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Abstract:  Over the last couple of decades, rapid development of unmanned aerial
systems (UAS) has been observed. UAS are becoming an integral part of various
industries such as agriculture, communications, defense, first response, geophysical
surveys. This wide range of applications over different industries demands a number
of mission specific vehicle platforms. The platforms must be reliable in all environ-
ments as well as in the presence of various uncertainties. Presently, the UAS that
are flown autonomously rely on extensive manual tuning of control parameters. The
control parameters are platform specific, hence transferring the controllers from one
platform to another, is time consuming and requires extensive testing against human
errors. A detailed approach to the development of an adaptive, platform independent
controller which leverages Bayesian Non-parametric approach towards the adaptive
control was performed in this thesis. Hardware-in-the-loop simulation is one of the ef-
fective methods for the verification of the overall control performance and safety of the
UAS before conducting actual flight tests. We had developed Hardware-in-the-loop
(HITL) framework to test the developed. This was done by actual implementation
into different aircraft platform. Extensive testing in the HITL environment was done
and results from HITL tests as well as flight test results are presented.

v



Acknowledgments

I would like to express my sincere gratitude to my thesis advisor and academic
mentor, Dr. Girish V. Chowdhary for his continuous support and motivation during
my Masters study and research. The knowledge he shared with me, the kind of
trust he had instilled in me, the degree of patience he embraced when correcting my
mistakes, are some things that made me admire him a lot. I am extremely fortunate
to have an advisor like him. I would like to express my thanks to the Committee
Members Dr. Jamey Jacob and Dr. He Bai for their support and inputs towards

completion of the work.

I would like to thank all of the members of the Distributed Autonomous Systems
Laboratory. Most of what I have learned has been due to the interactions and dis-
cussions with the lab members. I would like to thank Dane Johnson, Andrew Cole
who helped me ease into the research at its inception and also Girish Joshi, Logan
Washbourne, Nolan Repogle, Sesha Talapa Sai Radganti for the support towards the

progress of the work.

I am extremely thankful to my friends Gopal Koya, Nakul Babu Maddipati, Nandu
Kumar Merupula, Noel Daniel Gundi, Rakshit Allamraju, Suresh Babu Myneni,
Suryakiran Chavali and Sowmya Pachipenta for their encouragement and support

during my graduate study.

I would like to acknowledge, with deepest gratitude, the support and immeasurable
love of my family. My mother Usha Rani Vuppala and brother Sri Harsha Vuppala

have supported me at each and every phase of my career. They gave me freedom to

v

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.



take my own decisions and gave up many things for me to chase my dreams. I can

never be grateful enough to such an amazing family.

I would like to dedicate this work to my father Ramesh Gupta Vuppala, who is

my role model and inspired me towards becoming a Mechanical Engineer.

vi

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.



Contents

Chapter Page
(1 _Introduction| 1
L1 Motivationl. . . . . . . . .o 1
1.2 Outline of Contributionsl . . . . . . . . .. .. .. ... .. ... ... 2
[.3  Outline of the Thesidl . . . . . . ... . ... .. ... .. ... .... 2
2 Related Works 4

[3 Rapid-Transferable Control for Fixed Wing Small Unmanned Aerial |

[_Vehicles| 7
[3.1 Aircraft Kinematics and Dynamics| . . . . . . .. ... .. ... ... 7
B.1.1  Kinematic Guidance Models . . . . .. ... ... ... ... 10

[3.2  Autopilot Design| . . . . .. ... 0o 11
[3.3 Model Reterence Adaptive Control| . . . . . . . ... ... ... ... 13
[3.3.1 Gaussian Process Model Reference Adaptive Control| . . . . . 15

[4  AutoPilot Design & Development| 20
4.1  Hardware Design| . . . . . . .. .. ... ... ... 20
[4.1.1 Modular Components|. . . . . . .. ... ... ... ...... 20

4.2 Software Design| . . . . . . . .. ..o 27
[4.2.1  Multi-Threaded Designl . . . . . .. ... ... ... ... ... 27

vil



[5_Results|

[>.1 Hardware in the Loop Simulation Results|. . . . . .. ... ... ...

5.2 Flight Test Results . . . . . .. ... ... ... ... ... ... ...

(B Autopilot Specifications|

[C Component Benchmarking]

[C.1 Flight Control Computer Survey{. . . . . . . ... ... .. .. ... ..

[C.2 Inertial Sensor Survey| . . . . . ... ... ... ... ... ... ..

(D Setup of Hardware in the Loop |

32

32

41

45

45

45

47

47

52

56

60

63

64

64

71



[D.3.1 BeagleBone Black Drivers| . . . . ... ... ... ... .... 72

D32 PuTTY] . o o o oo e e e 72

D.3.3 WinSCPl . . . . . .. . 73

[D.3.4 Eclipse IDE for C/C++ . . . ... ... ... ... ...... 73

[D.3.5 X-Plane Fight Simulator| . . . . .. ... ... .. ... .... 7

[D.3.6 QGROUNDCONTROL Ground Control Station| . . . . . . .. 86

[ Hardware in the Loop Testing| 92
[EI Precautions . . . . . . . . ... 92
(.2 Procedurel . . . . ..o 92
(Bibliography| 98

X



List of Tables

Table Page

4.1 Aircraft Specifications| . . . . . . . . ... Lo 30

[B.2  Commercial Off the Shelf Autopilots Specifications - Availability of /0| 61

