COMPUTATION OF RADIATION CONFIGURATION

FACTORS BY CONTOUR INTEGRATION

By
RICARDO de ﬁASTOS
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1959

Submitted to the faculty of the Graduate School of
the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
August, 1961



osu
Collectien



COMPUTATION OF RADIATION CONFIGURATION

FACTORS BY CONTOUR INTEGRATION

Thesis Approved:

vz

%7@&@5/% A%Z@/ |

/ é " ¢/2%% clee ~

/Dean of the Graduate School

504381
ii

UARLAHO?
STATE UNIVE
LIBRAR)

NOY 7]



ACKNOWLEDGEMENT

I am grateful to have had the opportunity to receive my graduate
study here at Oklahoma State University. I would like to thank
Dr. James H. Boggs for awarding me the graduate assistantship that
made it possible to do so.

I especially would like to thank my adviser, Dr. John A. Wiebelt,
for his guidance, advice, and encouragement, and for the countless
hours he willingly spent with me during the past year.

I also would like to thank Professor William Granet for his
personal interest in the problems encountered in the development
of the computer programs, and for the valuable advice and assistance
he gave me.

I want to express my thanks to the Sandia Corporation for the
financial sponsorship of the project, and to the many people who

contributed to the successful completion of this thesis.



TABLE OF CONTENTS

Chapter

Page
I. INTRODUCTION . . . . & & « o & o o o o o 1
II. EXISTING METHODS FOR COMPUTATION OF RADIATION CON=-
FIGURATION FACTORS . . . . +« & & « o o o =+ = 6
ITI. CONTOUR INTEGRATION . . . . . . & « « « o & = 9
IV. ADAPTION OF CONTOUR INTEGRATION TO AN ELECTRONIC DIGITAL
COMPUTER . & .. & v v 4 v v 4 o« & o o o = 20
V. PLANE-TO-PLANE PROGRAM . i % % § oy e e owm o w 8 25
VI. CYLINDER-TO-PLANE PROGRAM . . . ., . . . + « o = 31
VII. SPHERE-TO-PLANE PROGRAM ., ., , . . . + .+ « + = 38
VIII. CONE-TO-PLANE PROGRAM . ., . . . . & &« o o o« = 45
IX. SUMMARY AND CONCLUSIONS., . . . . . .« o o o + o= 23
X. RECOMMENDATIONS FOR FUTURE STUDY . . . =+ « =« + = 58
SELECTED BIBLIOGRAPHY 60
APPENDIX
A Vector Identity 61
B Correlation Between Radiation and Illumination 64

iv



LIST OF TABLES

Table
I. Plane-to-Plane Program . . + « « «
II, Cylinder-to-Plane Program. . . « .
ITI, Sphere-to-Plane Program. . . . . .
IV. Cone-to-Plane Progréam. « « « «» + &

V. Computer Program Results . . . . .

Ll

VI. Correlation Between Radiation and Illumination

Quantities e ® ® & 8 * ® * ® s ®

Page
29

36

50

56

66



LIST OF FIGURES

Figure Page
1. Geometric Illustration of Configuration Factor . « « « « ¢« « 2
2. Illustration of Vector Concepts for Radiation, . + « +:+ « o 10
3. Contour Integration for Surface S. « « o« « o « o o s s « o +» 16
4. Contour Integration for Polygon Source + « o« « o o o o o o o 17
5. Plane-to-Plane Configuration . + « « « « o o o o ¢« o o s o o 27
6. Block Diagram of Plane-to-Plane Program. o « « « s » o « o o 28
7. Cylinder-to-Plane Configuration. + o« « « o o » o s s o s o s 34
8. Block Diagram of Cylinder-to-Plane Program . « . « « « « o« « 35
9. Sphere-to-Plane Configuration. , + + « o o o « o« ¢ o o o o o 40
10. Block Diagram of Sphere-to-Plane Program . . « « « « « « » « 4l
11. Horizon Decision £Or COME. « « « « o « « o s o o o o o o o o 46
12. Cone-to-Plane ConfiguratioN: « o« « « o « « o o« o o s o o « » 48

130 Block Diagram for Com‘to"?lam Progl‘ﬂm. e ® & ® & 8w @ ® ® @ 49

vi



CHAPTER I
INTRODUCTION

It is quite a simple matter to obtain the net exchange of thermal
radiation between two black surfaces separated by nonabsorbing media
once several factors are known, i.e,, the temperatures of the surfaces
under consideration, and the geometric relationship of the surfaces. All
bodies at temperatures above absolute zero will continuously radiate heat

to their surroundings, even though they may at the same time be absorbing

more heat than they emit. The net exchange between a black body and its

surroundings is merely the difference in the energy radiated from the body
and the energy received from the surroundings.

In order to determine the net energy exchange between two bodies, the
shape and orientation of the bodies must be considered. The object of
this study was to provide a rapid and accurate determination of the
geometric relationship between various surfaces, This relationship is
referred to as the configuration factor. The configuration factor from

surface Al to surface AQ, written as F, _, is defined as the fraction

1-2

of radiant flux leaving surface Al directly incident on surface Ae.
To obtain a mathematical expression for the geometrical relation-

ship between two surfaces, consider a small element of surface dAl on Al

(see Fig, 1). If a hemisphere is placed over dA1 with dAl at the center,

the hemisphere will intercept all of the radiation beams emitted by the



Fig. 1. Geometric Illustration of Configuration Factor



area dA,. A point directly above dAl on the hemisphere will see dAl

without distortion, but any other point on the hemisphere will see

the projected area of dA].’ f.e., dAl cos BI where Bl is the angle

between the normal to dAl and the line connecting the center of dAl

with the point on the hemisphere. The radiant energy emitted from dAl

per unit of time can be determined from the definition of radiation

intensity. Radiation intensity, I, is defined as the radiant energy

emitted by a surface per unit solid angle, per unit time, and per unit
area of emitting surface perpendicular to the direction of the ray.

The energy emitted from dAl reaching an area dAe' on the hemisphere is

then

dql-H = I cos Bl dA1 dml-H (1.1)

where

Il

qu-H radiant energy emitted from dAl per unit time

I = intensity of radiation as defined above

By = angle between ray and normal to dAI
dAé
dw - —= golid angle subtended at dA. by dA' on the
1-H r2 1 2
hemisphere

r = radius of hemisphere
If surface Al is assumed to be a diffuse emitter, where the inten-
sity, I, is independent of the direction of the ray, the total energy

emitted per unit time by Al will be
Ql-H = I .I‘H cos Bl'dwl_n_ dA1 (1.2)
where the integration is performed over the hemisphere. If clA2 is take

as a surface element on Ae, the subtended solid angle dml-a is the pro-

jected area of dAE in the direction of the incident radiatiom divided



by the distance between dA1 and dA2 squared or

4 _ I cos Bl cos ?g d.Al df?_ (1.3)
4.2 2 '
where, 52 = angle between normal to dA2 and incident radiat

S = distance between dAI and d.A2.
Integrating equation (1.3) over both surfaces, the total energy
unit time leaving surface Al and reaching surface A2 is

cos B, cos B, dA, da, (1.4)
1 R
S

Q™= * Ial L‘z

From the definition of the configuration factor and equations (1.2) a

(1.4) there is obtained,

I IAI IAE cos Bl cos BE dA2
F - s° (1.5)

1 [ cos b, da aw o

The denominator of equation (1.5) integrated over a hemisphere yields

ﬂA1 I, so the mathematical expression for the configuration factor fo

surfaces Al and A2 becomes:

F

S [ PP (1.6)
1-2 ‘ltAl Al Aa SQ

Equation (1.6) has been evaluated for a number of configuratioms, how
ever, for many geometrical relatiomships and for curved surfaces, the
analysis becomes quite complex and tedious. Integration of equat;on
(1.6) can be accomplished by dividing the surfaces into small sub-are
and numerically evaluating the double integral obtained. The method
in this study to obtain the configuration factor was obtained from a

approach outlined in reference (1). The method involves subdivision



of one of the surfaces into small areas and subsequent computation of
irradiation of the second surface by the subarea. This computation
involves the evaluation of a contour integral, and the procedure is
repeated for each small area, resulting in the average configuration
factor from all of the small areas of the subdivided surface to the
second surface,

By the use of the reciprocal relationship,

A Fl— = A2 Fa

1 1-2 2-1 1.7m
where,
Al = Area of surface 1
AE = Area of surface 2
F2_1 = Configuration factor from surface 2 to surface 1

the configuration factor for surface 2 to surface 1 can be obtained
if the areas of the surfaces in question and the configuration factor
for surface 1 to surface 2 are known.

The results of this study are in the form of four electronic com-
puter programs in the Fortran language. The programs were written for
the IBM 650 digital computer, but with small additions, they can be
made compatible with IBM 704 Fortran, By simply specifying the geometric
descriptions required to define the surfaces as the input of the programs
a configuration factor will be obtained that is reasonably accurate for
engineering applications. A provision has also been provided in the

program to increase the accuracy of the result as required.



CHAPTER II

EXISTING METHODS FOR COMPUTATION OF

RADTATION CONFIGURATION FACTORS

There are several methods by which configuration factors can be
computed, however, they mainly are limited to specialized shapes and
geometrical relationships, and may involve making some simplifyi-ng '
assumptions, Some of the methods and approaches are discussed here
along with their limitations.

As Previously mentioned, equation (1.6) can be evaluated numeri-
cally by subdividing the surfaces inmvolved into small areas and eval-
uating the double integral obtained. This method involves consider-
able calculations, and it is impracticable for any but very simple
surfaces. D, C, Hamilton and W. R. Morgan have developed the config-
uration factor equations for several geometrical relationships in
reference (2). A series of curves and tables are presented as the
results of numerical evaluation of the equations. The configuration
factors are given as functions of dimensionless ratios of the describi
geometrical parameters of the configurations. Results are tabulated
for planes intersecting at various angles, and for configurations inv«¢
ing plane, line and point sources. Configuration factors are also gix

for cylinders with point and line sources. The information presented ¢

be very useful 'in certain cases, but due to the mathematical complexii



involved in obtaining the configuration factors, the geometrical relat
ionships presented are limited to specialiged cases.

The tabulated results in reference (2) can be extended to a
certain extent to cover more general geometrical configurations by the
use of geometric flux algebra. With the aid of several basic rules of
flux algebra, Hamilton and Morgan show how the configuration factors «
8 nonintersecting and nonparallel segments of planes can be expanded ¢
functions of the configuration factors for intersecting planes. By
dividing the Planes into pairs of areas with known configuration factc
the desired configuration factor can be found arithmetically from the
known factors. This method is limited to isothermal surfaces, also ti
geometrical relationship must be reducible to known relationships. Ti
procedure involves s in some cases, the squaring and adding of numbers
differing by several orders in magnitude which in turn are obtained fi
a graph. The error in the final result may therefore be many times ti
error in reading the curves.

