
IMPLEMENTATION AND VALIDATION OF GAUSSIAN

PROCESS MODEL REFERENCE ADAPTIVE CONTROL FOR

FIXED WING UNMANNED AERIAL SYSTEMS

By

Sri Theja Vuppala

Bachelor of Technology in Mechanical Engineering
Jawarharlal Nehru Technological University

Kakinada, Andhra Pradesh
India
2012

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 2016

COPYRIGHT c©

By

SRI THEJA VUPPALA

MAY, 2016

IMPLEMENTATION AND VALIDATION OF GAUSSIAN

PROCESS MODEL REFERENCE ADAPTIVE CONTROL FOR

FIXED WING UNMANNED AERIAL SYSTEMS

Thesis Approved:

Dr. Girish V. Chowdhary

Thesis Advisor

Dr. Jamey D. Jacob

Committee Member

Dr. He Bai

Committee Member

iii

Name: SRI THEJA VUPPALA

Date of Degree: MAY, 2016

Title of Study: IMPLEMENTATION AND VALIDATION OF GAUSSIAN PRO-
CESS MODEL REFERENCE ADAPTIVE CONTROL FOR FIXED
WING UNMANNED AERIAL SYSTEMS

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abstract: Over the last couple of decades, rapid development of unmanned aerial
systems (UAS) has been observed. UAS are becoming an integral part of various
industries such as agriculture, communications, defense, first response, geophysical
surveys. This wide range of applications over different industries demands a number
of mission specific vehicle platforms. The platforms must be reliable in all environ-
ments as well as in the presence of various uncertainties. Presently, the UAS that
are flown autonomously rely on extensive manual tuning of control parameters. The
control parameters are platform specific, hence transferring the controllers from one
platform to another, is time consuming and requires extensive testing against human
errors. A detailed approach to the development of an adaptive, platform independent
controller which leverages Bayesian Non-parametric approach towards the adaptive
control was performed in this thesis. Hardware-in-the-loop simulation is one of the ef-
fective methods for the verification of the overall control performance and safety of the
UAS before conducting actual flight tests. We had developed Hardware-in-the-loop
(HITL) framework to test the developed. This was done by actual implementation
into different aircraft platform. Extensive testing in the HITL environment was done
and results from HITL tests as well as flight test results are presented.

iv

Acknowledgments

I would like to express my sincere gratitude to my thesis advisor and academic

mentor, Dr. Girish V. Chowdhary for his continuous support and motivation during

my Masters study and research. The knowledge he shared with me, the kind of

trust he had instilled in me, the degree of patience he embraced when correcting my

mistakes, are some things that made me admire him a lot. I am extremely fortunate

to have an advisor like him. I would like to express my thanks to the Committee

Members Dr. Jamey Jacob and Dr. He Bai for their support and inputs towards

completion of the work.

I would like to thank all of the members of the Distributed Autonomous Systems

Laboratory. Most of what I have learned has been due to the interactions and dis-

cussions with the lab members. I would like to thank Dane Johnson, Andrew Cole

who helped me ease into the research at its inception and also Girish Joshi, Logan

Washbourne, Nolan Repogle, Sesha Talapa Sai Radganti for the support towards the

progress of the work.

I am extremely thankful to my friends Gopal Koya, Nakul Babu Maddipati, Nandu

Kumar Merupula, Noel Daniel Gundi, Rakshit Allamraju, Suresh Babu Myneni,

Suryakiran Chavali and Sowmya Pachipenta for their encouragement and support

during my graduate study.

I would like to acknowledge, with deepest gratitude, the support and immeasurable

love of my family. My mother Usha Rani Vuppala and brother Sri Harsha Vuppala

have supported me at each and every phase of my career. They gave me freedom to

v

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.

take my own decisions and gave up many things for me to chase my dreams. I can

never be grateful enough to such an amazing family.

I would like to dedicate this work to my father Ramesh Gupta Vuppala, who is

my role model and inspired me towards becoming a Mechanical Engineer.

vi

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.

Contents
Chapter Page

1 Introduction 1

1.1 Motivation . 1

1.2 Outline of Contributions . 2

1.3 Outline of the Thesis . 2

2 Related Works 4

3 Rapid-Transferable Control for Fixed Wing Small Unmanned Aerial

Vehicles 7

3.1 Aircraft Kinematics and Dynamics 7

3.1.1 Kinematic Guidance Models 10

3.2 Autopilot Design . 11

3.3 Model Reference Adaptive Control 13

3.3.1 Gaussian Process Model Reference Adaptive Control 15

4 AutoPilot Design & Development 20

4.1 Hardware Design . 20

4.1.1 Modular Components . 20

4.2 Software Design . 27

4.2.1 Multi-Threaded Design . 27

vii

4.2.2 Ground Control Station Software 28

4.3 Airframes . 29

4.4 Hardware in the Loop . 31

5 Results 32

5.1 Hardware in the Loop Simulation Results 32

5.2 Flight Test Results . 41

6 Conclusions and Future Work 45

6.1 Conclusions . 45

6.2 Future Work . 45

A Hardware in the Loop Testing Results 47

A.1 Mugin . 47

A.2 Anaconda . 52

A.3 Penguin - B . 56

B Autopilot Specifications 60

C Component Benchmarking 63

C.1 Flight Control Computer Survey . 64

C.2 Inertial Sensor Survey . 64

D Setup of Hardware in the Loop 71

D.1 Introduction . 71

D.2 Softwares . 71

D.2.1 Softwares Required . 71

viii

D.3 Installation of Softwares . 72

D.3.1 BeagleBone Black Drivers . 72

D.3.2 PuTTY . 72

D.3.3 WinSCP . 73

D.3.4 Eclipse IDE for C/C++ . 73

D.3.5 X-Plane Fight Simulator . 77

D.3.6 QGROUNDCONTROL Ground Control Station 86

E Hardware in the Loop Testing 92

E.1 Precautions . 92

E.2 Procedure . 92

Bibliography 98

ix

List of Tables
Table Page

4.1 Aircraft Specifications . 30

B.2 Commercial Off the Shelf Autopilots Specifications - Availability of I/O 61

B.3 Commercial Off the Shelf Autopilots Specifications - Availability of

Sensors . 62

C.4 Embedded system specifications . 64

C.5 List of Inertial Sensors . 65

x

List of Figures
Figure Page

3.1 Vehicle coordinate frame of reference 8

3.2 Lateral Motion Control Using Successive Loop Closure 12

3.3 Longitudinal Motion Control Using Successive Loop Closure 13

4.1 The block diagram showing the different components and their com-

munication protocols. 21

4.2 BeagleBone Black . 22

4.3 VectorNav’s VN-200 Rugged GPS/INS 24

4.4 jDrones jD-RF900Plus Longrange telemetry set 25

4.5 Different Iterations of the Systems Integration Board(SIB) 26

4.6 Different Iterations of the Fail-Safe Servo Driver 27

4.7 Thread design block Design . 28

4.8 Different Aircrafts used for Hardware in the Loop Testing 30

4.9 Hardware-in-the-Loop Environment Setup 31

5.1 Comparison of Root Mean Squared Error in Tracking Roll with the

different controllers in different Aircrafts 33

5.2 Comparison of Root Mean Squared Error in Tracking Pitch with the

different controllers in different Aircrafts 34

xi

5.3 Comparison of Mean Absolute Error in Tracking Roll with the different

controllers in different Aircrafts . 35

5.4 Comparison of Mean Absolute Error in Tracking Pitch with the differ-

ent controllers in different Aircrafts 36

5.5 Comparison of Waypoint Tracking in Skyhunter with the different con-

trollers . 37

5.6 Tracking Performance of Roll and Pitch with the different controllers

in Skyhunter . 38

5.7 Evolution of Inner Loop Errors in Skyhunter with the various Controllers 39

5.8 Evolution of Outer Loop Errors in Skyhunter with the various Controllers 39

5.9 Evolution of MRAC weights in Inner Loop Dynamics 40

5.10 Performance of GPs in capturing the uncertainty 40

5.11 Tracking Performance for Roll Control using RBF-NN MRAC using

e-mod . 41

5.12 Tracking Performance for Pitch Control using RBF-NN MRAC using

e-mod . 42

5.13 Evolution of Inner Loop Errors . 42

5.14 Evolution of Outer Loop Errors . 43

5.15 Evolution of MRAC weights in Inner Loop Dynamics 43

5.16 Adaptive Controller Performance in capturing the uncertainty 44

A.1 Comparison of Waypoint Tracking in Mugin with the different con-

trollers . 48

A.2 Tracking Performance of Roll and Pitch with the different controllers

in Mugin . 49

xii

A.3 Evolution of Inner Loop Errors in Skyhunter with the various Controllers 50

A.4 Evolution of Outer Loop Errors in Mugin with the various Controllers 50

A.5 Evolution of MRAC weights in Inner Loop Dynamics 51

A.6 Performance of GPs in capturing the uncertainty 51

A.7 Comparison of Waypoint Tracking in Anaconda with the different con-

trollers . 52

A.8 Tracking Performance of Roll and Pitch with the different controllers

in Anaconda . 53

A.9 Evolution of Inner Loop Errors in Anaconda with the various Controllers 54

A.10 Evolution of Outer Loop Errors in Anaconda with the various Controllers 54

A.11 Evolution of MRAC weights in Inner Loop Dynamics 55

A.12 Performance of GPs in capturing the uncertainty 55

A.13 Comparison of Waypoint Tracking in Penguin-B with the different con-

trollers . 56

A.14 Tracking Performance of Roll and Pitch with the different controllers

in Penguin-B . 57

A.15 Evolution of Inner Loop Errors in Anaconda with the various Controllers 58

A.16 Evolution of Outer Loop Errors in Anaconda with the various Controllers 58

A.17 Evolution of MRAC weights in Inner Loop Dynamics 59

A.18 Performance of GPs in capturing the uncertainty 59

D.1 PuTTY Connection . 72

D.2 WinSCP Connection . 73

D.3 Open Perspective Window . 74

xiii

D.4 Remote System Explorer View . 75

D.5 New Remote Connection . 76

D.6 Select Remote Sytem Type : Linux 77

D.7 Remote Linux System Connection . 78

D.8 Defining the subsytem information(Files) for the new connection . . . 79

D.9 Defining the subsytem information(Processes) for the new connection 79

D.10 Defining the subsytem information(Shells) for the new connection . . 80

D.11 Defining the subsytem information(SSH Terminals) for the new con-

nection . 80

D.12 Remote System Explorer Setup . 81

D.13 Net Connections - Multiplayer in X-Plane 81

D.14 Net Connections - Data in X-Plane 82

D.15 Net Connections - IP for Data Output 82

D.16 Net Connections - UDP Ports for data transfer 82

D.17 Net Connections - UDP Ports for Data Transfer 83

D.18 Data Input & Output - Data Set - Selected Parameters for Data Transfer 85

D.19 Data Input & Output - Data Set - UDP Transfer Rate 86

D.20 Start Up window of QGROUNDCONTROL v2.7.1 87

D.21 Manage Communication Links Window in QGROUNDCONTROL . . 87

D.22 Add New Communication Link Window in QGROUNDCONTROL . 88

D.23 Add New Communication Link Window in QGROUNDCONTROL . 89

D.24 Manage Communication Links Window in QGROUNDCONTROL . . 89

D.25 Add New Communication Link Window in QGROUNDCONTROL . 90

xiv

D.26 Add New Communication Link Window in QGROUNDCONTROL . 90

D.27 Add New Communication Link Window in QGROUNDCONTROL . 91

E.1 Autoplay Menu for Removable Device 93

E.2 Terminal of STABILIS . 93

E.3 Logging into STABILIS securely . 94

E.4 Start Up screen of X-Plane . 94

E.5 Selection of Airport . 95

E.6 Selection of Aircraft . 95

E.7 Selection of the Date, Time and Weather 96

xv

Chapter 1

Introduction

1.1 Motivation

Over the last decade, Unmanned Aerial Systems (UAS) has seen rapid growth. There

is a rapid growth in the technology relating to the UAS. UAS have already been a

part of many industries where it applications include security, search and rescue,

monitoring, disaster management, crop management, geophysical surveys and many

more. To handle novels tasks with unique platforms, the onbaord control system

must be robust , highly reliable and allows for deep modification of functionality.

The Commercial off the shelf (COTS) autopilots are categorized into two groups :

open source and closed autopilots. The former is available at a low price where the

latter are relatively expensive. Unfortunately, neither of them allow modification for

higher functionality.

The wide range of applications of UAS mentioned has resulted in development of

numerous mission specific Unmanned Aerial Vehicles (UAV) platforms. These novel

platforms must operate reliably in various environments and in presence of uncertain-

ties. The current practice of flying the UAVs autonomously relies on extensive manual

tuning of the UAV autopilot parameters or time consuming approximate modeling of

the dynamics of the UAV. These methods lead to excessive development time. How-

ever, controllers cannot be simply transfer from one platform to another, which leads

1

to each platform being tuned independently of the others in order to achieve desired

performance. This process can be time intensive and a lot of money is involved. This

work tackles the problem of efficiently transferring controllers between different UAV

platforms using adaptive control.