[B.3 Commercial Off the Shelf Autopilots Specifications - Availability of |

DENSOISl . . . . . e 62
[C.4 Embedded system specifications| . . . . . . . ... ... .. ... ... 64
[C.5 Tist of Tnertial Sensorsl . . . . . . . .. ... ... ... L. 65



List of Figures

x1

Figure Page
3.1 Vehicle coordinate frame of referencel . . . . . . . . ... ... ... 8
[3.2  Lateral Motion Control Using Successive Loop Closurel . . . . . . .. 12
[3.3  Longitudinal Motion Control Using Successive Loop Closure] . . . . . 13
[4.1 The block diagram showing the different components and their com- |

| munication protocols.|. . . . . .. ... oo 21
4.2 BeagleBone Black{ . . . . .. ... ... ... ... ... ... 22
1.3 VectorNav’s VN-200 Rugged GPS/INS| . . . . . ... ... ... ... 24
4.4 jDrones jD-RF900Plus Longrange telemetry set| . . . . . .. ... .. 25
1.5 Different Iterations of the Systems Integration Board(SIB)| . . . . . . 26
4.6 Different Iterations of the Fail-Safe Servo Driver| . . . . . . . .. . .. 27
[4.7  Thread design block Design| . . . . . ... ... ... ... ...... 28
4.8 Difterent Aircratts used for Hardware in the Loop Testing/. . . . . . . 30
4.9 Hardware-in-the-Loop Environment Setup| . . . . ... ... ... .. 31
[>.1  Comparison of Root Mean Squared Error in Tracking Roll with the |

L different controllers in different Aircraftsl . . . . . ... ... ... .. 33
[>.2  Comparison of Root Mean Squared Error in Tracking Pitch with the |

L different controllers in different Aircrafts . . . . . ... .. ... ... 34



xii

[>.3  Comparison of Mean Absolute Error in Tracking Roll with the different |
| controllers in different Aircraftsl . . . . . . . .. ... 35
[>.4  Comparison of Mean Absolute Error in Tracking Pitch with the differ- |
L ent controllers in different Aircraftsl . . . . ... ... ... ... ... 36
[>.5  Comparison of Waypoint Iracking in Skyhunter with the different con- |
trollers| . . . . . . 37

[>.6  Tracking Performance of Roll and Pitch with the different controllers |
in Skyhunter|. . . . . . . .. 38

[5.7  Evolution of Inner Loop Errors in Skyhunter with the various Controllers| 39
[>.8  Evolution of Outer Loop Errors in Skyhunter with the various Controllers| 39
[5.9  Evolution of MRAC weights in Inner Loop Dynamics| . . . . . . . .. 40
[>.10 Performance of GPs in capturing the uncertainty| . . . . .. . .. .. 40
[>.11 Tracking Performance for Roll Control using RBF-NN MRAC using |
eemodl ... 41

[>.12 Tracking Performance for Pitch Control using RBF-NN MRAC using |
e-mod | ..o 42

[>.13 Evolution of Inner Loop Errors| . . . . . ... .. .. ... ... ... 42
[>.14 Evolution of Outer Loop Errors| . . . . . . ... ... ... ... ... 43
[5.15 Evolution of MRAC weights in Inner Loop Dynamics| . . . . . . . .. 43
[>.16 Adaptive Controller Performance in capturing the uncertainty| . . . . 44
[A.1 Comparison of Waypoint Tracking in Mugin with the different con- |
trollers| . . . . . . 48

[A.2 "Tracking Performance of Roll and Pitch with the different controllers |
in Mugin|. . . . ... 49



[A.3  Evolution of Inner Loop Errors in Skyhunter with the various Controllers| 50

[A.4  Evolution of Outer Loop Errors in Mugin with the various Controllers| 50

[A.5 Evolution of MRAC weights in Inner Loop Dynamics| . . . . . . . .. o1

[A.6  Performance of GPs in capturing the uncertainty| . . . .. .. .. .. 51

[A.7 Comparison of Waypoint Tracking in Anaconda with the different con- |

trollers | . . . . . 52

[A.8 Tracking Performance of Roll and Pitch with the different controllers |

[A.9  Evolution of Inner Loop Errors in Anaconda with the various Controllers| 54

[A.10 Evolution of Outer Loop Errors in Anaconda with the various Controllers| 54

[A.11 Evolution of MRAC weights in Inner Loop Dynamics| . . . . . .. .. 55

[A.12 Performance of GPs in capturing the uncertainty| . . . .. .. . . .. 55

[A.13 Comparison of Waypoint Tracking in Penguin-B with the different con- |

trollers| . . . . . . 56

[A.14 Tracking Performance of Roll and Pitch with the different controllers |

in Penguin-B| . . ... ... ... 57

[A.15 Evolution of Inner Loop Errors in Anaconda with the various Controllers| 58

[A.16 Evolution of Outer Loop Errors in Anaconda with the various Controllers| 58

[A.17 Evolution of MRAC weights in Inner Loop Dynamics| . . . . . . . .. 59
[A.18 Performance of GPs in capturing the uncertainty| . . . . .. . .. .. 59
[D.1 PuTTY Connectionl . . . . . . . . . . . . . . vt 72
[D.2 WinSCP Connectionl . . . . . . .. . .. .. . 73
[D.3 Open Perspective Window| . . . . . . . ... ... .. ... ...... 74

xiii



D.5 New Remote Connectionl . . . . . ... ... ... ... ... ..., 76
[D.6 Select Remote Sytem Type : Linux|{ . . ... ... .. ... ...... 7
[D.7 Remote Linux System Connection|. . . . . . . .. .. ... ... ... 78
[D.8 Defining the subsytem information(Files) for the new connection|. . . 79