William H. McAdams, in reference (3), pp. 66-68, develops & methe
by which the configuration factor can be evaluated directly for some
cla'sse.s of irregular surfaces. Areas of infinite extent in one direct
generated by a straight line moving always parallel to itself, will h:
identical cross sections on planes normal to the infinite dimension.
one of these cross sections he constructs lines representing tangents
between pairs of points, reducing the surface into an equivalent simp!
enclosure. From a simple relationship between the lines drawn to red:

the complex surface to the equivalent simple surface he obtains the



configuration factor.

If one of the surfaces is small in relation to the aother and can
considered a point source, the unit sphere method can be used. A hem
Phere of unit radius is constructed about the point source, and the
projection of the second surface is obtained on the surface of the
hemisphere. This projection is then transferred to the base of the
hemisphere. The configuration factor is then the projected area on tl
base of the hemisphere, divided by the area of the base, or s. The wi
sphere method is useful for simple geometrical configurations, but in
many cases the method does not lend itself readily to numerical calc-
ulations,

Other methods of obtaining the configuration factor exist, emplo)
ing photography, mechanical integrators, or some type of optical pro-

jection. These methods require specialized equipment or models, and

can be time consuming.



CHAPTER III
CONTOUR INTEGRATION

As was pointed out in the preceding chapter, no readily availal
method exists for obtaining the configuration factors for all types !
surfaces and which does not involve extemsive computation or error-
inducing simplifying approximations. In many cases difficulty arise:
from the evaluation of the double integral (1.6). It is possible
through the use of vector calculus to replace the double integral of
(1.6) with a single integral, saving a considerable amount of labor.

In reference (1), the author describes a method whereby the
substitution is made possible. It has been developed for the cal-
culation of illumination from light sources, but it can be readily
adapted for radiation heat transfer calculatioms. . In order to dem-
onstrate the vector relationships of thermal radiationm, consider a
point source, S, placed at the origin of a system of co-ordinates (se
Fig. 2). If the intensity of the source in the direction of point P
is I, then the irradiation of a surface dA2 parallel to the x-y plane
froem a point scurce is |

G'= I cos 8, dw G.1)

I cos 6 dA ///42
z 2

intensity of source along r

where 1

r = distance from source to point P

1 See Appendix B.



Fig., 2. Illustration of Vector Concepts for Radiation



8z = angle from normal to dA2 to z axis

dAE area of surface dAe.
Since this is the irradiation of a surface whose normal is
z direction, it will be denoted as Gz. Using the above reasoni

values of the irradiation on surfaces at P whose normals are in

Yy, and z direction are, respectively,

Ox'= IdA_ cos Ox

Gy = IdA2 cos Oy

Gz' = IdA2 cos 6z

2
r

where 6x, 6y, 0z are the angles between r and the three co-ordi

axes. The coefficient of the cosine term, IdAQ, is the same in

2
T

three equations, and is equal to the irradiation of a surface pe

pendicular to r. It follows that Ex, Ey, and Gz are components

vector whose magnitude is IdA2 and whose direction is from S to

2
r

along r. In vector notation, the irradiation at P is
G'= Gxi + Gyj + Gzk

If _i-l is a unit vector along r,
8= %, 148

1 2

2
r

If S is a surface rather than a point source, each element of tt

—y
surface provides an irradiation vector dG at point P, and the tc



irradiation vector at P due to the entire source is the vector sum of

all the component vectors. For a single area element dAl of a surfac
source Al’
I cose dA,e dAl

dG = = £ (3.7
r dA,

where ;:'1 is a unit vector pointing from the particular element toward

and @is the angle between the normal to dAl and r. For the entire su

face source,

3 IJ_ _, cosg dA.1 3.8
= Hs 1 2
x

Equation (3.8) gives the value of the irradiation on a plane normal t
r at point P. The irradiation on any other plane at point P is obtai
by multiplying the absolute value of G, or |E| by the cosine of the a
between G and the normal to the plane.

Using the vector relationship in (3.8), it is now possible to ob
an expression for the configuration factor for an arbitrary geometric

relationship. The mathematical expression for the dot product betwee

two vectors 1is,

- -
Y

9 = I?ll |?11| cos ¢ (3.9

- . -—
where |r1|= absolute value of vector 1::l

|-l':1|= absolute value of vector ;1 normal to surface S
@ = angle between T. and n

1 1

If both ;1 and 31 are unit vectors, (3.9) becomes

- oy

= 01
rgn, cos o €}



Using the relationship (3.10) in equation (3.8) there is obtaiis

What is now desired is the reduction of the surface integral (3.
a more easily evaluated line integral around the boundary or con
of the surface S. This can be done with the use of Stokes' theo
Stokes' theorem relates the surface integral of the curl of a ve

quantity to the line integral of the quantity. Stated mathemati

.[s nl- curl A dr = Jc A-ds

—
where A = vector point function
—
n, = unit normal to surface S
ds = an element of the contour of surface S
dr == an element of area of surface S

If both sides of equation (3.11) are multiplied by an arbitrary 1

vector N; it becomes

N

‘?‘:1 — —
2 (rl' 1) -

r

ﬁ“a: II‘
J S

Since dot multiplication is associative, i.e., (tA)°*B = t(

3:'1
=

~
-

equation (3.13) can be rearranged as

NG - I L nl'

-r.

1 — -

L A A
;2@1-])]&1



It can be shownl that

r

i W TR G_l..as___l‘i) G.1
2 L~ 2 x !
Using this relation, equation (3.14) becomes
— " — 1 -r.l N
NG =1| 7. |3 curl (L2H)| aa (3.1
s 1 : = B

r —)
Using Stokes theorem with ( L%

N) substituted for A in equation (3
= -

equation (3.16) becomes

x
w5 [ e =
2 c r

The scalar triple product in (3.17) can be commted cyclically witho

altering the sign, and since ﬁ is constant with respect to the inte-

gration, (it is an arbitrary unit vector) equation (3.17) becomes

. ki
R - wE [ (D)

or, it follows,

3.1

é’--.‘!:- J‘cdsxrl
T2 r

(3.1
The mathematical expression of the cross product in (3.19) is

ds X

r

- -1; sind ds G.2!

- -
where ® is the angle between vector ds and unit vector r,. Equation

(3.20) gives the absolute magnitude of the cross product of the vect:

See Appendix A.



ds and ;1' Setting this magnitude equal to |cﬁ|and substituting

(3.20),

TEN

where da is a vector whose magnitude is equal to the angle intex
by d; from point P and whose direction is perpendicular to the ¢
and de (see Fig. 3). The vector & points in the direction of

of a right handed screw turned from ds to r Equation (3.21) ¢

1°
irradiation at a point P due to a surface source S in terms of ¢
gral taken around the contour of the source. For surfaces with
gonal boundaries, the d@ vectors along one side of the figure ai
collinear and add directly.

Consider a polygon source ABCDE ( Fig. 4). In order to cor

the irradiation at point P due to ABCDE using contour integratis

proceed as follows. From equation (3.21), the contribution to |

diation at P due to side AB is

- _1 —
e Rl JAB o
Since & is a vector perpendicular to the plane formed by ds an

and all vectors d@ are collinear due to the straight line bound

integration indicated in equation (3.22) becomes an ordinary sc

Thus

>

- T P
1‘“12.[0 d

(3.23) becomes, after integration,

84 =2, 39



Integration for Surface S

Fig, 3. Contour



Surface 1

P

Surface 2

Fig. 4. Contour.Integration for Polygon Source



where c-fl is a unit vector perpendicular to the plane formed by ¢
and @, is the angle subtended at P by side A-B of the polygon.
the contribution to the irradiation at point P due to side BC it
— — l
by = Q5 3 %
where 52 is a unit vector perpendicular to plane PBC and 9, is

angle intercepted at P by side BC. For a polygon of n sides, tlI

irradiation at P is

i=n

d; @
lii

G'=

VT
nmMi

i

where ai is a unit vector normal to the i th plane. The direct:

be always the direction dictated by the right hand rule for vect
products. The use of equation (3.26) eliminates the need to inf

to obtain the irradiation at a point due to a source having a p¢

boundary.

Obtaining the configuration factor using equation (3.26) i
matter. Equation (3.26) gives the irradiation at point P due t
gonal source, and from the definition of the configuration fﬁct:
simply becomes necessary to divide the total irradiation at poir
the total flux emitted by the source. As in the denominator of

(1.5), the total energy emitted by the source per unit time is :

dividing this into the total flux reaching point P, the result



This equation is the basis of the method used to calculate conf:
factors for several configurations in this report. As will be !

the next chapters, the method is readily adaptable for electron

computers and gives excellent results.



CHAPTER IV

ADAPTION OF CONTOUR INTEGRATION TO AN

ELECTRONIC DIGITAL COMPUTER

The method outlined in the previous chapter lends itgelf res
computer calculation. The four computer programs presented in th
port all use as a basis of calculation the formula (3.27). The t
the programs is fairly simple. Formula (3.26) expresses the irrs
at a point due to a polygonal source. Since the configuration £
between two surfaces is usually desired, rather than between a pc
a surface, it simply becomes necessary to obtain the irradiation
sufficient number of points on one of the surfaces and add the re¢
vectorially,

In each program, the surfaces are specified as to shape, si:
location by co-ordinates on a cartesian system, The program div:
of the surfaces into small subarea elements, and obtains the co=¢
nates of the center of eact_x subarea., The center point of each st
is considered as a point being irradiated by the second surface.
tour integration theory is then applied to each center point in !
the results are added vectorially. The final result is them the
irradiation by the second surface on the surface defined by the .

points of the subareas, or for a sufficient number of points the

20



is the total irradiation by the second surface on the first surf
Once the co-ordinates of the center points are known, it is
tively simple to apply the contour integration theory using the
known procedures of analytic geometry. For example, consider a
center point P on the subdivided surface, Assume also that the
surface is a polygon ABOE of five sides (see Fig. 4). To deter
irradiation at P using contour integration, according to formula
the contribution side AB of the second surface makes to the irra
is simply the angle subtended by AB at P multiplied by the unit
to the plane PBA. In order to find the unit normal to the plane
by P, B and A, the equation of the plane passing through the co-
nates of P, B, and A is calculated. This is easily accomplished
the equation of a plane is of the form
Ax+By+Cz+1=0,
we can substitute the co-ordinates of each point for x, y, and z
result is three equations with three unknowns A, B and C. The ¢
cients of x, y and z in (4.1) are the direction cosines of a nor
the plane from the origin. To obtain an expression for the unit

to the plane PBA, it is necessary to use the relationship

B« e W)

where ;1 is the unit normal to plane PBA.

