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Abstract: The ZeroFly
®

 Storage Bag is a deltamethrin-incorporated polypropylene (PP) 

bag, and is a novel tool used to reduce postharvest losses caused by stored-product insect 

pests. Data on the effectiveness of ZeroFly bags in preventing damaging insect 

infestations is critical for the scale-up of these bags in the developing world. Therefore, 

this study investigated response by adults of Sitophilus oryzae, Tribolium castaneum, and 

Rhyzopertha dominica to different concentrations of deltamethrin, 1, 25, 50, 100, 250, 

500, 1000, and 3000 ppm over two exposure periods, 24 or 48 h. Deltamethrin was 

highly effective, achieving 99% knockdown of insects of all species within 4 h after 

exposure at concentrations ≥ 25 ppm. LC95 values for these pests, for the 48-h exposure 

period, were ≈ 3,000 ppm, the concentration of deltamethrin in new ZeroFly bag fabric. 

Experiments were also conducted to measure the sensitivity of insects in contact with 

fabric of ZeroFly bags, PP bags, jute bags, malathion-treated PP bags, malathion-treated 

jute bags, and GrainPro
®
 bags ― data for time to knockdown, mortality, and number of 

progeny of S. oryzae and T. castaneum were collected. Times to knockdown of 99% of 

insects were ≤ 3 h; in the 72-h exposure period, mortality of S. oryzae and T. castaneum 

was 76.7 and 62.2%, respectively, for the ZeroFly bag fabric. Relative to other fabrics, 

ZeroFly bag fabric significantly suppressed progeny production by S. oryzae and T. 

castaneum at all exposure periods. Evaluation of miniature ZeroFly bags showed that 

none of the insects were able to bore (chew) through the bag. Although no insects gained 

entry into PP bags or laminated PP mini bags, mortality of insects in these mini bags was 

significantly lower than in ZeroFly mini bags. The field study conducted in the Middle 

Belt of Ghana showed that ZeroFly bags are more effective than PP bags in terms of 

reducing insect populations, insect damaged kernels, and percent weight loss. Results 

indicate that the ZeroFly bags can be highly effective in protecting grain for long-term 

storage, if insect-free grains are stored in them. 

 

 



vi 
 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. INTRODUCTION ......................................................................................................1 

 

 Introduction ..............................................................................................................1 

 Objectives ................................................................................................................4 

 

 

II. REVIEW OF LITERATURE....................................................................................5 

  

 Postharvest Losses ...................................................................................................5 

 Types of Postharvest Losses during Storage 

  Quantitative Losses ............................................................................................6 

  Qualitative Losses ..............................................................................................7 

 Stored-Product Insects Problems in the Developing World ....................................8 

 Types of Stored-Product Insects ..............................................................................9 

 Major Insect Species Studied in this Thesis ............................................................9 

 Management Strategy to Control Stored-Product Insect Pests ..............................11 

 The Concept of the Insecticide-Treated Fabric ......................................................14 

 The ZeroFly
®

 Storage Bag .....................................................................................15 

 References ..............................................................................................................17 

 

 

III. CONTACT TOXICITY OF DELTAMETHRIN AGAINST TRIBOLIUM 

CASTANEUM (HERBST), SITOPHILUS ORYZAE (L.) AND RHYZOPERTHA 

DOMINICA (F.) ADULTS ....................................................................................27 

 

 Abstract ..................................................................................................................28 

 Introduction ............................................................................................................29 

 Materials and Methods ...........................................................................................30 

  Insects ..............................................................................................................31 

  Deltamethrin Concentration .............................................................................32 

  Concentration-Time-Response Contact Toxicity Bioassay .............................33 

  Data Analyses ..................................................................................................34 

 Results ....................................................................................................................35 

  Concentration-Time-Response Contact Toxicity  ...........................................35 

 Discussion ..............................................................................................................36 

 Acknowledgements ................................................................................................39 

 Reference Cited ......................................................................................................40 



vii 
 

Chapter          Page 

 

IV. LABORATORY EVALUATION OF EFFECTIVENESS OF THE ZEROFLY
®
 

STORAGE BAG FABRIC AGAINST STORED-PRODUCT INSECT PEST ....60 

 

 Abstract ..................................................................................................................61 

 Introduction ............................................................................................................62 

 Materials and Methods ...........................................................................................65 

  Insects ..............................................................................................................65 

  Obtaining 1- to 3-wk Old Adults .....................................................................65 

  Contact Sensitivity of Insects to Fabrics and Effects of Exposure on  

            Oviposition .......................................................................................................66 

  Ability of Insects to Chew or Bore through Storage Bag Fabric .....................69 

  Data Analyses ..................................................................................................70 

 Results ....................................................................................................................72 

 Discussion ..............................................................................................................74 

 Acknowledgements ................................................................................................77 

 Reference Cited ......................................................................................................78 

 

 

V. FIELD EVALUATION OF THE DELTAMETHRIN-INCORPORATED BAG 

(ZEROFLY® STORAGE BAG AS A BARRIER TO INSECT PEST 

INFESTATION......................................................................................................94 

 

Abstract ........................................................................................................................95 

 Introduction ............................................................................................................96 

 Materials and Methods ...........................................................................................99 

  Study Sites .......................................................................................................99 

  Treatments........................................................................................................99 

  Maize and its Pre-Experimental Disinfestation .............................................100 

  Methodology ..................................................................................................101 

  Sampling and Data Collection .......................................................................102 

  Moisture Content (MC)..................................................................................102 

  Grain Sampling ..............................................................................................103 

  Statistical Analyses ........................................................................................104 

 Results ..................................................................................................................104 

 Discussion ............................................................................................................107 

 Acknowledgements ..............................................................................................111 

 Reference Cited ....................................................................................................112 

 

 

VI. CONCLUSIONS .................................................................................................130



viii 
 

LIST OF TABLES 

 

 

Table           Page 

Chapter III 

 

1. Time to knockdown in minutes (KT50, KT95, and KT99) for T. castaneum adults 

exposed to different concentrations of DM at 24- and 48-h exposure periods….46 

2. Time to knockdown in minutes (KT50, KT95, and KT99) for S. oryzae adults exposed 

to different concentrations of DM at 24- and 48-h exposure periods ............….50 

3. Time to knockdown in minutes (KT50, KT95, and KT99) for R. dominica adults 

exposed to different concentrations of DM at 24- and 48-h exposure periods….54 

4. Probit analyses of T. castaneum, S. oryzae, and R. dominica adult mortality data for 

24- and 48-h exposure periods 3 days after transfer to clean diet ……………..58 

 

CHAPTER IV 

 

1. Time to knockdown in minutes (KT50, KT95, and KT99) for S. oryzae and T. 

castaneum adults exposed to ZeroFly bag fabric ...........................................….83 

2. ANOVA results for main effects and interactions for fabric materials (Fabric), 

exposure period for adult S. oryzae and T. castaneum in relation to mortality when 

exposed to the fabric of ZeroFly Storage Bag, polypropylene bag (PP), jute bag, 

Malathion 50EC-treated PP bag, Malathion 50 EC-treated jute bag, and GrainPro 

bag .................................................................................................................…..84 

3. ANOVA results for main effects and interactions for fabric materials (Fabric), 

exposure period (Exp), and oviposition period (Ovipos) for adult S. oryzae and T. 

castaneum in relation to number of progeny when exposed to the fabric of ZeroFly 

Storage Bag, polypropylene bag (PP), jute bag, Malathion 50EC-treated PP bag, 

Malathion 50 EC-treated jute bag, and GrainPro bag .....................................…..8



ix 
 

Table          Page 

 

4. ANOVA results for main effects and interactions for type of mini bag and storage 

period for adult S. oryzae, T. castaneum, and R. dominica in relation to mortality 

when insects were kept outside mini bags, i.e. ZeroFly mini bags, PP mini bags, 

laminated PP mini bags, and jute mini bags .................................................…..86 

 

CHAPTER V 

 

1. ANOVA results for storage period and treatment for moisture content measured by 

both JD and PHL meters, number of insect damaged kernels, percentage of insect 

damaged kernels (%), and weight loss per 250-g samples from the Betallic, Control, 

and ZeroFly bag treatments ........................................................................…..119 

2. ANOVA results for storage period and treatment for number of live and dead 

Sitophilus spp., Tribolium spp., and Cryptolestes spp. per 250-g samples from 

Betallic, Control, and ZeroFly bag treatments. ...........................................…..120 

 



x 
 

LIST OF FIGURES 

 

Figure           Page 

 

Chapter IV 

 

1. Mortality (Mean ± SE) of Sitophilus oryzae (A) and Tribolium castaneum (B) 

exposed to fabric materials from ZeroFly bag (F1), polypropylene bag (PP) (F2), 

jute bag (F3), Malathion 50EC- treated PP bags (F4), Malathion 50EC- treated jute 

bag (F5), and GrainPro bag (F6). Means followed by different lowercase letters are 

significantly different (P < 0.05). ..................................................................…..89 

2. Number of progeny (Mean ± SE) of Sitophilus oryzae exposed to fabric materials 

from ZeroFly bag, polypropylene bag (PP), jute bag, Malathion 50EC- treated PP 

bag, Malathion 50EC- treated jute bag, and GrainPro bag. Means followed by 

different lowercase letters are significantly different (P < 0.05) ...................….90 

3. Number of progeny (Mean ± SE) of Tribolium castaneum exposed to fabric 

materials (A) for different exposure periods (B) and oviposition periods (C) from 

ZeroFly bag, polypropylene bag (PP), jute bag, Malathion 50EC- treated PP bag, 

Malathion 50EC- treated jute bags, and GrainPro bag. Means followed by different 

lowercase letters are significantly different (P < 0.05) ..................................….91 

4. Mortality (Mean ± SE) of Sitophilus oryzae (A), Tribolium castaneum (B), and 

Rhyzopertha dominica (C) when insects were placed outside of ZeroFly bag, 

polypropylene bag (PP), laminated PP bag, and jute bag. Means followed by 

different lowercase letters are significantly different (P < 0.05) ...................….92 

5. Mortality (Mean ± SE) of Sitophilus oryzae (A), Tribolium castaneum (B), and 

Rhyzopertha dominica (C) when insects were placed inside the ZeroFly bag, 

polypropylene bag (PP), laminated PP bag, and jute bag. Means followed by 

different lowercase letters are significantly different (P < 0.05) ...................….93



xi 
 

Figure           Page 

 

CHAPTER V 

 

 

1. Moisture content (%) (Mean ± SE) measured by PHL and JD meter per 250-g of 

maize kernels in the Betallic Super-treated maize-filled PP bags (Betallic Super), 

untreated maize-filled PP bags (control), and ZeroFly bags. Maize was sampled at 

the start of storage (February) and at monthly intervals thereafter for six months. 

Means followed by different lowercase letters are significantly different (P < 0.05).

...................................................................................................................……123 

2. Number and percentage of insect damaged kernels (IDK) (Mean ± SE) per 250 g of 

maize kernels in the Betallic Super-treated maize-filled PP bags (Betallic Super), 

untreated maize-filled PP bags (control), and ZeroFly bags. Maize was sampled at 

the start of storage (February) and at monthly intervals thereafter for six months. 

Means followed by different lowercase letters are significantly different (P < 0.05).

.....................................................................................................................…..124 

3. Numbers of live and dead Sitophilus spp. (Mean ± SE) per 250 g in Betallic Super-

treated maize-filled PP bags, untreated maize-filled PP bags (control), and ZeroFly 

bags. Maize was sampled at the start of storage (February) and at monthly intervals 

thereafter for six months. Means followed by different lowercase letters are 

significantly different (P < 0.05). ................................................................…..125 

4. Numbers of live and dead Tribolium spp. (Mean ± SE) per 250 g in Betallic Super-

treated maize-filled PP bag, untreated maize-filled PP bag (control), and ZeroFly 

bag. Maize was sampled after 0, 1, 2, 3, 4, 5, 6 months of storage. Means followed 

by different lowercase letters are significantly different (P < 0.05). ..........…..126 

5. Numbers of live and dead Cryptolestes spp. (Mean ± SE) per 250 g in Betallic 

Super-treated maize-filled PP bags, untreated maize-filled PP bags (control), and 

ZeroFly
®

 Storage Bags (ZeroFly bags). Maize was sampled at the start of storage 

(February) and at monthly intervals thereafter for six months. Means followed by 

different lowercase letters are significantly different (P < 0.05) ................…..127 

6. Percentage weight loss (Mean ± SE) per 250-g sample obtained from Betallic 

Super-treated maize-filled PP bags, untreated maize-filled PP bags (control), and 

ZeroFly bag. Maize was sampled at the start of storage (February) and at monthly 

intervals thereafter for six months. Means followed by different lowercase letters 

are significantly different (P < 0.05). ...........................................................….128 

7. Polypropylene bag with live insects on the surface (A) and the outside view of 

ZeroFly bag (B)............................................................................................….129 



1 
 

CHAPTER I 

 

 

INTRODUCTION 

 

Long-term extensive storage of cereal grains began during the Old Kingdom (Period 

in 3
rd

 millennium BC when Egypt attained first peak of civilization), about 4.5 millennia 

ago (Levinson and Levinson 1994, Rees 2004). Documented grain storage by inhabitants 

of ancient Egypt found evidence of insect infestation in food offerings in ancient tombs, 

built in 4500 B.C. – 395 A.D. thereby suggesting that insect pests of stored commodities 

evolved together with storage (Levinson and Levinson 1994, Rees 2004). Entomologists 

approximate that there are 2.5‒5 million insect species worldwide, but about 1 million 

have been recognized, described, and named (Grimaldi and Engel 2005). However, ˂ 

0.5% of insect species are regarded as pests, and only few of them cause serious damage 

(Sallam 2008). Postharvest losses due to insect pests have been estimated from 5 to 10% 

in the United States (Harein and Davis 1992, Cao et al. 2002), but this percentage is 

much higher and approaches 40% or more in developing countries (Kitinoja 2010, Parfitt 

et al. 2010, FAO and World Bank 2011). The high percentage of insect-related food 

losses in developing countries occurs despite many pest management approaches 

employed to protect stored grain from insect damage. Such high loss of food is a threat to 

food security. 
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The 1996 World Food Summit in Rome defined food security as existing “when all 

people, at all times, have physical and economic access to sufficient, safe and 

nutritious food to meet their dietary needs and food preferences for an active and healthy 

life” (FAO 1996). Food security is a major concern because of the rapidly increasing 

world human population projected to reach 9.6 billion by the end of 2050 (FAO 2013). 

Though food production is increasing due to improved cultivation practices, deployment 

appropriate technologies, fertilizer application, and use of chemical pesticides, the rate of 

increase is declining and cannot meet the exponentially increasing population. FAO 

(2013) reported that 842 million people or 12% of world population in 2011‒13 were in 

state of chronic hunger.  

Postharvest losses in sub-Saharan Africa are estimated about $4 billion a year (FAO 

and World Bank 2011). In Vietnam, rice losses are usually 10-25% but may reach 80% 

under extremely poor storage conditions (these losses relate to insect pests, extreme 

temperatures, mold, and handling losses) (FAO and World Bank 2011). Tefera (2012) 

estimated that total maize postharvest losses in Africa range from 14% to 36%. These 

postharvest losses of 14‒36% indicate that losses in the developing world are severe; 

these losses are due to a combination of factors such as losses in the field, during various 

processing operations, in storage, and during marketing. Specifically in the developing 

world, food quality and food security are an increasing challenge and hence the urgent 

need to ensure food security. 

To fulfill the nutritional requirements of a large number of people, the strategy of 

relying on only improved food production may not be sufficient; other techniques such as 

preventing losses in the postharvest system also need to be used (FAO and World Bank 
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2011). The techniques of preventing losses in storage have gradually been developed, 

researched, and scaled up (Evan 1985, USDA 1986, Arthur 1997, Tefera 2012, Gitonga 

et al. 2013); however, farmers in developing countries have been too slow in adopting up 

to date tools and techniques to minimize postharvest losses (FAO 2013, Affognon et al. 

2015). The cost of new technology and traditional behavior may be some of the reasons 

behind limited success of scale up of known effective storage tools and techniques 

(Parfitt et al. 2010, Rembold et al. 2011).  

Use of proper and well-managed grain storage facilities can minimize postharvest 

losses that are rampant in developing countries. Proper grain storage is an important 

aspect of food preservation and food security until the next harvest season. Farmers have 

to store the grain for future household needs or income (FAO 1994, FAO and World 

Bank 2011, Rembold et al. 2011).  

Storage techniques or tools that have been employed by smallholder farmers in 

developing countries include hanging maize cobs from trees to keep them aerially 

suspended, grains solar dried on the ground, baskets or cribs made of plant material, 

earthenware pots, underground storage, storehouses or warehouses or use of bags (FAO 

1994, Adejumo and Raji 2007). However, these traditional methods are unable to protect 

grains from insect pests. To date, there have been lots of attempts to improve storage 

methods in developing countries. Some recent storage techniques such as metal silos 

have resulted in a reduction in insect-related postharvest losses (Kimenju and De Groote 

2010, De Groote et al. 2013). Despite the benefits of metal silos, their adoption in Kenya 

was limited because of the high initial cost ( De Groote et al. 2013).  



4 
 

Storage in bags is widely practiced in the developing world and some smallholder 

farmers wrongly believe bags mitigate stored-product insect losses  (FAO 1994, Koona et 

al. 2007, De Groote et al. 2013, Costa 2014). To address the challenge of postharvest 

losses due to insect pest infestations in bagged commodities, an innovative tool, the 

ZeroFly
®

 Storage Bag, hereafter referred as ZeroFly bag, was developed by Vestergaard 

Frandsen SA, Switzerland, as a potentially logical and relatively affordable solution 

(Anankware et al. 2014, Costa 2014). However, little is known about the insecticidal 

activity of the ZeroFly bag and its mechanism of action that leads to the control of stored-

product insect pests. Therefore, this study investigated the adulticidal effects of 

deltamethrin, the insecticide incorporated in ZeroFly bag fabric and evaluated the 

effectiveness of this bag as a barrier to adults of major stored-product insects. 

