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Abstract:  
 
Fungal pretreatment using the white-rot fungus Pleurotus ostreatus on switchgrass for 
ethanol production was studied. In a small-scale storage study, small switchgrass bales 
were inoculated with fungal spawn and automatically watered to maintain moisture. 
Sampled at 25, 53, and 81 d, the switchgrass composition was determined and liquid hot 
water (LHW) pretreatment was conducted. Fungal pretreatment significantly decreased the 
xylan and lignin content; glucan was not significantly affected by fungal loading. The 
glucan, xylan, and lignin contents significantly decreased with increased fungal 
pretreatment time. The effects of the fungal pretreatment were not highly evident after the 
LHW pretreatment, showing only changes based on sampling time. Although other 
biological activity within the bales increased cellulose degradation, the fungal pretreatment 
successfully reduced the switchgrass lignin and hemicellulose contents.  
 
In a laboratory-scale nutrient supplementation study, copper, manganese, glucose, or water 
was added to switchgrass to induce production of ligninolytic enzymes by P. ostreatus. 
After 40 d, ligninolytic enzyme activities and biomass composition were determined and 
simultaneous saccharification and fermentation (SSF) was conducted to determine ethanol 
yield. Laccase activity was similar for all supplements and manganese peroxidase (MnP) 
activity was significantly less in copper-treated samples than in the other fungal-inoculated 
samples. The fungal pretreatment reduced glucan, xylan, and lignin content, while 
increasing extractable sugars content. The lowest lignin contents occurred in the water-
fungal treated samples and produced the greatest ethanol yields. The greatest lignin 
contents occurred in the copper-fungal treated samples and produced the lowest ethanol 
yields. Manganese-fungal and glucose-fungal treated samples had similar, intermediate 
lignin contents and produced similar, intermediate ethanol yields. Ethanol yields from 
switchgrass were increased significantly by fungal pretreatment. 
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CHAPTER I 

1. Research objectives and brief descriptions of studies 

The overall project objective was to determine if treating switchgrass prior to 

storage with a Pleurotus ostreatus fungal pretreatment would decrease lignin contents and 

improve ethanol yields. The project included two studies: a small-scale storage study and 

a laboratory-scale study. The small-scale storage study objective was to determine if fungal 

pretreatment of switchgrass during storage would achieve significant delignification over 

time. The laboratory-scale study objective was to determine the effects of adding trace 

metals or nutrients to the fungal pretreatment on the induction of ligninolytic enzymes and 

the resulting ethanol production.  

1) Small-scale storage study (Chapter 3): Fungal pretreatment with P. ostreatus was 

conducted on small switchgrass bales to facilitate delignification. An automatic control 

system was developed to continuously record bale weight and internal temperature, 

while adding water to the bales to maintain a 50% bale moisture content. The project 

treatment design included three storage periods, three inoculation loading rates, and 

three replications. Once bales were removed from storage, samples were collected and 

compositional analysis and hydrothermolysis pretreatment were conducted to 

determine if fungal pretreatment facilitated greater glucose yield.  

2) Laboratory-scale study (Chapter 4): Copper, manganese, and glucose additions for the 

induction of ligninolytic enzymes, laccase and manganese peroxidase, were studied.
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Each solution was added to switchgrass, which was inoculated with P. ostreatus liquid 

mycelia and incubated for 40 d. Samples were taken for the determination of 

ligninolytic enzyme activities. The effects of the chemical additions on the biomass 

composition and ethanol yield from simultaneous saccharification and fermentation 

were evaluated.
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CHAPTER II 

2. Literature Review

2.1. Switchgrass harvest and storage 

Switchgrass (Panicum virgatum) is considered a good lignocellulosic biomass for 

the production of ethanol in the southern United States. It is a native, warm-season, 

perennial grass species with high drought tolerance and high biomass yield potential, which 

requires low inputs of fertilizers and pesticides (Adler et al., 2006; Djioleu et al., 2014; 

Mooney et al., 2012). Switchgrass, a C4 grass, has low protein and organic acid 

concentrations, but high levels of total carbohydrates (Dien et al., 2006). 

Harvest timing significantly affects switchgrass composition. As the grass matures, 

there are changes in the soluble sugar quantity and ease of extracting glucans. One study 

showed that the percent of soluble glucose recovered peaked in the mid-growth (anthesis) 

stage. The cell wall glucose and non-glucose sugar concentrations, as well as the 

concentration of lignin, increased with maturity (Dien et al., 2006). These composition 

difference corresponds to a change in sugar location and concentration within the plant and 

is a response to environmental and physiological cues. (Adler et al., 2006; Dien et al., 

2006). 

In most climates, the highest biomass yields are achieved with a single harvest 

during this mid-growth stage. However, in areas where the climate is less variable, a two-
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cut harvest system produces higher overall yields (Inman et al., 2010). Switchgrass is 

usually harvested after a frost (late fall to early winter), which also effects the composition. 

Adler et al. (2006) reported that in switchgrass ash content, soluble carbohydrate and 

storage carbohydrate (starch) concentrations decreased while Klason lignin and cell wall 

carbohydrate concentrations increased while the grass was in the field during the winter. 

Storage conditions also significantly affect biomass quality and composition. Bales 

stored outside and unprotected can have significant dry matter loss depending on the 

climate, which is partially due to leaching of soluble components within the biomass. 

Storing bales inside results in significantly lower dry matter losses; however, inside storage 

of switchgrass bales is not economically feasible (Sanderson et al., 1997; Shinners et al., 

2010). Dry matter loss for a bale can be calculated as the dry bale weight at harvest minus 

dry bale weight at destruction, divided by dry bale weight at harvest (Mooney et al., 2012). 

Storage method has a significant effect on the lignin concentration due to loss of extractives 

and carbohydrates (Djioleu et al., 2014). 

2.2. Lignocellulosic biomass 

Lignocellulosic biomass consists of cellulose, hemicellulose, pectin, and lignin 

composites. Lignin strongly inhibits the saccharification (breaking down into simple 

sugars) of cell wall polysaccharides (Weng et al., 2008). Lignin can be classified into 

softwood lignin, hardwood lignin, and grass lignin based on the monomer units chemical 

structure. Lignin is composed of chemically distinct subunits known as monolignols. The 

most common monolignols are p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S). The 

abundance of each of the monolignols varies among species, individual plants, and cell 

types (Weng et al., 2008). Grass lignin is composed of guaiacyl-, syringyl-, and p-
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hydroxyphenylpropane units, with p-coumaric acid (5-10%) esterified to the terminal 

hydroxyl groups of some of the propyl side chains (Higuchi, 1990). Switchgrass typically 

contains 12-23% lignin on a dry basis (Lindsey et al., 2013; Sanchez, 2009). 

2.2.1. Current pretreatment technologies 

In order to utilize carbohydrates in biomass for ethanol production, biomass must 

be pretreated to improve the accessibility of carbohydrates to hydrolytic enzymes. A 

generalized schematic of pretreatment is shown in Figure 2.1. There are chemical 

pretreatment methods, including dilute acid, alkaline, oxidative (using hydrogen peroxide 

or peracetic acid), organic solvents (organosolv), and ionic liquid pretreatment. There are 

several thermochemical pretreatment methods, including steam explosion, ammonia fiber 

explosion (AFEX), CO2 explosion, wet oxidation (WO), and liquid hot water (LHW). 

There are also combinations of thermochemical pretreatments and biological pretreatments 

(Mood et al., 2013). 

Figure 2.1. Schematic of lignocellulosic biomass pretreatment; reproduced with permission from 
Mood et al. (2013) 
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General thermal pretreatment involves heating biomass to increase cellulose 

hydrolysis. At temperatures above 150-180°C (depending on the composition), 

hemicellulose and lignin begin to solubilize. Hydrolysis of hemicellulose forms acids, 

while solubilization of lignin results in phenolic compounds. Severe pretreatment 

conditions promote the condensation and precipitation of soluble lignin compounds and 

soluble hemicellulosic compounds, such as furfural and HMF (Hendriks & Zeeman, 2009).  

Steam explosion pretreatment is a hydrothermal pretreatment that uses pressurized 

steam (20-50 bar, 160-270°C) for several minutes, after which the vessel is suddenly 

depressurized. This explosive decompression separates the fibers, resulting in partial 

hemicellulose hydrolysis and solubilization and lignin redistribution. Large particle sizes 

can be treated, which is one main advantage of this pretreatment over others (Alvira et al., 

2010; Mood et al., 2013).  

Alkali pretreatments use sodium, potassium, calcium and ammonium hydroxides 

or lime to break apart the lignin and hemicellulose. These pretreatments can be operated at 

low temperatures, but require longer residence times and neutralization before fermentation 

(Mood et al., 2013). Kumar and Wyman (2009) reported less sugar degradation from a lime 

pretreatment than a dilute acid pretreatment.  

Acid pretreatments can be done with low (dilute) acid concentrations at high 

temperatures or high acid concentrations at lower temperatures. Although high acid 

concentrations require less energy, these pretreatments result in fermentation inhibitor 

production and degrade monosaccharides. The main inhibitors produced are HMF (5-

hydroxymethylfurfural) and furfural (2-furfuralaldehyde). Dilute acid pretreatments are 

more commonly used because lower concentrations of fermentation inhibitors are 
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generated (Mood et al., 2013). Dilute acid pretreatments can be operated at high 

temperatures (180°C) for shorter times (10-15 min) or lower temperatures (120°C) for 

longer times (30-90 min) (Alvira et al., 2010; Saha et al., 2005). 

Liquid hot water (LHW) pretreatment uses high temperatures (160-220°C) and 

pressure to keep water in the liquid state and in contact with the biomass for a specific 

residence time. The slurry generated through the LHW pretreatment process consists of a 

solid fraction (enriched cellulose and water-insoluble materials), a liquid fraction (water 

and solubilized hemicellulose), and few or no inhibitors (Mood et al., 2013). Ko et al. 

(2015) performed LHW pretreatment on hardwood at increasing severities. They observed 

an increase in recovered lignin with increased pretreatment severity. They attributed this 

response to cellulose and lignin remaining in the recovered solid while xylan was 

solubilized into the liquid portion. This increase in lignin recovery could have been caused 

by condensation reactions of lignin with other degradation products. They also reported a 

decrease in acid soluble lignin (ASL) and an increase in acid insoluble lignin (AIL) with 

greater pretreatment severity, increasing the AIL/ASL ratio with increasing severity. AIL 

and ASL percentages were determined using the two-stage acid hydrolysis method outlined 

by Sluiter et al. (2012). Yasuda et al. (2001) described the ASL portion as the low 

molecular weight and hydrophilic derivatives of lignin. 

2.2.2. Combined biological and thermochemical pretreatment 

Combinations of biological pretreatment with other pretreatments have been found 

to increase glucose yield compared to thermochemical pretreatments. Ma et al. (2010) 

combined pretreatment by the fungus Echinodontium taxodii with mild acid (0.25% 

H2SO4) pretreatment on water hyacinth. They reported a 2.11-fold increase in reducing 
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sugar yield compared to mild acid pretreatment only at 25°C for 30 min. Taniguchi et al. 

(2010) investigated the effects of steam explosion (1.5 MPa for 1 min) on rice straw before 

applying a P. ostreatus fungal treatment, reporting glucose yield versus treatment time. 

They were able to reduce the required treatment time to achieve a 31% net glucose yield 

from 60 d to 36 d.  

Wang et al. (2012) combined Lenzites betulina or Trametes ochracea and liquid 

hot water pretreatments on Chinese white poplar (Populus tomentosa). They tested LHW 

conditions at 140, 160, 180, and 200°C for 30 min after fungal pretreatment. They 

determined that the biomass co-treated with L. betulina and LHW at 200°C/30 min resulted 

in a 1.15-fold increase in glucose yield over LHW at 200°C/30 min only. This was a 3.84-

fold increase over L. betulina pretreatment only. They also determined that the biomass co-

treated with T. ochracea and LHW at 200°C/30 min resulted in a 1.12-fold increase in 

glucose yield over LHW at 200°C/30 min only. 

Wan and Li (2011) studied the effects of LHW pretreatment of corn stover or 

soybean straw at 170°C for 3 min before fungal pretreatment with Ceriporiopsis 

subvermispora. With LHW pretreatment alone, there was not significant degradation of 

cellulose, hemicellulose, or lignin. However, LHW pretreatment followed by fungal 

pretreatment significantly increased lignin degradation for both substrates. For corn stover, 

which can be degraded by C. subvermispora, the combined treatment increased lignin and 

hemicellulose degradation by 13 and 20%, respectively, over fungal pretreatment only. 

Soybean straw cannot be degraded by C. subvermispora alone; however, the combined 

pretreatment resulted in lignin degradation of 36.7% and hemicellulose degradation of 
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41.42%. The cellulose digestibility was increased by 30% for the combined pretreatment 

of soybean straw over no LHW or fungal pretreatment.  

2.3. Fungal pretreatment 

Fungal pretreatment is one possible alternative to thermochemical pretreatment 

methods currently being used. White-rot, brown-rot, and soft-rot fungi are capable of 

degrading lignocellulosic biomass and have many advantages over thermochemical 

pretreatment processes. Simple techniques, low energy requirements, reduced processing 

costs and waste, and reduced inhibitors are some of the advantages of fungal pretreatment 

over thermochemical pretreatment for ethanol production. However, loss of cellulose and 

hemicellulose are major issues attributed to fungal pretreatment. White-rot fungi have been 

found to be highly selective lignin degraders, achieving high lignin degradation and low 

cellulose degradation, making them the most promising group of fungi for pretreatment 

(Wan & Li, 2012). 

Several white-rot fungi have been studied for pretreatment of lignocellulosic 

biomass, including Pleurotus ostreatus, Phanerochaete chrysosporium, Coriolus 

versicolor, and Ceriporiopsis subvermispora. Table 2.1 shows a variety of fungal 

pretreatment studies that have been previously reported. White-rot fungi use hydrolases 

that gradually degrade cellulose while lignin is mineralized for use in fungal growth by 

high-oxidation potential class II peroxidases (PODs), which include lignin peroxidase 

(LiP) and manganese peroxidase (MnP). Some white-rot fungi also produce the ligninolytic 

enzyme laccase (Riley et al., 2014). 

White-rot fungi are generally characterized by high laccase activity, except for P. 

chrysosporium, Phanerochaete carnosa, and Auricularia delicata, which do not produce 
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laccase (Riley et al., 2014). Lignin degrading fungi can be categorized based on their 

enzyme production patterns into one of three groups: (i) LiP-MnP group (e.g. P. 

chrysosporium), (ii) MnP-laccase group (e.g. P. ostreatus), or (iii) LiP-laccase group (e.g. 

Phlebia ochraceofulva) (Dwivedi et al., 2011). LiP (also known as ligninase, EC 1.11.1.14) 

is involved in the oxidative cleavage of non-phenolic aromatic lignin compounds. MnP 

(EC 1.11.1.13) aids lignin degradation by catalyzing the oxidation of syringyl and vinyl 

side-chain substituted compounds in the presence of Mn2+. Laccases (EC 1.10.3.2) are 

copper-containing oxidases that perform one-electron oxidations of phenolic compounds 

(Wan & Li, 2012).