The problem of control transfer is framed using the ideas of adaptive control

and Rapid Controller Transfer (RCT). The primary goal is to transfer the autopilot

with minimal effect on the performance from one platform to another. The main

advantage of RCT is reduction in time spent on developing control system from every

novel platform. The proposed method uses a new class of data driven adaptive control

algorithm. It leverages Bayesian non-parametric approach to adaptation.

1.2 Outline of Contributions

The contributions of this thesis are

• Implementation of Gaussian Process Model Reference Adaptive Control (GP-

MRAC) in fixed wing aircrafts, to demonstrate Rapid Controller Transfer

• Validated autopilot Stabilis, developed in house, with integrating it in the Hard-

ware in the Loop Environment (HITL) and with real world flight testing.

1.3 Outline of the Thesis

The thesis is organized as follows. Chapter 2 will discuss the related works in the

area of adaptive control and its aerospace applications. Chapter 3 will outline a brief

overview of flight dynamics and the control scheme implemented using GP-MRAC

formulation. Chapter 4 will discuss the design and construction of Plug-and-AdaptTM

Autopilot STABILIS and integration into Hardware in the Loop testing environment.

2

Chapter 5 will address the results that were gathered from both Hardware in the Loop

Simulations and the real world testing. Chapter 6 will discuss the conclusions and

future work.

3

Chapter 2

Related Works

The work presented in this thesis, mainly focuses on a platform independent autonomy

module featuring adaptive control. This chapter presents a proper understanding of

adaptive control. The usage of adaptive control techniques for transferable control

has not been widely studied. Adaptive control has proved to be a reliable solution

for modeling errors and system uncertainty. Adaptive Control can be classified into

two categories, the first being used to track the error to modify controller parameters,

whereas, the second one approximates the difference between the assumed reference

model and the actual system dynamics, then uses the approximation to control the

plant.

Adaptive Control has been extensively studied for Aerospace applications. First

flight experiments with adaptive control systems were performed in the decade of

1960, however, without proper analysis of closed loop stability. This lead to a fatal

crash of the X15A in the year 1967 and as a result, adaptive flight control systems

were pushed out of focus for quite some time. Later in 1980, after Narendra provided

a mathematical stability proof for MRAC system [1]. Further, important results

of MRAC were summarized by Narendra and Annaswamy [2]. Following this, em-

phasis was put on performance and robustness of adaptive systems in presence of

uncertainties and unmodeled dynamics, which resulted in various modifications of

the parameter update equations.

4

There have been many MRAC formulations that have sought to solve some of the

issues that are associated with such methods. L1 adaptive control is a well known

MRAC formulation that has been widely used in aerospace guidance and control ap-

plications [3, 4], as well as others [5, 6]. The benefits of L1 adaptive control claimed

by the authors are fast and robust adaptation, analytically computable performance

bounds and excellent performance with minimal flight control design cost [7]. The

L1 formulation differs from classical MRAC methods through the use of high adap-

tive gains with an input filter. The high adaptive gains help ensure the adaptive

controller is responsive enough to track the uncertainty point wise in time. Another

MRAC formulation known as Intelligent Excitation, seeks to mitigate the need to

inject Persistent Excitation (PE) in the reference input while guaranteeing parameter

convergence [8, 9]. This is done by injecting excitation only when the tracking error

exceeds a desirable limit. Although this MRAC formulation reduced the need for

excitation, PE is still used, thus control effort is wasted. Another MRAC formula-

tion called Derivative Free MRAC (DF-MRAC), was presented by Yucelen et al. [10].

DF-MRAC relaxes the assumption of constant ideal weights that classical MRAC

methods use and featuring a time varying set of weight parameters. This feature of

the algorithm allows for a time varying system to be modeled in the face of uncer-

tainty. The DF-MRAC formulation is shown to be uniformly ultimately bounded,

and the error is shown to be ultimately bounded exponentially [11].

The most widely used technique for estimating the system uncertainty in the

context of indirect MRAC methods is the neural network. Neural networks used in

conjunction with adaptive control techniques are used extensively in flight control

and guidance [12–16]. This formulation guarantees the existence of a set of ideal

weights that guarantees optimal approximation of uncertainty, which is implied by

the universal approximation property of neural networks.

There are two types of neural networks that are used in adaptive control, single

5

hidden layer (SHL) neural networks (NN) and radial basis function (RBF) neural

networks. The idea of Controller Transfer is first presented using a neural network

based MRAC formulation [17], but it was not explicitly studied. Later, Chowdhary et

al. extended neural networks into a formulation of MRAC that uses both recorded and

instantaneous data to concurrently learn, hence called Concurrent Learning MRAC

(CL-MRAC). The most notable feature of CL-MRAC is its ability to leverage the

advantages of both direct and indirect adaptive control to mitigate the need for PE

[18]. CL-MRAC was used for controller transfer on indoor quadcopters with promising

results [19].

However, both SHL and RBF neural networks have disadvantages. One of the

more notable disadvantages of RBF neural network based approaches, is that the

number of centers and hyperparameters must be allocated a-priori over the operating

domain. Thus controllers operating outside of the intended domain experience de-

graded performance [20,21]. Also, SHL neural networks performance can suffer from

getting stuck in local minimum [22].

Unlike RBF Neural Networks, Gaussian Processes (GPs), can cover the entire

operating domain, by dynamically allocating kernel locations based on a fixed budget

of kernels. As GPs are Bayesian in nature, the model itself provides a quantified

confidence metric in its predictions via the predictive variance. Previously, using

online GPs to model uncertainty was computationally expensive due to large data sets.

However, largely due to the derivation of sparse, online Gaussian Processes by Casato

et al. [23], GPs were recently proposed as a nonparametric approach to modeling

dynamical uncertainty in an adaptive controller [21]. Recently, Grande et al. proved

that the hyperparameters associated with the kernels can be optimized online [24].

The flight test results presented in this research show GP-MRAC outperforms modern

MRAC methods using NN.

6

Chapter 3

Rapid-Transferable Control for Fixed Wing Small

Unmanned Aerial Vehicles

3.1 Aircraft Kinematics and Dynamics

Consider an aircraft with mass m and mass moment of inertia Ib, where (·)b repre-

sents the moment of inertia about the body axis. The position of the aircraft pn is

determined using an earth-fixed inertial frame of reference and denoted using the su-

perscript (·)i. The origin is fixed at a desired home location with the x-axis pointing

towards north, y-axis towards east and z-axis pointing downwards completing the

right-hand rule.

7

Figure 3.1: Vehicle coordinate frame of reference

The body axis shown in figure 3.1 show that the x-axis of the body fixed frame

points out the nose of the aircraft, the y-axis is directed out of the starboard wing of

the aircraft, and the z-axis is oriented downward, completing the right-handed coor-

dinate system. The origin is centered at the center of gravity of the aircraft as shown.

The attitude of the vehicle is described using Euler angles defined, [φ θ ψ], where

φ describes roll, θ is pitch, ψ is yaw about the inertial frame. The transformation

between the inertial frame and body frame is given by the transformation matrix

given in equation 3.1.

Ri
b =

CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ

CθSψ SφSθSψ + CφCψ CφSθSψ + SφCψ

−Sθ SφCθ CφCθ

 (3.1)

Note that in equations 3.1 and 3.2, Sθ = sin θ, Cφ = cosφ, and so on. The relationship

between the body fixed angular rates and inertial frame angular rates is

8

φ̇

θ̇

ψ̇

 =

1 Sφ tanθ Cφ tan θ

0 Cφ −Sφ

0 Sφ sec θ Cφ sec θ

p

q

r

 (3.2)

The equations of motion for the aircraft can be derived using Newton’s Second Law

of motion which states the summation of all external forces on the aircraft must be

equal to time rate change of momentum and the summation of the external moments

must be equal to time rate of change of angular momentum. Consequently these laws

can be expressed in inertial frame as given in equations 3.3 and 3.4

∑
i

Fi = mp̈n = gn + Rn
bmab (3.3)

ω̇b =
(
Ib
)−1 (

Mb − ωb × Ibωb
)

; (3.4)

where, gn = [0 0 g]T is the acceleration due to gravity vector in the inertial frame,

and ab = [u̇ v̇ ẇ]T is the body fixed accelerations. The dynamics of the aircraft

can be described in the body frame of reference using the transformations defined

above in the equations 3.1 and rearranging the terms we get

ṗn

ṗe

ṗd

 = Ri
b

u

v

w

 (3.5)

u̇

v̇

ẇ

 =

−g sin θ

−g sinφ cos θ

−g cosφ cos θ

+
1

m

FT

0

0

+

X

Y

Z

−

qw − rv

ru− pw

pv − qu

 (3.6)

9

ṗ

q̇

ṙ

 =
(
Ib
)−1

L

M

N

b

−

p

q

r

b

× Ib

p

q

r

 ; (3.7)

where, Fb and Mb are given by the aerodynamic forces on the aircraft. The aero-

dynamic forces are primarily dependent on the angle of attack, α, and side slip, β,

in steady states. However, the body fixed angular rates can significantly change the

aerodynamic forces as shown in equations 3.8 and 3.9.

X

Y

Z

 =

CX(α, β)

CY (β)

CZ(α)

QS (3.8)

L

M

N

 =

CL(δa, β, p̃, r̃)QSb

CM(δe, α, q̃)QSc̄

CN(δr, β, r̃)

 ; (3.9)

where, p̃ =
bp

2Vt
, q̃ =

c̄q

2Vt
, r̃ =

br

2Vt
. Since body fixed forces and moments are functions

of multiple variables, they are the most complex part of the aircraft to be modeled.

Usually, linear approximations are used for aerodynamics forces. In-depth explanation

of the reference frames , flight dynamics and control are referred to [25–28]

3.1.1 Kinematic Guidance Models

The Guidance model assumes that the autopilot controls the airspeed (Va), altitude

(h) and the course angle(χ). The corresponding equations of motion are given by

10

ṗn = Va cosψ + wn

ṗe = Va sinψ + we

χ̈ = bχ̇(χ̇c − χ̇) + bχ(χc − χ)

ḧ = bḣ(ḣc − ḣ) + bh(hc − h)

V̇a = bVa(V
c
a − Va) (3.10)

where the inputs are the commanded altitude hc, the commanded airspeed V c
a

and the commanded course χc and ψ.

3.2 Autopilot Design

In the autopilot design, the foremost task is to control the inertial position (pn, pe, h)

and the attitude (φ, θ, ψ) of the aircraft. In the design of the autopilot, we use

the technique called successive loop closure which assumes that the lateral and the

longitudinal dynamics of the aircraft are decoupled. This assumption simplifies the

development of the control scheme. In successive loop closure, the principle is to

close several feedback loops in succession around the open loop plant dynamics. The

control value calculated from the outer loop, based on the feedback signal is used

as an input to the inner loop and the output of the inner loop controller is used

as the control actuation for the plant. Guidance Models 3.1.1 are used to calculate

commanded signal for the outer loop.

The lateral autopilot design is shown in the figure 3.2. In successive loop closure

of the lateral autopilot design the inner loop controls the roll angle (φ), while the

outer loop controls the course heading (χ) of the aircraft. As shown in the figure

3.2, the lateral guidance mechanism generates the desired course angle (χc), which is

passed to outer loop course controller. The outer loop course control mechanism uses

11

a generic purpose PI control to generate the commanded roll angle (φc), such that

the course (χ) asymptotically tracks the commanded course angle. The output of the

course hold is

φc = kpχ(χc − χ) +
Kiχ

s
(χc − χ) (3.11)

The inner loop lateral autopilot controls the roll dynamics of the aircraft. The

inner loop controller uses the feedback information about the roll and uses the desired

roll angle generated by the outer loop to calculate the control surface deflection.

However as described in the equations of motion in the previous section, the roll

dynamics are highly non-linear and a generic PID controller is incapable of adapting

to uncertainties and requires certain degree of tuning to adapt it to different platforms.

Figure 3.2: Lateral Motion Control Using Successive Loop Closure

The longitudinal autopilot design is shown in the figure 3.3. Similarly, in the

longitudinal autopilot design, the inner loop controls the pitch angle(θ), while the

outer loop handles the altitude(h) of the aircraft. As shown in the figure 3.3, the

longitudinal guidance mechanism generates the desired altitude (hc), which is passes

to outer loop altitude controller.The outer loop altitude controller uses a generic PI

control to generate the commanded pitch angle(θc), such that aircrafts maintains the

commanded altitude. The output of the altitude hold is

θc = kph(hc − h) +
Kih

s
(hc − h) (3.12)

12

Similar to the lateral control, in longitudinal control the inner loop controls the

pitch dynamics of the aircraft. However, as described in the equations of motion, the

pitch dynamics are highly non-linear and is similar to the case of the roll, incapable of

adapting to uncertainties and requires certain degree of tuning to adapt to different

platforms.

Figure 3.3: Longitudinal Motion Control Using Successive Loop Closure

3.3 Model Reference Adaptive Control

Approximate Model Inversion based Model Reference Adaptive Control is an MRAC

method that allows the design of adaptive controllers for a general class of nonlinear

plants where an inversion model exists. Let x(t) ∈ Rn be the state vector, let δ(t) ∈

Rm denote the control input and consider the following nonlinear uncertain dynamical

system

ẋ1(t) = x2(t),

ẋ2(t) = f(x(t), δ(t))
(3.13)

The non linear system can also be represented as

ẋ(t) = Ax(t) +B(u+ ∆)(t) (3.14)

where ∆ is a smooth non-linear function.

