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Abstract: Oil and gas companies have played a major role in the energy sector, and 

constantly try to develop technology to maximize their overall revenue. One of the more 

substantial feats was the developed equipment that allowed for horizontal wells. These 

horizontal sections allow much more oil to reach the wellbore due to the extended length 

into reservoir supplies. However, as the wells continue to get drilled farther, the cost of 

drilling the wells continue to rise. Now more than ever, there is an increased need for 

better drilling optimization techniques, which could potentially reduce these drilling costs 

and increase the overall profit. Many individuals have researched optimizing constant 

operational parameters; however, these constant variables lead to wasted time and money 

for the operators. This is because formation variables constantly change throughout the 

drilling process; therefore, the concept of dynamic variables allow drillers to alter the 

drilling parameters to better adjust for changes in the formation. The research presented 

herein, incorporates a particle swarm optimization (PSO) algorithm to optimize 

operational parameters, weight on bit (WOB), revolutions per minute (RPM) of the bit, 

bit pull depth, and bit combination, with the goal to decrease the overall drilling cost per 

foot. A rate of penetration (ROP) model was incorporated with the PSO algorithm in 

order to calculate the drilling time and the associated costs from the given parameters. 

This research could be applied in numerous ways including as an artificial intelligence 

optimizer in an existing drilling simulator, or directly integrated by drilling engineers 

during the planning stage. Long term use for this algorithm is to be the foundation for an 

autonomous driller including being the real time optimal solver.
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NOMENCLATURE 

 

a1, a2, a3, a4 Empirical Coefficient     - 

ABR  Relative Abrasiveness     - 

b1, b2, b3, b4 Empirical Coefficient     - 

b(x)  Function for the Effect of Number of Blades   - 

ΔBG  Bit Grade       - 

BR  Back Rake      degrees 

c1, c2, c3, c4 Empirical Coefficient      - 

CCS  Confined Compressive Rock Strength   psi 

CostBit  Cost of Bit      $ 

CostRig  Cost of Drilling Rig     $ /day 

ΔD  Depth Step Size      ft. 

Dbit  Bit Diameter      in. 

D1  Start Drilling Bit Depth     ft. 

D2  End Drilling Bit Depth     ft. 

h(x)  Hydraulic Efficiency Function    - 

HSI  Horsepower per Square Inch    HP /in2 

JSA  Junk Slot Area      in2 

K1  Calibrated Constant     - 

k  Iteration       - 

MD  Measure Depth      ft. 

Nb  Number of Blades     - 

n  Number of Maximum Depths    - 

OF  Objective Function     - 

Pbit  Pressure Drop across the Bit    psi 

pg  Global Previous Best for each Particle   - 

pi  Previous Best for each Particle    - 

Q  Flowrate       GPM 

r1, r2  Random value from 0 to 1    - 

ROP  Rate of Penetration     ft. /hr. 

RPM  Revolutions per Minute of the Bit    RPM 

SR  Side Rake      degrees 

SS  Sum of Squares      - 

tRotating  Rotating Time of Drill Pipe in Drilling Simulation hr. 

tTripping  Tripping Time in Drilling Simulation    hr.  

t’Tripping  Drill Pipe Tripping Rate Estimation   hr. /ft. 

vi  Velocity of each Particle    - 

WOB  Weight on Bit      lb. 

Wc  Wear Coefficient     - 

Wf  Wear Function       - 

xi  Position of the Particle     - 

ϕ1, ϕ2  Cognitive and Social Components   - 

ω  Weighted Inertia Component    -             
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CHAPTER I 
 

 

INTRODUCTION 

 

Over the years, the oil and gas industry has played a key role in the US energy sector. Oil 

companies have continually worked to develop technology in order to maximize performance. 

Since oil well drilling is a complex procedure, in order to optimize it, the physical phenomenon 

must be modeled as represented by the primary governing equation (Kerkar et al., 2014). Before 

the early 1980s, most oil wells were mainly drilled vertically (Helms, 2008). These vertical wells 

were influenced by many physical control variables including: weight on bit (WOB), revolutions 

per minute of the bit (RPM), drilling fluid type, drilling fluid viscosity, bit type, bit wear, etc. For 

drill bits, there are many sub segments of this area; however, most all of them can be classified 

into three categories: Natural Diamond Bits (NDB), Polycrystalline Diamond Compact Bits 

(PDC), and roller cone bits. NDB’s are bits that have natural diamonds that are set along the 

surface of the bit face and grind the rock. PDC’s are bits that have polycrystalline diamond 

cutters set in the blades at the bit face and scrape or shear the rock. Roller cone bits are bits that 

have cones that roll along the rock face which crushes and gouges the rock as the bit teeth crush 

and penetrate into the rock. In this research, PDC bits will be incorporated since they are the most 

commonly used in industry. 

In addition to the physical control variables, there are environmental variables including: rock 

strength, formation abrasiveness, formation pore pressure, fracture gradient, etc. These variables 
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then affect the rate of penetration (ROP), which is inversely proportional to the cost of drilling the 

well.  

1.1 Motivation 

In drilling optimization, reducing drilling time is a key factor that can minimize the total drilling 

cost and maximize the potential profits. This is especially true for offshore wells due to the large 

increase in operational costs per day (Kaiser, 2009). However, as technology has advanced, 

vertical wells have been mostly overtaken by horizontal directional wells, which now dominate 

the market. There are many reasons why most wells drilled today are horizontal wells. A couple 

of the main reasons for this switch are that oil companies can gather more oil from one well since 

the horizontal section will expose much more drainage area, along with the fact that the 

horizontal section allows for multiple wells to be drilled from the same setup location. However, 

all of the main reasons can be directly linked to the oil companies maximizing their overall profit. 

Yet, with this added lateral section, the length of the well can be drastically increased, along with 

horizontal wells having added complexity to them through the surface variables and down hole 

variables differing. The reason for this difference, is after the well passes the kick off point 

(KOP), which is the point in the well that it turns horizontal, friction now has to be taken into 

account. Friction is introduced because the drill pipe lies on the wellbore floor in the lateral 

section, and the loss due to friction can be described as the difference between the hook load at 

surface and the down hole weight on bit. This can be estimated through torque and drag analysis 

by taking small increment calculations starting at the bit and adding each segment up to surface. 

Once that is completed, a trial and error technique by adjusting the friction coefficient until the 

force calculated at surface matches the reported hook load. However, the results from this 

research only produce down hole measurements currently, and torque and drag analysis (Wu et 

al., 2011) will be incorporated into the future. 
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As previously mentioned, the horizontal section can substantially lengthen the well which is why 

the drilling industry has looked to find unique ways to maximize potential profits for drilling 

wells. In order to increase the efficiency in drilling performance, an artificial intelligence 

algorithm can be used. One of the biggest challenges in drilling optimization is to find the best 

operational drilling parameters in the infinite space of possible solutions. One of the reasons that 

the parameter search space is so large is due to the wearing of the drill bit. As the bit gets 

progressively more worn, variability in parameter selection decreases, thus, changing any of the 

sequences in drilling could result in a different search space towards the end of the bit run. 

Therefore, when beginning to optimize drilling a well, the entire length of the well needs to be 

taken into account. In this study, a new approach to drilling optimization will be introduced by 

incorporating a particle swarm optimization (PSO) technique on an ROP model in order to 

optimize one section of a well. The final goal will be to minimize the cost per foot of formation 

drilled by having the algorithm select the WOB and RPM combinations, as well as, drill bit 

selections and pull depths. It will then be validated by optimizing a field case. 

1.2 Drilling Today 

Oil and natural gas companies have continually worked to try and optimize the drilling process. 

As previously mentioned, the environmental conditions are a key factor affecting drilling 

performance. When planning a new well, unless the well is a wildcat, oil companies typically 

look at previously drilled adjacent wells, or offset wells, for data on rock strengths, formation 

pore pressure, and previous bit performance. It is common to correlate the seismic data before 

drilling to determine the rock formation tops of the newly planned well, and correlate these rock 

formations to the rock property profiles from adjacent wells. Next, the drilling engineer looks at 

the control variables used through these formations and the resultant ROP, to determine the best 

plan moving forward. Once drilling has begun, the rock cuttings that are brought back to the 

surface with the drilling mud can be used to verify that the rock formations originally anticipated 
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were correct. If the formation has changed unexpectedly, corrective actions may be taken into 

account for the unplanned change. These corrective actions may include varying some of the 

control variables in order ensure that the well is properly controlled and the well optimized. This 

research will hopefully alter the way that oil companies begin drilling plans in the future, not only 

offset wells, but also wildcat wells. 

Portions of this thesis have been presented in previous publications (Self et al., 2016A, Self et al., 

2016B).



5 
 

CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

2.1 Optimization Techniques 

There are many advanced problems throughout multiple industries, and several complex 

problems are normally too difficult to find a simple analytical solution. When such problems are 

proposed, a numerical approach must be used. There are many methods developed to solve these 

numerical problems, and the two simplest methods are breadth first and depth first searches. Both 

of these approaches are very simple, easy to implement, and intuitively make sense. In addition, if 

both methods are executed exhaustively to a discrete problem, they will find the optimal solution. 

Both methods work in a similar way, in that they analyze every possible solution to the problem. 

The main difference between these two methods are how they search the possible solutions. 

Breadth first searches expand every node at the first layer and search the connections to the 

neighboring nodes before moving to the next layer of nodes. This can be done iteratively until the 

optimal solution is found. The depth first search starts at the first node and expands down one 

potential path until it reaches a stopping point, and this can also be iterated until the optimal 

solution is found. However with added dimensions, these two methods quickly become very 

inefficient to solve due to the time and memory challenges. These issues compound even further 

if the problem changes from a discrete problem to a continuous problem. At this point, these 

problems can no longer be solved by breadth first and depth first exhaustive searches, and more 
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intelligent algorithms must be employed. There have been numerous advanced optimization 

techniques designed to solve very complex problems throughout multiple industries. Some of 

these include; genetic algorithms (GE), simulated annealing (SA), ant colony optimization 

(ACO), particle swarm optimization (PSO), etc. All of these advanced algorithms are much more 

efficient in solving any problems, simple or complex, when compared to the exhaustive searches, 

depth based and breadth based. There has been work into determining which advanced algorithms 

perform best (Elbeltagi, et al., 2005). The research concluded that the particle swarm optimization 

algorithm performed the best when comparing the other methods in both success rate and the 

quality of the solution found. PSO is the optimization algorithm used for this research. 