 
 

Table 2.1. Fungal pretreatment studies, sorted by substrate 
Fungal species Substrate Summary of Results Reference 

Trametes versicolor, Echinodontium taxodii  Bamboo culms Increased sugar yield and decreased lignin by: 5.15-fold and 12.0% for T. versicolor, 
8.76-fold and 29.1% for E. taxodii Zhang et al. (2007b) 

Coriolus versicolor Bamboo residues Increased saccharification rate by 2.34-fold Zhang et al. (2007a) 
Ceriporiopsis subvermispora, Dichomitus 

squalens, Pleurotus ostreatus, C. versicolor Beech wood Lignin loss: 21.7% for D. squalens, 17.7% for C. versicolor, 10.3% for P. ostreatus, 
13.0% for C. subvermispora Itoh et al. (2003) 

Lenzites betulina,  
Trametes ochracea  

Chinese white 
poplar 

Increased glucose yields, over LHW alone:1.5-2.66-fold for L. betulina, 1.12-2.25-fold T. 
ochracea Wang et al. (2012) 

E. taxodii Chinese willow, 
China-fir 

Lignin degradation (120 d) and increased enzymatic hydrolysis ratios by: 45.6% and 4.7-
fold for Chinese willow, 39.8% and 6.3-fold for China-fir Yu et al. (2009a) 

Trametes hirsute yj9 Corn stover Degraded 71.5% lignin and reached 74% enzymatic digestibility (42 d) Sun et al. (2011) 

C. subvermispora Corn stover Lignin degradation of 19.48% at 60% moisture, 29.54% at 75% moisture, and 31.33% at 
85% moisture; glucose yield of 66.61% and xylose yield of 38.30% at 35 d, 75% moisture Wan and Li (2010) 

C. subvermispora Corn stover, 
soybean straw 

Increased lignin and hemicellulose degradation: 13% and 20% for corn stover, 36.7% and 
41.4% for soybean straw Wan and Li (2011) 

Ganoderma lucidum,  
T. versicolor, E. taxodii Corn straw Lignin loss (30 d) and reducing sugar yield increase: 54.6 and 29.3% for T. versicolor, 

32.7 and 26.5% for G. lucidum, 42.2 and 50.7% for E. taxodii Yu et al. (2010) 

Phaerochaete chrysosporium Cotton stalks Decreased lignin 19.4-35.5% Shi et al. (2009) 

P. chrysosporium, P. ostreatus,  
Pleurotus pulmonarius, Trametes sp. 

Eucalyptus 
grandis sawdust 

Efficiency of cellulose hydrolysis: P. ostreatus 16.7%, P. pulmonarius 15.4%, Trametes 
sp. 10.1%,  P. chrysosporium 2.8% Castoldi et al. (2014) 

Pycnoporus cinnabarinus Lantana camara, 
Prosopis juliflora 

Increased the holocellulose to lignin ratio (degraded lignin) after 15 d: 14.62% for L. 
camara, 17.28% for P. juliflora Gupta et al. (2011) 

I. lacteus, E. taxodii  Moso bamboo Reduced lignin by: 13% for I. lacteus, 29% for E. taxodii Zeng et al. (2012) 

P. ostreatus Rice hulls Increased total soluble sugars and glucose yields (over fungal only): 3.3 and 4.2-fold for 
ultrasonic, 5.8 and 6.5-fold for H2O2 Yu et al. (2009b) 

P. ostreatus Rice straw Selectively degraded lignin and hemicellulose fractions by 41% and 48%, glucose yield 
32% Taniguchi et al. (2005) 

P. ostreatus Rice straw Reduced time required to obtain 33% net glucose yield from 60 to 36 d Taniguchi et al. (2010) 

Pleurotus florida, Coriolopsis caperata, 
Ganoderma sp. rckk-02 Sugarcane bagasse Degraded lignin after 15 d and increased sugar yield by: 7.91% and 2.36-fold for P. 

florida, 5.48% and 1.50-fold for C. caperata, 5.58% and 1.72-fold for Ganoderma Deswal et al. (2014) 

P. chrysoporium, Lentinula edodes, P. 
ostreatus  Sugarcane bagasse 

Degraded cellulose, hemicellulose, and lignin by: 67.0, 88.6, and 93.4% for P. 
chrysosporium; 15.2, 73.5, and 87.6% for L. edodes; 16.3, 64.4, and 84.9% for P. 

ostreatus 
Dong et al. (2013) 

Pycnoporus sp. SYBC-L3 Switchgrass Reduced lignin by 35% and glucose yield of ~60% at 36 d Liu et al. (2013) 

E. taxodii Water hyacinth Increased reducing sugar yield by 1.13-2.11-fold and ethanol yield 1.34-fold  Ma et al. (2010) 

D. squalens, Fomitopsis pinicola,  
G. lucidum, Lenzites betulinus, Pleurotus 

eryngii, P.ostreatus, T. versicolor 
Wheat straw Lignin degradation after 14 d: D. squalens 34.1%, F. pinicola 32.4%, L. betulinus 28.3%, 

G. lucidum 19.9%, T. versicolor 20.9%, P. eryngii 14.5%, P. ostreatus 12.5% Knežević et al. (2013) 

Poria subvermispora, I. lacteus Wheat straw Hemicellulose degradation, lignin degradation, and glucose yield after 21 d: 36%, 30%, 
and 69% for P. subvermispora; 26%, 34%, and 66% for I. lacteus Salvachua et al. (2011) 

11 



 
 

12 

Higuchi (1990) reported that lignin decayed by white-rot basidiomycetous fungi 

has decreased contents of methoxyl groups and β-O-4 substructures, with increased 

contents of oxygen and aliphatic and aromatic (mostly benzoic) carboxylic groups. It has 

been suggested that three degradative reactions are utilized by white-rot basidiomycetes 

(Higuchi, 1990; Kirk & Chang, 1975):  

1. Oxidative cleavage of propyl side chains between α- and β-carbons, forming 

benzoic acids. 

2. Cleavage of β-aryl ether bonds and modification of side chain structures. 

3. Degradation of aromatic nuclei through oxidative ring opening. 

P. ostreatus, also known as the oyster mushroom, is a white-rot basidiomycetous 

fungus that produces laccase and MnP as part of its ligninolytic enzyme complex. Growing 

in shelf-like clusters on dead logs and living trees, the oyster mushroom is a common edible 

mushroom with thick, white flesh. The fungus starts as mycelia, which later produces 

fruiting bodies. The fungal spawn running (mycelia spreading across the substrate) usually 

occurs at a higher temperature than fruiting; most strains list 8-18°C as the ideal 

temperature for the formation of fruiting bodies. Curvetto et al. (2002) allowed their P. 

ostreatus spawn run to occur at 24±1°C for 15-20 d.  

P. ostreatus has been found to be moderately selective in the degradation of the 

lignin fraction of lignocellulosic biomass (Adamovic et al., 1998; Agosin & Odier, 1985; 

Taniguchi et al., 2005), but will start degrading the cellulose portion with prolonged 

pretreatment times  (Wan & Li, 2012). Adamovic et al. (1998) investigated the chemical 

composition changes of wheat straw treated with P. ostreatus. They concluded that the cell 

wall components had different rates of degradation when subjected to P. ostreatus 
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enzymes. The rates of degradation of hemicellulose, cellulose, and lignin were 0.902, 0.290 

and 0.450 (% day-1), respectively.  

2.4. Ligninolytic enzymes 

2.4.1. Laccase 

Laccases are dimeric or tetrameric glycoproteins, with four copper atoms per 

monomer. The copper sites are categorized into three groups: blue copper center (Type-1), 

normal copper center (Type-2), and coupled binuclear copper centers (Type-3). The 

arrangement of the four copper atoms is shown in Figure 2.2. The copper center structure 

and properties also affect the redox potential of the laccase enzyme. Laccases from 

basidiomycetes (white-rot fungi) are high-redox potential laccases. Bacterial and plant 

laccases have low-redox potential (Dwivedi et al., 2011).  

Laccases catalyze the one-electron oxidation of ortho- and para-diphenols and 

aromatic amines by removing an electron and a proton from a hydroxyl group to form a 

free radical (Ardon et al., 1996; Higuchi, 1990). After receiving four electrons, the enzyme 

donates them to molecular oxygen to form water. There are three major steps in laccase 

catalysis:  

1. Type-1 Cu reduction by the reducing substrate, 

2. Internal electron transfer from Type-1 Cu to Type-2 and Type-3 Cu trinuclear 

cluster, 

3. Reduction of oxygen to water at Type-2 and Type-3 Cu (Thurston, 1994; 

Yaropolov et al., 1994). 

The overall reaction is:  4RH + O2 → 4R• + 2H2O  (Dwivedi et al., 2011). 
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Figure 2.2. Schematic representation of copper coordination centers within a laccase monomer; 
reproduced with permission from Dwivedi et al. (2011) 

The induction of laccase has been widely studied, especially by the addition of 

CuSO4. Collins and Dobson (1997) studied the effects of adding copper to Trametes 

versicolor cultures. They reported that the addition of 400 µM CuSO4 resulted in 18-fold 

greater laccase activity. Baldrian and Gabriel (2002) investigated the laccase activity 

effects of adding cadmium, copper, silver, mercury, lead, zinc, or hydrogen peroxide to 

cultures of P. ostreatus. Addition of silver (1 mM AgNO3), mercury (1 mM HgCl2), lead 
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(1 mM Pb(NO3)2), zinc (1 mM ZnSO4), and hydrogen peroxide (0.5 M) decreased laccase 

activity. They found that addition of cadmium and copper increased laccase enzyme 

activity by 18.5-fold (at 2 mM Cd(NO3)2) and 3.7-fold (at 5 mM CuSO4), respectively. 

They also reported that addition of copper resulted in slower mycelial growth. Baldrian et 

al. (2005) also reported an increase in laccase activity with addition of cadmium and 

copper.  

Galhaup and Haltrich (2001) studied the addition of copper and other trace metals 

on laccase activity of Trametes pubescens. They reported a more than 23-fold increase in 

laccase activity when copper (2 mM) was added; there was a 5-fold increase in laccase 

activity when manganese (1 mM) was added. They also showed that partial inhibition of 

growth occurred at concentrations above 1 mM Cu; although, laccase activity also 

increased with increasing Cu concentrations above 1 mM. Klonowska et al. (2001) reported 

that laccase activity from Marasmius quercophilus was increased 10-fold with the addition 

of 5 mg/L CuSO4.  

Tinoco et al. (2011) described that in the presence of lignin, adding copper (0.5 mM 

CuSO4) resulted in a laccase activity of 12 U ml-1 after 108 h. Although it has been 

previously reported that adding copper reduces P. ostreatus growth at higher 

concentrations (Galhaup & Haltrich, 2001; Tychanowicz et al., 2006), Tinoco et al. (2011) 

reported that adding 0.5 mM CuSO4  during the middle of the exponential growth phase 

significantly increased laccase production.  

Tychanowicz et al. (2006) reported that copper concentrations up to 10.0 mM did 

not inhibit growth of Pleurotus pulmonarius or significantly increase laccase activity. 

However, 10.0-25.0 mM copper concentrations did slow growth of the fungus while 
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increasing laccase activity 8-fold when compared to the control. No growth was observed 

when the copper concentration was more than 40 mM, even after 20 d. Mäkelä et al. (2013) 

reported a 20-fold increase in laccase activity for Phlebia radiata when adding copper (1.5 

mM) to the base media. However, they also reported that CuSO4 concentrations over 0.5 

mM notably suppressed MnP activity.  

2.4.2. Manganese peroxidase 

Production of MnP is limited to certain basidiomycetous fungi. The catalytic cycle 

of MnP is shown in Figure 2.3, which is initiated by the binding of H2O2 to the ferric MnP 

enzyme. MnP uses Mn2+ as an electron donor, requiring two molecules for every cycle. 

MnP is sensitive to high concentrations of H2O2, which cause a reversible inactivation of 

the enzyme (Hofrichter, 2002).  P. ostreatus has been found to produce multiple isozymes, 

including MnP1, MnP3, and MnPL in liquid cultures, and MnP2 and MnP3 in solid cultures 

(Kamitsuji et al., 2004).  
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Figure 2.3. The catalytic cycle of manganese peroxide (MnP); reproduced with permission from 
Hofrichter (2002) 

Multiple studies have been done for the addition of manganese (specifically 

MnSO4) on the induction of MnP. Kerem and Hadar (1993) studied the mineralization rate 

of [14C]-lignin by P. ostreatus supplemented with MnSO4. They reported that P. ostreatus 

grown in Mn-deficient media reached 11% mineralization of the total [14C]-lignin after 27 

d. However, P. ostreatus grown in media with 73 µM Mn and 730 µM Mn reached 14% 

and 16% mineralization after 27 d, respectively. Cohen et al. (2001) studied the addition 

of Mn2+ to cotton stocks inoculated with P. ostreatus. They found that the addition of 730 

µM Mn2+ significantly increased lignin degradation. Giardina et al. (2000) reported that 

addition of 100 µM MnSO4 caused a 10-fold increase of MnP activity for P. ostreatus 

grown on wood sawdust.  

Kamitsuji et al. (2005) reported that adding 270 µM MnSO4 enabled extracellular 

MnP activity to be detected from P. ostreatus. They also studied the effects of excess H2O2 
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on isozyme activities. In the presence of excess H2O2, MnP2 isozyme rapidly lost activity. 

However, the presence of Mn2+ prevented this inactivation. Therefore, the addition of H2O2 

must also be accompanied by the addition of MnSO4. Kamitsuji et al. (2004) reported that 

addition of manganese (0.27 mM MnSO4) resulted in a 10-fold increase in MnP activity 

from P. ostreatus. 
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CHAPTER III 

3. Evaluation of Pleurotus ostreatus degradation of switchgrass 

lignin in a controlled storage environment 

3.1. Abstract 

Fungal pretreatment of lignocellulosic biomass is an alternative to thermochemical 

pretreatment for delignification in the production of biofuels. Small switchgrass bales were 

inoculated with Pleurotus ostreatus to determine if the fungal treatment would significantly 

degrade lignin and hemicellulose while in storage. After inoculation the bale moisture 

content was maintained at 50% using an automated moisture restoration system. The test 

design included three fungal loading rates, three storage periods, and three replications for 

a total of twenty-seven square bales used in the study. The fungal loading rates were 0%, 

2%, or 3% (w/w on wet basis). The storage periods were 25, 53, and 81 d. The samples 

were analyzed for biomass composition and underwent liquid hot water (LHW) 

pretreatment. Based on the biomass composition, the fungal loading did not have a 

significant effect on glucan content. However, lignin and xylan recoveries were 

significantly less in the 2% and 3% fungal loading bales (71.6% lignin and 64.4% xylan) 

than in the 0% fungal loading bales (77.5% lignin and 70.1% xylan). Increased fungal 

pretreatment time significantly decreased glucan, xylan, and lignin recoveries. The effects 

of fungal pretreatment based on fungal loading were not evident after LHW pretreatment, 



 
 

26 

showing only differences based on sampling time. Xylan recovery was greater in the less 

severe LHW pretreatment, indicating that fungal pretreatment did not reduce the necessary 

LHW severity for increasing cellulose hydrolysis. Delignification and hemicellulose 

degradation occurred, at greater rates than in the control, during fungal pretreatment.  
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3.2. Introduction 

Conversion of biomass to biofuels has become incredibly important since the 

implementation of the Renewable Fuel Standard Program in 2005 and its expansion by the 

Energy Independence and Security Act of 2007. This act set long-term goals for the 

production of renewable fuels, especially cellulosic and advanced biofuels (US 

Environmental Protection Agency, 2015). Many biomass conversion facilities utilize 

thermochemical processes, mostly gasification, pyrolysis, or direct liquefaction. Some 

facilities use biochemical processes for biomass conversion, mostly anaerobic digestion 

and fermentation. Fermentation is ideal for biomass with high sugar, starch, or cellulose 

content, with ethanol as the product (Demirbaş, 2001).  