To obtain the angle subtended by AB at P, the direction cos

the lines PA and PB are determined from the relations

X2 - X1
d

cosO =



X2 - Y1
d

Z2 - Z1
d

f(xa -x1>2+(22-1f1)2+(za-z1>‘2

X1, Y1, Z1 = co-ordinates of end of line at P

cosP =

cosy =

where d

X2, Y2, 22 = co-ordinates of end of line at plane.

The cosine of the angle between the two lines can be determ

the relationship

e ., cos
COS = coS A ch + cos BA cos BB + cos 7A cos 73

The angleo is then obtained from the arc cosine relationshi
tiplying the vector hﬁl by the scaler ¢, the contribution to the
tion at P due to side AB is obtained. The process is repeated
BC, CD, DE, and EA of the polygon. The equations of the planes .
PDE, and PEA are obtained, the unit normals to each plame are ca.
and multiplied by the angles subtended by each of the sides of ti
and the results - the %, y and z components of the irradiation wi
added to obtain the total irradiation at point P, - The whole pros
is then repeated for another point on the surface. The subseque:
are those defined by the co-ordinates of the center. points of the
on the surface. The result obtained for each point P is added v«
Since each point P represents a small area rather than a point, f
irradiation of the second surface by the first surface is obtaine
miltiplying the vector result obtained above by the cosine of the

between the irradiation vector and the normal to the second surf:



The procedure is fairly straightforward in cases where ew
on one of the surfaces can ''see' every point on the second sur:
complication arises when one or both of the surfaces are curve

portions of the surface exist that can see only a part or none

other surface. In other words, each point on a curved surface

horizon, and the second surface can either be totally above or

the horizon, or only a portion of the second surface may be ab

horizon. If the second surface lies totally below the horizon

no radiant energy can reach the point from the surface, and co
no radiant energy leaving the point can reach the surface. In
of a surface lying partly below the horizon of a poimt, only ti
from the portion of the surface above the horizon is considere

In view of this, the programs dealing with curved surface:
horizon decision made for each subarea center point. This dec:

termines the position of the second surface relative to the ho:

the point in question. In cases where the second surface lies

above the horizon, the co-ordinates of the points of intersect

horizon and the surface must be calculated. Considering the s

surface to be the polygon AB®, the point P will be irradiates

portion of ABOD that appears above the horizon. This new poly;

defined by the co-ordinates of the intersection points of the |

and ABCD. Even though the original polygon was four-sided, th

polygon can be either three-, four-, or five-sided, depending .

sBection points.



A thorough discussion of each of the programs follow in the

ing chapters.



CHAPTER V
PLANE -TO-PLANE PROGRAM

In order to utilize the digital computer to calculate a c¢
ation factor using the contour integration theory, it is necess
present the calculations in a logical sequence and in a format
ables the computer to perform the necessary manipulations, The
whereby this was accomplished utilized the Fortran system. Thi
allowed the program to be written in symbols and algebraic equs
closely resembling comen;;ional mathematical formulas. The con
translated this program into a form usable for actual calculati
the Fortran program as written will be discussed since the logi
followed readily.

The plane-to-plane program was too large for the storage c
of the IBM 650 and it appears here in two parts. This does not
way affect the logic of the program. The splitting of the prog
accomplished by using the same dimension statement for both par
program. The computer then reserves the same storage area for
scripted variables appearing in the dimension statement in both
As a result of this, the information calculated in the first pa
program is saved within the computer in the proper place, and i
necessary to read in any new information or data before startin

second part of the program. Care had to be taken that the firs

25



subscripted variable appearing in the dimension statement was
the variables used in the second part of the program, The fir
variable also had to be larger than fourteen. This had to be
the computer will use the first fourteen spaces of the dimens
for temporary storage while reading the program on the drum.

stroys any information which may have been stored in thosé lo

The data input to the program consists of the x, y and 2z
of the cormer points of the planes. The only limitation for !
of the two planes is that it is necessary for one of the plant
tally above the horizon of the other plane. The necessary pr¢
required is, in order, the problem number, N, and the co-ordi:
plane A followed by co-ordinates of plane B. The co-ordinate:
cyclic or ordered around the plane (see Fig. 5).

Plane B should be the smaller of the two planes, as it wi
vided into a number of subareas. The smaller the plane is, tk
accurately it can be representéd by a given number of points.
of N will determine the number of subdivisions for plane B, I
be divided into N squared subareas.

The flow chart for the plane-to-plane program appears in
The actual Fortran program statements appear im Table 1. The
lated result is in the form of the product of the area of plan
the configuration factor between plane A and plane B. The des
figuration factor can be found easily by the use of the recipr

lationship in equation (1.7).



BX(1)
BY(1)
BZ(1)

Plane B

BX (4
BY(4)
BZ (4)
BY
B2
x
AX(3)
AY(3)
Az (3)
AX(2)
Plane A AY (2)
AZ (2)

AX (1)
AY (1)
Az (1)

Fig. 5. Plane-to-Plane Configuration



Obtain co-ordinates BXC (I,J),
BYC (1,J) BzZC (1I,J) of center

points of subareas on plane B

Cards 26-51

28

Sum Vector result of irradiation at

point BXC(I,J), BXC(I,J), BZC(I,J)

Cards 148-152

Obtain x,y and z coefficients of

equations of the four planes from
BXC (1,J) BYC (I1,J), BZC (I,J) to
sides of plane A

Cards 64-T74

Obtain direction cosines of

normal to plane B

Cards 154-167

Obtain unit normals

to the above four planes

Cards 75-82

Obtain areas of plane A

and plane B

Cards 168-189

Obtain cosine of angle subtended
at BXc (1,J), BYC (I1,J), BZC (I,J)
by each side of plane A

Cards 83-99

Obtain product of configuration
factor FA-B and area of plame A

and punch results

Cards 190-195

Obtain angle ALPHA(N) for

each cosine in previous block

Cards 100-128

Multiply unit normals of

planes by angle ALPHA(N)

Card 131

Fig. 6.

Block Diagram of Plane-to-Plane Program



C 0000 O RADIATION CONFIGURATION FACTO

¢ 0000 O

1
2
3

=N

1
€ 0000 0

RS FOR FLAT RECTANGULAR PLANES
DIMENSIONR(18)»

AX(5)9AY 5]y
AZ(5)9BX14)9BY(4)¢BLIG)s
CSTHI395)9COSI4) 0 ALPHATS )
DIMENS10KBXC{10010)9#BYCI104+10)
#B2CI110010)96G101)eG20110G311)s
E(4»3)9PRONOIL)oNLIL)
READ)PRONO(1)oN1I1) eAX{1]
AYI1)sAZL1oAXI219AY(2)
READSAZ(2) vAX13)0AY[3)0A213)
AXT&)oAYTR) 9AZ(A)
READBXI1)o8Y(1)9BZI1)08X(2])s
BY(2}9BZ(2)9BX{3)
READsBY(319BZ{3)sB3X{4&)0eBYI4)s

Bi(4)

INCREMs MID POINT COORDS
SeN1(1])

Nl=N1(1) :
AD=1,5707879
Alm-421412453

A23. 08466649
A3==,03575663

A4mo 00864884
DELXR=(BX{21-BX{11}/S
XR=BX(1}=-DELXR/2e
DELXL=(BX(31-BX{4)}/5
XL=BX{4)=DELXL/2¢
DELYR=(8Y(2)-BY{1))/5
YR=BY{1)=DELYR/2s
DELYL={BY{3)-BY(4)}/5
YLeBY{&4)=DELYL/2e
DELZR=(BZI21-BZ(1))/S
IR=B2(11-DELZR/24
DELIL=(BZ(3)-BZ(41)/5
ZL=B2(4)=DELIL/2¢
DELX={XL=XR) /S
DELY=(YL=YR}/S
DELI=(ZL-IR)/S

DO & M=l,Nl

XRsXR+DELXR

YRaYR+DELYR

IR=IR+DELIR
BXC{Me1)=XReDELX/ 20
BYC{Me1)nYR+DELY/24 .
BZCIMs1)=ZR4DEL2/2e
DOSJ=24sN1
BIZCIMeJ)=BZCIMyJ=]1)4+DELZ
BXC(MoJ)=BXC{MoJ=])oDELX

RN AVCIMa (ARYE IMai=1140FLY

TABLE 1

PR N R R PR P R b s s gt i et e e et
SOV EWNI=OW D S0 P W e O D 00 =0 S W RS e

~N
-]

W N
("IN -0 -]

PLANE-TO-PLANE PROGRAM

10

651
653
652
656

T R o g s

—

o o OO0 LR

G3{1)=0.

DO131=1sN1

D013Je1eN]

BXC=BXC(1+J)

BYC=8YC(1eJ)

BZC=82CI14J)

DOTH=144

E(Me ] )=BYC S{AZIH)=AZ(H+1])
J4AY (M) # (A2 IH+]1)=82C J#AY(
Mel)#(B2C ~ALIM))
E{Ms2)8B2C S{AX[M)=AX(H+])
JeAZ(M)® [AX[M4]))=BXC 1+ALl
Hel)e(BXC -AX{M))
EfMe318BXC SAYIMI=AY [M+])
JEAX(M)#IAY(M+]))~BYC 1eAX(
Me1)0(BYC =AY{M))

CONTINUE

DOBMu] 94

ESODE(Ms1)®E(Ma 1) #E(Me2)*E My
2)1+E(Me3)2E(Ms3)
RIM)=SQRTF{ESQD)

CONTINUE

DO9M=]44

DO9N=1,3

EIMsNI=E(MaN)/RIM)

DO10N=194

DELX=BXC =AX{N)

DELY=BYC =AY(H)

DELZ=BZIC =ALIN)
R1SQD=DELX*DELX+DELY®DELY+DELZ
#DELZ

R1=SORTF(R150D)
CS5THI{1sN)=DELX/R1
CSTH{2+N)=DELY/R]
CSTH{3sNI=DELZ/R]
CSTHI195)=CSTHI101)
CS5TH(295)=CSTH{201)
CSTHI3951=CSTHI301)

DO 650 N=}eb
COSIR)=CSTHI1oN)SCSTHILoN+1)+
CSTHI{2oNIRCSTHI2oN+11+CSTH(3 oM
12CSTHIIWR+1)
IFICOSINII651+6520653
IFICOS(NI+10165B06586¢659
JIFICOSIN)=14165905550657
ALPHAIN]I=1e57079

