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Abstract: We investigate the effects of evapoconcentration, photosynthesis and 
respiration on diel carbon cycling in densely and non-densely vegetated portions of the 
Okavango River in semi-arid northwestern Botswana. Previous studies have shown that 
evapotranspiration has a profound effect on the river water chemistry over seasonal and 
spatial scales. However, the effect of vegetation induced evapotranspiration in controlling 
river chemistry and carbon cycling over short term daily cycles is not well understood 
and has not been previously investigated. We conducted diel investigations in the river 
channel in the Okavango Delta at two locations that are about 400 km apart. The channel 
at the proximal end of the delta in Mohembo is located in a permanently flooded wetland 
ecotone, with a deep channel and is sparsely vegetated, while Maun at the distal end of 
the delta is located in an occasional flooded wetland ecotone with a shallow channel that 
is densely vegetated. The physical, chemical and isotopic parameters of river water 
measured every hour for 24 h showed much higher solute concentrations and more 
enriched stable isotopic composition of water (δD and δ18O) and stable carbon isotopes of 
dissolved inorganic carbon (δ13CDIC) in the distal portion of the delta due to modification 
by evapoconcentration and atmospheric interaction during river transit over the 400 km 
distance. The total dissolved solids (TDS) and silica show diel variations with higher 
concentrations during the day and lower concentrations at night. The increased solute 
concentrations during the daytime is attributed to transpiration of aquatic vegetation 
coupled to evaporation. The pH, alkalinity and δ13CDIC show clear diel trends that were 
more prominent in the distal portion of the delta at Maun. The controls of carbon cycling 
during the diel cycle is not dominated by biotic processes, such as, water column 
photosynthesis, CO2(g) evasion or photo-oxidation during the day and respiration during 
the night. Our results suggest mostly an abiotic control on solute and carbon cycling, 
despite the occurrence of extensive vegetation in the river channel, floodplain and 
adjacent wetlands. We conclude that despite extensive vegetation in the Okavango River, 
the hydrology and abiotic processes mostly control diel solute and carbon cycling. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

Inland surface waters release an estimated 1.2 Pg C per year to the atmosphere, 

making them an important component of the global carbon cycle (Tranvik et al., 2009; 

Raymond et al., 2013). River systems play a key role in carbon cycling by sequestering 

carbon as organic matter (OM) and carbonates and exchanging CO2(g) with the 

atmosphere (e.g., Cole et al., 2007). Carbon in the dissolved inorganic (DIC) form (DIC = 

CO2(aq) + H2CO3 + HCO3
- + CO3

2-) in the water column is used to produce the OM, 

carbonates or exchanged with the atmosphere (e.g., Stumm and Morgan, 1981). DIC 

input into rivers occur from influx of groundwater, organic matter (OM) respiration, 

photo-oxidation of OM and atmospheric CO2(g) invasion. DIC output from the water 

column includes chemical precipitation (carbonates), uptake by aquatic photosynthesis 

and CO2(g) evasion to the atmosphere (Fig. 1) (Atekwana and Krishnamurthy, 1998; 

Telmer and Veizer, 1999; Parker et al., 2007; Doctor et al., 2008). 
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Figure 1:  Conceptual model showing processes that add or remove dissolved organic carbon 
(DIC) in the carbon pool in the Okavango Delta (Modified from Atekwana and Krishnamurthy 
1998 and Akoko et at., 2013) 

 

DIC influx from groundwater depends on groundwater-surface water interaction. 

Rivers which receive groundwater (effluent rivers) have a significant amount of their DIC 

contributed from soil zone CO2(g) and aquifer carbonates which is absent from rivers that 

predominantly feed groundwater (influent rivers). Although the status of groundwater-

surface water interaction for rivers is defined mainly by the relationship between the 

groundwater table and river level, rivers in humid climates are most likely to be 

dominated by groundwater DIC input while rivers in arid environments mostly lose water 

to aquifers. The amount of DIC input into the water column from OM respiration and 

photo-oxidation of OM depends on the concentration of dissolved organic matter (DOC) 

in the water column and the lability of the DOC (Miller and Zepp, 1995; Granéli et al., 

1996; Cory et al., 2015).  
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In rivers that are hydrologically connected to extensive vegetated floodplains and 

wetlands, flood pulses releases OM from vegetative litter stored in the seasonal 

floodplains, which can dominate the DOC pool (e.g., Mladenov et al., 2005; Cawley et 

al., 2012). As this newly released OM travels downstream, it is affected by 

biogeochemical processes and thus has the potential to contribute significant amounts of 

DIC into the water column (Graneli et al., 1996). CO2(g) will dissolved in river water if 

the partial pressure of CO2 (pCO2) in river water is less than atmospheric (Stumm and 

Morgan, 1981; Drever, 1997; Abongwa and Atekwana, 2013). Chemical precipitation 

removes carbon from the DIC pool if river water is supersaturated with respect to 

carbonate minerals (Stumm and Morgan, 1981; Tobias and Böhlke, 2011). The extent to 

which photosynthesis removes carbon depends on the abundance and types of aquatic 

photosynthetic vegetation (Falkowski and Raven, 1997). Rivers will lose CO2 to the 

atmosphere if the pCO2 of river water is greater than atmospheric CO2 (Stumm and 

Morgan, 1981; Cole et al., 2001). 

When carbon is removed or added to the DIC pool, the DIC concentration 

changes. Each of the processes that adds or removes carbon from the DIC pool is 

characterized by distinct isotopic fractionation. For example, for natural and unpolluted 

rivers in humid regions with C-3 vegetation (δ13C of -25‰), groundwater will add DIC to 

a river with an isotopic composition that will vary from -23‰ to -12‰ depending on (1) 

whether carbonate evolution in the groundwater is “open” or “closed” and (2)  the extent 

to which carbonate evolution has occurred in the groundwater (Clark and Fritz, 1997). 

Where OM respiration or OM photo-oxidation contributes to DIC, the δ13CDIC depends 

on that of the DOC which is approximately -25‰ and -12‰ for C-3 and  C-4 vegetation, 
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respectively (e.g., Clark and Fritz, 1997; Falkowski and Raven, 1997). Although not 

common, atmospheric CO2(g) can dissolve into river water and increase the DIC 

concentration. If this reaction is in equilibrium with  atmospheric CO2(g), then the final 

δ13CDIC will be dictated by the equilibrium isotopic fractionation at a specific temperature 

(Tamooh et al., 2013). For temperatures at the earth’s surface and a δ13C of atmospheric 

CO2(g) of ~8‰, the DIC formed by equilibration with surface waters have a δ13CDIC of 0 

+ 1.0‰ (e.g., Clark and Fritz, 1997). Carbonate precipitation is an equilibrium process 

which will decrease the DIC concentrations and enrich the δ13CDIC of the remaining DIC 

pool (Tobias and Böhlke, 2011). Photosynthesis will decrease the DIC concentration by 

taking CO2 out of the water column, and the extent to which δ13CDIC will be enriched 

depends on the intensity of photosynthesis (O’Leary, 1988; Tamooh et al., 2013). CO2(g) 

evasion will decrease the DIC concentration and the δ13CDIC will increase. At 

equilibrium, it will be controlled by equilibrium isotopic fractionation between DIC and 

atmospheric CO2(g) (e.g., Abongwa and Atekwana, 2013). Given that both the DIC 

concentrations and the δ13CDIC in river water change from processes that induce loss and 

gain of carbon in the riverine DIC pool, these processes can be characterized by 

evaluating changes in the DIC concentrations and the 𝛿𝛿13CDIC (e.g., Atewana and 

Krishnamurthy, 1998; Telmer and Veizer, 1999; Abongwa and Atekwana, 2013). 

 Complex interplay between climate, hydrology, vegetation, microbes, aquatic 

respiration and photosynthesis control the chemical and isotopic properties of river water 

on both seasonal and daily cycles (Parker et al., 2005). The seasonal to annual cycling of 

carbon in rivers varies on a scale similar to rainfall and temperature that define the 
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climate of a region. Therefore, we expect that carbon cycling in rivers in arid compared 

to humid regions will differ in magnitude and timing.  

 On an even shorter time scale of a day, differences in the night and day caused by 

the solar photo-cycle have an effect on the physical and chemical properties of river 

water (Parker et al., 2007; Nimick et al., 2011). The physical and chemical responses in 

the river water that occur on a daily basis, and differ between night and day are known as 

diel cycles. Under ideal conditions, most diel cycles exhibit a sinusoidal pattern, with 

higher magnitude in the measured parameter during the day and lower magnitude at night 

or vice versa. Knowing the processes affecting the biogeochemistry of surface waters on 

a diel cycle is critical for understanding the function of aquatic ecosystems, water quality 

and the response of chemical and biological processes to ever changing river conditions 

impacted by industrialization, drought or climate change (Nimick et al., 2011). 

 Studies of daily carbon cycling have been conducted mainly in humid and temperate 

regions (Parker et al., 2005; Nimick et al., 2011). These studies have greatly improved 

our understanding of diel carbon cycling in temperate regions. However, there are no 

published studies that have investigate diel cycling of carbon in rivers in arid 

environments, leaving a large gap in our understanding of diel carbon cycling in arid 

regions. Additionally, this is especially true in rivers that have dense vegetation in the 

river channels and floodplains which potentially can significantly affect river hydrology 

and ecology. We investigated diel carbon and solute cycling in the Okavango Delta in 

semi-arid northwestern Botswana. The Okavango River which developed distributaries 

on an alluvial fan to form an inland delta, flows for more than 400 km within an 

extensive freshwater wetland (McCarthy et al., 2003). We measured the hydrologic, 
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physical and chemical responses over a diel cycle in sparsely vegetated and heavily 

vegetated regions of the Okavango River. We hypothesize that evaporation coupled with 

transpiration from aquatic vegetation will enhance diel cycling of solutes and carbon. Our 

objectives were to measure the diel response in densely and non- densely vegetated 

portions of a river to: (1) characterize the effect of evaporation using changes in river 

water levels and the stable hydrogen (δD) and the stable oxygen (δ18O) isotopes, (2) 

assess the effects of evapotranspiration on the diel cycling of solutes and (3) determine 

how vegetation affects the diel cycling of solutes and carbon cycling from concentrations 

of major ions, DIC species and the δ13CDIC.  Our results provide new insights into the role 

of hydrology and evapotranspiration in the short term cycling of solutes and carbon in 

heavily vegetated rivers in arid environments. 
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CHAPTER II 
 

 

STUDY SITE 

This study was conducted in the Okavango Delta in semi-arid northwest 

Botswana (Fig. 2). The physiographic outline of the Okavango Delta consists of a 

panhandle region and a delta region. The panhandle is developed within a NW-SE fault 

trough and a delta region is formed in a SW-NE fault trough, a nascent arm of the SW 

branch of the East African Rift Zone (Modisi, 2000; Gumbricht et al., 2001; Kinabo et 

al., 2007; Mosley-Bufford et al., 2012). The faulted troughs of the Panhandle and the 

Delta region are filled with 300 to 600 m thick Quaternary Kalahari alluvium and recent 

sediments of lacustrine, fluvial and deltaic origin (McCarthy et al., 1993; Modisi, 2000; 

Kinabo et al., 2007). Bedrock in the region is Precambrian crystalline igneous and 

metamorphic rocks of the Damara and Ghanzi-Chobe orogenic belt, exposed to the 

northwest and southeast of the Okavango Delta (Modie, 2000; Kinabo et al., 2007). 