 

OBJECTIVES 

 To evaluate knockdown and adulticidal activity of deltamethrin for Rhyzopertha 

dominica (F.) (Coleoptera: Bostrichidae), the lesser grain borer; Sitophilous 

oryzae (L.) (Coleoptera: Curculionidae), the rice weevil; and Tribolium 

castaneum (Herbst) (Coleoptera: Tenebrionidae), the red flour beetle, adults.  

 To evaluate the effectiveness of ZeroFly bag fabric against stored-product insect 

pests in laboratory. 

 Field evaluation of the deltamethrin-incorporated bag (ZeroFly bag) as a barrier to 

insect pest infestation.
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

Postharvest Losses 

FAO (1992) defined postharvest loss as “a measurable quantitative and qualitative 

loss in a given product”. After harvest, the given product is subjected to different 

postharvest operations such as, drying, threshing, winnowing, transportation and storing 

in the farm and market, where qualitative losses (loss in edibility, nutritional quality, 

caloric value, and consumer acceptability) and quantitative losses (weight loss) can occur 

(Kader 2005, Basavaraja 2007, FAO and World Bank 2011, Rembold et al. 2011, 

Shankar and Abrol 2012). A postharvest system is a set of all operations between 

harvesting and consumption of agricultural commodities which are fulfilled by different 

actors in order to achieve an effective and efficient food supply (Sallam 2008, Kiaya 

2014). In all operations of the postharvest system, losses can be due to spillage during 

transportation, or deterioration caused by insects, rodents, molds, and birds (Basavaraja 

2007, Kitinoja 2010, FAO and World Bank 2011, Abass et al. 2014). Abass et al. (2014) 

estimated that 15% of postharvest losses occur in the field, 13-20% during processing, 

and 15-25% during storage; while storage pest solely accounts for 16% of losses.
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Inadequate postharvest infrastructure and storage technologies, lack of knowledge 

and skills in postharvest management by smallholder farmers in developing countries are 

the main cause of losses (Abass et al. 2014). According to Kitinoja (2010), farmers use 

poor quality storage methods such as jute sacks or baskets that get easily damaged during 

handling and transportation resulting in losses. Recent studies in countries like India, 

Ghana, Benin, and Rwanda show that postharvest losses of about 20-80% are incurred 

(Kitinoja 2010). Rembold et al. (2011) reported that 17.4% of the total annual production 

of cereal grain produced in Africa was lost during postharvest operations. In India 

postharvest losses of 5.19 kg/q (1 quintal = 100 kg) in rice and 4.32 kg/q in wheat, for 

both on farm-level and market-level have been reported (Basavaraja 2007). These losses 

are significant clearly indicate an urgent need for greater attention to postharvest loss 

mitigation.  

 Insects are one of the most significant causes for postharvest losses of stored 

commodities (Hill 1990, Pimental 2002, FAO and World Bank 2011). Insects attack 

stored food including cereals (rice, wheat, maize, sorghum, millet), legumes (mungbean, 

blackgram, soybeans), and other dried products (coffee, cardamom, pepper). Presence of 

live or dead insects and their excreta in stored commodities reduces palatability and 

acceptability by consumers (Hill 1990, Jood and Kapoor 1992a). 

Types of Postharvest Losses due to Insect Pests during Storage 

Quantitative Loss 

Reduction in physical quantity can be referred as quantitative loss or weight loss. 

Insect consumption, spillage, and physical loss due to changes in temperature, moisture 
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content, or chemical composition are responsible for reduction in weight of a commodity 

(Aulakh and Regmi 2013, FAO 1992). It is estimated that insects and rodents cause loss 

of 40% in developing countries, however, losses can be more depending on the local area 

(Kitinoja 2010, Parfitt et al. 2010, FAO and World Bank 2011, Affognon et al. 2015). 

Assessment of insect-related losses is difficult given the variability that occurs from year 

to year. However, there are many studies on estimated weight losses due to different 

stored insect pests (Alonso-Amelot and Avila-Núñez 2011, Togola et al. 2013). Using 

samples from Venezuela, Alonso-Amelot and Avila-Núñez (2011) estimated that the S. 

oryzae caused 2.2 ± 0.7% to 12.5 ± 2.5% dry weight loss of wheat in a 90-d storage 

period. Togola et al. (2013) found that 3.29% to 10.94% of rice was infested in the 

southern region of Benin (West Africa) and the resulting weight loss was up to 5.47% 

after 6 mo of storage.   

Qualitative Loss 

Losses in grain quality may vary widely. Reduction in market price of the 

commodity can be assessed as quality loss (Hodges 2012, Aulakh and Regmi 2013). 

Change in economic and nutrient value can occur due to incidence of insect pests, mites, 

rodents and birds, or from handling, physical changes or chemical changes, or by 

contamination with mycotoxins, pesticide residues, insect fragments, or excreta of 

rodents and their dead bodies (Rajendran 2005, Aulakh and Regmi 2013). Insects feed on 

the germ (embryo) of seeds and grains, which is the region where proteins, minerals, and 

vitamins are present; this reduces nutritional quality (Hill 1990). Insect contamination 

could affect the sale of cereal grains and legume grains or cause them to be rejected by 

consumers; both scenarios lead to significant economic loss (Hill 1990). It is reported 
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that insects can cause change in chemical composition for example, increase in non-

protein nitrogen, fat acidity, and decrease in thiamine level and pH of wheat flour 

(Venkatrao et al. 1960, Jood and Kapoor 1992). 

Stored-Product Insect Problems in the Developing World 

Cereal grains and grain legumes are a main part of human diet and provide major 

portion of energy and nutrient needs. Effective grain storage is important for the 

preservation of food until the next harvest season. Farmers must store the grain for future 

household needs or for income. Unfortunately, grain storage is risky business with 

farmers experiencing challenges such as stored-product insect infestation. Stored-product 

insects infesting various types of grains are cosmopolitan. Major insect pests, which 

cause damage to stored grain are beetles (Coleoptera) and moths (Lepidoptera) (Groot 

2004, Chomchalow 2003). Among them, beetles are most destructive and have a 

worldwide occurence.  

 In ancient Egypt there is documentation of grain insects such as Tribolium spp. 

and Sitophilus spp. infesting grain and food offerings in ancient tombs (Levinson and 

Levinson 1994). These insects along with others still continue to cause losses in grain 

during storage. According to the FAO (1999), Wheat-Postharvest Compendium, major 

insect pests  of wheat in storage in developing countries are, Khapra beetle (Trogoderma 

granarium Everts) (Coleoptera: Dermestidae), R. dominica, S. oryzae (L.), and T. 

castaneum. A recent study by Togola et al. (2013) reported that the major insects that 

damage grain in storage in parts of sub-Saharan Africa are S. oryzae, angoumois grain 

moth (Sitotroga cerealella) (Lepidoptera: Gelechiidae) and R. dominica.  Raoul and 

Leonard (2013) also reported that Sitophilus spp., R. dominica, and Tribolium spp. are 
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major pests in parts of sub-Saharan Africa. Postharvest losses due to the above mentioned 

insects are one of the most important constraints to effective grain storage in the 

developing countries (Togola et. al. 2013, Raoul and Leonard 2013) 

Types of Stored-Product Insects 

 Stored grain insects are classified as either primary pests (internal grain feeders) 

or secondary pests (external grain feeders). S. cerealella, R. dominica, and S. oryzae are 

considered primary pests because they penetrate the hard seed coat of undamaged kernels 

to feed on the germ and endosperm. Secondary pests such as T. castaneum, Plodia 

interpunctella Hubner (Lepidoptera: Pyralidae), which feed on the broken grain or 

kernels with cracked seed coats, only attack damaged grain (Groot 2004). Larvae of 

internal feeders such as R. dominica and S. oryzae feed on and damage the 

endosperm (Hagstrum et al. 2012). 

Major Insect Species Studied in this Thesis 

Rhyzopertha dominica (F.) The lesser grain borer, Rhyzopertha dominica (F.) 

(Coleoptera: Bostrichidae), is the serious pest of cereal grains worldwide and is believed 

to have originated from a tropical region (Jia et al. 2008, Edde 2012). Rhyzopertha 

dominica is a highly destructive pest and its larval and adult stages feed on intact whole 

grain kernels. Rhyzopertha dominica attacks wheat, maize, rice, nuts, or dry fruits 

(USDA 1986, Hagstrum et al. 2012, Edde 2012). Adults and larva both are voracious 

feeders. Females can lay up to 500 eggs loosely outside the grain kernels and upon 

hatching the larvae enter the grain kernels and feed (USDA 1986, Hagstrum et al. 2012). 

Eggs can hatch in few days after which larvae feed inside kernels where they cause 

significant damage to the endosperm and cause weight loss (Edde 2012, Hagstrum et al. 
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2012). Several studies have shown that R. dominica can cause weight losses of up to 17% 

(Gundu Rao and Wilbur 1972, Campbell and Sinha 1976). Not only does R. dominica 

cause weight loss, there is evidence that it causes quality loss (nutrient loss) as well 

(Girish et. al. 1975, Jood et. al. 1992b, Jood and Kapoor 1992a). 

Sitophilus oryzae L. 

The rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae), is widely 

distributed in tropical and temperate regions and a destructive insect pest of stored 

products (Munro 1996, Rees 2004). It is a small beetle (3.0 - 4.6 mm) with a long snout 

and varies in color from reddish brown to black. Sitophilus oryzae is an internal feeder 

which mainly feeds on the endosperm (USDA 1986, Bello et al. 2001, Rees 2004, 

Hagstrum et al. 2012). The female bores a small hole in the grain kernel with her 

mandible to lay eggs in it and covers it with gelatinous fluid that seals the hole (Munro 

1996, Hagstrum et al. 2012). Each female lays 300 to 400 eggs during its average life 

span of 4 to 5 months (USDA 1986). After the egg hatches, the larva starts to feed on the 

kernel internally and ultimately develops into an adult (USDA 1986 and Hagstrum et al. 

2012). Developmental time from egg to adult depends on temperature and relative 

humidity, but on average a minimum of 30 days is required (USDA 1986). 

Sitophilus oryzae is the most common pest of cereal grains and can seriously 

damage both quality and quantity of whole grains such as wheat, maize, barley, and rice 

if left untreated (Munro 1996, Rees 2004). It also feeds on beans, nuts, and other stored 

products. Both adults and larvae feed on cereal grains voraciously (Munro 1996). Insects 

can fly from one place to other which helps them to infest grains stored in other 

warehouses. 
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Tribolium castaneum (Herbst) The red flour beetle, Tribolium castaneum (Herbst) 

(Coleoptera: Tenebrionidae), is a stored-product pest of economic importance worldwide; 

it is also considered as a major pest of the food industry (Rees 2004). Tribolium 

castaneum is a polyphagous and cosmopolitan pest which usually feeds on flour and 

damaged grain (Lu et al. 2010). Each female can lay two to three eggs per day; eggs are 

laid directly on flour or other food materials and 90% of the eggs laid are viable 

(Robinson 2005). Eggs hatch into small, cylindrical wormlike larvae in 5 to 12 days 

(UDSA 1986).  Tribolium castaneum prefer floury (farinaceous) food materials such as 

flour or meal, but they can also feed on cracked, damaged or broken kernels. They cannot 

feed on undamaged intact kernels (USDA 1986, Subramanyam and Nelson 1999).The 

scent glands of adult T. castaneum secrete a malodorous fluid which has a highly 

unappealing smell (Lu et al. 2010, Velki et al. 2014). 

Management of Stored-Product Insect Pests 

Great effort has been expended to try and mitigate stored-product insect pest 

problems in developing countries. Inert dusts, including both non-silica and silica dusts 

(kaolin, sand) are traditionally used as grain protectants. (Subramanyam and Roesli 2000, 

Rajendran 2003). Inert dusts control insects by causing desiccation which results from 

damage of the cuticular wax layer of the cuticle by abrasion and/or adsorption (Golob 

1997, Rajendran 2003).  However, inert dusts act slowly and can take 20 or more days to 

kill insects, and these dusts affect grain bulk density, create dusty conditions during grain 

handling and do not work well when relative humidity is high. Dust also impede flow of 

grain, and dusts containing crystalline silica may cause silicosis and other respiratory 

diseases (Pimental 2002, Rajendran 2003).  Nevertheless, there is great interest in this 
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technology and there are many recent studies on the efficacy of diatomaceous earths 

(DEs) against stored-product insect pests (Subramanyam and Roesli 2000, Wakil et al. 

2010, Nwaubani et al. 2014). 

Traditionally, farmers in many sub-Saharan countries use inexpensive and locally 

available plant materials for insect control (Otitodun et al. 2015). Research studies have 

shown that botanical insecticides are effective against stored-product insect pests (Nikpay 

2004, Lee et al. 2004, Negahban et al. 2006, Otitodun et al. 2015). Plant materials are less 

harmful to human and animals because they can rapidly break down to harmless 

metabolites (Rajashekar et al. 2012, Hodges 1998). Despite the fact that botanical 

insecticides are relatively safe for humans, in some cases, they have been found to have 

only moderate efficacy, to lack consistent efficacy, or to leave unpleasant odor in treated 

grains (Phillips and Throne 2010). Other approaches to manage insect pests in stored 

grain include temperature management (Rajendran 2003, Ileleji et al 2007, Pimental 

2002), however, smallholder farmers in developing countries cannot afford expensive 

aerators or other temperature management equipment.  

Recent hermetic bagging technologies such as PICS bag and GrainPro super bags 

have been deployed to solve the problem of stored-product insects. A PICS bag consists 

of one woven polypropylene bag surrounding two layers of high density polyethylene 

(HDPE) which costs about 2USD on local markets (Baoua et al. 2014, Costa 2014, 

Martin et al. 2015). It is effective in reducing population growth by lowering O2 and 

increasing CO2 level since double layer of thick HDPE greatly restrict the exchange of 

internal O2 and CO2 (Baoua et al. 2014, Martin et al. 2015). GrainPro technology consists 

of multi-layer polyethylene film which is highly impermeable to O2, which cost 2.5-3 
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USD. Both of the techniques, PICS and GrainPro bags are equally effective to control 

insects during storage (Baoua et al. 2013). However, these techniques require sealable 

containers and with careful management to maintain a tight seal (Baoua et al. 2013).  

Since the 19
th

 century, synthetic insecticides have been an important part of pest 

management programs of stored grain. Fumigants and contact insecticides are examples 

of effective major synthetic insecticides used to control insect pests (Zettler and Arthur 

2000). Contact insecticides such as Chloropyrifos or deltamethrin are often mixed with 

grains or used to treat surfaces of grain storage structures (Arthur 1994, Kljajic and Peric 

2009). The choice of insecticide depends on the knowledge level of the user, type of 

insects targeted, stored produce, legal restrictions, and toxicity (FAO 1994, Arthur 1996). 

Chemical control has proved to be one of the best insect control measures for many 

decades (Arthur 1996, Zettler and Arthur 2000, Kljajic and Peric 2009). However, 

farmers in developing countries have limited access to newer reduced risk insecticides. 

These farmers rarely sufficiently trained on proper handling and use of insecticides, 

which may affect human health and/or negatively affect the environment (ecosystems) 

(USDA 1986, Kaminski and Christiaensen 2014). Some insect control technologies 

currently used by smallholder farmers have often proved to be unaffordable, unsuitable 

for smallholder farmers, and to negatively affect the environment. However, eliminating 

these insect control technologies entirely could have serious economic consequences. 

Therefore, a novel technology such as insecticide incorporated storage bags could be 

practical, i.e. effective and affordable, for smallholder farmers and has potential to 

significantly minimize the insect infestations during storage.  

The Concept of Insecticide-Treated Fabric 
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Storage bags such as jute and polypropylene bags have been extensively used to 

store the different commodities. Unfortunately, storing grains in jute or polypropylene 

bags often does not prevent stored-product insect pest infestation. The need for a bag that 

effectively mitigates infestation of grain stored leads to the development of the 

insecticide-incorporated storage bag. The concept of insecticide-incorporated textile has 

been successful in mosquito nets for mosquito control to mitigate malaria (Barlow et al. 

2001). This success led to the concept of the insecticide-incorporated storage bags for 

controlling stored-product insect pests. 

Parkin (1948) investigated the effectiveness of 1 or 5% dichloro-diphenyl-

trichloroethane (DDT)-impregnated sacks to mitigate infestation by Calandra granaria 

(L.) (Coleoptera: Curculionidae), T. castaneum, Ptinus tectus Boield (Coleoptera: 

Ptinidae), and Oryzaephilus surinamensis L. (Coleoptera: Silvanidae). That study showed 

that no live insects were found in sacks impregnated with 5% DDT. According to Parkin 

(1948), it is much less toxic to impregnate the bag than to apply DDT directly to the 

grains. Atkins and Greer (1953), investigated the efficacy of DDT and BHC (Benzene 

hexachloride) impregnated jute fabric against Ephestia kuehniella (Lepidoptera: 

Pyralidae), P. tectus, and T. confusum (Coleoptera: Tenebrionidae) and showed that DDT 

impregnation was successful in minimizing the insect infestation at and above 1% (w/w). 

Their data support conclusions by Parkin (1948). In a study where methyl bromide, 

acrylonitrile, carbon tetrachloride, and ethylene dibromide (EdBr) were impregnated in 

the bag by Muthu and Pingale (1955), and reported that 10cc (10 ml) of EdBr per bag 

was enough to kill S. oryzae, R. dominica, and T. castaneum present in the bagged grain. 

Because of safety and environmental concerns associated with DDT and EdBr use, these 
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insecticides have since been banned for use on grain and food. Botanicals and Actellic 

Super also have been incorporated in storage bag fabric and bags made from such fabric 

have been shown to effectively control stored-grain insects for 3 to 4 mo (Koona et al. 

2007, Groote et al. 2013).  

