sides (see Fig. 4). To deter irradiation at P using contour integration, according to formala the contribution side $A B$ of the second surface makes to the irra is simply the angle subtended by $A B$ at P maltiplied by the unit to the plane PBA. In order to find the unit normal to the plane by P, B and A, the equation of the plane passing through the conates of P, B, and A is calculated. This is easily accomplished the equation of a plane is of the form

$$
A x+B y+C z+1=0
$$

we can substitute the co-ordinates of each point for x, y, and z result is three equations with three unknowns A, B and C. The c cients of x, y and z in (4.1) are the direction cosines of a nor the plane from the origin. To obtain an expression for the unit to the plane PBA, it is necessary to use the relationship

$$
\vec{n}_{1}=\frac{1}{\sqrt{A^{2}+B^{2}+C^{2}}}(A i+B j+C k)
$$

where \vec{n}_{1} is the unit normal to plane PBA.
To obtain the angle subtended by $A B$ at P, the direction cos the lines PA and PB are determined from the relations

$$
\cos \alpha=\frac{x_{2}-x_{1}}{d}
$$

$$
\begin{aligned}
& \cos \beta=\frac{Y 2-Y 1}{d} \\
& \cos \gamma=\frac{Z 2-Z 1}{d}
\end{aligned}
$$

where

$$
d=\sqrt{\left(X_{2}-X_{1}\right)^{2}+(Y 2-Y 1)^{2}+\left(\mathrm{Z}_{2}-\mathrm{ZI}\right)^{2}}
$$

$\mathrm{X}, \mathrm{Y}, \mathrm{Z1}=$ co-ordinates of end of line at P
$\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2=$ co-ordinates of end of line at plane.
The cosine of the angle between the two lines can be determ the relationship

$$
\cos \varphi=\cos \alpha_{A} \cos \alpha_{B}+\cos \beta_{A} \cos \beta_{B}+\cos \gamma_{A} \cos \gamma_{B}
$$

The angle \mathcal{D} is then obtained from the arc cosine relationshi tiplying the vector \vec{n}_{1} by the scaler φ, the contribution to the tion at P due to side $A B$ is obtained. The process is repeated $B C, C D, D E$, and EA of the polygon. The equations of the planes : PDE, and PEA are obtained, the unit normals to each plane are ca: and multiplied by the angles subtended by each of the sides of $t 1$ and the results - the x, y and z components of the irradiation v added to obtain the total irradiation at point P. The whole pror is then repeated for another point on the surface. The subsequei are those defined by the co-ordinates of the center points of the on the surface. The result obtained for each point P is added $v i$ Since each point P represents a small area rather than a point, 1 irradiation of the second surface by the first surface is obtaint multiplying the vector result obtained above by the cosine of the between the irradiation vector and the normal to the second surfa

The procedure is fairly straightforward in cases where evi on one of the surfaces can "see" every point on the second sur: complication arises when one or both of the surfaces are curve portions of the surface exist that can see only a part or none other surface. In other words, each point on a curved surface horizon, and the second surface can either be totally above or the horizon, or only a portion of the second surface may be ab horizon. If the second surface lies totally below the horizon no radiant energy can reach the point from the surface, and coi no radiant energy leaving the point can reach the surface. In of a surface lying partly below the horizon of a point, only t from the portion of the surface above the horizon is considere

In view of this, the programs dealing with curved surface: horizon decision made for each subarea center point. This dec: termines the position of the second surface relative to the ho: the point in question. In cases where the second surface lies above the horizon, the co-ordinates of the points of intersect horizon and the surface must be calculated. Considering the st surface to be the polygon $A B C D$, the point P will be irradiater portion of $A B C D$ that appears above the horizon. This new polys defined by the co-ordinates of the intersection points of the 1 and $A B C D$. Even though the original polygon was four-sided, th polygon can be either three-, four-, or five-sided, depending section points.

A thorough discussion of each of the programs follow in the ing chapters.

CHAPTER V

PLANE-TO-PLANE PROGRAM

In order to utilize the digital computer to calculate a ce ation factor using the contour integration theory, it is necess present the calculations in a logical sequence and in a format ables the computer to perform the necessary manipulations. The whereby this was accomplished utilized the Fortran system. Thi allowed the program to be written in symbols and algebraic equa closely resembling conventional mathematical formulas. The con translated this program into a form usable for actual calculati the Fortran program as written will be discussed since the logi followed readily.

The plane-to-plane program was too large for the storage c of the IBM 650 and it appears here in two parts. This does not way affect the logic of the program. The splitting of the prog accomplished by using the same dimension statement for both par program. The computer then reserves the same storage area for scripted variables appearing in the dimension statement in both As a result of this, the information calculated in the first pa program is saved within the computer in the proper place, and i necessary to read in any new information or data before startin second part of the program. Care had to be taken that the firs
subscripted variable appearing in the dimension statement was the variables used in the second part of the program. The fir variable also had to be larger than fourteen. This had to be the computer will use the first fourteen spaces of the dimens for temporary storage while reading the program on the drum. stroys any information which may have been stored in those lo

The data input to the program consists of the x, y and z of the corner points of the planes. The only limitation for of the two planes is that it is necessary for one of the plam tally above the horizon of the other plane. The necessary pre required is, in order, the problem number, N, and the co-ordin plane A followed by co-ordinates of plane B. The co-ordinate: cyclic or ordered around the plane (see Fig. 5).

Plane B should be the smaller of the two planes, as it wi vided into a number of subareas. The smaller the plane is, th accurately it can be represented by a given number of points. of N will determine the number of subdivisions for plane B. I be divided into N squared subareas.

The flow chart for the plane-to-plane program appears in The actual Fortran program statements appear in Table 1. The lated result is in the form of the product of the area of plan the configuration factor between plane A and plane B. The des figuration factor can be found easily by the use of the recipr lationship in equation (1.7).