The width of the panhandle is about 10-30 km within which the Okavango River 

flows in a meandering pattern (Fig. 2). The average depth of the Okavango River in the 

Panhandle is 1.5 m (McCarthy et al., 1988; Tooth and McCarthy, 2004), the average 

velocity is 0.4-0.8 ms-1 (McCarthy et al., 1988) and the average channel width is 

approximately 50 m (Wilson and Dincer, 1976). 
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In contrast, the Delta region is characterized by several distributaries formed on a low 

gradient alluvial fan approximately 22,000 km3 (McCarthy et al., 1992; McCarthy et al., 

1993; Stanistreet and McCarthy, 1993; Mackay et al., 2011). The Delta region has an 

average channel depth of 1 m and an average flow velocity of 0.1 ms-1 (McCarthy et al., 

1988; Tooth and McCarthy, 2004) The average channel width in the lower delta region is 

5 to 7 m (McCarthy et al., 1988). 

The climate of the Okavango Delta region is arid, with a rainy season from 

November to March and a dry season from April to October (Wilson and Dincer, 1976; 

Sawula and Martins, 1991; McCarthy et al., 1993; McCarthy et al., 2012).  

Figure 2: Map of the Okavango Delta showing the Okavango River and distributaries, faults, 
swamps and sampled locations. (Modified from Ellery et al., 2003) 
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 The mean annual temperature between 1996 and 2015 for the region is 24.2 °C (O.R.I., 

2015). The mean annual temperature for 2010 is 23.7° C with a mean of 26.5°C in the 

rainy season and 21.8°C in the dry season (O.R.I., 2015). The mean annual rainfall 

between 1969 and 1994 for the region is 513 mm/y (McCarthy et al., 2012). The mean 

annual precipitation for 2010 was 627.9 mm (O.R.I., 2015). Potential evapotranspiration 

estimated at 1672 mm/y exceeds the annual precipitation by a factor of 3 (Wilson and 

Dincer, 1976; Dincer et al., 1987; Ellery, 1990; McCarthy et al., 2012).  

The Okavango River is fed from its catchment in the subtropical highlands in 

Angola where the annual rainfall is approximately 983 mm/y. The average discharge of 

the headwater basins are 165 m3/s in the Cubango River and 170 m3/s in the Cuito River 

(Steudel, 2013). The Okavango River discharges 10 km3/y of water into the Okavango 

Delta mostly as an annual flood pulse between April and August (McCarthy and Ellery, 

1995; McCarthy, 2006). The extent of the inundation of the floodplains of the Okavango 

River and the distributaries is controlled by the magnitude of the annual discharge from 

the Angolan highlands (e.g., Gieske, 1997; McCarthy et al., 1998; McCarthy et al., 2003). 

The residence time of the flood pulse as it travels approximately 400 km through the 

Okavango Delta is four to six months (Wilson and Dincer, 1976; Gumbricht et al., 2004; 

Mackay et al., 2011). As water travels across the Okavango Delta, 2% or less infiltrates 

into the groundwater and approximately 2% of the water leaves through the Boteti River, 

while the rest is lost to evapotranspiration (Wilson and Dincer, 1976). 

The channels of the Okavango River in the Panhandle occur in permanently 

flooded swamps and in the Delta region, the channels occur within permanently, 

seasonally and occasionally flooded swamps (Fig. 2) (McCarthy et al., 1992). The 
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vegetation in the Panhandle include emergent strands of grass (Miscanthus Junceus), 

reeds (Phragmites mauritianus) and giant sedges (Cyperus papyrus and Eliocharis) 

(McCarthy and Ellery, 1998; Ellery et al., 2003). The submergent aquatic vegetation is 

dominated by water lilies (Nymphaea, Brasenia schrebrei and Nympoides indica) 

(McCarthy and Ellery, 1998; McCarthy et al., 2005). The permanently flooded swamps 

of the Delta region are inhabited by giant sedges (Cyperus papyrus) and reeds 

(Phragmites mauritianus) (Ellery et al., 2003; McCarthy et al., 2005). In the seasonal 

floodplains the main submergent plants are water lilies (Nymphaea, Brasenia schrebrei 

and Nymphoides indica) similar to the permanently flooded swamps (McCarthy and 

Ellery, 1998). The dominant emergent vegetation in the seasonal swamps are sedges 

(Cyperus articulates, Cyperus papyrus and Schoenoplectus corymbosus) (McCarthy and 

Ellery, 1998; Thito et al., 2015). In the occasional flooded areas, the emergent vegetation 

are mainly grasses (Imoerata cylindrical) as well as sedges with wild rice (Oryza 

longistaminata and Leersia hexandra) (McCarthy and Ellery, 1998). The permanently 

dry plains support trees (Ficus verruculosa, F. sycamorus and Acacia nigrescens) (Ellery 

et al., 1993; Ringrose et al., 2003; Thito et al., 2015).
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CHAPTER III 
 

 

METHODOLOGY 

 

We conducted the 24 h experiments in the Okavango River at the proximal end of 

the Okavango Delta in Mohembo (18°16.647’S, 21°47.211’E) between 21 July 2010 

19:00 to 22 July 2010 19:00 and in the Thamalakane River at the distal end of the 

Okavango Delta in Maun (19°94.1875’S, 23°49.638’E) between 14 July 2010 19:30 to 15 

July 2010 19:30. At Mohembo, the discharge hydrograph was at the receding stage (Fig. 

3a) and the discharge was ~998 m3/s on 21 July 2010 and ~989 m3/s on 22 July 2010 

(O.R.I., 2015). In contrast at Maun, the hydrograph was in the rising stage (Fig. 3b) and 

nearly at peak discharge of ~26.2 m3/s on 14 July 2010 and ~26.7 on 15 July 2010 

(O.R.I., 2015). We sampled the Okavango River during the dry season, with clear skies 

and no precipitation. The wind speeds for Mohembo during the sampling period averaged 

of ~8.9 km/h to ENE and in Maun it was recorded at ~7.9 km/h to NE (WWO, 2010).
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Figure 3:  Plot of discharge hydrograph for 2010 at (a) Mohembo in the proximal portion of the 
Okavango Delta and (b) Maun in the distal portion of the Okavango Delta. The filled diamonds 
are the times during the flood stage samples were collected at the Mohembo and Maun stations 
for the 24 hr experiments. 

 

 

Section 1. Air Temperature, River Level and Photosynthetic Available Radiation 

(PAR)  

 

At each sampling site, we deployed a Solinist Levelogger Junior and Solinist 

Barologger Gold (Solonist, Ontario, Canada). The data loggers were hung with Kevlar 

rope in 50 mm poly vinyl chloride (PVC) tubes. Air temperature was measured using the 

Solonist Barologger with a precision of ±0.05°C. The Solonist barologger was deployed 

1.5 m above the river level about 20 cm from the top of the PVC tube, which was 

perforated to allow for free flow of air. River level was measured with the Solonist 

Levelogger Junior and photosynthetically available radiation (PAR) was measured with a 

Li-192 underwater quantum sensor coupled to a Li-Cor 1400 data logger (LI-COR 

Environmental, Lincoln, NE). The Solonist Levelogger Junior had an overall precision of 

±0.1% and ±0.1 cm and the Li-192 sensor had an overall precision of <1 µA/mol*sm2. 
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The Solonist Levelogger and Li-192 sensor were mounted on a steel pole which was 

pounded into the stream bed. The Li-192 sensor and the Solonist Levelogger were 

mounted at 25 cm and 50 cm, respectively below the water surface. We calibrated the 

data loggers according to the manufacturer’s recommendations before deployment. We 

programmed the Li-Cor 144 data logger, Solonist Levelogger and Barologger to collect 

readings every 15 minutes, comparing the hourly equivalent with our chemical data.  

 

Section 2. Water Sampling and Analyses 

 

We measured the water temperature, specific conductance (SPC), total dissolved 

solids (TDS), dissolved oxygen (DO) and pH at each sampling location using a Yellow 

Spring Instrument (YSI) multi-parameter probe calibrated according to the 

manufacturer’s recommendations. The YSI probe has an accuracy reported with respect 

to: DO mg/L of ±0.2 mg/L, temperature of ±0.15°C, SPC of ±0.001 µS/cm and pH of 

±0.2 units. Every hour, the YSI probe was lowered to about 25 cm below the water 

surface and the readings were allowed to stabilize before the readings were recorded. 

Water samples were taken hourly at approximately 25 cm below the water surface 

using the grab technique. We attached a 2 L high density polyethylene (HDPE) bottle to a 

telescopic pole to reach into the river to collect the water. The water samples were 

filtered using a 0.45 µM nylon filter attached to a syringe, after collection and aliquots 

were dispensed into un-acidified 30 mL HDPE bottles for anions and into 60 mL HDPE 

bottles that were acidified with high purity nitric acid to a pH <2 for cations. Samples for 

DIC quantification and δ13CDIC determination were collected in 15 mL pre-evacuated 
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vacutainer tubes that were preloaded with 1 mL of 85% H3PO4 and magnetic stir bars 

(Atekwana and Krishnamurthy, 1998). Samples for measurement of the δD and δ18O 

were collected in 20 mL scintillation vials with inverted cone closure. All samples were 

kept cool in the field and during transportation to the USA, where they were stored in a 

refrigerator at 4°C until analyses.  