2.2 Drilling Optimization 

As previously mentioned, the drilling industry is getting more complex as technology advances 

and with these added complexities, the price of drilling continues to increase. Therefore, a 

growing need for optimization in the drilling industry continues to develop.  

Early optimization efforts began around 1958. Speer developed empirical relationships for weight 

on bit, rotary speed, formation drillability, and hydraulic horsepower effects on rate of 

penetration. The research combined all of these relationships into one chart for a specific drilling 

scenario, and the optimal combination could then be determined.  

In 1959, Graham and Muench developed an analytical approach to determine optimal weight on 

bit and rotary speed. Their goal was to determine if there exists a possible combination of 

operational parameters that could minimize the cost of drilling a well. The three costs that they 

used include the cost of the rig for both drilling and tripping, along with the cost of the bit. They 

concluded that there are optimal WOB and RPM combinations that decrease the overall drilling 

time, and these can be calculated by varying a constant RPM iteratively while calculating the cost 

at various depths. 



7 
 

Galle and Woods in 1963, used mathematical models to determine the optimal combinations for 

constant drilling parameters, WOB and RPM, in order to find the lowest drilling cost for a drilling 

interval. They presented three different procedures for different applications depending on 

potential limiting factors for drilling scenarios. 

In 1972, Reed developed a method to find the optimal WOB and RPM path by incorporating a 

Monte Carlo technique. To begin the method, a random path is initialized and the cost is 

calculated. Then an iterative method is introduced by selecting random numbers for every point 

along the path, and calculating new costs every time a point is moved. If this new cost is lower 

than the original, the new point is kept; however, if it is higher, the point is given a new random 

number. This process is repeated until convergence. 

Once technology progressed even further, this led to the development of advanced drilling 

simulators. Techniques incorporating a simulator program to use manual input trial and error 

techniques to find the best parameters have been performed (Rastegar et al., 2008). 

Eren (2010) found optimal drilling parameters through the use of a multiple regression technique. 

He incorporated an ROP model and used multiple regression to get a set of coefficients to 

represent the drilling data gathered. He then incorporated those coefficients found, and optimized 

WOB and RPM for a drilling interval by finding the roots of the first derivative of the ROP 

equation with respect to each variable, WOB and RPM.  

Hamrick in 2011 took a different approach, and looked to analyze a method for finding optimal 

drilling parameters by minimizing mechanical specific energy (Teale 1965). He developed 

relationships for torque and penetration per revolution in terms of weight on bit. Therefore, 

optimization on the MSE equation was based purely on weight on bit and the minimum could be 

determined by finding the roots of the first derivative. Once the optimal weight on bit was found, 

the other parameters could be determined by the mathematical relationships developed. 
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There have been some other previous optimization efforts in the oil and gas industry outside of 

drilling performance. Atashnezhad et al. (2014) previously incorporated a swarm algorithm in 

order to find the optimal well path with the goal to minimize total measured depth of the well. 

Onwunalu and Durlofsky (2010), and Bangerth et al. (2004), have done research into optimizing 

the well location. The work outlined in this paper would work well in tandem with these 

algorithms and potentially provide significant improvement in performance. 

2.3 Rate of Penetration Modeling 

Any optimization algorithm must have a model in order to optimize a system. Therefore, many 

researchers have developed models that try to capture the physics of the drilling process for all 

types of bits. Below are some of the drill bit models developed, and the equations associated with 

them are directly below the explanations. 

Bourgoyne and Young (1974) modeled the effects of formation strength, a1 term, formation depth 

and formation compaction, a2 term and a3 term, pressure differential, a4 term, weight on bit and 

bit diameter, a5 term, speed of rotation, a6 term, bit wear, a7 term, and hydraulics, a8 term. 

𝑑𝐷

𝑑𝑡
= 𝐸𝑥𝑝

(

 𝑎1 + 𝑎2 (10,000 − 𝐷) + 𝑎3 𝐷
0.69 (𝑔𝑝 − 9) + 𝑎4 𝐷 (𝑔𝑝 − 𝜌𝑐) + 𝑎5 ln(

𝑤
𝑑
− (
𝑤
𝑑
)
𝑡

4 − (
𝑤
𝑑
)
𝑡

)

+ 𝑎6  ln (
𝑁

100
) − 𝑎7 ℎ + 𝑎8 (

𝜌 𝑞

350 𝜇𝑑 𝑛
)

)

  

Warren in 1981, developed an ROP model to relate weight on bit, W, revolutions per minute of 

the bit, N, bit diameter, D, rock strength, S, and bit type to rate of penetration, R. 

𝑅 = (
𝑎 𝑆2 𝐷3

𝑁𝑏 𝑊2
+

𝑐

𝑁 𝐷
)

−1
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This model did not take into account hydraulic effects, and assumed perfect cleaning. Warren 

later added to this model by taking into account the hydraulics, and presented a new imperfect 

cleaning model incorporating a new term into the ROP equation (Warren, 1987). This term is a 

function of the diameter of the bit, D, density of the fluid, ρ, drilling fluid viscosity, μ, and 

modified jet impact force, Im. 

𝑅 = (
𝑎 𝑆2 𝐷3

𝑁 𝑊2
+

𝑏

𝑁 𝐷
+
𝑐 𝐷 𝜌 𝜇

𝐼𝑚
)

−1

 

This model was again further developed to take into account roller cone offset and formation 

ductility which added an additional term to the ROP model (Winters, 1987), consisting of the 

cone offset coefficient, ϕ, rock compressive strength, σ, and rock ductility, ε. 

𝑅 = (
𝑎 𝑆2 𝐷3

𝑁 𝑊2
+

𝑏

𝑁 𝐷
+
𝑐 𝐷 𝜌 𝜇

𝐼𝑚
+
𝜙 𝜎 𝐷2

𝑁 𝑊 𝜀
)

−1

 

A few years later, Warren’s model was modified by adding another term for the chip hold down 

effect (Hareland and Hoberock, 1993). After this addition, the model now takes into account the 

position that the fluid is with respect to the mud overbalance (Charlez, 1999). This new term is a 

function of effective confining pressure, Pe, and lithology coefficients, ac, bc, and cc. 

𝑅 = ((𝑐𝑐 + 𝑎𝑐(𝑃𝑒 − 120)
𝑏𝑐) (

𝑎 𝑆2 𝐷3

𝑁 𝑊2
+

𝑏

𝑁 𝐷
) +

𝑐 𝐷 𝜌 𝜇

𝐼𝑚
)

−1

 

In 1994, Hareland and Rampersad, developed a new ROP model for drag bits. Their model 

incorporated wear and focused on modeling a single cutter’s interaction with the rock. The 

developed model presented in the paper is for Natural Diamond Bits, and is a function of 

diamond cutter diameter, ds, mechanical weight on bit, Wmech, and number of stones, Ns. 
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𝑅𝑂𝑃 =
14.14 𝑁𝑠 𝑅𝑃𝑀

𝐷𝐵
((
𝑑𝑠
2
)
2

cos−1 (1 −
4 𝑊𝑚𝑒𝑐ℎ

𝑁𝑠 𝑑𝑠
2 𝜋 𝜎𝑐

)

− (
2 𝑊𝑚𝑒𝑐ℎ
𝑁𝑠 𝜋 𝜎𝑐

−
4 𝑊𝑚𝑒𝑐ℎ

2

(𝑁𝑠 𝑑𝑠 𝜋 𝜎)
2)

1
2

(
𝑑𝑠
2
−
2 𝑊𝑚𝑒𝑐ℎ
𝑁𝑠 𝑑𝑠 𝜋 𝜎𝑐

)) 

Hareland et al. 2010, developed a new model for roller cone bits. This model took a new 

approach by incorporating detailed bit cutting structure, while still integrating drilling operational 

effects and bit wear modeling. Some of the variables include number of insert in contact with 

rock, nt, number of insert penetration per revolution, m, chip formation angle, ψ, and bit dull 

grade, DG. 

𝑅𝑂𝑃 = 𝐾
80 𝑛𝑡 𝑚 𝑅𝑃𝑀

𝑎

𝐷𝑏
2  tan2𝜓

(
1

𝐶2
(

𝑊𝑂𝐵

100 𝑛𝑡 𝑙 𝜎𝑝
− 𝐶1𝑤))

𝑏

(1 − 𝑑 (
𝐷𝐺

8
)
𝑐

) 

In 2011, Arabjamaloei and Shadizadeh incorporated artificial neural network techniques to 

develop a new ROP model. They used data from an Iranian oilfield to develop the ROP model 

and compared the calculated ROP to reported ROP from the field.  

In 2014, Kerkar et al., a PDC bit model was developed by incorporating bit wear, operational 

parameters, hydraulic effects, and bit specification effects, along with some formation factors. 

The model includes some experimental constants that can be altered to adjust for different drilling 

conditions and environments. This was the model selected for this research and explained in 

Section 3.2.
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CHAPTER III 
 

 

METHODOLOGY 

 

Due to the fact that drilling process is highly dynamic, any basic gradient descent optimization 

algorithm will not be able to handle the sequential nature of the drilling process, meaning that any 

decisions made will likely affect any future decisions. This phenomenon shows up in the wear 

equation (Kerkar et al., 2014) due to the summation sign. Therefore, particle swarm optimization 

(PSO) was selected as the optimization algorithm. 

3.1 Particle Swarm Optimization 

Particle swarm optimization is a powerful and widely used optimization technique that covers a 

wide range of research areas (Blum and Li, 2008). PSO was first developed by Kennedy and 

Eberhart in 1995, and it was modeled to mimic how certain groups of animals move in the natural 

world; such as a school of fish, flock of birds, etc. For this algorithm, a group of animals is 

referred to as a "swarm," and each animal inside the group is considered a "particle." This 

algorithm uses a combination of information from the group as a whole and the information from 

each individual particle to search the space for the optimal solution. For each individual particle, 

the PSO algorithm uses the current velocity of each particle, along with the information from the 

best values found from both the individual particle and the best global from the swarm, to move 

the particle around the space. PSO starts initially by randomly selecting values for all dimensions 

corresponding to each particle inside a swarm. The swarm is evaluated and the new velocity of 
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each particle and position are updated. The velocity and position equations (Atashnezhad et al., 

2014) are shown below, where vi represents the velocity of a particle, pi represents the previous 

best of the current particle, xi represents the current position of the particle, and pg represents the 

global previous best from the entire swarm.  Each one of these variables is a vector of d in length, 

representing the number of dimensions in the problem. The other variables include; ϕ1 and ϕ2 

which are considered acceleration constants, ω which is a weighted inertia constant, r1 and r2, are 

random values that are taken from the uniform distribution [0, 1]. 