When looking at the overall sustainability of bioethanol production, the biomass-

to-ethanol yield (volume EtOH per mass of feedstock) at the biorefinery and the delivered 

feedstock cost are two key parameters. The delivered feedstock cost is affected by moisture 

content because wet biomass increases the cost of transportation and energy requirements 

(for drying), while decreasing biomass stability and energy content (Inman et al., 2010). 

Larger year-round biomass conversion facilities will need to store biomass to be able to 

continue production between growing seasons (Sanderson et al., 1997). In order to achieve 

an economically feasible biomass-to-ethanol yield, lignocellulosic biomass must be 

pretreated to degrade the lignin fraction and increase the yield of glucose through 

hydrolysis (Hamelinck et al., 2005).  

The use of a white-rot fungus to selectively degrade the lignin fraction of biomass 

is an alternative to thermochemical pretreatment. Fungal pretreatment of biomass during 

storage at the biorefinery would reduce energy consumption and waste compared to other 
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pretreatment techniques (Sanchez, 2009; Wan & Li, 2012). The white-rot fungus Pleurotus 

ostreatus has been found to selectively degrade lignin in lignocellulosic crop residues, 

including wheat straw (Adamovic et al., 1998; Agosin & Odier, 1985), cotton stalks (Hadar 

et al., 1993), and rice straw (Taniguchi et al., 2005). However, P. ostreatus is considered a 

moderately selective lignin degrader, because cellulose loss has been reported with longer 

treatment times (Wan & Li, 2012).  

The purpose of this study is to determine if pretreating switchgrass with P. ostreatus 

prior to bale storage will result in significant lignin and hemicellulose degradation over 

time. The effect of the fungal pretreatment was determined based on the composition of 

the biomass after storage and liquid hot water (LHW) pretreatment. Using fungal 

pretreatment in place of LHW or in conjunction with less severe conditions during LHW 

for reducing lignin and hemicellulose contents would be ideal. Hemicellulose content can 

be estimated by the xylan recovery; increased xylan recovery generally leads to lower 

hydrolysis of cellulose (Chandra et al., 2007; Öhgren et al., 2007). 

3.3. Materials and Methods 

3.3.1. Automatic watering system 

An automatic watering system was developed to maintain a minimum bale moisture 

content during bale storage of 50%, in order to promote fungal growth. This system 

consisted of load cells to continuously record bale weights, thermocouples to monitor 

temperature inside the bales, and solenoid valves connected to a pump to add water when 

necessary.  
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3.3.1.1. Bale weight and moisture content 

During storage, individual bales were hung on individual load cells to continuously 

weigh the bales over time. Tacuna Systems (Denver, CO) AmCells STL-200 S-Type Alloy 

Steel load cells with a maximum load of 200 lb. (90.72 kg) were used. The load cells output 

3.0 mV/V, which was amplified using differential bridge amplifiers (LTC1250, Linear 

Technology Corp., Milpitas, CA). The input voltage was 10 V with a gain resistance of 36 

kΩ, which is shown in Figure 3.1.  

 
Figure 3.1. Load cell amplifier circuit diagram 

Each load cell was calibrated using five combinations of weights, ranging from 

24.7 to 202 lb. (11.2 to 91.63 kg). The following linear equation was used to calculate  

weight: 

 𝑥 = (𝑉𝑖−𝑏𝑖)
𝑚𝑖

 (3.1) 
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where V is the voltage reading from the load cell, i is the load cell number and x is the 

weight (lb.). The linear coefficients, m and b, for each load cell are shown in Table 3.1. 

Table 3.1. Load cell calibration coefficients 
i m b i m b i m b 
1 0.03159 0.02248 10 0.03115 0.04073 19 0.03129 0.02167 
2 0.03159 0.01758 11 0.03152 0.02081 20 0.03120 0.03775 
3 0.03158 0.02156 12 0.03156 0.01281 21 0.03144 0.02725 
4 0.03114 0.02970 13 0.03135 0.01833 22 0.03125 0.02354 
5 0.03132 0.02378 14 0.03078 0.02218 23 0.03136 0.04845 
6 0.03115 0.01393 15 0.03094 0.00707 24 0.03130 0.04362 
7 0.03141 0.08713 16 0.03127 0.01834 25 0.03129 0.06206 
8 0.03129 0.01925 17 0.03119 0.03086 26 0.03141 0.06303 
9 0.03118 0.01504 18 0.03104 0.02159 27 0.03113 0.02986 

The following equations were used to calculate the bale weight and moisture 

content from the load cell voltage:  

 bale = V−b
m

− comp (3.2) 

 MC = bale−dry+(dry∗M0)
bale

 (3.3) 

For equation 3.2, V is the load cell voltage reading; m and b are the load cell 

calibration values from Table 3.1; and comp is the weight of the straps, angle iron frames, 

and hosing (21.036 lb., 9.542 kg). For equation 3.3, dry is the weight of the bale before 

soaking, and M0 is the initial moisture content of the bale before soaking (set as 9.25%). 

The initial moisture content was determined by weighing four full bales, placing them in a 

dryer at 55°C for 72 h, and weighing the bales again.   

3.3.1.2. Relays, solenoid valves, and pump 

To automatically add water when the bale moisture content drops below the 

moisture content set point or the internal bale temperature exceeds the temperature set 

point, relays were used to control solenoid valves and a pump connected to a water storage 

tank. Omron PCB G5L-5V relays (OMRON Global, Kyoto, Japan) were connected to 
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Spartan Scientific (Boardman, OH) Series 3923 Stackable solenoid valves (circuit diagram 

in Figure 3.2). The solenoid valves required a 24 V power supply and were stacked together 

with one inlet. A CountyLine (Deluxe Spot Sprayer, Tractor Supply Company, Brentwood, 

TN) 113.6 L, 7.95 L/min (30 gal, 2.1 gpm) sprayer pump was connected to a relay as shown 

in Figure 3.2 where pump would replace the solenoid value, with a 12 V, 8.5 A power 

supply.  

 
Figure 3.2. Relay to solenoid circuit diagram 
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3.3.1.3. Temperature measurements  

A HTM2500LF series (TE Connectivity Measurement Specialties) temperature and 

relative humidity (RH) module was used to measure ambient temperature and relative 

humidity. This thermistor type sensor estimated the temperature (in degrees Kelvin) using 

a change of resistance value. Equations 3.4, 3.5, and 3.6 were used to calculate the 

temperature and relative humidity; V is the voltage reading. For equation 3.5, the 

temperature calibration coefficients were provided by TE Connectivity Measurement 

Specialties (a=8.54942E-04, b=2.57305E-04, c=1.65368E-07).  

Temperature:  

  𝑅 = 10000𝑉
5000−𝑉

  (3.4) 

 𝑇 (℃) = 1
𝑎+𝑏 𝑙𝑛 𝑅+𝑐(𝑙𝑛 𝑅)3 − 273  (3.5) 

Relative Humidity:  

 𝑅𝐻% = 0.0375(𝑉 × 1000) − 37.7 (3.6) 

T-type thermocouples were used to measure temperature inside the bales. Each bale 

had four thermocouple wires, for a total of 108 thermocouples. Because of the relatively 

large number of thermocouples used in the study, differential wiring to provide cold 

junction compensation was not used. Instead, Monolithic Thermocouple Amplifiers with 

Cold Junction Compensation (AD594, Analog Devices Inc., Norwood, MA) were used to 

allow the thermocouples to be measured relative to the data logger ground. The 

thermocouple amplifier output was 10 mV/˚C. The thermocouple amplifier circuit diagram 

was provided in Figure 3.3. The thermocouple amplifiers were connected to a 24 V power 

supply. Temperature readings over time are shown Appendix 6.5. 
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Figure 3.3. Thermocouple amplifier circuit (AD594, Analog Devices Inc., Norwood, MA) 

3.3.1.4. Data acquisition and programming 

NI USB-6225 data loggers (National Instruments Corporation, Austin, TX) were 

selected for the project because each logger has 80 analog inputs and 24 digital outputs; 

two data loggers were used. The thermocouples and load cells for fifteen bales were 

connected to one data logger and the thermocouples and load cells for the other twelve 

bales were connected to the second data logger. The ambient temperature and RH sensor 

was connected to the data logger with fifteen bales. The solenoid valves and pump relays 

were connected to the digital outputs. The pump relay had a digital output from both data 

loggers. Each data logger was connected to a different computer. LabVIEW (Austin, TX) 

was loaded on each computer and was used to interface and control the data loggers.  

The LabVIEW virtual instrument (VI) was developed to control the system, which 

needed to read the load cell and thermocouple voltages, calculate the moisture content and 

temperature, and turn on relays for a solenoid valve and pump if the moisture content or 

temperature was outside of the acceptable range. Based on the experiment configuration, 
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four separate programs were developed to account for the configuration changes that 

occurred when bales were removed from the system after each defined storage period. 

During the first 25 d, one computer and data logging system was dedicated to bales 1-15, 

and the other computer and data logging system was dedicated to bales 16-27. After the 

first storage period when nine bales were removed from storage, the second computer and 

data logging system was modified to handle only the monitoring and control algorithms 

related to bales 16-18. After 53 d another nine bales were removed from the storage study 

and the first computer and data logging system was modified to handle only the monitoring 

and control algorithms related to bales 1-9, and the second computer and data logging 

system was turned off.  

Each of the load cells, thermocouples, and the ambient temperature/relative 

humidity sensor were connected to the data logger analog input channels and the relays for 

the solenoid valves and pump were connected to the data logger digital output channels; 

the specific wiring configurations were provided in Appendix 6.1 (Figure 6.1 and Figure 

6.2). The DAQ Assistant within LabVIEW was setup on a primary software loop to read 

each of these voltages continuously. Although the voltages are continuously read, single 

data points for each analog input are only collected on 60 s intervals using a time delay 

block. Once a voltage measurement was collected from the DAQ Assistant, the output was 

routed to a signal splitter. The splitter outputs correspond to a defined DAQ Assistant signal 

order which are assigned to corresponding variables.  

Temperature was calculated for each of the thermocouple voltage readings by 

multiplying the thermocouple voltage by 100. The resulting temperature was in units of 

degrees Celsius. To reduce the data noise, running averages of the last 10 readings were 
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calculated. Temperature readings for every thermocouple were digitally recorded every 60 

s. If an individual average temperature reading exceeded 55˚C then a digital flag was set 

to indicate that the bale temperature was too hot and that water would need to be added to 

the specific corresponding bale to keep the bale temperature below the threshold.  

Moisture content was calculated from each of the load cell voltages using equations 

3.2 and 3.3. The moisture content was calculated every 60 s. If the moisture content was 

below 50%, a digital flag was set to indicate that the bale moisture content was low and 

additional water was needed.  

Ambient temperature and relative humidity were calculated for each voltage 

reading from the HTM2500LF series Temperature and Relative Humidity (RH) module 

using equations 3.4 and 3.5 and equation 3.6, respectively.  

If a digital bale temperature (above 55°C) or moisture (below 50%) flag was set, 

the corresponding bale required additional water. Once it was determined that a specific 

bale needed water, the digital channel wired to the relay/pump circuit was set to 5V to turn 

the pump on. The control algorithms for the relay/bale water valve circuits were 

constructed so that only one circuit was active per data logger at any given time. This 

control algorithm was designed to water bales initially in an ascending bale order (if 

multiple bales are identified as needing water at the same time and no other bales are in the 

watering que) and in a first-in first-out queuing sequence. For example, if bales 2 and 8 

were identified as needing water at the same time and no other bales were in the watering 

que, the digital channel wired to the relay/valve circuit for bale 2 would be set to 5V to turn 

the bale 2 valve on. This bale 2 water valve would remain open until the moisture content 

was calculated as being above 50%. Then the digital channel wired to the relay/valve circuit 
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for bale 2 would be set to 0V to turn the bale 2 valve off. Then a similar process would be 

used to water bale 8. If bale 1 was identified as needing water while bale 2 was watered, 

bale 8 would be watered first, then bale 1.  

Remote viewing and sending system warning text messages were an essential 

component of the monitoring and digital control system. TeamViewer (Göppingen, 

Germany) was installed on both computers to allow them to be remotely viewed and 

controlled. TeamViewer was coupled with a custom Excel VBA macro and LabVIEW to 

remotely monitor the system and for the system to send the investigator text messages when 

the bale temperatures were above the threshold of 55°C. Additional details corresponding 

to the LabVIEW and Excel VBA macros were provided in Appendix 6.2 and 6.3. 

3.3.2. Bale set-up 

Twenty-seven small square bales (0.38 x 0.46 x 0.91 m) of Kanlow switchgrass 

(grown in Stillwater, OK at the Oklahoma State University EFAW station and harvested 

in November 2014) were used. The test configuration included three fungal loading rates, 

three storage periods, and three replications. The loading rates included: nine controls with 

no fungus (2% millet only by weight on wet basis), nine lower fungal loading (2% by 

weight on wet basis), and nine higher fungal loading (3% by weight on wet basis). The 

fungal spawn was grown on millet, so the controls also had millet added to determine how 

the added nutrients affected the growth of the native microbial population within the bale. 

The bales were stored inside an enclosed building with no central air, so the indoor air 

temperature was relatively close to the outside ambient temperature. The study was 

conducted in Stillwater, OK; started on June 1, 2015, and ended on August 21, 2015.  
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3.3.2.1. Inoculation procedure 

The pure culture was isolated from a strain of P. ostreatus called HK-35 (Sylvan 

Inc., Dayton, NV) using MCBD agar plates (also known as Basidiomycete Isolation 

Medium). The Basidiomycete Isolation Medium contained 10 g/L malt extract, 1 g/L yeast 

extract, 1 g/L tryptone, 16 g/L agar, 0.01 g/L Benlate 50 SP (DuPont, Wilmington, DE), 

0.005 g/L Botran 75 WP (DuPont New Zealand Ltd., Manukau City, New Zealand), 0.1 

g/L chloramphenicol, and 0.2 g/L streptomycin. The Benlate 50 SP (50% benomyl) inhibits 

ascomycete fungi, Botran 75 WP (75% dichloran) inhibits zygomycete fungi, and 

chloramphenicol and streptomycin inhibit bacteria.  

The P. ostreatus grain spawn was grown on proso millet. The grain spawn was 

started as spawn jars, which were inoculated about three weeks before the bales were 

inoculated. The spawn jars (only millet and water) were autoclaved twice (20 min, 121°C, 

liquids cycle) with an overnight cooling interval. After cooling, the autoclaved grain was 

inoculated with 8-10 agar plugs from a pure agar P. ostreatus plate culture. The jars were 

shaken randomly once per day for one week, until the entire jar was colonized (fungal 

spawn was attached to all of the grain). 

Bags containing 970 g of proso millet, 30 g sawdust pellets (to activate the 

ligninolytic enzymes), 3 g wollastonite (to reduce clumping), and 1 L water with fungicide. 

The fungicide solution was made by mixing 50 mg Benlate 50 SP (DuPont, Wilmington, 

DE) in 5 L deionized water. The bags had vents to allow only air to pass. The bags were 

autoclaved twice (20 min, 121°C, liquids cycle) with an overnight cooling interval, then a 

spawn jar was poured into each bag. The bags were heat-sealed and shaken randomly, then 

laid flat so that the vent was uncovered. The grain spawn bags were shaken every other day 
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for five days, then every day for the next week; the grain spawn was used to inoculate the 

bales on day 12 of fungal growth. The bales that were inoculated with grain only had the 

same mixture of millet, sawdust, wollastonite, and fungicide solution. 