In AMI-MRAC a pseudo control input is designed ν(t) ∈ Rm that can be used to

13

find the control input δ such that the system states track the output of the reference

model. Since, the exact system model is usually not known, ν is considered to be the

output of an approximate inversion model f̂ where

δ = f̂−1(x, ν) (3.15)

The use of an approximate inversion model results in a model error of the form

ẋ2 = ν + ∆(x, ν) (3.16)

where ∆ is the modeling error given by

∆ = f − f̂ (3.17)

A reference model can be designed that characterizes the desired response of the

system

ẋ1rm = x2rm,

ẋ2rm = frm(xrm, r)
(3.18)

where frm(xrm(t), r(t)) denotes the reference model dynamics. The command r(t)

is assumed to be bounded and piecewise continuous.

The pseudo-control input ν conssits of a linear feedback, a linear feedforward and

an adaptive part which is in the following form

ν(t) = νrm(t) + νpd(t)− νad(t) (3.19)

Defining the tracking error e(t) = xrm(t) − x(t), the tracking error dynamics can be

written as

ė = Ae+B(∆− uad) (3.20)

The baseline full state feedback controller νpd is selected such that A is Hurwitz.

Hence for any positive definite matrix Q ∈ Rmxm, a positive definite solution P ∈

Rmxm exits to the Lyapunov equation.

14

ATP + PA+Q = 0 (3.21)

Consider Γw to denote positive definite learning rate and considering gradient

based adaptation law [29] Ẇ (t) = −ΓwΦ(t)eT (t)PB that minimizes a cost on the

instantaneous tracking eT e guarantees that the tracking error is uniformly bounded

for the adaptive controller framework described above. However, this adaptive law

guarantees that the parameters (W) stay bounded within a neighborhood of the ideal

parameters (W ∗) only if Φ(t) is persistently excited [30]. Narendra and Annaswamy

introduced the e-modification [31]. The adaptive law with the e-modification follows

the update law

Ẇ (t) = −ΓwΦ(t)eT (t)PB − σ | e(t) | W (3.22)

The rational for using a error-dependent damping is that it tends to zero, as the

regulated output error diminishes. Also e-modification helps in keeping the weights

bounded through out the entire operating domain [31].

3.3.1 Gaussian Process Model Reference Adaptive Control

Gaussian Process Model Reference Adaptive Control is widely studied upon in [32],

[21]. It was implemented successfully on quadrotors and the results yielded were very

impressive [24]. However, there is very less study on implementation of GP-MRAC in

Fixed Wing Aircrafts [34]. A detailed overview of Gaussian Processes can be found

in the section 3.3.1

To achieve the tracking objective, the adaptive element attempts to learn the

mean of the stochastic process online.

From the equation 3.14

∆ = B−1(ẋ− Ax)− u (3.23)

15

Traditionally, in GP-MRAC [32], [21], [24], in order to estimate the ẋ, the exact

value of control effectiveness matrix B is to be known. This poses to be a problem

as ẋ can be noisy and B changes with the acceleration. To overcome this issue, an

alternates solution is presented for the implementation of GP-MRAC, that is to use

the pointwise estimation of Delta from a traditional high-gain MRAC as

Ẇ (t) = −ΓwΦ(t)eT (t)PB − σ | e(t) | W (3.24)

Note that even if the learning rate is increasing, there is no effect on the controller

as the weights from the baseline adaptive controller are not utilized. Instead we use

the ˆDelta that is trained from the Gaussian Process.

∆̂ = W TΦ(x) (3.25)

The mean of the estimate of the uncertainty trained on the GP is assigned to the

adaptive element νad which is used in the calculating the pseudo control input ν.

The benefits of this implementation are that the estimation of the control effec-

tiveness matrix is not necessary as the system uncertainty is being captured. This

implementation of the GP-MRAC is done and tested in the Hardware-in-the-loop

environment.

Gaussian Processes

A Gaussian Process is a supervised learning technique, Typically, Gaussian Process

Regression (GPR) is used to learn input-output mapping function f from the training

data set D of n observations, D = {(xi, yi)|i = 1, . . . , n}, where x denotes the input

vector of dimension D, and y is the scalar output (or target); the column vector

inputs for all n cases are aggregated in the D × n, matrix X. Once the mapping

function f is known for the set of inputs X, it can then be used to make predictions

16

for all possible set of test values X∗ through the derivation of the posterior function

f(X∗).

By definition, a Gaussian process describes distribution over functions and is

completely specified by its mean function m(x) and covariance function k(x, x′) of a

real process f(x) as

m(x) = E[f(x)],

k(x, x′) = E[(f(x)−m(x))(f(x)−m(x′))]

which can be denoted as

f(x) ∼ GP(m(x), k(x, x′)). (3.26)

In present work, we use squared exponential covariance function defined as,

cov(f(x), f(x′)) = k(x, x′) = exp(−‖x− x
′‖2

2σ
) (3.27)

To derive f(X∗) using GPR given the dataset D, we begin by defining a zero mean

prior over the functions as

f ∼ N (0, K(X,X)) (3.28)

where K(X,X) is a covariance matrix, with entries k(xi, xj) for i, j = 1, . . . , n.

Next, we incorporate measurement noise in the output as y = f(x) + ε, assuming

additive independent identically distributed Gaussian noise ε with variance σ2
n , hence

the prior on the noisy observations now becomes f ∼ N (0, K(X,X)+σ2
nI). The joint

distribution of the measured target values and the function values at the test locations

according to the prior is y
f∗

 ∼ N(0,

K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

) (3.29)

17

where f∗ = f(X∗). The posterior conditioned on the observations gives the key

predictive equations for Gaussian process regression as

f∗|X, y,X∗ ∼ N (f̄∗, cov(f̄∗)) (3.30)

f̄∗ = K(X∗, X)[K(X,X) + σ2
nI]−1y (3.31)

cov(f̄∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗) (3.32)

where f̄∗ is the mean prediction at locations X∗ and cov(f̄∗) is the predictive uncer-

tainty. Hence, the mean is directly estimated from the set of available data.

The main strength of the GPR is that it does not need to assume an a-priori allo-

cation of the RBF centres. However, the main disadvantage of using the traditional

GPR techniques is the covariance matrix increases in size as the size of D increases.

In online applications, this can quickly become intractable as computing the inverse

of the covariance matrix can become computationally intractable. It was shown that

this problem can be alleviated in [21] using online sparsification techniques,budgeted

online Sparse Gaussian Process regression technique [23]. This technique only in-

cludes valuable data points in an active Basis Vector set BV . When new data is

observed, the sparsification algorithm computes how well the new data point can be

approximated by the existing basis vectors using a comparative test called the kernel

independence test defined by

γ = ‖
t∑
i=1

αiψ(xi)− ψ(xt+1)‖2H (3.33)

The γt+1 gives the residual distance between ψ(xi) and the GP generated by

elements in BV . An existing element ψm in the basis vector set which minimizes

D(GP ‖ BV) − D(GP ‖ BV\{ψm}) is removed and the new sample is added to the

set. Given the basis vector set, the approximate mean and variance can be written

18

as:

f̄∗ = K(X∗,BV)[K(BV ,BV) + σ2
nI]−1y (3.34)

cov(f̄∗) = K(X∗, X∗)−K(X∗,BV)[K(BV ,BV) + σ2
nI]−1K(BV , X∗) (3.35)

Ref. [33] provides a complete analysis of the properties of GPs.

19

Chapter 4

AutoPilot Design & Development

4.1 Hardware Design

The design and development of the autopilot takes a new approach other than the

conventional autopilot design by modularizing the subsystems in the autopilot. Using

this process, the system can be prevented from becoming obsolete with the advance-

ments in the technology. Being modular also helps in developing the autopilot to be

mission specific. Furthermore, any faulty subsystems can be easily replaced individ-

ually without affecting the whole system and reducing the effort of rebuilding the

system from scratch.

The components that were selected to feature modularity are: the flight control

computer, the inertial navigation system and the wireless ground control communi-

cations module. When selecting the components for aerospace design, the form, the

weight and the power consumption of all the components play a major role.

4.1.1 Modular Components

Flight Control Computer

The flight control computer handles all the operations such as interacting with all the

components on-board the aircraft, as well as communicating with the ground control

20

Figure 4.1: The block diagram showing the different components and their commu-

nication protocols.

station. Its primary functions include

• Analyzing the data received from the onboard sensors.

• Executing the flight controls

• Communicating with the Ground Control Station

• Logging flight data for post-flight analysis

A market survey was conducted in order to identify the most suitable computer,

as special attention was needed with considering the size, weight, power consumption

and input/output(I/O) ports configurations.The details of the market survey can be

found in Table C.4 from Appendix C. The final choice was the BeagleBone Black, an

21

embedded computer board as shown in Figure 4.2.

The BeagleBone Black features

• Sitara AM3358 1Ghz ARM R©- A8 32-Bit Processor

• 512 MB DDR3 RAM

• 4GB 8-bit eMMC on-board flash storage

• 2x PRU 32-bit microcontrollers

The complete specifications of BeagleBone Black can be found in Appendix C.

Figure 4.2: BeagleBone Black

Usually, the autopilots are designed and developed around the selection of the

central computer. But in our approach to the design of the autopilot, the flight control

computer is also modular since the selection of the subcomponents can be easily

adapted to fit other similar linux-based embedded computers by simply modifying the

routing and connections of the Systems Integration Board. However, the makers of

BeagleBone Black, have not changed the form factor for 4 generations of development.

Therefore, it is safe to assume, BeagleBone Black can be easily be replaced with an

upgraded version from BeagleBone in the future with no modifications.

22

Navigation Sensors

Navigation sensors provide reliable measurement for the flight status of the flying ve-

hicle. Many commercial navigation sensors are available on the market.Some of them

are listed in Table C.5. All of them vary in the material, manufacturing technology,

measuring range, size, weight, estimation algorithm, positional accuracies. Based on

the working principle, a navigation solution falls into one of the categories.

• INS (Inertial Navigation System)

• INS/GPS (INS calibrated by GPS)

• GPS-aided AHRS (Altitude Heading Reference System)

It is a common practice to integrate the INS in the autopilot to reduce the wiring

footprint and maintain the same overall form factor of the autopilot. With the ad-

vancements of Microelectromechanical Systems(MEMS), INS are increasing in preci-

sion and accuracy very rapidly. But this being chosen as a modular unit, the INS

was not integrated in the Systems Integration Board, as it allows the user to select

one that matches the required form factor, the budget allowance and can be easily

swapped, if necessary. Also, most of the COTS navigation sensors come in rugged,

self-contained packages which gives freedom to the user to place the unit where it

is inconvenient to place the flight control computer. VectorNav’s VN-200 Rugged

GPS/INS shown in Figure 4.3, has been selected as it a miniature high performance

INS that features MEMS inertial sensors, a high-sensitivity GPS receiver, advanced

Kalman filtering algorithms to provide optimal estimates of position, velocity and

orientation. The complete specifications of VectorNav’s VN-200 Rugged GPS/INS

can be found in Appendix C.

23

Figure 4.3: VectorNav’s VN-200 Rugged GPS/INS

Wireless Communication Device

Communication range and reliability are most important factors when the wireless

communication device is selected. The Ground Control Station is the relay for all

of the relevant information on-board the UAV. Similar to the navigation sensors,

wireless communication technology is advancing rapidly and is becoming much more

efficient. This component is placed off board the autopilot, this way it reduces the

Electromagnetic Interference (EMI) caused by the other systems. Three different low-

cost, serial wireless communication modules were tested to determine the connection

strength and its robustness. The modules that were tested were

• XBee - 900 working at 915 MHz

• 3DR Telemetry Radios working at 915 MHz

• jDrones jD-RF900Plus Longrange working at 915 MHz

The jDrones jD-RF900Plus shown in the figure 4.4 has been selected as the connection

strength and the performance was better.

24

Figure 4.4: jDrones jD-RF900Plus Longrange telemetry set

Systems Integration Board

The main purpose of the Systems Integration Board, SIB in short, is the integration

of the Flight Control Computer with the other sensors and components on board the

aircraft. The SIB was designed with the form factor and robustness in mind. The

design of SIB has improved over the iterations as shown below in Figure 4.5 . In

order to eliminate the various issues such as loose or faulty connections, as well as to

easily use the autopilot like a plug and play device for quick connect/disconnect the

iterations were developed.

25

(a) Prototype SIB (b) First iteration for SIB

(c) Second iteration for SIB

(d) Third iteration of SIB (e) Latest iteration of SIB

Figure 4.5: Different Iterations of the Systems Integration Board(SIB)

Peripheral Sensors

There were two sensors that have been chosen to go on the Systems Integration

Board (SIB). The Honeywell, HSCMRRN001PD2A3, was chosen for its superior res-

olution, accuracy and form factor to provide the differential pressure reading from the

Airspeed sensor. Additionally, we have the Freescale MPL3115A2 Absolute Digital

Pressure Sensor on the SIB to provide accurate pressure [Pascals]/altitude [meters]

and temperature [◦C].