𝑣𝑖
𝑘+1 ← 𝜔𝑣𝑖

𝑘 +𝜑1𝑟1
𝑘(𝑝𝑖

𝑘 − 𝑥𝑖
𝑘) + 𝜑2𝑟2

𝑘(𝑝𝑔
𝑘 − 𝑥𝑖

𝑘)                                      (1) 

𝑥𝑖
𝑘+1 ← 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                                                    (2) 

The velocity equation, Eq. 1, above is comprised of three components, social, cognitive and 

momentum (Blum and Li, 2008). The social component, ϕ2, forces the particles towards the 

global best solution found; the cognitive component, ϕ1, forces the particles back towards the 

previous best solution found by each particle; and the momentum component, ω, forces the 

particle to continue on the current trajectory. All three components help the particle swarm 

optimization technique traverse the exploration/exploitation dilemma that surrounds all 

optimization problems (Rejeb et al., 2005).  

The PSO algorithm incorporated in this study uses the ROP model by having the particles search 

the solution space and converge on the optimal WOB, RPM, bit selection, and pull depth. The 

inputs for this algorithm include; rock strength, WOB and RPM operational ranges, and available 

bit selections. The algorithm allows for a specified minimum bit wear, which forces the algorithm 

to select only potential solutions that satisfy this criteria. The bit wear begins at a value of one 

and decreases as the depth intervals increase, until the wear reaches the minimum allowable bit 

wear. In this study, the minimum allowable value for the bit wear function was 0.5, and can also 

be represented in equivalent IADC bit wear representation familiar in the drilling industry of 4.0. 
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3.2 Rate of Penetration Model 

The main governing equation used in this research models the rate of penetration for a PDC bit 

and was developed by Kerkar et al. (2014). This model is a function of operational parameters, bit 

parameters, formation factors, and hydraulic effects 

𝑅𝑂𝑃 = [
𝐾1𝑊𝑂𝐵

𝑎1𝑅𝑃𝑀𝑏1 cos(𝑆𝑅)

𝐶𝐶𝑆𝑐1𝐷𝑏𝑖𝑡 tan(𝐵𝑅)
]𝑊𝑓ℎ(𝑥)𝑏(𝑥)                                     (3) 

Eq. 3 above models the drilling process showing the parameters that affect drilling performance. 

The model above incorporates a wear function representative of the wear on the bit being drilled. 

This function is shown below  

𝑊𝑓 = 1 − 𝑎3 (
∆𝐵𝐺

8
)
𝑏3

                                                                (4) 

Eq. 4 starts with a value of one and decreases as the bit gets progressively more worn. Wc in Eq. 

5, is the bit wear coefficient and represents the bits resistance to wear, resulting in a decreased bit 

wear with a lower value of Wc. This variable incorporates many factors including; the number of 

cutters, quality and wear resistance of the material of the cutters. The wear function changes as 

the depth increases and is a function of formation factors along with drilling parameters. The bit 

grade is modeled and changes according to Eq. 5 

∆𝐵𝐺 = 𝑊𝑐∑∆𝐷𝑖𝑊𝑂𝐵𝑖
𝑎4𝑅𝑃𝑀𝑖

𝑏4𝐶𝐶𝑆𝑖𝐴𝐵𝑅𝑖

𝑛

𝑖=2

                                              (5) 

In Eq. 5, CCS is the rock strength while the rock is subjected to confined pressure and it is a 

function of pore pressure and lithology (Rastegar et al., 2008). The CCS is measured by applying 

confined pressure to the rock samples tested in the lab. Equivalently the overbalance pressure, or 

the difference between hydrostatic mud pressure and pore pressure at depth in the field, is treated 

as the confined pressure while drilling. Different overbalance correlations exist for different rock 
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types. In this study, the overbalance is assumed integrated into the CCS value. 

Abrasiveness (ABR) is representative for the coarseness of the rock, and related to the amount of 

quartz minerals in the rock. The higher the rock abrasivity, the higher the bit wear rate.  A 

normalized table is applied for different rock types in which the relative value for sandstone of 

1.0 is utilized.  The abrasiveness relative value can also be obtained from the gamma ray log 

where a relative value of 1.0 is assigned to an equivalent 40 reading. 

Efficiency in cutting removal can drastically effect drilling performance, therefore, the hydraulic 

effects on ROP are modeled below 

ℎ(𝑥) = 𝑎2(
𝐻𝑆𝐼

𝐽𝑆𝐴
2𝐷𝑏𝑖𝑡

𝑅𝑂𝑃𝑐2
)

𝑏2

                                                              (6) 

𝐻𝑆𝐼 =

𝑄𝑃𝑏𝑖𝑡
1714
𝜋
4 𝐷𝑏𝑖𝑡

2
                                                                              (7) 

The last factor modeled in Eq. 3 that effects the ROP model, is the function representing the 

effect for the number of blades for the bit and is shown below 

𝑏(𝑥) =
𝑅𝑃𝑀1.02−0.02𝑁𝑏

𝑅𝑃𝑀0.92
                                                                 (8) 

Assessing Eq. 8, a five bladed bit results in a value of one for b(x) for all RPM values. 

Additionally, it can be seen that b(x) increases with a decrease in blade number, resulting in a 

higher ROP value. Conversely, lower bladed bits generally have a lower wear resistance, which 

results in wearing the bit faster. 

Analyzing the set of equations above, Eq. 3 – Eq. 8, WOB and RPM affect ROP performance 

both positively, Eq. 3, and negatively, Eq. 5. Additionally, there are an infinite number of 

possible solution combinations for WOB, RPM, bit selections, etc.  Therefore, an optimization 
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algorithm must be used to find the best solution given the large number of variables included in 

the drilling process. More importantly, every value used for variables affect possible solutions in 

the future due to the summation in the wear equation, Eq. 5. Due to these conflicting affects, 

drilling optimization is required to help maximize overall drilling performance. 

3.2.1 Model Correlation 

Before beginning optimization on drilling scenarios, the experimental constants found in the ROP 

model, a1, b1, c1, etc., need to be data correlated in order to get accurate numeric results. 

Therefore, drilling data was gathered using data from several drill off tests in both Shale and 

Limestone rock formations (Hareland, 1988). WOB, RPM, and ROP were just some of the data 

that was collected and recorded. Using the particle swarm optimization algorithm, a set of 

constants were found by incorporating the objective function (OF) below 

min      𝑂𝐹: 𝑆𝑆 = (𝑅𝑂𝑃𝑑𝑎𝑡𝑎 − 𝑅𝑂𝑃𝑐𝑎𝑙𝑐)
2                                               (9) 

Using the calculated ROP and the reported ROP, regression was performed on the dataset. It was 

determined that the datasets do have a strong correlation, r2 = 0.98. After the set of constants were 

found that minimized Eq. 9, the calculated model and the real data were graphed for validation 

purposes. Fig. 1 and Fig. 2 show graphs for the Limestone data that was used for the correlations, 

and Fig. 3 and Fig. 4 show the Shale data used. In addition to the graphs incorporating the 

included data, an additional test’s data was graphed to further prove the constants validity. Fig. 5 

and Fig. 6, show graphs using the additional Shale drill off test data. As seen from Fig. 5 and Fig. 

6, the set of constants found are closely representative of the actual drilling data. The valid set of 

experimental constants were determined and used for the drilling scenarios optimized. 
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Figure 1: Reported ROP data and calculated ROP vs. applied WOB in Limestone formation drill 

off test 

 

Figure 2: Reported ROP data vs. calculated ROP in Limestone formation drill off test 
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Figure 3: Reported ROP data and calculated ROP vs. applied WOB in Shale formation drill off 

test 

 

Figure 4: Reported ROP data vs. calculated ROP in Shale formation drill off test 
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Figure 5: Reported ROP data and calculated ROP vs. applied WOB in an additional Shale 

formation drill off test 

 

Figure 6: Reported ROP data vs. calculated ROP in an additional Shale formation drill off test 
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CHAPTER IV 
 

 

RESULTS 

 

The work presented in this thesis uses the PSO algorithm to optimize oil field drilling by 

incorporating a ROP model with the goal to find optimal operational drilling parameters. The 

results section is divided into two different optimization sections; one bit optimization and two bit 

optimization scenarios, and the objective function changes according to both sections and are 

detailed in both. Initial tests were designed to analyze how the optimization technique responds to 

various changes in both rock strength and operational parameters. The first eight test scenarios 

were designed to vary one aspect at a time, while maintaining similar values for all other 

parameters, in order to analyze these effects on the output. For these situations the confined 

compressive rock strength were chosen and input into the algorithm. For the field case validation, 

the rock strengths were averaged over specific depth intervals and discretized.  

The PSO algorithm begins by selecting random values for WOB and RPM within the given 

operational ranges for each particle in the swarm. For every rock strength depth interval, there is 

one WOB value and one RPM value for that given interval. Each particle is evaluated through the 

specified objective function and the minimum parameters are recorded. In addition to calculating 

the OF, the algorithm has criteria that needs to be satisfied to ensure valid solutions. These 

include; not allowing bits to go below a specified minimum allowable bit wear, positive ROP, 

and nonnegative drilling time. If any one of these conditions are violated, the OF is defaulted to a 
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value of 1.0 x 10200 to ensure that this solution will not be selected. The position and velocity 

vectors for each particle are updated using Eq. 1 and Eq. 2, while maintaining values within given 

operational parameters. This process is iterated until the maximum number of iterations is 

obtained. 

4.1 One Bit Optimization  

The use of an advanced optimization algorithm for finding the best WOB and RPM combinations 

for a single bit run could potentially save numerous hours of drilling time.  An initial round of 

simulations were ran incorporating the PSO algorithm.  

For this optimization method, the inputs for the program include, rock strength, bit and fluid 

specifications, and WOB and RPM operational ranges. Included in the bit specifications, are 

whether the bit is new and has no wear before going into the hole, or if a worn bit is being used 

along with its’ bit grade before drilling begins. The wear function, Wf, is equal to one if the bit is 

new and less than one but greater than zero if the bit is worn. Along with the bit wear before the 

run, the operator has the choice to establish a value for bit wear to go no lower than a given 

threshold. In this case, the optimization algorithm will not allow any solutions to go below the 

desired minimum bit wear level. This section assumes a brand new bit and set the minimum wear 

level to 0.5.  