Twenty-four h before inoculation, the bales were weighed and tagged with a 

numbering label and then placed in five 8 ft. x 18 in. (2.44 x 0.457 m) swimming pools 

with water to soak, as shown in Figure 3.4. The bales were placed in the pools and water 

was added until the pool was full. The bales were pushed down as necessary and flipped 

over after about 1 h. The bales were flipped again after 12 h to insure that the initial bale 

moisture content was greater than 50%.  

  
Figure 3.4. Picture of bales soaking prior to inoculation 

Three storage racks were constructed to hold the bales. Each rack (1.85 x 1.28 x 

2.44 m) was designed to suspend nine bales from load cells, conserving space and allowing 

for continuous data acquisition; an image of a completed rack is shown in Figure 3.5 

(drawings in Figure 6.16 and Figure 6.17). Lightweight corrugated 0.658 m x 3.66 m steel 

roofing panels were placed under each row of bales to divert extra water dripping from the 

bales to one end of the test stand, where the water was allowed to pool and evaporate.  
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Figure 3.5. Test stand storage rack for hanging the bales 

The bales were removed from the water and set on saw horses to allow excess water 

to drain. The bales were then moved to the right side of a dual-sided bale splitting stand 

(Figure 3.6, Figure 6.15), which was constructed to elevate the bale and allow sections to 

be moved as needed. Two ratchet straps were laid out on the left side of the stand and the 

wires holding the bale together were removed. Approximately one-fifth of the bale was 

flipped over (rotated 180° vertically) onto the ratchet straps. The inoculant was weighed 

into tared four metal pans; each pan contained 25% of the total inoculant weight (Table 

3.2). One pan of inoculant (grain or grain/fungus) was spread over the bale flake, within 

approximately one-inch of the edges. The thermocouple labeled “A” and a drip hose ring 

was placed so that they were in the center of the bale. The drip hose rings were constructed 

using drip hose with six-inch emitter spacing with another hose attached; the hose was cut 

so that each ring included four emitters, with a diameter of approximately 7.5 in. (19 cm). 
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The next section of the bale was flipped over, with one person holding the hose and wire 

in place. This was repeated for the next three bale sections.  

After the bale was completely inoculated, the support frames (Appendix 6.6, Figure 

6.18 and Figure 6.19) were held on each side while the ratchet straps were connected. The 

straps were tightened by alternating sides, while insuring that the hosing and thermocouple 

wires were not smashed. The bale was then moved to one of the storage racks (Figure 3.5) 

and hooked to the load cell. More drip hose was laid on top of the bale and connected in a 

serpentine pattern to provide water to the entire bale. This was repeated for all 27 bales and 

the final set-up is shown in Figure 3.7. 

 
Figure 3.6. Bale splitting stand for fungal inoculation; showing a bale split and partially inoculated 
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Table 3.2. Bale and inoculate weight for each test bale 

Bale Loading Bale Weight 
(kg) 

Fungus (Grain) 
Added (kg) 

1 2% grain 18.12 0.368 
2 2% grain 21.14 0.426 
3 2% grain 18.23 0.365 
4 2% fungus/grain 19.07 0.383 
5 2% fungus/grain 20.41 0.410 
6 2% fungus/grain 19.28 0.386 
7 3% fungus/grain 20.05 0.607 
8 3% fungus/grain 16.69 0.503 
9 3% fungus/grain 18.12 0.548 
10 2% grain 18.96 0.386 
11 2% grain 18.48 0.372 
12 2% grain 18.82 0.380 
13 2% fungus/grain 18.51 0.374 
14 2% fungus/grain 22.02 0.444 
15 2% fungus/grain 19.19 0.388 
16 3% fungus/grain 19.23 0.579 
17 3% fungus/grain 18.69 0.567 
18 3% fungus/grain 20.91 0.632 
19 2% grain 23.90 0.484 
20 2% grain 18.60 0.374 
21 2% grain 19.69 0.396 
22 2% fungus/grain 23.86 0.480 
23 2% fungus/grain 19.66 0.396 
24 2% fungus/grain 19.10 0.385 
25 3% fungus/grain 18.12 0.547 
26 3% fungus/grain 22.02 0.662 
27 3% fungus/grain 19.16 0.579 
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Figure 3.7. Picture of the automated watering system with all 27 bales in storage 

3.3.2.2. Sampling 

An untreated bale control was collected as the combined core samples from the 

center of five bales from the same harvesting period at the beginning of the storage period. 

The storage study bales were sampled at 25, 53, and 81 d after inoculation; three bales for 

each fungal loading condition were removed after each storage period (nine total bales 

removed per storage period). Each bale was removed from the storage rack and taken to a 

processing table where the ratchet straps and metal bale supports were removed. The bales 

were systematically opened at the inoculation locations. At the first inoculation location in 

a given bale, the switchgrass flakes were spread apart so the drip hose rings could be 

removed and pictures could be taken to visually document if fungal growth was present. 

This process was repeated for all four inoculation locations within the bale. Next, the bale 

flakes were realigned and a single ratchet strap placed in the middle of the bale was used 

to recompress the bale. A Makita DS4000 (Makita U.S.A., La Mirada, CA) 13 mm drill 
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(rated at 500 rpm) equipped with a 2” (5.08 cm) diameter by 3-ft. (0.914 m) long core tube 

was used to core sample the bales (Figure 6.20). Four core samples were collected from 

each bale. When looking at the 12” x 18” (0.3048 x 0.4572 m) bale face the core sample 

locations were about 4” (10.2 cm) horizontally and 3” (7.6 cm) vertically from each corner 

of the bale. The full length of the bale was sampled. A core tube plunger was used to extract 

the sample from the core tube. Each individual sample was collected in a pre-weighed, pre-

labeled sample bag. The top of each sample bag was folded and stapled. Then each sample 

was weighed on a model ML802E/2003 Mettler Toldeo balance (Columbia, MD) to 

determine the wet weight that was used in calculating the sample moisture content after 

storage. This process was repeated four times for each of the nine bales removed from 

storage after each storage period.  

After each storage period, all the collected core samples were placed in a large 

drying oven at 55°C for at least 72 h. After 72 h, the core samples were removed from the 

oven and weighed to obtain the dry sample weight used in calculating the core sample 

moisture content after storage. The post storage core sample moisture contents were 

calculated using the following equation: 

 DM% (completely dry) =
dry−bag
wet−bag

1+(
1−DMfinal

DMfinal
)

× 100% (3.7) 

where wet is the starting weight of the sample, dry is the weight after 72 h in the 55°C 

oven, bag is the weight of the sampling bag, and DMfinal is the dry matter content of the 

combined samples after grinding and drying completely in a 105°C oven. The individual 

bale post-storage moisture content was determined by averaging the four individual bale 

moisture contents. The standard deviation of the four core samples per bale were also 

calculated. The four dried core samples from each bale were ground using a Thomas-Wiley 
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mill (Model 4, Arthur H. Thomas Co., Philadelphia, PA) through a 3 mm screen and 

combined for biomass composition analysis and hydrothermolysis pretreatment. After the 

samples were ground, they were stored in GMD Reclosable Poly Bags (size G8x10, 2 mm) 

at 4°C until needed. 

3.3.3. Laboratory analysis 

3.3.3.1. Biomass composition analysis 

For each bale sample, the moisture content after grinding (to determine DMfinal) and 

the ash content of a 2 g subsample were determined based on the “convection oven method” 

outlined by Sluiter et al. (2008) and ash procedure outlined by Sluiter et al. (2005a). Two-

4 g subsamples for each bale in the first and second sampling periods were extracted using 

a Dionex ASE 300 Accelerated Solvent Extractor, according to Sluiter et al. (2005b). Two-

4 g subsamples for each bale in the third sampling period and the untreated control were 

extracted using Soxhlet extractors, also according to Sluiter et al. (2005b). Each subsample 

was extracted first with water, then ethanol.   

The water and ethanol extractives contents were determined by the mass of the 

extractives residue after forced-air drying of the extracted liquids in the fume hood. The 

extracted biomass was allowed to air dry, and the carbohydrate and lignin contents were 

determined using a two-stage acid hydrolysis according to Sluiter et al. (2012). The 

carbohydrate concentrations were determined using High Performance Liquid 

Chromatography (HPLC) (1100 Series, Agilent, Santa Clara, CA, USA) with an Aminex 

HPX-87H column (BioRad, Hercules, CA, USA) and a refractive index detector (RID). 

The eluent was deionized water flowing at a rate of 0.6 ml/min and a column temperature 

of 85˚C. The total run time for each sample was 30 min. The HPLC with ChemStation 
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software (Agilent Technologies) was calibrated at five levels using known concentrations 

of cellobiose, glucose, xylose, galactose, mannose, and arabinose before being used to 

quantify the concentration of these compounds. 

Recoveries in composition were calculated based on equation 3.8: 

 recovery = DMfinal∗𝑓sample

DMinitial∗𝑓control
 (3.8) 

where DMfinal is the final mass (dry basis), DMinitial is the starting mass (dry basis) found 

in Table 3.5, fsample is the glucan, xylan, or lignin fraction of the sample, and fcontrol is the 

glucan, xylan, or lignin fraction of the untreated (raw) biomass control.  

3.3.3.2. Hydrothermolysis pretreatments 

 Liquid hot water (LHW) pretreatment of the biomass was completed with 80 g (dry 

basis) of the bale sample (subsampled from the combined samples) and deionized water to 

a total mass of 500 g in a 1-L bench top stirred reactor and pressure vessel (Parr Series 

4520, Parr Instrument Company, Moline, IL, USA). The Parr reactor was equipped with a 

propeller agitator, a 1 kW electrical resistance heater and a temperature controller. 

 Two reaction conditions were evaluated: temperature of 200˚C with a 10 min 

reaction time (200/10) and temperature of 180˚C with a 30 min reaction time (180/30). The 

severity factor R0 of the hydrothermolysis was calculated based on equation 3.9. 

 log(R0) = log(t ∙ exp (T−100
14.75

)) (3.9) 

where t is reaction time (min) and T is temperature (°C) (Dogaris et al., 2009; Overend & 

Chornet, 1989). The logarithmic severities were calculated as 3.94 for condition 200/10 

and 3.83 for condition 180/30. Reaction time was considered to be time that the reactor 

was held at the desired temperature. The propeller speed was set to 300 rpm for both 

reaction conditions. The temperature, reactor pressure, propeller speed, and heater setting 
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was recorded every 2 min over the entire duration of the reaction. At the end of the 

reaction period, the vessel was immediately disconnected from the heating unit and 

placed into an ice bath. The pressure was slowly released once the temperature dropped 

below 100˚C, and the vessel was removed from the ice bath after the temperature was 

below 55˚C.  

 The pretreated biomass slurry was removed from the reaction vessel and filtered by 

vacuum filtration using a Buchner funnel lined with Whatman filter paper #4 (Whatman 

PLC, Brentford, UK). After filtration, subsamples of the solids (~65 g, placed in a tared 

Ziploc bag) and the prehydrolyzate liquid (10 mL) were taken. The remaining solids were 

washed, to remove inhibitors of enzymatic hydrolysis and fermentation such as HMF and 

furfural (Wan and Li, 2011), with five-times the mass of solids of deionized water and 

filtered again. The unwashed and washed biomass, prehydrolyzate, and wash water 

samples were stored at 4˚C before being sent to the University of Arkansas for analysis of 

enzymatic digestibility.  

A 10 g subsample of the unwashed and washed biomass samples were allowed to 

air dry, and the carbohydrate and lignin contents were determined using a two-stage acid 

hydrolysis according to Sluiter et al. (2012). The same HPLC procedure was used to 

determine the carbohydrate concentrations as was used for the biomass composition.  

 Pretreatment recoveries for glucan, xylan and lignin were calculated using 

equation 3.10:  

 recovery = DMrecovered∗𝑓pretreat

DMin∗𝑓extractives
 (3.10) 
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where DMrecovered is the total recovered biomass after washing, DMin is the biomass going 

into the reactor (80 g), fextractives is the composition fraction of the biomass with extractives, 

and fpretreat is the composition fraction after pretreatment of glucan, xylan, or lignin.  

3.3.4. Statistical analysis  

Analysis of variance (ANOVA) was calculated (p<0.05) using the generalized 

linear model (GLM) in SAS 9.4 (SAS, Cary, NC) and multiple comparison tests on the 

treatment means were performed using Tukey’s Honest Significant Difference test at a 

95% confidence interval. For the biomass composition recoveries, the glucan, xylan, and 

lignin fraction recoveries and dry matter loss were the dependent variables and the 

sampling time and fungal loading rate were the independent variables. For the pretreatment 

recoveries after washing, the glucan, xylan, and lignin fraction recoveries were the 

dependent variables and the sampling time, fungal loading rate, and pretreatment severity 

were the independent variables. 

3.4. Results and Discussion 

3.4.1. Visual observations of fungal growth 

After 25 d of storage, the control bales showed evidence of deterioration, as 

illustrated by the darkening of the biomass shown in Figure 3.8. Fungal growth was evident 

in the 2% and 3% fungal bales, with white fungal mycelia visible (Figure 3.9 and Figure 

3.10). After 53 d of storage, the control bales showed further evidence of deterioration 

(Figure 3.11). The fungal growth within the 2% bales had a gray tint to the mycelia and 

switchgrass (Figure 3.12). Fungal growth was still occurring in the 3% fungal bales (Figure 

3.13). At the end of 81 d of storage, the bale storage conditions had become detrimental 

for fungal growth. The control bales were black (Figure 3.14), indicating that the biomass 
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had deteriorated. The 2% fungal (Figure 3.15) and 3% fungal (Figure 3.16) bales no longer 

had any visible fungal growth.  

 
Figure 3.8. Bale 19 (0% fungal loading, 25 d), deterioration of switchgrass is evident 

 
Figure 3.9. Bale 24 (2% fungal loading, 25 d), fungal growth visible (white) 
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Figure 3.10. Bale 25 (3% fungal loading, 25 d), fungal growth visible (white) 

 
Figure 3.11. Bale 12 (0% fungal loading, 53 d), deterioration of switchgrass is apparent  
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Figure 3.12. Bale 14 (2% fungal loading, 53 d), less fungal growth visible 

 
Figure 3.13. Bale 17 (3% fungal loading, 53 d), visible fungal growth (white) 
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Figure 3.14. Bale 2 (0% fungal loading, 81 d), deteriorated switchgrass 

 
Figure 3.15. Bale 6 (2% fungal loading, 81 d), no visible fungal growth, shows deterioration  
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Figure 3.16. Bale 9 (3% fungal loading, 81 d), no visible fungal growth, shows deterioration 

3.4.2. Biomass composition 

The moisture content of bales after inoculation was 55-60% (Table 3.3). 

Approximately 10 d passed before all the bales needed to be constantly watered to maintain 

the moisture content of 50%. Table 3.4 shows the moisture contents of the bales after 

sampling, which were used to calculate the dry matter losses in Table 3.5. The initial dry 

matter content was based on the untreated control moisture content in Table 3.4. The 

biomass composition of the fungal pretreated switchgrass is shown in Figure 3.17. 
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Table 3.3. Bale moisture content calculated from load cell voltage after inoculation 
Bale  M.C.  Bale  M.C.  Bale  M.C.  