Alkalinity was determined by sulfuric acid titration immediately after filtration in 

the field (HACH Company, 1992). The concentrations of K+ Na+ Ca2+ Mg2+ and Cl-, 

SO4
2- and NO3

- were measured by ion chromatography using a Dionex ICS-3000 

(Thermo Fisher Scientific, Sunnyvale, CA). Silica was measured by heteropoly blue 

colorimetry using a V-2000 multi-analyte photometer (CHEMetrics, Midland, VA).  For 

DIC quantification, CO2(g) was extracted from the vacutainer tubes under vacuum and the 

CO2(g) yield determined manometrically (Atekwana and Krishnamurthy, 1998). The 

δ13CDIC of the extracted CO2(g) was measured on a Thermo Finnigan Delta Plus XL 

isotope ratio mass spectrometer (IRMS). The δD and δ18O was measured by a high 

temperature conversion elemental analyzer (TCEA) coupled to a Thermo Finnigan Delta 

Plus XL IRMS. The stable isotope ratios are reported in the delta notation (δ) in per mill 

(‰):  

δ (‰) = ((Rsample – Rstandard) / Rstandard) x 1000 

Where R is D/H, 18O/16O or 13C/12C. The δ values are reported relative to Vienna 

Standard Mean Ocean Water (VSMOW) for δ18O and δD, and the δ13C are reported 

relative to Vienna Pee Dee Belemnite (VDPB). Routine measurements of in-house 

standards and replicate samples have an overall precision of better than 0.2‰ for δ18O, 

0.1‰ for δD and 0.1‰ for δ13C. 
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Section 3. Partial Pressure of CO2 (pCO2), Carbonate Speciation and Saturation 

Index with Respect to Calcite and Quartz  

 

We used PHREEQC version 2 (Parkhurst and Appelo, 1999)  to calculate the 

pCO2 in the samples, using the DIC concentrations and the corresponding pH and 

temperature, as well as to model carbonate speciation (H2CO3, HCO3
- and CO3

2-). The 

saturation index with respect to calcite (SIcalcite) was calculated with PHREEQC version 2 

(Parkhurst and Appelo, 1999) using DIC and Ca2+ concentrations and corresponding pH 

and temperature. The saturation index with respect to quartz (SIquartz) was calculated with 

PHREEQC version 2 (Parkhurst and Appelo, 1999) using silica and corresponding pH 

and temperature. 
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CHAPTER IV 
 

 

RESULTS 

 

The physical, chemical and isotopic results for the Okavango River at Mohembo 

and Maun over a diel cycle are presented in Table 1. Also presented in Table 1 are the 

calculated values for pCO2 and the saturated index of calcite (SIcalcite). Data not used in 

the main discussion is presented in the appendices tables (S1, S2, S3, S4 and S5). 

 

Section 1. Physical Parameters 

 

The air temperature in Mohembo ranges from 15.4°C to 29.5°C and in Maun it 

ranges from 5.5°C to 26.8°C (Table 1). The air temperature in Mohembo (Fig. 4a) and 

Maun (Fig. 4b) show cyclical variations over the 24 hrs. The air temperature was lowest 

at 8:00 at 15.4°C and was highest at 15:00 at 29.5°C in Mohembo and was lowest at 

5.5°C at 7:30 and was highest at 26.8°C at 16:30 in Maun. Water temperature ranged 

from 16.5°C to 17.0°C in Mohembo and 15.5°C to 18.7°C in Maun (Table 1). The water 

temperature in Mohembo (Fig. 4c) and Maun (Fig. 4d) show cyclical variations over the 

24 hrs. 
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Figure 4: Plot of daily (24 h) variations of air temperature (a and b), water temperature (c and d), 
relative water level (e and f), dissolved oxygen (DO) (g and h) and the stable oxygen isotope 
(δ18O) of water (i and j) at Mohembo in the proximal portion of the Okavango Delta and at Maun 
in the distal portion of the Okavango Delta. The shaded areas and filled circles and squares 
represent night time and the unshaded portions and the open circles and squares represent 
daytime. 
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The minimum water temperature in Mohembo of 16.5°C was measured at 10:00 and the 

maximum of 17.0°C was measured at 17:00, while the minimum water temperature in 

Maun of 15.5°C was measured at 9:30 and the highest temperature of 18.7°C was 

measured at 18:30. There appears to be a 2 h lag time between the lowest and the highest 

air temperature and the lowest and highest water temperatures measured at Mohembo and 

Maun.  

The water level from the start to the end of the 24 h in Mohembo decreases by -

0.5 cm and by about -6.0 cm in Maun (Table 1). The water level in Mohembo decreases 

slowly throughout (Fig. 4e). There appears to be minor perturbations showing lower 

levels at Maun where the rate of decrease levels off at 23:30, then begins a steeper 

decrease at 7:30 before starting to rise at 16:30. The DO concentrations (Table 1) at 

Mohembo ranges from 8.3 mg/L to 11.0 mg/L and varies around 10 mg/L over the 24 h 

(Fig. 4g). The DO concentrations in Maun range from 7.9 mg/L to 13.2 mg/L and 

decrease steeply at night and continue over the 24 h (Fig. 4h). At Maun, the rate of 

decrease in the DO concentrations is steeper during the night compared to a slight DO 

decrease during the day. The δ18O for Mohembo varied about 2.0 ‰ with no clear diel 

trend (Fig. 4i), in contrast, the δ18O in Maun varied by 2.0 ‰ and shows slight 

enrichment over the 24 h period. The δ18O  increases from 19:30 to 24:00 followed by a 

decrease to a minimum of -1.3 ‰ at 6:30 and increases to a maximum of 1.2 ‰ at 12:30 

which then stays nearly constant at 0.98 ‰ to 17:30 before decreasing to -0.5 ‰ by 19:30 

(Fig. 4j). 
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Section 2. Solute Chemistry  

 

The total dissolved solids at Mohembo ranges from 7 mg/L to 7.8 mg/L and in 

Maun from 39.5 mg/L to 44.9 mg/L (Table 1). The TDS in Mohembo (Fig. 5a) show 

slight decreasing concentrations at night and increasing concentrations during the day. In 

contrast, the TDS concentrations in Maun (Fig. 5b) steadily decrease during the night and 

increase sharply during the day. Throughout the 24 h, the TDS concentrations in 

Mohembo are lowest at 23:00 and then gradually increase to its highest value of 7.8 mg/L 

at 18:00. In Maun, the TDS concentration are lowest at 9:30 at 39.5 mg/L and highest at 

44.9 mg/L at 19:30. The silica concentration in Mohembo ranges from 5.1 mg/L to 14.4 

mg/L and in Maun, it ranges from 25.2 mg/L to 49.5 mg/L (Table 1). The silica 

concentration in Mohembo (Fig. 5c) decreases from the maximum of 14.4 mg/L at 19:00 

to 8:00 followed by an increase until 19:00. In contrast, the silica concentration in Maun 

(Fig. 5d) is lowest at 5:30 at 25.2 mg/L and highest at 21:30 at 49.5 mg/L, showing a 

distinct diel behavior, with decreasing concentration from 21:30 to 5:30 and steadily 

increasing to the day time maximum of 46.2 mg/L at 15:30 followed by a decrease to 

19:30. The Ca2+ concentrations at Mohembo ranges from 3.6 mg/L to 4.2 mg/L and in 

Maun it ranges from 8.8 mg/L to 9.6 mg/L (Table 1). The Ca2+ concentrations in 

Mohembo spikes at 19:00 with the night high of 4.1 mg/L then decreases sharply to a low 

of 3.6 mg/L, staying relatively constant until 2:00 followed by a steady increase until 
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three spikes at 11:00, 7:00, and 11:00 at 4.1 mg/L and then decreasing to the low of 3.7 

mg/L, staying steady until 19:00 (Fig. 5e). 

 

Figure 5 : Plot of daily (24 h) variations of total dissolved solids (TDS) (a and b), Si (c and d), 
Ca2+ 

(e and f) and Cl- (g and h) at Mohembo in the proximal portion of the Okavango Delta and at 
Maun in the distal portion of the Okavango Delta. The shaded areas and filled circles and squares 
represent night time and the unshaded portions and the open circles and squares represent 
daytime. 
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The Ca2+ concentrations in Maun 19:30 start at 9.4 mg/L, and then decrease continuously 

to 9.1 mg/L then a sharp increase to 9.6 mg/L at 5:30 continued to a sharp decrease to the 

low at 7:30 of 8.9 mg/L then increase steadily until 18:30 with 9.3 mg/L, followed by a 

decrease to the low at 19:30 with 8.8 mg/L (Fig. 5f). The Cl-  concentrations at Mohembo 

ranges from 0.5 mg/L to 0.7 mg/L and in Maun they range from 0.7 mg/L to 1.1 mg/L 

(Table 1). The Cl- concentrations varied slightly and showed no clear diel trend in 

Mohembo (Fig. 5g) and in Maun (Fig. 5h), the Cl- concentrations vary around 0.8 mg/L, 

showing a very gentle decreasing trend throughout the diel cycle.  

 

Section 3. Carbon Response 

 

The PAR in Mohembo ranges from 0 µA/mol*sm2 to 1077 µA/mol*sm2 and from 

0 µA/mol*sm2 to 423 µA/mol*sm2 in Maun (Table 1). The PAR in Mohembo (Fig. 6a) 

and in Maun (Fig. 6b) show clear increases and decreases over 24 h. PAR increases 

slowly from 6:00 to the highest value of 1077 µA/mol*sm2 measured at 13:00, creating a 

sharp peak at this time and decreasing to 0 µA/mol*sm2 at 18:00. In Maun the minimum 

PAR of 0 µA/mol*sm2 is measured at 8:30, then increasing slowly to 10:30 and steeply 

to the highest PAR value of 423 µA/mol*sm2 at 13:30 and decreases steeply to 0 

µA/mol*sm2 at 18:30. The pH in Mohembo ranges from 5.6 to 6.3 (Table 1) increasing 

from 6.2 at 19:00 to 6.4 at 9:00, then decreases steeply to 11:00 followed by a gradual 

increase to 5.7 and a sharp increase to 6.1 at 19:00 (Fig. 6c). The pH in Maun (Fig. 6d) 

ranges from 6.6 to 7.1, gently decreasing from 19:00 to its minimum of 6.6 at 6:30, 
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followed a steep increase from 6:30 to its maximum of 7.1 at 17: 30 then staying stable 

until 19:30. The alkalinity concentrations at Mohembo ranges from 5 mg/L to 20 mg/L 

and at Maun from 45.7 mg/L to 49.5 mg/L (Table 1). The alkalinity concentrations in 

Mohembo shows a gentle cyclical variation over the 24 h (Fig. 6e) decreasing from its 

highest concentration of 20 mg/L at 22:00 to the lowest concentration of 5 mg/L at 15:00 

followed by an increase to 10 mg/L to 19:00. The alkalinity concentrations in Maun (Fig. 

6f) decreases gently from 49.5 mg/L at 23:30 to the minimum of 45.7 mg/L at 9:30 

followed by variations around a general increasing trend from 9:30 to its daytime 

maximum of 49.1 mg/L at 15:30 before decreasing to 46.9 mg/L at 19:30. The variations 

in alkalinity in Maun could be affected by human error, because multiple people titrated 

the samples and could have different color end points. The DIC concentrations in 

Mohembo ranges from 5 mg C/L to 7.5 mg C/L and from 9 mg C/L to 7 mg C/L in Maun 

(Table 1). The DIC concentrations in Mohembo vary between the highest concentration 

of 7.4 mg C/L at 20:00 and the lowest concentration of 4.9 mg C/L at 16:00 with mostly 

decreasing concentrations over the 24 h (Fig. 6g). In Maun (Fig. 6h), the DIC 

concentrations varied between the highest measurement of 8.8 mg C/L at 21:30 and the 

lowest of 7.4 mg C/L at 16:30 with decreasing concentration throughout 24 h. The 

δ13CDIC ranges from -11‰ to -7.5‰ at Mohembo and -7‰ to -5‰ at Maun (Table 1). 