GO TO &50

ALPHA (N)=3414159

GO TO 650

ALPHA(N) =0,

GO TO 650

58
59
60
61
62
L}
b4
65
66
67
68
59
10
7
12
n
T4
75
76
mn
78
19
80

as

a7
g8
89
90
91
92
93

95
97

99
100
101
102
103
104
103
106
107

108



802
803
803

815
B10

820
658
657
656
650

12

_ 13

€ 0000

0 LLsO

0 PHI=£RG'(AﬂG'IhRG'I&ﬁ'iRG*

1 A31+AZ1+AL)+A0
PHI2=SQRTF( 1s=ARG)
ANGLE=PHI#PHI2
IF(LL=1}81048159820

0 ﬁﬂﬁLE“Sal#lS?*iNGLE

O ALPHAIN)=ANGLE
GO TO 650

0 PAUSE 9877

] IF(COSINI*l-UOOl1&56065&|6§#

0 IF(COSINI=140001)65506550656

0 PAUSE 1111

0 CONTINUE
DO12M=1s4
DO12N=13

0 E{MsN1I=E(MsN]}#ALPHA[M)
Gl(l}= G101} <+E(1s1)4E

1 (2s1)14E(301)4E 160 1]
G2(1)=G2{1)

1 (202)4E(3s2)4E1402)
G3(1)%63{1)

1 [203)4E(3e3)4E1403)

© CONTINUE
END

0 START SECONDPROGRAM
DIMENSIONRI18) »

1 AX(S)sAYL5) s

2 AZIS)eBX(4)sBY (&) eBZ{k]y

3 CSTHI3951¢COSI41 0 ALPHALS}
DIMENSIONBXC(10410}+BYCL10910)

1 +BZC{10+10)sGR(11eG211)9G2(1)0

2 Elhe3)sPROND(Y) oNLI(1) .
S=N1(1)
S51=SORTFIG1{1)#G1{1)+G2(1)#*

1 G211)+6G3(11%G3(1))
CSBTX=61(1)/51
CSBTY=G2(1) /51

+E(112)4E
+E(143)4E

‘C58T2=G3(11/81 - -
C 000D O AREA OF PLANES CALCULATION

D1=BY(1)#(BZ(2)-BZ{3))+BY(21%(
1 BZ13)=BZ(1)14BYL3)%(B2(11-82(2

D2=BZIL1*(BXI(21=-BX(3)1+BZ(2)®(
1 BX(3)-BX{11)+BLi3)*IBX{1)=BXI2

P
D3=BX(118(BY(2)=BY(3) }+BX{2)#{

1 BY(3)-BY(11)4BXi31e(BY(1}=BY(2,

21}
RSOD=D1#D14D28D2+D34D3

ReSQRTF (RSQD) e

CSALX=D1/R

TABLE I (Continued)

—

—

—

—

SIDEI'SORTF(DELt'DELl»DELT‘DEL
Y+DELZ®DELZ)

DELX=BX(3)=-BXI2)
DELYsBY(31-BYI2}
DEL2=BZ(3)=Bl12]
SIDEz-sonTF{DEL:'DELx+DELf-DEL
v+DELZ®DELL)

AREAB=SIDE1#SIDE2
DELX=AX(2}=AXI1)
DELYSAY(2)=AYL 1)
DEL2Z=AZI2)=AZI1})
5!DEl'SOR!FIDEL!'DiLI+DELT'D£L
Y+DELZ#DELL)

DELX=AX(3)=AX(2)
DELY=AY(3)=AY{2]
DELZ=AZI31=AL(2)

S1DE2oSORTF (DELX®DELX+DELY®DEL
Y+DELZ®DELL)

AREAA®SIDE1®SIDE2
COSIOCSRLX'CSBTIOCS!L7'CSETf*C
SALZ#CSBTZ
GAB3({519C051)/(6426318)
AAGAB=GAB®AREAB/( Se5)
PUNCHsPRONO( 1) ¢ AREAA» AREABY
AAGAB

END

172
173
174
173
177
176
178
179
180
181
182
183
184
185
186
187
1688
189
190
N

192
193
194
195
196
197



CHAPTER VI

CYLINDER-~TO-PLANE PROGRAM

The basic method for calculating the configuration factor for a ...
cylinder to a plane differs little from the method used in the plane-
to-plane program. As was pointed out in the derivation of equation
(3.27), the summation replaces the integral sign only when the source
is a polygon. Because of this, the cylinder is the surface to be sub-
divided and represented by the center points of the subareas. One of
the differences between the cylinder-to-plane program and the plane-to-
plane program is of course the method by which the subareas are obtained

along with their respective center point co-ordinates.

The biggest difference, however, is represented by the addition of
a horizon decision loop. As was mentioned previously, there may be
points on & curved surface which cannot "see" any or all of the second
surface, Before equation (3.27) can be evaluated for any particular .
subarea center point, a horizon decision is made for the point. If the
plane lies totally above the horizon for the point, the contour inte-
gration is performed as in the preceding program.  If the plane lies
totally below the horizon for the point, the program will then skip the

contour integration for that point, and progress to the mext point on the

cylinder and repeat the horizon decision until a point is found from which
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the plane can be seen. If only a portion of the plane can be geen, it -

will be in the form of a three-, four-, or five-sided polygon. The
corner points of the polygon will be represented by the co-ordinateés of
the original corners appearing above the horizon and the co-ordinates of
the intersection points between the horizon and the plane. The latter

co-ordinates are calculated within the horizon decision loop.: The con-

tour integration 1s then performed for the new polygon representing the

portion of the plane appearing above the horizonm.

The horizon decision is performed by rotating the y axis abou_:t the
z axis to the point being considered. The co-ordinates of the corner
points of the plane are then calculated for the new rotated axis. Since
the point in question now lies on the y axis, it simply becomes necessary
to compare the radius of the cylinder with the rotated co-ordinates of
the plane. Any corner point of the plane whose ordinate has évalua less
than the radius of the cylinder lies below the horizon of the point being
considered on the cylinder. When the corner point lies below the hori-
zon, the co-ordinates of the intersection point between the horizon and
the plane is then calculated. The co-ordinates so calc.ulate:i are then
transformed back to the original axis location before the rotation was

made. The contour integration is then performed with relation_ to the

original axes.
As in the plane =to=plane program, the irradiation vector must be
multiplied by the normal to the subarea. The normal to the subarea is

calculated from the gradient of the cylinder evaluated at the center of

the subarea in question,
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The cylinder to plane program will calculate configuration factors
for full cylinders, or for any segment of a cylindrical surface, to a
Plane located anywhere outside the cylindrical surface. The necessary
data input are the co-ordinates and angles necessary to describe the
geometrical relationship of the cylinder and plane. The axis of the
cylinder is located along the z axis (see Fig. 7). The angular size
of the cylinder is defined by angles Thet 1 and ;'I‘h_et 2 in degrees.
Taking the y axis as zero degrees and proceeding clockwise, the angle
(Thet 2 - Thet 1) must define the angular segment of the cylinder. The
length of the cylinder is designated by the co-ordinates ZL and ZR of its
end points. The radius of the cylinder is designated by R. The plane is
defined by the x, y, and 2 co-ordinates of the corner poin_ts,l. d_agignﬂted
as AX(1), AY(1), Az(l), AX(2), AY(2), AZ(2), etc. The subscripts of the
corner points must be cyclic or ordered around the plane.

A block diagram of the cylinder to plane program along with the

Fortran program appears on the following pages.



D

ZL

AX(1)
AY(1)
Az(1)

/1

\

Thet 2 = Thet 1 +

Front Vie

Fig. 7. Cylinder~to-Plane Configuration



Obtain subareas on cylinder

from angular and axial
subdivisions

Cards 20-33

35

Obtain cosine of angles

subtended by sides of plane

at point in question

Cards 139-153

Obtain sine and cosine of
angle from y axis to sub-

area center point

Cards 34-58

Obtain angle Alpha (N) for
each cosine in above block

Cards 154-182

Rotate y axis to center point in
question and obtain co-ordinates

of corner points of plane

Card 59-66

Multiply angle subtended by
sides of polygon Alpha (N)

by unit normals to plane

Cards 183-185

Determine position of plane
relative to horizon of point and

calculate any intersections

Card 72-120

Multiply irradiation vector by
normal to subarea and sum

results

Cards 186-196

Obtain x, y and z ccefficients

for equations of planes from

point in question to sides of
polygonal plane

Cards 125-134

Obtain area of plane

and area of cylinder

Cards 199-214

Obtain unit normals to
above planes

Cards 135-138

Obtain product of area of cylinder
and configuration factor from the

cylinder to the plane and punch
results

Cards 215-218

Fig. 8. Block Diagram of Cylinder-to-Plane Program
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co
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000 0

220 0

500 0

" ARGM=ARGM=1,5T0T88 ~~— ~ T 7~

 SMALR==VAR2 ~ ~ °

CYLINDER-TO-PLANE PROGRAM

CONFIG FAC CYLINDER TO PLANE
DIMENSIONAR(S 1oAX(5)9sAY(5)0AZ
(5)sAXRIS)sAYRIS ) 9CSTHX (G
CSTHY(6)+CSTHZI6) oCXI6)9CYIE)
DIMENSION CZI6)+EL593)9ALPHALS
)eCSS5(5)
READ+PRONO»J2»
AYL1)sAZ(1)9AXI2)
READSAY(2)sAZ12) 2 AXI3)0AY(3)
AZ(3)eAX(4) 0AY &)
READSAZ(&) 9 THET1»THET2»
IR»ZLWR

AN=J2

a0=1,5707879

Al==g21412453

A2=400466649

A3==403575663

A4=,008646B4

OBTAIN COORD MD PTS

DELTH={{ THET2=THET11/AN}
#0,0174533
THET3=THET1#040174533=
DELTH/240

DETERMIN OF HORIZ INTERSECT
Gl=0.