One recent innovative tool, ZeroFly
®

 Storage Bag (hereafter referred to as the 

ZeroFly bag), is based on the concept of insecticide incorporated fabric, that has been 

developed to mitigate insect pest infestation of bagged grains. The ZeroFly bag, 

developed by Vestergaard Frandsen SA, Switzerland, could be an extremely effective 

method for mitigating insect pests for long-term storage of grain (Anankware et al. 2014). 

The ZeroFly bag is a deltamethrin-incorporated bag that is marketed for the control of 

insect pests of stored grain. 

The ZeroFly
 
bag 

The ZeroFly
 
bag is a woven polypropylene bag made of deltamethrin-

incorporated fabric and marketed for storage of commodities such as cereal grains, pulses 

and oilseeds (Anankware et al. 2014). Deltamethrin is a broad-spectrum pyrethroid 

insecticide approved by the Food and Agriculture Organization (FAO) and World Health 

Organization (WHO). It is registered in U.S.A. for use in stored grain (Dotson et al. 

2010) and also registered in many parts of the world for stored grain protection (Vayias et 

al. 2010). Deltamethrin is an effective insecticide in the ZeroFly bag fabric and provides 

a powerful killing action against stored product insects before they can infest the grain or 

seed stored in the bag. Anankware et al. (2014) showed that the ZeroFly bag caused 

100% mortality of S. zeamais after 48 hours of exposure to ZeroFly bag fabric. However, 
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little data is available on the effectiveness of the ZeroFly bag against other stored-product 

insect pests.
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CHAPTER III 

 

 

Contact Toxicity of Deltamethrin against Tribolium castaneum (Coleoptera: 

Tenebrionidae), Sitophilus oryzae (Coleoptera: Curculionidae) and Rhyzopertha dominica 

(Coleoptera: Bostrichidae) Adult



28 
 

ABSTRACT This study was conducted in the context of evaluating deltamethrin-

incorporated ZeroFly
®
 Storage Bags for efficacy against stored-product insect pests. We 

evaluated response to deltamethrin concentrations by adults of three stored-product 

insects, namely, Tribolium castaneum (Herbst), Sitophilus oryzae (L.), and Rhyzopertha 

dominica (F.). In insect toxicological studies, knockdown is the state of intoxication and 

partial paralysis as a result of exposure to an insecticide. Deltamethrin concentrations of 

1, 25, 50, 100, 250, 500, 1000, and 3000 ppm were sprayed on glass Petri dishes and 

tested over two exposure periods, 24 or 48 h. After drying, twenty adults of either of the 

species were introduced to determine the contact toxicity of deltamethrin.  Assessments 

for knockdown were made at 15-minute intervals after the initial exposure and at 0.5, 1, 

2, 4, 8, 12, 24, 48, and 72 h after being transferred to clean Petri dishes with diet. 

Mortality was assessed 72 h after transfer to clean diet. Deltamethrin was highly effective 

against all three species tested  and achieved 99% knockdown of insects of all species 

within 4 h after exposure at concentrations ≥ 25 ppm. Although some insects recovered 

from initial knockdown at concentrations ≤ 1000 ppm, nearly all the insects were killed at 

3000 ppm when exposed to 48 h. LC95 values for all species tested, for the 48-h exposure 

period, were ≈ 3,000 ppm, the concentration of deltamethrin present in new ZeroFly bag 

fabric.  

KEY WORDS knockdown, bagged grain, Tribolium castaneum (Herbst), Sitophilus 

oryzae (L.), Rhyzopertha dominica (F.) 
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Introduction 

Insect pests are a major cause of postharvest losses and are responsible for 5−10% 

of the food destroyed or contaminated after harvest in the United States (Harein and 

Davis 1998, Cao et al. 2002). Postharvest losses experienced by smallholder farmers due 

to insect pests in developing countries are much larger and range from 30−80%, and are a 

major threat to food security (Giga et al. 1991, FAO and World Bank 2011, Kitinoja et al. 

2011, Affognon et al. 2015). Insects feeding on kernels cause weight loss, contaminate 

food with feces, exuviae, webbing, insect cadavers, and open avenues for microfloral 

contamination thereby causing nutritional and quality losses that make food unfit for 

consumption (Harris and Lindbland 1976, Boxall et al. 1979, Bhargava et al. 2007, FAO 

and World Bank 2011, Tefera et al. 2011). The amount of grain lost to insect pests by 

smallholder farmers during storage is greater for farmers who do not have access to 

modern grain storage techniques and facilities (FAO and World Bank 2011, Hodges et al. 

2014, Affognon et al. 2015). Development of proper storage techniques that are 

economically and socially practical to smallholder farmers can reduce the amount of 

insect-related loss during storage. 

Farmers in developing countries predominantly use traditional storage techniques 

which include open platforms, woven baskets, pots, mud rhombus, maize cribs, bamboo 

storage structures, straw roofed storage structures, underground storage, bag storage, and 

storehouses (warehouses) (FAO 1994, Adejumo and Raji 2007). Because most of these 

structures are made of locally available materials, small-scale farmers find them 

economically feasible to construct. Currently, bag storage is the most preferred storage 

technique in developing countries (FAO 1994, Koona et al. 2007, De Groote et al. 2013). 
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However, postharvest losses in bagged commodities is prevalent; for maize stored in 

traditional polypropylene bags for 90 d, losses in Uganda and Burkina Faso were 

estimated at approximately 54% and 60%, respectively (Costa 2014). The ZeroFly
® 

Storage Bag (hereafter referred to as the ZeroFly
 
bag) is a potentially logical and 

relatively affordable solution that can be used to address the challenge of postharvest 

losses due to insect infestations in bagged commodities (Anankware et al. 2014, Costa 

2014). However, there is lack of published data that detail the toxicity of deltamethrin 

present in the ZeroFly bag fabric.  

Deltamethrin is a broad spectrum synthetic pyrethroid insecticide that is widely 

used to control stored-product insect pests (Arthur 1997, Kljajic and Peric 2009). It is 

registered in the United States for use in stored grain (Dotson et al. 2010); it is also 

registered in many parts of the world for stored grain protection (Vayias et al. 2010). 

Deltamethrin is a synthetic version of naturally occurring pyrethrins extracted from 

pyrethrum of dried Chrysanthemum flowers (Joy 1993, Bhanu et al. 2011). It is less 

dangerous than other pesticides due to its low toxicity to vertebrates, (does not bio-

accumulate, and can be metabolized by plants and animals) (WHO 1990 and Dotson et al. 

2010). It kills insects by paralyzing their nervous system, giving a quick knockdown 

effect, loss of co-ordination, and eventually death (Velki et al. 2014).  

Several studies have shown that deltamethrin is an effective grain protectant 

(Evans 1985, Arthur 1997) and can also be used as a surface treatment singly or in 

combination with other insecticides to control insect pests (Arthur 1997, Arthur et al. 

2009, Sehgal et al. 2013). Deltamethrin is the most common pyrethroid for treating 

mosquito nets; it provides an excito-repellent effect when applied to nets (Barlow et al. 
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2001). The concept of insecticide-incorporated fabric has been successfully used in 

mosquito nets to control malaria (Barlow et al. 2001, Lengeler 2009). The use of 

deltamethrin-incorporated mosquito nets gave rise to the concept of insecticide-

incorporated storage bags for the control of stored-product pests (Anankware et al. 2014). 

There are few published studies documenting the contact toxicity of deltamethrin 

against stored-product insects and its efficacy when incorporated in polypropylene bags. 

Recent experiments conducted by Anankware et al. (2014) reported that 100% of 

Sitophilus zeamais (Mot) (Coleoptera: Curculionidae) were knocked down after 12 h of 

exposure to 1,000 ppm of deltamethrin. In this study, we determined dose-response 

relationships of deltamethrin for adults of three stored-product insect pests, Tribolium 

castaneum (Herbst) (Coleoptera: Tenebrionidae), the red flour beetle; Sitophilus oryzae 

(L.) (Coleoptera: Curculionidae), the rice weevil; and Rhyzopertha dominica (F.) 

(Coleoptera: Bostrichidae), the lesser grain borer, in order to elucidate the effects of 

deltamethrin i.e. active ingredient incorporated in ZeroFly bag on the species.  

Materials and Methods 

Insects. Adults of T. castaneum, S. oryzae, and R. dominica used for the 

experiment were obtained from laboratory cultures maintained at the Department of 

Entomology and Plant Pathology, Oklahoma State University. T. castaneum is an 

external infesting species and was reared on 95% all-purpose wheat flour (Great Value 

TM, Walmart Inc.) and 5% Brewer’s yeast (wt:wt) at a temperature and relative humidity 

(RH) of 28 ± 1°C and 65 ± 5%, respectively. R. dominica and S. oryzae are internal 

infesting species and were reared on 95% whole-wheat kernels of hard red winter wheat 

(Jagger) and 5% Brewer’s yeast (wt:wt) at 28 ± 1°C and 65 ± 5%. One- to three-wk-old 
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adults of each species were used for the experiment. Voucher specimens of T. castaneum, 

S. oryzae, and R. dominica that were used in this study were deposited in the K. C. 

Emerson Entomology Museum at Oklahoma State University under lot numbers 136, 

137, and 126, respectively. 

Deltamethrin Concentrations. A type II semi-synthetic pyrethrin insecticide, 

technical grade deltamethrin (98% AI, Sigma Aldrich, Saint Louis, MO) was used. To 

determine contact toxicity of deltamethrin against R. dominica, S. oryzae, or T. 

castaneum, eight concentrations of deltamethrin, 1, 25, 50, 100, 250, 500, 1,000, and 

3,000 ppm (0.00004717, 0.000122, 0.000242, 0.000491, 0.001212, 0.002406, 0.004811, 

and 0.0144 mg/cm
2
, respectively) were tested. These concentrations were obtained by 

dissolving 98% deltamethrin in absolute ethanol (Ethanol 100%, AI, Pharmco Products, 

Inc., Brookfield, CT). A stock solution of 3,000 ppm was prepared from which other 

desired concentrations (serial dilutions) were prepared. To make 3,000 ppm of 

deltamethrin, five ampules, of 10 mg each, of 98% deltamethrin were dissolved in 16.336 

ml of ethanol. Prior to making the 3,000 ppm solution, 16.336 ml of ethanol was 

measured out using a 250-ml graduated cylinder (PYREX®, made in Germany). Serial 

dilutions were used to prepare lower concentrations of deltamethrin that were required for 

the experiment. For lower concentrations of 1,000, 500, and 100 ppm, a volume of 10 ml 

deltamethrin of the desired concentrations was prepared; for concentrations of 50 and 25 

ppm deltamethrin, the volume of solutions made was 50 ml. For 1 ppm of deltamethrin, a 

volume of 300 ml was prepared. These final volumes were selected based on the spray 

volume required for the experiment and also to ensure that the desired volume of 3,000 

ppm deltamethrin stock solution could be accurately measured out, especially for the 
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lower concentrations. Pre-calculated volumes of 3,000 ppm of deltamethrin (stock 

solution) were measured and mixed with pre-calculated volumes of ethanol. To make 10 

ml of 1,000, 500, 250, and 100 ppm solutions, 3.4, 1.7, 0.84, and 0.33 ml of 3,000 ppm 

deltamethrin, respectively, were measured out using a pipette (Gilson
®

, Middleton, WI). 

These volumes were mixed with 6.6, 8.3, 9.16, and 9.67 ml of 100% ethanol, 

respectively. To make 50 ml solutions of 50 and 25 ppm, 0.83 and 0.42 ml of 3,000 ppm 

deltamethrin, respectively, were used. These volumes were mixed with 49.17 and 49.58 

ml of 100% ethanol, respectively. To make a 300 ml solution of 1 ppm, 0.1 ml of 3,000 

ppm deltamethrin stock solution was measured out and mixed with 299.9 ml of 100% 

ethanol. Volumes of ethanol used were calculated using the formula C1V1 = C2V2.  

Concentration-Time-Response Contact Toxicity Bioassay. Time to 

Knockdown. Solutions of technical grade deltamethrin were used to conduct contact 

toxicity tests. Fluon
®
 (Polytetrafluoroethylene, Sigma Aldrich Saint Louis, MO) was 

applied to the inner rim of each 9-cm glass Petri dish to prevent insects from escaping. 

For each species and concentration, there were three sub-replicates. Control dishes were 

sprayed with ethanol only. For each concentration, 0.3 ml of the deltamethrin solution 

was sprayed on the inside bottom of a glass Petri dish using an airbrush (Patriot airbrush 

connected to HD mini regulator and airbrush compressor; TCP Global, SAN DIEGO, 

CA). This procedure was conducted inside a fume hood. Petri dishes were allowed to dry 

for 24 h before placing insects on them.  

 

For each species, twenty 1- to 3-wk-old adults were selected from laboratory 

cultures and placed in each Petri dish. Insects were exposed in the treated dishes for 24 or 
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48 h. Insects were observed for knockdown every 15 min until all insects were knocked 

down. The final count was conducted after 24 or 48 h, depending on the exposure period.  

Lethal Toxicity. Insects which were exposed in the treated dishes for 24 or 48 h 

were then transferred to clean (untreated) glass Petri dishes containing 5 g of 95% whole 

wheat kernels (hard red winter wheat) + 5% (by weight) brewer’s yeast (R. dominica and 

S. oryzae) or 95% all-purpose wheat flour + 5% (by weight) brewer’s yeast (T. 

castaneum). Insects were observed for knockdown and/or mortality 0.5, 1, 2, 4, 8, 12, 24, 

48, and 72 h after transfer to clean dishes containing their respective diets. Insects were 

categorized as knocked down when they were lying on their backs but able to move legs 

and/or antenna or insects were moving too slowly compared to insects in the control 

dishes (Arthur 1997). Insects were considered dead when they could not move their body 

parts after being prodded using a camel’s hair brush. Each treatment (concentration x 

exposure time combination) had three temporal replications. The experimental design 

was a randomized complete block design with sub-replication.  

Data Analyses. Knockdown data were subjected to probit analyses to determine 

the time to knockdown 50%, 95%, and 99% of insects; these times will be referred to as 

KT50, KT95, and KT99, respectively, hereafter. Mortality was assessed 3 d after transfer to 

clean Petri dishes containing the respective diet for each species. Mortality data were 

analysed to determine concentrations that kill 50%, 95%, and 99% of insects; these 

concentrations will be referred to as LC50, LC95, and LC99, respectively, hereafter. Probit 

analyses were conducted by using PoloPlus (LeOra Software, 2005). The criterion for 

precision was the width of 95% confidence limit. 
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Results 

Concentration-Time-Response Contact Toxicity. Time to Knockdown. 

Knockdown (KD) assessments were made at 15 min intervals after the initial exposure to 

different concentrations, namely, 1, 25, 50, 100, 250, 500, 1,000, and 3,000 ppm of 

deltamethrin (DM) for T. castaneum, S. oryzae, and R. dominica.  The percentage of 

insects knocked down (KD %) in dishes treated with technical grade absolute ethanol 

only (control dishes) was ≤ 5% except for R. dominica where 14.4 % were knocked down 

on an average. The KT50, KT95, and KT99 times decreased with increasing concentration 

of deltamethrin in both the 24- and 48-h exposure periods (Tables 1‒3).  A concentration 

of 3,000 ppm produced the shortest KT50, KT95, and KT99 values. In relation to KT99 for 

3,000 ppm and the 24-h exposure period, values for T. castaneum, S. oryzae, and R. 

dominica were 54.8, 59.8, and 75.6 min, respectively. For the 48-h exposure period, these 

values were 48.8, 101, and 79.7 min, respectively. Based on KT99 confidence intervals, 

there were no significant differences among KT99 values for all three species. For 

concentrations ≥ 25 ppm, 99% of insects of all species were knocked down within 4 h. 

For concentration < 25 ppm, insects recovered when transferred to their respective diets 

after the 24- or 48-h exposure periods.  

Lethal Toxicity. Concentrations of deltamethrin required to kill 50, 95, and 99% 

of the individual in samples of T. castaneum, S. oryzae, and R. dominica were compared 

(Table 4). Probit analysis of mortality data for 3 d after transfer of insects to untreated 

Petri dishes with diet show that adults of T. castaneum were more susceptible to 

deltamethrin than S. oryzae and R. dominica (Table 4). The relevance of 3 d is that it was 

assumed any individual that was unresponsive 3 d after transfer to untreated Petri dishes 
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with diet was dead. Based on our data, LC95 values for all the three species were less than 

or ≈ 3,000 ppm for the 48-h exposure period. The relevance of this is that the 

concentration of deltamethrin in new ZeroFly bags is ≈ 3000 ppm. The fact that the LC95 

for R. dominica for the 24-h exposure period was 4,213 ppm and 3,193 ppm for the 48-h 

exposure period indicates that this species requires longer exposure times for insects to 

get killed.  

Discussion  

In insects, neurotoxic activity of deltamethrin is caused by disruption of axonal 

transmission of nerve impulses as a result of altering ion permeability of nerve 

membranes (Siegfried 1993). Deltamethrin is known for its rapid knockdown activity on 

various insects, including coleopterans (Velki et al. 2014), so the effectiveness of higher 

concentrations of deltamethrin to adults of T. castaneum, S. oryzae, and R. dominica 

observed in this study was expected. Based on our data, deltamethrin at 3,000 ppm was 

found to be highly effective against the adults of T. castaneum, S. oryzae, and R. 

dominica because 99% of adult insects were knocked down within ≈ 1.5 h. For a 

concentration of 1,000 ppm, the KT99 value showed that 99% of the insects were knocked 

down within 2 h. A similar study by Anankware et al. (2014) found that 98% of S. 

zeamais adults were knocked down after 8 h of exposure to a deltamethrin concentration 

of 1,000 ppm whereas mortalities of 76.7, 53.3, 30, 28, 21.7, 23.3, and 0 % were recorded 

for 500, 250, 100, 50, 25, 12.5, and 0.0 ppm, respectively. They also observed recovery 

of insects from knockdown. However, after 72 h at 1,000 ppm, Anankware et al. (2014) 

reported 96.7% mortality of S. zemais.  In this study, recovery after the exposed adults 

were transferred to untreated diet was generally greater for concentrations of ≤ 1,000 ppm 
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compared to 3,000 ppm; meaning mortality was higher for 3,000 ppm. Lethal toxicity 

assessment 3 d after insects were transferred to diet suggests that at least 95% adult 

mortality would be obtained by exposing T. castaneum, S. oryzae, and R. dominica to 

3,000 ppm of deltamethrin for 48 h.  