For any optimization problem, there must be a clear objective function to optimize, as given in 

Eq. 10. 

min      𝑂𝐹: 𝑡𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 =∑
∆𝐷𝑖
𝑅𝑂𝑃𝑖

𝑛

𝑖=1

                                                   (10) 

where             𝑡𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 > 0                                                                        

                       𝑅𝑂𝑃 ≥ 0                                                                               

In this work, the OF was minimizing the total drilling time, as opposed to maximizing 

instantaneous ROP or average ROP. The reason for this is that the overall drilling time is the  
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factor that will directly affect the amount of time and eventually money being saved for one well. 

This section shows preliminary testing used for one bit drilling sections. The first two scenarios 

are used to test WOB and ROP by inputting rock strength and RPM. The next two scenarios have 

the algorithm find both WOB and RPM, along with resultant ROP. The last two are used to 

analyze the effect of abrasiveness (ABR), Eq. 5, for different rock strength values. 

4.1.1 One Constant Rock Strength and Constant RPM 

The first drilling scenario was used to test the simplest case. For this simulation, rock strength and 

RPM, Fig. 7 and Fig. 9, were both input and set to a constant value to analyze the effect on the 

outputs WOB and ROP, Fig. 8 and Fig. 10, found from the PSO algorithm. 

 

Figure 7: Graph showing the one rock strength scenario; 15,000 psi, and constant 150 RPM 

 

Figure 8: Optimal WOB for one rock strength scenario; 15,000 psi, and constant 150 RPM 
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Figure 9: Constant RPM input for one rock strength scenario; 15,000 psi 

 

Figure 10: Calculated ROP for one rock strength scenario; 15,000 psi, and constant 150 RPM 

As seen above, the algorithm found that the optimal WOB was to increase through the constant 

rock strength. This is due to the fact that the WOB needs to increase as the depth increases to 

overcome the progressing bit wear. Shown in Fig. 10, the optimal ROP found is nearly a constant 

value. Fig. 11 below shows the drilling time decrease as the number of iterations increase. For 

this simple scenario the code finds the optimal solution around iteration 25. All the values used 

for this simulation are shown in Table 1. 
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Figure 11: Learning curve for one rock strength scenario; 15,000 psi, and constant 150 RPM 

Depth (ft.) Rock Strength (psi) WOB (1000 lbs.) RPM ROP (ft. /hr.) Wear ABR 

3200 – 3400 15,000 9.26 150.0 94.8 0.90 0.3 

3400 – 3600 15,000 10.02 150.0 93.8 0.84 0.3 

3600 – 3800 15,000 10.69 150.0 93.7 0.78 0.3 

3800 – 4000 15,000 11.40 150.0 93.8 0.72 0.3 

4000 – 4200 15,000 12.18 150.0 93.9 0.67 0.3 

4200 – 4400 15,000 13.06 150.0 94.0 0.61 0.3 

4400 – 4600 15,000 14.10 150.0 94.3 0.56 0.3 

4600 – 4800 15,000 15.35 150.0 94.5 0.50 0.3 

Table 1: Data table for one rock strength scenario; 15,000 psi, and constant 150 RPM 

4.1.2 Two Constant Rock Strengths and Constant RPM 

The next rock scenario adds a change in rock strength, Fig. 12, while continuing to maintain the 

same constant RPM, Fig. 14. Fig. 13 shows the solution found for WOB and Fig. 15 shows the 

ROP values from the PSO algorithm. 
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Figure 12: Graph showing the two rock strength scenario; 10,000 and 20,000 psi, and constant 

150 RPM 

 

Figure 13: Optimal WOB for two rock strength scenario; 10,000 and 20,000 psi, and constant 150 

RPM 

 

Figure 14: Constant RPM input for two rock strength scenario; 10,000 and 20,000 psi 
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Figure 15: Calculated ROP for two rock strength scenario; 10,000 and 20,000 psi, and constant 

150 RPM 

Analyzing the graphs above, there is a clear shift at 4000 ft. in both WOB and ROP which is the 

point that the rock strength changes. The ROP clearly drops off significantly which makes since 

due to the rock strength doubling in value. Below in Fig. 16, the learning curve is shown along 

with Table 2 displaying the data for this simulation. 

 

Figure 16: Learning curve for two rock strength scenario; 10,000 and 20,000 psi, and constant 

150 RPM 
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Depth (ft.) Rock Strength (psi) WOB (1000 lbs.) RPM ROP (ft. /hr.) Wear ABR 

3200 – 3400 10,000 6.05 150.0 138.5 0.94 0.3 

3400 – 3600 10,000 6.34 150.0 137.5 0.90 0.3 

3600 – 3800 10,000 6.58 150.0 137.3 0.87 0.3 

3800 – 4000 10,000 6.81 150.0 137.4 0.83 0.3 

4000 – 4200 20,000 10.46 150.0 49.2 0.75 0.3 

4200 – 4400 20,000 11.51 150.0 49.2 0.67 0.3 

4400 – 4600 20,000 12.76 150.0 49.3 0.58 0.3 

4600 – 4800 20,000 14.36 150.0 49.6 0.50 0.3 

Table 2: Data table for two rock strength scenario; 10,000 and 20,000 psi, and constant 150 RPM 

4.1.3 One Constant Rock Strength 

In this scenario, the rock strength is the same as in section 4.1.1, however, instead of manually 

inputting constant RPM values, the PSO will now find both WOB and RPM, Fig. 18 and Fig. 19. 

The resultant ROP is shown in Fig. 20. 

 

Figure 17: Graph showing the one rock strength scenario; 15,000 psi 
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Figure 18: Optimal WOB for one rock strength scenario; 15,000 psi 

 

Figure 19: Optimal RPM for one rock strength scenario; 15,000 psi 

 

Figure 20: Calculated ROP for one rock strength scenario; 15,000 psi 

Looking at the results shown above, similarly as explained in section 4.1.1, the optimal WOB was 

found to increase through the constant rock, along with the optimal ROP maintaining relatively 

constant. However, since the RPM was not input and allowed to change we can analyze the 
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optimal solution found. Differing from a constant RPM, the PSO algorithm found the best RPM 

values were to have an opposite trend from WOB, meaning RPM decreases through the constant 

rock. The learning curve, Fig. 21, and Table 3, showing the values from this simulation, are 

shown below. 

 

Figure 21: Learning curve for one rock strength scenario; 15,000 psi 

Depth (ft.) Rock Strength (psi) WOB (1000 lbs.) RPM ROP (ft. /hr.) Wear ABR 

3200 – 3400 15,000 7.45 199.6 98.0 0.90 0.3 

3400 – 3600 15,000 8.58 186.1 97.0 0.84 0.3 

3600 – 3800 15,000 9.21 183.5 96.3 0.78 0.3 

3800 – 4000 15,000 10.15 176.9 96.5 0.72 0.3 

4000 – 4200 15,000 11.97 157.7 96.6 0.67 0.3 

4200 – 4400 15,000 15.89 122.3 96.3 0.61 0.3 

4400 – 4600 15,000 20.97 97.1 96.8 0.56 0.3 

4600 – 4800 15,000 24.58 89.1 97.1 0.50 0.3 

Table 3: Data table for one rock strength scenario; 15,000 psi 
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4.1.4 Two Constant Rock Strengths  

Similarly to section 4.1.2, this scenario has two different rock strengths, Fig. 22, but this situation 

the PSO is finding both WOB and RPM, Fig. 23 and Fig. 24. The output ROP is shown in Fig. 

25. 

 

Figure 22: Graph showing the two rock strength scenario; 10,000 and 20,000 psi 

 

 

Figure 23: Optimal WOB for two rock strength scenario; 10,000 and 20,000 psi 
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Figure 24: Optimal RPM for two rock strength scenario; 10,000 and 20,000 psi 

 

Figure 25: Calculated ROP for two rock strength scenario; 10,000 and 20,000 psi 

As seen in Fig. 23 – Fig. 25, there is a clear shift in trends for WOB, RPM, and ROP at the point 

where the rock strength changes at depth 4000 ft. From Fig. 24, RPM is found from the code to 

be similar trends in both rock strengths, however, WOB is higher in the harder rock section, 

which agrees with section 4.1.2. Below is the learning curve, Fig. 26, and the simulation data, 

Table 4. 
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Figure 26: Learning curve for two rock strength scenario; 10,000 and 20,000 psi 

Depth (ft.) Rock Strength (psi) WOB (1000 lbs.) RPM ROP (ft. /hr.) Wear ABR 

3200 – 3400 10,000 5.02 200.0 148.3 0.94 0.3 

3400 – 3600 10,000 5.62 183.8 146.2 0.90 0.3 

3600 – 3800 10,000 6.86 151.5 145.4 0.87 0.3 

3800 – 4000 10,000 11.37 87.2 145.0 0.83 0.3 

4000 – 4200 20,000 8.59 200.0 52.1 0.75 0.3 

4200 – 4400 20,000 13.67 130.3 52.1 0.67 0.3 

4400 – 4600 20,000 18.49 102.9 52.0 0.58 0.3 

4600 – 4800 20,000 25.12 82.2 52.1 0.50 0.3 

Table 4: Data table for two rock strength scenario; 10,000 and 20,000 psi 

4.1.5 Three Constant Rock Strengths and Constant ABR 

The next two tests are to analyze the effects of rock abrasiveness. They consist of three rock 



32 
 

strengths, 10,000 psi, 15,000 psi, and 20,000 psi. Similarly to the first four simulations, this first 

test incorporates a constant value of 0.3 for abrasiveness in all three rock strengths. The graphs 

for rock strength, WOB, RPM, and ROP are shown in Fig. 27 – Fig. 30 below. 