[D.9 Defining the subsytem information(Processes) for the new connection| 79

[D.10 Defining the subsytem information(Shells) for the new connection| . . 80

[D.11 Defining the subsytem information(SSH Terminals) for the new con- |

nectionl . . . . . ... 80
[D.12 Remote System Explorer Setup|. . . . . .. ... .. ... ... ... 81
[D.13 Net Connections - Multiplayer in X-Plane] . . . . . . .. ... .. .. 81
[D.14 Net Connections - Data in X-Plane|. . . . . ... ... ... ... .. 82
[D.15 Net Connections - IP for Data Output | . . . . . . ... ... ... .. 82
[D.16 Net Connections - UDP Ports for data transfer | . . . . ... ... .. 82
D.17 Net Connections - UDP Ports for Data Iranster|. . . . . ... .. .. 83

[D.18 Data Input & Output - Data Set - Selected Parameters for Data Transter| 85

[D.19 Data Input & Output - Data Set - UDP ‘Transfer Rate] . . . . . . .. 86
[D.20 Start Up window of QGROUNDCONTROL v2.7.1) . . . ... .. .. 87
[D.21 Manage Communication Links Window in QGROUNDCONTROL|. . 87

[D.22 Add New Communication Link Window in QGROUNDCONTROL| . 88

[D.23 Add New Communication Link Window in QGROUNDCONTROL| . 89

[D.24 Manage Communication Links Window in QGROUNDCONTROL|. . 89

[D.25 Add New Communication Link Window in QGROUNDCONTROL| . 90

Xiv



[D.26 Add New Communication Link Window in QGROUNDCONTROL| . 90

[D.27 Add New Communication Link Window in QGROUNDCONTROL| . 91

[£.1  Autoplay Menu for Removable Device. . . . . . . .. ... ... ... 93
.2 Terminal of STABILISI . . . .. ... o000 o000 93
[E.3 Logging into STABILIS securely{. . . . . ... ... ... ... ... . 94
.4 Start Up screen of X-Planel. . . . . . . .. ... ... ... ... ... 94
[E.5 Selection of Airport|. . . . . .. .. ... oo 95
2.6 Selection of Ajrcraftl. . . . . .. ... oo oo 95
[E.7 Selection of the Date, Time and Weather| . . . . . . . ... ... ... 96

XV



Chapter 1

Introduction

1.1 Motivation

Over the last decade, Unmanned Aerial Systems (UAS) has seen rapid growth. There
is a rapid growth in the technology relating to the UAS. UAS have already been a
part of many industries where it applications include security, search and rescue,
monitoring, disaster management, crop management, geophysical surveys and many
more. To handle novels tasks with unique platforms, the onbaord control system
must be robust , highly reliable and allows for deep modification of functionality.
The Commercial off the shelf (COTS) autopilots are categorized into two groups :
open source and closed autopilots. The former is available at a low price where the
latter are relatively expensive. Unfortunately, neither of them allow modification for

higher functionality.

The wide range of applications of UAS mentioned has resulted in development of
numerous mission specific Unmanned Aerial Vehicles (UAV) platforms. These novel
platforms must operate reliably in various environments and in presence of uncertain-
ties. The current practice of flying the UAVs autonomously relies on extensive manual
tuning of the UAV autopilot parameters or time consuming approximate modeling of
the dynamics of the UAV. These methods lead to excessive development time. How-

ever, controllers cannot be simply transfer from one platform to another, which leads



to each platform being tuned independently of the others in order to achieve desired
performance. This process can be time intensive and a lot of money is involved. This
work tackles the problem of efficiently transferring controllers between different UAV

platforms using adaptive control.

The problem of control transfer is framed using the ideas of adaptive control
and Rapid Controller Transfer (RCT). The primary goal is to transfer the autopilot
with minimal effect on the performance from one platform to another. The main
advantage of RCT is reduction in time spent on developing control system from every
novel platform. The proposed method uses a new class of data driven adaptive control

algorithm. It leverages Bayesian non-parametric approach to adaptation.

1.2 Outline of Contributions

The contributions of this thesis are

e Implementation of Gaussian Process Model Reference Adaptive Control (GP-

MRAC) in fixed wing aircrafts, to demonstrate Rapid Controller Transfer

e Validated autopilot Stabilis, developed in house, with integrating it in the Hard-

ware in the Loop Environment (HITL) and with real world flight testing.

1.3 Outline of the Thesis

The thesis is organized as follows. Chapter 2 will discuss the related works in the
area of adaptive control and its aerospace applications. Chapter 3 will outline a brief
overview of flight dynamics and the control scheme implemented using GP-MRAC
formulation. Chapter 4 will discuss the design and construction of Plug-and-Adapt™

Autopilot STABILIS and integration into Hardware in the Loop testing environment.

2



Chapter 5 will address the results that were gathered from both Hardware in the Loop
Simulations and the real world testing. Chapter 6 will discuss the conclusions and

future work.