The logical explanation for higher knockdown in the case of R. dominica in 

control Petri dishes may be lack of food and desiccation (Toews et al. 2003); insects were 

monitored for knockdown in a fume-hood with continuous airflow. Knockdown of R. 

dominica in concrete when treated with distilled water was 72% in the study by Toews et 

al. (2003). Food was not provided to insects during deltamethrin exposure in our 

experiment. However, after 24 and 48 h, insects were transferred to diet and maintained 

at RH 65% to monitor recovery of insects in control dishes.  

There are reports on the insecticidal efficacy of deltamethrin against stored-

product insects based on direct application to grains or surfaces. According to Arthur 

(1997), deltamethrin (0.05%) had potential to knockdown or kill almost all T. castaneum 

and R. dominica after 24 h exposure. Similarly, Evans (1985) concluded deltamethrin has 

excellent potential for use as a protectant of either stored corn or wheat while testing 

efficacy of insecticides (malathion, lindane, primiphos-methyl, fenitrothion, etrimfos, 

permethrin, and deltamethrin) against different species of insects from Kawanda, 

Uganda. Athanassiou et al. (2004) reported mortality of S. oryzae exposed to 0.25 ppm 

deltamethrin for 7 d in wheat was 89, 92, and 86%, respectively, after 1, 2, and 3.5 mo, 

respectively, of storage. However, the effectiveness of deltamethrin applied to grain and 

surfaces like concrete and wood, might not explain the mechanism of the insecticide in 

deltamethrin-incorporated polypropylene bags. In treated grains and surfaces, the 
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mortality of insects might not be solely due to the pesticide because abrasion of insect 

cuticle by rough surfaces or dust present in grain, concrete, or wooden floors may also 

play a role in insect mortality (Subramanyam and Roesli 2000, Toews et al. 2003).  

Therefore, this study on contact toxicity of deltamethrin, conducted in glass Petri 

dishes, facilitates the interpretation of data from studies involving exposure of stored-

product insects to ZeroFly bag fabric. The glass allows us to determine the effect of 

deltamethrin on insects at different concentrations and exposure periods. For each species 

tested, these data can be used to plot mortality at different concentrations over the same 

exposure period or mortality at the same concentration over different exposure periods. 

The former can in future be used to gauge the effectiveness of ZeroFly bags (due to 

efficacy of deltamethrin) after any period of usage within the 2-yr life span of the bag. 

Thus, this experiment could improve our understanding of the way the ZeroFly bag 

protects grain stored in it from insect infestation.  

Our study corroborates the findings of Anankware et al. (2014), who 

demonstrated the effectiveness of the ZeroFly bag against S. zeamais.  A study conducted 

by Costa (2014) also showed that the ZeroFly bag is highly effective in protecting grain 

stored in it from stored-product insect pest infestation. Data from this study validate the 

above findings of Anankware et al. (2014) and Costa (2014), and the Vestergaard 

Frandsen’s (SA, Switzerland) assumption that deltamethrin incorporated in ZeroFly bags 

is being picked up by insects and causing the knockdown and mortalities seen in ZeroFly 

fabric exposures. Moreover, these data can be used to estimate the initial concentration of 

deltamethrin in ZeroFly bags based on insect mortality data that can be easily obtained 

outside the laboratory.  
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Residue Analysis by Ghana Standards Authority concluded that residue level of 

deltamethrin in grains stored in ZeroFly bag was 1 mg/kg which is lower than CODEX 

Alimentarium MRL of 2 mg/kg for cereal grains. This means cereal grain stored in 

ZeroFly bags are safe for human consumption. In this regard, the deltamethrin-

incorporated bags could be considered as a safe storage method which affords grain 

protection at a relatively lower cost (Anankware et al. 2014, Costa 2014). However, more 

research is needed to determine the insecticidal activity of ZeroFly bags to other stored-

product insects not tested in this study.  
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Table. 1. Time to knockdown in minutes (KT50, KT95, and KT99) for T. castaneum adults exposed to different 

concentrations of deltamethrin (DM) at 24- and 48-h exposure periods. 

Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

24 h 1 159.3 

(132.3 – 208.6) 

929.5 

(543.7 – 2,550) 

1,930.5 

(953.1 – 7373.1) 

2.1 ± 0.11 288.9 (37) 

[7.81] 

 25 38.9 

(33.1 – 44.3) 

83.7 

(71.6 – 105.2) 

114.9 

(93.7 – 158.1) 

4.95 ± 0.21 217.1 (28) 

[7.75] 

 50 29.4 

(26.1 – 32.4) 

68.1 

(60.0 – 80.0) 

96.5 

(81.9 – 120.5) 

4.49 ± 0.20 94.0 (28) 

[3.35] 

 100 22.0 

(18.0 - 25.7) 

54.0 

(45.1 – 70.7) 

78.5 

(61.8 – 114.9) 

4.28 ± 0.22 159.3 (28) 

[5.69] 
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Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

24 h 250 17.6 

(13.1 – 21.5) 

49.9 

(40.6 - 68.5) 

76.7 

(58.1 - 123.5) 

3.65 ± 0.22 163.0 (28) 

[5.82] 

 500 12.3 

(8.9 – 15.1) 

37.7 

(31.8 – 47.9) 

59.9 

(47.2 – 88.3) 

3.38 ± 0.28 75.4 (28) 

[2.69] 

 1,000 12.7 

(9.2 - 15.4) 

35.8 

(30.1 - 46.6) 

55.2 

(43.2 - 83.9) 

3.64 ± 0.31 85.1 (28) 

[3.04] 

 3,000 10.8 

(6.7 - 13.9) 

34.0 

(28.1 - 45.6) 

54.8 

(41.9 - 90.2) 

3.29 ± 0.31 90.7 (28) 

[3.24] 

48 h 1 165.8 

(146.7 - 194.3) 

679.4 

(486.3 - 1,137.7) 

1,218.9 

(787.8 - 2,300) 

2.68 ± 0.14 166.6 (37)  

[4.50] 
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Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

48 h 25 36.5 

(30.6 – 42.0) 

86.5 

(73.0 – 110.5) 

123.7 

(99.0 – 174.6) 

4.39 ± 0.18 219.1 (28) 

[7.82] 

 50 30.0 

(27.2 – 32.7) 

63.1 

(56.6 – 72.6) 

85.9 

(74.5 – 103.8) 

5.09 ± 0.24 77.8 (28) 

[2.78] 

 100 21.7 

(17.6 - 25.5) 

50.7 

(41.9 - 67.6) 

71.9 

(56.3 - 108.3) 

4.48 ± 0.25 177.9 (28) 

[6.36] 

 250 18.7 

(14.6 - 22.3) 

50.9 

(42.2 - 67.6) 

77.3 

(59.9 - 117.1) 

3.77 ± 0.22 144.6 (28) 

[5.16] 

 500 17.7 

(14.25 - 20.9) 

44.7 

(37.3 - 58.8) 

65.6 

(51.4 - 97.9) 

4.09 ± 0.26 127.5 (28) 

[4.55] 
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Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

48 h 1,000 14.7 

(11.9 - 16.9) 

35.8 

(30.9 - 44.7) 

51.9 

(42.1 - 72.4) 

4.23 ± 0.34 70.7 (28) 

[2.52] 

 3,000 13.0 

(10.0 - 15.4) 

33.2 

(28.2 - 42.4) 

48.8 

(38.9 - 71.9) 

4.06 ± 0.36 74.7 (28) 

[2.67] 

KT stands for knockdown time; CI for confidence interval; Heterogeneity value (quotient of chi-square and degrees of 

freedom)
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Table. 2. Time to knockdown in minutes (KT50, KT95, and KT99) for S. oryzae adults exposed to different concentrations 

of deltamethrin (DM) at 24- and 48-h exposure periods. 

 

Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

24 h 1 248.9 

(206.3 - 338.6) 

1095.6 

(669.0 - 2645.2) 

2024.5 

(1080 - 6246) 

2.56 ± 0.17 163.0 (37)  

[4.4] 

 25 79.2 

(71.7 – 86.4) 

152.9 

(133.8 – 187.0) 

200.9 

(168 – 265.6) 

5.75 ± 0.24 206.6 (28) 

[7.38] 

 50 76.9 

(71.7 - 82.1) 

132.9 

(120.8 - 151.3) 

166.6 

(146.9 – 199.2) 

6.94 ± 0.29 139.2 (28) 

[4.97] 

 100 56.2 

(49.3 - 62.5) 

103.4 

(89.9 - 128.6) 

133.2 

(110.9 – 180.4) 

6.21 ± 0.27 266.5 (28) 

[9.51] 
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Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

24 h 250 49.3 

(44.8 – 53.5) 

87.9 

(79.1 – 101.8) 

111.7 

(97.2 – 136.8) 

6.53 ± 0.31 140.9 (28) 

[5.03] 

 500 42.1 

(37.5 – 46.3) 

73.7 

(65.6 – 87.3) 

92.9 

(79.9 – 117.6) 

6.76 ± 0.34 164.6 (28) 

[5.88] 

 1,000 41.6 

(36.6 – 44.3) 

69.4 

(63.6 – 77.9) 

85.8 

(76.6 – 100.5) 

7.39 ± 0.39 83.2 (28) 

[2.97] 

 3,000 31.4 

(29.4 - 33.1) 

49.5 

(45.9 – 54.7) 

59.8 

(54.2 - 68.5) 

8.29 ± 0.57 49.7 (28) 

[1.77] 

48 h 1 248.4 

(190.0 - 451.8) 

1146.0 

(570.8 – 6,757.9) 

2159.4 

(889.3 – 20,986) 

2.47 ± 0.17 381.9 (37)  

[10.32] 
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Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

48 h 25 103.4 

(93.4 – 115.5) 

206.4 

(170.2 – 290.2) 

274.8 

(213.3 – 434.9) 

5.48 ± 0.26 264.7 (28) 

[9.45] 

 50 79.4 

(70.9 – 87.5) 

132.7 

(116.1 – 165.6) 

164.1 

(137.9 – 222.6) 

7.38 ± 0.31 347.8 (28) 

[12.42] 

 100 65.2 

(60.6 – 69.6) 

114.5 

(104.4 – 129.5) 

144.6 

(128.0 – 171.1) 

6.73 ± 0.29 122.6 (28) 

[4.37] 

 250 48.8 

(43.9 – 53.2) 

90.3 

(80.9 – 105.1) 

116.5 

(100.8 – 143.9) 

6.15 ± 0.28 145.2 (28) 

[5.18] 

 500 44.5 

(41.0 – 47.7) 

79.4 

(72.5 – 89.5) 

101.0 

(89.7 – 119.1) 

6.53 ± 0.31 92.8 (28) 

[3.31] 
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Exposure Period Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

48 h 1,000 39.1 

(36.5 – 41.6) 

65.9 

(60.8 – 73.3) 

81.8 

(73.5 – 94.7) 

7.27 ± 0.4 68.7 (28) 

[2.45] 

 3,000 31.6 

(29.2 - 33.9) 

54.8 

(50.2 - 61.5) 

68.8 

(61.3 - 80.6) 

6.89 ± 0.4 65.9 (28) 

[2.36] 

KT stands for knockdown time; CI for confidence interval; Heterogeneity value (quotient of chi-square and degrees of 

freedom).
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Table. 3. Time to knockdown in minutes (KT50, KT95, and KT99) for R. dominica adults exposed to different 

concentrations of deltamethrin (DM) at 24- and 48-h exposure periods. 

Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

24 h 1 141.4 

(124.6 – 165.2) 

443.1 

(324.3 – 767.6) 

711.2 

(470.7 – 1485.6) 

3.31 ± 0.16 321.0 (37)  

[8.68] 

 25 60.6 

(58.6 – 62.6) 

92.6 

(88.4 – 97.9) 

110.4 

(103.8 – 119.1) 

8.93 ± 0.43 36.5 (28) 

[1.30] 

 50 56.1 

(53.2 – 58.8) 

83.0 

(77.6 – 98.6) 

97.7 

(89.4 – 110.8) 

9.65 ± 0.51 80.3 (28) 

[2.87] 

 100 53.8 

(49.8 – 57.5) 

84.9 

(77.5 – 96.6) 

102.5 

(91.1 – 122.5) 

8.29 ± 0.41 133.7 (28) 

[4.77] 
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Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

24 h 250 50.8 

(47.2 – 54.2) 

77.0 

(70.6 – 87.5) 

91.5 

(81.7 – 108.9) 

9.06 ± 0.52 126.6 (28) 

[4.52] 

 500 45.7 

(42.8 – 48.4) 

68.4 

(63.3 – 76.2) 

80.9 

(73.2 – 93.8) 

9.35 ± 0.52 93.6 (28) 

[3.33] 

 1,000 41.8 

(38.8 – 44.6) 

68.0 

(66.8 – 90.9) 

83.9 

(80.2 – 121.4) 

7.79 ± 0.42 89.3 (28) 

[3.19] 

 3,000 38.9 

(35.7 – 41.9) 

62.2 

(58.7 – 75.9) 

75.6 

(66.6 – 91.8) 

8.05 ± 0.46 111.7 (28) 

[3.99] 

48 h 1 128.9 

(109.9- 155.8) 

450.3 

(310.3 – 931.6) 

756.1 

(460.2 – 2025.8) 

3.03 ± 0.15 446.2 (37)  

[12.06] 
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Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

48 h 25 82.2 

(74.2 – 89.9) 

136.5 

(120.8 – 135.1) 

168.4 

(143.8 – 218.3) 

7.47 ± 0.29 435.7 (28) 

[11.78] 

 50 64.5 

(55.4 – 72.7) 

118.7 

(101.3 – 155.7) 

152.8 

(124.1 – 223.6) 

6.21 ± 0.27 385.5 (28) 

[13.77] 

 100 58.0 

(50.4 – 64.9) 

100.1 

(86.8–127.1) 

125.5 

(104.2 – 175.2) 

6.95 ± 0.31 341.0 (28) 

[12.17] 

 250 54.7 

(47.4 – 61.1) 

90.3 

(78.6 – 114.7) 

111.1 

(92.9 – 155.3) 

7.55 ± 0.36 342.4 (28) 

[12.23] 

 500 48.1 

(41.0 – 47.7) 

79.4 

(43.6 – 52.2) 

93.9 

(82.0 – 116.1) 

8.00 ± 0.40 168.5 (28) 

[6.01] 
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Exposure 

Period 

Concentration 

(ppm) 

KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

48 h 1000 42.1 

(39.8 – 44.3) 

63.3 

(60.0 – 69.6) 

74.9 

(68.4 – 85.2) 

9.27 ± 0.53 66.3 (28) 

[2.37] 

 3000 36.8 

(33.9 – 39.6) 

63.5 

(57.8 – 72.3) 

79.7 

(70.4 – 94.9) 

6.94 ± 0.38 86.5 (28) 

[3.08] 

KT stands for knockdown time; CI for confidence interval; *Heterogeneity value (quotient of chi-square and degrees of 

freedom).
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Table. 4. Probit analyses of T. castaneum, S. oryzae, and R. dominica adult mortality data for 24- and 48-h exposure 

periods 3 days after transfer to clean diet 

 LC50 

(95% CI) 

LC95 

(95% CI) 

LC99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

T. castaneum      

24-h exposure 111.4 

(95.2 - 129.4) 

1,342.9 

(1,023.9 - 1,871.0) 

3,767.6 

(2,611.6 - 5,937.7) 

1.52 ± 0.08 27.6 (22) 

[1.3] 

48-h exposure 48.9 

(33.6 - 67.3) 

1,282.9 

(779.0 - 2,555.6) 

4,968.4 

(2,502.93 - 13,196.6) 

1.16 ± 0.06 73.7 (22) 

[3.3] 

S. oryzae      

24-h exposure 231.7 

(165 - 324.4) 

2,765.7 

(1,559.3 - 6,746.5) 

7,726.6 

(3,638.7 - 25,723.5) 

1.52 ± 0.07 134.8 (22) 

[6.1] 
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 LC50 

(95% CI) 

LC95 

(95% CI) 

LC99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

S. oryzae 

48-h exposure 

95.0 

(69.6 - 125.7) 

1,862.7 

(1,094.6 - 3,352.5) 

6,390.7 

(3,332.8 - 16,186.6) 

1.27 ± 0.06 72.3 (22) 

[3.2] 

R. dominica      

24-h exposure 66.9 

(31.2 – 108.9) 

4,213.4 

(2,042.2 – 14,900) 

23,433.5 

(7,915.8 – 166,669) 

0.92 ± 0.07 64.8 (22) 

[2.95] 

48-h exposure 47.8 

(23.9 – 79.5) 

3,193.4 

(1,633.7 – 

8,743.4) 

18,205 

(6,978.5 – 82,509) 

0.90 ± 0.07 57.4 (22) 

[2.61] 

LC stands for Lethal Concentration; CI for confidence interval; *Heterogeneity value (quotient of chi-square and degrees of 

freedom). 



60 
 

CHAPTER IV 

 

 

Laboratory evaluation of effectiveness of the ZeroFly
®

 Storage Bag fabric against stored-

product insect pests
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ABSTRACT. The ZeroFly
®
 Storage Bag is polypropylene bag (PP) incorporated with 

deltamethrin, and a novel approach to reduce postharvest losses caused by stored-product 

insect pests. Fabric samples from ZeroFly bags, polypropylene (PP) bags, jute bags, 

malathion-treated PP bags, malathion-treated jute bags, and GrainPro bags were fitted 

into 9-cm Petri dishes and twenty adults of either Sitophilus oryzae (L.) or Tribolium 

castaneum (Herbst) were introduced to determine the contact sensitivity of insects 

exposed to ZeroFly bag fabric. Knockdown, mortality, and number of progeny were 

recorded for different exposure periods (24, 48, or 72 h) and oviposition periods (7, 14, or 

21 d). Additionally, mini bags from ZeroFly bags, PP bags, laminated PP bags, and jute 

bags were used to determine the ability of adult S. oryzae, T. castaneum, and Rhyzopertha 

dominica (F.) to bore and/or chew through the bag and efficacy of ZeroFly bag at 

preventing insect infestations from outside and to contain infestations within the bag. 