62e0s

G3=0,

AXI5)=AX(1)

AY(5)=AY(1)

AZL5)=AZ(1)

DELZ1=(ZL=-ZR)/AN
BZ=ZR-DELZ1/2«

CON1=BZ

DO 672 M=1sJ2
THET3=THET3+DELTH

HNA=}

ARGM=THET3

CON&=ARGM

AX(1)e

IF(ARGM)202¢202+204

NA=NA+]

G0 TO 220

ARGHM=COMS

VAR1=SINF(ARGM)
VARZ=COSF(ARGM} T, S
GO TO (2299230+23192329229»

1 23092310232:229+230) eNA

SNALR=VAR]
CSALR=VAR2
GO TO 250
SNALR=VAR2
CSALR==VARL
GO T0 250
SNALR==VAR1
CSALR==VARZ
GO TO 280

TABLE 11

el el el ot
MO WE WO DO J0W Wi

————— ey

250

510

600

310
311

312
32
312

313
320
321

az2

323

. 331

334
382

4

]

CSALR=VAR]1 58
DO 510 N=led 29
ﬁxﬂlul-axlﬂI'CS&LR-&YINI‘SN&LR 60
AYRINI=AY(N)®CSALR+*AX(N) ®SNALR 61
AXR(5 )=AXR(1) 62
AYR(5)=AYR(1) 63
BxsRe®SMALR b4
BY=Re®CSALR (3]
829CON] 6é
DO 671 Ml=1eJ2 67
B2eB2+DELL] 68
T4PI=04 69
THP2=0. 10
THP3I®0a ;;
k=0

DO 350 N=1s4a 73
IF(AYRIN]I=R}13100320+330 16
IFIAYR{N®1}-R)350,350431) 75
K=K+] 16
LA=0 17
XR=(R=AYR(N+1))®(AXRIM)-AXR 78
(M+1) )7 LAYRIM)~AYRIN+1)) 79
*AXR{N+1) 80
Kl=Ek+LA 81
CXIK1)=XROCSALR4R®SNALR 82
CYIK1)=ReCSALR-XR®#SHALR 83
CZIK1)I={R=~AYRIN+1))®(AZIN}=AL 84
(K+11) 7 (AYRIN)~AYRIN+1)} (.1}
+AZIR+1) 86
IF(LA=11350+334,313 87
PAUSETTT? .1}
IFLAYR(N+1)=R) 32193220323 89
K=K+1 90
GO TO 23%0 91
KsK+1 92
CXIR)=AX(N) 93
CY(K)=AYIN) P
CZIRI=AZIN) 93
GO TO 350 - T 96
KoK+l 97
CXIKI=AXIN) 98
CYIKI=AY(N) o9
CLIKI=AZIN) 100
CXIR+LImAX(N+1} i 101
CY(K+1ImAY(N+1) T 102 7
CLIK+1)AZIN+1) . 103
60 To 350 - 108
K=K+] : 9 109
IF(AYR(N+1)=R} 331332332 . 106
CXIK)=AXIN) . 107
CYIK}=AY(N) — e 08
CZIK)=AZIN) 109
LAsd = e Sy gt
GO TO 312 111
K=K+1 Bt B+
GO TO 350 13
CXIK)I=ANIND h‘"" -

9¢



' BO3 1

CYIK)=AY(N]
CZIKi=AZIN]
CX{K+1)=AX(N+1)
CY(K+1)=AY(N+1}
CLIK+1)=AZ(N+1}

350 0 CONTINUE

IFIK=2)6T196T1620

620 0 CX{K+1)=CX(1)

CY(K+1)=CYI1)
CZ(K+11=CZ(1)
DO 640 I=1eX

E{1+1)=BY®#(CZI1)=CZ(1+1) )+CY

1 (11%1CZ(1+41)-BZI+CY{1+1)
2 #(BZ-CZ(I1)}

TABLE II (Continued)

E(I+2)=BZ H(CXLT)=CX{I+]1)}
1 +CZIII#ICX{1+0)=-BX)+CZ{1+1}®
2 (BXx=Cx{11}
E(Io3)eBXR{CYII)=CYI+1})eCX(]
1 )%(CY(I+1)=BYi+CX(1+1)%{ BY~-
2 Crelyn
AR(I)=SORTFIE(I»1)®E(Ie1)}+E(]

1 s2)SE(Io2)4E(L031%E(]e3)}
DO 630 J=1.3

630 O E(IsJ)}=E(lsJ)/ARIT)

DELX=BX=-CX{I)
DELY=BY=CY(I}
DELZ=BZ=CZ(1)

R1=SORTF (DELX®DELX+DELY®DELY+

1 DELZ#DELZ)
CSTHX L I }=DELX/R]
CSTHY(I1)=DELY/R1

640 0 CSTHZ(1)=DELZ/R]

CSTHX(K+1)=CSTHX(1)
CSTHY(K+1)=CSTHY(1)
CSTHZIK+1)=CSTHZ{1)

DO 6501=1sX
CSSII1=CSTHXUTIIRCSTHRII#10+

1 CSTHY(I)RCSTHY {1+114CSTHZ(1)+

2 CSTH2(1+41)

IF(CSSI11)65106520653
651 0 IF{CSSII)+1.165806540659
653 0 IF(CSS(1)=14)65906559657
652 0 ALPHAI1)=1.57079

GO TO 650
654 0 ALPHALI)=3214159

GO 650

655 0 ALPHALI =0
GO TD 650

659 0 ARG=CSS{I)
799 0 IFCARG)BODO+801.802
800 0 LL=1 3

.. ARGw=ARG

T GO TO BO3
801 O PAUSE 9777
802 0 LL=0 H
803 0 PHISARG®(ARG®{ ARG® (AA®ARG+
AST+AZIHALIHAD .

.-

815
810

820
658
657

656
650

660

665

671
672

€ 0000

C 0000

0

0

"]
0

N

PHI2=SORTF{1e—ARG)
ANGLE=PHI®PH]2
IF(LL-11B10+815+820
ANGLE®34+14159=-ANGLE
ALPHA 1) mANGLE

GO TO 650

PAUSE 9877
JIFICSS(I)+10001165606500656
IFICSSt1)~10001165546550658
PAUSE 1111

CONTINUE

DO 660 1w=lek
DO 660 Jm=193
EtleJi=EtlsJI®ALPHALL)
DO 665 1=14K
THP1=E(Is1)+THP]
THP2=E(1+2)+THP2
TMP3=E(]o3)4THP]
TEMP=SORTFI{THP1#TMP L+ THRP 20 THP
2¢4THPISTHPI ) & (PX*BX4+BY"BY))
CSGMA= (TMP18BX+THP28BY ) /TEMP
GlaTHP 1% CSGMA+G]
G2=THP 28 CSGMA+G2
GI=TMP 3P CSGMA+GI
CONTINUE
CONTINUE
S51=SORTFIG14G1+G2*G2+GI%G3)
AREA OF PLANES CALCULATION
DELX=AX(2)-AX(1)
DELY=AY(2)=AY(1}
DELZI=AZI2)-AZ(1)
SIDE1=SORTF(DELX*DELX+0ELYSDEL
Y+DELZ®#DELZ)
DELX=AX{3)=AX(2]
DELY=AY(3)~AY(2]
DELZI=AZ(3)~AZ(2)
SIDE2=*SORTF (DELX*DELX+DELY®DEL
Y+DELZ#DELZ)
AREAA=SIDE1#SIDE2
AREA OF CYLINDER
DELZ=ZL~IR
AREAB=6420315%R#DELLS
(THET2=-THET11/360s
AAGAB=S]1 *AREAD /(ANTANPG. 2683185
1

PUNCH ¢« PRONO
AAGAB .
GO TO 21
END

sAREAAS AREABy

Lt



CHAPTER VII
SPHERE-TO-PLANE PROGRAM

As in the previous two programs, the basic method used to cal-
culate the configuration factor is the same. This program will cal-
culate the configuration factor from & sphere to a plane or _f:om__gl;y
portion of a spherical surface that can be defined by the_meth@ used
in the program. The center of the sphere is located at the origin,
Taking the y axis as positive and proceeding clockwise, a sphericn} seg-
ment is designated using the angles Alph 1 and Alph 2. The angle
(Alph 2 - Alph 1) must define the angular segment of the sphere (see
Fig. 9). The ﬁortion of the spherical segment is defined by the co-
ordinates of the edges.

The plane is defined by the x, y, and 2z co-ordinates of the corner
points exactly the same way as in the cylinder-to-plane program. As in
the previous programs, the accuracy of the results can be varied by
specifying a greater value for J2.

The basic difference between the cylinder-to-plane program and the
sphere-to-plane program is in the axis rotation procedure. All points
on the surface of a cylinder along a line parallel to the axis of the
cylinder have the same horizon plane. Because of thils., a horizon de-

cision need only be made for one point on the line. In the case of a

38



sphere, each and every point on the surface of the sphere h¢
plane. 1In addition, if the axis is to be rotated t:p a point
face, it must be rotated through two angles in order to use
transformation relationships to calculate the new co-ordinat
corner points of the plane. After the z axis is rotated th
two angles to the point in question, the z co-ordinates of 1t
points of the plane are compared with the radi..us of the aéh(
previous program to determine which corner points are above
Plane and horizon intersections are calculated when they exi
co-ordinates of the intersections are then transformed back
inal axes. The contour integration is then performad'wiﬁh 1

original axes.

A block diagram of the sphere-to-plane program, along v

Fortran program, follows.



AX(1)
AY (1)
AZ (1)

AX (4)
AY (&)
AZ (4)

_-_——-

RB Alph 1

Alph 2

Fig. 9. Sphere-to-Plane Configuration



Obtain subareas on sphere
from angle and length of

subdivision

Cards 20-26

Obtain sines and cosines of angles
of rotation of z axis to point
in question and calculate new
co-ordinates for corner
points of plane

Cards 35-88

41

Obtain cosines of angles subtend-
ed at point on sphere by sides of

polygon
Cards 161-175

Obtain angle Alpha (N) for

each cosine above

Cards 176-197

Determine position of plane
relative to horizon of point
and calculate any
intersections

Cards 89-139

— e cme me—

Multiply angle Alpha (N).by unit

normal to planes

Cards 198-200

Obtain co-ordinates of

point on sphere in question

Cards 141-143

Multiply irradiation vector
by normals to subarea
and sum results

Cards 201-212

Obtain x, y and z co-efficients

for equations of plamnes from point

on sphere to sides of polygonal
plane

Cards 147-156

Obtain area of plane and

area of sphere

Cards 216-230

Obtain unit normals
to above planes

Cards 157-160

spherical segment and the config-
uration factor from the segment
to the plane and punch results

Cards 231-233

Obtain produc£ of the area of the

Fig. 10.

Block Diagram of Sphere-to-Plane Program



¢ 0000 0

1
2

Lol ol
Land Ll = L

C 0000 0
1
1

€ 0000 0

500 0

201 0
508 0

510 0
600 0

SPHERE-TO-PLANE PROGRAM

RADIATION CONFIG MEMI PLANE
DIMENSIONARIS JoAXES)2AYI5)0A2
{5I'£YRI&IoCSTH:I6In(SlHYI&I.

CSTRZI6)

DIMENSION AXRR{5)sAYRRIS) AL
RRIEI!C!(&!lCYlbloCZlbliEl5l3l
9CSS15) sALPHALS)
READ+PRONO»J29
AYI1)9AZI110AXI2]
READsAY12)9AZ12104X1319AY(3)s
AZI3)eAXIG)0AY(4)
READ!#ZI&?lﬁLPHIOALPHZiRIRllRB
ANeJ2

A0=145707879

Als=4214126453

A22408466649

A3e=403575663

A4=.00864884

OBTAIN COORD MD PTS

DELAL®( (ALPH2=ALPH1}/AN)
#0,0174533
ALPH3=ALPH]#0,0174533~
DELAL/240

DELR=(RA=RB) /AN

RC=RB-DELR/2e

CON1eRC

DETERMIN OF HORIZ INTERSECT
Gl=0.