Fig. 5. Plane-to-Plane Configuration

Fig. 6. Block Diagram of Plane-to-Plane Program

TABLE I
PLANE-TO-PLANE PROGRAM

TABLE I (Continued)

CHAPTBR VI

CYLINDER-TO-PLANE PROGRAM

The basic method for calculating the configuration factor for a cylinder to a plane differs little from the method used in the plane-to-plane program. As was pointed out in the derivation of equation (3.27), the summation replaces the integral sign only when the source is a polygon. Because of this, the cylinder is the surface to be subdivided and represented by the center points of the subareas. One of the differences between the cylinder-to-plane program and the plane-toplane program is of course the method by which the subareas are obtained along with their respective center point co-ordinates.

The biggest difference, however, is represented by the addition of a horizon decision loop. As was mentioned previously, there may be points on a curved surface which cannot "see" any or all of the second surface. Before equation (3.27) can be evaluated for any particular subarea center point, a horizon decision is made for the point. If the plane lies totally above the horizon for the point, the contour integration is performed as in the preceding program. If the plane lies totally below the horizon for the point, the program will then skip the contour integration for that point, and progress to the next point on the cylinder and repeat the horizon decision until a point is found from which
the plane can be seen. If only a portion of the plane can be seen, it will be in the form of a three-, four-, or five-sided polygon. The corner points of the polygon will be represented by the co-ordinates of the original corners appearing above the horizon and the co-ordinates of the intersection points between the horizon and the plane. The latter co-ordinates are calculated within the horizon decision loop. The contour integration is then performed for the new polygon representing the portion of the plane appearing above the horizon.

The horizon decision is performed by rotating the y axis about the z axis to the point being considered. The co-ordinates of the corner points of the plane are then calculated for the new rotated axis. Since the point in question now lies on the y axis, it simply becomes necessary to compare the radius of the cylinder with the rotated co-ordinates of the plane. Any corner point of the plane whose ordinate has a value less than the radius of the cylinder lies below the horizon of the point being considered on the cylinder. When the corner point lies below the horizon, the co-ordinates of the intersection point between the horizon and the plane is then calculated. The co-ordinates so calculated are then transformed back to the original axis location before the rotation was made. The contour integration is then performed with relation to the original axes.

As in the plane-to-plane program, the irradiation vector must be multiplied by the normal to the subarea. The normal to the subarea is calculated from the gradient of the cylinder evaluated at the center of the subarea in question.

The cylinder to plane program will calculate configuration factors for full cylinders, or for any segment of a cylindrical surface, to a plane located anywhere outside the cylindrical surface. The necessary data input are the co-ordinates and angles necessary to describe the geometrical relationship of the cylinder and plane. The axis of the cylinder is located along the z axis (see Fig. 7). The angular size of the cylinder is defined by angles Thet 1 and Thet 2 in degrees. Taking the y axis as zero degrees and proceeding clockwise, the angle (Thet 2 - Thet 1) must define the angular segment of the cylinder. The length of the cylinder is designated by the co-ordinates $Z L$ and $Z R$ of its end points. The radius of the cylinder is designated by R. The plane is defined by the x, y, and z co-ordinates of the corner points, designated as $A X(1), A Y(1), A Z(1), A X(2), A Y(2), A Z(2)$, etc. The subscripts of the corner points must be cyclic or ordered around the plane.

A block diagram of the cylinder to plane program along with the Fortran program appears on the following pages.

Fig. 7. Cylinder-to-Plane Configuration

Fig. 8. Block Diagram of Cylinder-to-Plane Program


```
        PHI2=SQRTF{1.-ARG)
        IF(LL-1)810,815,820
    8150 ANGLE=3.14159-ANGLE
    8100 ALPHAIII=ANGLE
        GO TO 650
    820 O PAUSE 987
    *)
    657 O IF(CSS(I)-1.00011655.655.656
    656 O PAUSE 1111
    6 5 0 ~ 0 ~ C O N T I N U E ~
        \infty0660 l=1,K
    660 O E(I:J)=EII:JIOALPHA(I)
        \infty0665 l=1,K
        TMPI=E(ID1)+TMP1
        TMP2=E(1:2)+TMP2
    6 6 5 0
        TMP3=E(I;3)+TMP3
    TEMP=SORTF(&TMP1*TMP1&TMP2*TMP
    1 2+TMP 3 & TMP 3) & (BX & BX + BY\bulletBY) )
        CSGMA=(TMP1*BX+TMP2*BY )/TEMP
        G1=TMP1* CSGNA G G 
        G2=TKP2*CSGMA+G2
        G2=TMP3^CSGMA4G3
    6710
        CONTINUE 
        AREA OF PLANES CALCULATION
        DELX=AX(2)-AX(1)
        DELY=AY(2)-AY(1)
        SIDE1-SORTFIDELX*DELX+DELY*DEL
    1 Y4DELZ*DELZ)
        DELX=AX(3)-AX(2)
        DELY=AY(3)-AY(2)
        DELZ=AZ(3)-AZ(2)
        SIDE2*SORTFIDELX*DELX4DELYODEL
    1 Y4DELZ-DELZ)
    - AREAA=SIDEIOSIDE2
    - area of cylimder
    OELZ=2L-2R
    AREAB=6*2831B*R*DELZ
    ITHET2-THET1)/360.
    AAGAB=S1*AREAB/IANNANB6.28318S
    PUMCH.PRONO ,AREAA,AREAB,
    AAGAB
    G0 TO 1
```


CHAPTER VII

SPHERE-TO-PLANB PROGRAM

As in the previous two programs, the basic method used to calculate the configuration factor is the same. This program will calculate the configuration factor from a sphere to a plane or from any portion of a spherical surface that can be defined by the method used in the program. The center of the sphere is located at the origin. Taking the y axis as positive and proceading clockwise, a spherical segment is designated using the angles Alph 1 and Alph 2. The angle (Alph $2-A l p h$ 1) must define the angular segment of the sphere (see Fig. 9). The portion of the spherical segment is defined by the coordinates of the edges.

The plane is defined by the x, y, and z co-ordinates of the corner points exactly the same way as in the cylinder-to-plane program. As in the previous programs, the accuracy of the results can be varied by specifying a greater value for $J 2$.