Knockdown assessment showed that time required to knockdown 99% of S. oryzae and 

T. castaneum was < 3 h. For the 72-h exposure period ZeroFly bag, mortalities for S. 

oryzae and T. castaneum were 76.7 and 62.2%, respectively; mortality was ≤ 6% in other 

fabrics. The ZeroFly bag fabric also significantly suppressed progeny production by S. 

oryzae and T. castaneum for all exposure periods. Results of miniature ZeroFly bag trials 

showed that none of the insects was able to bore (chew) through the bag. Implications of 

results for effectiveness of the ZeroFly bag are discussed. 

KEY WORDS. ZeroFly
®
 Storage Bag, stored grain, Sitophilus oryzae (L.), Tribolium 

castaneum (Herbst), Rhyzopertha dominica (F.)
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Introduction 

Postharvest losses of cereal grains, grain legumes, and oilseeds due to insect pests 

is an important constraint to food security in developing nations (FAO 1996, 2011, 2013, 

Rembold et al. 2011, Tefera et al. 2011). Food losses due to insect pests and the 

subsequent economic, health, and environmental problems that result are irreversible; a 

large amount of food is lost to insect infestations during storage and the cost of managing 

them is enormous (Kader 2005, Parfitt et al. 2010, Affognon et al. 2015). Insect 

infestations can reduce nutritional quality of grains and also limit food availability; they 

also increase financial losses incurred by farmers (FAO and World Bank 2011, Baoua et 

al. 2015). Postharvest losses can be both quantitative and qualitative (Rees 2004, Kader 

2005, Hagstrum et al. 2012). Besides consuming grain, insects through their exuviae, 

webbing, and body fragments make food unfit for human consumption (Bhargava et al. 

2007, FAO and World Bank 2011, Tefera et al. 2011, Nenaah 2014). Additionally, 

insects can change the environment by making it more favorable for fungal growth 

thereby leading to discoloration, distortion, unpleasant odors, and loss of seed viability 

(Dunkel 1988, Rees 2004, Gautam et al. 2013).  

The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), the red flour 

beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and the lesser grain 

borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) are serious and 

cosmopolitan stored-product insect pests (USDA 1996, Arthur 1997, Hagstrum et al. 

2012). These insects feed on cereal grains and legumes during storage and cause 

reduction in their quality and quantity (Munro 1996, Hagstrum et al. 2012). Sitophilus 

oryzae and R. dominica are internal feeders which mainly feeds on the endosperm 
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(USDA 1986, Bello et al. 2001, Rees 2004, Hagstrum et al. 2012). A female of S. oryzae 

usually bores a small hole in the kernel surface with her mandible to lay eggs; it then 

produces a gelatinous fluid to seal the hole (Munro 1996, Hagstrum et al. 2012). A single 

female of S. oryzae can lay 300 to 400 eggs during its average lifespan of 4 to 5 months 

(USDA 1986). Rhyzopertha dominica is a highly destructive pest and its larval and adult 

stages feed on intact whole grain kernels. A female of R. dominica can lay up to 500 eggs 

loosely outside the grain kernels and upon hatching the larvae enter the grain kernels and 

feed (USDA 1986, Hagstrum et al. 2012). Tribolium castaneum is an external feeding 

species that preferentially feeds on farinaceous foods but can also feed on cracked, 

damaged or broken grain (USDA 1986, Subramanyam and Nelson 1999). A single T. 

castaneum female can lay 300 to 400 eggs during its average lifespan of 5 to 8 months 

(Campbell and Runnion 2003). Adults and larvae of R. dominica, S. oryzae and T. 

castaneum reduce grain weight, nutritional value, and the germination ability of stored 

seeds (USDA 1986, Hagstrum et al. 2012). Therefore, the development of affordable and 

effective storage technologies is extremely important for mitigation of R. dominica, S. 

oryzae and T. castaneum infestations. 

Control of stored-product insect pests continues to primarily be based on 

application of synthetic insecticides such as organophosphates, pyrethroids and fumigants 

because they are effective for the management of insect infestations (Arthur 1997, Zettler 

and Arthur 2000, Lee et al. 2004, Upadhyay and Ahmad 2011). Chemical control is a 

necessary part of stored-product insect pest management and can be very effective if it is 

judiciously used (Phillips and Throne 2009). However, many subsistence farmers in 

developing countries lack the resources required for judicious use of chemical 
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insecticides (Kaminski and Christiaensen 2014). Additionally, farmers in developing 

countries have limited access to the most modern reduced risk insecticides and are rarely 

sufficiently trained in proper handling and use of insecticides ― thereby posing a threat 

to human health and the environment (USDA 1986, Kaminski and Christiaensen 2014).  

Farmers in developing countries still use traditional storage techniques such as, 

open platforms, baskets or cribs made of plant material, earthenware pots, underground 

storage, storehouses or warehouses, and use of bags (FAO 1994, Adejumo and Raji 

2007). Storage in bags is popular in many developing countries (FAO 1994, Koona et al. 

2007, De Groote et al. 2013). However, serious postharvest losses do occur in bagged 

commodities that are not treated with any grain protectant; losses of up to 60% have been 

recorded in maize stored using traditional polypropylene bags (Costa 2014). Therefore, a 

storage technology such as insecticide incorporation in the fabric of storage bags could be 

an effective and affordable technique for the smallholder farmers to minimize insect 

infestation during storage (Anankware et al. 2014, Costa 2014).  

The deltamethrin-incorporated bag, marketed as the ZeroFly
®
 Storage Bag 

(hereafter referred as the ZeroFly
 
bag), is a promising new storage technology for 

mitigating insect pest infestation of bagged food commodities (Anankware et al. 2014). 

The broad spectrum pyrethroid insecticide, deltamethrin, is incorporated into individual 

fibers of the polypropylene bag, and this insecticide provides a powerful knockdown 

and/or killing action against stored-product insects thereby preventing them from gaining 

entry into the bag. Moreover, it has the advantage of not having the hazards associated 

with fumigation or the potential for high pesticide residues levels that are associated with 

inaccurate insecticide applications (Vestargaard 2015). The ZeroFly bag is effective at 
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preventing insect infestations. For example, Anankware et al. (2014) recorded 100% 

mortality of Sitophilus zeamais (Mot) (Coleoptera: Curculionidae) after 48 hours of 

exposure to the ZeroFly bag. However, there is still lack of data on the insecticidal 

activity of the ZeroFly bag against other stored-product insect pests. Therefore, in this 

study, I evaluated the contact sensitivity of S. oryzae and T. castaneum adults to 

deltamethrin-treated fabric samples and effects of exposure to these samples on 

oviposition. Additionally, I evaluated the ability of three pest species to bore or chew 

through fabric and thereby assessed effectiveness of the ZeroFly bags.  

Materials and Methods 

Insects. Adults of S. oryzae, T. castaneum, and R. dominica used for the 

experiment were obtained from laboratory cultures maintained at the Department of 

Entomology and Plant Pathology, Oklahoma State University. Tribolium castaneum is an 

external infesting species and was reared on 95% all-purpose wheat flour (Great Value 

TM, Walmart Inc.) and 5% Brewer’s yeast (wt:wt) at a temperature and relative humidity 

(RH) of 28 ± 1°C and 65 ± 5%, respectively. Sitophilus oryzae and R. dominica are 

internal infesting species and were reared on 95% whole-wheat kernels of hard red winter 

wheat (‘Duster’ wheat variety) and 5% Brewer’s yeast (wt:wt) at 28 ± 1°C and 65 ± 5%. 

Voucher specimens of S. oryzae, T. castaneum, and R. dominica that were used in this 

study were deposited in the K. C. Emerson Entomology Museum at Oklahoma State 

University under lot numbers 137, 136, and 126, respectively.  

Obtaining 1- to 3-wk Old Adults. For all three species, insects were reared using 300-

ml glass jars containing the respective diets of each species. Rhyzopertha dominica and S. 

oryzae diet in each jar weighed 455 g and comprised of 99% whole-wheat kernels of hard 
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red winter wheat and 1% Brewer’s yeast. Tribolium castaneum diet in each jar weighed 

335 g and consisted of 98% all-purpose wheat flour and 2% Brewer’s yeast. Two 

hundred and fifty adults of each species were allowed to lay eggs for 10 d in each of the 

jars containing their respective diets and were removed. Rhyzopertha dominica, S. 

oryzae, and T. castaneum adults found in jars after 9 wk, 8 wk, and 8wk, respectively, 

were 1- to 3-week-old. 

Contact Sensitivity of Insects to Fabrics and Effects of Exposure on 

Oviposition. Storage-Bag Fabric Materials. The experiment investigated six different 

types of storage-bag fabric which comprised fabric material taken from the following 

types of bags, ZeroFly bags (delatmethrin-incorporated bags), polypropylene bags 

without insecticide, jute bags without insecticide, polypropylene bags treated with 

Malathion 50EC, jute bags treated with Malathion 50 EC, and GrainPro bags.  Three bags 

of each type were used to obtain fabric for the experiment. Fifty-kilogram ZeroFly bags 

(S. A. Chemin De Messidor 5-7, CH-1006, Lausanne, Switzerland) were100 cm × 57 cm, 

polypropylene bags (Uline, Pleasant Prairie, WI) were 25.4 cm × 35.7 cm, jute bags 

(West Springfield, MA) were 62 cm × 38 cm, and GrainPro bags (GrainPro Inc., 

Concord, MA) were 130 cm × 74 cm. 

Insecticide Application. Malathion 50 EC (referred to as malathion, hereafter) 

(Southern Agricultural Insecticides, Inc, Boone, NC) is an organophosphate insecticide 

that was used to treat polypropylene and jute bags. Prior to applying the malathion to 

fabric materials, 0.1 ml of malathion was measured out using a pipette (Gilson
®
, 

Middleton, WI) and mixed in 400 ml of distilled water in a 500-ml graduated cylinder 

(PYREX®, made in Germany) to obtain the application rate of 5 ml in 20 liters of water. 
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A volume of 0.12 ml of malathion solution was sprayed on a 62-cm
2
 fabric sample (62 

cm
2
), which was then glued to the bottom of a plastic Petri dish. Malathion was applied 

on the fabric sample using an airbrush connected to an HD mini regulator and airbrush 

compressor (Patriot airbrush, TCP Global, San Diego, CA).  

Experimental Setup. Fabric samples from ZeroFly bags, polypropylene bags, jute 

bags, malathion-treated polypropylene bags, malathion-treated jute bags, and GrainPro 

bags were prepared by cutting out single pieces of 9-cm-diameter fabric from three bags 

of each type using scissors. A single piece of sample fabric was attached to the bottom of 

the 9-cm-diameter Petri dish using glue (Kwik seal, DAP Product Inc., Baltimore, MD) 

to ensure that the fabric covered the whole bottom (floor) of the Petri dish. Fluon
® 

(Polytetrafluoroethylene, Sigma Aldrich Saint Louis, MO) was applied to inner rim of 

each Petri dish (bottom) to prevent insects from climbing the Petri dish walls and 

escaping.  

This study investigated the effects of exposure period (24, 48, or 72 h) and 

oviposition period (7, 14, or 21 d) on insects exposed to the fabric materials. During 

exposure of insects to the different fabric materials, data on knockdown and mortality 

were also collected. For example, in the case of the Zerofly bag fabric, three different 

bags were used to obtain the 9-cm pieces of fabric glued to the bottom of Petri dishes. In 

each ZeroFly bag exposure period, with three oviposition periods, three Petri dishes with 

9-cm ZeroFly bag fabric glued to the bottom of each Petri dish were assigned to each 

oviposition period. Each of the three 9-cm pieces of fabric in the three Petri dishes came 

from a different bag, i.e. one of the three bags referred to above. Thus there were 9 Petri 

dishes assigned to the 3 oviposition periods within each exposure period. Therefore, for 
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the three exposure periods (24, 48, and 72 h) involving the ZeroFly bag, there were a 

total of 27 Petri dishes. For the six different types of fabric material, altogether there were 

162 dishes. For each insect species, 162 dishes were used.  

Twenty 1- to 3-wk-old adults of S. oryzae or T. castaneum were obtained from 

laboratory cultures and placed in each Petri dish. Knockdown of each species was 

determined every 15 min for 8 h. Final knockdown or mortality counts were conducted 

after 24, 48, or 72 h, depending on the targeted exposure period. Insects were categorized 

as knocked down when they were lying on their backs but able to move legs and/or 

antenna or insects were moving too slowly compared to insects in the control dishes 

(Arthur 1997). Insects were considered dead when they could not move their body parts 

after being prodded using a camel’s hair brush. 

After 24-, 48-, or 72-h exposure, R. dominica and S. oryzae were transferred to 

clean glass Petri dishes containing 5 g of 95% whole hard red winter wheat and 5% (by 

weight) brewer’s yeast; T. castaneum were transferred to dishes containing 5 g of 95% 

all-purpose wheat flour and 5% brewer’s yeast (T. castaneum). After transfer to clean 

diet, insects were observed after 0.5, 1, 2, 4, 8, 12, 24, 48, and 72 h to assess recovery, 

knockdown, or mortality. Final assessment of mortality was made after 72 h.  

To determine progeny production, all adults in Petri dishes with clean diet were 

removed after 7, 14, or 21 d from the time they were transferred to clean dishes; these 

translate to 4, 11, and 18 d after the final mortality assessment that happened 3 d after 

transfer to clean diet. The diet in Petri dishes, after the removal of adults, was then 

transferred to 236-ml glass jars (Quilted Crystal
®
 Jelly Jars). Twenty-five grams of the 

respective diets for the three species were added to each jar to ensure enough food for 
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progeny. Jars were kept in an incubator maintained at 28 ± 1°C and 65 ± 5% RH for 6 wk 

after which the number of adults in each jar was counted.  

Ability of Insects to Chew or Bore Through Storage Bag Fabrics. Storage 

Bags. Four storage bags, ZeroFly bags, jute bags, polypropylene bags, and laminated 

polypropylene bags were investigated. Empty 50-kg capacity ZeroFly bags (S. A. 

Chemin De Messidor 5-7, CH-1006, Lausanne, Switzerland) (100 cm × 57 cm), 

polypropylene bags (Uline, Pleasant Prairie, WI) (25.4 cm × 35.7 cm), jute bags (West 

Springfield, MA) (62 cm × 38 cm), and laminated polypropylene bags (Central Bag 

Company, Leavenworth, KS) (64 cm × 30 cm × 7.5 cm) were used to obtain fabric 

material. Pieces of predetermined size were cut out of each bag using a pair of scissors 

and miniature bags with dimensions of 16 cm × 21 cm were stitched with thread and a 

needle but one end of each bag was left open. 

Evaluating Effectiveness of Fabrics to Prevent Infestation from Outside. The 

effectiveness of the four types of bags to prevent infestation by S. oryzae, T. castaneum, 

or R. dominica from outside the bag was tested using miniature bags. Each bag was filled 

with 0.5 kg of diet. Diet for S. oryzae and R. dominica was whole kernels of hard red 

winter wheat, whereas that for T. castaneum was cracked wheat. The bags were sealed by 

tying the open end of each bag with a 40.64-cm rubber band. A plastic box (21.7 cm × 

20.7 cm × 22 cm) was used to contain each of the bags and insects. The lid of each plastic 

box had six 1-cm diameter holes to allow air movement and to maintain 65% RH inside 

the box. The relative humidity of 65% was produced by a saturated solution of NaNO2 

kept in different container outside the box. Fluon (Polytetrafluoroethylene, Sigma Aldrich 

Saint Louis, MO) was applied to the top 2 cm of the inner rim to prevent insects from 
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escaping. Diet-filled bags were individually placed inside the plastic boxes. One gram of 

wheat was placed inside the plastic box, but outside the bag, to ensure insects had some 

food. Twenty 1- to 3- wk-old adults of S. oryzae, T. castaneum, or R. dominica were 

added to each box. Boxes were placed in an incubator maintained at 28°C and 65% RH 

throughout the experiment. The number of dead and live insects outside each bag were 

recorded after 0.5, 1, 5, 10, 14, and 28 d. In addition, the number of holes in each bag 

were recorded after 28 d.  

Evaluating Effectiveness of Fabrics to Contain Infestation. Each of the miniature 

bags was filled with hard red winter wheat (whole kernels) for S. oryzae and R. dominica 

and cracked kernels for T. castaneum. Fifty 1- to 3- wk-old adults of S. oryzae, T. 

castaneum, or R. dominica were added each of the bags filled with 0.5 kg of diet. Bags 

were sealed by tying the open end of each bag with a 40.64 cm (16") rubber band. Bags 

were individually kept inside a plastic box which had holes on the lid to enable air 

movement. One gram of wheat was placed inside the plastic box, but outside the bag, to 

ensure that insects which exited the bag had some food. Boxes were placed in an 

incubator maintained at 28°C and 65% RH. The numbers of dead and live insects inside 

or outside the bag, and number of holes in each bag were recorded after 28 d. 

