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Abstract: When a neuron within the brain fires, small traces of electrical activity can be 

measured. Electroencephalography (EEG) is one such method of measuring that electrical 

activity. With the emergence of inexpensive, and portable so called “Wearable EEG” devices, 

such as the Emotiv EPOC+, what is traditionally used for clinical diagnosis and cognitive 

neuroscience is now more readably available for the consumer.  

The growth of computing power has grown exponentially since the implementation of the first 

semiconductor in 1947. The average household computer has more computing power than the 

computer used to take Apollo 11 to the moon. Computers have grown powerful enough that 

they can run a machine learning algorithm to see patterns that to the human perception, may 

appear to be random. 

One of the first expressions of human art and culture was first expressed as paintings on cavern 

walls, then through language, writing, the radio, the television, the internet, and soon to be 

virtual reality (VR). The human race is at the dawn of the age of VR. With the explosive success 

of commercial VR such as the Oculus Rift, and the HTC VIVE, VR is here to stay.  

The purpose of this research is to go over the practicability of EEG technology and machine 

learning in brain-computer interface to allow a person to play video games with their mind. By 

reading EEG brain signals during video gaming activities, a machine learning algorithm will 

attempt to produce a model to predict future video game actions. This research also offers a 

brief future potential capabilities, and further improvements to the system. 
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Chapter 1: Introduction 
 

Using your mind to interface directly with software is an often used theme in science 

fiction, such as the 1999 Wachowski Brothers blockbuster film “The Matrix,” and more recently 

the light novel series “Sword Art Online” by Reki Kawahara.  

In The Matrix, the movie depicts a dystopian future in which most humans live in a 

virtual reality simulation called the Matrix. In this film the human mind interface with the 

Matrix through a wire in the back of the head.  

In Sword Art Online, a Virtual Reality Massive Multiplayer Online Role-Playing-Game 

(VRMMORPG) is created. Users would connect to this game through a fantasy device called 

Nerve Gear, a helmet that wirelessly interfaces with the brain, stimulating the user’s five 

senses.  

In this research, a machine learning algorithm is used to model the human brain when 

playing video games. To interface with the game, the Emotiv EPOC+ is used. The EPOC+ is a 14 

channel Bluetooth wireless EEG, with a 14-bit Analog to Digital Converter (ADC) resolution, and 

a 128 samples per second (SPS) sampling rate. [10]  
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1.1 Machine Learning 
 

Machine learning is defined by the Encyclopedia Britannica [1] as “an artificial 

intelligence discipline concerned with the implementation of computer software that can be 

learned autonomously.” Machine learning is the study and development of algorithms that can 

learn and make predictions form a set of data. Instead of making predictions based of a set of 

rules, a Machine learning algorithm makes data driven prediction based on a model, a structure 

and corresponding interpretation that summarizes or partially summarizes a set of input and 

output data. [2] 

Machine learning tasks can be classified into three broad categories depending on the 

nature of the learning feedback available to the system: Supervised learning, unsupervised 

learning, and reinforcement learning. [3] 

In supervised learning, the computer is given a set of independent attributes (inputs) 

and a designated dependent attribute (outputs) by the “teacher” with the goal of learning a 

rule to map the inputs to the outputs [2]. This type of learning is used to learn a problem that 

may be simple for humans learn, but too complex for a set of rules to code. For example, being 

presented with a lineup of fruits, and being told to identify each fruit. It’s simple to humans 

solve this problem, but difficult to describe into code for a computer to solve. Types of 

supervise learning are classification and regression. In classification, inputs are divided into two 

or more classes, or a group set. The model then places incoming data in one or more of these 

categories. Based on which categories the data is placed in, it makes a prediction. Regression is 

similar to classification, but is used with continuous data to predict future data points [4]. The 
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difference between classification and regression is shown in Figures 1 and 2. In Figure 1, the 

red line divides the two classes (or groups). When new data comes to get predicted, the 

predicted outcome is determined by where the data lies on the graph. In Figure 2, the red line 

shows the trend of the data. Using this line, future predictions can be made.   

 

Figure 1: Example of classification learning 

 

Figure 2: Example of regression learning

 

Unsupervised learning is like supervised learning, but with no designated dependent 

attribute. The input is known, but the output isn’t. This type of learning is used when trying to 

find a pattern not known, or obvious from a set of data. For example, trying to detect a radio 

signal below the noise floor. The radio signal would have a pattern that the algorithm will try to 

find in the noise. [2] 

Reinforcement learning is inspired by behaviorist psychology. The computer takes 

actions in an environment to maximize some notion of reward. Correct actions are rewarded 

(reinforced) while incorrect actions are not. For example, a robot navigating a maze. Every 

correct move is given positive reinforcement, while incorrect ones are not. This repeats until 

the robot can correctly solve the maze. 
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This thesis focuses on the use of supervised learning, specifically classification learning. 

The workflow of supervised classification learning is shown in Figure 3 for learning and Figure 4 

for predicting. In Figure 3, the process starts by loading the independent and dependent data 

sets. This data contains multiple independent dependent pairs. Then preprocessing the data to 

extract certain features for learning. Afterwards it is sent to the classification learner to teach. 

After many cycles through many learners, the best one is selected as the ideal model. In Figure 

4, the independent data is sent to the preprocessed. This data is only one set of the 

independent data. This data gets prepossessed the same way it did during training. Using the 

same model during training the preprocess data gets passed in and the predicted dependent 

data comes out. In this example, the predicted data is “to move left.” 

 

Figure 3: Workflow during training of classification learning 

 

Figure 4: Workflow during prediction of classification learning 
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This purpose of this research is to test the feasibility of using machine learning to 

interpret brain signals in a fast and efficient way. The machine learning platform that will be 

utilize in this research is the MATLAB classification learner. 