The δ13CDIC in Mohembo decreases from -7.9 ‰ at 22:00 to 12:00 then increases sharply 

to -8.4 ‰ at 13:00 staying relatively steady the rest of the sampling period (Fig. 6i). In 

contrast, the δ13CDIC in Maun varied by 2‰ and shows clear enrichment with a general 

decrease from 19:30 to the minimum of -6.7 ‰ at 7:30 followed by an increasing trend to 

the maximum value of -4.8 ‰ at 15:30 before decreasing to -5.6 at 19:30 (Fig. 6j).
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Figure 6:  Plot of daily (24 h) variations of photosynthetically available radiation (PAR) (a and b), 
pH (c and d), alkalinity (e and f), dissolved inorganic carbon (DIC) (g and h) and the stable 
carbon isotope composition of dissolved inorganic carbon (δ13CDIC) (i and j) at Mohembo in the 
proximal portion of the Okavango Delta and at Maun in the distal portion of the Okavango Delta. 
The shaded areas and filled circles and squares represent night time and the unshaded portions 
and the open circles and squares represent daytime. 
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Sample 
Station 

Time 
(hr) 

Air 
Temp 
(°C) 

Water 
temp 
(°C) 

Water 
level 
(cm) 

DO 
(mg/L) 

δ18O 
(‰) 

Cond 
(μs/cm) 

Cl- 

(mg/L) 
Ca2+ 

(mg/L) 
Si 

(mg/L) 

PAR 
(μA/ 

molSm2) 
pH Alk 

(mg/L) 
DIC 

(mgC/L) 
δ13C 

DIC 

Log 
pCO2 
(atm) 

SIcal 

Mohembo 19:00 20.1 17.1 177.67 10.1 -5.9 11.2 0.5 4.1 14.4 0 6.1 18 6.3 -8.6 -2.8 -4.4 
 20:00 18.8 17.1 178.28 11.0 -5.4 11.2 0.5 3.6 11.9 0 6.1 17 7.4 -8.4 -2.7 -4.4 
 21:00 17.8 17.0 177.82 9.5 -6.1 11.2 0.5 3.6 10.5 0 6.1 19 5.0 -9.6 -2.9 -4.5 
 22:00 17.1 16.9 178.05 9.6 -5.9 11.2 0.5 3.7 11.6 0 6.2 20 6.1 -7.9 -2.8 -4.3 
 23:00 16.8 16.9 178.04 9.9 -5.0 10.8 0.6 3.6 8.2 0 6.2 18 6.3 -9.4 -2.8 -4.3 
 0:00 16.4 16.9 177.73 9.5 -5.7 10.8 0.5 3.6 9.6 0 6.2 18 6.7 -9.5 -2.8 -4.3 
 1:00 16.6 16.8 178.14 9.7 -5.5 10.8 0.7 3.6 10.2 0 6.2 19 6.1 -9.3 -2.8 -4.3 
 2:00 16.2 16.8 178.01 10.1 -5.7 10.8 0.5 3.7 7.5 0 6.2 17 6.2 -9.5 -2.8 -4.2 
 3:00 15.9 16.8 178.10 9.6 -5.4 10.8 0.5 4.2 7.2 0 6.2 19 6.0 -9.1 -2.8 -4.3 
 4:00 15.7 16.7 177.72 9.4 -5.4 10.8 0.6 3.8 7.7 0 6.2 17 6.4 -9.4 -2.8 -4.2 
 5:00 15.7 16.7 177.70 9.7 -5.4 10.8 0.5 3.8 6.9 0 6.2 18 6.2 -9.8 -2.8 -4.3 
 6:00 15.8 16.6 177.36 9.9 -5.8 10.8 0.5 3.8 6.2 0 6.2 17 6.2 -9.2 -2.8 -4.3 
 7:00 15.5 16.6 177.63 10.0 -5.8 10.8 0.5 4.1 6.5 0 6.2 16 5.2 -8.9 -2.9 -4.4 
 8:00 15.4 16.6 177.63 9.5 -5.6 10.8 0.5 3.8 5.1 20 6.2 14 6.7 -9.5 -2.8 -4.2 
 9:00 15.9 16.5 177.59 9.5 -5.8 10.8 0.5 3.8 7.4 54 6.4 13 6.4 -10.2 -2.9 -4.0 
 10:00 17.0 16.5 177.16 9.4 -5.5 10.8 2.2 3.8 7.1 150 6.2 11 6.1 -9.7 -2.9 -4.2 
 11:00 19.3 16.6 176.97 9.2 -4.7 10.8 0.5 4.1 8.2 295 5.7 9 5.8 -9.9 -2.7 -5.2 
 12:00 21.9 16.7 177.48 9.9 -5.5 10.8 0.5 3.9 12.8 474 5.7 9 6.7 -11.0 -2.7 -5.0 
 13:00 23.9 16.8 177.60 10.1 -5.6 11.2 0.5 3.7 12.2 1077 5.7 8 5.6 -8.4 -2.8 -5.0 
 14:00 26.4 16.9 177.54 9.8 -5.5 11.2 0.6 3.8 11.0 590 5.7 7 6.4 -9.1 -2.7 -5.0 
 15:00 29.5 17.2 176.82 9.6 -5.8 11.2 0.5 3.8 11.3 672 5.8 5 5.7 -8.8 -2.8 -4.9 
 16:00 28.7 17.3 176.66 8.9 -5.7 11.6 0.7 3.8 8.2 159 5.8 7 4.9 -9.3 -2.8 -4.9 
 17:00 24.7 17.4 176.96 10.3 -5.8 11.6 0.5 3.7 8.2 59 5.9 7 5.6 -9.4 -2.8 -4.8 
 18:00 23.1 17.4 177.15 8.9 -5.6 12.1 0.5 3.8 11.3 6 5.8 9 5.9 -9.4 -2.8 -4.9 
 19:00 20.9 17.4 176.53 8.3 -5.3 11.6 0.5 3.7 11.5 0 6.3 10 5.6 -8.5 -2.9 -4.2 
                  

Maun 19:30 16.8 18.4 161.21 13.2 -0.2 69.1 0.8 9.4 35.7 0 6.9 48.0 8.6 -5.6 -3.2 -2.6 
 20:30 14.6 18.7 158.92 11.2 0.3 68.3 1.1 9.1 38.5 0 6.8 48.5 8.8 -5.2 -3.0 -2.8 
 21:30 14.2 18.5 158.25 11.1 0.2 68.3 0.9 9.2 49.5 0 6.9 48.5 8.8 -5.4 -3.1 -2.6 
 22:30 14.4 18.2 157.66 11.6 0.5 67.4 0.8 9.0 38.3 0 6.8 49.3 7.9 -5.9 -3.1 -2.8 
 23:30 13.8 17.9 157.30 9.8 -0.4 66.6 0.7 9.1 35.0 0 6.8 19.5 7.8 -5.8 -3.0 -2.9 
 0:30 13.7 17.8 157.54 9.4 1.1 66.6 0.9 9.0 37.6 0 6.7 47.3 8.0 -5.6 -3.0 -3.0 
 1:30 10.9 17.3 157.91 9.2 0.3 65.4 0.8 9.2 29.2 0 6.7 48.4 8.7 -5.8 -2.9 -3.0 
 2:30 10.1 17.1 158.05 9.3 0.6 64.5 0.9 9.1 40.8 0 6.7 48.7 7.3 -5.6 -3.0 -3.1 
 3:30 9.2 16.8 157.81 9.5 0.1 64.1 0.9 9.1 33.6 0 6.7 49.1 8.1 -6.2 -2.9 -3.1 
 4:30 8.8 16.5 157.01 9.2 0.2 63.3 0.7 9.3 30.3 0 6.7 47.9 7.7 -6.2 -3.0 -3.0 
 5:30 7.8 16.2 158.23 9.5 -0.3 62.9 0.9 9.6 25.2 0 6.7 46.0 7.8 -6.6 -2.9 -3.1 
 6:30 6.7 15.9 158.21 9.6 -1.3 62.0 0.7 9.3 32.2 0 6.6 45.8 8.6 -6.4 -2.9 -3.1 
 7:30 5.5 15.8 157.96 8.7 -0.7 61.6 0.9 8.9 31.9 7 6.6 46.2 7.8 -6.7 -2.9 -3.2 
 8:30 6.8 15.6 158.20 10.1 -0.1 61.2 0.9 8.9 34.5 22 6.6 47.4 8.6 -6.4 -2.9 -3.1 
 9:30 8.8 15.6 157.90 8.9 -0.1 60.8 0.8 9.5 40.9 27 6.7 45.7 7.5 -6.2 -2.9 -3.1 
 10:30 11.7 15.6 157.13 8.8 -0.1 61.2 0.9 9.1 41.3 33 6.7 46.0 8.6 -6.2 -2.9 -3.0 
 11:30 15.3 15.9 156.13 9.0 0.4 61.6 0.7 8.9 41.6 47 6.8 48.0 8.0 -6.1 -3.0 -3.0 
 12:30 17.6 16.2 156.41 9.9 1.2 62.5 0.7 9.2 43.7 121 6.9 47.0 8.2 -6.0 -3.1 -2.8 
 13:30 20.7 16.7 155.79 8.9 1.0 64.1 0.8 9.0 44.6 443 6.9 48.3 7.6 -5.5 -3.1 -2.8 
 14:30 23.5 17.3 155.22 9.2 0.9 65.4 0.7 9.2 43.0 423 6.9 48.8 7.8 -5.1 -3.2 -2.7 
 15:30 25.5 17.8 154.75 8.7 0.8 66.2 0.8 9.1 46.2 314 7.0 49.1 7.9 -4.8 -3.2 -2.6 
 16:30 26.8 18.0 154.83 8.4 0.9 66.6 0.8 9.2 44.7 188 7.0 47.0 7.4 -4.9 -3.3 -2.6 
 17:30 25.5 18.0 154.77 8.3 1.0 66.6 0.7 9.3 42.8 21 7.1 47.1 8.1 -4.9 -3.3 -2.5 
 18:30 16.4 17.8 155.84 7.9 0.6 66.6 0.9 9.3 41.2 0 7.0 46.9 7.8 -4.9 -3.2 -2.6 
 19:30 11.3 17.6 156.49 7.9 -0.5 66.2 0.8 8.8 39.5 0 7.0 46.9 7.7 -5.6 -3.2 -2.6 

Table 1: Physical, chemical and isotopic results of river water from the proximal portions of the 
Okavango Delta at Mohembo and at the distal portion of the Okavango Delta at Maun over 24 h 
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CHAPTER V 
 

 

DISCUSSION 

 

Section 1. Evapoconcentration During River Transit 

 

Some of the physical, chemical and isotopic parameters measured in this study 

show distinct diel variations in the Okavango River at Mohembo and Maun. For example, 

the water temperature is increasing during the day and decreaseing at night (Fig. 4c and 

d), river level which is a proxy for discharge shows a greater decrease during the day than 

at night, with a larger fluctuation observed in Maun (Fig. 4e and f). The solute 

concentrations represented by TDS decreases at night and increase during the day, due to 

evapotranpirative effects changing the ratio of water to solutes in the water column (Fig. 