Chapter 2

Related Works

The work presented in this thesis, mainly focuses on a platform independent autonomy
module featuring adaptive control. This chapter presents a proper understanding of
adaptive control. The usage of adaptive control techniques for transferable control
has not been widely studied. Adaptive control has proved to be a reliable solution
for modeling errors and system uncertainty. Adaptive Control can be classified into
two categories, the first being used to track the error to modify controller parameters,
whereas, the second one approximates the difference between the assumed reference
model and the actual system dynamics, then uses the approximation to control the

plant.

Adaptive Control has been extensively studied for Aerospace applications. First
flight experiments with adaptive control systems were performed in the decade of
1960, however, without proper analysis of closed loop stability. This lead to a fatal
crash of the X15A in the year 1967 and as a result, adaptive flight control systems
were pushed out of focus for quite some time. Later in 1980, after Narendra provided
a mathematical stability proof for MRAC system [1]. Further, important results
of MRAC were summarized by Narendra and Annaswamy [2]. Following this, em-
phasis was put on performance and robustness of adaptive systems in presence of
uncertainties and unmodeled dynamics, which resulted in various modifications of

the parameter update equations.



There have been many MRAC formulations that have sought to solve some of the
issues that are associated with such methods. L1 adaptive control is a well known
MRAC formulation that has been widely used in aerospace guidance and control ap-
plications [3,4], as well as others [5,/6]. The benefits of L1 adaptive control claimed
by the authors are fast and robust adaptation, analytically computable performance
bounds and excellent performance with minimal flight control design cost [7]. The
L1 formulation differs from classical MRAC methods through the use of high adap-
tive gains with an input filter. The high adaptive gains help ensure the adaptive
controller is responsive enough to track the uncertainty point wise in time. Another
MRAC formulation known as Intelligent Excitation, seeks to mitigate the need to
inject Persistent Excitation (PE) in the reference input while guaranteeing parameter
convergence [8,9]. This is done by injecting excitation only when the tracking error
exceeds a desirable limit. Although this MRAC formulation reduced the need for
excitation, PE is still used, thus control effort is wasted. Another MRAC formula-
tion called Derivative Free MRAC (DF-MRAC), was presented by Yucelen et al. [10].
DF-MRAC relaxes the assumption of constant ideal weights that classical MRAC
methods use and featuring a time varying set of weight parameters. This feature of
the algorithm allows for a time varying system to be modeled in the face of uncer-
tainty. The DF-MRAC formulation is shown to be uniformly ultimately bounded,

and the error is shown to be ultimately bounded exponentially [11].

The most widely used technique for estimating the system uncertainty in the
context of indirect MRAC methods is the neural network. Neural networks used in
conjunction with adaptive control techniques are used extensively in flight control
and guidance [12}{16]. This formulation guarantees the existence of a set of ideal
weights that guarantees optimal approximation of uncertainty, which is implied by

the universal approximation property of neural networks.

There are two types of neural networks that are used in adaptive control, single

5



hidden layer (SHL) neural networks (NN) and radial basis function (RBF) neural
networks. The idea of Controller Transfer is first presented using a neural network
based MRAC formulation [17], but it was not explicitly studied. Later, Chowdhary et
al. extended neural networks into a formulation of MRAC that uses both recorded and
instantaneous data to concurrently learn, hence called Concurrent Learning MRAC
(CL-MRAC). The most notable feature of CL-MRAC is its ability to leverage the
advantages of both direct and indirect adaptive control to mitigate the need for PE
[18]. CL-MRAC was used for controller transfer on indoor quadcopters with promising

results [19].

However, both SHL and RBF neural networks have disadvantages. One of the
more notable disadvantages of RBF neural network based approaches, is that the
number of centers and hyperparameters must be allocated a-priori over the operating
domain. Thus controllers operating outside of the intended domain experience de-
graded performance [2021]. Also, SHL neural networks performance can suffer from

getting stuck in local minimum [22].

Unlike RBF Neural Networks, Gaussian Processes (GPs), can cover the entire
operating domain, by dynamically allocating kernel locations based on a fixed budget
of kernels. As GPs are Bayesian in nature, the model itself provides a quantified
confidence metric in its predictions via the predictive variance. Previously, using
online GPs to model uncertainty was computationally expensive due to large data sets.
However, largely due to the derivation of sparse, online Gaussian Processes by Casato
et al. [23], GPs were recently proposed as a nonparametric approach to modeling
dynamical uncertainty in an adaptive controller [21]. Recently, Grande et al. proved
that the hyperparameters associated with the kernels can be optimized online [24].
The flight test results presented in this research show GP-MRAC outperforms modern
MRAC methods using NN.



Chapter 3

Rapid-Transferable Control for Fixed Wing Small
Unmanned Aerial Vehicles

3.1 Aircraft Kinematics and Dynamics

Consider an aircraft with mass m and mass moment of inertia I*, where (-)* repre-
sents the moment of inertia about the body axis. The position of the aircraft p™ is
determined using an earth-fixed inertial frame of reference and denoted using the su-
perscript ()’ The origin is fixed at a desired home location with the x-axis pointing
towards north, y-axis towards east and z-axis pointing downwards completing the

right-hand rule.