26

Fail-Safe Servo Driver

The Fail-Safe Servo Driver or Servo Driver in short, is another important part of the

Autopilot Design to guarantee the airborne safety of the small UAV. It is mainly re-

sponsible for decoding both piloted and computer generated servo control commands

and selecting desired decode signals to drive multiple servo actuators. In case of any

malfunction of the any component or accidents during autonomous flight, with the

Servo Driver, the human pilot has a chance to retrieve the UAV to safety. As the SIB

improved over iterations, even there were improvised iterations of the Servo Driver

as shown in the Figure 4.6.

(a) First Iteration Servo Driver

supporting Second and Third It-

eration SIB

(b) Second Iteration Servo

Driver supporting Fourth

Iteration SIB

Figure 4.6: Different Iterations of the Fail-Safe Servo Driver

4.2 Software Design

4.2.1 Multi-Threaded Design

The software system for the autopilot is developed based on multi-threaded archi-

tecture to ensure integrity and robustness of the system. The thread structure is

employed to execute multiple tasks based on the functionality and hardware compo-

nents. The threads are shown in the Figure 4.7. This design aligns well with the

27

practices observed in past works [28]. To execute the threads, the main() function is

tasked with the initialized with several parameters such as the system gains, actuator

limits and sensor profiles. In a multi-threaded system, the tasks for each thread must

be scheduled such that the control is executed properly. A detailed explanation of

the software design can be found in [34].

Figure 4.7: Thread design block Design

4.2.2 Ground Control Station Software

The Ground Control Station plays the primary role as the means by which operators

plan, execute and monitor UAS missions through a wireless communication channel.

28

The task of the ground station is to provide a realistic interface for users to monitor

the performance of the UAV during the flight tests. Many ground control software

platforms exist but QGROUNDCONTROL(QGC) is a well documented, platform

independent and community supported ground station software package. QGC soft-

ware is compatible with the major Operating Systems (Windows, Linux, Mac OS X).

It also features serial, UDP, TCP and mesh networks communication compatibility.

It also has real-time plotting and logging capabilities of onboard parameters. It also

features the ability to change onboard parameters relevant for the Control law. QGC

utilizes a highly efficient communication protocol called MAVLINK. MAVLINK is an

extensively tested and possibly the most widely used communication protocol in the

UAS research community.

4.3 Airframes

The various aircrafts in the fixed wing class, which were used to test out the autopilot

in the HITL environment are

• Skyhunter

• Anaconda

• Mugin

• Penguin-B

29

(a) Skyhunter (b) Anaconda

(c) Mugin (d) Penguin B

Figure 4.8: Different Aircrafts used for Hardware in the Loop Testing

The aircrafts’ specifications are as follows:

Table 4.1: Aircraft Specifications

Vehicle Skyhunter Anaconda Mugin Penguin-B

Wing Span 1.8 m 2.06 m 4.45 m 3.3 m

Body Length 1.4 m 1.41 m 3.67 m 2.27 m

Wing Area 0.362 sq.m 0.49 sq.m 1.1sq.m 0.79sq.m

Engine Electric Electric Gasoline Gasoline

Weight 9 lbs 12 lbs 44 lbs 28 lbs

30

4.4 Hardware in the Loop

The flight tests are conducted after intensive simulations executed on the Hardware-

in-the-loop (HITL) simulation system.Real-time HITL simulation is an effective method

for the verification of the overall performance and safety of the unmanned systems

before conducting the flight tests. In the HITL simulation, the different modules,

which include the onboard hardware system, automatic flight control system, ground

control station and the software architecture are included the simulation.The simu-

lation is done using Laminar Research X-Plane, a high fidelity simulator, utilized to

simulate aircraft dynamics in order to evaluate the autopilot Stabilis.

Figure 4.9: Hardware-in-the-Loop Environment Setup

The procedure to setup the Hardware-in-the-loop environment is clearly explained

in Appendix D. The procedure to run the HITL testing is elaborated in Appendix E.

31

Chapter 5

Results

5.1 Hardware in the Loop Simulation Results

The Hardware in the loop tests presented here were executed on 4 different aircrafts:

Skyhunter, Mugin, Anaconda and the Penguin-B. All the aircrafts are flown with

the same mission of tracking 8 waypoints. The aircrafts are flown in similar weather

conditions in the Simulator, average cross winds of 18 knots gusting upto 25 knots.

The aircraft is taken off in the attitude hold mode and then put into autonomous mode

where it tracks the waypoints in laps such that repeatability is ensured. The Inner

Loop dynamics, roll (φ) and pitch (θ) are augmented with the adaptive controllers

RBF-NN MRAC and GP-MRAC and are compared with the baseline PID Controller.

The Root Mean Square error for roll (φ) and pitch (θ) is calculated for the each

lap with the three different controllers, implemented and tested with the four different

airframes.

32

Laps
1 2 3 4 5

D
eg

re
es

2.5

3

3.5

4

4.5

5

5.5

6

GP
RBF NN
PID

(a) Skyhunter

Laps
1 2 3 4 5

D
eg

re
es

2.5

3

3.5

4

4.5

5

5.5

6

6.5

GP
RBF NN
PID

(b) Mugin

Laps
1 2 3 4 5

D
eg

re
es

2

2.5

3

3.5

4

4.5

5

5.5

6

GP
RBF NN
PID

(c) Anaconda

Laps
1 2 3 4 5

D
eg

re
es

2.5

3

3.5

4

4.5

5

5.5

6

GP
RBF NN
PID

(d) Penguin-B

Figure 5.1: Comparison of Root Mean Squared Error in Tracking Roll with the dif-

ferent controllers in different Aircrafts

33

Laps
1 2 3 4 5

D
eg

re
es

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

GP
RBF NN
PID

(a) Skyhunter

Laps
1 2 3 4 5

D
eg

re
es

2

2.5

3

3.5

4

4.5

GP
RBF NN
PID

(b) Mugin

Laps
1 2 3 4 5

D
eg

re
es

1.5

2

2.5

3

3.5

4

GP
RBF NN
PID

(c) Anaconda

Laps
1 2 3 4 5

D
eg

re
es

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

GP
RBF NN
PID

(d) Penguin-B

Figure 5.2: Comparison of Root Mean Squared Error in Tracking Pitch with the

different controllers in different Aircrafts

The Mean error for roll (φ) and pitch (θ) is calculated for each lap with the three

different controllers, implemented and tested with the four different airframes.

34

GP-MRAC RBF-NN PID

D
eg

re
es

1.5

2

2.5

3

(a) Skyhunter

GP-MRAC RBF-NN PID

D
eg

re
es

1.5

2

2.5

3

3.5

(b) Mugin

GP-MRAC RBF-NN PID

D
eg

re
es

1.5

2

2.5

3

3.5

(c) Anaconda

GP-MRAC RBF-NN PID

D
eg

re
es

2.5

3

3.5

4

4.5

5

5.5

6

6.5

(d) Penguin-B

Figure 5.3: Comparison of Mean Absolute Error in Tracking Roll with the different

controllers in different Aircrafts

35

GP-MRAC RBF-NN PID

D
eg

re
es

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

(a) Skyhunter

GP-MRAC RBF-NN PID

D
eg

re
es

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

(b) Mugin

GP-MRAC RBF-NN PID

D
eg

re
es

1

1.5

2

2.5

3

(c) Anaconda

GP-MRAC RBF-NN PID

D
eg

re
es

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(d) Penguin-B

Figure 5.4: Comparison of Mean Absolute Error in Tracking Pitch with the different

controllers in different Aircrafts

From the figures 5.1,5.2,5.3,5.4 it is observed that GP-MRAC outperforms RBF-

NN MRAC and the PID controller in terms of the Root Mean Squared Error and

Mean Absolute Errors of the Roll and Pitch tracking.

All the plots presented describes the performance of the controllers with the aircraft

Skyhunter. The results and plots of the remaining aircrafts are presented in the

Appendix A .

The Waypoint Tracking performance with the three different controllers for the

36

aircraft Skyhunter is shown. The circles represents the waypoints that the aircraft

has to fly autonomously. It is observed that the aircraft Skyhunter tracks the given

waypoint course well in the Autonomous mode with the three different controllers

implemented in the inner loop dynamics of the aircraft. Even in the presence of high

cross winds the aircraft performs well in tracking the waypoints.

Longitude
-97.65 -97.64 -97.63 -97.62 -97.61 -97.6 -97.59 -97.58

La
tit

ud
e

35.35

35.36

35.37

35.38

35.39

35.4

35.41

35.42

GP
RBF NN
PID

Figure 5.5: Comparison of Waypoint Tracking in Skyhunter with the different con-

trollers

The tracking of commanded input form the outer loops for both roll (φ) and pitch

(θ) with the different controllers for a single lap are shown.

37

GPS Time #104
0.5 1 1.5 2 2.5

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual

(a) Roll Control using PID

GPS Time #104
0.5 1 1.5 2 2.5

3
 ,

de
gr

ee
s

-10

-8

-6

-4

-2

0

2

4

6

8

10
Commanded
Actual

(b) Pitch Control using PID

GPS Time #104
0.5 1 1.5 2

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60
Commanded
Actual
Ref Model

(c) Roll Control using RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2

3
 ,

de
gr

ee
s

-8

-6

-4

-2

0

2

4

Commanded
Actual
Ref Model

(d) Pitch Control using RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60
Commanded
Actual
Ref Model

(e) for Roll Control using GP-MRAC

GPS Time #104
0.5 1 1.5 2

3
 ,

de
gr

ee
s

-8

-6

-4

-2

0

2

4

6
Commanded
Actual
Ref Model

(f) Pitch Control using GP-MRAC

Figure 5.6: Tracking Performance of Roll and Pitch with the different controllers in

Skyhunter 38

The Evolution of the Inner Loop errors and Outer loop errors are shown.

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 ?
, d

eg
re

es

-100

-50

0

50

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 3
, d

eg
re

es

-5

0

5

10

15

(a) Inner Loop Errors using

the PID Controller

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 ?
, d

eg
re

es

-60

-40

-20

0

20

40

60

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 3
, d

eg
re

es

-4

-2

0

2

4

(b) Inner Loop Errors using

RBF-NN MRAC

GPS Time #104
0 0.5 1 1.5 2 2.5

E
rr

or
 in

 ?
, d

eg
re

es

-100

-50

0

50

100

GPS Time #104
0 0.5 1 1.5 2 2.5

E
rr

or
 in

 3
, d

eg
re

es

-10

-5

0

5

10

(c) Inner Loops Errors us-

ing GP-MRAC

Figure 5.7: Evolution of Inner Loop Errors in Skyhunter with the various Controllers

GPS Time #104
0.5 1 1.5 2E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-5

0

5

10

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-8000

-6000

-4000

-2000

0

GPS Time #104
0.5 1 1.5 2E

rr
or

 in
 A

irs
pe

ed
, m

/s

-10

0

10

20

(a) Outer Loop Errors us-

ing the PID Controller

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-2

0

2

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-6000

-4000

-2000

0

2000

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

irs
pe

ed
, m

/s

-10

0

10

20

(b) Outer Loop Errors us-

ing RBF-NN MRAC

GPS Time #104
0 0.5 1 1.5 2 2.5E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-4

-2

0

2

4

GPS Time #104
0 0.5 1 1.5 2 2.5

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-10000

-5000

0

5000

GPS Time #104
0 0.5 1 1.5 2 2.5E

rr
or

 in
 A

irs
pe

ed
, m

/s

-10

0

10

20

30

(c) Outer Loops Errors us-

ing GP-MRAC

Figure 5.8: Evolution of Outer Loop Errors in Skyhunter with the various Controllers

The Evolution of the RBF-NN weights for roll (φ) and pitch (θ) for a single lap while

the aircraft is tracking the waypoints from the mission.

39

GPS Time #104
0.5 1 1.5 2

W
ei

gh
ts

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(a) Evolution of MRAC weights in Roll

Dynamics

GPS Time #104
0.5 1 1.5 2

W
ei

gh
ts

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Evolution of MRAC weights in Pitch

Dynamics

Figure 5.9: Evolution of MRAC weights in Inner Loop Dynamics

Performance of Gaussian Processes in capturing the uncertainty for a single lap while

the aircraft is tracking the waypoints from the mission.

GPS Time #104
0.5 1 1.5 2

ra
d/

s2

-3

-2

-1

0

1

2

3

8
ad
" Error

(a) Modeling Error in Roll Dynamics in

GP-MRAC

GPS Time #104
0.5 1 1.5 2

ra
d/

s2

-40

-30

-20

-10

0

10

20

30

40

50

60 8
ad
" Error

(b) Modeling Error in Pitch Dynamics in

GP-MRAC

Figure 5.10: Performance of GPs in capturing the uncertainty

40

5.2 Flight Test Results

Real world flight tests were conducted with the Skyhunter aircraft using the baseline

adaptive controller (RBF-NN MRAC). The aircraft was flown in weather conditions,

average winds at 17 knots and gusting upto 23 knots.

The tracking of the commanded input from the outer loop is observed for both

roll and pitch shown in figure 5.11 and 5.12.