The basic difference between the cylinder-to-plane program and the sphere-to-plane program is in the axis rotation procedure. All points on the surface of a cylinder along a line parallel to the axis of the cylinder have the same horizon plane. Because of this, a horizon decision need only be made for one point on the line. In the case of a
sphere, each and every point on the surface of the sphere he plane. In addition, if the axis is to be rotated to a point face, it must be rotated through two angles in order to use transformation relationships to calculate the new co-ordinat corner points of the plane. After the z axis is rotated thi two angles to the point in question, the z co-ordinates of t points of the plane are compared with the radius of the sphe previous program to determine which corner points are above Plane and horizon intersections arecalculated when they exd co-ordinates of the intersections are then transformed back inal axes. The contour integration is then performed with 1 original axes.

A block diagram of the sphere-to-plane program, along Fortran program, follows.

Fig. 9. Sphere-to-Plane Configuration

Fig. 10. Block Diagram of Sphere-to-Plane Program

C0000	- radiation config hemi plane	1
	DIMENSIONARIS I,AX(S),AY(5),AZ	2
	1 (5) , AYR(4), ${ }^{\text {CSTHX }}$ (6) , CSTHY(6),	3
	2 (STH2(6)	4
		5
	$1 \mathrm{RR}(5), C \times(6), C Y(6), C 21610 E(5,3)$	6
	2 , $\operatorname{CSS}(5)$, ALPHA(5)	7
	0 READ, PRONO,J2, AXIII,	8
	1 AY(1), AZ11), AXI21	10
		11
	1 AZ(3),AX(4),AY(4) READ,AZ14), ALPH1, ALPH2,RORA,RB	12
	ANeJ2	13
	$A 0=1.5707879$	14
	A1 $=-.21412453$	15
	A2 20.08466649	16
	A38-.03575663	17
	A48.00864884	18
C0000	- OBtaik COORD MD PTS	19
	DELALE (1ALPH2-ALPH1)/AN)	20
	1 * 0.0174533	21
	ALPH3 2 ALPH $2=0.0174533-$	22
	1 DELAL/2.0	23
	DELR $=(R A-R B) / A N$	24
	RC=RB-DELR/2.	25
	CONIERC	26
C 0000	- determin of horiz intersect	27
	G1=0.	28
	$52=0$ 。	29
	63-0.	30
	AX(5) AXX (1)	31
	AY(5) =ay(1)	32
	Az (S) =az (1)	33
300	\bigcirc DO $672 \mathrm{M}=1 . \mathrm{J} 2$	34
	ALPH3-ALPH3+DELAL	35
	ARGM=ALPH3	36
	LN=1 ${ }^{\text {a }}$	37
	G0 10200	38
201	0 SNALR = VARI	39
505	CSALR = VARz	40
	- DOS $10 \mathrm{~N}=2.4$	41
	AXRR(N)=AX(N)*(SALR-AY.(N)*	42
	1 SMALR	43
	AXRR(S)*axRR(1) . .	44
510		45
600	$\mathrm{RC}=\mathrm{CON2}^{\text {a }}$,	46
	O D0 673 M2elej2	47
	RCRRCPDELR	48
	ARGERC/R.'.	49 48

2 J 4 O		58
	$N A=N A+1$ GO 10220	59
	ARGM $=$ CON4	60
2100	VAR3 -SINF (ARGM)	61
	VARGFCOSF(ARGM)	62
	GO TO $1229.230 .231,232 \cdot 229$,	63
	230.231.232,229.2301.NA	64
229	VARI $=$ VAR 3	6
	VAR2 2 VAR4	66
	60 T0 25C	67
232 C	VARI VVAR4	68
	VAR20-VAR3	69
	60 10 250	70
2310	VARIE-VAR3	11
	VAR $2=-$ VARG	72
	GO TO 250	73
2320	VAR1--VAR4	7
	VAR2=VAR3	75
2500	GO TO 1201.2801,LM	76
2800	SNTHREVARI	17
	csthravarz	78
	TMP $1=0$ 。	79
	TMP2=0.	80
	TMP 3 $=0$.	81
6010	D0 610 J01,4	82
		83
	SNTHR	84
	AYRR(5) =AYRR(1)	85
$\begin{aligned} & 6100 \\ & 6101 \end{aligned}$		86
	AYR(J)*SNTHR	87
	ALRR(5) =AZRR(1)	88
	$\mathrm{K}=0$	89
	D0 $350 \mathrm{Nal.4}$	90
	IF (AZRR(N)-R) 310.320 .330	91
3100	IF (AZRR($\mathrm{N}+1$)-R) 350,3304311	92
3110	$k=k+1$	93
	laso	94
3120	YRR=(R-AZRRIN+1) 10 (AYRRIN)-	95
31212	AYRRIN+1]1/(AZRR(N)-AZRRIN+11)	96
	+AYRR($\mathrm{N}+1$)	97
	XRR=(R-AZRR(N+1) $)=(\operatorname{AXRR}$ (N)-	98
1	AXRR(N+1) $1 /($ AZRR $(N)-A Z R R(N+1) 1)$	99
2120	+AXRR(+ +1)	100
	YR=YRReCSTHR + ReSNTHR	101
	K1-K+LA	102
		103
	CY(K1)-YRECSALR-XRR*SNALR -	104
	CZ(K1)=R'CSTMR-YRReSNTHR	105
	1F(LA-1) $350 \cdot 3340313$	108
	-patusf 77779	107

TABLE III (Continued)