 

1.2 Electroencephalography 
 

EEG is an electrophysiological monitoring technique for recording and interpreting 

electrical activity in the brain. This phenomenon was first observed in 1875 by Richard Caton, a 

physician practicing in Liverpool, who presented his findings of electrical activity of rabbits and 

monkeys in the British Medical Journal. The first recording of human EEG was done in 1924 by a 

German physiologist and psychiatrist Hans Berger. Berger also invented the first 

electroencephalogram [5]. 

The nerve cells of the brain generate electrical impulses that fluctuate in distinct 

rhythmic patterns. EEG waves are measured with typically with 8 to 16 pairs of electrodes, 

placed on the scalp. The difference in voltage between the pairs is recorded as the signal. 

Typical interpretations of the signal are done by taking spectral analysis of it. A spectral analysis 

of the signal shows the brain pattern in frequency domain [6]. When looking at the frequency 

domain, various frequency bands are associated with different rhythmic activities. Five 

commonly bandwidths known as alpha, beta, theta, delta, and gamma are shown in Table 1. An 

Example of each brain wave is shown in Figure 5. This example came from the EEG waves 

captured in this experiment filtered through MATLAB. Note the “Original EEG Wave” has its DC 

offset of about 4200 uV removed. 
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Band Frequency (Hz) Associated Activity [17] 

Delta 1-4 Deep meditation, sleep, and source of empathy 

Theta 4-7 Learning, and memory 

Alpha 8-15 Mental coordination, calmness, and alertness 

Beta 16-31 Problem solving, judgment, decision making, focused mental activity 

Gamma 31+ Love, high altruism, and higher virtues 
Table 1: EEG Bands and Frequencies 

 

Figure 5: Comparison of EEG waves  

Low frequencies (typically 0.1 to 1 Hz), and high frequencies (typically 60 to 70 Hz) are 

filtered out to remove any artifacts that may occur from eye, cardiac, or muscle activity [7]. 
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Where the electrodes, or pads, are placed are also important in EEG. The placement 

effects where on the surface on the brain the brain activity is being recorded. This is important 

since functionality of the cerebrum, the largest part of the human brain, is sectioned. The four 

main sections are shown in Figure 6.  

 

Figure 6: Four sections of the Cerebral Cortex. Image has been edited to remove the blue background from [8] 

The Cerebrum or cortex is associated with higher brain function such as though and 

action. The four sections are the frontal lobe, parietal lobe, occipital lobe, and temporal lobe. 

Each lobe is associated with different functions. The frontal lobe is associated with reasoning, 

planning, parts of speech, movement, emotions, and problem solving. The parietal lobe is 

associated with movement, orientation, recognition and perception of stimuli. The occipital 

lobe is associated with visual processing. The temporal lobe is associated with perception and 

recognition of auditory stimuli, memory, and speech [8]. 

Scalp EEG locations can be defined using the modified combinatorial nomenclature 

(MCN), which is a higher resolution version of the international 10-20 system. This new system 
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is illustrated in Figure 7, where the green markers are the EEG pad locations on the Emotiv 

EPOC+, and the orange markers are pad locations for the common mode sense (CMS) and 

driven right leg (DRL). The CMS and DRL are used to form a feedback loop to remove any 

electrical interference since the EEG electrodes are measuring in the ranges of micro volts. 

 

Figure 7: MCN locations edited to show Emotiv EPOC+ locations highlighted [9] 

Each EEG sight has a letter and number to identify it. The letters F, C, P, O, and T stand 

for frontal, central, parental, occipital, and temporal lobes respectively (note central is not a 

lobe). Along with these are Fp, A, N, I, which stand for front polar, earlobes, nasion, and inion 

respectively. These letters represent the original 10-20 system. In the higher resolution MCN 

system, extra markers are added. The double letters refer to positions in-between two areas 
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from the 10-20 system. These double letters AF, FC, CP, PO, FT, and TP stand for the areas in 

between the aforementioned letters, with AF standing for the area between F and Fp. The 

number subscripts represent the distance away from the center, with the subscript “Z” 

representing zero. Odd and even numbers represent the left and right side respectively. The 

larger the number, the further away that location is away from zero [9]. 

 

1.3 Brain-Computer Interface 
 

Human-computer interfaces (HCIs) such as mouse, keyboards, and touch screens have 

become ubiquitous while interfacing with computers. There is a growing need for direct brain-

computer interfaces (BCI) in situations where HCIs are not viable, such as individuals who are 

not capable of producing muscular movement to control HCIs. BCI can offer an extra dimension 

of control not available in HCIs.  

BCI is a direct communication pathway based on neural activity generated by the brain, 

independent of peripheral nerves and muscles, to an external device. The purpose of BCI is 

often used for researching, mapping, assisting, enhancing, augmenting, or repairing human 

cognitive or sensory-motor functions, providing a new channel of control that requires 

voluntary adaptive control by the user [11]. 

BCI’s can be categorized into two types: invasive, and noninvasive. Invasive or partially 

invasive BCIs involve some form of brain implant, or some form of direct communication with 

the cortex of the brain or grey matter. Noninvasive BCIs do not directly interface with the brain, 

or break the skin. Noninvasive techniques reduce the risk for users, since surgery or permanent 
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attachment of a device is not necessary. Noninvasive techniques include computerize 

tomography (CT), position electron tomography (PET), Magnetic resonance imaging (MRI), 

functional magnetic resonance imaging (FMRI), EEG, and more [11]. This thesis focuses on the 

use noninvasive methods of BCI with EEG.  

The BCI system used in this thesis is shown in Figure 8. The BCI System start with the 

Emotiv EPOC+ sampling EEG data from the user. Then sending that EEG data through 

proprietary 2.4 GHz wireless to the PC. Once in the PC the data can go anywhere such as a 

videogame. 