Figure 5.11: Tracking Performance for Roll Control using RBF-NN MRAC using

e-mod

41

Figure 5.12: Tracking Performance for Pitch Control using RBF-NN MRAC using

e-mod

The inner loop and outer loop error performance are shown in figure 5.13 and 5.14

Figure 5.13: Evolution of Inner Loop Errors

42

Figure 5.14: Evolution of Outer Loop Errors

The weights for roll and pitch from the MRAC remained Uniformly Bounded across

the entire flight 5.15a and 5.15b

GPS Time
0 500 1000 1500 2000 2500 3000

W
ei

gh
ts

-5

-4

-3

-2

-1

0

1

2
Roll Weights

(a) Evolution of MRAC weights in Roll

Dynamics

GPS Time
0 500 1000 1500 2000 2500 3000

W
ei

gh
ts

-30

-25

-20

-15

-10

-5

0

5
Pitch Weights

(b) Evolution of MRAC weights in Pitch

Dynamics

Figure 5.15: Evolution of MRAC weights in Inner Loop Dynamics

43

GPS Time
0 500 1000 1500 2000 2500 3000

?
 D

el
ta

 E
rr

or

-400

-300

-200

-100

0

100

200

300

400
PHI Delta Error

Delta Error
? v

ad

(a) Online Disturbance Approximation of

Roll Dynamics

GPS Time
0 500 1000 1500 2000 2500 3000

3
 D

el
ta

 E
rr

or

-50

-40

-30

-20

-10

0

10

20
THETA Delta Error

Delta Error
3 v

ad

(b) Online Disturbance Approximation of

Pitch Dynamics

Figure 5.16: Adaptive Controller Performance in capturing the uncertainty

From the Figure 5.16, it is observed that the uncertainty of the modeling error is

being captured very well.

44

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main contribution of this thesis was the extensive Hardware in the Loop testing

results comparing the tracking performance of GP-MRAC to the RBF-NN MRAC

as well as the baseline Proportional-Integral-Derivative (PID) Controller. The first

experimental results of the RBF Neural Network MRAC were presented. Validation

of autopilot Stabilis, developed in house, is done with the flight testing with RBF

Neural Network MRAC is unfavorable flying conditions such as cross winds of 17

knots, gusting upto 23 knots integrating with an aircraft not specified to fly at these

conditions. Results show that GP-MRAC outperforms RBF-NN MRAC and PID

in terms of the tracking error. The results from the Hardware in the loop testing

demonstrates the feasibility to transfer controllers from one platform to another using

the adaptive controller GP-MRAC.

6.2 Future Work

The recommendations for future work are as follows

• Derivation of bounds and stable regions for GP - MRAC with ∆̂ estimation

using a high gain traditional MRAC.

45

• Flight Testing with GP - MRAC Architecture with fixed wing UAV, as intensive

HITL testing (more than 300 hours) is performed with the different airframes

• Characterize effectiveness of the Control Transfer using GP-MRAC by flight

testing with various fixed-wing aircrafts

• Extending the Control Transfer to a different class of airframes such as quad-

copters, helicopters, unconventional airframes, etc.

46

APPENDIX A

Hardware in the Loop Testing Results

The results of the Hardware in the loop testing with the other aircrafts are presented

in this section.

A.1 Mugin

The Waypoint Tracking performance with the three different controllers for the air-

craft Mugin is shown. The circles represents the waypoints that the aircraft has to

fly autonomously.

47

Longitude
-97.65 -97.64 -97.63 -97.62 -97.61 -97.6 -97.59 -97.58

La
tit

ud
e

35.35

35.36

35.37

35.38

35.39

35.4

35.41

35.42

GP
RBF NN
PID

Figure A.1: Comparison of Waypoint Tracking in Mugin with the different controllers

The tracking of commanded input form the outer loops for both roll (φ) and pitch

(θ) with the different controllers for a single lap are shown.

48

GPS Time #104
0.5 1 1.5 2 2.5

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual

(a) Tracking Performance for Roll Con-

trol using PID

GPS Time #104
0.5 1 1.5 2 2.5

3
 ,

de
gr

ee
s

-15

-10

-5

0

5

10 Commanded
Actual

(b) Tracking Performance for Pitch Con-

trol using PID

GPS Time #104
0.5 1 1.5 2 2.5

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual
Ref Model

(c) Tracking Performance for Roll Con-

trol using RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2 2.5

3
 ,

de
gr

ee
s

-8

-6

-4

-2

0

2

Commanded
Actual
Ref Model

(d) Tracking Performance for Pitch Con-

trol using RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2 2.5

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60
Commanded
Actual
Ref Model

(e) Tracking Performance for Roll Con-

trol using GP-MRAC

GPS Time #104
0.5 1 1.5 2 2.5

3
 ,

de
gr

ee
s

-8

-6

-4

-2

0

2

4

6

Commanded
Actual
Ref Model

(f) Tracking Performance for Pitch Con-

trol using GP-MRAC

Figure A.2: Tracking Performance of Roll and Pitch with the different controllers in

Mugin

49

The Evolution of the Inner Loop errors and Outer loop errors are shown.

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 ?
, d

eg
re

es

-100

-50

0

50

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 3
, d

eg
re

es

-10

-5

0

5

10

15

(a) Inner Loop Errors using

the PID Controller

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 ?
, d

eg
re

es

-60

-40

-20

0

20

40

60

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 3
, d

eg
re

es

-4

-2

0

2

4

6

(b) Inner Loop Errors using

RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 ?
, d

eg
re

es

-80

-60

-40

-20

0

20

40

60

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 3
, d

eg
re

es

-6

-4

-2

0

2

4

6

8

(c) Inner Loops Errors us-

ing GP-MRAC

Figure A.3: Evolution of Inner Loop Errors in Skyhunter with the various Controllers

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-5

0

5

10

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-15000

-10000

-5000

0

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

irs
pe

ed
, m

/s

-10

0

10

20

(a) Outer Loop Errors us-

ing the PID Controller

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-2

0

2

4

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-8000
-6000
-4000
-2000

0
2000

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

irs
pe

ed
, m

/s

-10

0

10

(b) Outer Loop Errors us-

ing RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2 2.5E
rr

or
 in

 A
lti

tu
de

, m
et

er
s

-2

0

2

4

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-6000

-4000

-2000

0

2000

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

irs
pe

ed
, m

/s

-10

0

10

(c) Outer Loops Errors us-

ing GP-MRAC

Figure A.4: Evolution of Outer Loop Errors in Mugin with the various Controllers

The Evolution of the RBF-NN weights for roll (φ) and pitch (θ) for a single lap while

the aircraft is tracking the waypoints from the mission.

50

GPS Time #104
0.5 1 1.5 2 2.5

W
ei

gh
ts

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(a) Evolution of MRAC weights in Roll

Dynamics

GPS Time #104
0.5 1 1.5 2 2.5

W
ei

gh
ts

-0.5

0

0.5

1

1.5

(b) Evolution of MRAC weights in Pitch

Dynamics

Figure A.5: Evolution of MRAC weights in Inner Loop Dynamics

Performance of Gaussian Processes in capturing the uncertainty for a single lap while

the aircraft is tracking the waypoints from the mission.

GPS Time #104
0.5 1 1.5 2 2.5

ra
d/

s2

-4

-3

-2

-1

0

1

2

3

4 8
ad
" Error

(a) Modeling Error in Roll Dynamics in

GP-MRAC

GPS Time #104
0.5 1 1.5 2 2.5

ra
d/

s2

-30

-20

-10

0

10

20

30

40

50 8
ad
" Error

(b) Modeling Error in Pitch Dynamics in

GP-MRAC

Figure A.6: Performance of GPs in capturing the uncertainty

51

A.2 Anaconda

The Waypoint Tracking performance with the three different controllers for the air-

craft Anaconda is shown. The circles represents the waypoints that the aircraft has

to fly autonomously.

Longitude
-97.65 -97.64 -97.63 -97.62 -97.61 -97.6 -97.59 -97.58

La
tit

ud
e

35.35

35.36

35.37

35.38

35.39

35.4

35.41

35.42

GP
RBF NN
PID

Figure A.7: Comparison of Waypoint Tracking in Anaconda with the different con-

trollers

The tracking of commanded input form the outer loops for both roll (φ) and pitch

(θ) with the different controllers for a single lap are shown.

52

GPS Time #104
0.5 1 1.5 2 2.5

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual

(a) Tracking Performance for Roll Con-

trol using PID

GPS Time #104
0.5 1 1.5 2 2.5

3
 ,

de
gr

ee
s

-10

-5

0

5

10
Commanded
Actual

(b) Tracking Performance for Pitch Con-

trol using PID

GPS Time #104
0.5 1 1.5 2

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual
Ref Model

(c) Tracking Performance for Roll Con-

trol using RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2

3
 ,

de
gr

ee
s

-10

-8

-6

-4

-2

0

2
Commanded
Actual
Ref Model

(d) Tracking Performance for Pitch Con-

trol using RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2 2.5

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual
Ref Model

(e) Tracking Performance for Roll Con-

trol using GP-MRAC

GPS Time #104
0.5 1 1.5 2 2.5

3
 ,

de
gr

ee
s

-8

-6

-4

-2

0

2
Commanded
Actual
Ref Model

(f) Tracking Performance for Pitch Con-

trol using GP-MRAC

Figure A.8: Tracking Performance of Roll and Pitch with the different controllers in

Anaconda

53

The Evolution of the Inner Loop errors and Outer loop errors are shown.

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 ?
, d

eg
re

es

-100

-50

0

50

100

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 3
, d

eg
re

es

-5

0

5

10

15

20

(a) Inner Loop Errors using

the PID Controller

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 ?
, d

eg
re

es

-60

-40

-20

0

20

40

60

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 3
, d

eg
re

es

-4

-2

0

2

4

(b) Inner Loop Errors using

RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 ?
, d

eg
re

es

-60

-40

-20

0

20

40

60

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 3
, d

eg
re

es

-4

-2

0

2

4

6

8

(c) Inner Loops Errors us-

ing GP-MRAC

Figure A.9: Evolution of Inner Loop Errors in Anaconda with the various Controllers

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-5

0

5

10

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-10000

-5000

0

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

irs
pe

ed
, m

/s

0

10

20

(a) Outer Loop Errors us-

ing the PID Controller

GPS Time #104
0.5 1 1.5 2E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-2

0

2

4

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-4000

-2000

0

2000

GPS Time #104
0.5 1 1.5 2E

rr
or

 in
 A

irs
pe

ed
, m

/s

0

2

4

(b) Outer Loop Errors us-

ing RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-2

0

2

4

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-8000

-6000

-4000

-2000

0

2000

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

irs
pe

ed
, m

/s

-10

0

10

20

(c) Outer Loops Errors us-

ing GP-MRAC

Figure A.10: Evolution of Outer Loop Errors in Anaconda with the various Con-

trollers

The Evolution of the RBF-NN weights for roll (φ) and pitch (θ) for a single lap while

the aircraft is tracking the waypoints from the mission.

54

GPS Time #104
0.5 1 1.5 2

W
ei

gh
ts

-0.4

-0.3

-0.2

-0.1

0

0.1

(a) Evolution of MRAC weights in Roll

Dynamics

GPS Time #104
0.5 1 1.5 2

W
ei

gh
ts

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) Evolution of MRAC weights in Pitch

Dynamics

Figure A.11: Evolution of MRAC weights in Inner Loop Dynamics

Performance of Gaussian Processes in capturing the uncertainty for a single lap while

the aircraft is tracking the waypoints from the mission.

GPS Time #104
0.5 1 1.5 2 2.5

ra
d/

s2

-3

-2

-1

0

1

2

3

4

8
ad
" Error

(a) Modeling Error in Roll Dynamics in

GP-MRAC

GPS Time #104
0.5 1 1.5 2 2.5

ra
d/

s2

-40

-20

0

20

40

60
8

ad
" Error

(b) Modeling Error in Pitch Dynamics in

GP-MRAC

Figure A.12: Performance of GPs in capturing the uncertainty

55

A.3 Penguin - B

The Waypoint Tracking performance with the three different controllers for the air-

craft oenguin-B is shown. The circles represents the waypoints that the aircraft has

to fly autonomously.

Longitude
-97.65 -97.64 -97.63 -97.62 -97.61 -97.6 -97.59 -97.58

La
tit

ud
e

35.35

35.36

35.37

35.38

35.39

35.4

35.41

35.42

GP
RBF NN
PID

Figure A.13: Comparison of Waypoint Tracking in Penguin-B with the different con-

trollers

The tracking of commanded input form the outer loops for both roll (φ) and pitch

(θ) with the different controllers for a single lap are shown.