Figure 3.1: Vehicle coordinate frame of reference

The body axis shown in figure show that the z-axis of the body fixed frame
points out the nose of the aircraft, the y-axis is directed out of the starboard wing of
the aircraft, and the z-axis is oriented downward, completing the right-handed coor-
dinate system. The origin is centered at the center of gravity of the aircraft as shown.
The attitude of the vehicle is described using Euler angles defined, [ ¢ ¢ 1 ], where
¢ describes roll, 6 is pitch, v is yaw about the inertial frame. The transformation
between the inertial frame and body frame is given by the transformation matrix

given in equation 3.1}

CoCy SuS9Cy — CsSy CySeCy + Sy
R = | CpSy 54595y + CyCy CySpSy + SyCly (3.1)
S, S,Co CyCo
Note that in equations 3.1 and 3.2, Sy = sin 6, Cy = cos ¢, and so on. The relationship

between the body fixed angular rates and inertial frame angular rates is



b 1 Sgtany Cytanf| |p
ol=10 ¢, ~Sy | |a (3:2)

U 0 Sgsect Cysect| |r
The equations of motion for the aircraft can be derived using Newton’s Second Law
of motion which states the summation of all external forces on the aircraft must be
equal to time rate change of momentum and the summation of the external moments
must be equal to time rate of change of angular momentum. Consequently these laws

can be expressed in inertial frame as given in equations and [3.4

> F;=mp" =g"+Ryma’ (3.3)

W = ()7 (MP — wf x TP ; (3.4)

where, g" =[0 0 ¢ |7 is the acceleration due to gravity vector in the inertial frame,
and a® = [0 © ]T is the body fixed accelerations. The dynamics of the aircraft

can be described in the body frame of reference using the transformations defined

above in the equations and rearranging the terms we get

_pn )
p.| =Rb |v (3.5)
| Da w

U —gsinf Fr X qu — TV

0| = | —gsingcosf | + — 0|l +]Y — |ru—pw (3.6)

w —gcos¢cosb 0 A pPU — qu



b b

j% L P P

-1
gl = (I") M| = |q] xI° g : (3.7)
r N r r

where, F;, and M, are given by the aerodynamic forces on the aircraft. The aero-
dynamic forces are primarily dependent on the angle of attack, «, and side slip, 3,
in steady states. However, the body fixed angular rates can significantly change the

aerodynamic forces as shown in equations [3.8 and [3.9]

X CX<a7 6)
Y| =1 ¢ (B |@S (3.8)
A Cz(Oé)
L CL((sa)B;ﬁa f)QSb
M| = | Cule,a,9)QSe | ; (3.9)
N CN((S’I‘) 57 7:)
where, p = P I Since body fixed forces and moments are functions

1AM AN
of multiple variables, they are the most complex part of the aircraft to be modeled.

Usually, linear approximations are used for aerodynamics forces. In-depth explanation

of the reference frames , flight dynamics and control are referred to [25-28]

3.1.1 Kinematic Guidance Models

The Guidance model assumes that the autopilot controls the airspeed (V,), altitude

(h) and the course angle(x). The corresponding equations of motion are given by

10



Pn = Vycosy+ w,
Pe = Vasiny + we
Xo= be(Xe = X) + by(xe = X)
h = bj(he—h)+by(h. — h)
Vo = by, (Vi = Vo) (3.10)
where the inputs are the commanded altitude h., the commanded airspeed V¢

and the commanded course . and .

3.2 Autopilot Design

In the autopilot design, the foremost task is to control the inertial position (p,, pe, h)
and the attitude (¢, 6,1) of the aircraft. In the design of the autopilot, we use
the technique called successive loop closure which assumes that the lateral and the
longitudinal dynamics of the aircraft are decoupled. This assumption simplifies the
development of the control scheme. In successive loop closure, the principle is to
close several feedback loops in succession around the open loop plant dynamics. The
control value calculated from the outer loop, based on the feedback signal is used
as an input to the inner loop and the output of the inner loop controller is used
as the control actuation for the plant. Guidance Models [3.1.1] are used to calculate

commanded signal for the outer loop.

The lateral autopilot design is shown in the figure In successive loop closure
of the lateral autopilot design the inner loop controls the roll angle (¢), while the
outer loop controls the course heading (x) of the aircraft. As shown in the figure
, the lateral guidance mechanism generates the desired course angle (x.), which is

passed to outer loop course controller. The outer loop course control mechanism uses

11



a generic purpose PI control to generate the commanded roll angle (¢.), such that
the course () asymptotically tracks the commanded course angle. The output of the

course hold is

K;
b = kp (X — X) + SX (Xe — x) (3.11)

The inner loop lateral autopilot controls the roll dynamics of the aircraft. The
inner loop controller uses the feedback information about the roll and uses the desired
roll angle generated by the outer loop to calculate the control surface deflection.
However as described in the equations of motion in the previous section, the roll
dynamics are highly non-linear and a generic PID controller is incapable of adapting

to uncertainties and requires certain degree of tuning to adapt it to different platforms.

Lateral
Guidance

Xc
+ L ¢ 8q ¢ X

+
Course Roll Roll
. z Course
Correction Controller Dynamics

Figure 3.2: Lateral Motion Control Using Successive Loop Closure

The longitudinal autopilot design is shown in the figure 3.3l Similarly, in the
longitudinal autopilot design, the inner loop controls the pitch angle(#), while the
outer loop handles the altitude(h) of the aircraft. As shown in the figure the
longitudinal guidance mechanism generates the desired altitude (h.), which is passes
to outer loop altitude controller.The outer loop altitude controller uses a generic PI
control to generate the commanded pitch angle(6,), such that aircrafts maintains the

commanded altitude. The output of the altitude hold is

K
0. = ky, (he —h) + —2(h. — h) (3.12)

s
12



Similar to the lateral control, in longitudinal control the inner loop controls the
pitch dynamics of the aircraft. However, as described in the equations of motion, the
pitch dynamics are highly non-linear and is similar to the case of the roll, incapable of
adapting to uncertainties and requires certain degree of tuning to adapt to different

platforms.