 

Figure 27: Graph showing the three rock strength scenario; 10,000, 15,000, and 20,000 psi, with 

constant abrasiveness 

 

Figure 28: Optimal WOB for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, 

with constant abrasiveness 
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Figure 29: Optimal RPM for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, 

with constant abrasiveness 

 

Figure 30: Calculated ROP for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, 

with constant abrasiveness 

Looking at the graphs above, ROP clearly decreases as the rock strength increases, however, both 

averages for WOB and RPM increase with increasing rock strength. The learning curve and the 

data for this simulation are shown in Fig. 31 and Table 5. 
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Figure 31: Learning curve for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, 

with constant abrasiveness 

Depth (ft.) Rock Strength (psi) WOB (1000 lbs.) RPM ROP (ft. /hr.) Wear ABR 

3200 – 3400 10,000 7.00 133.5 146.1 0.94 0.3 

3400 – 3600 10,000 8.94 106.9 146.5 0.91 0.3 

3600 – 3800 10,000 10.94 90.0 149.9 0.87 0.3 

3800 – 4000 15,000 8.04 165.3 77.5 0.82 0.3 

4000 – 4200 15,000 10.96 119.2 75.4 0.77 0.3 

4200 – 4400 15,000 12.91 108.7 78.0 0.72 0.3 

4400 – 4600 20,000 9.87 196.1 52.0 0.65 0.3 

4600 – 4800 20,000 13.65 151.7 52.6 0.58 0.3 

4800 – 5000 20,000 15.95 140.0 51.5 0.5 0.3 

Table 5: Data table for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, with 

constant abrasiveness 
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4.1.6 Three Constant Rock Strengths and Changing ABR 

This test is the same as section 4.1.5, except the abrasiveness values increase with increasing rock 

strength. The abrasiveness values used are 0.1, 0.3, and 0.8 for rock strengths 10,000, 15,000, and 

20,000 psi, respectively. Fig. 32 – 35 show the rock strength, WOB, RPM and ROP results. 

 

Figure 32: Graph showing the three rock strength scenario; 10,000, 15,000, and 20,000 psi, with 

changing abrasiveness 

 

Figure 33: Optimal WOB for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, 

with changing abrasiveness 
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Figure 34: Optimal RPM for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, 

with changing abrasiveness 

 

Figure 35: Calculated ROP for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, 

with changing abrasiveness 

Comparing the results from section 4.1.5 to Fig. 35, the ROP still decreases with an increase in 

rock strength, with Fig. 35 resulting in a much greater decrease. Looking at Fig. 33 and Fig. 34, in 

contrast to section 4.1.5, both the average WOB and RPM decrease with an increase in rock 

strength. This is significant since in the wear function, Eq. 5, there are two factors increasing, 

CCS and ABR, as opposed to just one variable as in the previous section. This is a better and 

more realistic representation of real world situations. This result also shows up in the optimal 

rotating time, Fig. 36. The times found here are much higher than in Fig. 36 since the effect of 

harder rock strengths are magnified with the changing ABR values. Table 6 shows the values 

from this simulation. 
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Figure 36: Learning curve for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, 

with changing abrasiveness 

Depth (ft.) Rock Strength (psi) WOB (1000 lbs.) RPM ROP (ft. /hr.) Wear ABR 

3200 – 3400 10,000 6.25 200.0 190.9 0.97 0.1 

3400 – 3600 10,000 9.32 134.6 198.4 0.95 0.1 

3600 – 3800 10,000 15.09 80.1 202.5 0.93 0.1 

3800 – 4000 15,000 5.77 174.0 59.3 0.88 0.3 

4000 – 4200 15,000 8.48 115.0 58.2 0.84 0.3 

4200 – 4400 15,000 10.89 92.2 59.3 0.80 0.3 

4400 – 4600 20,000 5.91 144.3 23.5 0.70 0.8 

4600 – 4800 20,000 7.01 138.1 24.0 0.60 0.8 

4800 – 5000 20,000 11.69 86.0 23.2 0.5 0.8 

Table 6: Data table for the three rock strength scenario; 10,000, 15,000, and 20,000 psi, with 

changing abrasiveness 
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4.2 Two Bit Optimization 

This section is optimizing a drilling interval while incorporating two bits. For this optimization 

algorithm, the overall objective function (OF) determined to optimize upon differs from the one 

bit scenarios. In determining a successful well, one of the most important factors is the cost of 

drilling the well, therefore, the OF for optimization will be the cost per foot of drilling, Eq. 11. 

This classic cost equation, Eq. 11, is a function of the rig cost, the bit cost, the rotating time, Eq. 

13, and tripping time, Eq. 12. In the trip time equation, D1 is the depth when drilling starts for one 

bit and D2 is the depth when the bit is finished drilling, and these are multiplied by the factor of 

how long it takes to trip the drill pipe, 𝑡𝑇𝑟𝑖𝑝𝑝𝑖𝑛𝑔
′ , estimated as 0.75 hr. /1000 ft. The cost of the rig 

is assumed to be $100,000 per day. Eq. 11 is used to calculate the cost per foot for one bit. This 

equation will be used twice, and the overall cost per foot for the entire well will be determined. 

min      𝑂𝐹: 𝐶𝑜𝑠𝑡 =
𝐶𝑜𝑠𝑡𝑅𝑖𝑔(𝑡𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 + 𝑡𝑇𝑟𝑖𝑝𝑝𝑖𝑛𝑔) + 𝐶𝑜𝑠𝑡𝐵𝑖𝑡

𝐹𝑜𝑜𝑡𝑎𝑔𝑒 𝐷𝑟𝑖𝑙𝑙𝑒𝑑
                            (11) 

𝑡𝑇𝑟𝑖𝑝𝑝𝑖𝑛𝑔 = (𝐷1 + 𝐷2)𝑡𝑇𝑟𝑖𝑝𝑝𝑖𝑛𝑔
′                                                     (12) 

𝑡𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 =∑
∆𝐷𝑖
𝑅𝑂𝑃𝑖

𝑛

𝑖=1

                                                                  (13) 

Sections 4.2.1 and 4.2.2 used the two different bit proposals shown below in Table 7 for the PSO 

algorithm as the choice of possible bit selections. 

 Bit Proposal 1 Bit Proposal 2 

Number of Blades 5 6 

Number of Cutters 32 38 

Cost $  35,000.00 $  40,000.00 

Table 7: Two bit selection options for PSO algorithm 
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4.2.1 Three Constant Rock Strengths, Increasing Left to Right 

The first two bit optimization scenario, Fig. 37, includes three different CCS values of rock; the 

three left columns (3200 ft. to 4400 ft.) correspond to 10,000 psi, the middle three (4400 ft. to 

5600 ft.) are 15,000 psi, and the three right columns (5600 ft. to 6800 ft.) are 20,000 psi. 

Abrasiveness values corresponding to these three rock strengths are 0.1, 0.3, and 0.8, 

respectively. Below are the graphs for rock strength, WOB, RPM, and ROP, Fig. 37 - 40. 

 

Figure 37: Graph showing the three rock strength, multiple bit scenario; 10,000, 15,000, and 

20,000 psi 

 

Figure 38: Optimal WOB for the three rock strength, multiple bit scenario; 10,000, 15,000, and 

20,000 psi 
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Figure 39: Optimal RPM for the three rock strength, multiple bit scenario; 10,000, 15,000, and 

20,000 psi 

 

Figure 40: Calculated ROP for the three rock strength, multiple bit scenario; 10,000, 15,000, and 

20,000 psi 

Fig. 38 and Fig. 39 above show the optimized solution for the first two bit rock strength scenario, 

Fig. 37; including WOB and RPM combinations vs depth, along with the optimal depth that the 

bit was pulled out. Each column in Fig. 38 and Fig. 39 above represent the exact value used over 

the specified drilling intervals listed. The two different bits are illustrated with different textures, 

and both selected bits are bit proposal 2 from Table 7. The PSO algorithm found the best solution 

was to switch bits at 5979.13 ft. and that causes the column between 5600 ft. to 6000 ft. in Fig. 37 

to divide into two different columns (from 5600 ft. to 5979.13 ft. and 5979.13 ft. to 6000 ft.) in 

Fig. 38 – 40. Below is the learning curve, Fig. 41, and the data table, Table 8. 
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Figure 41: Learning curve for the three rock strength, multiple bit scenario; 10,000, 15,000, and 

20,000 psi 

Depth (ft.) Rock Strength (psi) WOB (1000 lbs.) RPM ROP (ft. /hr.) Wear Bit 

3200 – 3600 10,000 7.49 189.5 200.8 0.95 2 

3600 – 4000 10,000 10.11 137.0 197.1 0.92 2 

4000 – 4400 10,000 16.20 80.0 194.8 0.89 2 

4400 – 4800 15,000 7.73 146.9 61.1 0.81 2 

4800 – 5200 15,000 11.58 98.8 60.3 0.74 2 

5200 – 5600 15,000 12.66 97.4 60.2 0.67 2 

5600 – 5979.13 20,000 10.94 99.2 25.4 0.50 2 

5979.13 – 6000 20,000 6.10 136.4 26.2 0.97 2 

6000 – 6400 20,000 8.68 108.9 30.6 0.72 2 

6400 – 6800 20,000 13.56 92.7 32.6 0.50 2 

Table 8: Data table for the three rock strength, multiple bit scenario; 10,000, 15,000, and 20,000 

psi 
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Below shows a graph, Fig. 42, depicting how the cost of the well and selected bit combination 

changes with pull depth for the three rock strength scenario, increasing from left to right. This 

was achieved by manually inputting the bit pull depth and iteratively changing it through the well 

section. For each iteration, the algorithm was finding the optimal WOB, RPM, and bit 

combination associated with each specific pull depth. This graph agrees with the optimal solution 

found where the optimal depth to change bits found was 5979.13 ft., along with the optimal bit 

combination found to incorporate the second bit twice. The graph below shows three different 

sections of the graph representing the different order of possible combinations of the bits from 

Table 7 during the drilling process. These sections are associated with the different bit 

combinations including: use of the first bit followed by second bit, black dots; use of the second 

bit twice, green dots; and use of the second bit followed by the first bit, red dots. The bit 

combination of using the first bit twice never resulted in the optimal solution. 

 

Figure 42: Graph for three rock strength, increasing left to right, showing optimal drilling cost 

with changing pull depth 
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4.2.2 Three Constant Rock Strengths, Decreasing Left to Right 

The second rock strength scenario is the opposite from the first. Fig. 43 shows the second 

scenario including 20,000 psi in the three left columns (3200 ft. to 4400 ft.), the middle three 

columns (4400 ft. to 5600 ft.) are 15,000 psi, and the three right columns (5600 ft. to 6800 ft.) are 

10,000 psi rock. Abrasiveness values corresponding to these three rock strengths are 0.8, 0.3, and 

0.1, respectively. Below are the rock strength, WOB, RPM, and ROP graphs, Fig. 43 – 46, for 

this simulation. 