	${ }_{K=1}^{60} 10350$	115 116		$\begin{aligned} & 006501=1, \mathrm{~K} \\ & \text { CSS(1):CSTHX11) CSTHX(1)+1) } \end{aligned}$	172 173 174
3230		117			174 175 177
	$C X(X)=A X(N)$ $C Y(K)=A Y(N)$	118		CSTH2(1+1)	175 177 1766
	CZ $(\mathrm{K})=\mathrm{AZ}$ (N)	119		IFICSS $1111651,652.653$	177 176
	C $\times(\mathrm{K}+1)=A \times(N+1)$	120	6510	IFICSS $111+1.1658 \cdot 656 \cdot 659$	178
	CY($K+1)=A Y(N+1)$	121	6530	If ICSS (1)-1.1659.655.657	179
	($2(\mathrm{~K}+1) \times \mathrm{A}$ ($\mathrm{N}+1)$	122	6522		180
	GO TO 350	123		60 T0 650	181
3300	$\mathrm{k}=\mathrm{k}+1$	124	6540	ALPMAI 1123.14159	182
	1F(AZRR(N+1)-R1331,332,332	125		GO T0 650	183
3310	CX(K) $=A X(N)$	126	655 :	ALPHA1 $11=3$.	184
	CY(K)=AY(N)	127		6010650	185
	CZ (K) $=A Z(N)$	128	6590	argacssill	186
	LA=1	129		LMa 1	186 187
	GO 10312	130	1990	IFIARG1803.8C2.8C2	187
3340	$\mathrm{k}=\mathrm{k}+1$	131	8006	Llel	188 189
	60 to 350	132		ARG $=-A R G$	189
3320	(X $(\mathrm{k})=\mathrm{Ax}(\mathrm{N})$	133		6010863	190
	CY(K) $=A Y(N)$	134	8.2	LLod	191
	$\mathrm{CZ}(\mathrm{K})=\mathrm{AZ}(\mathrm{N})$	135	8630		192
	($\mathrm{X}(\mathrm{K}+1)=A X(N+1)$	136	8031	A $31+A 21+A 11+A C$	193
	CY($\mathrm{X}+1)=A Y(\mathrm{~N}+1)$	137		PHI2-SORTF (10-ARG)	194
	C2 $(\mathrm{K}+1)=A 2(\mathrm{~N}+1)$	138		ANGLE PPHIEPH 12	195
3500	continue	139		IFILL-1) $1010,815,820$	196
	If (K-2 1671,671,620	140	0150	ANGLE=3.14159-ARGLE	197
6200	BY=R*SNTHR C CSALR	141		GO TO 810	198
	$B X=R \pm$ SNTHR ${ }^{\text {SNALR }}$	142	8200	PAUSE 9877	199
	BZ=R*CSTHR	143	8100	IFILM-1)840,850,860	200
	$\mathrm{Cx}(\mathrm{K}+1)=\mathrm{Cx}(1)$	14.4	B40 0	PAUSE 9887	201
	$\mathrm{CY}(\mathrm{K}+1)=\mathrm{CY}(1)$	145	8500	ALPHAl ${ }^{\text {I }}$ ANGLE	202
	CZ(K+1) $=(2(1)$	146		60 70650	203
	D0 640 1=10k	147	658 -	IFICSS $111+1.00011656,654.654$	204
		148	6570	IFICSS(I)-1.0001)655,653,656	203
1		149	6560	Pause 1111	206
2	C2(I))	150	6300	continue	207
		151		D0 660 jelok	208
	$1) \pm(\mathrm{CX}(1+1)-\mathrm{BX})+\mathrm{C} 2(1+1) *(B X-$	152		D0 $660 \mathrm{~J}=103$	209
2	Cx(1)]	153	6600	E(1.J)=E(IPJ)*ALPHAII)	210
		154		D0 665 l=10k	211
) $01 \mathrm{CY}(1+1)=$ BY $1+C \times(1+1)=1$ BY-	155		TMP $=E(1,1)$ TMP1	212
2	crill)	156		TMP2 $=$ E 11,2$)+$ TMP2	213
		157	6650	TMP 3 E $(1,3)$ +TMP3	214
1		158		TEMP = SORTF LTTMP 1*TMP 1+TMP 2*	215
	D0 $630 \mathrm{~J}=1.3$	159	1		216
6300	E(1) J)=E(1)JJ/AR(t)	160	2	+8248211	217
	D ε LX $=0 \mathrm{XX}-\mathrm{CX}(1)$	161.			218
	DELYu日Y-Cril)	162		+TMP 3*B2 1/TEMP	219
	OEL2*B2-C211)	163		61 $=14 \mathrm{P} 1{ }^{\circ} \mathrm{CSGMA}$-61	220

OEL2 $=A Z(2)=A 2(1)$
SIDEI*SORTF (DELX*DELX+DELY*DEL ...
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
$D E L X=A X(3)-A X(2) \quad 232$
DELXEAX(3)-AX(2) 233
DEL2EAZ(3)-AZ(2) 234
SIDE2=SORTF(DELX*DELX+DELY*DEL 235
SIDE2=SORTF (DELX*DELX $+D E L Y * D E L$
$Y+D E L 2 * D E L 21$
AREAA $=$ SIDE1*SIDE2 237
C 00000 AREA OF HEMISPHERE 238
AREABE.017453*R*(ALPH2-ALPHI)
1 * (RA-RB)
$A A G A B=S 1 * A R E A B /(A N * A N * 6.28318) \quad 241$ PUNCH ${ }^{\text {PRONO }}$, AREAA,AREAB, ...
1 AAGAB
$G O$ TO
END
244

CONE-TO-PLANE PROGRAM

The cone in this program can be a full cone, a frustrum, ment of a frustrum of a cone. The axis of the cone is on the the segment of the cone is defined, as in the previous progre angle (Alph 2-A1ph 1). The intersection of the conical surfz y axis is designated as $A H$, and the height of the cone is des BH. The base of the cone is always on the $x-y$ plane. The re base is designated as R (see Fig. 12). The plane is defined, previous programs, by the cyclic co-ordinates of the corner I cone-to-plane program differs somewhat from the preceding twc for curved surfaces. One of the differences arises due to tl each subdivision on the cone does not have the same area. It ceding programs, the dA term in equation (3.27) was removed : summation since the surface was divided into equal subareas. conical surface, however, each subdivision becomes smaller it the program proceeds toward the apex of the cone. As a resu: term cannot be removed from the summation in equation (3.27) area must be calculated for each subdivision. In addition t method used to calculate the co-ordinates of the center poin sub-areas, a major difference occurs in the horizon decision Since the conical surface does not present a constant radius
which to compare the co-ordinates of the corner points of the vector method was used to determine the plane's relative posit horizon of the point.

The vector method is accomplished by first calculating tl nates of the intersection point of a normal to the conical su: the origin. A unit normal to the conical surface from the or: then obtained. The x axis is then rotated so that the point: on the conical surface is contained in the $x-y$ plane. The x, co-ordinates of the corner points of the plane are then calcu respect to the new axes. A vector from the origin to each co: is then obtained, and from the dot product of each vector 80 , and the unit normal to the conical surface, a horizon decisio Figure 11 shows a projection of $p l a n e A B C D$ on rotated $x^{\prime}-y^{\prime} p$ point in question will. be on line GH and its horizon is the p taining line GH perpendicular to the page.