 

Figure 8: Brain-Computer Interface System 
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Chapter 2: Background and Related Work 
 

Previous BCI work 
 

BCI related work started in the 1970s, funded by the Pentagon’s Advance Research 

Projects Agency (DARPA). This research, managed by George Lawrence and coworkers, focus of 

this research was to develop techniques to help improve performance of soldiers with high 

mental loads. Although his research produced a lot of insight on methods of cognitive 

biofeedback, he did not produce any usable devices [11]. 

DARPA later expanded its focus on biocybernetics. The goal was exploring the potential 

of controlling devices with biological signals in real time through computer processing. In 1977 

Jaques Vidal, with funding from DARPA, was able to produce one of the first BCI. The term BCI 

was first coined by Vidal from the University of California Los Angeles (UCLA) Brain-Computer 

Interface Laboratory. Vidal proved that electrical brain activity could be used to effectively 

communicate the user’s intent. His experiment showed the possibility of moving a cursor 

through a 2 dimensional maze using only visual evoked potentials. Vidal’s work along with 

others, proved that electrical brain activity can be interpreted. Future work expanded on EEG 

and other brain imaging devices into BCI [11]. 
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BCI in Video Games 
 

BCI work in video games has always been an idea thrown a lot works of art, and 

entertainment area of the consumer market. This concept of BCI in video games is becoming 

more of a reality now with concept of EEG wearables, as well as the price computing power 

that has gone down significantly since the 1970s. EEG wearables are made with the intent on 

being economical yet powerful, and portable. The Emotiv EPOC+ is an example of EEG 

wearable, with an MSRP of US$799 [10], and light enough to be work comfortably. Although 

BCI in video games are not common now, a niche that is starting to adopt them is VR. The 

rendering power of consumer video graphics card (VGC) is approaching the visual realism is 

cinematic quality, but in real time. The first implementing of VR systems could cost over 

US$200,000 10-15 years ago [12]. Now a VR ready hardware, as defined by Oculus Rift [13] can 

cost as low as US$1000.  

Now that the hardware has been made more readily available, the only thing left is 

software. In an IEEE journal on Software Architecture [14], the authors discuss the popularity of 

BCI. More specifically “the computer’s ability to recognize human emotional states given 

physiological signals.” Despite its popularity, the journal continues quoting, “there are few 

frameworks, libraries, architectures, or software tools, which allow systems developers to easily 

integrate emotion recognition into their software projects.” This absence of a framework for 

emotional recognition and other BCI is what’s making it difficult for BCI to exist in videogames. 

The journal proposes its own framework on how to architect a computer base emotion 
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recognition framework, using video games to test the user’s frustration. Companies like Emotiv 

are also providing their own SDKs to developers to help with the software side of BCIs. 

A thesis submitted by M. Moazzami to Michigan State University in 2012 proposes the 

use of machine learning in BCI with the Emotiv EPOC [15]. In the thesis Moazzami uses the built 

in machine learning tool provided by the Emotiv Environment to perform the training. In his 

experiment, Moazzami trains the program by performing a task, recording the EEG data, and 

sending that data to the Emotiv engine to do the learning. After two months of training, 

Moazzami was able to interface with a keypad on screen. Although the experiment work, the 

training took two months before Moazzami was able to interface with the gamepad. Two hours 

is too much for an average gamer to train and not play a game. In Moazzami’s experiment, the 

machine learning was done using the Emotiv Engine. Although it works, it doesn’t allow for the 

most flexibility and control of the machine learning process. What this thesis hopes to improve 

upon Moazammi’s is to shorten the machine training from two months to under an hour, to use 

machine learning engine that allows for more control, and to not take away from the user’s 

game time. This thesis plans to achieve this by training while gaming, and using a more open 

machine learning platform to hopefully achieve faster learning. 

Another study on video games and BCI was done in January 2012 by a team at 

Laboratorium voor Neuro en Psychofysiologie [16]. In the conference paper, the team attempts 

their first try to allow a user to play a tactical video game using steady-state visual evoked 

potential (SSVEP) classifier with a commercial grade EEG device such as the Emotiv EPOC. SSVEP 

is visual stimuli to an observation. The researches built a tower defense style game, where the 

user can interface with the video game by staring at certain visual cues that flash at different 
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frequencies. These cues when in the peripheral vision doesn’t generate an SSVEP, but when the 

users would focus on these cues, the frequency at which the cues would flash would be picked 

up the Emotiv EPOC. The tests were successful with 7 out of 8 users. The conclusions of the 

paper were that healthy users of all ages could use BCI, users could control and play a game 

using BCI, a consumer grade EEG device was sufficient for BCI, and the user can control the 

game in real time. This research has the advantage of not having to train a response in order to 

play a game. The use of SSVEP, and developing their own game aided in this. However, this 

requires the video game to have a purpose controls for BCI. This greatly restricts the section of 

video games availability to only ones design for BCI. SSVEP also has other limitations. The 

controls for SSVEP are all visual, and appear on screen. Meaning the user will have to take their 

attention away from the action on the screen to control their game. This limits the variety of 

games to slow pace, or turn base games. This thesis hopes to improve on this by allowing the 

user to play a larger set of games, as this experiment doesn’t rely on a game to be designed for 

BCI. Although the paper doesn’t require any training, this thesis hopes to limit the training by 

masking it within playing the video game. 
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Chapter 3: Methodology 
 

3.1 Introduction 
 

The algorithm can be broken down into three main systems. These three systems are: 

data acquisition, machine learn, and machine predict. 

Figure 9 shows the system in data acquisition mode. In data acquisition mode, both EEG 

data from the Emotiv EPOC+ and physical gamepad data are recorded and stored in a text file. 

Gamepad controller data is also fed into the virtual gamepad so the user can still play the game. 

The text file is then used to train the learner in in machine learning system. 