 

Figure 43: Graph showing the three rock strength, multiple bit scenario; 20,000, 15,000, and 

10,000 psi 

 

Figure 44: Optimal WOB for the three rock strength, multiple bit scenario; 20,000, 15,000, and 

10,000 psi 
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Figure 45: Optimal RPM for the three rock strength, multiple bit scenario; 20,000, 15,000, and 

10,000 psi 

 

Figure 46: Calculated ROP for the three rock strength, multiple bit scenario; 20,000, 15,000, and 

10,000 psi 

Fig. 44 and Fig. 45 above show the optimal WOB and RPM combinations vs depth, along with 

the optimal pull depth for the second two bit rock strength scenario shown in Fig. 43. Similarly to 

section 4.2.1, the WOB and RPM values represented in Fig. 44 and Fig. 45 signify the exact value 

over the depth interval. The two different bits are again illustrated with different textures, both 

selected bits were bit proposal 2 from Table 7. The optimal bit pull depth was found to be 

4011.95 ft. Likewise from the first scenario, the PSO algorithm split the column from 4000 ft. to 

4400 ft. in Fig. 43 into two columns from 4000 ft. to 4011.95 ft. and from 4011.95 ft. to 4400 ft. 

Fig. 47 shows the learning curve and Table 9 is the data from this simulation. 
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Figure 47: Learning curve for the three rock strength, multiple bit scenario; 20,000, 15,000, and 

10,000 psi 

Depth (ft.) Rock Strength (psi) WOB (1000 lbs.) RPM ROP (ft. /hr.) Wear Bit 

3200 – 3600 20,000 6.53 158.0 32.6 0.72 2 

3600 – 4000 20,000 9.31 142.1 32.1 0.51 2 

4000 – 4011.95 20,000 18.18 80.0 27.8 0.50 2 

4011.95 – 4400 20,000 5.00 167.5 25.4 0.77 2 

4400 – 4800 15,000 9.97 123.7 59.6 0.70 2 

4800 – 5200 15,000 11.35 117.7 60.1 0.63 2 

5200 – 5600 15,000 13.54 106.4 60.3 0.56 2 

5600 – 6000 10,000 16.70 130.5 198.5 0.54 2 

6000 – 6400 10,000 17.70 125.0 196.0 0.52 2 

6400 – 6800 10,000 19.64 114.3 194.5 0.50 2 

Table 9: Data table for the three rock strength, multiple bit scenario; 20,000, 15,000, and 10,000 

psi 
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Below shows a graph, Fig. 48, depicting how the cost of the well and selected bit combination 

changes with pull depth for the three rock strength scenario, decreasing from left to right. This 

graph was created in the same way as Fig. 42, and can be interpreted in a similar manner, except 

this represents the rock strength scenario shown in Fig. 43. This graph agrees with the optimal 

solution found where the optimal depth to change bits found was 4011.95 ft., along with the 

optimal bit combination found to incorporate the second bit twice.  

 

Figure 48: Graph for three rock strength, decreasing left to right, showing optimal drilling cost 

with changing pull depth 

4.3 Field Case Validation 

Field case data was used from a well in the North Sea and optimized to prove the validity of this 

program in more complex situations. The validation was shown using data from the first two bit 
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runs, 9379.92 ft. – 13832.02 ft., for the 12.25 in. well section (Gjelstad et al., 1998, Bratli et al., 

1997). The rig rates and the estimate for tripping 1000 ft. of pipe were held the same as in Section 

4.2.  

Before optimizing, the data from the well had to be correlated to the constants found in Eq. 3 and 

Eq. 5. All of the constants found in the methodology section were held to the same value as in the 

previous results sections, except for K, Wc, a2, b2, and c2. The constants found in Eq. 6, were 

taken from previous research done in modeling PDC bits (Rashidi, 2011), the other two were 

calibrated. Before finding the experimental constants, the confined rock strength for the well was 

calculated (Rastegar et al., 2008), and the well was discretized by taking averages of specific 

sections. Below is a graph showing the real rock CCS and the averaged rock values, Fig. 49. 

 

Figure 49: Graph of the 12.25 in. well real rock strength and averaged rock strength 
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The bit data that was used is shown below in Table 10. 

 Bit 1 Bit 2 

Bit Type PDC PDC 

Bit Diameter 12.25 in. 12.25 in. 

Depth In 9379.92 11814.30 

Depth Out 11814.30 13832.02 

Wear In 0.0 0.0 

Wear Out 0.45 0.825 

Cost $ 48,062 $57,876 

Number of Cutter 69 107 

Back Rake 20° 20° 

Side Rake 15° 0° 

Number of Blades 6 6 

Junk Slot Area 28 in2 28 in2 

Table 10: Two bits used in field case 

Both bit 1 and bit 2 will have different K and Wc values, so calibrating both of the constants were 

done using only the data associated with each individual bit. The K constant from Eq. 3 was 

found by using the reported data from the well and altering the K value until the difference 

between the final calculated drilling time and the reported time for each bit was minimized. Wc in 

Eq. 5, was calibrated iteratively by incorporating the drilling data and varying Wc until the 

calculated wear out matched the field reported wear for each bit. There were three different 

optimizations done for this well and are detailed below. The abrasiveness (ABR) values for this 

well were determined by fitting an exponential curve fit through the rock strength vs. 

abrasiveness values used in Sections 4.1 and 4.2. 
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The objective function for the field case validation is same as in Section 4.2 and shown in Eq. 10. 

For these simulations, there were no ROP restrictions applied to the field case optimization and is 

therefore purely theoretical.  A maximum ROP limit can be set from maximum handling 

capabilities of solid control equipment on the rig, annulus solid loading, hole cleaning or just 

controlled drilling with a set maximum ROP. 

4.3.1 WOB and RPM Optimization 

For this section, WOB and RPM were the only variables optimized, with the goal to reduce the 

overall cost per foot. The bit combination, pull depth, and final bit wear out were held the same as 

done in the field. Below are graphs showing the optimal WOB, RPM, ROP, and learning curve 

for this simulation, Fig. 50 – Fig. 53. Each bit is represented with different textures. 

 

Figure 50: Optimal WOB for field case WOB and RPM Optimization 
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Figure 51: Optimal RPM for field case WOB and RPM Optimization 

 

 

Figure 52: Optimal ROP for field case WOB and RPM Optimization 
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Figure 53: Learning curve for field case WOB and RPM Optimization 

4.3.2 WOB, RPM, and Pull Depth Optimization 

The next optimization performed was done on WOB and RPM combinations, along with optimal 

pull depth for changing the bits. The final bit wear out for both bits were changed to 0.5, 

however, the bit combination was held the same. Below are the graphs showing the results for 

WOB, RPM, ROP, and the learning curve, Fig. 54 – Fig. 57. 
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Figure 54: Optimal WOB for field case WOB, RPM, and Pull Depth Optimization 

 

Figure 55: Optimal RPM for field case WOB, RPM, and Pull Depth Optimization 
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Figure 56: Optimal ROP for field case WOB, RPM, and Pull Depth Optimization 

 

Figure 57: Optimal learning curve for field case WOB, RPM, and Pull Depth Optimization 
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4.3.3 WOB, RPM, Pull Depth, and Bit Selection Optimization 

The last optimization done on the 12.25 well data was a complete optimization. The PSO 

algorithm optimized WOB, RPM, bit pull depth, and bit combination. The algorithm was allowed 

to select either order of using bit 1 and bit 2, or simply using the same type of bit twice. The 

solution from the optimization are shown below in Fig. 58 – Fig. 61. 

 

 

Figure 58: Optimal WOB for field case WOB, RPM, Pull Depth, and Bit Combination 

Optimization 
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Figure 59: Optimal RPM for field case WOB, RPM, Pull Depth, and Bit Combination 

Optimization 

 

 

Figure 60: Optimal ROP for field case WOB, RPM, Pull Depth, and Bit Combination 

Optimization 
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Figure 61: Optimal learning curve for field case WOB, RPM, Pull Depth, and Bit Combination 

Optimization 

4.3.4 Field Case Results 

Below are tables showing the rotating times and costs associated with each bit for all the 

simulations.  

Table 11 below shows the data calculated using the real well data. The overall ROP through this 

section was 51.55 ft. /hr. 

 Depths Drilled Rotating 

Time 

Cost /ft. Total Cost for Section 

Drilled 

Bit 1: 9379.92 – 11814.30 ft. 39.59 hr. 114.71 

($/ft.) 

$ 279,242.13 

Bit 2: 11814.30 – 13832.02 ft. 46.78 hr. 165.01 

($/ft.) 

$ 332,953.20 

Total: 4452.10 ft. 86.37 hr. 137.51 

($/ft.) 

$ 612,195.33 

Table 11: Rotating time and cost for real field case data 
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Table 12 shows the data from Section 4.3.1. This simulation used the same pull depth and final 

bit wear determined from the data, 0.45 for bit 1 and 0.825 for bit 2. As seen from the table 

below, only optimizing on WOB and RPM, the cost of drilling the well was reduced 13.81 $ /ft. 

and a total cost of $ 61,483.50. The overall ROP calculated was 62.17 ft. /hr. 

 Depths Drilled Rotating 

Time 

Cost /ft. Total Cost for Section 

Drilled 

Bit 1: 9379.92 – 11814.30 ft. 30.19 hr. 98.63   

($/ft.) 

$ 240,093.03 

Bit 2: 11814.30 – 13832.02 ft. 41.42 hr. 153.94 

($/ft.) 

$ 310,616.43 

Total: 4452.10 ft. 71.61 hr. 123.70 

($/ft.) 

$ 550,709.46 

Table 12: Rotating time and cost for WOB and RPM Optimization 

Table 13 represents the data from Section 4.3.2. The PSO code was allowed to select the WOB 

and RPM combinations, along with the optimal pull depth. The final bit wear for both bits were 

chosen as 0.5. Looking at the data in the table, the algorithm determined that the optimal solution 

was to drill the entire interval with the first bit. This increased the rotating time for the first bit, 

but this reduced the cost by not having to trip twice and not including the cost of the second bit. 

These solutions reduced the cost from the original well, as well as Table 12, resulting in an 

overall ROP of 77.51 ft. /hr. 

 Depths Drilled Rotating 

Time 

Cost /ft. Total Cost for Section 

Drilled 

Bit 1: 9379.92 – 13832.02 ft. 57.44 hr. 80.85 

($/ft.) 

$ 359,938.70 

Bit 2: NA 0.00 0.00    

($/ft.) 

$ 0.00 

Total: 4452.10 ft. 57.44 hr. 80.85 

($/ft.) 