56

GPS Time #104
0.5 1 1.5 2 2.5

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual

(a) Tracking Performance for Roll Con-

trol using PID

GPS Time #104
0.5 1 1.5 2 2.5

3
 ,

de
gr

ee
s

-15

-10

-5

0

5

10 Commanded
Actual

(b) Tracking Performance for Pitch Con-

trol using PID

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual
Ref Model

(c) Tracking Performance for Roll Con-

trol using RBF-NN MRAC

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

3
 ,

de
gr

ee
s

-10

-8

-6

-4

-2

0

2

4

6

8

Commanded
Actual
Ref Model

(d) Tracking Performance for Pitch Con-

trol using RBF-NN MRAC

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

?
 ,

de
gr

ee
s

-60

-40

-20

0

20

40

60

Commanded
Actual
Ref Model

(e) Tracking Performance for Roll Con-

trol using GP-MRAC

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

3
 ,

de
gr

ee
s

-6

-4

-2

0

2

4

6

8
Commanded
Actual
Ref Model

(f) Tracking Performance for Pitch Con-

trol using GP-MRAC

Figure A.14: Tracking Performance of Roll and Pitch with the different controllers in

Penguin-B

57

The Evolution of the Inner Loop errors and Outer loop errors are shown.

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 ?
, d

eg
re

es

-100

-50

0

50

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 3
, d

eg
re

es

-10

-5

0

5

10

15

20

(a) Inner Loop Errors using

the PID Controller

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

E
rr

or
 in

 ?
, d

eg
re

es

-60

-40

-20

0

20

40

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

E
rr

or
 in

 3
, d

eg
re

es

-10

-5

0

5

(b) Inner Loop Errors using

RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 ?
, d

eg
re

es

-60

-40

-20

0

20

40

60

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 3
, d

eg
re

es

-2

0

2

4

6

8

10

(c) Inner Loops Errors us-

ing GP-MRAC

Figure A.15: Evolution of Inner Loop Errors in Anaconda with the various Controllers

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-10

0

10

GPS Time #104
0.5 1 1.5 2 2.5

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

#104

-2

-1.5

-1

-0.5

0

GPS Time #104
0.5 1 1.5 2 2.5E

rr
or

 in
 A

irs
pe

ed
, m

/s

-10

0

10

20

(a) Outer Loop Errors us-

ing the PID Controller

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-5

0

5

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-6000

-4000

-2000

0

2000

GPS Time #104
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2E

rr
or

 in
 A

irs
pe

ed
, m

/s

-15

-10

-5

0

5

(b) Outer Loop Errors us-

ing RBF-NN MRAC

GPS Time #104
0.5 1 1.5 2E

rr
or

 in
 A

lti
tu

de
, m

et
er

s

-2

0

2

4

GPS Time #104
0.5 1 1.5 2

E
rr

or
 in

 H
ea

di
ng

, d
eg

re
es

-6000

-4000

-2000

0

2000

GPS Time #104
0.5 1 1.5 2E

rr
or

 in
 A

irs
pe

ed
, m

/s

-2

-1

0

1

2

(c) Outer Loops Errors us-

ing GP-MRAC

Figure A.16: Evolution of Outer Loop Errors in Anaconda with the various Con-

trollers

The Evolution of the RBF-NN weights for roll (φ) and pitch (θ) for a single lap while

the aircraft is tracking the waypoints from the mission.

58

GPS Time #104
0.5 1 1.5 2 2.5

W
ei

gh
ts

-2

-1.5

-1

-0.5

0

0.5

1

(a) Evolution of MRAC weights in Roll

Dynamics

GPS Time #104
0.5 1 1.5 2 2.5

W
ei

gh
ts

-15

-10

-5

0

5

10

15

20

(b) Evolution of MRAC weights in Pitch

Dynamics

Figure A.17: Evolution of MRAC weights in Inner Loop Dynamics

Performance of Gaussian Processes in capturing the uncertainty for a single lap while

the aircraft is tracking the waypoints from the mission.

GPS Time #104
0.5 1 1.5 2

ra
d/

s2

-5

-4

-3

-2

-1

0

1

2

3

4

5 8
ad
" Error

(a) Modeling Error in Roll Dynamics in

GP-MRAC

GPS Time #104
0.5 1 1.5 2

ra
d/

s2

-40

-30

-20

-10

0

10

20

30

40

50
8

ad
" Error

(b) Modeling Error in Pitch Dynamics in

GP-MRAC

Figure A.18: Performance of GPs in capturing the uncertainty

59

APPENDIX B

Autopilot Specifications

Specifications for the autopilots benchmarked in Table ?? are provided below. These

specifications were used to aid in selecting components for Stabilis. It should be noted

that many of the autopilot companies do not readily advertise the specifications of

their product. Thus, unfortunately, a significant amount of information was not

provided since it was not disclosed.

60

Table B.2: Commercial Off the Shelf Autopilots Specifications - Availability of I/O

Serial I/O Digitial I/O ADC

R
S

232

R
S

422

R
S

485

U
A

R
T

I2C

S
P

I

C
A

N

E
th

.

P
W

M

P
P

M

S
B

U
S

Kestrel 2.2 4 Serial Ports (STD, SPI, I2C) 10 - - 2 - 12bit

MP 2028g - - - - - - - - 24 - - >1

Piccolo Nano 3 - - - - - 1 - - - -

Piccolo LT 3 - - - - - 1 - - - -

Piccolo II 3 - - - - - 1 - 16 - - up to 4

Unav3521 - - - - - - - - 4 - - -

osflexPilot2 >1 >1 >1 >1 >1 >1 >1 - >1 - - >1

osnanoPilot2 - - - >1 >1 >1 >1 - 8 - - -

osflexQuad2 - - - - >1 - >1 - 8 - - -

Slugs - - - - - - - - - - - -

PixHawk - - - 5 1 1 2 - - 1 1 1 - 12bit

Ardupilot - - - 2 1 - - - 8 - - 12

Swiftpilot - - - - - - - - 6 - - -

wePilot1000/3000 1 - - - - - - - 10 - - 6 - 12bit

SkyCircuit-SC21 - - - - - - - 1 6 - - -

SmartAP - - - 1 - - - - 6 - - 2

Paparazzi - - - 3 2 2 1 - 6 1 - 1

GNC1000 2 1 8 - - - 2 4 6 - - -

Note 1) Expansion boards available.

Note 2) Specific values not advertised

61

T
ab

le
B

.3
:

C
om

m
er

ci
al

O
ff

th
e

S
h
el

f
A

u
to

p
il
ot

s
S
p

ec
ifi

ca
ti

on
s

-
A

va
il
ab

il
it

y
of

S
en

so
rs

R
at

e
G

y
ro

sc
op

es
A

cc
el

er
om

et
er

s
A

ir
S

p
ee

d
M

ax

A
lt

.

(f
t)

O
p

.
T

em
p

(◦
C

)
R

an
ge

(◦
/s

)

R
es

.

(◦
/s

)

B
ia

s

(◦
/v

H
r)

R
an

ge

(g
)

B
ia

s

(m
g/

L
S

B
)

N
oi

se

(g
/v

H
z)

R
an

ge

(k
ts

)

R
es

.

(k
ts

)

K
es

tr
el

2.
2

30
0

0.
03

18
6

10
1.

50
20

0
25

2
0.

05
22

k
−

40
to

+
85

M
P

21
28

g
-

-
-

-
-

-
50

0
-

12
k

-

P
ic

co
lo

N
an

o
-

-
-

-
-

-
-

-
-

−
30

to
+

80

P
ic

co
lo

L
T

30
0

-
-

6
-

-
19

2
-

-
−

30
to

+
80

P
ic

co
lo

II
30

0
-

-
10

-
-

15
5

-
-

−
40

to
+

80

U
n

av
35

21
30

0
-

-
-

-
-

-
-

-
-

os
fl

ex
P

il
ot

-
-

-
-

-
-

-
-

-
-

os
n

an
oP

il
ot

-
-

-
-

-
-

-
-

-
-

os
fl

ex
Q

u
ad

-
-

-
-

-
-

-
-

-
-

S
lu

gs
-

-
-

-
-

-
-

-
-

-

P
ix

H
aw

k
1

25
0

0.
00

88
1.

8
8

0.
24

4
∼

60
0

19
3

1.
1

>
60

k
−

30
to

+
70

A
rd

u
p

il
ot

1
10

00
32

.8
3

8
0.

2
40

0
60

0.
5

>
60

k
−

30
to

+
70

S
w

if
tp

il
ot

20
00

-
-

-
-

-
-

-
-

0
to

70

w
eP

il
ot

10
00

/3
00

0
10

0
-

-
10

-
-

-
-

10
k

-

S
k
y
C

ir
cu

it
-S

C
2

-
-

-
-

-
-

-
-

15
−

20
to

+
60

S
m

ar
tA

P
1

10
00

32
.8

3
8

0.
2

40
0

E
x
te

rn
al

>
60

k
−

30
to

+
70

P
ap

ar
az

zi
2

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
N

C
10

00
20

0/
10

00
-

3
10

5
-

45
0

1
60

k
-

N
ot

e
1)

F
S

va
lu

es
as

su
m

ed
;

th
e

re
so

lu
ti

on
an

d
ra

n
ge

ar
e

d
ep

en
d

en
t

on
th

is
as

su
m

p
ti

on
.

N
ot

e
2)

U
se

r
d

efi
n

ed
IM

U

62

APPENDIX C

Component Benchmarking

63

C.1 Flight Control Computer Survey

A summary of some of the flight control computers that were considered are provided

in C.4.

Table C.4: Embedded system specifications

Model Clock Speed Memory Price Peripherals

Arduino Due 84MHz 128Kb 40 I2C(2), UART(2), GPIO(28),

12 bit ADC(2), UDP/TCP,

USB

Arietta-G25 400 MHz 128Kb 30 I2C x 2, UART x 2, GPIO x

28, 12 bit ADC x 2

Beaglebone 400 MHz 128Kb 40 I2C x 2, UART x 2, GPIO x

28, 12 bit ADC x 2

Beaglebone Black 1 GHz 128Kb 55 I2C x 2, UART x 2, GPIO x

28, 12 bit ADC x 2

RaspberryPi 3 700 MHz 128Kb 40 I2C x 2, UART x 2, GPIO x

28, 12 bit ADC x 2

C.2 Inertial Sensor Survey

The following list is a compilation of available COTS IMU/INS/AHRS sensors. Table

C.5 was used primarily in the early design phases of Stabilis in order to characterize

and select an appropriate inertial navigation system. It is provided as a reference to

the reader.