 

Figure 9: Block diagram of system in data acquisition mode 

Machine learning is done using MATLAB classification learner. In machine learning 

mode, the saved EEG and controller data are used as independent and dependent data 

respectively. The EEG data is further featured extracted to get more valuable data for the 

learner. Several classification learners are trained and the best model is selected for machine 

predict mode. 
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Figure 10 shows the system in machine predict mode. In machine predict mode, the 

physical gamepad is used only to record the intended button press of the user, since the game 

should now be played using only the EEG data. Within the main loop the EEG data is being fed 

into the MATLAB machine learning model to predict the outcome. 

 

Figure 10: Block diagram of system in machine predict mode 

 

3.2 Tools 
 

Many different software and hardware tools were used in this research. This subchapter 

goes over the various tools used, and the justification for the use of that tool. 

3.2.1 Programming Language 
 

The main algorithm was written in Visual Studio 2015 using C++. C++ is a widely used 

programming language, and is often used by developers when providing software development 

kits (SDK). Of the SDK options available by software used in this research, C++ was a common 

language that all the developers provided. See Table 2. 
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SDK C/C++ .Net Java Python MATLAB 

Emotiv EPOC+ Yes Yes Yes Yes Yes 

Matlab Yes Yes Yes Yes Yes 

Direct Input Yes No No No No 

vJoy Yes No No No No 
Table 2: List of SDKs with supported software 

3.2.2 Emotiv EPOC+  
 

The Emotiv EPOC+, shown in Figure 11, is a wearable EEG device developed for BCI. This 

device was chosen for its high sampling rate, portability, and ease of use. It has 14 EEG 

channels, with a sampling rate of 128 sps, 14-bit ADC resolution (0.51 uV per bit), with 

Bluetooth Smart, and proprietary 2.4GHz wireless. [10] With its 128-bit sampling rate, it can 

capture brain waves signals up to 64 Hz. Which is enough to capture Gamma brain waves while 

naturally filtering out high frequency artifacts.  

 

Figure 11: Image of Emotiv EPOC+ [10] 

The Emotiv EPOC+ comes with two programs Emotiv Xavier Control Panel, and Emotiv 

Xavier Testbench. These two programs are great to get the user to get acquainted with EEG and 

brain monitoring, but do not do much for developing BCI applications. The Emotiv EPOC+ SDK, 

on the other hand, is used for BCI development. The SDK comes with the necessary drivers and 
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code to allow the software to interface with hardware. Although the SDK comes in many 

languages, C++ was chosen since it has the highest support among the Emotiv community. 

3.2.3 MATLAB 
 

MATLAB is a multi-paradigm numerical computing environment [18]. It is used in 

multiple applications, such as: computer vision, image processing, data visualization, and 

machine learning. This research uses MATLAB to develop its machine learning model. Built into 

MATLAB is a simple to use Classification Learner application. This application has multiple 

learners built in that the user can train, and export their model. However, this model is locked 

in the MATLAB environment. In order to use the model, the C++ code would have to launch the 

MATLAB engine using the MATLAB C++ SDK. 

3.2.4 Direct Input 
 

To take in controller inputs, the Microsoft standard Direct Input SDK was used. This 

universal controller input [19] allows for a variety of controllers to work with the algorithm, but 

restricts the program to only work in a windows environment. A Gamecube controller was used 

in this research, although any controller will work. 

3.2.5 vJoy 
 

To emulate a virtual controller, the vJoy SDK was used. vJoy is a device driver that 

bridges the gap between and device that Is not a joystick and an application that requires a 

joystick [20]. This SDK allows the programmer to feed in controller inputs to virtual controller. 

This virtual controller is seen as a physical controller to the computer, and video games. The 
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vJoy SDK was the deciding factor in which to write the algorithm in, since it is the only open 

source virtual controller with a programmable feeder available at the time of this research.  

 

3.3 Algorithm 
  

As stated before, the algorithm can be broken down into three main systems: data 

acquisition, machine learn, and machine predict. A full cycle of operation would start with the 

algorithm in data acquisition mode in a C++ program. This program would terminate once 

enough EEG and controller samples are taken, and saved to a text file (typically >1000). 

Afterwards in MATLAB, the samples would be used to teach a machine learning model. Once 

the best model is found, the same C++ program would start again, this time in machine predict 

mode. In this mode instead of samples being saved to a text file, EEG samples are sent to the 

MATLAB engine running in parallel, and controller samples are ignored. The MATLAB engine 

would then return a predicted value base of the model built earlier.  

The algorithm for data acquisition and machine predict is detailed in the flowchart 

Figures 12, 13, 14, 15, and 17. The systems data acquisition, and machine predict are shown in 

Figures 12, 13, 14, and 15, while machine learn is shown in Figure 17. 
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Figure 12: Initialization and setup flow chart 

The flow chart in Figure describes the main loop. The main loop initializes the necessary 

setup for the vJoy virtual controller, and the Emotiv EPOC+ EEG device. Along with initialization, 

it also starts the physical controller handler, and the EEG thread. 
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Figure 13: Controller handler subroutine flowchart 

The flow chart in Figure 13 describes how the Controller handler subroutine works. It 

starts by acquiring the physical controller input using Microsoft’s Direct Input API. If the 

program is in data acquisition mode, it would feed the physical controller inputs to the vJoy 

virtual controller. If the program is in machine predict mode, it would feed the predicted 

controller inputs to the virtual controller. This predicted controller input is a global struct that is 

updated in the EEG thread subroutine. 
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Figure 14: EEG thread subroutine flowchart 

Figure 14 shows the flow chart of the EEG Thread sub routine. It starts by acquiring the 

EEG data from the Emotiv EPOC+. They are a total of 22 channels that are read from the EPOC+. 