$ 359,938.70 

Table 13: Rotating time and cost for WOB, RPM, and Pull Depth Optimization 

The table below, Table 14, shows the results from Section 4.3.3. This simulation was a full 

optimization, allowing WOB, RPM, pull depth, and bit selection. The final wear for both bits was 

0.5. For this simulation, the algorithm selected to pull the bit sooner than what was originally 
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done when drilling the well. It was also determined that the optimal bit selection was to use the 

first bit selection twice, instead of using bit 2. As expected, this simulation resulted in the lowest 

cost since all of the allowable variables were optimized. The overall ROP for the well was 174.11 

ft. /hr. and this resulted in an overall savings in $ 264,527.72. 

 Depths Drilled Rotating 

Time 

Cost /ft. Total Cost for Section 

Drilled 

Bit 1: 9379.92 – 11594.39 ft. 11.41 hr. 72.77 

($/ft.) 

$ 161,155.18 

Bit 1: 11594.39 – 13832.02 ft. 14.16 hr. 83.35 

($/ft.) 

$ 186,512.43 

Total: 4452.10 ft. 25.57 hr. 78.09 

($/ft.) 

$ 347,667.61 

Table 14: Rotating time and cost for WOB, RPM, Pull Depth, and Bit Combination Optimization 

Below is a graph, Fig. 62, showing all three field case learning curves, along with the real field 

case data. 

 

Figure 62: Learning curve showing all three field case optimizations, along with the real data 
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CHAPTER V 
 

 

DISCUSSION 

 

This study demonstrates a new approach to help find optimal combinations for WOB and RPM 

for both single bit runs and multiple bits, in addition to bit selection and optimal pull depths. Due 

to the drilling process having such an inherent sequential nature to it, caused by the bit wear in 

Eq. 5, there are an infinite possibilities of combinations. The research presented herein helps 

assist the user search the infinite combination space, and focus down on the optimal drilling 

point. Shown in the best solutions, the ideal point is not maximizing the instantaneous ROP for 

each depth point, but rather the overall time or cost to drill the section. If maximizing the ROP 

was incorporated in the drilling OF, the maximum allowable values for WOB and RPM would be 

used and the bit would be worn down to a set value before the goal depth was reached. In 

actuality, the optimal ROP values were found to maintain a constant ROP through a constant rock 

strength. The results do agree with the knowledge that the ROP decreases as the rock strength 

increases. 

As seen in the results section, the optimal WOB and RPM values are shown, and these results 

reveal the WOB and RPM have opposite trends through a single rock formation. The WOB 

begins at a lower value and trends upwards until a new rock strength is reached. In contrast, the 

RPM values begin higher and gradually lowers through the rock. If the code was run iteratively 

by decreasing the depth step sizes over one drilling interval, i.e. 3600 – 4000 ft., the exact values  
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for WOB and RPM found would be representative for the average operational drilling parameters 

for that interval. The WOB and RPM results also show how large changes in rock strength affect 

the solutions for RPM and WOB. Analyzing the rock scenarios, both RPM and WOB trends 

adjust to account for the change in the rock strengths. Another outcome can be seen by comparing 

the average values for WOB and RPM for each rock strength. While holding abrasiveness 

constant, Section 4.1.5, the average WOB and RPM ranges increase as the rock strength 

increases. Conversely, changing abrasiveness values shown in Section 4.1.6, the average WOB 

and RPM decrease as the rock strength increases. A possible reason may be a combination of the 

two variables; rock strength and abrasiveness, increasing in Eq. 5. If the average WOB and RPM 

values increased as the rock got harder, the overall ROP would decrease, and potentially result in 

the bit getting worn down before the goal depth is reached.  

Analyzing all solutions from the results section, it can be seen that every scenario used the full 

potential life of the bit. Meaning, for all the tests, the final wear out was 0.5, which matches the 

lowest bit wear value specified. This result is true for both one bit and two bit optimizations. The 

result agrees with common knowledge that the most efficient drilling would be to maximize the 

allowable bit wear. If the final wear of a bit was not equal to 0.5, this would imply that the 

algorithm did not maximize the results, meaning the optimal value was not found and leaving 

potential bit life unused. 

In addition to the WOB and RPM trends, the PSO selected the second bit proposal for all bits 

used for both two bit rock strength scenarios, Section 4.2. This is potentially a result of the higher 

wear resistance for bit 2. Regarding the optimal pull depth, the swarm algorithm selected for the 

bit to be pulled in the hardest rock. A likely reason to change bits during the hardest rock section 

is to help ensure that ROP does not significantly drop off as the bits wear. 

Analyzing the field case scenario, it can be seen as the number of allowable parameters optimized 
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increase, the overall cost reduced, while the overall ROP increased. This result can be shown in 

Section 4.3.4. When just optimizing on WOB and RPM, the cost for the well reduced by              

$ 61,483.50. Once bit pull depth was allowed to be optimized, the overall cost for the well was 

reduced by $ 252,256.63, even while using less life of bit 1 and using none of bit 2. Finally, when 

the well was fully optimized, the cost was reduced by $ 264,527.72, and this results in a total cost 

reduction of 43%. These results show tremendous potential for the use of this optimization 

approach, and should produce better findings with an increase in more optimized parameters. 

Since the solution of PSO results in a discrete output, incorporating a line fit technique could be 

very beneficial. This could be done by using the midpoints from each step and applying a line of 

best fit for the output data, allowing it to be transformed from the discrete space to a continuous 

space. If multiple rock strength sections or multiple bits are included, there will be different 

continuous functions for each. These continuous outputs would be useful in the future for 

integrating the results into the drilling process. Below are two examples, Fig. 63 – 64, using the 

results from Section 4.2.1. 

 

Figure 63: Optimal WOB for the three rock strength, multiple bit scenario; 10,000, 15,000, and 

20,000 psi with continuous trends 
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Figure 64: Optimal RPM for the three rock strength, multiple bit scenario; 10,000, 15,000, and 

20,000 psi with continuous trends 

During drilling there are many factors that are some common problems, such as stick-slip and bit 

instability, which can affect the drilling efficiency and cause increased drilling costs. To avoid 

such problems, the PSO algorithm can be modified to filter potential solutions which are 

considered unacceptable by the additional required criteria. This helps decrease the chances of 

these problems occurring during the drilling process.  

In addition to these issues, in general when drilling a well, there are limitations on maximum 

ROP values. These restrictions could be due to limitations on the solids control system, annular 

solids loading and equivalent circulation density (ECD) issues, hole and bit cleaning, wellbore 

and particle settling, and in directional wells, a larger cuttings bed on the lower side of the 

annulus. Analyzing the field case validation scenarios, Section 4.3, the solutions do not have a 

limitation on ROP values since the results are to analyze theoretical optimal drilling solutions. 

Some of the results have very high ROP values, especially in the second rock strength section. 

These high ROP values will result in a lower theoretical drilling time and cost, however, the rig 
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solids control system might not be able handle such high drilling rates. This could easily be 

addressed in the future by adding an additional criteria to the objective function for maximum 

ROP. This would lower the high ROP values and the swarm algorithm would adjust the rest of 

the well to compensate for the change. 
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CHAPTER VI 
 

 

CONCLUSION 

 

6.1 Summary 

This study was done to see if drilling optimization could be achieved through an advanced swarm 

algorithm by introducing a procedure in determining optimal WOB and RPM combinations, in 

addition to, ideal bit choices and pull depths. The technique used, incorporated a step by step 

approach into analyze how altering different variables affected the simulation results. Since the 

drilling process is naturally sequential because of bit wear, Eq. 5, an advanced optimization 

algorithm was required to find optimal solutions. The analysis in this study, analyzed the effects 

of rock strength, abrasiveness, bit selection, pull depth, and bit wear. Applying the approach and 

algorithm to an actual filed case showed potential for substantial reduction in drilling cost. For the 

actual field case of a 12.25 in. hole section in the North Sea optimized a potential cost reduction 

of 43% was seen. The findings from this algorithm show potential, and are very encouraging that 

this research could eventually fully optimize the entire drilling process. 

6.2 Future Work 

This research will be developed further in the future by incorporating torque and drag analysis, 

which would transform the algorithm’s output to produce surface variables. In addition to torque 

and drag analysis, the algorithm will generically create bit designs for optimization, along with 
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incorporating both PDC bits and roller cone bit combinations for optimization. 
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APPENDIX 

 

 

Data Summary for WOB and RPM Optimization of Field Case 

CCS ABR WOB RPM MD Wf b(x) h(x) ROP 

7,547.00 0.0612 15.55 249.82 9379.92 0.970 0.90 1.00 186.43 

3,352.80 0.0256 13.95 250.00 9494.75 0.967 0.90 1.00 907.30 

3,352.80 0.0256 16.36 250.00 9609.17 0.963 0.90 1.00 1085.68 

3,352.80 0.0256 16.81 199.51 9723.59 0.960 0.90 1.00 897.44 

3,352.80 0.0256 23.70 143.29 9838.01 0.957 0.91 1.00 963.80 

3,352.80 0.0256 26.30 143.20 9952.43 0.954 0.91 1.00 1081.76 

3,352.80 0.0256 27.74 120.98 10066.85 0.951 0.91 1.00 973.84 

3,352.80 0.0256 33.11 99.70 10181.27 0.948 0.91 1.00 986.76 

3,352.80 0.0256 44.96 60.00 10295.69 0.945 0.92 1.00 855.63 

6,037.00 0.0447 16.82 233.17 10410.11 0.936 0.90 1.00 290.91 

6,037.00 0.0447 18.26 216.66 10529.04 0.926 0.90 1.00 294.73 

6,037.00 0.0447 20.16 211.66 10647.97 0.917 0.90 1.00 319.70 

6,037.00 0.0447 21.64 207.92 10766.90 0.908 0.90 1.00 337.55 

6,037.00 0.0447 23.47 170.47 10885.83 0.899 0.90 1.00 302.63 

6,037.00 0.0447 25.05 150.65 11004.76 0.892 0.90 1.00 286.86 

6,037.00 0.0447 36.10 94.59 11123.69 0.884 0.91 1.00 275.95 

6,037.00 0.0447 41.70 60.00 11242.62 0.879 0.92 1.00 208.00 

17,399.00 0.4750 11.24 227.61 11361.55 0.767 0.90 1.00 17.26 

17,399.00 0.4750 21.91 127.04 11472.28 0.659 0.91 1.00 18.46 

17,399.00 0.4750 23.48 125.89 11583.01 0.558 0.91 1.00 17.02 

17,399.00 0.4750 28.21 123.56 11693.73 0.450 0.91 1.00 17.48 

4,889.49 0.0352 28.81 248.21 11804.46 0.450 0.90 1.00 429.13 

4,889.49 0.0352 7.29 250.00 11814.30 0.987 0.90 1.00 87.75 

4,889.49 0.0352 8.48 215.41 11921.48 0.978 0.90 1.00 89.27 

4,889.49 0.0352 8.98 210.65 12038.50 0.970 0.90 1.00 92.52 

4,889.49 0.0352 9.78 179.87 12155.51 0.963 0.90 1.00 86.84 

4,889.49 0.0352 9.90 177.04 12272.53 0.956 0.90 1.00 86.12 
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4,889.49 0.0352 10.00 177.02 12389.55 0.950 0.90 1.00 86.47 