64

Table C.5: List of Inertial Sensors

Model Manufacturer Type GPS Cost

Daisy-7 ACME Systems MEMS Yes 128.7

Adjacent Reality open hardware MEMS no

Spatial Advanced Navigation MEMS Yes 3000

Spatial Dual Advanced Navigation MEMS Yes 10000

Spatial FOG Advanced Navigation FOG Yes 35000

ARN-NS0535 Aeron Systems MEMS

impactAIMS AIMS MEMS

uMotion AIMS MEMS

Navigation AIMS MEMS yes

FOG AIMS MEMS/FOG

AHRS/INS American GNC MEMS

AHRS/INS/GPS American GNC MEMS yes

AHRS/INS/DGPS American GNC MEMS yes

ADIS16355 Analog Devices MEMS 600

Opal APDM MEMS

AHR150A-1 Archangel Sys. MEMS

3D-Bird Ascension MEMS 1768

INU Atair Aerospace MEMS yes

Micro INS Athena (Rockwell) MEMS yes

SensorPac Athena (Rockwell) MEMS yes

SilMU 01 UTC Aerospace (BAE) MEMS

SilMU 02 UTC Aerospace (BAE) MEMS

SiNAV 02 UTC Aerospace (BAE) MEMS yes

MMQ 50 BEI Systron Donner MEMS

MMQ-G BEI Systron Donner MEMS yes

C-MIGITS III BEI Systron Donner MEMS yes

MiniSense 2 CDLTD MEMS input

TOGS CDLTD RLG input

MiniRLG2 CDLTD RLG input

MiniPOS2 CDLTD RLG input

Continued on next page

65

Table C.5 – Continued from previous page

Model Manufacturer Type GPS Cost

MiniPOS/NAV CDLTD RLG input

MiniTilt CDLTD MEMS

MicroTilt CDLTD MEMS

MiniSense CDLTD MEMS

ADAHRS Chelton Avionics MEMS input 26000

CHR-6d CH Robotics MEMS no 125

CHR-6dm CH Robotics MEMS no

CHR-6um6 CH Robotics MEMS no

GP9 CH Robotics MEMS yes 320

Crista Cloudcap MEMS 2000

Piccolo Cloudcap MEMS yes 6000

Terrella 6 Clymer Tech. MEMS 1300

NAV 420 Crossbow MEMS yes

NAV 425EX Crossbow MEMS yes

NAV 440 Crossbow MEMS yes 6000

AHRS500 Crossbow MEMS 14200

IMU440 Crossbow MEMS yes

IMU700CB Crossbow FOG 12000

Landmark 10 IMU Gladiator Tech. MEMS 2495

Landmark 10 IMU/GPS Gladiator Tech. MEMS yes 4995

Landmark 20 IMU Gladiator Tech. MEMS 3995

Landmark 20 IMU/GPS Gladiator Tech. MEMS yes 5995

Landmark 10 GPS/AHRS Gladiator Tech. MEMS yes

Landmark 10 AHRS Gladiator Tech. MEMS

Landmark 30 Gladiator Tech. 6600

HG 1700 Honeywell RLG 9000

AG-1 Icewire MEMS No 199

iNAV-FMS-T iMAR FOG input

iIMU-FSAS iMAR FOG

iIMU-FR-M1 iMAR input

iVRU-FAS-C167-IGS iMAR FOG/MEMS input

iVRU-FC-C167-MSL iMAR FOG/MEMS input

Continued on next page

66

Table C.5 – Continued from previous page

Model Manufacturer Type GPS Cost

iVRU-SSA-C167 iMAR FOG/MEMS input

iVRU-SSKS-C167 iMAR MEMS input

iVRU-SBA1-C167 iMAR FOG/MEMS input

iVRU-FA-C167 iMAR MEMS input

iVRU-FKS-C167 iMAR FOG/MEMS input

iTGAC-FK iMAR FOG/MEMS

iHRP(Y) iMAR FOG/RLG input

iNAV-FMS iMAR FOG/RLG yes

iDIS-FMS iMAR FOG yes

iFLY iMAR

iuIMU-02 iMAR MEMS yes

iTraceRT-F200 iMAR FOG yes

OptoAHRS Inertial Labs Optical/MEMS no 7499

AHRS-1 Inertial Labs MEMS no 3499

AHRS-2 Inertial Labs MEMS no 2999

VG Inertial Labs MEMS no 2699

OS3D Inertial Labs MEMS no 999

OS3DM Inertial Labs MEMS no 999

ISIS-IMU Inertial Science MEMS

ISIS-GPS Inertial Science MEMS yes

DMARS-R Inertial Science MEMS input

DMARS-I Inertial Science MEMS input

DMARS-GARS Inertial Science MEMS yes

InertiaCube2 InterSense MEMS 1500

InertiaCube3 InterSense MEMS 1800

MPU-9150 Invensense MEMS no 80

MPU-6000 Invensense MEMS 15

KN-4072 Kearfott RLG

KN-4072A Kearfott RLG yes

KN-4073B Kearfott RLG

KN-4074 Kearfott RLG yes

KN-4075 Kearfott RLG yes

Continued on next page

67

Table C.5 – Continued from previous page

Model Manufacturer Type GPS Cost

KN-4077 Kearfott RLG yes

KN-4051/2/3 Kearfott

KN-4051/2/3G Kearfott yes

KI-4801 Kearfott RLG

KI-4901 Kearfott RLG input

KI-4902 Kearfott RLG input

TG-6000 KVH FOG 25000

CNS-5000 KVH FOG/MEMS yes 30250

LPMS-B LP Research MEMS no 500

LPMS-CU LP Research MEMS no 400

micro IMU Memsense MEMS

nano IMU Memsense MEMS 2730

MIDG II Microbotics MEMS yes 6750

MP 2028g MicroPilot MEMS yes 5000

3DM-GX1 MicroStrain MEMS 1500

3DM-GX2 MicroStrain MEMS

3DM-GX3-25 MicroStrain MEMS 2295

3DM-GX3-35 MicroStrain MEMS yes 3075

3DM MicroStrain MEMS

3DM-DH MicroStrain MEMS

INERTIA-LINK MicroStrain MEMS

LN-200 Northrop-Grumman

Summit 34203A Omni Instr. MEMS

Falcon GX O-Navi MEMS 1000

Phoenix AX O-Navi MEMS yes 1200

UM6 Pololu MEMS input 200

FreeIMU open hardware MEMS

AHRS200A Rotomotion MEMS

AHPRS200A Rotomotion MEMS yes

CHIMU Ryan Mechatronics MEMS No 299

Nav Board M3 Ryan Mechatronics MEMS No 299

IG-500A SBG Systems MEMS no 2208.7

Continued on next page

68

Table C.5 – Continued from previous page

Model Manufacturer Type GPS Cost

IG-500N SBG Systems MEMS yes 4483.7

IG-500E SBG Systems MEMS yes

Ekinox INS SBG Systems MEMS yes 32500

Ekinox AHRS SBG Systems MEMS no

MoveIt Senspod Sensaris MEMS yes

STIM300 Sensaris MEMS yes 7800

STM32F3 ST Semiconductors MEMS no 10.66

65210A Summit Instr. yes

65210E Summit Instr. yes

CompaNav 2 Teknol MEMS input

CompaNav 2T Teknol MEMS input

Autopilot Teknol MEMS input 6000

Nanosatellite Tethers Unlimited MEMS input

CC2541 DevKit Texas Instruments MEMS no 25

Colibri Trivisio MEMS no 550

Colibri wireless Trivisio MEMS no 800

Atom UAV NAvigation MEMS input

Polar UAV NAvigation MEMS yes

Vector UAV NAvigation MEMS yes

Proton UAV NAvigation MEMS yes

VN-100 Vectonav MEMS no 500

VN-200 Vectonav MEMS yes 500

VN-200 dev. kit Vectonav MEMS yes 2900

x-IMU x-io MEMS no 249

MTi-10 IMU Xsens MEMS 1170

MTi-20 VRU Xsens MEMS 2080

MTi-30 AHRS Xsens MEMS 2340

MTi-100 IMU Xsens MEMS 1820

MTi-200 VRU Xsens MEMS 3380

MTi-300 AHRS Xsens MEMS 4940

MTi-G-700 GPS/INS Xsens MEMS yes 4940

3-Space USB YEI MEMS no 145

Continued on next page

69

Table C.5 – Continued from previous page

Model Manufacturer Type GPS Cost

3-Space Embedded YEI MEMS no 99

3-Space Wireless 2.4G YEI MEMS no 220

3-Space Bluetooth YEI MEMS no 290

3-Space Data-logging YEI MEMS no 180

3-Space Data-logging HH YEI MEMS no 192

70

APPENDIX D

Setup of Hardware in the Loop

D.1 Introduction

This chapter will detail in procuring and setting up the different softwares used for

running the Hardware in The Loop (HITL) Demonstration for the autopilot Stabilis.

This will begin with the list of softwares required, then a short tutorial on installing

the aforementioned softwares, then having setup the softwares, the required hardware

to do the demonstration.

D.2 Softwares

D.2.1 Softwares Required

• BeagleBone Black Drivers

• PuTTY

• WinSCP

• Eclipse IDE for C/C++

• X-Plane Flight Simulator

• QGroundControl Ground Control Station

Note: The following Instructions are shown with the softwares X-Plane v.10.41,

QGroundControl v.2.71 and Eclipse Luna

71

D.3 Installation of Softwares

D.3.1 BeagleBone Black Drivers

To connect to STABILIS, as the module is using a BeagleBone Black, we need to

install the drivers for the BeagleBlack Bone. The drivers can be downloaded at http:

//beagleboard.org/getting-started and follow the steps given in the website for

BeagleBone.

D.3.2 PuTTY

To connect to STABILIS using secure shell (ssh) protocol, open an ssh client (

putty.exe) for Windows, which can be downloaded at: http://www.chiark.greenend.

org.uk/~sgtatham/putty/download.html, the PuTTY download page.

When you open PuTTY, the following screen will appear:

Figure D.1: PuTTY Connection

Enter the STABILIS IP ADDRESS: 192.168.7.2 in the Host Name field.

Then under Saved Sessions, type a name you would like to identify the connection

72

http://beagleboard.org/getting-started
http://beagleboard.org/getting-started
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

to the stabilis by (I used ‘BBB’) and click save. From that point, you can simply

double-click the name you gave to secure shell into the stabilis any time you open

your PuTTY client.

D.3.3 WinSCP

To transfer files securely to and from STABILIS, open a STFP client(WinSCP.exe)

which can be downloaded at: https://winscp.net/eng/download.php. You can

either use the Installation Package or the Portable Executables.

When you open WinSCP, the following screen will appear(Figure : D.2):

Figure D.2: WinSCP Connection

Enter the STABILIS IP ADDRESS: 192.168.7.2 in the Host Name field.

Then under Saved Sessions, type a name you would like to identify the connection to

the stabilis by (I used ‘BBB’), enter the username and password, then click save.

From that point, you can simply double-click the name you gave to secure shell into

the stabilis any time you open your WinSCP client.

D.3.4 Eclipse IDE for C/C++

To view and modify the files on STABILIS, open a remote system explorer(Eclipse

IDE for C/C++) which can be downloaded at : http://www.eclipse.org/downloads/

73

https://winscp.net/eng/download.php
https://winscp.net/download/winscp576setup.exe
https://winscp.net/download/winscp576.zip
http://www.eclipse.org/downloads/

, where there is a link for the Eclipse IDE for C/C++. Proceed to the download link

and download the package and install it.

After installing the Eclipse IDE for C/C++, open the IDE and set up a workspace.

Then the following steps will guide you through to setup the Remote System Explorer

in the Eclipse IDE.

Opening the Remote System Explorer Perspective

• Go to Windows→ OpenPerspective→ Other...

• Select Remote System Explorer in the shown menu

• Click OK (Figure : D.3)

Figure D.3: Open Perspective Window

• The window will now populate the Remote System Explorer(RSE) view in

Eclipse IDE (Figure : D.4)

74

http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/mars1

Figure D.4: Remote System Explorer View

75

Creating a New Connection

• Go to File→ New → Other...

• Select RemoteSystemExplorer → Connection

• Click Next (Figure : D.5)

Figure D.5: New Remote Connection

• In the Select Remote System Type window, select Linux and Click Next

(Figure : D.6)

• Enter the STABILIS IP ADDRESS: 192.168.7.2 in the Host Name field.

• Fill the Connection Name (STABILIS) and Click Next (Figure : D.7)

• Select ssh.files and click Next (Figure : D.8)

• Select the processes.shell.linux and click Next (Figure : D.9)

• Select the ssh.shells and click Next (Figure : D.10)

• Select ssh.terminals and Click Finish (Figure : D.11)

• Now you can observe that the Remote System Explorer for STABILIS is setup

in the Remote Systems Tab (Figure : D.12)

76

Figure D.6: Select Remote Sytem Type : Linux

D.3.5 X-Plane Fight Simulator

The X-Plane Fight Simulator by Laminar Research is utilized to do the Hardware in

the Loop (HITL) Demonstration. Generally, flight simulators emulate the real world

performance of an aircraft by using empirical data to determine aerodynamic forces

such as drag or lift, which vary in different flight conditions. X-Plane can model

fairly complex aircraft designs, including helicopters, rockets, rotor crafts and tilt

rotor crafts.

Establishing Net Connections with X-Plane

After installing X-Plane Flight Simulator, Run the X-Plane program.

• Goto to Settings in the Menu bar and click Net Connections which would

load up the following screen (Figure : D.13)

• Select the Data Tab which would populate the following screen (Figure : D.14)

• Fill the IP of data receiver as 192.168.7.2 and the Port as 49001.(Figure

: D.15)

• For the UDP Ports fill the following values to the ports mentioned respectively

(Figure : D.16)

77

Figure D.7: Remote Linux System Connection

– ports that we receive on : 49,000

– ports that we send from : 49,001

Selecion of Data Input & Output from X-Plane to STABILIS

• Goto to Settings in the Menu bar and click Data Input & Output which

would load up the following screen (Figure : D.17)

There are four checkboxes shown for each parameter in the window

• The first checkbox represents Internet via UDP

• The second checkbox represents Disk file ’data.txt’

• The third checkbox represents Graphical Display in ’Data See’

• The fourth checkbox represents Cockpit During Flight

78

Figure D.8: Defining the subsytem information(Files) for the new connection

Figure D.9: Defining the subsytem information(Processes) for the new connection

79

Figure D.10: Defining the subsytem information(Shells) for the new connection

Figure D.11: Defining the subsytem information(SSH Terminals) for the new connec-

tion

80

Figure D.12: Remote System Explorer Setup

Figure D.13: Net Connections - Multiplayer in X-Plane

81

Figure D.14: Net Connections - Data in X-Plane

Figure D.15: Net Connections - IP for Data Output

Figure D.16: Net Connections - UDP Ports for data transfer

82

Figure D.17: Net Connections - UDP Ports for Data Transfer

83

The following parameters are selected to send to STABILIS over the UDP con-

nection(First Checkbox)

• 1 times

• 3 speeds

• 4 Mach,VVI,G-load

• 5 atmosphere:weather

• 10 art stab ail/elv,rud

• 16 angular velocities

• 17 pitch, roll, headings

• 20 lat,lon,altitude

• 21 loc,vel,dist traveled

• 25 throttle command

• 26 throttle actual

84

Figure D.18: Data Input & Output - Data Set - Selected Parameters for Data Transfer

Also we use the same aforementioned parameters with ’0 frame rate’ to be selected

to be shown on the cockpit during flight.(Figure : D.18)

The UDP transfer rate of data is selected to be 40.0 Hz.(Figure : D.19)

85

Figure D.19: Data Input & Output - Data Set - UDP Transfer Rate

D.3.6 QGROUNDCONTROL Ground Control Station

QGROUNDCONTROL is an open source Micro Air Vehicle Ground Control Sta-

tion/Operation Unit.This can be downloaded at http://qgroundcontrol.org/downloads,

where you find the installation file for QGROUNDCONTROL Stable Build v2.7.1.