Fig. 11. Horizon Decision for Cone

If vector $\bar{O} \bar{D}$ is dotted with a unit vector along $O P$, the the result will be greater than the magnitude of the unit ver therefore, point D of the plane appears above the horizon of vector $\bar{O} \vec{A}$ is dotted with the unit vector along $O P$, the magnit result will be less than the magnitude of unit vector along ' of the plane will be below the horizon of point p. The co-o the intersection F will then be calculated. The process is all four points $A B C D$ of the $p l a n e$, and the polygon $E B C D F$ is of $A B C D$ that point P actually sees. The contour integration carried out for this polygon with reference to the original The block diagram and the Fortran program for cone-to-p uration factor follows.

Fig. 12. Cone-to-Plane Configuration

Obtain unit normal vector
from origin to conical surface
Cards 18-24

Obtain subareas on cone from angle and height subdivisions

Cards 33-39

Obtain cosine of angle of rotation to point in question and cal-
culate co-ordinates of corner points of plane for rotated axis

Cards 41-69

Obtain area of subdivision on surface of cone

Cards 77-87

Determine position of plane relative to horizon of point and calculate any intersections

Cards 88-154

Obtain x, y and z co-efficients for equations of $p l a n e s$ from point on cone to sides of polygon and calculate unit normal to each Cards 159-172

Obtain cosines of angles subtended at point on cone by sides of the polygon Cards 173-187

Obtain angle Alpha (N) for each of the above cosines Cainds 188-216

Multiply angle Alpha (N), by unit normals to planes

Cards 217-219

Multiply irradiation vector by normal to subdivision and area of subdivision and sum results
Cards 220-233

Obtain area of plane

Cards 237-248

Obtain product of area of cone and configuration factor from the cone to the plane and punch results

Cards 249-250

Fig. 13. Block Diagram of Cone-to-Plane Program

CONE-TO-PLANE PROGRAM

	CSALPE-VAP!
	$60-250$
231:	STALRE-VAR:
	CSALR = -VAD 2
	60 TO 2:0
2320	CSALR =-VAP2
	CSalpavar!
2500	Do 51C n=1,4
51:	
	AXR(S) 0 Axalil
	A2R(S) 4 LR (1)
	Q9.P?
	AH2: ${ }^{\text {a }}$ 。
	EYC=-DELH/2.
60.6	20671 M1-1.J2
	TMPl-c.
	TMP2=0.
	TMP 3-0.
	RB1-RB
	BYC=BYC*DELH
	AH2 $=$ AH2 2 OELH
	RCOR-TEMP1-BYC
	RE®R-TEMP1*AH2
	ANT2-RB14RE
1	(RB1-RB)]
	darea=antleant ${ }^{\text {a*ART3 }}$
	BX=RCOCSALR
	BZ-RC*SMALP
	$\mathrm{k}=0$
	DO $350 \mathrm{~N}=1.4$
\bigcirc	IF(D0T) 310,302.302
302310	IFIDOT-AMOO1310.320,330
	DOT-ABAR-AXR(H+: $)+B B A R \bullet A Y(N+1)$ IF(DOT) 350.311 .311
311312	(IFIDOT-AMOO) $350,350,312$
	C $\mathrm{k} \times \mathrm{K}+1$
	LB=0
3130	- K1=K+L
	TEKP $2=A \times R(N+1)-A X R(N)$
	SLP2-AH/R
	1F 1TEMP 2 1400,401,400
400	
	$X R=(A H+A X R(H) *$ (PI-AY(N) $) /$
	1 (5LP $1+5 L P 2$)
	YR=AH-SLP2*XR
	2R=($(X R-A X R(N))$ (ALR(H+1)-

TABLE IV (Continued)
$C Y(K 1)=Y R$
$C Z(K 1)=2 R+C S A L R-X R * S N A L P$.
316 O IFCLE-11350,333,317
317 C PAUSE 77777
220 DOT =ABAREAXRIN+1
IFICOT) $322 \cdot 321,32$!
210 IF (DOT-AMODI 327 ,323,325
$3210 \begin{aligned} & \mathrm{K}=\mathrm{k}+1 \\ & 32\end{aligned}$
$k=k+1$
60 to 350
$3230 \quad L A=0$
CX(K)=AX(N)
$C X(K)=A X(N)$
$C Y(K)=A Y(N)$
$C Y(K)=A Y(N)$
$C Z(K)=A Z(N)$
IFILA-1)330,327,326
326 O PAUSE 87777
$3270(x(k+1)=A x(N+1)$
$C Y(X+1)=A Y(N+1)$
$\mathrm{CZ}(\mathrm{X}+1)=\mathrm{AZ}(\mathrm{N}+1)$
60 TO 350
3250
$\begin{array}{lll}\text { che } \\ \text { GO } & 324\end{array}$
32: $0 k=k+1$
DOT=ABAR 4 AXR (N+1) + BEAREAY (M+1)
IFIDOTI331,332,332
IF(DOT-AMOD) 331.334,33
3310 (X(K) $=A X(M)$

$C Z(K)=A Z(M)$

3330
$\begin{array}{cc}K+1 & \\ \text { TO } & 350\end{array}$
3340 (xik)=AXf(M)
CY(K)=AY(N)
$C Z(K)=A Z(N)$
$C X(K+1)$
$=A X C$
CY($K+1)=A Y(K+1)$
CZ(K+1)=AZ(N+1)
350 O COMTINUE
0. Cx(K+2)6700670.620

CY($\mathrm{K}+1)=\mathrm{Cx}(1)$
$\mathrm{CY}(\mathrm{K}+1)=\mathrm{CY}(1)$
Cz(k+1)=cz(1)
00640 1=10k
E(1)1)=BYCC(CZ(1)-CZ(1+1))
$1+$ CYil1e(CZ(1) 41 -B2)+CY(141)
E(1,2)=BZ:(CX(1)-CX(1+1))

33: 2 §(1.J) $=5(1, J 1 / \cdot R(1)$
DELX=ex-Cx|1)
DELVERV-Cri!