Data Analyses. Contact Sensitivity of Insects to Fabrics and Effects of Exposure 

on Oviposition. Data were analyzed by species. The experimental design was a 

randomized complete block design (RCBD) with three replications and three sub-

replications. Knockdown data were subjected to probit analyses to determine the time to 

knockdown 50%, 95%, and 99% of insects; these times will be referred to as KT50, KT95, 

and KT99, respectively, hereafter. Mortality was assessed 3 d after transfer of insects to 
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clean Petri dishes containing the diet. Statistical analyses were conducted with SAS 

Version 9.4 (SAS Institute, Cary, NC). In relation to progeny production, analysis of 

variance (PROC MIXED) methods were used for analysis of adult progeny and percent 

mortality data. Adult progeny data were analyzed assuming a three factor factorial 

arrangement in a completely randomized design. An arcsine square root transformation 

was used to alleviate heterogeneous variance issues associated with the percent mortality 

response variable. Simple effects of each factor were calculated and significance assessed 

with a SLICE option in an LSMEANS statement.  Protected pairwise comparisons were 

made on the simple effect means.  Raw (untransformed) means and standard errors are 

reported. 

Ability of Insects to Chew or Bore Through Storage Bag Fabrics. Data were 

analyzed by species. All statistical analyses were conducted with SAS Version 9.4 (SAS 

Institute, Cary, NC). For the experiment to determine the ability of ZeroFly mini bags to 

prevent insect infestation from outside, analysis of variance (PROC MIXED) methods 

were used assuming a two factor factorial arrangement in a RCBD. Mortality data were 

transformed using the arcsine square root transformation. Simple effects of each factor 

were calculated and significance assessed with a SLICE option in an LSMEANS 

statement. Protected pairwise comparisons were made on the simple effect means. Raw 

(untransformed) means and standard errors are reported. 

For the experiment to determine the ability ZeroFly mini bags to contain 

infestations within the bag, an arcsine square root transformation was used to alleviate 

heterogeneous variance issues associated with the percent mortality response variable. 

The design for analysis was a RCBD. PROC GLM for a one-way analysis of variance 
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(ANOVA) was used to determine the effects of type of mini bag on adult insect mortality. 

The significance of mean differences was determined by Tukey's HSD (honest significant 

difference) test at P < 0.05. 

Results 

Contact Sensitivity of Insects to Fabrics and Effects of Exposure on 

Oviposition. Sitophilus oryzae. Knockdown assessments were made at 15 min intervals 

up to 8 h after the initial exposure to different treatments for S. oryzae. The percentage of 

insects knocked down in the different fabrics after 8 h was ≤ 5%, except for the ZeroFly 

bag fabric where 99% of insects were knocked down after 143.7 min (≈ 2.4 h) (Table 1). 

For mortality counts, all the main effects and interactions, namely, type of fabric, 

exposure period, and fabric × exposure period were significant at P < 0.05 (Fig. 1A; 

Table 2). Percent mortality of S. oryzae in the ZeroFly bag fabric was significantly higher 

than in other fabrics (Fig. 1). In the case of the ZeroFly bag fabric, the percent mortality 

was significantly higher after 72 h (76.7%) than after 24 h (38.3%) and 48 h (56.7%) of 

exposure (Fig. 1A). These data indicate that mortality of S. oryzae will increase with 

longer exposure to the ZeroFly bag fabric. In the malathion-treated PP or jute fabrics, the 

mortalities were not significantly different from mortalities in the PP bag, jute bag, and 

GrainPro bag fabrics; these mortalities were ≤ 6% (Fig. 1). In relation to progeny 

production, all main effects and interactions were significant with the exception of fabric 

× exposure period (Table 3). Progeny production was significantly lower in the ZeroFly 

bag fabric than in other five fabrics. However, numbers of progeny were similar in the PP 

bag, jute bag, malathion-treated PP bag, malathion-treated Jute bag, and GrainPro bag 

fabrics (Fig. 2). The number of progeny in ZeroFly bag fabric ranged from 5 to 14, 

whereas, in the other treatments, the number ranged from 77 to 217 in the 72-h exposure 
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period (Fig. 2C). These data show the ZeroFly bag fabric is effective in suppressing 

progeny production of S. oryzae.  

Tribolium castaneum. Knockdown assessment data show that 99% of T. 

castaneum, when exposed to ZeroFly bag fabric, were knocked down after 78.9 min 

(Table 1). However, the percentages of insects knocked down in other fabrics were ≤ 5% 

after 8 h. For mortality counts, all the main effects and interactions, type of fabric, 

exposure period, and fabric × exposure period were significant at P < 0.05 (Fig. 1B; 

Table 2). Percentage mortality of T. castaneum exposed to ZeroFly bag fabric was 

significantly higher than in other fabrics. The percent mortality of T. castaneum exposed 

to ZeroFly bag fabric for the 24-, 48-, and 72-h exposure period was 18.33, 21.7, and 

62.2%, respectively. These data seem to indicate that T. castaneum is less sensitive to 

ZeroFly bag fabric than S. oryzae. In the other fabrics, mortalities were not significantly 

different from each other and were ≤ 3% in all the exposure periods. In relation to 

progeny production, all the main effects were, significant, but none of the interactions 

was significant (Table 3). Progeny production of T. castaneum was significantly lower in 

fabric from ZeroFly bags than in fabric from PP bags, jute bags, malathion-treated PP 

bags, malathion-treated Jute bags, or GrainPro bags (Fig. 3A). The number of progeny in 

ZeroFly bag was 33 on an average, however, in other fabrics the numbers ranged from 65 

to 82 (Fig. 3A). Exposure period and/or oviposition period had significant effect on the 

progeny production. The numbers of progeny were significantly lower in 72-h than in 24- 

and 48-h exposure periods (Fig. 3B) and lower in the 7-d oviposition period than in 14- 

and 21-d oviposition periods (Fig. 3C).  
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Ability of Insects to Chew or Bore Through Storage Bag Fabrics. Evaluating 

Effectiveness of Fabrics to Prevent Infestation from Outside. S. oryzae, T. castaneum, or 

R. dominica were not able to bore or chew through the ZeroFly bag and both types of PP 

bags (PP and laminated PP mini bags). However, insects were able to enter the jute bag 

by chewing through the fibers. All three insect species were able to make holes in the jute 

bag. For mortality data, all the main effects and the type of mini bag × storage period 

interaction were significant for all insect species (Table 4). Mortality was higher in the 

ZeroFly mini bags and significantly different from other treatments in all storage periods, 

for all insect species (Fig. 4). For the ZeroFly mini bags, 100% mortality of S. oryzae, T. 

castaneum, or R. dominica adults placed outside the bag was achieved after 5 d (Fig. 4).  

Evaluating Effectiveness of Fabrics to Contain Infestation. None of the S. oryzae, 

T. castaneum, or R. dominica adults placed inside the ZeroFly bags, PP, and laminated 

PP was found outside the bags, however, insects were able to get out of the jute bag. 

Holes made by insects were found only in jute bags. Additionally, significantly higher 

mortality of insects, of all three species, occurred inside the ZeroFly mini bags compared 

to other types of mini bags. Mortality in the ZeroFly mini bags after 28 d was ≥ 94%, for 

all the three species (Fig. 5). Mortality in the PP, laminated PP, and Jute mini bags did 

not exceed 24%, for all the three species (Fig. 5).   

Discussion 

Based on our data, and depending on exposure period, S. oryzae and T. castaneum 

exposed to the ZeroFly bag fabric can experience knockdown, mortality, and/or reduced 

progeny production. The toxic effects of deltamethrin, which is incorporated in the fabric 
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of ZeroFly bags and causes knockdown and/or mortality of S. oryzae and T. castaneum 

has also been shown by Anankware et al. (2014) and Costa (2014). For S. oryzae and T. 

castaneum exposed to the ZeroFly bag fabric, the time required to knock down 99% of 

both species is ≤ 3 h. These data are similar to results of Anankware et al. (2014) who 

reported >93% knockdown of Sitophilus zeamais (Mot) (Coleoptera: Curculionidae) after 

6 h of exposure to ZeroFly bag fabric.  

Our data also show that the ZeroFly bag fabric was significantly more effective 

than the other five fabric materials tested, both in terms of causing mortality and in 

suppressing progeny production of S. oryzae and T. castaneum in all exposure periods. 

The fact that mortalities in malathion-treated PP or -jute bag fabrics were not different 

from those in untreated fabrics from PP or jute bags may indicate malathion resistance in 

the insects used for tests.  Malathion resistance has been extensively reported in S. oryzae 

and T. castaneum throughout the world, and malathion has been replaced by other 

pesticides because of this reason (Hortan 1984, Zettler and Cuperus 1990, Arthur 1996, 

Arthur and Subramanyam 2012).  

 Production of large numbers of adult insects in fabric from PP, jute, or GrainPro 

bags indicated that insects used were capable of effective oviposition. This means the 

suppression of progeny production was most likely exclusively due to the ZeroFly bag or 

malathion-treated fabrics. The ZeroFly bag fabric significantly reduced the number of 

live progeny produced by S. oryzae and T. castaneum ― although the effect on progeny 

production varied between the species. Low progeny production in the ZeroFly bag 

indicates that deltamethrin present in the bag was toxic to S. oryzae and T. castaneum, 

and had sublethal effects. Compared to other fabrics tested, there were significantly fewer 
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progeny produced after exposure to the ZeroFly bag fabric. However, exposure to the 

ZeroFly bag fabric, even for 72 h, did not result in total progeny production suppression. 

The 5 to 14 progeny of S. oryzae and ≤ 33 progeny of T. castaneum found after the 72-h 

exposure to the ZeroFly bag fabric is likely due to insects surviving the exposure. The 

survival of insects after 72-h exposure to ZeroFly bag fabric is consistent with data from 

the ZeroFly mini bags, which show 5 d are required to kill all adult insects outside the 

bag, trying to find their way into the bag. 

Despite the fact that 72-h exposure to the ZeroFly bag fabric does not kill all adult 

insects, our results from ZeroFly mini bags showed that no test insects were able to bore 

or chew through the ZeroFly bag fabric. This supports the findings of Anankware et al. 

(2014) who showed that S. zeamais was not able to bore or chew through the ZeroFly bag 

fabric. The inability of S. oryzae, T. castaneum, R. dominica, and S. zemais to chew or 

bore through the ZeroFly bag fabric indicates that the ZeroFly bag can be used to 

effectively protect cereal grains and legumes stored in it. In this study, we have also 

showed that S. oryzae, T. castaneum, and R. domnica were not able to bore or chew 

through PP and laminated PP mini bags. These results are supported by the findings of 

Allahvaisi et al. (2010) who reported that PP is resistant to Callosobruchus maculatus 

Fabr. (Coleoptera: Bruchidae) penetration. Although, no insects gained entry into PP and 

laminated PP mini bags mortality of insects in these mini bags was significantly lower 

than in the ZeroFly mini bags, for all storage periods. Starvation of insects may have 

contributed to increased mortalities in jute, PP, or laminated PP mini bags because only 

one gram of diet was provided outside each bag and this may not have been enough for 
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insects to feed on for 28 d the experiment lasted. No insect holes were found in ZeroFly, 

PP, and laminated PP mini bags, but holes were found in jute mini bags. 

In conclusion, we have showed that the ZeroFly bag fabric can cause insect pest 

knockdown, mortality, and/or reduced progeny production. Our data indicate that the 

mode of action of the ZeroFly bag is likely through knockdown, mortality, and/or 

reduced progeny production of insect pests that come into contact with the bag fabric. 

The ZeroFly bag fabric not only prevents insect entry into bags from outside, but also 

contains infestation within the bag hence preventing other surrounding bags from 

infestation.  
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Table. 1. Time to knockdown in minutes (KT50, KT95, and KT99) for S. oryzae and T. castaneum adults exposed to 

ZeroFly bag fabric. 

Species KT50 

(95% CI) 

KT95 

(95% CI) 

KT99 

(95% CI) 

Slope± SE χ
2
 (df) 

[H*] 

S. oryzae 79.6 

(71.9 – 86.9) 

120.8 

(107.5 – 147.5) 

143.7 

(123.6 – 188.6) 

9.06 ± 0.39 355.08 (28) 

[12.86] 

T. castaneum 54.0 

(52.7 – 55.3) 

70.6 

(68.2 – 73.7) 

78.9 

(75.4 – 83.5) 

14.14 ± 0.91 15.3 (28) 

[0.548] 

KT stands for knockdown time; CI for confidence interval; Heterogeneity value (quotient of chi-square and degrees of 

freedom). 
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Table 2. ANOVA results for main effects and interactions for fabric materials (Fabric), exposure period for adult 

Sitophilus oryzae and Tribolium castaneum in relation to mortality when exposed to the fabric of ZeroFly
®
 Storage Bag 

(ZeroFly bag), polypropylene bag (PP), jute bag, Malathion 50EC- treated PP bag, Malathion 50EC- treated jute bag, 

and GrainPro bag. 

 

Source Sitophilus oryzae Tribolium castaneum 

 Df F P df F P 

Fabric  5, 144 201.99 <0.0001 5, 144 134.25 <0.0001 

Exposure Period 2, 144 18.18 <0.0001 2, 144 13.96 <0.0001 

Fabric × Exposure Period 10, 144 3.58 0.0003 10, 144 9.96 <0.0001 
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Table 3. ANOVA results for main effects and interactions for fabric materials (Fabric), exposure period (Exp), and 

oviposition period (Ovipos) for adult Sitophilus oryzae and Tribolium castaneum in relation to number of progeny when 

exposed to fabric of ZeroFly
®
 Storage Bags (ZeroFly bag), polypropylene bag (PP), jute bag, Malathion 50EC- treated 

PP bag, Malathion 50EC- treated jute bag, and GrainPro bag. 

 

Source Sitophilus oryzae Tribolium castaneum 

 Df F P df F P 

Fabric  5, 108 44.75 <0.0001 5, 108 20.52 <0.0001 

Exp 2, 108 4.87 <0.0095 2, 108 3.23 0.0432 

Fabric × Exp 10, 108 2.19 0.0238 10, 108 0.54 0.8551 

Ovipos 2, 108 26.60 <0.0001 2, 108 6.11 0.0031 

Fabric × Ovipos 10, 108 0.81 0.6161 10, 108 0.33 0.9728 

Exp × Ovipos 4, 108 0.30 0.8787 4, 108 0.14 0.9666 

Fabric × Exp × Ovipos 20, 108 0.28 0.9990 20, 108 0.17 1.0000 
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Table 4. ANOVA results for main effects and interactions for type of mini bag and storage period for adult S. oryzae, T. 

castaneum, and R. dominica in relation to mortality when insects were kept outside mini bags, i.e. ZeroFly mini bags, 

PP mini bags, laminated PP mini bags, and jute mini bags.  

 

 

Source  S. oryzae T. castaneum R. dominica 

 df F P F P F P 

Bag type 3 40.89 < 0.0001 186.88 < 0.0001 323.41 < 0.0001 

Storage 

Period 

5 20.86 < 0.0001 29.30 < 0.0001 91.52 < 0.0001 

Bag type × 

Storage 

Period 

15 2.53 0.0118 2.91 0.0040 7.07 < 0.0001 
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Figure Captions 

Figure 1. Mortality (Mean ± SE) of Sitophilus oryzae (A) and Tribolium castaneum (B) 

exposed to fabric materials from ZeroFly
®

 Storage Bags (ZeroFly bag) (F1), 

polypropylene bag (PP) (F2), jute bag (F3), Malathion 50EC- treated PP bags (F4), 

Malathion 50EC- treated jute bag (F5), and GrainPro bag (F6). Means followed by 

different lowercase letters are significantly different (P < 0.05). 

 

Figure 2. Number of progeny (Mean ± SE) of Sitophilus oryzae exposed to fabric 

materials from ZeroFly
®

 Storage Bags (ZeroFly bag), polypropylene bag (PP), jute bag, 

Malathion 50EC- treated PP bag, Malathion 50EC- treated jute bag, and GrainPro bag. 

Means followed by different lowercase letters are significantly different (P < 0.05). 

 

Figure 3. Number of progeny (Mean ± SE) of Tribolium castaneum exposed to fabric 

materials (A) for different exposure periods (B) and oviposition periods (C) from 

ZeroFly
®

 Storage Bags (ZeroFly bag), polypropylene bag (PP), jute bag, Malathion 

50EC- treated PP bag, Malathion 50EC- treated jute bags, and GrainPro bag. Means 

followed by different lowercase letters are significantly different (P < 0.05). 

 

Figure 4. Mortality (Mean ± SE) of Sitophilus oryzae (A), Tribolium castaneum (B), and 

Rhyzopertha dominica (C) when insects were placed outside of ZeroFly bag, 

polypropylene bag (PP), laminated PP bag, and jute bag. Means followed by different 

lowercase letters are significantly different (P < 0.05). 



88 
 

Figure 5. Mortality (Mean ± SE) of Sitophilus oryzae (A), Tribolium castaneum (B), and 

Rhyzopertha dominica (C) when insects were placed inside the ZeroFly bag, 

polypropylene bag (PP), laminated PP bag, and jute bag. Means followed by different 

lowercase letters are significantly different (P < 0.05). 
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Figure 1. Mortality (%) of Sitophilus oryzae and Tribolium castaneum exposed to 

different treatments 
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Figure 2. Number of progeny of Sitophilus oryzae.  
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Figure 3. Number of progeny of Tribolium castaneum. 
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Figure 4. Mortality (Mean ± SE) of S. oryzae, T. castaneum, and R. dominica
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Figure 5. Mortality (Mean ± SE) of S. oryzae, T. castaneum, and R. dominica 
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CHAPTER V 

 

 

Field evaluation of the deltamethrin-incorporated bag (ZeroFly
®

 Storage Bag) as a barrier 

to insect pest infestation 
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ABSTRACT The deltamethrin-incorporated polypropylene (PP) bag, ZeroFly
®

 Storage 

Bag, is a new technology to reduce postharvest losses caused by stored-product insect 

pests. ZeroFly bags filled with untreated maize were compared with PP bags filled with 

Betallic Super (80 g pirimiphos-methyl and 15 g permethrin per liter as an emulsifiable 

concentrate (EC))-treated-maize and PP bags filled with untreated maize (control). The 

experiment was conducted from February−August 2015, at four sites in different 

locations of the Middle Belt of Ghana. Moisture content (MC), number of live and dead 

insects, insect damaged kernels (IDK) and maize weight loss data were collected 

monthly. ZeroFly bags and Betallic treatment significantly reduced insect damage 

compared to the control treatment. ZeroFly bags were able to keep IDK level below 5% 

for 4 mo, but the levels increased to 5.2 and 10.2% after 5 and 6 months, respectively. In 

the control, IDK increased significantly over time and reached 32% after 6 months. The 

ZeroFly bag was effective against Sitophilus, Tribolium and Cryptolestes species for 4 

months. Mean weight loss of ≤ 3.68% was recorded in ZeroFly bags during 6 months of 

storage whereas 11.88% weight loss occurred in the PP bags after 6 months. Among the 

three methods of storage, treating maize with Betallic was more effective in terms of 

suppressing insect pests’ populations, reducing IDK and minimizing weight loss. Based 

on our results, ZeroFly bags are effective for short-term storage, but could also protect 

grains for longer if insect-free grains are used to fill the bags.  