1 59% 10 57% 19 55% 
2 58% 11 57% 20 57% 
3 59% 12 57% 21 57% 
4 57% 13 58% 22 57% 
5 55% 14 56% 23 56% 
6 57% 15 58% 24 57% 
7 58% 16 56% 25 59% 
8 58% 17 56% 26 57% 
9 59% 18 58% 27 58% 

 
Table 3.4. Average moisture content of bales after sampling (completely dry) 

Sampling Fungal 
Loading Moisture Content 

untreated control 13.5% ± 0% 

25 d 
0% 63.8% ± 2.5% 
2% 65.3% ± 0.3% 
3% 64.1% ± 1.3% 

53 d 
0% 65.9% ± 1.5% 
2% 68.9% ± 1.8% 
3% 65.9% ± 0.6% 

81 d 
0% 70.3% ± 2.3% 
2% 73.4% ± 0% 
3% 72.4% ± 1.7% 

 
Table 3.5. Average initial and final dry matter weights and the percentage of dry matter loss for all 
bales 

Sampling Fungal 
Loading 

Initial Dry 
Matter (kg) 

Final Dry 
Matter (kg) 

Dry Matter 
Loss (%) 

25 d 
0% 18.2 13.5 26% 
2% 18.3 13.2 28% 
3% 17.4 12.8 26% 

53 d 
0% 16.5 11.2 32% 
2% 17.5 10.8 38% 
3% 17.3 10.7 38% 

81 d 
0% 16.8 10.0 41% 
2% 17.2 9.1 47% 
3% 16.1 8.9 45% 
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Figure 3.17. Biomass composition of fungal pretreated switchgrass with extractives; the error bars 
represent one standard deviation 

 
Figure 3.18. Biomass composition losses; the error bars represent one standard deviation  

Control 0% 2% 3% 0% 2% 3% 0% 2% 3%
25 d 53 d 81 d

Glucan 37.9% 42.9% 43.3% 43.6% 41.4% 43.5% 39.6% 40.0% 40.2% 37.8%
Xylan 21.5% 22.6% 22.4% 22.1% 22.0% 22.5% 21.3% 22.8% 23.6% 19.8%
Lignin 17.9% 21.3% 20.3% 20.5% 20.8% 20.8% 20.0% 20.0% 20.1% 20.6%
Extractives 14.7% 7.1% 7.6% 8.1% 7.8% 7.5% 8.6% 12.3% 11.5% 11.9%
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Statistical analysis was completed on the glucan, xylan, and lignin recoveries 

(Figure 3.18) and dry matter loss (Table 3.5). There was not a significant interaction 

between sampling period and fungal loading for glucan, xylan or lignin recoveries or dry 

matter loss. The sampling period had a significant effect on glucan recoveries. The 25 d 

samples had the greatest mean glucan recovery and the 81 d samples had the least mean 

glucan recovery, with all means being significantly different from one another (Table 3.6).  

Table 3.6. Tukey’s test (α=0.05) groupings of glucan recovery for sampling period and fungal 
loading 

Sampling Mean Grouping Fungal Loading Mean Grouping 
25 d 0.83762 A 0% 0.73631 A 
53 d 0.70072 B 2% 0.69978 A 
81 d 0.58023 C 3% 0.68246 A 

Sampling period and fungal loading had significant effects on xylan recovery. The 

25 d samples had the greatest mean xylan recovery and the 81 d samples had the least mean 

xylan recovery, with all means being significantly different from one another. The 3% 

fungal loading was significantly less than the 0% fungal loading for xylan recovery; the 

2% fungal loading xylan recovery was not significantly different from the others (Table 

3.7).  

Table 3.7. Tukey’s test (α=0.05) groupings of xylan recovery for sampling period and fungal 
loading 

Sampling Mean Grouping Fungal Loading Mean Grouping 
25 d 0.76296 A 0% 0.70099 A 
53 d 0.65220 B 2% 0.66152 A, B 
81 d 0.57340 C 3% 0.62606 B 

Sampling period and fungal loading had significant effects on lignin recovery. The 

25 d samples had the greatest lignin recovery and the 81 d samples had the least lignin 

recovery, with all means being significantly different from one another. Lignin recovery in 

the 0% fungal loading samples was significantly greater than in the 2% and 3% fungal 
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loading samples, which were not significantly different; the 2% fungal loading samples 

had the least lignin recovery (Table 3.8).  

Table 3.8. Tukey’s test (α=0.05) groupings of lignin recovery for sampling period and fungal 
loading 

Sampling Mean Grouping Fungal Loading Mean Grouping 
25 d 0.84534 A 0% 0.77519 A 
53 d 0.73207 B 3% 0.72101 B 
81 d 0.62886 C 2% 0.71007 B 

Sampling period and fungal loading had significant effects on dry matter loss. The 

81 d samples had the greatest dry matter loss and the 25 d samples had the least dry matter 

loss, with all means with all means being significantly different from one another. Dry 

matter loss in the 2% fungal loading samples was significantly greater than in the 0%; the 

3% fungal loading samples were not significantly different from the others (Table 3.9). 

Table 3.9. Tukey’s test (α=0.05) groupings of dry matter loss for sampling period and fungal 
loading 

Sampling Mean Grouping Fungal Loading Mean Grouping 
81 d 0.44158 A 2% 0.37613 A 
53 d 0.36080 B 3% 0.36472 A,B 
25 d 0.26778 C 0% 0.32931 B 

Since glucan recovery decreased with time, this may be the result of the fungal 

growth or other biological activity within the bales. However, the addition of fungus had 

an effect on the xylan and lignin recoveries. There was greater xylan recovery in the grain 

control bales than in the fungal-inoculated bales. The grain control had significantly greater 

lignin recovery than the fungal-inoculated bales and the highest lignin degradation 

occurred with longer treatment times. Since dry matter loss is a result of the loss of biomass 

components, it also increased with time and fungal pretreatment. The decrease in recovery 

for the fungal-inoculated bale indicates that P. ostreatus fungus has greater selectivity 

toward the degradation of xylan and lignin, rather than the degradation of glucan.  
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3.4.3. Pretreatments 

The pretreated biomass composition analysis results for glucan, xylan, and lignin 

fractions are shown in Figure 3.19, Figure 3.20, and Figure 3.21, respectively.  

 
Figure 3.19. Glucan composition percentages of fungal pretreated bales after liquid hot water 
pretreatment; the error bars represent one standard deviation 

 
Figure 3.20. Xylan composition percentages of fungal pretreated bales after liquid hot water 
pretreatment; the error bars represent one standard deviation 
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Figure 3.21. Lignin composition percentages of fungal pretreated bales after liquid hot water 
pretreatment; the error bars represent one standard deviation  

Statistical analysis was completed on the washed pretreated biomass recoveries. 

The pretreatment severity and sampling period were significant for lignin recovery. The 

more severe pretreatment condition (200/10) had a significantly greater lignin recovery. 

Comparisons for sampling showed three groups for lignin recovery (Table 3.10). The lignin 

recovery of the untreated control was significantly greater than the other bale samples for 

fungal loading. The lignin recoveries being greater than 100% may be the result of acid 

insoluble compounds being formed by the fungus during growth or experimental error.  

There was a significant interaction between sampling time and fungal loading 

(p=0.0013) for lignin recovery. The LSMEANS comparison of this interaction is shown in 

Figure 3.22, where matching letters indicate the values that are not significantly different. 

The lignin recovery of the untreated control was significantly greater than all samples 
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except for the 0%, 81 d samples. This indicates that less lignin was present in the LHW 

pretreated biomass after fungal pretreatment.  

 
Figure 3.22. LS-MEANS comparison of the sampling time and fungal loading rate interaction for 
lignin recovery after pretreatment; matching letters indicate no significant difference 

There were no significant interactions between sampling time and fungal loading 

for glucan or xylan recoveries. Sampling period was significant for glucan recovery. There 

were three groupings for glucan recovery based on sampling period, shown in Table 3.10. 

A Tukey’s comparison of glucan recovery based on loading showed that only the 3% 

fungal loading was not significantly less than the control.  

Table 3.10. Tukey’s test (α=0.05) results for glucan, xylan, and lignin recovery after pretreatment 
based on sampling 

 Glucan Xylan Lignin 
Sampling Mean Grouping Mean Grouping Mean Grouping 
Untreated 0.97655 A 0.15575 A 1.20025 A  

81 d 0.94524 A, B 0.17861 A 1.08370 B 
53 d 0.87101 B, C 0.15719 A 1.01981 C 
25 d 0.83617 C  0.15776 A 1.00040 C 

Only the pretreatment severity was significant for xylan recovery. The less severe 

pretreatment condition (180/30) had a significantly greater xylan recovery.  
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In the case of pretreatment severity, the less severe condition of 180°C for 30 min 

had greater xylan recoveries and less lignin recoveries. The greatest lignin recovery 

occurred in the untreated control sample, which was expected because it had not been 

previously treated with water or fungus. The least glucan and lignin recoveries after LHW 

pretreatment occurred with the 25 d samples.  

The effects of fungal pretreatment on glucan, xylan, and lignin recoveries based on 

fungal loading were not evident after LHW pretreatment, showing only differences based 

on sampling time. The greatest glucan recovery of the stored bales occurred with the 3%, 

81 d samples; however, these samples also had significantly greater lignin recovery than 

many of the other fungal-inoculated samples. It is unclear why glucan and lignin recoveries 

increased with increased storage time. The untreated control had the greatest glucan 

recovery, but it also had the greatest lignin content after LHW pretreatment, which would 

reduce enzymatic digestibility.  

After LHW pretreatment, the xylan recovery was not significantly affected by 

fungal pretreatment. Higher xylan recovery in the solids after pretreatment results is lower 

enzymatic hydrolysis of cellulose by cellulase (Chandra et al., 2007; Öhgren et al., 2007). 

The less severe (180/30) LHW pretreatment resulted in greater xylan recovery than the 

more severe (200/10) LHW pretreatment (Figure 3.20). Therefore, the fungal pretreatment 

was not effective in reducing the necessary severity of LHW pretreatment for similar xylan 

recoveries.  

3.5. Conclusions 

Significant fungal growth was achieved in the 2% and 3% fungal loading bales. 

The fungal-inoculated bales had significantly greater xylan and lignin degradation over 
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time than the grain control bales when comparing the biomass composition before LHW 

pretreatment. Since dry matter loss is a result of the degradation of glucan, xylan, and 

lignin, it also increased with time and fungal pretreatment. After LHW pretreatment, there 

was not a significant difference in glucan, xylan, or lignin content for the different fungal 

loadings. Increased xylan recovery results in lower hydrolysis of cellulose; the xylan 

recovery was greater for the less severe LHW pretreatment, so the fungal pretreatment was 

not effective in reducing the necessary severity of LHW pretreatment. It is important to 

note that while there were differences between the storage times for glucan composition, 

the native biological activity within the bales may have caused glucan in all the bales to 

degrade at similar rates since there was not a difference between the fungal loadings.  

Fungal pretreatment time negatively affected the glucan composition, while 

simultaneously increasing the lignin and xylan degradation. Although, after liquid hot 

water pretreatment, the longer fungal pretreatment times resulted in greater glucan 

recovery, as well as greater lignin recovery. Fungal pretreatment of switchgrass with white-

rot fungi like P. ostreatus is feasible, but further research needs to be completed.   
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CHAPTER IV 

4. Laboratory-scale study of copper, manganese, or glucose 

addition on the induction of ligninolytic enzymes produced by 

Pleurotus ostreatus during fungal pretreatment of switchgrass 

 

4.1. Abstract 

Pleurotus ostreatus produces laccase and manganese peroxidase (MnP) to 

selectively degrade lignin. Copper and manganese have been reported to increase 

production of laccase and MnP, respectively. The effects of adding copper, manganese, or 

glucose to switchgrass on the growth and ligninolytic enzyme production of P. ostreatus 

were evaluated in this project. Solutions of copper, manganese, or glucose, along with 

water, were tested with and without fungal inoculum at 75% moisture for 40 d at 28°C. 

Ligninolytic enzyme activities and biomass compositions were determined after the 

pretreatments. Simultaneous saccharification and fermentation (SSF) were conducted with 

the pretreated biomass. There were no significant differences between the solutions for 

laccase activity, but MnP activity of copper-treated samples were significantly less than 

the other fungal samples. Fungal pretreated samples had significantly less glucan, xylan, 

and lignin recoveries than the controls. The extractable sugars content of fungal-inoculated 

biomass was significantly greater than in the controls. Ethanol yield during SSF 
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corresponded with lignin degradation in the fungal-inoculated samples. Water-fungal 

samples had the greatest lignin degradation and ethanol yield, while the copper-fungal 

samples had the lowest lignin degradation and ethanol yield. Manganese-fungal and 

glucose-fungal treated samples had similar lignin contents and ethanol yields. Ethanol yield 

during SSF was significantly increased by fungal pretreatment compared to no 

pretreatment. Water alone was the more effective than the copper, manganese, and glucose 

solutions added to the fungal treatments. Fungal pretreatment with P. ostreatus provided 

significant lignin degradation to increase ethanol yield from switchgrass.
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4.2. Introduction 

White-rot fungi have been found to selectively degrade lignin by producing 

ligninolytic enzyme complexes. The three major ligninolytic enzymes excreted by white-

rot fungi are lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Wan & 

Li, 2012). Lignin degrading fungi can be categorized based on their enzyme production 

patterns into one of three groups: (i) LiP-MnP group, (ii) MnP-laccase group, or (iii) LiP-

laccase group (Dwivedi et al., 2011). Pleurotus ostreatus is in the second enzyme 

production group, mainly excreting laccase and MnP. Laccases are copper-containing, cell 

wall localized glycoproteins that consume O2 to oxidize monolignols in lignin (Boerjan et 

al., 2003). MnP is a heme glycoprotein that catalyzes the oxidation of Mn2+ to Mn3+ in the 

presence of H2O2 (Giardina et al., 2000).  

Several studies have shown that laccase and MnP are activated in the presence of 

copper (Baldrian & Gabriel, 2002; Collins & Dobson, 1997; Galhaup & Haltrich, 2001) 

and manganese (Giardina et al., 2000; Kamitsuji et al., 2005), respectively. The addition 

of CuSO4 has been widely studied for the induction of the laccase gene and laccase activity 

(Baldrian et al., 2005; Tinoco et al., 2011). However, studying the effect of laccase 

induction on biomass lignin degradation is less common. The addition of MnSO4 has been 

studied for the effects of its induction of MnP on lignin content. Kerem and Hadar (1993) 

and Cohen et al. (2001) reported significant lignin degradation with the addition of 

manganese.  

Soden and Dobson (2001) studied the effects of copper, manganese, and glucose 

addition on laccase gene expression in Pleurotus sajor-caju (Psc). They found that the 
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addition of glucose (60 mM) resulted in a 20.4-fold increase in Psc lac1 gene transcript 

levels, an 11.8-fold increase in Psc lac2 gene transcript levels, and a 28.7-fold increase in 

Psc lac4 gene transcript levels.  

A laboratory-scale study was developed to determine the impact of adding copper, 

manganese, or glucose to switchgrass during fungal pretreatment with P. ostreatus on 

ligninolytic enzyme production and ethanol yield during simultaneous saccharification and 

fermentation.  

4.3. Materials and Methods 

To evaluate the effects of nutrient addition, sixteen jars were filled with 50 g (dry 

basis) switchgrass. The desired moisture content for all jars was 75%. Four substrate 

treatments were evaluated: 1 mM CuSO4, 1 mM MnSO4, 3.33 g/L glucose, and water only. 