5a and b). Our results show that the concentrations of the measured parameters are 

generally much higher in Maun than in Mohembo and that the magnitude of variations in 

the physical and chemical parameters measured over 24 h is greater in Maun compared to 

Mohembo.  
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Water in the Okavango River in Mohembo flows for more than 400 km over a 4 

to 6 month period to arrive Maun (Wilson and Dincer, 1976; Gumbricht et al., 2004; 

Mackay et al., 2011). River water flowing from Mohembo to Maun undergoes chemical 

changes from the hot climate regime which enhances evapotranspiration of the river 

water. 

 

Figure 7: Schematic showing the hydrologic differences (a) and vegetative differences (b) 
between Mohembo in the proximal portion of the Okavango Delta and Maun in the distal portion 
of the Okavango Delta. 
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 Modification of river water properties reported in other studies include much higher 

concentrations of solutes (Sawula and Martins, 1991; Krah et al., 2006; Bauer-Gottwein 

et al., 2007; Mackay et al., 2011; Akoko et al., 2013), DIC (Akoko et al., 2013) and DOC 

(Bauer-Gottwein et al., 2007; Mackay et al., 2011; Cawley et al., 2012; Akoko et al., 

2013) in the Okavango River sampled in Maun compared to Mohembo. We use a 

conceptual model (Fig. 7a) to explain how the hydrologic conditions at both locations can 

cause variations in the physical and chemical parameters. Thus, the higher concentrations 

in the measured parameters (e.g., TDS, silica, alkalinity and DIC) in Maun relative to 

Mohembo (Table 1) is explained by the difference in discharge residence times and 

evapoconcentration during river transit between the two locations. Discharge in 

Mohembo is ~998 m3/s which is 38 times greater than discharge of ~26 m3/s at Maun. 

The River flows faster in Mohembo compared to Maun. This allows for greater volume 

and shorter contact time for water in Mohembo decreasing the magnitude of change 

imposed to river water from physical (solar energy) and biogeochemical alteration. 

If the greater magnitude in the concentrations of solutes in Maun compared to 

Mohembo is from evapotranspiration, it is not clear why the short term daily response in 

the water properties such as temperature (Figs. 4c and d), river level (Fig. 4e and f), TDS 

(Fig. 5a and b) and silica (Fig. 5c and d) show greater change at Maun than at Mohembo. 

Diel variations in the physical, biological and chemical processes in the water columns of 

rivers are controlled by their response to light and energy difference during daytime and 

night time as depicted in Figure 8 (e.g., Nimick et al., 2005; Parker et al., 2007; 

Westhorpe et al., 2012). For example, during the day, solar energy causes the air and 

water temperatures to increase which causes increased evapotranspiration, while at night, 
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lack of solar radiation causes air and water temperatures to decrease, stopping 

transpiration and causing evaporation decreases. Also, during the day, photosynthesis 

causes a decrease in the concentration of aquatic CO2(aq) and at night, CO2(g) produced by 

respiration causes increase in aquatic CO2(aq) concentration with the shutdown of 

photosynthesis (Falkowski and Raven, 1997).  

 

Figure 8 : Schematic showing diel biogeochemical processes affecting chemistry of the Okavango 
River. Bold arrows indicate increase (↑) or decrease (↓), Hv = photons, T = temperature, ET = 
evapotranspiration, DO = dissolved oxygen, P = photosynthesis, R = respiration, DOC = 
dissolved organic carbon, DIC = dissolved inorganic carbon (modified from Nimick et al., 2011). 

 

The length of daylight hours (11 hours) is similar while the range in daylight air 

temperature (Mohembo 15.3°C - 29.5°C, Maun 5.5°C – 29.5°C) is dissimilar between 

Mohembo and Maun and can be used to argue that the differences in the magnitude of the 

variations in the physical and chemical properties of river water over 24 h is controlled 

by solar energy. The Okavango River is not shaded and if we assume that the physical, 

biological and chemical processes driven by the presence or absence of solar radiation 
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occur equally at both locations, then river conditions that affect the physical, biological 

and chemical processes must be important over 24 h. These processes must describe input 

of mass or removal of mass from the water column which will affect water column 

chemical and isotopic properties. The addition of mass into the water column from 

groundwater influx (hydrological considerations) and from biological and chemical 

conversion and the removal of mass by biological and chemical conversion can explain 

the variations observed over 24 h. We note that in this scenario, removal of water from 

the water column into the groundwater system does not partition dissolved solutes. As 

our sampling locations were stationary, we did not follow a particular parcel of water as it 

evolved through the delta. The processes controlling the water we sampled mainly 

occurred further up river of our sampling locations and we can estimate the upriver 

distance using the averaged river flow velocity at each location. By the end of the 24 h 

sampling at Mohembo, the river water we sampled came from a distance of ~35 km/day. 

The river reach is a wetland and has an open channel bordered by a floodplain ecotone 

that is seasonally flooded and consist of sedges (Cyperus articulates, Cyperus papyrus 

and Schoenoplectus corymbosus) (Shaw and K., 1947; McCarthy and Ellery, 1998; Thito 

et al., 2015). In Maun, our samples came from a distance of ~9 km/day upriver. Here, the 

river channel is vegetated and bordered by a wetland and floodplain ecotone that is 

occasionally flooded and consists of grasses (Imoerata cylindrical) as well as sedges with 

wild rice (oryza longistaminata and Leersia hexandra) (McCarthy et al., 1998; McCarthy 

and Ellery, 1998). 
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Section 2. Cause of Diel Cycling of River Level 

 

Over the 24 h of the experiment, the river level which decreases continuously, 

shows steeper decreases during the day compared to apparent increases in the early 

evening followed by slow declines later at night time (Fig. 4e and f). Over 24 h, the river 

level decreased in Mohembo by 0.5 cm, while it decreased in Maun by 6 cm (Table 1). 

There was no precipitation during this study, eliminating influx of rainwater as the cause 

of river level increases. In arid climates with effluent streams, phreatophytes cause diel 

cycles in stream discharge, whereby stream levels decrease during the day from 

groundwater interception and increase at night as transpiration is shutoff (e.g., Loheide et 

al., 2005; Chen et al., 2011).  The nature of the tree distribution and the types of trees 

found to lower groundwater is dissimilar to shrubs and grasses that line the channel edges 

of the Okavango River. Transpiration from trees lower groundwater levels on islands in 

the Okavango delta (McCarthy and Ellery, 1994; McCarthy et al., 2005; Bauer-Gottwein 

et al., 2007). The shallow rooted emergent vegetation and shrubs and grasses  mostly 

responsible for transpiration do not intercept groundwater influx into the river because 

the river is influent. Groundwater flow in the Okavango Delta at the edge of the 

Okavango wetlands is characterized by potentiometric surfaces with steep hydraulic 

gradients away from the wetlands (McCarthy and Ellery, 1998; McCarthy, 2006). With 

the flow of river water away from the Okavango wetlands into deeper aquifers, 

groundwater is unlikely to discharge into the Okavango River. River infiltration into the 

groundwater, evaporation and transpiration are the mechanisms that cycle water in the 

Okavango Delta (e.g., Wilson and Dincer, 1976) although the groundwater recharge is 
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considered small or negligible (Dincer et al., 1987).  If infiltration is occurring, it will 

likely be a continuous process along the river channel, and as the water temperature is 

above 15°C (Table 1), the infiltration will not be slowed due to increased water viscosity 

at night. 

We argue that the diel cycle observed in river levels is associated with 

evaporation and transpiration induced by solar energy. The δ18O and the δD co-vary, and 

are positively correlated (Fig. 9a and b). The δ18O vs. δD relationships are defined by the 

least squares regression equations: δD= 3.5δ18O - 14.8 for samples from Mohembo and 

δD= 3.0δ18O - 9.2 for samples from Maun. The nearly similar slopes (3.5 for Mohembo 

vs. 3.0 for Maun) can be used to suggest that the effect of evaporation is similar at both 

sampling locations. In Figure 9a the correlation of the daytime trend line, closely follows 

the Global Meteoric Water Line (GMWL), suggesting that the source waters have not 

undergone extensive evaporation from the headwater of the catchment to Mohembo. The 

correlation of the daytime correlation in Maun is similar Okavango Delta Evaporation 

Line (ODEL), as the water has undergone extensive evaporation by the time it reaches 

the distal end of the delta (Fig. 9b). Thus, the hydrologic condition and the greater 

magnitude in decrease in the river level at Maun compared to Mohembo could be due to 

transpiration as transpiration does not discriminate against 16O vs. 18O or H vs. D during 

the uptake of water (Walker and Richardson, 1991). This is supported by the greater 

relative abundance of vegetation in the river channel and the abundance of emergent 

aquatic vegetation in the wetland ecotones upstream from the Maun sampling location 

(Fig. 7). In Mohembo, emergent vegetation was absent from the main channel while in 

Maun, the channel was heavily populated with emergent vegetation. We use a conceptual 
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model (Fig. 7b) to depict the vegetative differences between our sampling locations. The 

excessive emergent and submergent vegetation in the distal end of the delta in Maun will 

affect solute cycling, by transpiration and affect aqueous CO2 through the processes of 

photosynthesis and respiration. 

Although we compare hydrologic conditions at Mohembo and Maun, sampling in 

Mohembo was conducted during the receding state of the flood pulse (Fig. 3a), whereas 

in Maun, sampling was conducted during the rising flood discharge (Fig. 3b). The 

discharge at Mohembo was 38 times greater than at Maun and the greater discharge and 

the relatively faster flow velocity may dampen the river level change from 

evapotranspiration. In this scenario, the river at Maun flows slowly in a shallow channel 

which allows for greater effect of solar radiation induced evaporation and transpiration 

causing the greater lowering of the water level (e.g., Fig 7).  

Although evaporation is only one of the two mechanisms responsible for removal 

of water from the river water column, its effect relative to transpiration, which dominates 

in the daylight period can be qualitatively tested. The relationship between the δ18O and 

river temperature and river level can be used to independently support the importance of 

evaporation. There is no relationship between the δ18O and daytime water temperature 

(Fig. 9c) and water level (Fig. 9e) in Mohembo, while in Maun, the δ18O is positively 

correlated (R2=0.53) with daytime river temperature (Fig. 9d) and negatively correlated 

(R2=0.71) with river level (Fig. 9f). In general, the nighttime relationship between the 

δ18O and river temperature and river level mirrors that for the daytime, even though the 

correlations (Fig. 9c and f) are not robust. Transpiration is active during daylight hours 

and shuts down at night. However, evaporation is promoted by the higher ambient air 
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temperature and low relative humidity, in addition to wind speed which promotes greater 

moisture transfer to the air. This may explain why nighttime river temperature and river 

level are somewhat positively related and similar to that of the daytime. 