G2=0,

G3s0s

AX(5)sAxil)

AY(5)=AY(])

AZ(5)=AZ(])

DO 672 M=ls,)2
ALPHI=ALPHI+DELAL

ARGM=ALPH3

L=}l .

GO TO 200

SNALR=VAR]

CSALR=VARZ:

DO510K=] 04
AXRRIN)=AXIN)SCSALR=-AY.IN]®
SMALR : :
AXRR(5)=AXRR(1) .
AYRINISAY(M)SCSALR+AX({N) ®SNALR
RC=CONL ° 1

DO 671 Nl=leJ

RC=RC+DELR

{56:3(!?:"r

AX{1)»

TABLE II1

DD - O AN P W R e

. Quk

2190

229

232

231

232

250
280

601

610
610

310
i

n2

nz
3z

oo

—

¢

0

0

(1]

Y]
1

N0 OO0

LR

NA=NA+]

G0 T0 220

ARGM=CON&

VAR3eSINF(ARGM]

VARG COSF(ARGM)

GO TO 1229+23C023102324229
23002319232422942301 4R
VARI=VAR?

VARZ2sVARS

60 10 25¢C

YAR12VARG

VAR2e=VAR)

G0 70 250

VAR]1=-VAR]

VARZ2=~VARS

GO TO 250

VAR1==VAR&

VAR2sVAR)

GO TO 120)+280) LN
SHMTHRoVAR]

CSTHRoVAR2

TMP 1204

THP2% D,

THP3=0.

DO 610 Jolek

AYRR{ J)=AYR({J)®(STHR=-AZ(J)*
SNTHR

AYRR(S5)=AYRRI(1)
AZRR{J)=2AZ(JI9CSTHR+
AYR{J)#SNTHR
AZRR(5)=AZRR(1)

K=0

DO 350 Nelvé
IF(AZRRINI=R)310¢320+330
IFIAZRRIN+11=-R1350¢3509311
K=K+1

LA=D
YRR=({R=AZRRIN+1))4{AYRRIN)=
AYRR{N411)/(AZRRIN)=AZRRIN+1))

L HAYRRIN+1)

XRR® (R=AZRAR(N+1) ) *(AXRR(N} =

AXRRIN41))/(AZRRIN)=AZRRIN+]1})

+AXRR(NS1]
YRaYRR®CSTHRR®SNTHR
K1sK4LA ' :
CXIK1)=XARECSALRSYRS SHALR
CY(K1)oYRECSALR=XRR®SNALR .
CZ(K1}=RACSTHR-YRR® SNTHR
IF(LA=1135043349313

‘PALISFE TTTTY?



323 0

33¢ 0

3310

33 0
3320

350 0
620 0

- [N [N LY N

630 ¢

TABLE III (Continued)

GO TO 350
K=K+]
CXIX)=AXIN}
CY(K)=AY(N]
CLIK)=AL(N]
CX(K+1)=AX(N+]1)
CYIK+1)=AYIN+])
CZIK+1)=AZIN+]1)
GO TO 350
K=K+l
JIFIAZRRIN+1)=R133]1+3320332
CX{KI=AX(N}

CY(K)=AYIN)

CZIKI=AZIN)

LA=]

GO TO 312

Kak+]

GO TO 350

CX{K)=AXIN]

CY(K)=AY(N)

CLIK)=AL(N)

CX{K+1)mAX[N+1)
CY{K+1)=AY(N+1)
CZIK+1)mAZIN+])

CONTINUE

IFIK=2)67115671+620
BY=R®SNTHR®*CSALR

BX=R# SNTHR®SNALR

BZsReCSTHR

CXIK+1)2CR(1])

CY{K+1)eCY(1}

CLIK+1)=C2I1}

DO 640 I=1sK
Elle1)=BYS(C2(I)I=CZi14]} DeCY
(11%(C2{1+]1)=B214CY I+1)8(B2~
cz(Iy)
Efls2)mBZeiCRIT)=CRII41)V0C2H
IS {CX{T+1)=BX)+C2( 1+1)# (DX~
cxtin
E(1o3)mBROICY(1)=CYI[+10 )eCK(]
JRICYITI+1)=BYI+CX( )41 )9 BY=
cril))
AR(I)=SORTFIE(TolI%EI ol 0¢EL]
s21%E(To214ELL9319E(]02))

D0 630 Js1e3
Et1sJ)sELTedI/AR(TY
DELX=BX=CX(])
DELYwBY=CY(I}
DELZeBZ~C21)

115
116
17
118
119
120
121
122
123
126
125
126
121

128

129

130
131

132

133

134

135

136

137
138
139
140
141
142
143
166
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161

162
163

651
653
652

654
655
659
799
83C

812
803
803

B1%

820
810
B&0
850

658
657

656
650

660

665

LY

=R -N-0-

L-N-N-N4]

DO 6501=l+K
CSS{11aCSTHXI ]I #CSTHXI [+ )¢

CSTHYT1)OCSTHY I [+1)+CSTHILTI®
CSTHZIL+})
IFICSSI11165106524653
IFIC5SIT1410165818560659
IFICSSII)=10165916950657
ALPHALT)8)4570 79

G0 TO 650

ALPHA(])23:14159

60 TO 65¢C

ALPHA(T)®3s

GO TO 650

ARG=(C5511]

LMe]

IFLARGIBO0I+BC24802

LL=]

ARG==4ARG

cO 10 8C3 *

LL=d

PHIARG® [ARG® | ARGY [ A4 PARG
A3)+A2)4A1 1940

PH]12=SORTF{1+=4RG)
ANGLE=PH®#PH]2
IFILL=11810+815+820

ANGLE® 34 14159-ANGLE

GO 10 810

PAUSE 9877
IF{LM=1)840+850:860

PAUSE 9887

ALPHA(] ) sANGLE

G0 TO 650
JFICSSI1141a050116560654 9654
IFICSSLI1=160001)65506550656
PAUSE 1111

CONTINUE

DO 660 I=1eK

00 660 Js1s3
E(IoJ)mElIoJ)2ALPHALL)

DO 66% Imlek

. THMP1sELIs1)eTHP]

= N O

TMP2=E(T2)+THP2
TMPISE([+3)+THP3
TEMPSSQRTF [ {THP1#THP1+4TMP 28
THP 24 THP 3R TMP3 ) » [BX*BX+BY*BY
+B2%B2))

CSGHMA= {THP1#BX+THP2#BY
+THPI®B2) /TEMP
Gl=THP1eCSGMA+GL

1712
173
174
17%
177
176
178
119
180
181
182
183
184
18%
186
187
188
189
190
191
192
193
196
195
196
197
196
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220



1

1

C 6000 @

END

TABLE III

DELZ=AZ(2)=AZ{1) 229
SIDE1#5QRTF (DELX*DELX+DELY#DEL __ 230
Y4DELZ#DELZ) 231
DELX=AX(3)=-AX(2! 232
DELY=AY(3)=AY(2) 233
DEL2=AZ(3)-A2(2) 234
SIDE2=5QRTF (DELX*DELX+DEL Y#DEL 235
Y+DELZ#DELZ! X 236
AREAA=S IDE1#SI1DE2 237
AREA OF HEMISPHERE 238
AREAB=¢017453#R% [ALPH2=ALPH1) 239
#(RA=RB) 240
AAGAB=S1¥AREAB /[ AN#AN®6428318) 241
_PUNCHJPRONO _ +AREAAs AREABs 242
AAGAB 243
60 T0 1 244
245

(Continued)



CHAPTER VIII
CONE-TO-PLANE PROGRAM

The cone in this program can be a full cone, a frustrum,
ment of a frustrum of a conme. The axis of the cone is on.the
the segment of the cone is defined, as in the previous progre
angle (Alph 2-Alph 1). The intersection of the conical surf:
y axis is designated as AH, and the height of the cone is des
BH. The base of the cone is always on the x-y plane. The re¢
base is designated as R (see Fig. 12). The plane is defined,
previous programs, by the cyclic co-ordinates of the cormer g
cone~to-plane program differs somewhat from the preceding twc
for curved surfaces. One of the differences arises due to ti
each subdivision on the cone does not have the same area. In
ceding programs, the dA term in equation (3.27) was removed .
summation since the surface was divided into equal subareas.
conical surface, however, each subdivision becomes smaller i
the program proceeds toward the apex of the cone. As a resu:
term cannot be removed from the summation in equation (3.27)
area must be calculated for each subdivision. In addition t«
method used to calculate the co-ordinates of the center poin!
sub~areas, a major difference occurs in the horizon decision

Since the conical surface does not present a constant radius

45



which to compare the co-ordinates of the corner points of the

vector method was used to determine the plane's relative posit

horizon of the point.

The vector method is accomplished by first calculating tl

nates of the intersection point of a normal to the conical su

the origin. A unit normal to the conical surface from the or:

then obtained. The x axis is then rotated so that the point

on the conical surface is contained in the x-y plane. The x,

co~ordinates of the corner points of the plane are then calcu

respect to the new axes. A vector from the origin to each .co

is then obtained, and from the dot product of each vector so «
and the unit normal to the conical surface, a horizon decisio
Figure 11 shows a projection of plane ABCD on rotated x'-y' p
point in question will be on line GH and its horigzom is the p

taining line GH perpendicular to the page.

Fig. 11. Horizon Decision for Cone



1f vector OD is dotted with a unit vector along OP, the
the result will be greater than the magnitude of the unit ves
therefore, point D of the plane appears above the horizon of
vectorOA is dotted with the unit vector along OP, the magnit:
result will be less than the magnitude of unit vector along !
of the plane will be below the horizon of point P. The co-o
the intersection F will then be calculated. The process is
all four points ABCD of the plane, and the polygon EBCDF is
of ABCD that point P actually sees. The contour integration
carried out for this polygon with reference to the original

The block diagram and the Fortran program for cone-to-p

uration factor follows.