KEY WORDS ZeroFly bag, stored-product insects, maize, Middle Belt of Ghana 
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Introduction 

Most of the calorie and protein needs of humans are obtained from cereal grains, 

grain legumes, and oilseeds (Cordain 1999). Maize (Zea mays L.) is one of the important 

cereal grains grown widely throughout the world. It is a major staple food in Africa (FAO 

2004, Tefera et al. 2011), and significantly contributes to household food security for 

smallholder farmers (Baoua et al. 2014). Maize was planted on approximately 31.1 

million ha of land in Sub-Saharan Africa during the period 2008-2010, and the average 

annual production during this period was 56.7 million tons (AGRA 2014). However, due 

to poor storage techniques, maize producers in developing nations experience 

considerable losses after harvest (Giga et al. 1991, Boxall 2001, Alonso-Amelot and 

Avila-Nunez 2011). 

Over the past few decades, postharvest loss estimation and measures to effect 

mitigation of these losses were high on the international agenda (FAO 1999, FAO and 

World Bank 2011, Abass et al. 2014, Affognon et al. 2015). Despite international focus 

on postharvest loss issues, farmers in the developing nations still face significant losses. 

Estimates of postharvest losses vary in literature, and global figures for losses of 9−40% 

are often quoted (Pimental 2002, FAO and World Bank 2011, Parfitt et al. 2010, Tefera 

2012, Hodges et al. 2014). Postharvest losses can arise from inappropriate storage 

techniques, deterioration by insect pests, and rodents, high ambient temperature, and high 

relative humidity (FAO and World Bank 2011, Anankware et al. 2013, Abass et al. 

2014). However, most of the postharvest losses can be attributed to storage insect pests 

(Giga et al. 1991, Bett et al. 2007). Infestation of stored maize by insect pests may 

produce unpleasant odors, make the grain unfit for consumption, reduce nutritional 
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content, and grain quantity thereby leading to low market price (Hill 1990, Jood and 

Kapoor 1992, FAO 2004, Mboya 2013). 

Stored maize is infested and damaged by a number of insect pests that cause 

quantitative and qualitative deterioration (FAO 2009). Of the pests that infest maize, 

beetles and moths are the most important. Sitophilus oryzae (L.) (Coleoptera: 

Curculionidae), Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), Tribolium 

castaneum (Herbst) (Coleoptera: Tenebrionidiae), Plodia interpunctella (Hübner) 

(Lepidoptera: Pyralidae), Sitotroga cerealella (Oliver) (Lepidoptera: Gelechiidae), 

Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) are the most important pests of 

stored maize (USDA 1986, Rees 2004, Groot et al. 2004, Hagstrum et al. 2012).  

Effective grain storage can reduce pest activity and can help secure food quality 

and quantity until the next harvest season. For storage of cereal grains and grain legumes, 

farmers in sub-Saharan Africa predominantly use traditional storage techniques such as 

open platforms, woven baskets, pots, mud rhombus, maize cribs, bamboo storage 

structures, straw roofed storage structures, underground storage, bag storage, and 

warehouses (FAO 1994a, Adejumo and Raji 2007). Because most of the aforementioned 

structures are made of locally available materials, small scale farmers find them 

economically feasible to construct. Storing cereals in sacks such as jute or polypropylene 

bags is currently the most common storage technique (FAO 1994a, Koona et al. 2007, De 

Groote et al. 2013). However, postharvest losses do occur in bagged commodities that are 

not treated with any grain protectant; losses of up to 60% have been recorded in maize 

stored using traditional polypropylene bags (Costa 2014). 
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Grain protectants and fumigants are used by farmers in developed countries to 

control insect pests of stored maize (White 1995, Arthur 1996, Zettler and Arthur 2000). 

Some challenges to pesticide use are that most resource-poor smallholder farmers in 

developing countries find the cost of pesticides prohibitive thereby making them 

unaffordable and these chemicals have been abused and misused by farmers in ways that 

pose risks to human health and the environment (Kamanula et al. 2011, Hodges et al. 

2014). Therefore, a need exists for the development of reduced risk approaches to 

managing insect infestations in bagged grain. Additionally, ways of scaling up such 

reduced risk technologies need to be sought because farmers in developing countries have 

been too slow to adopt such technologies (USDA 1986, Kaminski and Christiaensen 

2014).   

In rural parts of Ghana, most maize produced by smallholder farmers is 

traditionally stored in jute or polypropylene bags (FAO 1994a, Akramov and Malek 

2012, Anankware and Bornu-Ire 2013). These bags often do not protect the grains against 

insect pests, leading to heavy losses. Reducing postharvest losses in bagged grain could 

increase smallholder farmers' income and also improve food insecurity. Vestergaard 

Frandsen SA, Switzerland has developed a deltamethrin incorporated polypropylene bag 

(ZeroFly
®

 Storage Bag), which has great potential to reduce postharvest losses of cereal 

grains and grain legumes stored in it for use in developing countries (Anankware et al. 

2014, Costa 2014). The ZeroFly bag is designed to give protection to commodities by 

preventing the entry of insect pests thereby facilitating preservation of cereal grains and 

grain legumes. However, there are little published data on field trials with the ZeroFly 

Storage Bag. Therefore, this study was conducted in the Middle Belt of Ghana to evaluate 
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the effectiveness of the ZeroFly bag to protect maize from infestation by stored-product 

insect pests. 

Materials and Methods 

Study Sites. The experiment was conducted in three major maize growing areas 

located in the transitional ecological zone of Ghana: Ejura (located at a longitude 1
0
5

’
 W 

and 1
0
39’ W and latitudes 7

o
9

’
 N and 7

o
36

’
 N), Techiman (located at a longitude 1

o
42

’
 54 

W and latitudes 6
o
37

’
25 N), and Wenchi (longitude: 2° 6' 0" W and latitude: 7° 45' 0" N). 

The experiment lasted from February to August, 2015, and was set up at four warehouses 

(hereafter referred to as sites), two at different locations in Ejura, one in Techiman, and 

another in Wenchi. Sites selected for the experiment were either near maize storage areas 

or market areas where insect pressure was high. 

Treatments. There were three treatments assigned to each site. The first 

treatment was Betallic Super EC (Batch number- Eas-13 g-13193, Hockley International 

Ltd, Manchester M22 5lb, UK)-treated maize in 50-kg untreated polypropylene (PP) 

bags. The maize treated with Betallic Super EC which contains two active ingredients, 

namely, 80 g pirimiphos-methyl and 15 g permethrin per liter as an emulsifiable 

concentrate (EC). According to the Betallic label, an application rate of 300 ml in 15 

liters of water for application on twenty 100-kg bags (maxi bags) of grain is 

recommended. In this study, 7.5 ml of Betallic was mixed with 0.38 liter of water and 

used to treat each batch of 50 kg of clean, dry, insect pest-free maize; a hand sprayer 

(Bentronic pressure sprayer) of 2-liter capacity was used to apply the insecticide. 

Therefore, total volume of 135 ml and 6.84 liters of Betallic and clean water, 

respectively, were applied on nine 100-kg bags (0.9 tonnes) of maize used in the Betallic 
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treatment, in the four sites. Treated maize was thoroughly mixed using a wooden spade to 

ensure uniformity, and the treated maize was air-dried before being used to fill 50-kg 

untreated PP bags; filled bags were sealed by sewing using thread and a needle. The bags 

were then stacked on pallets at the four sites.  

The second treatment was untreated maize in untreated 50-kg PP bags (control). 

Clean, dry, insecticide- and insect pest-free maize with a MC of 11−13% was used to fill 

untreated PP bags. No insect pest-control measures were conducted during the 6 months 

maize storage period; which was also the duration of the experiment. 

The third treatment consisted of untreated maize in 50-kg deltamethrin (DM) 

incorporated PP bags [ZeroFly
® 

Storage Bags (hereafter referred as ZeroFly bags) made 

by Vestergaard Frandsen (VF)] ― here each of the three storage methods is referred to as 

“treatment”, although each of them is not a treatment as defined in statistics. ZeroFly
 

bags were obtained from Vestergaard Frandsen’s local distributor in Nigeria (Turner 

Wright Nigeria Limited 15, Adenekan Salako Close, Ogba, Lagos, Nigeria), whereas, 

untreated polypropylene bags and Betallic Super EC (distributed by Bentronic 

productions, P. O. Box Ks 14318, Kumasi, Ghana) were obtained from a local market in 

Ejura, in the Ashanti region of Ghana. According to the producer’s label, the ZeroFly bag 

contains 3 mg/kg deltamethrin and unique technology is used to incorporate insecticide 

into the PP fabric in such a way as to allow slow and controlled release of the active 

ingredient for at least two years.  

Maize and its Pre-Experimental Disifestation. Ghana is a major maize 

producing African country and a majority of producers grow white maize varieties 

(Ragasa et al. 2013). Therefore, a white variety of maize called “Obatanpa” was used for 
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the experiment. Maize was bought from a single local farm in Ejura to ensure uniformity 

of maize used in the experiment. The maize was cleaned, dried to a moisture content of 

11.5% (John Deere moisture meter measurement) and then fumigated using Phostoxin
®
 

tablets before the experiment was set up to ensure that the maize used was free from all 

life stages of insect pests. Twenty six Phostoxin
 
tablets were placed in a stack of seventy 

two 50-kg bags (mini bags). Thirty tablets are recommended for 28.32 m
3
; one tablet 

produces 25 ppm of phosphine (hydrogen phosphide or PH3) in 28.32 m
3
 

(http://www.researchfumigation.com/msds/weevil-cid-applicator-manual.pdf). The stack 

of seventy two 50-kg bags had a volume of 24 m
3
 (6 m x 4 m x 1 m). Therefore, the 

number of tablets required for a 24 m
3
 stack was calculated as 26. One tablet per m

2 
(of 

the 6 m x 4 m area) and two tablets were placed in the center to give a total of 26 tablets 

for the 24 m
2
 base area. The stack was covered with a gas-tight tarpaulin to ensure gas 

leakage was as minimal as possible. The estimated PH3 concentration inside the stack 

after complete decomposition of the tablets was 764.71 ppm. Fumigation lasted 5 d after 

which the tarpaulin was removed. Fourteen days after the removal of the tarpaulin, the 

fumigated maize was used to set up the treatments referred to above.  

Methodology. Maize was transported to each site in bags provided by the maize 

supplier. Filling of 50-kg bags for the three different treatments was done at each site, 

starting with maize and bags which were untreated (no pesticide in either the maize or 

bag). This was done to prevent insecticide cross- contamination among treatments 

through maize and/or bags. In each of the four sites, there were six sub-replicates for each 

treatment, i.e. six maize-filled bags were assigned to each treatment; each stack of six 

bags was on a separate pallet to prevent bags from absorbing moisture from the floor. The 

http://www.researchfumigation.com/msds/weevil-cid-applicator-manual.pdf
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pallets were placed 4 m apart from each other. There were eighteen 50-kg bags per site. 

Additionally, 5 mouse and rat traps were placed in each site to minimize rodent damage 

to bags of stored maize ― evidence of the presence of mice and rats had been seen 

during preparation of the sites for the experiment. The experimental design used was 

randomized complete block design (RCBD) with four replications and six sub-replicates 

for each treatment replicate. Each site represented a replication. 

Sampling and Data Collection. Bags were sampled at the start of the 

experiment, just after the experiment had been set up, and this was in February 2015. 

Monthly sampling was then conducted during the period March−August. Bags in each 

stack of six were randomly numbered 1–6 to facilitate sampling. The assignment of 

numbers to bags was by randomly picking numbered and folded pieces of paper, each 

with one of the six numbers written on, which had been shuffled in a small plastic 

container and accordingly assigning numbers to bags. Three bags from each treatment 

were randomly selected for sampling during each sampling event. The order of sampling 

for the three treatments, from first to last, was the control, ZeroFly bags and Betallic 

treatment. The rationale for the order of sampling was to avoid insecticide cross 

contamination among treatments. 

Moisture Content (MC). Moisture content in each bag sampled was assessed 

using two moisture meters. The bag selected for sampling in each treatment was opened 

by undoing the thread seal. A moisture meter developed by the USDA-ARS Center for 

Grain and Animal Health Research, Manhattan KS, referred to in this study as the PHL 

meter, was inserted in a bag of maize, left to stabilize over a 3-min period, and then the 

temperature (°C) and MC (%) readings were taken. Three different readings were taken 
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from different positions for each bag and the average values were calculated.  A John 

Deere moisture meter (Manufactured by agraTronix™; Moisture Check Plus™, USA for 

Deere & Company; Batch SW08120) was also used to measure the MC of maize in each 

of the bags data were collected using the PHL meter. Three measurements were taken 

and the average MC was calculated for each bag. 

Grain Sampling. A 1.2-m open-ended trier (grain probe) (Seedburo Equipment, 

Chicago, IL) was used to sample maize from bags. Three triers, one for each treatment, 

were used for sampling. Samples were taken from the center and two opposite sides near 

the inner surface of each bag. Samples from each bag were mixed thoroughly in a basin 

to ensure homogeneity. A sample of 250 g was then weighed out using a dial spring scale 

(CAMRY, Yongkang, China). The 250-g maize sample was placed in a labeled plastic 

bag and taken to the laboratory for data collection. The maize from each bag that 

remained in the basin, after the 250-g sample was weighed out, was put back into the bag 

from where the samples were taken; this was done immediately after all required data had 

been taken. Sampled bags were sealed by sewing using thread and a needle immediately 

after unused maize from the samples taken had been put back. To avoid insecticide cross 

contamination, hand gloves were changed after handling samples for each treatment. 

Floors in the different sites were always kept clean and mice traps were replaced 

regularly. 

For each of the 250-g samples collected, data on number of insects of each 

species, number of insect damaged kernels (IDK), percentage of IDK, and weight of 

damaged and undamaged kernels. All samples were processed at Kwame Nkrumah 

University of Science and Technology Insectary, located in the Department of Crop and 
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Soil Sciences. Percent weight loss due to insect damage was determined using the count 

and weight method (FAO 1992). 

              % Weight loss = 
)(

)()(

NuNdWu

NuWdNdWu




 ×100  

Where Wu is the weight of undamaged grain, Nu is the number of undamaged grain, Wd is 

the weight of damaged grain, and Nd is the number of damaged grain. 

Statistical Analyses. Statistical analyses were performed with SAS Version 9.4 

(SAS Institute, Cary, NC).  Treatment effects were assessed using analysis of variance 

methods (PROC MIXED).  A repeated measures model in a randomized complete block 

design was utilized, with site as the blocking factor and month as the repeated factor.  An 

autoregressive covariance structure was used to model the correlations within treatment 

and across months. Analyses of the numbers of IDK and numbers of live and dead insects 

were conducted with the use of a square root transformation. A square root 

transformation was used to correct for heterogeneous variances and the lack of normality 

of the count response variable. The simple effects of treatment given month were 

assessed with protected planned contrasts (SLICE option in an LSMEANS statement). In 

case of percent MC, IDK, and weight loss, data analyses were conducted with the use of 

an arcsine transformation to stabilize variances but untransformed percentages are 

reported.  

Results 

Moisture Content. For moisture content measured by the PHL or JD meters, 

there was no significant interaction between storage period and treatment (Table 1). For 

moisture content measurements taken on the same bags of maize at approximately the 
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same time, there was a ≤ 2% difference in the moisture content measured by the PHL and 

JD meters (Fig. 1). Moisture content measurements for the PHL moisture meter ranged 

from 11 to 13.9% (Fig. 1A), whereas those for the JD meter ranged from 13 to 14.8% 

(Fig. 1B).   

Insect Damaged Kernels (IDK). The interaction between treatments and storage 

period was significant for the number of IDK and percentage of IDK (Table 1). Our 

results show that the ZeroFly bag and Betallic treatments significantly reduced insect 

damage compared to untreated PP bags with untreated maize treatment (control). Mean 

numbers of IDK were not significantly different during the entire storage period in the 

Betallic treatment (Fig. 2). In the control treatment, IDK increased significantly from 

11% per 250-g maize sample in June to 32% in August. However, in the case of ZeroFly 

bag treatment, numbers of IDK were not significantly different during the period from 

May to August; the number of IDK increased from 3% in May to 10% in August (Fig. 2).  

Insect Infestation Level. Sitophilus spp. There was significant interaction 

between storage period and treatment in relation to the number of live Sitophilus spp. 

(Table 2). There were no live adult Sitophilus in samples from the Betallic and ZeroFly 

bag treatments during the first 2 mo of storage. In the Betallic treatment, the numbers 

of Sitophilus were not significantly different during entire storage period (Fig. 3). In the 

case of the ZeroFly bag treatment, numbers of Sitophilus in bags were not significantly 

different during the period February to July, but the number increased numerically to 15 

at the end of the study in August. The number of live Sitophilus was significantly higher 

in bags in the control treatment where 32 insects were found in June, but the number 

decreased to 20 in August (Fig. 3A). Although, there was no significant interaction 
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between storage period and treatment for dead Sitophilus, depending on the month, the 

numbers of dead insects were numerically or significantly higher in the ZeroFly bags 

than in the other two treatments. On average, 31 dead Sitophilus per sample were found 

in ZeroFly bags at the end of storage in August. These data indicate that ZeroFly bags are 

likely contributing to increased mortality of Sitophilus spp. but are not doing so 

effectively enough to result in the same kind of population suppression observed in the 

Betallic treatment. 