Longitudinal
Guidance

Altitude
Correction

Be
Pitch Pltch_ Altitude
Controller Dynamics |

Figure 3.3: Longitudinal Motion Control Using Successive Loop Closure

3.3 Model Reference Adaptive Control

Approximate Model Inversion based Model Reference Adaptive Control is an MRAC
method that allows the design of adaptive controllers for a general class of nonlinear
plants where an inversion model exists. Let x(t) € R" be the state vector, let 6(t) €

R™ denote the control input and consider the following nonlinear uncertain dynamical

system
T1(t) = xo(t),
1(t) = 22(8) (3.13)
o(t) = f(x(t),6(t))
The non linear system can also be represented as
&(t) = Az(t) + B(u + A)(t) (3.14)

where A is a smooth non-linear function.

In AMI-MRAC a pseudo control input is designed v(t) € R™ that can be used to

13



find the control input ¢ such that the system states track the output of the reference
model. Since, the exact system model is usually not known, v is considered to be the

output of an approximate inversion model f where

N

§=fYx,v) (3.15)

The use of an approximate inversion model results in a model error of the form
o =v+ A(z,v) (3.16)
where A is the modeling error given by

A=f—f (3.17)

A reference model can be designed that characterizes the desired response of the

system

T rm = L2rm,
' ’ (3.18)
j;2rm = frm(xrma T)

where fr, (20, (t), 7(t)) denotes the reference model dynamics. The command ()

is assumed to be bounded and piecewise continuous.

The pseudo-control input v conssits of a linear feedback, a linear feedforward and

an adaptive part which is in the following form
V(t) = Ve (t) + Vpa(t) — vaa(t) (3.19)

Defining the tracking error e(t) = x,,,(t) — x(t), the tracking error dynamics can be

written as

¢ = Ae + B(A — ugy) (3.20)

The baseline full state feedback controller v, is selected such that A is Hurwitz.
Hence for any positive definite matrix () € R™™, a positive definite solution P &€

R™*™ exits to the Lyapunov equation.
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ATP4+PA+Q=0 (3.21)

Consider I',, to denote positive definite learning rate and considering gradient
based adaptation law [29] W (t) = —I',®(t)e” (t)PB that minimizes a cost on the
instantaneous tracking e’e guarantees that the tracking error is uniformly bounded
for the adaptive controller framework described above. However, this adaptive law
guarantees that the parameters (W) stay bounded within a neighborhood of the ideal
parameters (W*) only if ®(t) is persistently excited |30]. Narendra and Annaswamy
introduced the e-modification [31]. The adaptive law with the e-modification follows
the update law

W(t) = —T,®(t)el (t)PB — o | e(t) | W (3.22)

The rational for using a error-dependent damping is that it tends to zero, as the
regulated output error diminishes. Also e-modification helps in keeping the weights

bounded through out the entire operating domain [31].

3.3.1 Gaussian Process Model Reference Adaptive Control

Gaussian Process Model Reference Adaptive Control is widely studied upon in [32],
[21]. Tt was implemented successfully on quadrotors and the results yielded were very
impressive [24]. However, there is very less study on implementation of GP-MRAC in

Fixed Wing Aircrafts |34]. A detailed overview of Gaussian Processes can be found

in the section [3.3.1]

To achieve the tracking objective, the adaptive element attempts to learn the

mean of the stochastic process online.

From the equation |3.14]

A=B1i—Az)—u (3.23)
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Traditionally, in GP-MRAC [32], [21], [24], in order to estimate the &, the exact
value of control effectiveness matrix B is to be known. This poses to be a problem
as & can be noisy and B changes with the acceleration. To overcome this issue, an
alternates solution is presented for the implementation of GP-MRAC, that is to use

the pointwise estimation of Delta from a traditional high-gain MRAC as
W(t) = —T,®t) el (t)PB — o | e(t) | W (3.24)

Note that even if the learning rate is increasing, there is no effect on the controller
as the weights from the baseline adaptive controller are not utilized. Instead we use

the Delta that is trained from the Gaussian Process.

A =WTd(x) (3.25)

The mean of the estimate of the uncertainty trained on the GP is assigned to the

adaptive element v,4; which is used in the calculating the pseudo control input v.

The benefits of this implementation are that the estimation of the control effec-
tiveness matrix is not necessary as the system uncertainty is being captured. This
implementation of the GP-MRAC is done and tested in the Hardware-in-the-loop

environment.

Gaussian Processes

A Gaussian Process is a supervised learning technique, Typically, Gaussian Process
Regression (GPR) is used to learn input-output mapping function f from the training
data set D of n observations, D = {(z;,v;)|i = 1,...,n}, where x denotes the input
vector of dimension D, and y is the scalar output (or target); the column vector
inputs for all n cases are aggregated in the D x n, matrix X. Once the mapping

function f is known for the set of inputs X, it can then be used to make predictions
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for all possible set of test values X, through the derivation of the posterior function
f(X5).