x0~5!rodecramsir
-OELL-OETZ
CSTHx 11) $05[x / 2$
$5400 \operatorname{CSTH} 2111=051210$
$\operatorname{CST} 4 \times(5+1) \cdot \operatorname{cSt} \cos 111)$
cstmactaliacstmati)
650 $1=1$
00650 lelir
Cstuylliocsimyllolitile:1*
CSTHY(1)- CSTHY: 1+1)+CSTHZ(1)
CSTH211+1
Ificss(1)

- 1 (CSS 1111651.657 .653

652 a ALPHA111=1.57079
GO 70650
$554 O$ ALPHA(1)=3.14159
GO TO 650
6550 alphalli=0.
590 GO TO 650
199 O IFIARGIEOO,801,802
800 O LL=1
ARG=-ARG
010 PAUSE 9777
8020 LLeo
$3 \mathrm{Cl}_{3} \mathrm{O}$ PHI=ARGOIARGOI:RGOIAGOARG4
031 A $31+A 21+A 11+A C$
PHI2=SORTFI $1,-\Delta R G$
AMGLE-PHISPH 12
IFLLL-11810,815,820
AMGLE=3.14159-ANGLE
8150 AMGLE=3014159-ANG
810 O ALPHACII-ANGLE
8100 ALPMA (1)=AN
820 GOUO 650
PAUSE 9877
658 O If (CSS (1) +1.0001)656.654.654
657 O IFICSS111-1.00C11655,655,656
6566° PAUSE 111
- CONTINUE

DO $660 \quad 1=1, K$
00660 Jal.


```
TABLE IV (Continued)
```

CSGMA $=$ CON1 + R*BYC/TEMP3 229
$G 1=(T M P 1 * C S G M A) * D A R E A+G 1$ 230
$G 2=T M P 2 * C S G M A * D A R E A+G 2$ 231
G3 $=$ TMP3*CSGMA*DAREA 63 232
6700 AREAB $=A R E A B+D A R E A$ 233
6710 CONTINUE 234
672 O CONTINUE 235
S1=SORTF(G1*G1+G2*G2+G3*G3) 236
C 0000 O AREA OF PLANE 237
$D E L X=A X(2)-A X(1)$ 238
$D E L Y=A Y(2)-A Y(1)$ 239
DELZ=AZ(2)-AZ11) 240
SIDE1=SQRTF(DELX*DELX+DELY* 241
1 DELY+DELZ*DELZ 242
$D E L X=A X(3)-A X(2)$ 243
$D E L Y=A Y(3)-A Y(2)$ 244
$D E L Z=A Z(3)-A Z(2)$ 245
SIDE2=SQRTFIDELX*DELX+DELY* 246
1 DELY+DELZ*DELZ 247
AREAA=SIDE1*SIDE2 248
anrab-et, ${ }^{\text {an }}$ an

CHAPTER IX

SUMMARY AND CONCLUSIONS

The purpose of this study was to provide the means for d the radiation configuration factor for various typea of surfa using contour integration theory, it was possible to eliminat dable task of evaluating the double integral in equation (1.6 a configuration factor for two surfaces. With the use of vec equation (1.6) can be transformed into an easily evaluated co gral.

The computer programs that were developed using the cont gration theory provided results with good accuracy. The diff sults obtained were checked with values obtained by the use integral in equation (1.6). In reference (2) the author pres of tables and graphs giving configuration factars for various relationships obtained through the use of the integral in (1. figuration factors were calculated with the programs presente report and checked with the results listed in the above refel results were in agreement for the configurations calculated. to-plane program was checked by comparing values obtained for figuration factors of planes intersecting at finite angles, lel planes. The cylinder-to-plane program was checked also 1
with a configuration given for a line source parallel to a cylinder of equal length. Since the program will also calculate a configuration factor for a segment of a cylindrical surface, a configuration factor was calculated for a thin (approximately ten degrees) segment of a cylinder and a plane. The result was compared with the configuration factor obtained from the plane-to-plane program for a narrow strip and a larger parallel plane. The surfaces were so devised that the only difference in the surfaces for both programs was the slight curvature in the cylindrical segment. The results from the two programs compared favorably. The sphere-to-plane program was checked in the same way as the previous two programs. Since the tabulated configuration factors for spheres and planes in reference (2) was very limited, the program was further checked by describing a narrow strip on the surface of a sphere of large radius irradiating a parallel plane. Again the geometrical relationship between the spherical strip and the plane approximated the narrow strip and larger plane of the plane-to-plane program. The results again compared satisfactorily with the results of the previous two programs. The sphere-toplane program was checked further by describing a full sphere and a plane in such a way that the plane represented one side of a cubical box enclosing the sphere. The answer to this particular configuration is known from logical considerations. If a sphere is located in the center of a cubical box, the energy reaching any side of the box would be exactly one-sisth of the total energy leaving the sphere, since all of the energy leaving the sphere will be intercepted equally on all sides of the enclosure. Bven though the sphere was approximated by only one hundred points, (the
parameter j2 was ivon a value of ten) half of which cannot "see" the plane, the rosulting contiguration factor was very close to one-sixth. The cone-to-plane program was checked by describing a very tall cone with a small base. A irustrum of the cone closely approximated the cylinder used in the cylinder-to-plane program. The results obtained for the configuration compared very favorably with the data listed in reference (2) and the results obtained from the cylinder-to-plane program. The program was checked further by describing a narrow strip on the conical surface and a larger plane, the configuration approximating those used in checking the previous threc pregrams. As was expected, the result was very close to being the same as for the similar configuration in the cylinder-to-plane program and compared favorably with the results obtained from the plane-to-plane and sphere-to-plane programs for that configuration. For comparision purposes, some of the results obtained with the programs are presented in Table V, along with values obtained from reference (2). The parameter $J 2$ is also listed. It was found during the program evaluation that a much larger value of $J 2$ had a comparatively small effect when the surface that is subdivided is small in comparison to the other surface. The surfaces that are subdivided, as mentioned previously, are the B plane in the plane-to-plane program and the curved surfaces in the remaining programs. This fact can be utilized to save computer time when possible.