 

 

Figure 9: Plots of  the stable oxygen isotope (δ18O) of water vs. the stable isotope of hydrogen 
(δD) (a and b), δ18O vs. water temperature (c and d) and δ18O vs. relative water level (e and f) at 
Mohembo in the proximal portion of the Okavango Delta and at Maun in the distal portion of the 
Okavango Delta. The filled square and circle symbols denotes night time and the open square and 
circle symbols represents day time. GMWL is Global Meteoric Water Line and ODEL is 
Okavango Delta Evaporation Line. 
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Transfer of thermal energy is a function of contact time or time of exposure of a specific 

parcel of water. The effect of transpiration depends upon light duration, while 

evaporation depends on ambient heat. The ambient heat lingers after dusk, as seen in the 

two hour lag time between maximum and minimum air and water temperatures (Fig. 4 a 

through d). 

 

Section 3. Effect of Hydrologic Variations on Diel Cycling of Solutes 

 

In the absence of physical, chemical and biological processes that remove solutes 

from the water column, water removed by evaporation and transpiration will cause the 

concentrations of the solutes to increase. We tested this concept against the δ18O which 

we use as a proxy for evaporation and thus water removal from the river. In Mohembo, 

the relationships for daytime δ18O and TDS, a proxy for the total solutes (Fig. 10a), Si 

(Fig 10c) and Cl- (Fig. 10e) are poor, similar to river temperature (Fig. 9c) and river level 

(Fig. 9e); this relationship is most likely dampened by the high discharge rates of the 

river. In contrast, the daytime relationship between δ18O vs. TDS (Fig. 10b) is positive 

(R2=0.73) and between δ18O vs. Si (Fig 10d) is positive (R2=0.71) and are similar to the 

δ18O vs river temperature (Fig. 9d) δ18O vs. river level (Fig. 9f). 

To determine if evapotranspiration is mainly responsible for the changes in the 

concentrations of the major solutes indicated by TDS (Fig. 5a and b) we plot the ionic 

proportions in a Piper diagram (Fig. 11). If evapoconcentration is the only factor 

affecting the ionic concentrations, then concentration variations observed in the diel cycle 

will have similar ionic proportions. This is because although evapotranspiration increases 
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the concentrations of solutes in river water, removal of solutes will only occur from 

oversaturation with respect to mineral phases (e.g., Drever, 1997). The data in Figure 11a 

shows that the ionic proportion of the cations in river in Mohembo do not change much. 

However, the proportion of the anions changes mainly from variation in the HCO3
- 

concentrations.  

 

 

Figure 10: Plots of the stable oxygen isotope (δ18O) of water vs. total dissolved solids (TDS) (a 
and b), δ18O vs. Cl- (c and d) and δ18O vs. Si (e and f) at Mohembo in the proximal portion of the 
Okavango Delta and at Maun in the distal portion of the Okavango Delta. The filled square and 
circle symbols denotes night time and the open circle and square symbols represents day time. 
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In contrast, despite the greater magnitude of change in the solute concentrations in Maun, 

the diel variations show constant proportions of cations and anions (Fig. 11b).  

The constant proportion of ionic species indicates the dominance of evapoconcentration 

even at daily time periods. Although δ18O vs. Cl- show no relationship for samples from 

Mohembo (Fig. 10c) it is interesting to note that despite the constant proportion of 

anions, the correlation of δ18O vs. Cl- in Maun (Fig. 10d) is negative (R2=0.63) and is 

similar to δ18O vs. river level (Fig. 9f). The negative relationship between δ18O vs. Cl- 

requires that greater amounts of Cl- be removed from the water column with greater 

evaporation, which is inconsistent with the concept of evapoconcentration. We are unable 

to explain this relationship, as we know of no vegetation-solute relationship that should 

preferentially remove Cl- from the water column and the saturation indices with respect 

to chloride minerals (e.g., thermonatrite) were not reached during the 24 h period. 
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Figure 11:  Piper plot of the ionic proportions for river water from (a) Mohembo in the proximal 
portion of the Okavango Delta and (b) at Maun in the distal portion of the Okavango Delta. The 
filled circles and squares represent night time and the open circles and squares represent daytime. 
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Silica concentration is not estimated as part of the TDS, yet the Si concentration 

shows a diel response (Fig. 5c and d) and a positive correlation with daytime δ18O in 

Maun (Fig. 10d). The emergent vegetation in the Okavango Delta accumulate silica 

which is used to increase rigidity of the plants to withstand the force of environmental 

stressors (Struyf et al., 2014). In addition to vegetation, a variety of diatoms species 

adapted to different ecotones in delta uptake of silica from water in the river and wetlands 

(Davidson et al., 2012; Mackay et al., 2012). Previous studies have suggested rapid rates 

of silica recycling with silica stored in the first few centimeters of the floodplains 

sediments from the grass litter degradation (McCarthy et al., 1989; Struyf et al., 2007; 

Frings et al., 2014). Thus, the main controls on dissolved silica in river water is the 

uptake and production of biogenic silica and recycling of silica by vegetation, as well as 

removal of silicon by clay formation; although the stable isotope of silica (δ30Si) alone 

was unable to distinguish between the different processes (Frings et al., 2014; Struyf et 

al., 2014). Although the timeframe for the cycling of silica by diatoms can occur on a diel 

cycle, cycling between the water column and sediments is likely longer then the diel 

cycle. On a diel cycle, we expect the vegetation and diatoms to uptake dissolved silica, 

thereby decreasing the dissolved silica during the day during photosynthesis. The 

interaction between river and island groundwater provides a sink for the removal of silica 

from the water column (McCarthy et al., 2012; Struyf et al., 2014). The removal of silica 

by island groundwater is unlikely to affect short term diel cycling of silica. Finally, 

diatom utilization of silica will cause decrease in silica during daylight hours of 

photosynthesis which is not the case from the 24 h data (Fig. 5c and d).  This discrepancy 

suggests that other processes that increase the silica are more effective than diatoms 
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photosynthesis or vegetative removal. Our results show the opposite occurring (Fig. 5 c 

and d) indicating that abiotic processes (e.g., pH changes) dominate the silica cycling. 

The silica is oversaturated in the water column with respect to quartz (data not shown). 

Diel variations indicate that the increasing pH during daylight hours correspond to 

increasing Si concentration which is consistent with greater silica dissolution with 

increasing pH. Conversely, the decrease at night is related to removal from solution due 

to decreasing pH induced by CO2 addition from respiration.  

 

Section 4. Carbon Cycling 

 

Carbon cycling on daily time scale in rivers is controlled by hydrology, light 

energy and uptake and release of chemical species. Photosynthesis, CO2(g) evasion and 

carbonate precipitation remove carbon from the DIC pool and respiration and photo-

oxidation add carbon to the DIC pool (Fig. 1; Fig. 8) (Nimick and Gammons, 2011). For 

the pH range measured in the river samples from Mohembo and Maun (Table 1), the 

chemical transformation of DIC in the riverine pool is characterized by the carbonate 

equilibrium (e.g., Stumm and Morgan, 1981): 

CO2(g) + H2O ↔ H2CO3 ↔ HCO3
- + H+       (1) 

CaCO3(s) + H2O + CO2(g) ↔ 2HCO3
- + Ca2+      (2) 

Both the DIC concentrations and the δ13CDIC can be used to trace the processes that add 

and remove carbon from the riverine DIC pool (e.g., Atekwana and Krishnamurthy, 

1998; Aucour et al., 1999; Doctor et al., 2008). Besides the chemical and biological 

processes that change the concentrations of DIC in river water, daily variations in the 
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concentrations may also be due to evapotranspiration. Twenty four hour variations in the 

concentrations of solutes (e.g., TDS and Si) show that diel cycles in evapotranspiration 

cause increases during the day and decreases during the night (Fig. 5a, b, c and d). The 

results of the major ionic proportions in river water in Mohembo (Fig. 11a) and Maun 

(Fig. 11b) show constant proportions except for variations in HCO3
- in Maun (Fig. 11b). 

The variations HCO3
- concentration in Maun arise from processes that are unrelated to 

evapoconcentration. Furthermore, we can test the effect of evapotranspiration on 

carbonate evolution by assessing the relationships between evaporation and Ca2+, 

alkalinity and DIC. A plot of the δ18O (a proxy for evaporation) vs. Ca2+ (Fig. 12a), 

alkalinity (Fig. 12c) and DIC (Fig. 12e) show no correlation for river water at Mohembo. 

In Maun, the relationship for the δ18O vs. Ca2+ (Fig. 12b), alkalinity (Fig. 12d) and DIC 

(Fig. 12f) are poor (R2 <0.4). This is an indication that in the Okavango River, 

evapoconcentration does not dominate DIC evolution (Akoko et al., 2013) even on a 

daily basis.  

The δ13CDIC shows overall increases during the day and decreases during the night 

for river water at Mohembo (Fig. 6i) and Maun (Fig. 6j). For the δ13CDIC to increase, 

carbon with a higher δ13C composition compared to river water can be added to the DIC 

pool, or carbon can be evaded from river water to the atmosphere where the lighter 12C is 

preferentially removed as 12CO2(g). For the δ13CDIC of the DIC pool to decrease, carbon 

with a lighter 13C can be added to the DIC pool. In these cases, addition or removal of 

carbon from the riverine DIC pool is accompanied by changes in the DIC concentrations.  
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The same increases or decreases in the δ13CDIC can be observed if the riverine DIC pool 

exchanges carbon with a CO2(g) reservoir with heavier δ13C or a CO2(g) reservoir with 

lighter δ13C (e.g., Clark and Fritz, 1997).  