4,889.49 0.0352 10.55 169.65 12506.56 0.944 0.90 1.00 87.74 

4,889.49 0.0352 16.00 109.41 12623.58 0.939 0.91 0.94 86.16 

4,889.49 0.0352 17.38 107.37 12740.60 0.933 0.91 0.94 92.67 

4,889.49 0.0352 18.05 97.55 12857.61 0.927 0.91 0.95 88.37 

4,889.49 0.0352 18.72 92.01 12974.63 0.922 0.91 0.93 85.25 

4,889.49 0.0352 26.67 63.63 13091.65 0.916 0.92 1.00 95.70 

6,691.57 0.0513 8.90 222.95 13208.66 0.907 0.90 1.00 46.30 

6,691.57 0.0513 9.48 206.10 13322.40 0.897 0.90 1.00 45.63 

6,691.57 0.0513 28.49 60.00 13436.13 0.888 0.92 1.00 48.54 

10,492.50 0.1130 10.82 154.90 13549.87 0.867 0.90 1.00 15.07 

10,492.50 0.1130 25.20 60.00 13643.92 0.845 0.92 0.99 15.45 

10,492.50 0.1130 25.67 60.00 13737.97 0.825 0.92 1.00 15.49 

Table A-1: Data from WOB and RPM Optimization of Field Case 

 

Data Summary for WOB, RPM, and Pull Depth Optimization of Field Case 

CCS ABR WOB RPM MD Wf b(x) h(x) ROP 

7,547.00 0.0612 18.99 119.26 9379.92 0.978 0.91 1.00 114.75 

3,352.80 0.0256 10.59 250.00 9494.75 0.975 0.90 1.00 666.38 

3,352.80 0.0256 12.04 240.13 9609.17 0.972 0.90 1.00 740.21 

3,352.80 0.0256 17.26 144.32 9723.59 0.969 0.91 1.00 682.39 

3,352.80 0.0256 18.43 137.51 9838.01 0.967 0.91 1.00 700.40 

3,352.80 0.0256 25.37 93.75 9952.43 0.964 0.91 1.00 696.13 

3,352.80 0.0256 44.47 60.00 10066.85 0.961 0.92 1.00 859.50 

3,352.80 0.0256 45.00 60.00 10181.27 0.958 0.92 1.00 868.66 

3,352.80 0.0256 45.00 60.00 10295.69 0.955 0.92 1.00 865.98 

6,037.00 0.0447 11.10 250.00 10410.11 0.948 0.90 1.00 195.04 

6,037.00 0.0447 11.30 250.00 10529.04 0.941 0.90 1.00 197.63 

6,037.00 0.0447 11.63 250.00 10647.97 0.934 0.90 1.00 202.77 

6,037.00 0.0447 20.61 135.50 10766.90 0.927 0.91 1.00 214.83 

6,037.00 0.0447 22.86 110.21 10885.83 0.921 0.91 1.00 196.72 

6,037.00 0.0447 27.15 89.72 11004.76 0.915 0.91 1.00 195.24 

6,037.00 0.0447 35.33 60.06 11123.69 0.910 0.92 1.00 178.06 

6,037.00 0.0447 37.54 60.00 11242.62 0.904 0.92 1.00 189.60 

17,399.00 0.4750 7.31 250.00 11361.55 0.817 0.90 1.00 11.85 

17,399.00 0.4750 10.09 188.56 11472.28 0.740 0.90 1.00 11.81 

17,399.00 0.4750 14.63 135.81 11583.01 0.665 0.91 1.00 11.94 

17,399.00 0.4750 31.36 60.00 11693.73 0.590 0.92 1.00 11.69 

4,889.49 0.0352 17.49 250.00 11804.46 0.587 0.90 1.00 319.03 
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4,889.49 0.0352 18.66 249.28 11921.48 0.584 0.90 1.00 341.25 

4,889.49 0.0352 20.59 223.03 12038.50 0.581 0.90 1.00 341.36 

4,889.49 0.0352 21.03 213.06 12155.51 0.578 0.90 1.00 332.83 

4,889.49 0.0352 28.30 147.33 12272.53 0.575 0.90 1.00 326.03 

4,889.49 0.0352 28.61 143.56 12389.55 0.572 0.91 1.00 320.31 

4,889.49 0.0352 29.83 141.29 12506.56 0.569 0.91 1.00 329.26 

4,889.49 0.0352 30.22 138.40 12623.58 0.567 0.91 1.00 325.88 

4,889.49 0.0352 31.10 128.16 12740.60 0.564 0.91 0.91 283.56 

4,889.49 0.0352 34.60 123.04 12857.61 0.561 0.91 0.92 308.02 

4,889.49 0.0352 38.75 100.09 12974.63 0.558 0.91 0.92 288.10 

4,889.49 0.0352 45.00 60.00 13091.65 0.556 0.92 0.91 204.41 

6,691.57 0.0513 45.00 77.64 13208.66 0.550 0.92 1.00 146.80 

6,691.57 0.0513 45.00 60.37 13322.40 0.546 0.92 1.00 114.03 

6,691.57 0.0513 45.00 60.05 13436.13 0.542 0.92 1.00 112.57 

10,492.50 0.1130 22.46 169.72 13549.87 0.528 0.90 1.00 52.41 

10,492.50 0.1130 22.58 163.64 13643.92 0.515 0.90 1.00 49.60 

10,492.50 0.1130 28.59 137.04 13737.97 0.500 0.91 0.97 51.81 

Table A-2: Data from WOB, RPM and Pull Depth Optimization of Field Case 

 

Data Summary for WOB, RPM, Pull Depth, and Bit Combination Optimization of Field Case 

CCS ABR WOB RPM MD Wf b(x) h(x) ROP 

7,547.00 0.0612 30.07 192.45 9379.92 0.960 0.90 1.00 309.09 

3,352.80 0.0256 23.81 247.71 9494.75 0.955 0.90 1.00 1643.71 

3,352.80 0.0256 27.63 223.04 9609.17 0.950 0.90 1.00 1753.12 

3,352.80 0.0256 28.16 210.83 9723.59 0.945 0.90 1.00 1688.30 

3,352.80 0.0256 32.69 185.29 9838.01 0.940 0.90 1.00 1759.78 

3,352.80 0.0256 33.86 168.75 9952.43 0.936 0.90 1.00 1665.84 

3,352.80 0.0256 34.92 162.85 10066.85 0.932 0.90 1.00 1659.65 

3,352.80 0.0256 45.00 122.04 10181.27 0.927 0.91 1.00 1672.79 

3,352.80 0.0256 45.00 120.24 10295.69 0.923 0.91 1.00 1641.53 

6,037.00 0.0447 25.79 250.00 10410.11 0.910 0.90 1.00 496.90 

6,037.00 0.0447 26.70 249.79 10529.04 0.897 0.90 1.00 509.09 

6,037.00 0.0447 27.94 243.97 10647.97 0.884 0.90 1.00 516.72 

6,037.00 0.0447 43.69 150.80 10766.90 0.872 0.90 1.00 535.00 

6,037.00 0.0447 45.00 140.79 10885.83 0.860 0.91 1.00 510.54 

6,037.00 0.0447 45.00 60.00 11004.76 0.854 0.92 1.00 220.81 

6,037.00 0.0447 45.00 60.00 11123.69 0.849 0.92 1.00 219.36 

6,037.00 0.0447 45.00 60.00 11242.62 0.843 0.92 1.00 217.94 

17,399.00 0.4750 17.78 250.00 11361.55 0.676 0.90 1.00 30.72 
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17,399.00 0.4750 21.48 250.00 11472.28 0.515 0.90 1.00 30.61 

17,399.00 0.4750 44.94 103.57 11583.01 0.500 0.91 1.00 23.24 

17,399.00 0.4750 34.71 80.23 11594.39 0.818 0.92 1.00 26.18 

17,399.00 0.4750 44.89 70.40 11693.73 0.674 0.92 1.00 25.36 

4,889.49 0.0352 29.09 250.00 11804.46 0.669 0.90 1.00 654.05 

4,889.49 0.0352 29.58 250.00 11921.48 0.664 0.90 1.00 661.62 

4,889.49 0.0352 29.60 248.38 12038.50 0.658 0.90 1.00 652.80 

4,889.49 0.0352 30.80 247.53 12155.51 0.653 0.90 1.00 675.50 

4,889.49 0.0352 31.15 244.03 12272.53 0.648 0.90 1.00 669.45 

4,889.49 0.0352 31.40 239.06 12389.55 0.642 0.90 1.00 656.85 

4,889.49 0.0352 37.85 204.73 12506.56 0.637 0.90 1.00 695.27 

4,889.49 0.0352 38.89 189.89 12623.58 0.631 0.90 0.90 593.62 

4,889.49 0.0352 38.89 187.93 12740.60 0.626 0.90 0.90 585.62 

4,889.49 0.0352 39.21 185.25 12857.61 0.621 0.90 0.91 584.00 

4,889.49 0.0352 39.80 177.34 12974.63 0.616 0.90 0.90 555.61 

4,889.49 0.0352 45.00 60.00 13091.65 0.614 0.92 1.00 248.32 

6,691.57 0.0513 30.24 250.00 13208.66 0.604 0.90 1.00 318.08 

6,691.57 0.0513 30.88 250.00 13322.40 0.594 0.90 1.00 319.85 

6,691.57 0.0513 45.00 158.61 13436.13 0.584 0.90 1.00 313.12 

10,492.50 0.1130 29.16 250.00 13549.87 0.558 0.90 1.00 110.91 

10,492.50 0.1130 45.00 180.01 13643.92 0.529 0.90 0.95 121.29 

10,492.50 0.1130 45.00 178.43 13737.97 0.500 0.90 1.00 119.25 

Table A-3: Data from WOB, RPM, Pull Depth, and Bit Combination Optimization of Field Case
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