TABLE V

COMPUTER PROGRAM RESULTS

Description of Configuration	J2	F_{1-2}	Desired Result	Source of Result
1. Two planes each 30 by 30				
intersecting at angle of:				
30°	3	. 63968	\%	
	6	.62579	. 6202	Ref. 2
2. 60°	3	. 37542		
	6	. 37255	. 3712	"
3. 90°	3	. 19918		
	6	. 19983	. 20004	"
4. 120°	3	. 08493		
	6	. 08615	. 08700	"
5. 150°	3	. 02666		
	6	. 02112	. 02151	11
6. Two parallel 30 by 30				
planes 30 units apart	3	.20326		
	6	.20006	. 19982	"
7. Narrow strip 0.16 by 30				
and parallel plane 30 by				
60	3	. 48721	available	
8. Narrow strip 0.16 by 30				
and plane 30 by 60 per-				
pendicular to one end	3	. 21648	available	

Description of Configuration J2 $\quad \mathbf{F}_{1-2}$| Desired |
| :---: |
| Result |

9. Full cylinder and narrow $\begin{array}{llll}\text { parallel plane } & 10 & .19480 & 0.200\end{array}$
10. Narrow cylindrical segment and parallel plane 30 by 60 3
.47099
.48721
11. Narrow cylindrical segment and plane 30 by 60 perpendicular to one end 3 . 21460
.21648
12. Full sphere and one side of cubical enclosure
10.16454 .16667
13. Narrow spherical strip and parallel 30 by 60 plane 3.47052 .47099
14. Narrow spherical strip and30 by 60 plane perpendicu-lar to one end3
.21566
.21460
15. Narrow conical strip and parallel 30 by 60 plane 3 .47102 .47099
16. Narrow conical strip and30 by 60 plane perpendicu-lar to one end3
.21062 .21460
17. Frustrum of full cone and narrow parallel strip 10 . 19602 . 19480

CHAPTER X

RECOMMENDATIONS FOR FUTURE STUDY

The programs presented in this report detail a method by which the configuration factor can be calculated between two surfaces with an electronic computer. In the last three programs, curved surfaces were presented containing areas that could not "see" the second surface, and a horizon decision had to be made for each point on the curved surface. If only a portion of the plane could be seen, it was a fairly simple matter to calculate the intersection points. If the second surface is another curved surface rather than a flat plane, complications rapidly become apparent. For example, consider a simplified case of two cylinders with parallel axes. It becomes more complicated to obtain the visible portion of the second cylinder from any given point on the first cylinder. In addition, the given point no longer "sees" a polygonal surface. The ends of the cylinder will be seen as a portion of an ellipse or as a full ellipse. The irradiation vectors at the given point will no longer be collinear. The integral in equation (3.22) is no longer an ordinary scalar one. A program was developed for two parallel cylinders with the above factors considered, but it exceeded the capacity of the computer and could not be checked. The program evaluated the integral in (3.22) numerically, and used the vector method in the horizon decision. By the
use of the vector herizon decision method and a numerical method of evaluating the integral (3.22), the theory of contour integration can be extended to develop programs covering a large amount of surfaces more complicated than developed in this report.

The programs are limited to calculating the configuration factor for diffuse surfaces where the intensity is independent of the angle from normal, more commonly referred to as Lambert radiators. Many engineering materials do not radiate as Lambert radiators. This fact can be taken into consideration in the calculation of the configuration factor by a modification to the programs. If the intensity can be expressed as a function to the angle from the normal to the surface, it would be possible to incorporate the necessary changes in the programs to accommodate non-Lambertian radiators.

A SELECTED BIBLIOGRAPHY

1. Moon, Parry. The Scientific Basis of Illuminating Engineering, New York, McGraw Hill Book Company, Inc. (1936) Chapter X.
2. Hamilton, D. C., and Morgan, N. R. "Radiant-Interchange Configuration Factors" NASA Technical Note 2836, (1952).
3. McAdams, William H. Heat Transmission, New York, McGraw Hill Book Com`any, Inc., (1954) Chapter IV.
4. Eckert, E. R. G., and Drake, Robert M. Jr. Heat and Mass Transfer, Now York, McGraw Hill Book Company, Inc., (1959) Chapter IV.
5. Krieth, Frank. Principles of Heat Transfer, Pennsylvania, International Textbook Company, (195S) Chapter V.
6. Sokolnikoff, I. S. and Redheffer, R. M. Niathematics of Physics anc iocdern Engiacering, New York, McGravy Hill Book Corrany, Inc., (1953).
?. Salmon, Georg: A Treatise on the Analytic Geometry of Three Dimensions, London, Longmans Green and Co. (1914).
7. Parker, J. D. "Radiation Heat Transfer" Lecture notes, College of Engineering, Oklahoma State University. (1960).
8. Hastings, Secil. Approximations for Digital Computers Princeton, New Jersey, Princeton University Press, (1955) p. 160.

APPEND IX A

VECTOR IDENTITY

The vector identity used in Chapter III in the mathematical derivation of the contour integral (footnote 1) will now be shown to be true. The identity is

$$
\begin{equation*}
\frac{\vec{r}_{1}}{r^{2}}(\overrightarrow{\mathrm{~N}} \cdot \overrightarrow{\mathrm{r}})=\frac{1}{2} \operatorname{curl}\left(\frac{\overrightarrow{\mathrm{r}}_{1}}{\mathrm{r}} \times \overrightarrow{\mathrm{N}}\right) \tag{A.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}_{1}=\text { unit vector along } \mathrm{r} \\
& \mathrm{r}=\text { magnitude of vector } \mathrm{r} \\
& \overrightarrow{\mathrm{~N}}=\text { arbitrary unit vector }
\end{aligned}
$$

The expansion of the vector cross product in equation (A-1) yields

$$
\begin{equation*}
\frac{\vec{r}_{1}}{r} \times \vec{N}=\frac{1}{r}\left(r_{y} N_{z}-r_{z} N_{y}\right) i+\frac{1}{r}\left(r_{z} N_{x}-r_{x} N_{z}\right) j+\frac{1}{r}\left(r_{x} N_{y}-r_{y} N{ }_{x}\right) k \tag{A.2}
\end{equation*}
$$