By definition, a Gaussian process describes distribution over functions and is
completely specified by its mean function m(x) and covariance function k(z,x’) of a

real process f(x) as

which can be denoted as
f(x) ~ GP(m(x), k(z,z")). (3.26)

In present work, we use squared exponential covariance function defined as,

lz — ']

cov(f(z), f() = k(z,2) = exp(— %

) (3.27)

To derive f(X.) using GPR given the dataset D, we begin by defining a zero mean
prior over the functions as

f~N(0,K(X,X)) (3.28)

where K (X, X) is a covariance matrix, with entries k(x;,z;) for i, = 1,... n.
Next, we incorporate measurement noise in the output as y = f(z) + €, assuming
additive independent identically distributed Gaussian noise ¢ with variance o2 , hence
the prior on the noisy observations now becomes f ~ N (0, K(X, X)+0c2I). The joint
distribution of the measured target values and the function values at the test locations

according to the prior is

y ~/\/<0, K(X, X))+l K(X, X, ) (3.29)

KX, X) K(X.,X)
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where f, = f(X.). The posterior conditioned on the observations gives the key

predictive equations for Gaussian process regression as

[ Xy, X ~ N(fe, cou(f)) (3.30)
fo= KX, X)[K(X,X) + 021 Yy (3.31)
cov(f,) = K(X., X,) — K(X,, X)[K(X,X) + o2 'K (X, X,) (3.32)

where f* is the mean prediction at locations X, and cov( f*) is the predictive uncer-

tainty. Hence, the mean is directly estimated from the set of available data.

The main strength of the GPR is that it does not need to assume an a-priori allo-
cation of the RBF centres. However, the main disadvantage of using the traditional
GPR techniques is the covariance matrix increases in size as the size of D increases.
In online applications, this can quickly become intractable as computing the inverse
of the covariance matrix can become computationally intractable. It was shown that
this problem can be alleviated in |21] using online sparsification techniques,budgeted
online Sparse Gaussian Process regression technique [23]. This technique only in-
cludes valuable data points in an active Basis Vector set BY. When new data is
observed, the sparsification algorithm computes how well the new data point can be
approximated by the existing basis vectors using a comparative test called the kernel

independence test defined by
t
7= 1)) = (e (3.33)
i=1

The 7,11 gives the residual distance between ¢ (z;) and the GP generated by
elements in BY. An existing element 1), in the basis vector set which minimizes
D(GP || BV) — D(GP || BY\{¢,}) is removed and the new sample is added to the

set. Given the basis vector set, the approximate mean and variance can be written
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as:

fo = K(X,,BV)[K(BV,BV) + oIy

cov(f.) = K(X., X.) — K(X.,BV)[K(BV,BY) + oI 'K (BV, X,)

Ref. [33] provides a complete analysis of the properties of GPs.
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Chapter 4

AutoPilot Design er Development

4.1 Hardware Design

The design and development of the autopilot takes a new approach other than the
conventional autopilot design by modularizing the subsystems in the autopilot. Using
this process, the system can be prevented from becoming obsolete with the advance-
ments in the technology. Being modular also helps in developing the autopilot to be
mission specific. Furthermore, any faulty subsystems can be easily replaced individ-
ually without affecting the whole system and reducing the effort of rebuilding the

system from scratch.

The components that were selected to feature modularity are: the flight control
computer, the inertial navigation system and the wireless ground control communi-
cations module. When selecting the components for aerospace design, the form, the
weight and the power consumption of all the components play a major role.

4.1.1 Modular Components

Flight Control Computer

The flight control computer handles all the operations such as interacting with all the

components on-board the aircraft, as well as communicating with the ground control
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Figure 4.1: The block diagram showing the different components and their commu-

nication protocols.

station. Its primary functions include

Analyzing the data received from the onboard sensors.

Executing the flight controls

Communicating with the Ground Control Station

Logging flight data for post-flight analysis

A market survey was conducted in order to identify the most suitable computer,
as special attention was needed with considering the size, weight, power consumption
and input/output(I/O) ports configurations.The details of the market survey can be
found in Table [C.4] from Appendix [C] The final choice was the BeagleBone Black, an
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embedded computer board as shown in Figure 4.2|

The BeagleBone Black features

e Sitara AM3358 1Ghz ARM ®)- A8 32-Bit Processor
e 512 MB DDR3 RAM
e 4GB 8-bit eMMC on-board flash storage

e 2x PRU 32-bit microcontrollers

The complete specifications of BeagleBone Black can be found in Appendix [C]

Figure 4.2: BeagleBone Black

Usually, the autopilots are designed and developed around the selection of the
central computer. But in our approach to the design of the autopilot, the flight control
computer is also modular since the selection of the subcomponents can be easily
adapted to fit other similar linux-based embedded computers by simply modifying the
routing and connections of the Systems Integration Board. However, the makers of
BeagleBone Black, have not changed the form factor for 4 generations of development.
Therefore, it is safe to assume, BeagleBone Black can be easily be replaced with an

upgraded version from BeagleBone in the future with no modifications.
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Navigation Sensors

Navigation sensors provide reliable measurement for the flight status of the flying ve-
hicle. Many commercial navigation sensors are available on the market.Some of them
are listed in Table [C.5 All of them vary in the material, manufacturing technology,
measuring range, size, weight, estimation algorithm, positional accuracies. Based on

the working principle, a navigation solution falls into one of the categories.

e INS (Inertial Navigation System)
e INS/GPS (INS calibrated by GPS)

e GPS-aided AHRS (Altitude Heading Reference System)