These are an index counter, 14 EEG channels, 2 gyroscope axis, time stamp, function ID, 

function value, markers, and sync signal. Only the 14 EEG channels are utilized. If the program is 

in data acquisition mode, it reads the 14 EEG channels, and saves them to separate text files 

every 32 cycles. Each cycle it reads one sample of data from each channel. With a sampling rate 

of 128 sps, saving data every 32 cycle, is equivalent to saving a snapshot of the previous quarter 

second of EEG data. At the end of every 32 cycle the controller data is also saved. This is done in 
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the EEG thread subroutine instead of the controller handler subroutine because this will better 

synchronize the two sets of data. 

During machine predict mode, the EEG data is sent to the “MATLAB engine” sub routine 

instead. The MATLAB sub routine would then return the predicted controller button. Finally, it 

would save the physical button data to a text file as a means of validating that the predicted 

button matches the intended button. 

 

Figure 15: MATLAB engine subroutine Flow chart 

Figure 15 shows the MATLAB engine sub routine. This subroutine is only present during 

machine predict mode. In this mode the EEG data is sent to the MATLAB engine. Once in the 

MATLAB engine, features are extracted from the EEG data. The process of feature extraction 

starts filtering the data with a high pass 0.5 Hz finite impulse response (FIR) filter. Then by 
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converting the EEG time domain signals to frequency domain signals. Then certain band widths 

are assigned to their respective brain wave. See Figure 5. The mean and standard deviation is 

then calculated, and sent to the model that was trained during machine learn. This then returns 

a predicted value to be fed to the vJoy virtual controller. 

A condition then checks to see if that particular prediction has been predicted Z amount 

times, where Z is a value large enough to return a probable correct prediction. This calculation 

is based off Equation 1, where Pcn is the probability of a correct prediction for button n (not the 

probity that button n will be predicted), PFNRn is the probability of false negative rate (or 

percentage of a false negative) for button n in the classification learner model where the 

predicted class did not match the true class (in other words, how often the classification learner 

was wrong). The PFNRn is the sum of all the false negative for that button n. False negatives 

occur when a prediction incorrectly indicates that a class is absent. The number of false 

negative that make up the sum PFNRn is n - 1. Based on this equation, the lower the PFNRn the 

greater the Pcn. 

𝑃𝑐𝑛 =  1 − (𝑃𝐹𝑁𝑅)𝑍 

Equation 1: Probability of guessing correctly equation 

The first button to be predicted Z amount of times becomes the final prediction. Until 

then it returns no value, or no button predicted. In theory this should predict the correct value 

most of the time since it’s the first to Z predicted values before it finalizes on a prediction, and 

from Equation 1 the larger Z is the more probable it is a correct prediction. This is true for PFNR 

probabilities that are high, but are still less than PTPRn, or probability of true positive rate for 

button n (probability that the predicted class matched the true class). PTPRn and PFNRn are 
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mutually exclusive, and a complete subset. True positives occur when a prediction correct 

indicates that a class is present. In other words, as long as PTPRn > PFPRn, and with a large enough 

Z, Pcn will have a high probability of correct predictability. Calculations of Pc with various values 

of PNFRn and Z are shown in Table 3. 

Z =  1  Z =  2  Z =  3  Z =  4  Z =  5 

              

Pc PNFRn  Pc PNFRn  Pc PNFRn  Pc PNFRn  Pc PNFRn 

0.55 0.45  0.7975 0.45  0.9089 0.45  0.959 0.45  0.9815 0.45 

0.65 0.35  0.8775 0.35  0.9571 0.35  0.985 0.35  0.9947 0.35 

0.75 0.25  0.9375 0.25  0.9844 0.25  0.9961 0.25  0.999 0.25 

0.85 0.15  0.9775 0.15  0.9966 0.15  0.9995 0.15  0.9999 0.15 

0.95 0.05  0.9975 0.05  0.9999 0.05  1 0.05  1 0.05 
Table 3: Calculated values of Pc with various values of PNFRn and Z 

Even with PFNRn values close to but still less than PTPRn, Equation 1, still holds, since PFNRn 

is the sum of all false negatives, and as long as no individual false negative is close to the PTPRn. 

In summary if the true positive probability is higher than any individual false negative 

probability, and checking to see if that prediction has been predicted multiple time, is a highly 

probable predictor. An example of false negative and true positives is shown in Figure 16. 

 

Figure 16: False negative and true positive probabilities 

In Figure 16 the sum of the false negatives is 44.6%, but since the prediction of “None” 

doesn’t hurt the predictor, the adjusted PFNRLeft is 12/43, or 27.9%, which works out to a PcLeft of 

97.8% with Z = 3. In this example, the probability of picking left is much higher than the 
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probability of picking B, Y, or Right, therefore there is a high probability of it true positive and 

satisfy the condition of predicting the value Z times in the flow chart in Figure 15. 

 

Figure 17: MATLAB machine learn system 

The entire machine learning process, shown in Figure 17, is done in the MATLAB 

environment. It starts by loading the EEG and controller data text files, and converting these 

into MATLAB matrixes. The EEG matrixes are 32 x Z, and the controller matrix is 1 x Z, where “Z” 

is the length that the data acquisition has ran for in units of quarter seconds. Each EEG signal is 
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then filtered through a 0.5 Hz high pass FIR filter, and converted to a frequency domain signal. 

This converts the fourteen 32 x Z matrix into fourteen 512 x Z matrix, where the first element of 

m (where 512 x Z is an m x n matrix) represents the magnitude at 0 Hz, and the 512th element 

representing the magnitude at 64 Hz (from Nyquist Theorem, and a sampling rate of 128 sps). 

The frequency domain signal is then separated into different band widths representing 

the brain waves. These divisions are shown in Table 4. 