The Main Features of QGROUNDCONTROL include

• In-flight manipulation of waypoints and onboard parameters

• 2/3D aerial maps(Google Earth support) with drag-and-drop waypoints

• Real-time plotting of sensors and telemetry data

• Support for UDP, serial(radio modem)and mesh networks

• Logging and plotting of sensor logs

• Support for Head-up-display and digital video transmission/display

After installing the QGROUNDCONTROL, when the program is initialized the

following screen is shown.(Figure : D.20)

86

http://qgroundcontrol.org/downloads

Figure D.20: Start Up window of QGROUNDCONTROL v2.7.1

QGROUNDCONTROL can communicate with STABILIS using the Serial and

UDP protocols .

Communication Link with Serial Protocol

• Goto File in the Menu Bar and Select Manage Communication Links

shown.(Figure : D.21)

Figure D.21: Manage Communication Links Window in QGROUNDCONTROL

87

• Select the Comms Link

• Select the Add button and the following screen pops out.(Figure : D.22)

Figure D.22: Add New Communication Link Window in QGROUNDCONTROL

• Add a link name and select Serial option from the Link Type drop down menu,

then the following screen pops up

• Enter the Serial Port in which the Antenna is connected on the Ground Station

Computer and Enter the baud rate as 115200 and click OK. (Figure : D.23)

88

Figure D.23: Add New Communication Link Window in QGROUNDCONTROL

• Click OK

Communication Link with UDP Protocol

• Goto File in the Menu Bar and Select Manage Communication Links(Figure

: D.24)

Figure D.24: Manage Communication Links Window in QGROUNDCONTROL

• Select the Comms Link

• Select the Add button and the following screen pops out(Figure : D.25)

89

Figure D.25: Add New Communication Link Window in QGROUNDCONTROL

• Add a link name and select UDP option from the Link Type drop down menu,

then the following screen pops up

• Enter 14555 as the Listening Port and click on Add and the following screen

pops up.(Figure : D.26)

Figure D.26: Add New Communication Link Window in QGROUNDCONTROL

• Enter 192.168.7.2:14555 as the Host and click OK(Figure : D.27)

90

Figure D.27: Add New Communication Link Window in QGROUNDCONTROL

• click OK

• click OK

91

APPENDIX E

Hardware in the Loop Testing

After setting up all the softwares required , we proceed on to show how to perform

the Hardware in the Loop Testing.

E.1 Precautions

• Disconnect the propulsion motors from power supply to avoid accidents

• Make sure the Transmitter and the Controller are paired.

• Make sure the Telemetry radios are paired.

• Switch on the Remote Controller before you run the Stabilis program

E.2 Procedure

• Plug in power on STABILIS

• Plug in the mini USB on STABILIS to the Computer running the Simulation

Software(X-Plane)

• Wait until the pop-up menu to show that a Removable Drive is inserted(Figure

: E.1)

92

Figure E.1: Autoplay Menu for Removable Device

• Open PuTTY, ssh into STABILIS.(Figure : E.2)

Figure E.2: Terminal of STABILIS

• Enter the login credentials. Login : root and Password : root(Figure : E.3)

93

Figure E.3: Logging into STABILIS securely

• Open X-Plane, the following shows up, upon loading(Figure : E.4)

Figure E.4: Start Up screen of X-Plane

• Select the airport from which you want to fly.(Figure : E.5)

94

Figure E.5: Selection of Airport

• Select the aircraft that you want to fly with.(Figure : E.6)

Figure E.6: Selection of Aircraft

• Then select the weather conditions you want to fly.It can be either real time

data at the selected location or predefined constant weather conditions.(Figure

: E.7)

95

Figure E.7: Selection of the Date, Time and Weather

• Open QGROUNDCONTROL, Goto File then to Manage Communications Links.

The following window pops up. Select the protocol through which you wan to

connect to STABILIS(either Serial or UDP)

• Goto Advanced option on the Menu bar and select HIL Simulation. Or you can

use the shortcut Ctrl + 5 (QGC v2.7.1 only).

• Switch to PuTTY terminal and go to Stabilis folder and Run ./Stabilis v1.0.2

executable

96

• Hit Connect with the select Communication Link on QGROUNDCONTROL(Serial

or UDP)

• Then you can see the Aircraft at the selected Location on the Map in QGROUND-

CONTROL.

• Select the Home Location at the Aircraft position by right clicking on the Map

in QGC.

• There are two ways to load the Waypoints on QGC

• Hit Edit Waypoints

• The First way is to select the Waypoints on the map by double-clicking the lo-

cation on the map and assigning the parameters associated with the waypoints.

• The second way is to load a pre-defined Waypoint list

• Then hit set in the lower right corner of the QGC window

97

Bibliography

[1] K. S. Narendra, Y.-H. Lin, and L. S. Valavani, “Stable adaptive controller design,

part ii: Proof of stability,” Automatic Control, IEEE Transactions on, vol. 25,

no. 3, pp. 440–448, 1980.

[2] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems. Courier Corpo-

ration, 2012.

[3] R. W. Beard, N. B. Knoebel, C. Cao, N. Hovakimyan, and J. S. Matthews,

“An l1 adaptive pitch controller for miniature air vehicles,” in AIAA Guidance,

Navigation, and Control Conference, Keystone, CO, 2006.

[4] C. Cao, N. Hovakimyan, and E. Lavretsky, “Application of l1 adaptive controller

to wing rock,” in AIAA Guidance, Navigation, and Control Conference, Key-

stone, CO, 2006.

[5] C. Cao and N. Hovakimyan, “Design and analysis of a novel l1 adaptive con-

trol architecture with guaranteed transient performance,” IEEE Transactions

on Automatic Control, vol. 53, no. 2, pp. 586–591, 2008.

[6] C. Cao and N. Hovakimyan, “L1 adaptive controller for systems with unknown

time-varying parameters and disturbances in the presence of non-zero initial-

ization error,” International Journal of Control, vol. 81, no. 7, pp. 1147–1161,

2008.

[7] I. Kaminer, A. Pascoal, E. Xargay, N. Hovakimyan, C. Cao, and V. Dobrokhodov,

“Path following for small unmanned aerial vehicles using l1 adaptive augmen-

tation of commercial autopilots,” Journal of guidance, control, and dynamics,

vol. 33, no. 2, pp. 550–564, 2010.

[8] C. Cao and N. Hovakimyan, “Vision-based aerial tracking using intelligent excita-

tion,” in American Control Conference, 2005. Proceedings of the 2005, pp. 5091–

5096, IEEE, 2005.

98

[9] C. Cao, N. Hovakimyan, and J. Wang, “Intelligent excitation for adaptive con-

trol with unknown parameters in reference input,” Automatic Control, IEEE

Transactions on, vol. 52, no. 8, pp. 1525–1532, 2007.

[10] T. Yucelen and A. J. Calise, “Derivative-free model reference adaptive control of

a generic transport model,” in AIAA Guidance, Navigation, and Control Con-

ference, Toronto, ON, 2010.

[11] T. Yucelen and A. J. Calise, “Derivative-free model reference adaptive control,”

Journal of Guidance, Control, and Dynamics, vol. 34, no. 4, pp. 933–950, 2011.

[12] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical

systems using neural networks,” Neural Networks, IEEE Transactions on, vol. 1,

no. 1, pp. 4–27, 1990.

[13] F. Lewis, “Nonlinear network structures for feedback control,” Asian Journal of

Control, vol. 1, no. 4, pp. 205–228, 1999.

[14] A. J. Calise and R. T. Rysdyk, “Nonlinear adaptive flight control using neural

networks,” Control Systems, IEEE, vol. 18, no. 6, pp. 14–25, 1998.

[15] B. S. Kim and A. J. Calise, “Nonlinear flight control using neural networks,”

Journal of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 26–33, 1997.

[16] A. J. Calise, N. Hovakimyan, and M. Idan, “Adaptive output feedback control of

nonlinear systems using neural networks,” Automatica, vol. 37, no. 8, pp. 1201–

1211, 2001.

[17] E. N. Johnson, M. A. Turbe, A. D. Wu, S. K. Kannan, and J. C. Neidhoefer,

“Flight test results of autonomous fixed-wing uav transitions to and from sta-

tionary hover,” in Proceedings of the AIAA Guidance, Navigation, and Control

Conference Exhibit, Monterey, CO, 2006.

[18] G. Chowdhary and E. Johnson, “Adaptive neural network flight control using

both current and recorded data,” in AIAA Guidance, Navigation, and Control

Conference, AIAA-2007-6505. Hilton Head, 2007.

[19] G. Chowdhary, T. Wu, M. Cutler, and J. P. How, “Rapid transfer of controllers

between uavs using learning-based adaptive control,” in Robotics and Automation

(ICRA), 2013 IEEE International Conference on, pp. 5409–5416, IEEE, 2013.

99

[20] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-

function networks,” Neural computation, vol. 3, no. 2, pp. 246–257, 1991.

[21] G. Chowdhary, H. Kingravi, J. P. How, and P. A. Vela, “Bayesian nonpara-

metric adaptive control using gaussian processes,” IEEE Transactions on Neural

Networks, 2013 (submitted).

[22] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive

window: Theory and experiment,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 16, no. 9, pp. 920–932, 1994.

[23] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computation,

vol. 14, no. 3, pp. 641–668, 2002.

[24] R. Grande, G. Chowdhary, and J. How, “Experimental validation of bayesian

nonparametric adaptive control using gaussian processes,” Journal of Aerospace

Information Systems, 2013 (Submitted).

[25] R. W. Beard and T. W. McLain, Small Unmanned Aircraft Theory and Practice.

Princeton: Princeton University Press, 2012.

[26] R. Nelson, Flight stability and automatic control. Boston, Mass: WCB/McGraw

Hill, 1998.

[27] E. Lavretsky and K. Wise, Robust and Adaptive Control: With Aerospace Appli-

cations. Springer, 2012.

[28] G. Cai, B. M. Chen, and T. H. Lee, Unmanned rotorcraft systems. New York:

Springer, 2011.

[29] S. Boyd and S. S. Sastry, “Necessary and sufficient conditions for parameter

convergence in adaptive control,” Automatica, vol. 22, no. 6, pp. 629–639, 1986.

[30] R. M. Sanner and J.-J. Slotine, “Gaussian networks for direct adaptive control,”

Neural Networks, IEEE Transactions on, vol. 3, no. 6, pp. 837–863, 1992.

[31] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adapta-

tion without persistent excitation,” Automatic Control, IEEE Transactions on,

vol. 32, no. 2, pp. 134–145, 1987.

100

[32] G. Chowdhary, J. How, and H. Kingravi, “Model reference adaptive control using

nonparametric adaptive elements,” in Conference on Guidance Navigation and

Control, Minneapolis, MN, 2012.

[33] C. E. Rasmussen, Gaussian processes for machine learning. MIT Press, 2006.

[34] J. Stockton, “Modular autopilot design and development featuring bayesian non-

parametric adaptive control,” Master’s thesis, Oklahoma State University, 12

2014.

101

VITA

Sri Theja Vuppala

Candidate for the Degree of

MASTER OF SCIENCE

Thesis: IMPLEMENTATION AND VALIDATION OF GAUSSIAN PROCESS
MODEL REFERENCE ADAPTIVE CONTROL FOR FIXED WING UN-
MANNED AERIAL SYSTEMS

Major Field: Mechanical and Aerospace Engineering

Biographical:

Education: Completed the requirements for the Master’s of Science degree with
a major in Mechanical and Aerospace Engineering at Oklahoma State Uni-
versity in April, 2016. Completed requirements for Bachelors of Technol-
ogy degree with a major in Mechanical Engineering at Jawaharlal Nehru
Technological University, Kakinada in May, 2012.

Experience:
Research Assistant for DasLab, at Oklahoma State University, Stillwater,
OK: Spring 2014 to May 2016.

Teaching Assistant for Measurements and Instrumentation (MAE 3113),
at Oklahoma State University, Stillwater, OK: Fall 2014

Teaching Assistant for Systems - I (MAE 3723), at Oklahoma State Uni-
versity, Stillwater, OK: Spring 2015 and Fall 2015

	Introduction
	Motivation
	Outline of Contributions
	Outline of the Thesis

	Related Works
	Rapid-Transferable Control for Fixed Wing Small Unmanned Aerial Vehicles
	Aircraft Kinematics and Dynamics
	Kinematic Guidance Models

	Autopilot Design
	Model Reference Adaptive Control
	Gaussian Process Model Reference Adaptive Control

	AutoPilot Design & Development
	Hardware Design
	Modular Components

	Software Design
	Multi-Threaded Design
	Ground Control Station Software

	Airframes
	Hardware in the Loop

	Results
	Hardware in the Loop Simulation Results
	Flight Test Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Hardware in the Loop Testing Results
	Mugin
	Anaconda
	Penguin - B

	Autopilot Specifications
	Component Benchmarking
	Flight Control Computer Survey
	Inertial Sensor Survey

	Setup of Hardware in the Loop
	Introduction
	Softwares
	Softwares Required

	Installation of Softwares
	BeagleBone Black Drivers
	PuTTY
	WinSCP
	Eclipse IDE for C/C++
	X-Plane Fight Simulator
	QGROUNDCONTROL Ground Control Station

	Hardware in the Loop Testing
	Precautions
	Procedure

	Bibliography