AX (1)
AY (1)
(1)

AX (4)
AY (&)
AZ(4)

[

| | 7
AH
EH Alph 1 /

Alph 2

Fig. 12. Cone-to-Plane Configuration
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Obtain unit normal vector

from origin to conical surface

Cards 18-24

Obtain cosines of angles subtend-
ed at point on cone by sides of
‘ the polygon
Cards 173-187

Obtain subareas on cone from

angle and height subdivisions

Cards 33-39

Obtain angle Alpha (N) for each

of the above cosines

Cards 188-216

Obtain cosine of angle of rotat-
ion to point in question and cal-
culate co-ordinates of cormer
points of plane for rotated axis

Cards 41-69

Multiply angle Alpha (N) by
unit normals to planes

Cards 217-219

Obtain area of subdivision
on surface of cone

Cards 77-87

Multiply irradiation vector by
normal to subdivision and area
of subdivision and sum
results

Cards 220~£33

Determine position of plane
relative to horizon of point and
calculate any intersections

Cards 88-154

l

Obtain area of plane

Cards 237-248

Obtain x, y and z co-efficients

for equations of planes from point

on cone to sides of polygon and
calculate unit normal to each

Cards 159-172

Obtain product of area of cone
and configuration factor from
the cone to the plane and punch

results

Cards 249-250

Fig. 13. Block Diagram of Cone-to—Plﬁne Program
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TABLE IV

CONE-TO-PLANE PROGRAM

C 0000 & RAD CONFIG FAC CONE TO PLANE
DIMENSTONAR{S ) pAX{5)4AYIS )
AZ(5)9CSTHRI6Y 4 CSTHYI6) 2 CSTHL
(619CSSIEIIAXRIS ) 9 AZRES]
DIMENSTONCX(6)+CY{6)9C2IENY
E{5e3)9ALPHALS)
READPRONDJ2oLOCHARI TN
AY[YVeAZI1)0AKI2)
READGAY 12V eAZ{2) 9 2XI3)0AYI]
AZI3)eAXI&) o AY (&)
READsAZ(4)oALPH1 9 2LPH20R 1 AHYBH
AN=J2
AQx],5767879
Alw=p 21412453
AZmoDBLEGELT
Ade=y 03575663
Ab=,00864884
¢ 0000 O OBTAIN UNIT NORMAL VECTOR
PROD=AH®R/ (RE¥R #AH®AH]
XVePROD®AH
YV=PROD#R
AMOD=SQRTF [XVEXV+YVEYY]
ABAR=XV/AMOD
_BBAR=YV/AMOD
C 0000 O DETERMINATION OF HDRIZON INTER
61=Ce
G2=0a
G3=0e
AREAB=D.
AXI5)=AX11)
AY[S)=AYLDY
AZISI=AZ(1) .
DELAL® { {ALPH2=1LPH1} 7ANY®
1 020174533
ALPHISALPHI®0.2174533~
1 DELAL/240
DELH=BH/AN
TEWP1=R/H
ANT1m0439DELAL
500 0 DD 672 M=14J2
ALPHASALPHISDELAL
ARGM=ALPHI
NA=)
220 9 CONA=ARGM
ARGMEARGM=1,45TT8T9
IFIARGM) 20202079204
204 © MASNA+)

GO TO 220
AN A ARGMarONA

LR

——
-

—

B P -

O m o om

62C

362
3190

m
312

n3

“0¢

(S

©

-

o (=X ~] Do

- O

CSALRE=VAR]

$9 70 239

SHALRe-yAR]

C(5ALAs-VAR2

G0 TC 259

SHALR==VAA?

CSALPIVAR]

DG 31C Melad
LIR(HIBAZ(H) O, A PesT YOt RLD
AXR(HIEAX [N O 2L f=RlIMI0rNALD
AXRIS)eAX(])
ALRIS)ealRIY)

LLTE

AH28%.

BYCs=DELH/ 24

50 671 MiwlaeJ2

TP el

THP2:Cy

THP 30

RB1+RB

B8YCsBYC+DELH

AH23AH2+DELH
RCsR-TEMP ] eRY(
RESR=-TEMP]*AH2

ANT2=RB14RE
ANTI®SORTFIDELH®DELH4 (RO -RB)
(RB1=RB))
DAREA=ANTI®ANT2€ANT]
BX=RC®CSALR

BZeRC*SHALR

(4]

DO 350 N=leé
DOT=ABARSAXR(H)1+BBARSAY (M)
IFIDOT) 310023024302
IF(DOT=AMO01310320330
DOT=ABARSAXR(H+1)eBBARSAY [N+1)
IFIDOT1350+311,31)

IF (DOT=AMOD) 35003500312
KoK+l

LB=0

Kl=KsLB

TEMP 2o AXRIN+1)-AXRIN)
SLP2=AH/R
IFITEMP214004401,400
SLPI={AY(N+11=2Y(H) 1 /TEMP2
XRu(AH+AXRIN) S LP1=AY{N) I/
(SLP1+5LP2)

YReAH=SLP2eXR

IR ({XR=AXR(N)1®(AZR[H+1)~



316
n7
32t

321
322

323
324

326
327

332
n

333
334

350
620

oo

©

0

N

TABLE IV (Continued)

CY(X1)=YR
CZrK])=ZReCSALR-AR®SNALR
IF(LB-113509337,717
PAUSE 77717
DOT=ABAREAXRIN+ 1 14BBARBLY(H42)
[FICOT)322432132]

[F (DOT-AMOD] 32743229325
KEK+]

GO TO 350

LA=D

KuK+]

Cx{Ky=AX (K]

CYIr)=a¥y(N)

CZIK)=AZIN)
IFILA=113500327032¢
PAUSE 87717
CXIKel)mAXIN4+1]
CY(K411mAY(H+1)
CZiK41)mAZ{N+1)

GO TO 350

LA=1

GO TO 324

K=K+]
DOT=ABAR®AXRIN+1}4BBAR®AY (H+1]
IFIDOT13319332,332
IFIDOT-AMOD) 33143349336
CXIE)=AXIN]

CY(x)=AY(N)

CZ{KI=AZIN)

La=1

GO TO 313

K=k+]

G0 TO 350

CXI{RI=AXIN}

CY{R}"AY(N)

CZIXKI=AZIN)
CXIR+11mAR(N+1)
CY{KeLl)mAY{N+1)
CZIKe1ImALIN+1)

CONT-THUE
IFIR=216T0¢670:620
CX{x+1)1wCX(11
CYIK+11=CY(1]}
CLiR+1)=C2(1}

DO 540 Is]ek
Elle3)=BYCO(CZIT-C2{t+1} )
+CYLII®ICZII411-BL)+CYIT4])0
(BL-CZIIN

E(1+2)eBZo(CXIT)=CX(141)1
SCTITINICAIT4T 1-AY) #C21T4100

115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
120
131
132
133
134
135
136
137
138
139
140
141
142
143
146
145
146
147
148
149
150
151
152
153
154
155
156

158
159
160
161
162

164

537

440

631
653

652

654
655

659
199
800

801
802
803
803

815
810

820
658
657
656
650

660

©

o

(S8 s ) [

o

0o L=]

000

[-R-Y.N-N>]

o

Etled1eCilegls RIT]
pELXsBX=CXID)

DELYEBYI=CYIT

DELI=B2-C201}
DleSARTE(DELFO EL TaBEL Y ONILY
DELIODELY )
CSTHX I [1DEL /2]
CSTHY (1) mBELY/®]

) CSTHZITI®DELZ/®]

CSTHRIR#1) 0 CSTHELLD
CSTHY (R 4}205TrY L))
CSTrZIne)1aCsTm2]]

DO 655 1m)ar
COStTIaCSTHXITIOCTHRII® 0o
COTHY L 10CSTHY I [11eCSTHILT®
CETHZIT+1)
TFICSSITH16510652406%2
IFICSSITI+1a165806564659
1FICSSTT1=14165906550657
ALPHAIT)=1457079

GO T0 650
ALPHAI1)=3414159

GO TO 650

ALPHA(] =0

GO TO 650

ARG=CSS111
IFIARGIBO0801,802

LL=1

ARG==ARG

GO TO 803

PAUSE 9777

LL=0C
PHISARG® (ARG® (RGO [ AL®ARGS
AJISA2I4AL)440
PH12=SORTF(14=4RG)
AMGLE=PHI®PH]2
IFtLL=1181048154+820
AHGLE=3414159-2NGLE
ALPHA( 11 =ANGLE

GO 1O 650

PAUSE 9877
IF(CSS(1141000C1 165606540654
IFICSSIT)=1.0001185506551656
PAUSE 1111

CONTINUVE

DO 660 I=lex

DO 660 J=1s3
E(T+J1=E(ToJ)®aLPHALL)

DC 665 I=1eK
THPI=E(1+1)4THP]

.
2

113
187
168
1e%
1%0
191
192
193
194
195
196
197
198
199
200
221
202
203
204
205
206
207
208
209
210
211
212
213
21k

216
217
218
219
220
221



TABLE IV (Continued)

CSGMA=CONI+R*BYC/TEMP3 229
51=(TMP1#CSGMA | ¥DAREA+G] 230
G2=TMP2%CSGMA*DAREA+G2 231
G2=TMP3*CSGMA*DAREA+G3 232

670 0 AREAB=AREAB+DAREA 233
671 9 CONTINUE 234
672 0 CONTINUE 235
' S1=SORTF(G1*G1+G2%G2+63%G3) 236
C 0000 O AREA OF PLANE 237
DELX=AX(2)=-AX(1} 238
DELY=AY(2)=AY(1) 239
DELZ=AZ{2)-AZ{1) 240
SIDE1=SORTF(DELX*DELX+DELY#* 241

1 DELY+DELZ*DELZ) 242
DELX=AX(3})=AX(2) 243
DELY=AY(3)=AY(2) 244
DELZ=AZ(3)=A2(2) 245
SIDE2=SQRTF (DELX*DELX+DELY#* 246

1 DELY+DELZ#DELZ) 247

AREAA=SIDE1*#SIDE2 248

ARFPAD=2T 22 _"AD1H - PN



CHAPTER IX
SUMMARY AND CONCLUSIONS

The purpose of this study was to provide the means for d
the radiation configuration factor for various types of surfa
using contour integration theory, it was possible to eliminat
dable task of evaluating the double integral in equation (1.6
a configuration factor for two surfaces. With the use of vec
equation (1.6) can be transformed into an easily evaluated cc
gral.