Where the subscripts denote the x, y, and z components of the respective unit vectors. Unit vector \vec{r}_{1} can be written as
cr

$$
\begin{align*}
& \vec{r}_{1}=r_{x} i+r_{y} j+r_{z} k \\
& \vec{r}_{1}=\frac{x}{r} i+\frac{y}{r} j+\frac{z}{r} k \tag{A,B}
\end{align*}
$$

where x, y, and z are the components of vector r. Using the relation (A.3) in equation (A.2) and obtaining the curl indicated in (A.1), the result is

$$
\begin{align*}
\operatorname{curl}\left(\frac{\vec{r}_{r}}{r} \times \vec{N}=\right. & \frac{\partial}{\partial y}\left(\frac{x}{r^{2}} N y-\frac{y}{2} N x\right)-\frac{\partial}{\partial z}\left(\frac{z}{r^{2}} N x-\frac{x}{r^{2}} N z\right) i \\
& +\frac{\partial}{\partial z}\left(\frac{y}{r^{2}} N z-\frac{z}{r^{2}} N y\right)-\frac{\partial}{\partial x}\left(\frac{x}{r^{2}} N y-\frac{y}{r^{2}} N x\right) j \\
& +\frac{\partial}{\partial x}\left(\frac{z}{r^{2}} N x-\frac{x}{r^{2}} N z\right)-\frac{\partial}{\partial y}\left(\frac{y}{r^{2}} N z-\frac{z}{r^{2}} N y\right) k \tag{A.4}
\end{align*}
$$

Since \vec{N} was defined as an arbitrary unit vector it is constant with respect to the differentiation. Performing the differentiation in equation (A.4) and simplifying, the result is

$$
\begin{align*}
\frac{1}{2} \operatorname{curl}\left(\frac{\vec{r}_{j}}{r} \times \vec{N}\right)= & -\left(\frac{x^{2} N x}{r^{4}}+\frac{x y N y}{r^{4}}+\frac{x z N z}{r^{4}}\right) i \\
& -\left(\frac{x y N x}{r^{4}}+\frac{y^{2} N y}{r^{4}}+\frac{y z N z}{r^{4}}\right) j \\
& -\left(\frac{x z N x}{r^{4}}+\frac{y z N y}{r^{4}}+\frac{z^{2} N z}{r^{4}}\right) k \tag{A.5}
\end{align*}
$$

The left hand side of equation (A.1) when expanded yields
$\frac{\vec{r}_{1}}{r^{2}}\left(\vec{N} \bullet \vec{r}_{1}\right)=\frac{1}{r^{2}}\left(\frac{x}{r} i+\frac{y}{r} j+\frac{z}{r} k\right)\left(N x \frac{x}{r}+N y \frac{y}{r}+N z \frac{z}{r}\right)$
or

$$
\begin{align*}
\frac{r^{2}}{r^{2}}\left(N \bullet r_{1}\right) & =\frac{1}{r^{4}}\left(x^{2} N x+x y N y+x z N z\right) i \\
& +\frac{1}{r^{4}}\left(x y N x+y^{2} N y+y z N z\right) j \\
& +\frac{1}{r^{4}}\left(x z N x+y z+z^{2} N z\right) k \tag{A.7}
\end{align*}
$$

The minus sign in equation (A.) will disappear due to the direction taken for vector \vec{r}_{1}. Vector \vec{r}_{1} was taken as a vector pointing from the variable point on the surface S toward the fixed point P rather than in the usual opposite sense.

APPENDIX B

CORRELATION BETWEEN RADIATION AND ILLUMINATION

Much of the theory involved in the derivation of the contour integration method of calculating configuration factors has its background in illuminating engineering. Since light is merely radiant energy with wave lengths in the visible portion of the frequency spectrum, the theoretical considerations are identical. The only difference in the energy flux considered in the field of illumination and the energy flux considered in the field of radiation heat transfer is the wave length, or the frequency range in which the radiant energy lies.

An illuminating engineer is more concerned with the visual effect produced when a ray of energy strikes a surface, whereas a heat transfer engineer would be interested in the temperature effect due to the ray. As a result of this difference in interest, the units and definitions used in the two fields are not, in most cases, directly applicable to both fields.

A ray of radiant energy incident on a surface appears the same to the surface regardless of whether or not it is in the visible frequency range. The only difference can occur in the magnitude of the effect on the surface. An illuminating engineer is interested in the luminous flux rather than the radiant flux striking the surface. Luminous flux is only that part of the radiant flux that invokes a sensation to the eye. Since
the eye can detect a difference in brightness, color, and saturation, or paleness of the color, an illuminating engineer needs three quantities with which to calculate the visual effects in which he is interested. In contrast, the heat transfer engineer, in most cases, is mainly interested in only one quantity - the total energy absorbed by the surface. The tools of the illuminating engineer - the equations and mathematical formulas are more often expressed in terms of luminous flux or photometric quantities. A correlation exists, therefore, between the quantities associated with heat transfer calculations and illumination calculations. The range of wavelengths considered for heat transfer calculations is much greater than the visible spectrum. With the exception of luminous efficiencies and some specialized quantities existing in one field only, the correspondence between the quantities used in the two fields is presented in Table VI.

CORRELATION BETWEEN RADIATION AND ILLUMINATION QUANTITIES

VITA

Ricardo de Bastos
Candidate for the Degree of
Master of Science

Thesis: COMPUTATION OF RADIATION CONFIGURATION FACTORS BY CONTOUR INTEGRATION

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born at Newark, New Jersey, September 20, 1937, the son of Manuel N. and Anna de Bastos.

Education: Attended grade school in Newark, New Jersey; graduated from East Side High School, Newark, New Jersey in 1955; received the Bachelor of Science degree from Oklahoma State University with a major in Mechanical Engineering in May, 1959; completed the requirements for the Master of Science degree in August, 1961.

Professional experience: Employed by Resina Automatic Machinery Co. in Brooklyn, New York for the summers of 1955, 1956, and 1958 as a draftsman and as an assembler; employed by Douglas Aircraft Co. in Santa Monica, California for the summer of 1957 as an engineering aide; employed by Radio Corporation of America Space Laboratory in Princeton, New Jersey, from February, 1960 to September, 1960.

[^0]: 1 See Appendix B.

[^1]: 1
 See Appendix A.