Brain Wave Frequency (Hz) Elements in matrix 

Delta 1-4 1 to 24 

Theta 4-7 25 to 56 

Alpha 8-15 57 to 120 

Beta 16-31  121 to 244 

Gamma  31+ 245 to 512 
Table 4: Division of frequencies in frequency domain matrix 

 Separating the signals converts the fourteen 512 x Z matrix into seventy W x Z matrixes 

(where W represents the different length for each brain wave band width). The mean and 

standard deviation of each signal is then calculated, converting seventy W x Z matrixes into 140 

1 x Z matrixes. These matrixes represent the independent data that will be fed into the 

classification learner. 

The controller matrix is converted from its numerical representation, to its functional 

representation shown in Table 5. 
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Numerical Button 
Representation 

Functional 
Representation 

0 None 

1 X 

2 A 

4 B 

8 Y 

16 L TRIGGER 

32 R TRIGGER 

64 INVALID 8 

128 Z 

256 INVALID 10 

512 START 

1024 INVALID 11 

2048 INVALID 12 

4096 UP 

8192 RIGHT 

16384 DOWN 

32768 LEFT 
Table 5: Numerical to Functional button mapping 

After this conversation, both the EEG brain wave data, and the controller data are 

combined into a 141 x Z table. This table is then used as the independent and dependent data 

in MATLAB’s classification learner. The learner has multiple different classification learners built 

in, shown in Figure 18. 
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Figure 18: List of classification learner built into MATLAB 

These learners have a default setting, but may be further tuned in the advance tab. 

After selecting a trainer and training, the confusion matrix could be brought up to see the 

classifier performance in each class for the selected model. This is shown for Fine K-Nearest 

Neighbor (KNN) in Figure 19, and Subspace Discriminant in Figure 20. 
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Figure 19: Confusion matrix for classification learner Fine KNN 

 

Figure 20: Confusion matrix for classification learner Subspace Discriminant 

These two are examples of two different learners. In order to evaluate which learner is 

better, the adjusted TPR/FNR must be calculated. This adjustment is to account for the fact that 

“None” guesses don’t hurt how well it predicts, only how quick it predicts. The adjusted values 

for both are shown in Figures 21 and 22 for KNN and subspace discriminant respectively. 
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 Adjusted Confusion Matrix for: k-Nearest Neighbor 
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B 
30 2 2 4  78.9%  

78.9% 5.3% 5.3% 10.5%  21.1%  

Y 
4 11 4 10  37.9%  

13.8% 37.9% 13.8% 34.5%  62.1%  

RIGHT 
5 8 51    79.7%  

7.8% 12.5% 79.7%    20.3%  

LEFT 
3 9   31  72.1%  

7.0% 20.9%   72.1%  27.9%  

  B Y RIGHT LEFT  TPR/  

       FNR  

         
Figure 21: Adjusted Confusion matrix for classification learner Fine KNN 

 Adjusted Confusion Matrix for: Ensemble 
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B 
25 4 5 5  64.1%  

64.1% 10.3% 12.8% 12.8%  35.9%  

Y 
7 7 8 10  21.9%  

21.9% 21.9% 25.0% 31.3%  78.1%  

RIGHT 
7 9 46    74.2%  

11.3% 14.5% 74.2%    25.8%  

LEFT 
5 11   29  64.4%  

11.1% 24.4%   64.4%  35.6%  

  B Y RIGHT LEFT  TPR/  

       FNR  

   Predicted Class    
Figure 22: Adjusted Confusion matrix for classification learner Subspace Discriminant 

After the adjustment it is shown that the fine KNN learner performed better than the 

Subspace Discriminant. Looking at the fine KNN learner though, it seems the FNR is much 

higher than the TPR for button Y. This leads to a higher PFNRY which makes the predictor for Y to 

be unreliable according to Equation 1, with a PcY of 76.1% with Z = 3. For this particular Learner, 

Y is not a possible button for prediction, and is removed from the subset of predicted values. 

However, buttons B, Right and Left perform very well, with Pcn of 99.1%, 99.2%, and 97.8% 
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respectively. Selecting classification learner fine KNN as the model to be used in machine 

predict mode. 
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Chapter 4: Findings 
 

4.1 Intro 
 

The following experiment was done using a computer desktop with the following specs: 

Intel core i5 4690k at 3.5 GHz, Nvidia GTX 970, 8 Gb 16MHz DDR3 RAM. The video game under 

test is Tetris Worlds running on the Wii emulator Dolphin version 4.0.  

A baseline procedure for testing was develop for consistency in the experiment. During 

data acquisition two sets of data would be taken. Each would acquire data for about 5 minutes 

each, providing about 2000 data points, with a couple minutes in between sets to reset. During 

machine learn, the best overall adjusted TNR would be selected as the predicting model. Any 

buttons that were not viable to test would be thrown out and not predicted. During machine 

predict the user would use their mind to play the game with the virtual controller, and use the 

physical controller to record the true result. This is done to verify predicted results are correct 

with what the user intended. The physical control data during machine predict would not be 

passed on to the virtual controller. Z would be set to 3. Before running the experiment, it is vital 

to test the contact quality of the EEG pads, and make sure they are green during data 

acquisition and machine predict as shown in Figure 23.  
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Figure 23: Contact quality check in Emotiv Xavier software 

A total of four buttons are used for this experiment: “Right” to move the Tetris piece 

right, “Left” to move left, “B” to rotate, and “Y” to drop.  