The computer programs that were developed using the cont
gration theory provided results with good accuracy. The difi
sults obtained were checked with values obtained by the use
integral in equation (1.6). 1In reference (2) the author pret
of tables and graphs giving configuration factors for various
relationships obtained through the use of the integral in (1.
figuration factors were calculated with the programs presente
report and checked with the results listed in the above refe:
results were in agreement for the configurations calculated.
to-plane program was checked by comparing values obtained fo:
figuration factors of planes intersecting at finite angles, 1

lel planes. The c¢ylinder-to-plane program was checked also |
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54
with a configuration given for a line source parallel to a cylinder of
equal length. Since the program will also calculate a configuration
factor for a segment of a cylindrical surface, a configuratibn factor was
calculated for a thin (approximately ten degrees) segment of a cylinder
and a plane. The result was compared with the configuration factor ob-
tained from the plane-to-plane program for a narrow strip and a larger
parallel plane. The surfaces were so devised that the only difference
in the surfaces for both programs was the slight curvature in the cylin-
drical segment. The results from the two programs compared favorably.
The sphere-to-plane program was checked in the same way as the previous
two programs. Since the tabulated configuration factors for spheres and
planes in reference (2) was very limited, the program was further checked
by describing a narrow strip on the surface of a sphere of large radius
irradiating a parallel plane. Again the geometrical relationship between
the spherical strip and the plane approximated the narrow strip and larger
plane of the plane-to-plane program. The results again compared satis-
factorily with the results of the previous two programs. The sphere-to-
plane program was checked further by describing a full sphere and a plane
in such a way that the plane represented one side of a cubical box enclos-
ing the sphere. The answer to this particular configuration is known from
logical considerations. If a sphere is located in the center of a cubical
box, the energy reaching any side of the box would be exactly one-sixth of
the total energy leaving the sphere, since all of the energy leaving the
sphere will be intercepted equally on all sides of the enclosure. Even

though the sphere was approximated by only one hundred points, (the
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arametcr 7. was ¢siven a value of ten) half of which cannot "see" the
p

lane, the resulting contiguration facter was very close to one-sixth.
P ’ :

The cone-to-planc program was checked by describing a very tall cone with

a small basc¢. A trustrum of the cone closely approximated the cylinder

used in the cvlinder-to-plane program. The results obtained for the con-
figuration comparcd very favorably with the data listed in reference (2)
and the results obtained from the cylinder-to-plane program. The program
was checked further by describing a narrcw strip on the conical surface

and a larger planc, the configuration approximating those used in check-

ing the previous three pregrams. As was expected, the result was very
close to being the same as for the similar configuration in the cylinder-
to-plane program and c mpared favorably with the results obtained from
the plane-to-plane and sphere-to-plane programs for that configuration,

For comparision purposes, some of the results obtained with the
programs are presented in Table V, along with values obtained from refer-
ence (2). The parameter J2 is also listed. It was found during the
program evaluation that a much larger value of J2 had a comparatively
small effect when the surface that is subdivided is small in comparisen
to the other surface. The surfaces that are subdivided, as menticned

previously, are the B plane in the plane-tc-plane program and the curved

surfaces in the remaining programs. This fact can be utilized to save

computer time when pessible.



COMPUTER PROGRAM RESULTS

TABLE V

56

Description of Configuration Je F1-2 Desired Source
Result of
Result
1. Two planes each 30 by 30
intersecting at angle of:
30° 3 .63968
6 .62579 6202 Ref, 2
2. 60° 3 37542
6 «37255 3712 "
3. 90° 3 ,19918
6 .19983 20004 "
4. 120° 3 . 08493
6 .08615 .08700 "
5. 150° 3 .02666
6 02112 02151 "
6. Two parallel 30 by 30
planes 30 units apart 3 .20326
6 .20006 .19982 "
7. Narrow strip 0.16 by 30
and parallel plane 30 by
Not
60 3 48721 available
8. Narrow strip 0.16 by 30
and plane 30 by 60 per-
Not
pendicular to one end 3 21648 availahle



TABLE V(Continued)

Description of Configuration Je

F Desired
Ind Result
9. PFull cylinder and narrow
parallel plane 10 .19480 0,200
10. Narrow cylindrical segment
and parallel plane 30 by 60 3 47099 48721
11. Narrow cylindrical segment
and plane 30 by 60 perpen-
dicular to one end 3 .21460 +21648
12. Full sphere and one side
of cubical enclosure 10 16454 +16667
13. Narrow spherical strip and
parallel 30 by 60 plane 3 47052 47099
14. Narrow spherical strip and
30 by 60 plane perpendicu-
lar to one end 3 21566 21460
15. Narrow conical strip and
parallel 30 by 60 plane 3 LAT102 47099
16. Narrow conical strip and
30 by 60 plane perpendicu-
lar to one end 3 21062 «21460
17. Frustrum of full cone and
narrow parallel strip 10 .19602 19480



CHAPTER X
RECOMMENDATIONS FOR FUTURE STUDY

The programs presented in this report detail a method by which the

configuration factor can be calculated between two surfaces with an elec-

tronic computer. In the last three programs, curved surfaces were pre-
sented containing arcas that could not "see" the second surface, and a
horizon decision had to be made for cach point on the curved surface. If
only a portion of the plane could be seen, it was a fairly simple matter
to calculate the intersection points. If the second surface is another
curved surfacc rather than a flat plane, complications rapidly become
apparent. For example, consider a simplified éase of two cylinders with
parallel axes. It becomes more complicated to obtain the visible portion
of the second cylinder from any given point on the first cylinder. In

addition, the given point no longer 'sees" a polygonal surface. The

ends of the cylinder will be seen as a portion of an ellipse or as a

full ellipse. The irradiation vectors at the given point will no longer

be collinear. The integral in equation (3.22) is no longer an ordinary

scalar one. A program was developed for two parallel cylinders with the
above factors comsidered, but it exceeded the capacity of the computer and

could not be checked. The program evaluated the integral in (3.22) nu-

merically, and used the vector method in the horizon decision. By the
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use of the vector herizon decisicon method and a numerical method of evalu-

ating the integral (3.22), the theory of contcur integration can be ex-

tended to develop programs covering a large amount of surfaces more com-

plicated than developed in this report.

The programs are limited to calculating the configuration factor for
diffuse surfaces where the intensity is independent of the angle from

normal, more commonly referred to as Lambert radiators, Many engineering

materials do not radiate as Lambert radiators. This fact can be taken into

consideration in the calculation of the configuration factor by a modifi-

cation to the programs. If the intensity can be expressed as a function to

the angle frem the normal to the surface, it would be possible to incorpo-

rate the necessary changes in the programs to accommodate non-Lambertian

radiators.
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APPENDIX A

VECTOR IDENTITY

The vector identity used in Chapter III in the mathematical deri-
vation of the contour integral (footnote 1) will now be shown to be true.

The identity is

T, . . T 5
) \N'rl/:zzcurl L8
r & r e (A.l)
where ?::1 = unit vector along ¥
r = magnitude of vector T
N = arbitrary unit vector

The expansion of the vector cross product in equation (4-1) yields
- 1/ o1 N1
l1xN == - ) +={rN-rN -.(
o r &ry Nz ery 2 T zZ X X Z)j ® T rxNY'rYN (A.2)
Where the subscripts denote the X, ¥, and z components of the respective

unit vectors., Unit vector ;1 can be written as

—1:=ri+r'+rk
Fos 5 1 pd y'] z
r. X .Y ._Z
1"1:1"-1'3+rk (4.3)

where x, vy and z are the components of vector r. Using the relation

(A.3) in equation (A.2) and obtaining the curl indicated i (A.1), the
* 3

result ig
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3 X 9 (y_ z
i N - = - p— -
+ 3% \ 5 Nx 5 Nz) 3 ra Nz ,_-2 Ny) k (A.4)
Since N was defined as an arbitrary unit vector it is constant with re-

spect to the differentiation. Performing the differentiation in

equation (A.4) and simplifying, the result is

] e r_] - ﬁ) _ (xeNx + xyNy + xzNz i
2 r - 4 4 4
r r T

2
_ (xvl:x + X Ny + leZzDJ
T r

4
r
o 2
_ lezx & yzilz + z 1;!2 (A.5)
T r ;o

The left hand side of equation (A.l) when expsnded yields

?1 e B 1 P4 Y z X Y z
F(N.f]);;-é- <¥1+rj+;k>(Nx'1‘_+Nyr+Nz;) (A,ﬁ)
or

r

—é (Nor]) -1-2; (xeNx + xyNy + xzNz ) i

r

H

+ '1—4 (xny + yeNy + yzNz ) ]
r .

+ -1—4- (szx + yz + Nz ) k (4.7
r



The minus sign in equation (A.:) will disappear due to the direction
taken for vector ;1 . Vector ?1 was taken as a vector pointing from the
variable point on the surface S toward the fixed point P rather then in

the usual opposite scnse.
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APPENDIX B
CORRELATION BETWEEN RADIATION AND ILLUMINATION

Much of the theory involved in the derivation of the contour
integration method of calculating configuration factors has its back-

ground in illuminating engineering. Since light is merely radiant ener-

gy with wave lengths in the visible portion of the frequency spectrum,
the theoretical considerations are identical. The only difference in
the energy flux considered in the field of illumination and the energy
flux considered in the field of radiation heat transfer is the wave
length, or the frequency range in which the radiant energy lies.

An illuminating engineer is more concerned with the visual effect
produced when a ray of energy strikes a surface, whereas a heat trans-
fer engineer would be interested in the temperature effect due to the
ray. As a result of this difference in interest, the units and defi-
nitions used in the two fields are not, in most cases, directly appli-
cable to both fields.

A ray of radiant energy incident on a surface appears the same to
the surface regardless of whether or not it is in the visible frequency

range. The only difference can occur in the magnitude of the effect on

the surfsce. An illuminating engineer is interested in the luminous flux
rather than the radiant flux striking the surface. Luminous flux is only

that part of the radiant flux that invokes a sensation to the eye. Since
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the eye can detect a difference in brightness, color, and saturation, or
paleness of the color, an illuminating engineer needs three quantities

with which to calculate the visual effects in which he is interested. In
contrast, the hecat transfer engineer, in most cases, is mainly interested

in only one quantity - the total energy absorbed by the surface. The tools

of the illuminating engineer - the equations and mathematical formulas -

are more often expressed in terms of luminous flux or photometric quanti-

ties. A correlation exists, therefore, between the quantities associated

with heat transfer calculations and illumination calculations. The range

of wavelengths considered for heat transfer calculations is much greater

than the visible spectrum. With the exception of luminous efficiencies

and some specialized quantities existing in one field only, the corres-

pondence between the quantities used in the two fields is presented in

Table VI.



TABLE VI

CORRELATION BETWEEN RADIATION AND ILLUMINATION QUANTITIES

HEAT TRANSFER QUANTITY PHOTOMETRIC QUANTITY

Quantity Symbol Unit Quantity Symbol Unit
Radiant Energy Q BTU Light Q Lumen-Sec
Radiant Flux § BTU Luminous Flux F Lumen

Hr
Total Emissive Power E BTU Luminosity L Lumen
Hr. sq. Ft. Sq. Ft.
Irradiation G BTU Illumination E Lumen
Hr. Sq. Ft. Sq. Ft.
Int
ntensity I : BTU Intensity I Lumen
Hr.” 8q. Ft.- Steradian Steradian
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