It is a common practice to integrate the INS in the autopilot to reduce the wiring
footprint and maintain the same overall form factor of the autopilot. With the ad-
vancements of Microelectromechanical Systems(MEMS), INS are increasing in preci-
sion and accuracy very rapidly. But this being chosen as a modular unit, the INS
was not integrated in the Systems Integration Board, as it allows the user to select
one that matches the required form factor, the budget allowance and can be easily
swapped, if necessary. Also, most of the COTS navigation sensors come in rugged,
self-contained packages which gives freedom to the user to place the unit where it
is inconvenient to place the flight control computer. VectorNav’s VN-200 Rugged
GPS/INS shown in Figure has been selected as it a miniature high performance
INS that features MEMS inertial sensors, a high-sensitivity GPS receiver, advanced
Kalman filtering algorithms to provide optimal estimates of position, velocity and
orientation. The complete specifications of VectorNav’s VN-200 Rugged GPS/INS

can be found in Appendix [C]
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Figure 4.3: VectorNav’s VN-200 Rugged GPS/INS

Wireless Communication Device

Communication range and reliability are most important factors when the wireless
communication device is selected. The Ground Control Station is the relay for all
of the relevant information on-board the UAV. Similar to the navigation sensors,
wireless communication technology is advancing rapidly and is becoming much more
efficient. This component is placed off board the autopilot, this way it reduces the
Electromagnetic Interference (EMI) caused by the other systems. Three different low-
cost, serial wireless communication modules were tested to determine the connection

strength and its robustness. The modules that were tested were

e XBee - 900 working at 915 MHz
e 3DR Telemetry Radios working at 915 MHz

e jDrones jD-RF900Plus Longrange working at 915 MHz

The jDrones jD-RF900Plus shown in the figure [4.4] has been selected as the connection

strength and the performance was better.
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Figure 4.4: jDrones jD-RF900Plus Longrange telemetry set

Systems Integration Board

The main purpose of the Systems Integration Board, SIB in short, is the integration
of the Flight Control Computer with the other sensors and components on board the
aircraft. The SIB was designed with the form factor and robustness in mind. The
design of SIB has improved over the iterations as shown below in Figure . In
order to eliminate the various issues such as loose or faulty connections, as well as to
easily use the autopilot like a plug and play device for quick connect/disconnect the

iterations were developed.
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(a) Prototype SIB (b) First iteration for SIB

(c) Second iteration for SIB

(d) Third iteration of SIB (e) Latest iteration of SIB

Figure 4.5: Different Iterations of the Systems Integration Board(SIB)

Peripheral Sensors

There were two sensors that have been chosen to go on the Systems Integration
Board (SIB). The Honeywell, HSCMRRNO01PD2A3, was chosen for its superior res-
olution, accuracy and form factor to provide the differential pressure reading from the
Airspeed sensor. Additionally, we have the Freescale MPL3115A2 Absolute Digital
Pressure Sensor on the SIB to provide accurate pressure [Pascals|/altitude [meters]

and temperature [°C].
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Fail-Safe Servo Driver

The Fail-Safe Servo Driver or Servo Driver in short, is another important part of the
Autopilot Design to guarantee the airborne safety of the small UAV. It is mainly re-
sponsible for decoding both piloted and computer generated servo control commands
and selecting desired decode signals to drive multiple servo actuators. In case of any
malfunction of the any component or accidents during autonomous flight, with the
Servo Driver, the human pilot has a chance to retrieve the UAV to safety. As the SIB
improved over iterations, even there were improvised iterations of the Servo Driver

as shown in the Figure 4.6|

(a) First Iteration Servo Driver (b) Second Iteration Servo
supporting Second and Third It- Driver  supporting  Fourth
eration SIB Iteration SIB

Figure 4.6: Different Iterations of the Fail-Safe Servo Driver

4.2 Software Design

4.2.1 Multi-Threaded Design

The software system for the autopilot is developed based on multi-threaded archi-
tecture to ensure integrity and robustness of the system. The thread structure is
employed to execute multiple tasks based on the functionality and hardware compo-

nents. The threads are shown in the Figure [1.7. This design aligns well with the
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practices observed in past works [28]. To execute the threads, the main() function is
tasked with the initialized with several parameters such as the system gains, actuator
limits and sensor profiles. In a multi-threaded system, the tasks for each thread must
be scheduled such that the control is executed properly. A detailed explanation of

the software design can be found in [34].

Thread Management

Global Data
4 \A Y A 4 y
NAV COMMS 1 COMMS 2 Control Bt Seno
Logger 110
Navigation Telemetry Wireless Visual Transmitter Data Logging Actuators
Sensors Module Module Module
VN 200 915 MHz 5.8 GHz USB Flash Servos for
Radios Radio Drive Ailerons,
| Elevator,
Rudder
Air Speed
Propulsion
DC Motor
Barometer orl.C.
Engine
Hardware

Figure 4.7: Thread design block Design

4.2.2 Ground Control Station Software

The Ground Control Station plays the primary role as the means by which operators
plan, execute and monitor UAS missions through a wireless communication channel.
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The task of the ground station is to provide a realistic interface for users to monitor
the performance of the UAV during the flight tests. Many ground control software
platforms exist but QGROUNDCONTROL(QGC) is a well documented, platform
independent and community supported ground station software package. QGC soft-
ware is compatible with the major Operating Systems (Windows, Linux, Mac OS X).
It also features serial, UDP, TCP and mesh networks communication compatibility.
It also has real-time plotting and logging capabilities of onboard parameters. It also
features the ability to change onboard parameters relevant for the Control law. 