 

 

Figure 12: Plots of the stable oxygen isotope (δ18O) of water vs. Ca2+ (a and b), δ18O vs. alkalinity 
(c and d) and δ18O vs. dissolved inorganic carbon (DIC) (e and f) at Mohembo in the proximal 
portion of the Okavango Delta and at Maun in the distal portion of the Okavango Delta. The filled 
square and circle symbols denotes night time and the open square and circle symbols represents 
day time. 
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The exchange reactions that increase or decrease the δ13CDIC in river water will not 

change the DIC concentrations. The temporal changes in the pCO2 in the river water and 

the saturation index with respect to carbonate minerals can be used to characterize if and 

when carbon is evaded to the atmosphere or precipitated as carbonates. Furthermore, 

insights into DIC evolution can be gained by characterizing the temporal concentration of 

the DIC species (H2CO3, HCO3
-, and CO3

2-). We use the temporal variations in the pCO2, 

SIcalcite and the concentrations of H2CO3, HCO3
-, and CO3

2- (Fig. 13) to assess DIC 

evolution during a 24 h cycle. The pCO2 is higher than atmospheric (10-3.4 atm.) and it is 

higher for Mohembo (Fig. 13a) compared to Maun (Fig. 13b). The higher pCO2 in river 

water compared to atmospheric indicates that DIC in river water can potentially be 

evaded to the atmosphere. The pCO2 in river water in Mohembo is nearly constant during 

the night and increases slightly during the day. This is in contrast to the pCO2 of Maun 

which is higher at night and decreases during the day. The diel variations of the pCO2 in 

Mohembo suggest that although it is higher than atmospheric, there is very little loss in 

the DIC from evasion, due to the higher discharge conditions of the river. In contrast, the 

diel variations of the pCO2 in Maun indicate possible increases in the DIC concentrations 

at night and DIC drawdown during the day. The SIcalcite in Mohembo is nearly constant at 

night and decreases markedly during the day (Fig. 13c), while in Maun, the SIcalcite 

continuously decreases at night and increases during the day (Fig. 13d). Despite the 

variations in the SIcalcite at night and during the day, the SIcalcite of river water in both 

Mohembo and Maun are below saturation (SIcalcite = 0), indicating that no carbon is 

removed from river water by precipitation of a carbonate mineral phase.  
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Figure 13: Plot of daily (24 h) variations in the partial pressure of CO2 (log pCO2) (a and b), the 
saturation index with respect to calcite (SIcalcite) (c and d), modelled concentrations of H2CO3 (e 
and f), HCO3

- (g and h) and CO3
2- (i and j) at Mohembo in the proximal portion of the Okavango 

Delta and at Maun in the distal portion of the Okavango Delta. The log of atmospheric pCO2 is 
reported as -3.4 atm. The shaded areas and filled circles and squares represent night time and the 
unshaded portions and the open circles and squares represent daytime. 
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Akoko et al. (2013) suggested that the processes which controlled the δ13CDIC in 

the Okavango River include respiration, photo-oxidation, photosynthesis and CO2(g) 

evasion. The 24 h concentrations in the DIC fluctuate around 1 mg C/L and show no 

clear day vs. night variations (Fig. 6g and h), although there is significant speciation in 

the DIC (Fig. 13e-j). The δ13C change in the DIC pool caused by respiration and photo-

oxidation depends on the δ13C of DOC. The δ 13C of DOC in the Okavango River and its 

distributaries range from -23 to -25‰ (Akoko et al., 2013; Meier et al., 2015). When 

respiration dominates carbonate evolution in the water column, the contribution of carbon 

to the DIC pool from DOC respiration will cause the δ13CDIC to decrease as observed 

during night time, especially in Maun (Fig. 6j). During the nighttime at Mohembo, the pH 

in river water increases slightly (Fig. 6c) which is inconsistent with the addition of more 

12CO2 from DOC respiration to the DIC pool. We observe that the δ13CDIC does not 

reflect a decrease during nighttime either (Fig. 6i). We suggest that although respiration 

is occurring in the water column, the contribution of 12CO2 to the DIC pool is minor, due 

to the short residence time of the water upstream from  Mohembo. In Mohembo, a 

marked decrease in the δ13CDIC from 7:00 to 12:00 (Fig. 6i) is accompanied by decreases 

in pH (Fig. 6c) and alkalinity (Fig. 6e). This response is characteristic of addition of more 

12CO2 to the DIC pool. If respiration as we have argued is not occurring at a rate 

sufficient to decrease the pH and δ13CDIC at night, then it is unlikely to cause such a 

dramatic response in the morning hours. Photo-oxidation of DOC will contribute more 

12CO2 to the DIC pool and can cause the DIC to respond as observed in Mohembo in the 

morning hours. However, there is no reason for the DOC photo-oxidation to stop after 
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12:00 since photo-oxidation of DOC is stimulated by photons and thus should occur 

throughout daylight hours (Fig. 8a).  

Akoko et al. (2013), have previously suggested that drainage of water from the 

permanent swamps into the river channel in the panhandle region of the Okavango Delta 

can account for the seasonal decrease in pH, decreases in alkalinity concentrations and 

decreases in the δ13CDIC. It appears that such a process can occur on a short term daily 

basis and thus account for the abrupt decrease in the pH (Fig. 6c) and the δ13CDIC (Fig. 6i) 

observed early during the day in the Okavango River at the Mohembo. Photosynthesis 

which removes CO2(aq) from the water column should decrease DIC concentrations and 

shift the equilibrium distribution of the DIC species such that CO3
2- (Fig. 13i) and HCO3

- 

(Fig. 13g) are transformed to H2CO3 (Fig. 13e) (e.g., Abongwa and Atekwana, 2015). 

Although the pH (Fig. 6c) and DIC speciation (Fig. 13e, g and i) may be due to 

photosynthesis, the effect on the DIC concentration (Fig. 6g) and the δ13CDIC (Fig. 6i) is 

subdued. The evasion of CO2(g) from the DIC pool will decrease the DIC concentrations 

and increase the δ13CDIC. The evasion of CO2(g) is controlled by the pCO2 in river water 

relative to atmospheric. During the night, CO2(g) evasion has a counteracting effect to 

respiration, while during the day, it has a complementary effect to photosynthesis. There 

is no clear decrease in the DIC concentrations at night accompanied by increase in the 

δ13CDIC or any clear decrease in the DIC concentration accompanied by increases in the 

δ13CDIC during the day that can be linked to CO2(g) evasion; this makes CO2(g) evasion a 

minor process on a short term daily cycle. Overall, minor variations in the pCO2 (Fig. 

13a) is explained by a near balance in carbon removed from the DIC pool from 

photosynthesis and CO2(g) evasion and that produced from respiration and photo-
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oxidation during the day and between CO2(g) evasion and respiration at night (Akoko et 

al., 2013).  

The DIC concentrations and the δ13CDIC variations over a daily cycle in the 

Okavango River in Maun are much different from that in Mohembo. The concentrations 

of H2CO3 (Fig. 13f) increase at night and decrease during the day and that of HCO3
- (Fig. 

13h) and CO3
2- (Fig. 13j) decrease at night and increase during daylight hours. In Maun, 

the pCO2 (Fig. 13b) in river water increases at night and decreases during the day 

consistent with the dominance of DOC respiration during the night and active 

photosynthesis which maybe augment by CO2(g) evasion during the day. The SIcalcite (Fig. 

13d) decreases during the night from increasing CO2(aq) from DOC respiration and 

increases during the day as CO2(aq) is removed from the DIC pool. Although the DIC 

concentration does not decrease in a cyclic manner, the decreases in the H2CO3 (Fig. 13f) 

appears to be balanced by increases in the concentrations of HCO3
- (Fig. 13h) and CO3

2- 

(Fig. 13j) during the day from photosynthesis and vice versa at night from respiration. 

This is consistent with the transformation of CO2(aq) into HCO3
- and CO3

2- due to pH 

increase (Fig. 6d) induced by photosynthesis during the day or to pH decrease (Fig. 6d) 

due to the transformation of HCO3
- and CO3

2- into CO2(aq) from respiration during the 

night. The lack of a decrease in the δ13CDIC during daylight hours is an indication that 

photo-oxidation is not an important source of DIC in the river water at Maun despite the 

much higher concentration of DOC than at Mohembo (e.g., Akoko et al., 2013). Like 

river water at Mohembo, the change in the pCO2 (Fig. 13a) in Maun is cyclic and shows 

minor variations. Nevertheless, the minor variations in the pCO2 is also explained by a 

near balance in carbon removed from the DIC pool from photosynthesis and CO2(g) 
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evasion and that produced from respiration and photo-oxidation during the daylight hours 

and between respiration and CO2(g) evasion during the nighttime hours (Akoko et al., 

2013). Since multiple processes occurring simultaneously and/or sequentially may be 

controlling the DIC and the δ13CDIC evolution, it is difficult to determine this from the 

raw DIC concentrations and δ13CDIC results. 

The physical, chemical and isotopic parameters measured in the Okavango River 

at Mohembo in the proximal and in Maun in the distal portion of the Okavango Delta 

represent different hydrologic conditions and ecotones. The Okavango River flowing 

through Mohembo does so at high velocities in a deep channel in a permanently flooded 

wetland and floodplain with little vegetation in the river channel. In Maun, the Okavango 

River flows at low velocities in a shallow channel in an occasional floodplain with dense 

vegetation in the river channel. The properties of the water we sampled at each location is 

altered upstream of the sampling location. The 24 h experiments were not conducted on 

the same day for both the Mohembo and Maun stations. Nevertheless, the amount of 

radiant energy available for evaporation and that drives transpiration may have been 

similar at both locations. We use the similar 24 h range in the water isotopes (e.g., 2‰ 

for δ18O) as evidence for this similarity. The major differences between the two locations 

were the discharge velocities and the vegetative characteristics of the channel. It is not 

clear if light stimulated activity has a strong relationship with chemical and biological 

changes from the aquatic vegetation. To explore this relationship, we plot the δ18O vs. 

PAR, δ13CDIC vs. PAR and the δ18O vs. δ13CDIC to assess the effect of evapotranspiration 

on solute and the δ13CDIC evolution. The relationship between δ18O vs. PAR is poor in 

both Mohembo and Maun (Fig. 14a and b) indicating that PAR intensity does not 
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correspond to the same period as ambient heat that drives evapotranspiration. During the 

period of active photosynthesis, the PAR should relate positively to the δ13CDIC as the 

cumulative effect of photosynthesis is greater with increasing daylight length. Since 

photosynthesis will cause DIC drawdown and an increase in the δ13CDIC the relationship 

between PAR vs. δ13CDIC (Fig. 14c and d) is positive, albeit poor. This poor 

correspondence indicates that the PAR intensity is not diagnostic of vegetative effect on 

solute and photosynthetic process. The δ18O vs. δ13CDIC relationship in Mohembo is poor 

(Fig. 14e) but positive and significant (R2= 0.60) in Maun (Fig. 14f) for daylight hours. 

The relationship is also positive for nighttime hours as the data follows a trend similar to 

the daytime data. Although the good relationship between δ18O vs. δ13CDIC in Maun may 

be coincidental, it is likely that the period of hottest water temperature is also the time 

period of the most active photosynthesis. If this is true, then the relationship at night is 

explained by increasing effect of respiration CO2(g) which increase with time concomitant 

with decreasing water temperature and lower rates of evaporation. 
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Figure 14: Plots of the stable oxygen isotope (δ18O) of water vs. photosynthetically available 
radiation (PAR) (a and b), the stable carbon isotope of dissolved inorganic carbon (δ13CDIC) vs. 
PAR (c and d) and δ18O vs. δ13CDIC (e and f) at Mohembo in the proximal portion of the 
Okavango Delta and at Maun in the distal portion of the Okavango Delta. The filled square and 
circle symbols denotes night time and the open circle and square symbols represents day time.
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CHAPTER VI 

 

CONCLUSIONS 
 

 

 

We measured 24 h variations in the river temperature, river level, major ions, DIC, the 

δD and δ18O of water and δ13CDIC in the Okavango River in semiarid northwest 

Botswana. The 24 h observations were made at the proximal end of the Okavango Delta 

as the Okavango River entered Botswana and at the distal portion about 400 km down 

river. Although the Okavango Delta is characterized as a wetland, these two locations are 

set in two contrasting ecotones where aquatic submergent and emergent vegetation was 

sparse, the channel 5 times wider and discharge was 20 times higher in the proximal as 

compared to the distal portion of the delta.  