The four treatment replications were as follows: three jars for each treatment were 

inoculated with 5% liquid P. ostreatus inoculum and one control jar for each treatment did 

not have fungal inoculum.  

4.3.1. Liquid inoculum prep 

P. ostreatus mycelia were grown in liquid medium (15 g/L malt extract, 2 g/L 

sucrose, and 0.8 g/L yeast extract) at 28°C for 6 d. Six 250 mL flasks containing 25 mL 

liquid medium were autoclaved (liquids cycle, 20 min). To each of five flasks (one left as 

a control, five flasks were used to observe variations in mycelial growth), one 2 mL tube 

of bead-beat mycelial homogenate was added. The bead-beat mycelial homogenate was 

prepared as follows: 
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1. Three 3 mm glass beads and one 6 mm glass bead were added to a 2 mL screw cap 

microcentrifuge tube, and autoclaved (gravity cycle, 20 min, 121°C). 

2. Two pure culture mycelia-covered MCBD (Basidiomycete Isolation Medium) agar 

plugs (~0.9 cm diameter) were added to the tube, along with 1 mL sterilized Milli-

Q® water. 

3. The tube was placed in the bead-beater for 30 s at 5,000 rpm to form a mycelial 

homogenate slurry.  

After P. ostreatus completely colonized the surface of the liquid medium (Figure 

4.1), the two flasks with the most growth (upon visual inspection) were used for the liquid 

inoculum preparation. Each flask (25 mL) was poured into a separate sterile 50 mL 

centrifuge tube and centrifuged in a bench-top centrifuge (Sorvall, Legend RT, Asheville, 

NC, USA) for 10 min at 3,750 rpm. The inoculum was washed using a procedure similar 

to Tinoco et al. (2011), with different final volume ratios. The liquid was decanted and the 

tube was filled to 25 mL with a 0.89% w/v NaCl solution. The tubes were mixed, then 

centrifuged for 6 min and the liquid was decanted. The tube was filled to 25 mL with the 

NaCl solution, mixed, and centrifuged for 10 min. After decanting, sterile deionized water 

was added to a total volume of 20 mL and the tubes were vortexed to mix the mycelia. A 

5 mL pipette tip with the end cut off was used to add 2.5 mL of the mycelial inoculum to 

each jar of switchgrass. For the jars with no inoculum, 2.5 mL of deionized water was 

added.  
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Figure 4.1. P. ostreatus liquid inoculum flasks 

4.3.2. Fungal pretreatment 

The following solutions were prepared for addition to switchgrass to reach the 

desired moisture content. A 1 mM solution of CuSO4 was prepared by adding 0.1497 g 

copper(II) sulfate pentahydrate in 0.6 L deionized water. A 1 mM solution of MnSO4 was 

prepared by adding 0.1017 g manganese(II) sulfate monohydrate in 0.6 L deionized water. 

A 3.33 g/L (18.5 mM) solution of glucose was prepared by adding 1.9984 g of glucose in 

0.6 L deionized water.  

Kanlow switchgrass grown in Stillwater, OK at the Oklahoma State University 

EFAW station and harvested in November 2012 was used for this study. Switchgrass was 

coarsely chopped by a bale grinder prior to use. The moisture content of switchgrass used 

for the fungal pretreatment was determined as 10.84% based on the “convection oven 

method” outlined by Sluiter et al. (2008), so 56.08 g of switchgrass was added to each jar. 
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To achieve the desired moisture content of 75%, 141.42 mL of water (or copper, 

manganese, or glucose solution) needed to be added to each jar, plus 2.5 mL of either fungal 

inoculum or sterile deionized water after autoclaving. The jars of switchgrass and solutions 

were autoclaved twice at 121˚C for 30 min (liquids cycle), with an overnight interval 

between autoclaving periods. Once the jars cooled to room temperature, the 2.5 mL of P. 

ostreatus inoculum or deionized water was added under sterile conditions.  

The jars were shaken and placed in an incubator chamber at 28˚C for 40 d. A 

saturated sodium chloride (NaCl) solution was placed inside the chamber to maintain a 

relative humidity of 75%. The jars were shaken every 2-3 days to distribute the mycelia. 

An example of the fungal growth is shown in Figure 4.2. 

 
Figure 4.2. Jar 6 before and after shaking on day 21 
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4.3.3. Ligninolytic enzyme activity  

4.3.3.1. Enzyme extraction 

The activities of laccase and manganese peroxidase (MnP) enzymes were 

determined from samples of the fungal treated switchgrass after 40 d. The ligninolytic 

enzymes were extracted using a procedure similar to the procedure outlined by Gomez et 

al. (2012). In a large centrifuge tube, 1 g (dry basis) of the fungal treated sample was added 

to 50 mL sterile DI water and agitated at 150 rpm for 30 min. The samples were centrifuged 

in a bench-top centrifuge (Sorvall, Legend RT, Asheville, NC, USA) at 3,750 rpm for 10 

min and the supernatant was used for the activity assay.  

4.3.3.2. Activity assay  

The laccase and MnP enzymatic activities were determined colorimetrically 

(Parenti et al., 2013; Santoyo et al., 2008). The activity of laccase was determined by 

detecting the oxidation product of 2,6-dimethoxiphenol (DMP, ε468 = 49,600 M-1cm-1). The 

reaction mixture contained 450 µL supernatant and 500 µL 10 mM DMP in 100 mM 

acetate buffer (pH 5.0). The starting absorbance at 468 nm (A468) was recorded. The 

reaction occurred for 1 min at room temperature before A468 was recorded. Then, 50 µL of 

0.1 mM MnSO4 in acetate buffer was added to the reaction mixture and incubated at room 

temperature for 1 min. Finally, 30 µL of a H2O2 solution (22.5 µL of 30% H2O2 in 10 mL 

deionized water) was added to the mixture. The reaction proceeded for an additional 1 min 

and A468 was recorded. Manganese peroxidase activity was estimated as the difference 

between the two activity measurements. One unit of enzyme activity was defined as 1 μmol 

of the substrate oxidized per min. The activity of enzyme extract was determined as IU/g 
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dry switchgrass. All assays were performed in duplicate using a UV-2100 

spectrophotometer (Cole-Parmer, Vernon Hills, IL).  

The ligninolytic enzyme activities were calculated using equation 4.1: 

 Activity (U g)⁄ =  𝐴468∗𝑉𝑒𝑥
𝑉𝑠𝑢𝑝∗49.6∗𝑔

 (4.1) 

where A468 is the absorbance reading (for laccase or MnP), Vex is the volume of water used 

in the enzyme extraction (50 mL), Vsup is the volume of the enzyme extraction supernatant 

added to the reaction (0.45 mL), 49.6 is the converted extinction coefficient for DMP, and 

g is the mass of the sample on dry basis (g).  

4.3.4. Biomass compositional analysis 

After samples were taken for the enzyme activity assay, the jars were autoclaved 

for 30 min at 121°C to stop all biological activity. Samples of the autoclaved biomass were 

taken and air-dried for compositional analysis. The dried samples were ground using a 

coffee grinder and the fine dust particles were sifted out. For each sample, the moisture 

content after grinding and the ash content were determined based on the “convection oven 

method” outlined by Sluiter et al. (2008) and ash procedure outlined by Sluiter et al. 

(2005a). The samples were extracted using Soxhlet extractors according to Sluiter et al. 

(2005b), first with water, then ethanol. The water and ethanol extractives contents were 

determined by the mass of the extractives residue after forced-air drying of the extracted 

liquids in the fume hood.   

Extracted biomass was allowed to air dry in the fume hood, and the carbohydrate 

and lignin contents were determined using a two-stage acid hydrolysis according to Sluiter 

et al. (2012). Carbohydrate concentrations were determined using HPLC (1100 Series, 
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Agilent, Santa Clara, CA, USA) with an Aminex HPX-87H column (BioRad, Hercules, 

CA, USA) and a refractive index detector (RID). The eluent was deionized water flowing 

at a rate of 0.6 ml/min and a column temperature of 85˚C. The total run time for each 

sample was 30 min. The HPLC with ChemStation software (Agilent Technologies) was 

calibrated at five levels using known concentrations of cellobiose, glucose, xylose, 

galactose, mannose, and arabinose before being used to quantify the concentration of these 

compounds. 

The biomass composition recoveries were calculated using equation 4.2:  

 recovery = DMfinal∗𝑓sample

DMin∗𝑓raw
 (4.2) 

where DMfinal is the final mass (dry basis), DMin is the starting mass (dry basis), fsample is 

the glucan, xylan, or lignin fraction of the extracted biomass sample, and fraw is the glucan, 

xylan, or lignin fraction of the untreated (raw) biomass control. 

4.3.5. Simultaneous saccharification and fermentation  

Samples of the biomass were taken from the jars after autoclaving and dried in an 

oven at 105°C overnight to determine the moisture content. The autoclaved biomass was 

then used for simultaneous saccharification and fermentation (SSF). 

4.3.5.1. Enzymes 

Celluclast 1.5 L and Novozyme 188 (Novozymes, Franklinton, NC) were 

purchased from Sigma-Aldrich (St. Louis, MO). The cellulase activity of Celluclast 1.5 L 

was determined using the filter paper assay developed by Adney and Baker (1996). The 

cellobiase activity of Novozyme 188 was determined by adding 100 µL of 5% (w/w) 

enzyme solution to 900 µL of 10 g/L cellobiose solution in 50 mM sodium citrate buffer 
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(pH 4.8). An enzyme control was also prepared by mixing 900 µL of citrate buffer with 

100 µL enzyme solution. The tubes were incubated at 50°C for 3 min, then boiled for 5 

min to stop the enzymatic activity. Glucose produced was determined by High Performance 

Liquid Chromatography (HPLC) (1100 Series, Agilent, Santa Clara, CA, USA) with an 

Aminex HPX-87H column (BioRad, Hercules, CA, USA) and a refractive index detector 

(RID). The eluent was deionized water flowing at a rate of 0.6 ml/min and a column 

temperature of 85˚C, with a total run time of 30 min. One CBU of cellobiase activity was 

defined as two µmol of glucose released per min.  

4.3.5.2. Yeast culture 

Saccharomyces cerevisiae D5A yeast was used for the SSFs. The yeast was 

maintained at 4°C and subcultured periodically on YPD agar plates containing 10 g/L yeast 

extract, 20 g/L peptone, 20 g/L glucose, and 20 g/L agar. The day before fermentation, 100 

mL of preculture was prepared by transferring a loopful of yeast cells into sterile YPD 

medium containing 10 g/L yeast extract, 20 g/L peptone, and 50 g/L glucose in a 250 mL 

baffled flask. The flask was incubated anaerobically at 37°C at 250 rpm until reaching an 

optical density (OD, absorbance at 600 nm) in the range of 14-17. The yeast cells were 

then concentrated to an initial OD of 50 for the yeast inoculum by centrifuging the cells at 

3,500 rpm for 10 min twice in a bench-top centrifuge (Sorvall, Legend RT, Asheville, NC, 

USA) and washing with 0.89% (w/v) sterile sodium chloride solution between 

centrifugations, then adding the appropriate volume of sterile deionized water (Dowe and 

McMillan, 2001).  
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4.3.5.3. SSF conditions 

SSF was conducted following the procedure outlined by Ramachandriya et al. 

(2014) with modifications to the enzyme loading. SSF of each fungal pretreatment jar was 

done in duplicate as blocks (1-16 in each SSF set). The experiments were conducted in 250 

mL baffled flasks, sealed with a rubber stopper fitted with a one-way valve (Check valve, 

Fisher Scientific, Pittsburgh, PA); with a working volume of 100 mL, operating 

anaerobically on an orbital shaker (New Brunswick Scientific) at 200 rpm and 37°C. The 

flasks contained a solids loading of 8% (fungal treated samples on dry basis), an enzyme 

loading of 7.5 FPU/g dry biomass Celluclast 1.5 L (823 µL) and 15 CBU/g dry biomass 

Novozyme 188 (385 µL), 10 mL of 10x yeast fermentation (YP) medium, 5 mL of 1 M 

sodium citrate buffer (pH 5.5), and 1 mL of OD 50 concentrated yeast cells suspension. 

The 10x yeast fermentation medium contained 100 g/L yeast extract and 200 g/L peptone.  

During SSF, samples (~1.8 mL) were taken at 0, 6, 12, 18, 24, 36, 48, 60, 72, 96, 

and 120 h. The pH of samples was recorded, then the samples were centrifuged at 13,000 

rpm for 10 min. The supernatant was decanted and filter sterilized using 0.22 µm nylon 

filters (VWR International, West Chester, PA). A one-fifth dilution of the supernatant was 

analyzed for cellobiose, glucose, xylose, succinic acid, lactic acid, glycerol, acetic acid, 

and ethanol concentrations using HPLC (1100 Series, Agilent, Santa Clara, CA, USA) with 

an Aminex HPX-87H column (BioRad, Hercules, CA, USA) and a refractive index 

detector (RID). The eluent was 0.005 M sulfuric acid flowing at a rate of 0.6 ml/min with 

a 30 min run time. The HPLC with ChemStation software (Agilent Technologies) was 

calibrated at five levels using known concentrations of the compounds listed above.  
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Ethanol yield (% theoretical) during SSF was calculated as the percentage of the 

theoretical yield based on the glucan fraction of the starting biomass used for SSF, 

according to equation 4.3:  

 Ethanol yield (% theoretical) = [𝐸𝑡𝑂𝐻𝑡]
0.511∗(𝑓[𝑏𝑖𝑜𝑚𝑎𝑠𝑠]∗1.11) ∗ 100%  (4.3) 

where [EtOHt] is the ethanol concentration at time t (g/L), 0.511 is the mass conversion 

from glucose to ethanol (g/g), f is the glucan fraction in the dry solids (g/g), [biomass] is 

the initial concentration of solids (8 g/L), and 1.11 is the mass conversion factor for glucan 

hydrolysis to glucose (g/g).  

Xylose yield during SSF was calculated as the percentage of the theoretical yield 

based on the starting biomass used for SSF, using equation 4.4: 

 Xylose yield =  [𝑋𝑦𝑙𝑜𝑠𝑒𝑡]
(𝑓[𝑏𝑖𝑜𝑚𝑎𝑠𝑠]∗1.11) (4.4) 

where [Xyloset] is the xylose concentration at time t (g/L), f is the xylan fraction in the dry 

solids (g/g), [biomass] is the initial concentration of solids (8 g/L), and 1.11 is the mass 

conversion factor for xylan hydrolysis to xylose (g/g). 

Glucan preservation was calculated as the glucan recovery after pretreatment, using 

equation 4.5:  

 Glucan preservation =  𝐷𝑀𝑓𝑖𝑛𝑎𝑙∗𝑓𝑡

50∗𝑓𝑖𝑛
 (4.5) 

where DMfinal is the dry matter left after fungal pretreatment (g), ft is the glucan fraction 

after fungal pretreatment (%), 50 is the initial dry matter put into the fungal pretreatment 

(g), and fin is the initial glucan fraction of the switchgrass samples (%).  

Overall ethanol yield was calculated as the percentage of the theoretical yield based 

on the biomass after fungal pretreatment, according to equation 4.6: 
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 Overall ethanol yield = (Ethanol yield (% theoretical)) ∗ (Glucan preservation) (4.6) 

where (Ethanol yield (% theoretical)) is the ethanol yield during SSF obtained in equation 

4.1, and (Glucan preservation) is the glucan recovery after pretreatment.  