 

4.2 Experiment 
 

After two games of Tetris, both sets of EEG and controller data were saved during data 

acquisition. After being imported into MATLAB, and featured extracted, they were used to 

teach the classification learner. The technique of feature extraction is demonstrated in Chapter 

3. From a series of teaching with various classification learners, the one with the best accuracy 

is selected for both sets of data. In the case of both, Fine KNN was the best result. This is shown 

for data set 2 in Figure 24. 
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Figure 24: List of classification learners taught for data set 2 

The confusion matrix for data set 1, and data set 2 are shown in Figures 25 and 26. The 

adjusted matrix for data set 1 and data set 2 are shown in Figures 27 and 28.  
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Figure 25: Confusion Matrix for Fine KNN for data set 1 

 

 

Figure 26: Confusion Matrix for Fine KNN for data set 2 
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 Adjusted Confusion Matrix for: K-Nearest Neighbor 
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B 
21 2 7 1  67.7%  

67.7% 6.5% 22.6% 3.2%  32.3%  

Y 
 13 9 3  52.0%  

 52.0% 36.0% 12.0%  48.0%  

RIGHT 
4 3 31 2  77.5%  

10.0% 7.5% 77.5% 5.0%  22.5%  

LEFT 
6 6  17  58.6%  

20.7% 20.7%  58.6%  41.4%  

  B Y RIGHT LEFT  TPR/  

       FNR  

   Predicted Class    
Figure 27: Adjusted Confusion Matrix for Fine KNN for data set 1 

 Adjusted Confusion Matrix for: K-Nearest Neighbor 
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B 
35 4 9 8  62.5%  

62.5% 7.1% 16.1% 14.3%  37.5%  

Y 
5 15 4 2  57.7%  

19.2% 57.7% 15.4% 7.7%  42.3%  

RIGHT 
7 6 52 1  78.8%  

10.6% 9.1% 78.8% 1.5%  21.2%  

LEFT 
2 4 1 29  80.6%  

5.6% 11.1% 2.8% 80.6%  19.4%  

  B Y RIGHT LEFT  TPR/  

       FNR  

   Predicted Class    
Figure 28: Adjusted Confusion Matrix for Fine KNN for data set 2 

Observing Figures 27 and 28 shows a great PFNRn for all cases. The corresponding Pcn is 

calculated in Table 6. Of the four buttons recorded, it appears the button Y is the weakest, with 

the lowest FNR percentage. From previous test, see Figures 21 and 22, button Y continues to 

have a poorest performance of the four. 

Pc Calculation for 
Data set 1  

Pc Calculation for 
Data set 2 

button Pc calc  button Pc calc 

B 96.6%  B 94.7% 

Y 85.9%  Y 80.8% 

Right 98.86%  Right 99.05% 

Left 92.91%  Left 99.26% 
Table 6: Pc button calculation for both sets of data 
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4.3 Results 
 

Figures 29 and 30 show the plot comparison between the predicted button presses 

(top), and the intended button presses (bottom) using the model from data set 1. True positives 

occur when the colors of the top and bottom circles match. False negatives occur when they 

don’t match. A calculation of the FNR and PNR has been calculated and compared to the 

FNR/PNR from Figure 27, in Figure 31. 

 

Figure 29: Comparison of Predicted to intended button presses, for first set of data                                                                                
Red = “do nothing,” magenta = “Right,” yellow = “left,” green = “Y,” blue = “B” 

 

 

Figure 30: Comparison of Predicted to intended button presses for second iteration of first set of data                                           
Red = “do nothing,” magenta = “Right,” yellow = “left,” green = “Y,” blue = “B” 
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Original 
Machine 
Learning 

 First Pass  Second Pass 

B 
21 67.7%  5 83.33%  5 83.33% 

9 32.3%  1 16.67%  1 16.67% 

Y 
13 52.0%  3 50.00%  5 55.56% 

12 48.0%  3 50.00%  4 44.44% 

RIGHT 
31 77.5%  5 17.24%  5 11.63% 

9 22.5%  24 82.76%  38 88.37% 

LEFT 
17 58.6%  0 0.00%  0 0.00% 

12 41.4%  0 0.00%  0 0.00% 

 TP/ TPR/  TP/ TPR/  TP/ TPR/ 

 FN FNR  FN FNR  FN FNR 
Figure 31: comparison of true positives and false negatives for the original machine learner, first pass prediction, and second 

pass prediction 

According Figure 31, buttons “B” and “Y” perform on par or better than the original 

machined learning model. Meanwhile, the button “Right” was over predicted throughout the 

experiment, and the button “Left” didn’t predict at all. 

From previous confusion matrixes, it seems obvious that right and left should have the 

highest true positive rate. This could be due to inconsistency of the conductivity of the EEG 

hydrator pads. As time goes by, the conductivity changes, typically going down. This change in 

conductivity changes the model of the machine learning algorithm. This can be seen between 

data set 1 and 2. Both are approximately taken ~5-7 minutes apart. As observed in the scatter 

plots of Figures 32, 33, 34, and 35, it can be observed that the plots do not appear to resemble 

each other. Some show high similarty such as alpha channels 11 and 12 in Figure 35. These are 

only 7 comparrisoins of a possible 9,870. With 140 sets of data, 9,870 is the total number of 

parings that could be compared without duplicates. 
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Figure 32: Comparison of the means of Alpha channels 1 - 4 (left-data set 1) (right-data set 2) 
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Figure 33: Comparison of the means of Alpha channels 5 - 8 (left-data set 1) (right-data set 2) 
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Figure 34: Comparison of the means of Alpha channels 8 - 12 (left-data set 1) (right-data set 2) 
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Figure 35: Comparison of the means of Alpha channels 13 -1 4 (left-data set 1) (right-data set 2) 

Another reason the two might data sets might not match is due to some cognitive state 

change during each trial. Though a ~5-7 minuite seperation might not seem long, it might be 

enough to skew the data. This experiment was repteated multiple times, all results are similar 

to the ones detailed in this thesis. Table 7 show TPR and FNR of the each model of the two data 

sets attemping to valiadate eachothers model. Data set 1’s data would be used to cross 

vailadate data set 2’s model, and vise-versa.   