Tribolium spp. There was significant interaction between storage period and 

treatment for both live and dead Tribolium spp. (Table 2). The numbers of live Tribolium 

were not significantly different for samples from the ZeroFly bag and Betallic treatments 

in all storage periods; in both treatments, the mean number of insects per sample was 

below 1 during the 6 mo of storage. In the control treatment, mean number of live insects 

increased significantly to 6.5 in June, but decreased to 1.7 and 2.1 in July and August, 

respectively; the July and August number of live Tribolium spp were statistically similar 

to the number of insects in March (Fig. 4A). In all the treatments, dead Tribolium spp. 

numbers were below 2 (Fig. 4B).  

Cryptolestes spp. There was significant interaction between storage period and 

treatment for both live and dead Cryptolestes spp. (Table 1). Despite the lack of 

significant differences in the number of live insects in the Betallic and ZeroFly bag 

treatments, there were numerically more insects in the latter treatment (11.5 ± 6.48) than 

in the former treatment (0.8 ± 0.42) at the end of study (August) (Fig. 5A). In the control 

treatment, the numbers of live insects were significantly higher than in the other two 
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treatments, and numbers increased significantly with storage time from 45 in July to 92 in 

August (Fig. 5A).  

Grain Weight Loss. In relation to maize weight loss, the interaction between 

storage period and treatment was significant (Table 1). There were no significant 

differences among the three treatments during the first 3 mo of storage. In the control 

treatment, percentage weight loss increased significantly from June to August when 

11.9% weight loss occurred.  No significant weight loss occurred in the Betallic treatment 

where weight loss did not exceed 1% during entire storage period of 6 mo. In the ZeroFly 

bag treatment, there was no significant weight loss until August when 3.7% weight loss 

occurred (Fig 6).  

Discussion 

Based on our data, maize moisture content at the start of the storage period 

(February) was 11−13%, a MC level considered safe for storage of maize (FAO, 1994b, 

2011).  However, moisture content increased over the storage period, in all treatments, 

and was significantly higher after 6 months of storage in August. The MC levels in 

August were 13–14.8%. It is possible that insects infesting maize contributed to increase 

in MC but other factors may have played a bigger role in the increase given that the 

Betallic treatment had low insect infestation. Increase in MC levels may have been due to 

the influence of ambient relative humidity — relative humidity in the Middle Belt of 

Ghana increases during the period February−August (Jarvis et al., 2014). Moisture 

content is an important physiological variable that always needs to be considered for 

successful grain storage and should be monitored regularly; storage at MC levels of 12-
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13% helps to reduce deterioration and microbial growth (FAO, 2011; Costa, 2014). The 

JD moisture meter costs $250 and is too exorbitant for smallholder farmers in developing 

countries. Conversely, the PHL meter is a relatively low cost ($50 – $70) moisture meter 

produced by the USDA-ARS, Center for Grain and Animal Health Research, Manhattan, 

KS. The PHL meter is designed to give MC measurements using both temperature and 

relative humidity of air surrounding the grain (Opit et al., 2014). Based on our data, there 

was approximately a 2% difference in the measurements of the PHL and JD meters.  

One of the variables the Ghana Standards Authority uses to grade maize is the 

percentage of maize kernels that are damaged, i.e. percentage IDK (%) (GSA, 2013). The 

percentage IDK threshold accepted by the Ghana storage industry, wholesalers, retailers 

and consumers is 5%. Although other factors such as diseased, discolored, broken, 

stained, germinated and shriveled kernels are used to determine grades and acceptability 

of maize, a level > 5% IDK results in maize getting rejected (GSA, 2013). In the current 

study, percentage IDK increased significantly with storage time in the control treatment 

and levels of 11, 16 and 32% per 250-g maize samples were found in June, July and 

August, respectively; these value are far higher than the 5% threshold referred to above. 

In contrast, the Betallic treatment was able to keep percentage IDK levels well below 2% 

during entire storage period. In the ZeroFly bag treatment, IDK levels were below 5% 

until June (3.1%), but levels increased to 5.2 and 10.2% in July and August, respectively.  

Based on our data, the ZeroFly bag and Betallic treatments were highly effective 

in suppressing insect infestation and damage levels compared to the control treatment 

(untreated PP bag). The common way of storing maize in Ghana is using untreated PP 

bags that contain untreated maize (the negative control treatment in the present study). In 
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the control treatment, the number of Sitophilus spp., Tribolium spp. and Cryptolestes spp. 

were generally significantly higher than in other two treatments. 

The Betallic treatment was most effective at suppressing stored-product insect 

pest levels. The ZeroFly bag was quite effective only up to 4 months of storage. After 4 

months of storage, the insect levels (Sitophilus, Tribolium or Cryptolestes) in the ZeroFly 

bag increased significantly and resulted in percentage IDK levels > 5%. The increased 

infestation levels in the ZeroFly bags after 4 months of storage seem to indicate that 

insects (eggs and/or larvae) that may have survived the phosphine fumigation before 

maize was bagged do not contact the surface of the ZeroFly bag enough for their levels to 

be significantly reduced. For stored-product insects to be killed by the ZeroFly bag 

fabric, they need to contact the fabric for long periods of time (≥ 24 h) (Paudyal et al., 

unpublished data). It is also likely that the repeated sealing and unsealing of the ZeroFly 

bags during grain sampling may have created breaches in the deltamethrin barrier that 

allowed easy access of insects into the bags. Anankware et al. (2014) showed that the 

ZeroFly bag causes 100% mortality of S. zeamais after 48 h of exposure to ZeroFly bag 

fabric. This may indicate that ZeroFly bags are likely contributing to increased mortality 

of insects but are not doing so effectively enough to result in the same kind of control 

observed in the Betallic treatment. 

In the present study, mean weight losses of ≤ 0.44% and ≤ 3.68% were recorded 

in Betallic and ZeroFly bag treatments, respectively, during the 6 months storage period. 

However, losses of 2.23, 3.88 and 11.88% were recorded in June, July and August, 

respectively, in the control PP bag treatment. This study corroborates with the study by 

Costa (2014) who found that postharvest losses (including weight losses) of 59 and 54% 
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were recorded in maize stored for 90 d in traditional PP bags in field experiments 

conducted in Uganda and Burkina Faso, respectively. However, losses in ZeroFly bags 

were 2.7% and 2.4% after 90 d of storage in Uganda and Burkina Faso, respectively. This 

implies that, in sub-Saharan Africa, severe and significant postharvest losses due to 

insects occur in maize stored in PP bags without any control measures.  

From observation during our study, the ZeroFly bag appeared to act as a barrier to 

insects from outside (Fig. 7). Observations during visits to field sites showed that insects 

were not present on the outside surface of ZeroFly bags (Fig. 7B). However, large 

numbers of insects were found crawling on the surfaces of PP bags in the control 

treatment (Fig. 7A).  Our data indicate that the ZeroFly bag is effective in suppressing 

insect population levels, but it is not as effective as admixing maize with Betallic. The 

fact that the effectiveness of the ZeroFly bag results mostly from preventing insect entry 

into bags means maize (grains) put into in bags at the start of storage needs to be insect-

free to avoid damaging insect levels developing inside bags during storage. Additionally, 

the bags must retain their physical integrity during the storage period (no holes, well-

sealed immediately after each opening) to effectively protect the grain in bags from insect 

infestation. Based on the need for insect-free grain during filling of ZeroFly bags, it is our 

recommendation that these bags be used by commercial aggregators and large scale 

farmers who are better equipped to properly disinfest grain before bagging. Commercial 

aggregators and large scale farmers in the developing countries can afford the cost of 

fumigation or any other effective insecticide in order to keep the commodities clean and 

insect-free before storage in ZeroFly bags. Smallholder farmers in developing countries 

usually have neither the knowledge nor the resources required for good disinfestation of 
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grain for bagging. These smallholder farmers typically store their untreated grains in PP 

bags, and are probably not the best target group for ZeroFly bag storage technology. 
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Table 1. ANOVA results for storage period and treatment for moisture content measured by both JD and PHL meters, 

number of insect damaged kernels, percentage of insect damaged kernels (%), and weight loss per 250-g samples from 

the Betallic, Control, and ZeroFly bag treatments.  

Response Variable Source df F P 

Moisture Content (PHL meter) Treatment 2, 14.4 3.42 0.0609 

 Storage period 6, 47 46.49 <0.0001 

 Treatment × Storage period 12, 47.8 0.89 0.5618 

Moisture Content (JD meter) Treatment 2, 8.47 1.96 0.1992 

 Storage period 5, 35.4 12.57 <0.0001 

 Treatment × Storage period 10, 36.9 1.03 0.4412 

Number of Insect Damaged Kernels Treatment 2, 7.08 15.93 0.0024 

 Storage period 6, 48.2 19.89 <0.0001 

 Treatment × Storage period 12, 48 5.00 <0.0001 

Insect Damaged Kernels (%) Treatment 2, 5.5 14.68 0.0062 

 Storage period 6, 44.4 18.19 <0.0001 

 Treatment × Storage period 12, 44.5 4.78 <0.0001 

Weight loss (%) Treatment 2, 6.73 9.02 0.0125 

 Storage period 6, 46.4 19.25 <0.0001 

 Treatment × Storage period 12, 46.3 5.22 <0.0001 
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Table 2. ANOVA results for storage period and treatment for number of live and dead Sitophilus spp., Tribolium spp., 

and Cryptolestes spp. per 250-g samples from Betallic, Control, and ZeroFly bag treatments.  

 

Insects Source Live insects Dead insects 

  df F P df F P 

Sitophilus spp. Treatment 2, 7.8 9.14 0.0090 2, 5.67 2.23 0.1933 

 Storage period 6, 48.4 6.46 <0.0001 6, 40.5 6.06 0.0001 

 Treatment × Storage period 12, 48.2 3.66 0.0006 12, 41.1 1.62 0.1230 

Tribolium spp. Treatment 2, 30.5 53.03 <0.0001 2, 5.76 6.57 0.0327 

 Storage period 6, 50.1 9.26 <0.0001 6, 41 5.05 0.0006 

 Treatment × Storage period 12, 50.7 9.25 <0.0001 12, 41.7 2.58 0.0116 

Cryptolestes spp.  Treatment 2, 6.82 1.47 <0.2938 2, 4.58 3.81 0.1060 

 Storage period 6, 48.9 9.09 <0.0001 6, 26.9 6.92 0.0002 

 Treatment × Storage period 12, 48.4 6.16 <0.0001 12, 28.9 2.32 0.0318 
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Figure Captions 

 

Figure 1. Moisture content (%) (Mean ± SE) measured by PHL (A) and JD (B) meter per 

250-g of maize kernels in the Betallic Super-treated maize-filled PP bags (Betallic 

Super), untreated maize-filled PP bags (control), and ZeroFly
®

 Storage Bags (ZeroFly 

bags). Maize was sampled at the start of storage (February) and at monthly intervals 

thereafter for six months. Means followed by different lowercase letters are significantly 

different (P < 0.05). 

 

Figure 2. Number (A) and percentage (B) of insect damaged kernels (IDK) (Mean ± SE) 

per 250 g of maize kernels in the Betallic Super-treated maize-filled PP bags (Betallic 

Super), untreated maize-filled PP bags (control), and ZeroFly
®

 Storage Bags (ZeroFly 

bags). Maize was sampled at the start of storage (February) and at monthly intervals 

thereafter for six months. Means followed by different lowercase letters are significantly 

different (P < 0.05). 

 

Figure 3. Numbers of live (A) and dead (B) Sitophilus spp. (Mean ± SE) per 250 g in 

Betallic Super-treated maize-filled PP bags, untreated maize-filled PP bags (control), and 

ZeroFly
®

 Storage Bags (ZeroFly bags). Maize was sampled at the start of storage 

(February) and at monthly intervals thereafter for six months. Means followed by 

different lowercase letters are significantly different (P < 0.05). 
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Figure 4. Numbers of live (A) and dead (B) Tribolium spp. (Mean ± SE) per 250 g in 

Betallic Super-treated maize-filled PP bag, untreated maize-filled PP bag (control), and 

ZeroFly
®

 Storage Bag (ZeroFly bag). Maize was sampled after 0, 1, 2, 3, 4, 5, 6 months 

of storage. Means followed by different lowercase letters are significantly different (P < 

0.05). 

 

Figure 5. Numbers of live (A) and dead (B) Cryptolestes spp. (Mean ± SE) per 250 g in 

Betallic Super-treated maize-filled PP bags, untreated maize-filled PP bags (control), and 

ZeroFly
®

 Storage Bags (ZeroFly bags). Maize was sampled at the start of storage 

(February) and at monthly intervals thereafter for six months. Means followed by 

different lowercase letters are significantly different (P < 0.05). 

 

Figure 6. Percentage weight loss (Mean ± SE) per 250-g sample obtained from Betallic 

Super-treated maize-filled PP bags, untreated maize-filled PP bags (control), and 

ZeroFly
®

 Storage Bags (ZeroFly bag). Maize was sampled at the start of storage 

(February) and at monthly intervals thereafter for six months. Means followed by 

different lowercase letters are significantly different (P < 0.05). 

 

Figure 7. A Polypropylene bag with live insects on the surface (A) and the outside view 

of ZeroFly bag (B) 
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Figure 1. Moisture content (MC) data for the PHL meter (A) and JD meter (B).
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Figure 2. Number of insect damaged kernels (IDK) (A) and percentage IDK (%) (B). 
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Figure 3. Number of live (A) and dead (B) Sitophilus spp. for all storage periods 
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Figure 4. Number of live (A) and dead (B) Tribolium spp. in all storage periods 
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Figure 5. Number of live (A) and dead (B) Cryptolestes spp. in all storage periods 
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Figure 6. Weight loss (%)  
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Figure 7A. Outside view of ZeroFly bag 

 

 

 

 

 

 

 

 

Figure 7B. Live insect outside the PP bag (Control) 

 

 

 

 

 

 

 

 



130 
 

CHAPTER VI 

 

 

CONCLUSION 

 

Postharvest losses due to insect infestation and lack of effective control strategies 

for use by farmers and/or aggregators in developing countries have resulted in the 

development of a new innovative tool, the ZeroFly Storage Bag, for the control of key 

pests during storage. Successful scale up of ZeroFly bags requires good data on the 

effectiveness of these bags against stored-product insect pests. The ZeroFly bag is made 

of woven polypropylene (PP), with deltamethrin incorporated in the individual fibers. 

Given the lack of published baseline data on the contact toxicity of deltamethrin and its 

efficacy when incorporated in PP bags, studies were conducted to address these issues. 

The first objective was to investigate the response by adults of Tribolium castaneum, 

Sitophilus oryzae, and Rhyzopertha dominica to different concentrations of deltamethrin. 

Eight different concentrations, namely, 1, 25, 50, 100, 250, 500, 1000, and 3000 ppm of 

deltamethrin were tested over two exposure periods, 24 or 48 h. The second objective 

was to measure the sensitivity of stored-product insect pests to fabric of ZeroFly bags, PP 

bags, jute bags, Malathion-treated PP bags, Malathion-treated jute bags, and GrainPro 

bags ― data on knockdown, mortality, and number of progeny for S. oryzae and T. 

castaneum were collected. Additionally, the ability of T. castaneum, S. oryzae, and R. 

dominica to bore or chew through fabric was evaluated using miniature bags. The 

experiment for the third objective, a field evaluation of the effectiveness of the ZeroFly 
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bag to protect maize from infestation by stored-grain insect pests, was conducted in 

Middle Belt of Ghana.  

Data showed that at concentrations ≥ 25 ppm on glass, 99% knockdown of T. 

castaneum, S. oryzae, and R. dominica was achieved within 4 h after exposure. LC95 

values for all species, for the 48-h exposure period, were ≈ 3,000 ppm, the concentration 

of deltamethrin in new ZeroFly bags. The study on contact toxicity of deltamethrin, 

conducted in glass Petri dishes, facilitates the interpretation of data from studies 

involving exposure of stored-product insects to ZeroFly bag fabric. Data on contact 

toxicity of deltamethrin improve our understanding of the mode of action of ZeroFly bags 

against insect pests which results in protection of grain stored in them from infestation. 

Based on sensitivity data of insects in contact with the ZeroFly bag, the mode of 

action of the ZeroFly bag is through knockdown, mortality, and/or reduced progeny 

production. Relative to five other fabrics ― fabric from PP bags, jute bags, malathion-

treated PP bags, malathion-treated jute bags, and GrainPro bags ― ZeroFly bag fabric 

was significantly more effective, both in terms of causing mortality and in suppressing 

progeny production of S. oryzae and T. castaneum in all exposure periods. When S. 

oryzae and T. castaneum were exposed to the ZeroFly bag fabric, mortality was 

significantly higher in the 72-h exposure period than in 24- and 48-h exposure periods. 

Data from the miniature ZeroFly bags experiments showed that no live insects were 

found inside and outside the bags, and none of the insects from the three species tested 



132 
 

was able to bore (chew) through the bag after 28 d of storage. This indicates that the 

ZeroFly bag can effectively protect cereal grains and grain legumes stored in them by 

preventing insect entry after bagging. 

A field experiment to evaluate the effectiveness of ZeroFly bags to protect maize 

from infestation by stored-grain insect pests was conducted in the Middle Belt of Ghana 

(in collaboration with students from Kwame Nkrumah University of Science and 

Technology (KNUST)). A lower number of insect damaged kernels and smaller 

populations of insects were found in ZeroFly bags than in PP bags. Based on data from 

the field experiment, ZeroFly bags were found to have potential for use in the reduction 

of postharvest grain losses in bagged cereal grains and legumes. However, greater 

benefits of using ZeroFly bags are realized if insect-free grains or legumes are stored in 

bags.  
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