4.3.6. Statistical analysis 

Analysis of variance (ANOVA) was calculated (p<0.05) using the generalized 

linear model (GLM) in SAS 9.4 (SAS, Cary, NC) and multiple comparison tests were 

performed using Tukey’s Honest Significant Difference test at a 95% confidence interval. 

For the enzyme activity tests, laccase and MnP activities were the dependent variables and 

the solution was the independent variable. For the biomass composition recoveries, the 

extractives content and glucan, xylan, and lignin fractions were the dependent variables 

and the solution and fungal addition were the independent variables. For the ethanol yield 

during SSF, the ethanol yield at 24 h was the dependent variable and the solution and fungal 

addition were the independent variables. 

4.4. Results and Discussion 

4.4.1. Ligninolytic enzyme activity 

The average ligninolytic enzyme activities for laccase and MnP of the three fungal 

inoculated jars for each solution is shown in Figure 4.3. The controls had no enzyme 

activity.  
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Figure 4.3. Ligninolytic enzymes laccase and manganese peroxidase activities in fungal inoculated 
switchgrass with the addition of copper, manganese, glucose and water; the error bars represent 
one standard deviation 

Since the control samples had no enzyme activity, the statistical analysis was 

completed on both enzyme activities for the effect of the solution only. The solution added 

had a significant effect on both enzyme activities. Comparison of the solutions showed that 

only the manganese treated sample had significantly greater laccase activity than the water 

treated samples. The MnP activity with the addition of copper was significantly less than 

with the addition of the other solutions (Table 4.1). Manganese addition resulted in the 

greatest activity for both enzymes.  
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Table 4.1. Tukey’s test (α=0.05) results for ligninolytic enzyme activities based on the solution 
added to switchgrass with fungal inoculation 

Laccase activity Manganese peroxidase activity 
Solution Mean Grouping Solution Mean Grouping 

Manganese 0.24083 A Manganese 1.11171 A 
Copper 0.21316 A, B Water 1.08976 A 
Glucose 0.19683 A, B Glucose 1.03314 A 
Water 0.15679 B  Copper 0.64089 B 

The reduced MnP activity for the addition of copper was consistent with the 

suppression of MnP activity by concentrations of CuSO4 over 0.5 mM as reported by 

Mäkelä et al. (2013). However, laccase activity was not effected greatly by the addition of 

copper, which was contrary to previously reported results (Baldrian & Gabriel, 2002; 

Mäkelä et al., 2013; Palmieri et al., 2000). Reduced MnP activity resulted in reduced lignin 

degradation, which corresponds to the greater lignin recovery in the copper treated fungal-

inoculated samples than in the other fungal-inoculated samples (Figure 4.4). 

4.4.2. Biomass composition 

The biomass compositional fractions used for recovery calculations are shown in 

Figure 4.4. The statistical analysis was completed on the glucan, xylan, lignin, and 

extractives recoveries (Figure 4.5). 
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Figure 4.4. Biomass composition after fungal pretreatment; the error bars represent one standard 
deviation  

For all fractions, the difference between the solutions was not significant. There 

was a significant difference between the fungal-inoculated jars and the controls for all 

compositional fractions tested. The mean glucan, xylan and lignin recoveries were 

significantly less in biomass from the fungal-inoculated jars than in biomass from the 

control jars. The mean extractives were significantly greater in biomass from the fungal-

inoculated jars than in biomass from the control jars. The reduction in glucan, xylan, and 

lignin in the fungal-inoculated samples indicates that the fungus partially degraded all 

fractions of the biomass. The increase in extractives may be due to hydrolysis of these 

fractions by the enzymes the fungus excreted, resulting with the hydrolysis products being 

extracted. 

Raw Water Cu Gluc Mn Water Cu Gluc Mn
Fungal Control

glucan 41.5% 43.7% 41.9% 43.3% 43.6% 42.8% 42.2% 41.4% 41.1%
xylan 27.6% 22.3% 22.6% 22.7% 22.3% 28.5% 30.2% 30.2% 28.6%
lignin 19.8% 17.6% 18.7% 17.7% 17.9% 19.5% 20.5% 19.7% 20.2%
extractives 8.8% 13.3% 12.4% 13.1% 13.1% 9.1% 8.7% 9.6% 9.3%
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Figure 4.5. Biomass composition recoveries after fungal pretreatment; the error bars represent one 
standard deviation 

4.4.3. Simultaneous saccharification and fermentation 

Based only on the appearance of the flasks, the fungal inoculation had a positive 

effect on the ability of the enzymes to hydrolyze cellulose. As you can see in Figure 4.6, 

the biomass in the fungal-inoculated flask became somewhat liquefied, while the control 

remained solid. This trend was observed for all four solutions. However, the copper treated 

fungal-inoculated flasks did not liquefy as well as the other solution treatments.  

Water Cu Gluc Mn Water Cu Gluc Mn
Fungal Control

glucan 94.6% 92.4% 97.7% 98.0% 104.5% 98.7% 106.4% 94.5%
xylan 82.9% 85.5% 88.1% 86.1% 106.0% 102.5% 110.3% 96.1%
lignin 80.1% 86.5% 84.1% 84.7% 100.1% 100.6% 106.7% 97.5%
DM 89.9% 91.5% 93.7% 93.4% 101.4% 97.1% 106.8% 95.6%
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Figure 4.6. SSF flasks at 72 h; flask 1: water only with fungal inoculation, flask 16: water only 
control 

4.4.3.1. Ethanol yield 

Figure 4.7 shows the average ethanol yield (% theoretical) for each treatment. For 

the fungal-inoculated samples, the highest ethanol yield (maximum 16.87%) was achieved 

with the water only treatments; the lowest yield was achieved by the copper treated samples 

(maximum 12.84%). The manganese and glucose fungal-inoculated samples were 

approximately the same for all time points, based on the graph. The peak fungal yield to 

control yield ratios for ethanol production at 24 h are shown in Table 4.2. The glucose 

control had an ethanol yield approximately 1.5% higher than the other controls as a result 

of free glucose in the biomass. The additional glucose was accounted for in the theoretical 

ethanol yield calculation for the glucose control.   



 

 
 

 
Figure 4.7. Ethanol yield (% theoretical) averaged by treatment group; the error bars represent one standard deviation 
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Table 4.2. Fungal to control ratio of ethanol yield at 24 h 
Solution Fungal/Control Yield 

Water 3.133 
Manganese 3.103 

Copper 2.341 
Glucose 2.340 

Statistical analysis was completed on the ethanol yield (% theoretical) for the 24 h 

sample, when the maximum yield occurred. There was no significant interaction between 

solution and fungal-inoculation. Fungal-inoculation was the significant main effect for the 

ethanol yield at this time. Comparison of the solutions showed that only the water samples 

had significantly greater yields than the copper samples (Table 4.3). The ethanol yield from 

the fungal-inoculated samples was significantly greater than the controls.  

Table 4.3. Tukey’s test (α=0.05) results for ethanol yield for fungal-inoculated samples based on 
solution 

Solution Mean Grouping 
Water 0.168667 A 

Manganese 0.153467 A, B 
Glucose 0.152433 A, B 
Copper 0.128333 B 

The interaction between solution and fungal-inoculation was determined by a 

LSMEANS comparison: only the water-fungal samples had significantly greater ethanol 

yields than the copper-fungal samples. At 24 h, the control samples were not significantly 

different from each other.  

Lignin degradation was not significantly different for the different solutions. 

However, the greatest lignin degradation corresponds to the greatest ethanol yield for the 

water-fungal samples, while the least lignin degradation corresponds to the least ethanol 

yield for the copper-fungal samples.  

While the water-fungal samples had the lowest lignin recovery, they also had the 

lowest xylan recovery and lower glucan recovery than the glucose or manganese fungal-
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inoculated samples. Although these samples had lower glucan recovery, the ethanol 

production was maximized by the lignin degradation.  

Although the manganese-fungal samples had the greatest laccase and MnP 

activities, it had the second greatest lignin recovery (behind copper). However, the greatest 

glucan recovery was also achieved with these samples, which may be a result of higher 

selectivity to lignin over glucan. The lower ethanol yields for the manganese-fungal and 

the glucose-fungal compared to the water-fungal samples were most likely due to the lower 

lignin degradation.  

The glucose-fungal samples had the greatest xylan recovery, the second greatest 

glucan recovery, and the second lowest lignin recovery. The addition of glucose seemed to 

reduce the glucan and xylan utilization of the fungus during growth. It also resulted in only 

slightly different laccase and MnP activities than water. Glucose-fungal samples had 

similar ethanol yields to those of the manganese-fungal samples, which had nearly the same 

glucan and lignin recoveries.  

The copper-fungal samples had the lowest glucan recovery and the greatest lignin 

recovery. The decrease in lignin degradation compared to water is likely the result of the 

MnP inhibition. The copper-fungal samples had approximately 42% less MnP activity than 

the manganese-fungal samples. The greater lignin content and reduction in glucan recovery 

is likely responsible for these samples having the lowest ethanol yield of the fungal-

inoculated samples.  

4.4.3.2. Glucose and cellobiose concentrations 

The glucose and cellobiose concentrations over time are shown in Figure 4.8 and 

Figure 4.9, respectively. The steady concentration of glucose after 12 h indicates that there 
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was inhibition of the yeast; normal yeast activity would have resulted in a greater decrease 

in glucose concentrations and steady ethanol production after 24 h, which decreased 

(Figure 4.7). The increase in cellobiose concentration over time indicates that the cellobiase 

enzyme was inhibited, which is responsible for converting cellobiose to glucose. The 

enzyme and yeast inhibitions are responsible for the decrease in ethanol yield over time.  

 
Figure 4.8. Glucose concentration during simultaneous saccharification and fermentation, grouped 
by treatment 
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Figure 4.9. Cellobiose concentration during simultaneous saccharification and fermentation, 
grouped by treatment; the error bars represent one standard deviation 

4.5. Conclusions 

Addition of copper, manganese, glucose, or water had similar effects on laccase 

activity. However, addition of 1 mM CuSO4 had a negative effect on MnP activity of P. 

ostreatus. Addition of copper, manganese, glucose, or water did not have different effects 

on biomass composition after fungal pretreatment. However, fungal inoculation 

significantly decreased the glucan, xylan, and lignin fractions in switchgrass compared to 

the control of no fungal inoculation. This indicates that P. ostreatus degraded the lignin 

while also hydrolyzing some glucan and xylan.  

Addition of P. ostreatus mycelia to switchgrass had a significant effect on the 

enzymatic digestibility during SSF. Fungal-inoculated jars had a 2.1 to 3.1-fold increase in 

ethanol yield (% theoretical) compared to controls at the maximum production time (24 h). 
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Addition of copper in fungal-inoculated samples resulted in less ethanol yield than other 

fungal-inoculated samples, which was likely the result of less MnP activity leading to less 

lignin degradation. The addition of manganese or glucose in fungal-inoculated samples had 

similar ethanol yields to one another, while fungal-inoculated samples with only water 

added had the greatest ethanol yield.  

Since water alone was more effective than addition of copper, manganese, and 

glucose solutions to the fungal treatments, it is evident that the switchgrass contained the 

necessary nutrients for lignin degradation. The addition of copper, manganese, or glucose 

did not increase lignin degradation in switchgrass by P. ostreatus. However, addition of P. 

ostreatus did provide significant lignin degradation to increase ethanol yield from 

switchgrass compared to no pretreatment.   



 

89 
 

4.6. References 

 Adney, B., Baker, J. 1996. Measurement of Cellulase Activities. National Renewable 
Energy Laboratory, Golden, CO. 

Baldrian, P., Gabriel, J. 2002. Copper and cadmium increase laccase activity in Pleurotus 
ostreatus. FEMS Microbiology Letters, 206(1), 69-74. 

Baldrian, P., Valaskova, V., Merhautova, V., Gabriel, J. 2005. Degradation of 
lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead 
and zinc. Research in Microbiology, 156(5-6), 670-676. 

Boerjan, W., Ralph, J., Baucher, M. 2003. Lignin biosynthesis. Annual Review of Plant 
Biology, 54(1), 519-546. 

Cohen, R., Hadar, Y., Yarden, O. 2001. Transcript and activity levels of different Pleurotus 
ostreatus peroxidases are differentially affected by Mn2+. Environmental 
microbiology, 3(5), 312-322. 

Collins, P.J., Dobson, A.D.W. 1997. Regulation of laccase gene transcription in Trametes 
versicolor. Applied and Environmental Microbiology, 63(9), 3444-3450. 

Dowe, N., McMillan, J. 2001. SSF experimental protocols: Lignocellulosic biomass 
hydrolysis and fermentation. National Renewable Energy Laboratory, Golden, CO. 

Dwivedi, U.N., Singh, P., Pandey, V.P., Kumar, A. 2011. Structure-function relationship 
among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: 
Enzymatic, 68(2), 117-128. 

Galhaup, C., Haltrich, D. 2001. Enhanced formation of laccase activity by the white-rot 
fungus Trametes pubescens in the presence of copper. Applied Microbiology and 
Biotechnology, 56(1-2), 225-232. 

Giardina, P., Palmieri, G., Fontanella, B., Rivieccio, V., Sannia, G. 2000. Manganese 
peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. 
Archives of Biochemistry and Biophysics, 376(1), 171-179. 

Gomez, S.Q., Arana-Cuenca, A., Flores, Y.M., Rodriguez, J.N.G., Tellez-Jurado, A. 2012. 
Effect of particle size and aeration on the biological delignification of corn straw 
using Trametes sp. 44. Bioresources, 7(1), 327-344. 

Kamitsuji, H., Honda, Y., Watanabe, T., Kuwahara, M. 2005. Mn2+ is dispensable for the 
production of active MnP2 by Pleurotus ostreatus. Biochemical and Biophysical 
Research Communications, 327(3), 871-876. 

Kerem, Z., Hadar, Y. 1993. Effect of manganese on lignin degradation by Pleurotus 
ostreatus during solid-state fermentation. Applied and Environmental 
Microbiology, 59(12), 4115-4120. 



 

90 
 

Mäkelä, M.R., Lundell, T., Hatakka, A., Hildén, K. 2013. Effect of copper, nutrient 
nitrogen, and wood-supplement on the production of lignin-modifying enzymes by 
the white-rot fungus Phlebia radiata. Fungal biology, 117(1), 62-70. 

Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., Sannia, G. 2000. Copper induction 
of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and 
Environmental Microbiology, 66(3), 920-924. 

Parenti, A., Muguerza, E., Iroz, A.R., Omarini, A., Conde, E., Alfaro, M., Castanera, R., 
Santoyo, F., Ramirez, L., Pisabarro, A.G. 2013. Induction of laccase activity in the 
white rot fungus Pleurotus ostreatus using water polluted with wheat straw 
extracts. Bioresource Technology, 133, 142-149. 

Ramachandriya, K.D., Wilkins, M., Pardo-Planas, O., Atiyeh, H.K., Dunford, N.T., 
Hiziroglu, S. 2014. Simultaneous saccharification and fermentation of Eastern 
redcedar heartwood and sapwood using a novel size reduction technique. 
Bioresource Technology, 161, 1-9. 

Santoyo, F., González, A.E., Terrón, M.C., Ramírez, L., Pisabarro, A.G. 2008. Quantitative 
linkage mapping of lignin-degrading enzymatic activities in Pleurotus ostreatus. 
Enzyme and Microbial Technology, 43(2), 137-143. 

Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, 
D., Wolfe, J. 2008. Determination of Total Solids in Biomass and Total Dissolved 
Solids in Liquid Process Samples. National Renewable Energy Laboratory, 
Golden, CO. 

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2005a. 
Determination of Ash in Biomass. National Renewable Energy Laboratory, 
Golden, CO. 

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2012. 
Determination of Structural Carbohydrates and Lignin in Biomass. National 
Renewable Energy Laboratory, Golden, CO. 

Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2005b. Determination of 
Extractives in Biomass. National Renewable Energy Laboratory, Golden, CO. 

Soden, D.M., Dobson, A.D. 2001. Differential regulation of laccase gene expression in 
Pleurotus sajor-caju. Microbiology, 147(7), 1755-1763. 

Tinoco, R., Acevedo, A., Galindo, E., Serrano-Carreon, L. 2011. Increasing Pleurotus 
ostreatus laccase production by culture medium optimization and copper/lignin 
synergistic induction. Journal of Industrial Microbiology & Biotechnology, 38(4), 
531-540. 

Wan, C., Li, Y. 2012. Fungal pretreatment of lignocellulosic biomass. Biotechnology 
Advances, 30(6), 1447-1457.



 

91 
 

CHAPTER V 

5. Future Work 

In order for fungal pretreatment of switchgrass during storage to be effective, the 

microbial load in the bales will need to be reduced. Pasteurization of bales to reduce the 

native biological activity before fungal inoculation would likely decrease the losses 

experienced in the control bales from our study. Currently, mushroom farms pasteurize 

biomass by placing it in a sealed container and injecting steam for a certain period.  

Improvements of the inoculation procedure and the automatic watering system need 

to be made. The inoculation procedure could be changed so that the bales do not need to 

be split apart, reducing biomass losses, labor, and equipment costs. Metal spikes could be 

used to add liquid fungal inoculum throughout the bale. Changes in inoculation procedure 

require changes in the current watering system. Watering the bale from the top may allow 

more water to stay in bale, because the flowrate of water out of the bales was an issue with 

the system described in this paper. If water was applied with sprinklers, it is possible that 

less water would come out of the bottom of the bales. In this case, moisture sensors 

(possibly soil moisture probes) would be essential to determine the exact moisture content 

inside the bale. The bale temperature could be monitored at a single point, because the 

temperature was stable throughout the bales. 

Future study of fungal pretreatment in switchgrass will also need to involve 

determining the ideal treatment time to minimize cellulose and hemicellulose loss while 
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achieving appropriate lignin degradation. Since the goal of pretreatment is to maximize 

cellulose hydrolysis for ethanol production, fungal pretreatment should be ended once 

cellulose and hemicellulose begin to significantly degrade.
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6. APPENDICES 

6.1. Data logger wiring 

The data loggers were wired following screw terminal pinout diagram shown in 

Figure 6.1, according to the configurations in Figure 6.2.  

 
Figure 6.1. Screw terminal pinout for NI USB-6225 data logger
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Figure 6.2. Wiring configuration for each data logger 
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6.2. LabVIEW program 

Each VI consisted of a front panel and a block diagram. The front panel (Figure 

6.3) shows all of the calculated values for the moisture contents, load cell voltages, bale 

weights, and bale temperatures, as well as indicators for the relays and a waveform chart 

of the moisture contents. The block diagram contains the data acquisition loop (Figure 6.4) 

and calculations necessary for the temperature (Figure 6.5), moisture content (Figure 6.6), 

and ambient temperature (Figure 6.7). The relays were controlled using the script and 

control loops shown in Figure 6.8 and Figure 6.9, respectively. 

 
 



 

 
 

 
 
 
 

 
Figure 6.3. LabVIEW virtual instrument front panel 
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Figure 6.4. Data acquisition and signal splitting loop 
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Figure 6.5. Thermocouple calculator 

 
Figure 6.6. Moisture content and temperature average calculator 

 
Figure 6.7. Ambient temperature calculator 
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Figure 6.8. Relay loop control script box 



 

 
 

 
 

 
Figure 6.9. Relay control loop selector box 
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6.3. Excel VBA programming 

Text messages were sent when the temperature was read above 55°C to warn that 

water may need to be added. The following Excel VBA program and the LabVIEW 

program loop shown in Figure 6.10 were used to send an email with this warning. The 

email address was formatted as a phone number, so that it would be received as a text 

message. Each bale had a VBA Sub program for determining the appropriate message to 

send. 

 
Sub TextTemp16() 
Application.WindowState = xlMinimized 
    Dim OutApp As Object 
    Dim OutMail As Object 
 
    Set OutApp = CreateObject("Outlook.Application") 
    Set OutMail = OutApp.CreateItem(0) 
 
    On Error Resume Next 
     
    With OutMail 
        .To = "##########@mms.att.net" 
        .CC = "" 
        .BCC = "" 
        '.Subject = 
        .Body = "Temperature 16 is too high!!!" 
        .Send 
    End With 
    On Error GoTo 0 
 
    Set OutMail = Nothing 
    Set OutApp = Nothing 
 
Application.Quit 
End Sub 
 



 

 
 

 
 
 

 
Figure 6.10. Text message LabVIEW program 
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6.4. MATLAB moisture content calculation 

MATLAB was used to calculate the moisture content of the bales over time using 

the load cell voltage readings. Each set of bale voltage readings was sorted into a separate 

Excel file and the appropriate MATLAB script was executed.  

Bales 1-9 

sga = readtable('sg_data_a.xlsx'); 
sg1=sga{:,2}; 
sg2=sga{:,3}; 
sg3=sga{:,4}; 
sg4=sga{:,5}; 
sg5=sga{:,6}; 
sg6=sga{:,7}; 
sg7=sga{:,8}; 
sg8=sga{:,9}; 
sg9=sga{:,10}; 
 
w1=39.95; 
w2=46.6; 
w3=40.2; 
w4=42.05; 
w5=45.00; 
w6=42.5; 
w7=44.2; 
w8=36.8; 
w9=39.95; 
c=21.036; 
m0=0.0925; 
m1=0.03159; 
m2=0.03159; 
m3=0.03158; 
m4=0.03114; 
m5=0.03132; 
m6=0.03115; 
m7=0.03141; 
m8=0.03129; 
m9=0.03118; 
b1=0.02248; 
b2=0.01758; 
b3=0.02156; 
b4=0.0297; 
b5=0.02378; 
b6=0.01393; 
b7=0.08713; 
b8=0.01925; 
b9=0.01504; 
 
s1=size(sga,1); 
for i = 1:s1; 
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MC1(i,1)=((((sg1(i,1)-b1)/m1)-c)-w1+(w1*m0))/(((sg1(i,1)-b1)/m1)-
c); 

MC2(i,1)=((((sg2(i,1)-b2)/m2)-c)-w2+(w2*m0))/(((sg2(i,1)-b2)/m2)-
c); 

MC3(i,1)=((((sg3(i,1)-b3)/m3)-c)-w3+(w3*m0))/(((sg3(i,1)-b3)/m3)-
c); 

MC4(i,1)=((((sg4(i,1)-b4)/m4)-c)-w4+(w4*m0))/(((sg4(i,1)-b4)/m4)-
c); 

MC5(i,1)=((((sg5(i,1)-b5)/m5)-c)-w5+(w5*m0))/(((sg5(i,1)-b5)/m5)-
c); 

MC6(i,1)=((((sg6(i,1)-b6)/m6)-c)-w6+(w6*m0))/(((sg6(i,1)-b6)/m6)-
c); 

MC7(i,1)=((((sg7(i,1)-b7)/m7)-c)-w7+(w7*m0))/(((sg7(i,1)-b7)/m7)-
c); 

MC8(i,1)=((((sg8(i,1)-b8)/m8)-c)-w8+(w8*m0))/(((sg8(i,1)-b8)/m8)-
c); 

MC9(i,1)=((((sg9(i,1)-b9)/m9)-c)-w9+(w9*m0))/(((sg9(i,1)-b9)/m9)-
c); 

end 
  
m_A = table(MC1,MC2,MC3,MC4,MC5,MC6,MC7,MC8,MC9); 
writetable(m_A, 'moisture_content_a.dat'); 
 

Bales 10-15 

sgb = readtable('sg_data_b.xlsx');  
sg10=sgb{:,2}; 
sg11=sgb{:,3}; 
sg12=sgb{:,4}; 
sg13=sgb{:,5}; 
sg14=sgb{:,6}; 
sg15=sgb{:,7}; 
 
w10=41.8; 
w11=40.75; 
w12=41.5; 
w13=40.8; 
w14=48.55; 
w15=42.3; 
c=21.036; 
m0=0.0925; 
m10=0.03115; 
m11=0.03152; 
m12=0.03156; 
m13=0.03135; 
m14=0.03078; 
m15=0.03094; 
b10=0.04073; 
b11=0.02081; 
b12=0.01281; 
b13=0.01833; 
b14=0.02218; 
b15=0.00707;  
 
s2=size(sgb,1); 
for i=1:s2; 
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MC10(i,1)=((((sg10(i,1)-b10)/m10)-c)-w10+(w10*m0))/(((sg10(i,1)-
b10)/m10)-c); 

MC11(i,1)=((((sg11(i,1)-b11)/m11)-c)-w11+(w11*m0))/(((sg11(i,1)-
b11)/m11)-c); 

MC12(i,1)=((((sg12(i,1)-b12)/m12)-c)-w12+(w12*m0))/(((sg12(i,1)-
b12)/m12)-c); 

MC13(i,1)=((((sg13(i,1)-b13)/m13)-c)-w13+(w13*m0))/(((sg13(i,1)-
b13)/m13)-c); 

MC14(i,1)=((((sg14(i,1)-b14)/m14)-c)-w14+(w14*m0))/(((sg14(i,1)-
b14)/m14)-c); 

MC15(i,1)=((((sg15(i,1)-b15)/m15)-c)-w15+(w15*m0))/(((sg15(i,1)-
b15)/m15)-c); 

end 
  
m_B = table(MC10,MC11,MC12,MC13,MC14,MC15); 
writetable(m_B, 'moisture_content_b.dat'); 
 

Bales 16-18 

sgc = readtable('sg_data_c.xlsx');  
sg16=sgc{:,2}; 
sg17=sgc{:,3}; 
sg18=sgc{:,4}; 
  
w16=42.4; 
w17=41.2; 
w18=46.1; 
c=21.036; 
m0=0.0925; 
m16=0.03127; 
m17=0.03119; 
m18=0.03104; 
b16=0.01834; 
b17=0.03086; 
b18=0.02159; 
 
s3=size(sgc,1); 
for i = 1:s3 
MC16(i,1)=((((sg16(i,1)-b16)/m16)-c)-w16+(w16*m0))/(((sg16(i,1)-

b16)/m16)-c); 
MC17(i,1)=((((sg17(i,1)-b17)/m17)-c)-w17+(w17*m0))/(((sg17(i,1)-

b17)/m17)-c); 
MC18(i,1)=((((sg18(i,1)-b18)/m18)-c)-w18+(w18*m0))/(((sg18(i,1)-

b18)/m18)-c); 
end 
  
m_C = table(MC16,MC17,MC18); 
writetable(m_C, 'moisture_content_c.dat'); 
 

Bales 19-27 

sgd = readtable('sg_data_d.xlsx');  
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sg19=sgd{:,2}; 
sg20=sgd{:,3}; 
sg21=sgd{:,4}; 
sg22=sgd{:,5}; 
sg23=sgd{:,6}; 
sg24=sgd{:,7}; 
sg25=sgd{:,8}; 
sg26=sgd{:,9}; 
sg27=sgd{:,10}; 
  
w19=52.7; 
w20=41.00; 
w21=43.4; 
w22=52.6; 
w23=43.35; 
w24=42.1; 
w25=39.95; 
w26=48.55; 
w27=42.25; 
c=21.036; 
m0=0.0925;  
m19=0.03129; 
m20=0.0312; 
m21=0.03144; 
m22=0.03125; 
m23=0.03136; 
m24=0.0313; 
m25=0.03129; 
m26=0.03141; 
m27=0.03113;  
b19=0.02167; 
b20=0.03775; 
b21=0.02725; 
b22=0.02354; 
b23=0.04845; 
b24=0.04362; 
b25=0.06206; 
b26=0.06303; 
b27=0.02986; 
 
s4=size(sgd,1); 
for i = 1:s4 
MC19(i,1)=((((sg19(i,1)-b19)/m19)-c)-w19+(w19*m0))/(((sg19(i,1)-

b19)/m19)-c); 
MC20(i,1)=((((sg20(i,1)-b20)/m20)-c)-w20+(w20*m0))/(((sg20(i,1)-

b20)/m20)-c); 
MC21(i,1)=((((sg21(i,1)-b21)/m21)-c)-w21+(w21*m0))/(((sg21(i,1)-

b21)/m21)-c); 
MC22(i,1)=((((sg22(i,1)-b22)/m22)-c)-w22+(w22*m0))/(((sg22(i,1)-

b22)/m22)-c); 
MC23(i,1)=((((sg23(i,1)-b23)/m23)-c)-w23+(w23*m0))/(((sg23(i,1)-

b23)/m23)-c); 
MC24(i,1)=((((sg24(i,1)-b24)/m24)-c)-w24+(w24*m0))/(((sg24(i,1)-

b24)/m24)-c); 
MC25(i,1)=((((sg25(i,1)-b25)/m25)-c)-w25+(w25*m0))/(((sg25(i,1)-

b25)/m25)-c); 
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MC26(i,1)=((((sg26(i,1)-b26)/m26)-c)-w26+(w26*m0))/(((sg26(i,1)-
b26)/m26)-c); 

MC27(i,1)=((((sg27(i,1)-b27)/m27)-c)-w27+(w27*m0))/(((sg27(i,1)-
b27)/m27)-c); 

end 
  
m_D = table(MC19,MC20,MC21,MC22,MC23,MC24,MC25,MC26,MC27); 
writetable(m_D, 'moisture_content_d.dat') 
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6.5. Bale temperature 

The ambient temperature and relative humidity are shown in Figure 6.11. The 

internal temperatures for Bales 1-9, 10-18, and 19-27 are shown in Figure 6.12, Figure 

6.13, and Figure 6.14, respectively. Each data point represents a 1 h average. 

 
Figure 6.11. Ambient temperature and relative humidity over time 
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Figure 6.12. Bales 1-9 internal temperatures (81 d) 

 
Figure 6.13. Bales 10-18 internal temperatures (53 d) 
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Figure 6.14. Bales 19-27 internal temperatures (25 d) 
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6.6. Storage and sampling equipment 

The SolidWorks drawing used to construct the bale splitting stand is shown in 

Figure 6.15. Plywood was used for platform, which was attached to the bar indicated by 

the arrows. The bale storage racks were constructed using the drawing in Figure 6.16. 

Figure 6.17 shows an angled view of the bale storage rack. The bale supports used to hold 

the bales together with ratchet straps are shown in Figure 6.18 and Figure 6.19. The core 

tube used for sampling is shown in Figure 6.20. 

 
Figure 6.15. Bale splitting stand for fungal inoculation, plywood platform attached at arrows 
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Figure 6.16. SolidWorks drawing of the bale storage rack, with dimensions (inches) 
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Figure 6.17. Angled view of the bale storage rack 

 
Figure 6.18. Bottom bale support drawing, dimensions in inches 



 

114 
 

 
Figure 6.19. Top bale support drawing, dimensions in inches 

 
Figure 6.20. Core sampling tube SolidWorks drawing, dimensions in inches 
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