Model 1 cross reference with  
data set 2 

 Model 2 cross reference with  
data set 1  

Button TPR FNR  Button TPR FNR 

None 42.64% 57.36%  None 41.05% 58.95% 

B 12.92% 87.08%  B 36.15% 63.85% 

Y 13.03% 86.97%  Y 34.27% 65.73% 

Right 20.19% 79.81%  Right 41.11% 58.89% 

left 14.81% 85.19%  left 38.13% 61.87% 

Total 24.39% 75.61%  Total 38.01% 61.99% 
Table 7: Cross Comparison of Machine Learning Models 
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Analysing the cross reference TPR, it can be observed that cross refference each model 

with eachother’s data set will yeild an over all worst prediction than the models and their own 

data set in Figures 25 and 26. To find out if this is a fault of the maching learning process, or the 

accuracy of the Emotiv EPOC+, a super model was trained by combining both data sets shown 

in Figure 36, with it’s adjusted confusion matrix in Figure 37. The adjusted Confusion matrix 

shows that the Combined matrix will still perform relitivey well, despite using both models. The 

conclusion from this is that the machine learning algorithm will still predict well, but the 

accuracy of the Emotiv EPOC+ will change over time, even though it is very percise. 

 

Figure 36: Confusion Matrix of model trained using both data set 1 and 2 
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 Adjusted Confusion Matrix for: K-Nearest Neighbor 
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B 
42 18 12 9  51.9%  

51.9% 22.2% 14.8% 11.1%  48.1%  

Y 
9 21 15 8  39.6%  

9.0% 21.0% 15.0% 4.0%  60.4%  

RIGHT 
8 12 71 4  74.7%  

8.4% 12.6% 74.7% 4.2%  25.3%  

LEFT 
7 8 1 45  73.8%  

11.5% 13.1% 1.6% 73.8%  26.2%  

  B Y RIGHT LEFT  TPR/  

       FNR  

   Predicted Class    
Figure 37: Adjusted Confusion Matrix of model trained using both data set 1 and 2 
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Chapter 5: Conclusion 
 

5.1 Summary 
 

This thesis presented a brain-computer interface model based off of EEG and machine 

learning that was able to take EEG data, build a model though machine learning, and control a 

video game. Although not one hundred percent successful due to some hardware problems, 

the BCI system show potential. 

This thesis also reviewed previous work in BCI in video games and presented areas of 

improvement. Such improvements are: shorter training period, more flexible Machine learning 

tools, larger options of video games genre, and capability of playing games not designed for 

BCI. 

The methodology to successfully complete the BCI model was done in three systems. 

System one, data acquisition. During data acquisition, EEG signals, the independent data, and 

controller buttons, the dependent data, are sampled every quarter second or every 32 samples 

and saved to a text file to be used in the next system, machine learn. The controller data is also 

sent to a virtual controller, vJoy, to interact with the videogame. This is done to give the user 

feedback on his actions. 

Machine learn all takes place in the MATLAB environment. Features are extracted from 

each EEG channel. These features are the five unique brain waves, and the averages and 
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standard deviation of each. These features are then used to teach the learner which is a 

classical learner built into MATLAB. After selecting the best learner from the ones available 

after training, this model can be exported for the next system, machine predict. 

In machine predict, the EEG data is captured the same way it was in data acquisition, 

but this time, the data is sent to the MATLAB engine instead of a text file. Controller data is not 

used for machine predict, but is instead used as a mean of validating the predicted values. After 

the EEG signals are sent to the MATLAB engine, a scrip is running to extract features and fed 

into the model to get a predicted button output. This output is then fed into vJoy to interface 

with the videogame. Afterwards the physical controller data is compared to the predicted data 

to ensure that the predicted data is valid. 

5.2 Future work 
 

Although not perfect, with careful observation and further test the following are 

suggestions for improvements to future BCI systems of similar nature. A problem in this 

experiment was the Emotiv EPOC+ EEG hardware. Although the tool is very precise, it is difficult 

to maintain accuracy. The data is precise enough that it can teach a machine learning algorithm, 

but it is not accurate enough to produce a similar model each iteration. This inaccuracy may be 

due to the nature of wearable EEG. Being portable, and easy to use, also has the side effect of 

having a lot of leeway. When putting on the EPOC+, it is nearly impossible to put it on the same 

way every time. They are many factors that reduce the EPOC+’s accuracy:  

 The physical placement is different every time it is worn 
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 The volume of conductive saline solution varies spatially and temporally each time to 

get enough conductance 

 Human factors that might affect the conductance such has hair, or sweat 

 Human factors that might affect the EEG readings, such has heartbeat, and eye 

movement 

 Environmental factors such as temperature, or humidity 

For future BCI systems it is recommended that these factors are taken into stricter 

considerations in order to produce more accurate models. Once accurate results can be 

produce, the next step would be to produce a more robust machine learning model that will be 

able to produce accurate results with the factors that may have reduce this models accuracy. A 

library of sub-models all in different human and environmental conditions, with a master model 

to arbitrate between which sub-models to select based on the environment. 

Another improvement that might be made is smarter feature extraction. This researches 

uses the full set of mean and standard deviation, of each brain wave, for each sensor, in its 

feature extraction. Smarter feature extractions such as putting a weight to each node in a 

particular areas of the brain for different applications, since functional parts of the brain can be 

sectionalizing. 

The inherent limits of EEG also hamper the potential of this type of BCI system. EEG only 

measures the surface of the brain. They are many other noninvasive technologies out there 

that may further improve this type of BCI systems such as functional magnetic resonance 

imaging. 
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This research has showed how to create a BCI system with EEG recording devices, 

machine learning, and video games. This technology is still very young, and requires further 

research on machine learning, feature extraction, and noninvasive BCIs that are precise, 

accurate, informative, and portable. It is the hope of this thesis that it furthers that research.  
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