In general, the concentrations of chemical species were much higher and the 

isotopic composition were much more enriched in the distal portion of the delta. This 

concentration increase and the enrichment in the δD and δ18O is caused by 

evapoconcentration during water transit between the two stations even though flood 

waters that were rising in distal portion of the delta should have cause greater dilution. 

The enrichment in the δ13CDIC was from exchange with atmospheric CO2. River level and 

river temperature showed diel variations with lower levels during the daytime from 

evaporative and transpirative drawdown, although the magnitude was greater in the distal 

station compared to the proximal station. The TDS concentrations may reflect the 

additive effects of the solutes which are not clearly discernable in each of the chemical 

species. Clear diel variations were observed in the concentrations of the total dissolved 



51 
 

solids and Si, while variations in the major ions were subtle with no distinct day and 

night trends. Clear diel variations in the Si is due to abiotic processes such as pH which 

dominates the silica cycling. The effect of evaporation is evident in the δ18O which show 

evaporative relationship with the δD and is positively correlate with chemical species that 

show diel response such as Si and TDS. 

The cycling of carbon was clearly indicted by diel variations in the pH, alkalinity 

and the δ13CDIC, especially in the distal portion of the delta. Like the solute species, the 

response in the proximal station in the delta was subtle because of minor vegetational 

effects. The alkalinity increased during the day due to photosynthetic drawdown of DIC, 

which in turn increased the pH and cause greater DIC speciation to the bicarbonate form. 

The systematic and continuous increase in the δ13CDIC during the day is best attributed to 

water column photosynthesis, evasion of CO2(g) or both, while the decreases at night are 

due to respirative action of microbes in the water column.  

That the greater magnitude of response in the physical, chemical and isotopic 

properties of river in the distal portion of the delta compared to the proximal portion is 

controlled by discharge and flow velocity; discharge as low as 1/10, flowing at 

velocity1/4 of that at the proximal location causes the water at the distal end to 

experience a greater magnitude of thermal and vegetational perturbation during the 

daylight hours. We suggest that although the vegetation was instrumental in controlling 

the diel cycling of nutrients and carbon, the greater length of exposure of the water mass 

to the physical, biological and chemical changes caused greater magnitude of change in 

the distal compared to the proximal portion of the Okavango Delta. 
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CHAPTER VII 
 

 

FUTURE WORK 

 

 

The conclusions from this study are from two locations across the Okavango 

Delta. In order to assess greater detail the interactions biogeochemical cycles across the 

delta, adding additional 24 h monitoring stations is necessary, to evaluate other  ecotones, 

as we only sampled the permanently and occasional floodplains across the Delta.  We 

conducted our study during the winter; it would be beneficial to conduct 24 h 

experiments during other seasons, to evaluate the variations of the seasons.  The results 

from spatial and seasonal variation in short term experiments will be valuable in 

understanding how solutes and carbon evolve within the delta on a daily basis.  To 

address other limitations of this study, the processes of macroinvertebrates and the 

degradation of organic material in the water column should be investigated. This could 

focus on the concentrations of DOC, SO4
2- and NO3

- in the bottom of the channel and 

floodplains.  
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Sample 
Station 

Time 
(hr) 

DO 
(%) ORP SO4

2-

(mg/l) 
NH4

+ 
(mg/L) 

K+ 
(mg/L) 

Mg 
(mg/L) 

H2CO3 
(µmol/L) 

HCO3
-

(µmol/L) 

CO3
2-

x10-5 
(µmol/L) 

SI 
Quartz 

δD (‰) TDS 
(mg/L) 

Mohembo 19:00 104.6 -122 0.4 0.1 1.4 0.9 1.6 0.6 2.6 0.5 -34.2 7.3 
 20:00 114.7 -124.4 0.3 0.2 1.7 1.0 1.9 0.6 3.1 0.4 -33.7 7.3 
 21:00 97.6 -124.6 0.3 0.1 1.5 1.0 1.2 0.5 2.4 0.3 -38.1 7.3 
 22:00 99.7 -124.8 0.3 0.0 1.3 1.0 1.4 0.6 3.5 0.4 -36.2 7.3 
 23:00 103 -126.3 0.4 0.0 1.3 0.9 1.5 0.6 3.6 0.2 -33.7 7.0 
 0:00 98.1 -126.6 0.3 0.1 1.3 1.0 1.6 0.7 3.7 0.3 -34.8 7.0 
 1:00 99.8 -124.8 0.4 0.1 1.4 1.0 1.4 0.6 3.6 0.3 -34.2 7.0 
 2:00 104.4 -124.8 0.3 0.0 1.3 1.0 1.4 0.6 4.1 0.2 -35.2 7.0 
 3:00 98.4 -124.9 0.3 0.2 1.3 1.0 1.4 0.6 3.4 0.2 -33.4 7.0 
 4:00 96.5 -124.1 0.5 0.2 1.4 1.0 1.5 0.7 4.2 0.2 -32.7 7.0 
 5:00 100.3 -124.9 0.3 0.1 1.3 1.0 1.5 0.6 3.5 0.2 -36.1 7.0 
 6:00 102.1 -124.6 0.3 0.1 1.4 1.1 1.5 0.6 3.8 0.1 -35.4 7.0 
 7:00 102.6 -124.7 0.3 0.0 1.3 1.0 1.2 0.5 2.8 0.1 -35.1 7.0 
 8:00 97.7 -124.9 0.4 0.1 1.3 1.0 1.6 0.7 4.2 0.0 -34.3 7.0 
 9:00 97.3 -125.2 0.4 0.0 1.3 1.0 1.2 0.8 7.8 0.2 -35.2 7.0 
 10:00 95.8 -124.3 0.4 0.1 1.4 1.0 1.4 0.7 4.3 0.2 -34.6 7.0 
 11:00 94.2 -120.1 0.4 0.1 1.4 1.0 1.8 0.2 4.1 0.2 -31.1 7.0 
 12:00 102.7 -121.4 0.4 0.1 1.4 1.0 2.1 0.3 5.7 0.4 -34.9 7.0 
 13:00 106.9 -122.5 0.3 0.2 1.4 1.0 1.7 0.3 5.9 0.4 -34.9 7.3 
 14:00 100.7 -121.3 0.3 0.1 1.4 1.0 1.9 0.3 6.8 0.4 -34.1 7.3 
 15:00 99.2 -117.4 0.3 0.2 1.7 1.0 1.7 0.3 7.5 0.4 -34.9 7.3 
 16:00 93.2 -123.3 0.4 0.2 1.6 1.1 1.4 0.3 7.4 0.2 -34.4 7.6 
 17:00 107.9 -127.3 0.3 0.1 1.4 1.1 1.6 0.3 1.0 0.2 -35.4 7.6 
 18:00 92.5 -123.4 0.4 0.1 1.4 1.1 1.7 0.3 9.3 0.4 -34.2 7.8 
 19:00 85.1 -125.5 0.4 0.1 1.3 1.1 1.2 0.7 5.1 0.4 -32.9 7.6 
              

Maun 19:30 139 -172.6 0.2 0.0 4.1 2.9 0.6 1.9 7.6 2.7 -10.48 46.3 
 20:30 119 -167.7 0.3 0.1 4.3 3.1 0.9 1.7 5.0 2.7 -7.54 45.7 
 21:30 117 -169.3 0.2 0.1 4.1 3.1 0.7 1.8 6.6 2.8 -9.41 45.7 
 22:30 122 -168.6 0.2 0.3 4.2 3.1 0.8 1.6 4.6 2.7 -8.12 45.2 
 23:30 102 -166.4 0.2 0.1 4.1 3.1 0.9 1.5 3.5 2.7 -9.60 44.6 
 0:30 97.5 -165.9 0.2 0.1 4.1 3.1 0.9 1.5 3.3 2.7 -5.45 44.6 
 1:30 93.7 -164.3 0.2 0.4 4.1 3.1 1.1 1.6 3.2 2.6 -6.93 43.8 
 2:30 95.7 -163.7 0.2 0.2 4.0 3.1 0.9 1.3 2.5 2.8 -4.69 43.2 
 3:30 97.5 -163 0.2 0.1 3.8 3.0 1.1 1.4 2.5 2.7 -7.31 43.0 
 4:30 93.6 -164.2 0.2 0.0 4.0 3.1 0.9 1.4 3.0 2.6 -8.23 42.4 
 5:30 95.3 -160.9 0.2 0.1 3.9 3.1 1.1 1.3 2.4 2.6 -8.34 42.1 
 6:30 96.8 -160.3 0.2 0.2 4.0 3.2 1.3 1.4 2.2 2.7 -13.29 41.6 
 7:30 87.4 -161.7 0.2 0.0 3.9 3.1 1.1 1.3 2.0 2.7 -12.09 41.3 
 8:30 98.5 -160.5 0.2 0.0 3.9 3.2 1.2 1.5 2.5 2.7 -9.79 41.0 
 9:30 90.1 -160.5 0.2 0.1 3.9 3.1 1.0 1.3 2.2 2.8 -8.96 40.7 
 10:30 89.1 -161 0.2 0.1 3.8 3.0 1.1 1.5 2.9 2.8 -8.58 41.0 
 11:30 92.1 -161.5 0.2 0.1 4.0 3.2 0.9 1.5 3.3 2.8 -8.43 41.3 
 12:30 102 -165.1 0.2 0.1 4.0 3.2 0.8 1.6 4.6 2.8 -4.64 41.8 
 13:30 93.6 -164.8 0.2 0.1 3.9 3.2 0.7 1.5 4.5 2.8 -7.24 43.0 
 14:30 97.6 -166.7 0.2 0.1 4.1 3.3 0.6 1.6 6.2 2.8 -6.61 43.8 
 15:30 92.7 -169.2 0.2 0.2 4.1 3.3 0.6 1.7 7.5 2.8 -6.48 44.3 
 16:30 90.2 -169.7 0.2 0.1 3.9 3.2 0.5 1.6 7.1 2.8 -6.11 44.6 
 17:30 89.3 -169.8 0.2 0.0 4.0 3.3 0.5 1.8 8.6 2.8 -6.56 44.6 
 18:30 85.7 -169.9 0.2 0.1 4.0 3.3 0.5 1.7 7.6 2.7 -8.03 44.6 
 19:30 84.4 -168.9 0.2 0.0 4.0 3.3 0.6 1.7 7.3 2.7 -12.53 44.3 

Table S1: Physical, chemical and isotopic results of river water from Mohembo and 
Maun collected over 24 h 
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Maun 
Date 

&Time 
(hrs) 

Water Level 
(m) 

Water Temp. 
(°C) 

Air Temp. 
(°C) Cond. (µS/cm) 

7/15/10 19:30 1.612 18.4 16.8 69.1 
7/15/10 19:35 1.613 18.8 16.5 68.3 
7/15/10 19:40 1.596 18.8 16.3 68.3 
7/15/10 19:45 1.595 18.8 16.0 68.3 
7/15/10 19:50 1.591 18.7 15.8 68.3 
7/15/10 19:55 1.590 18.7 15.6 68.3 
7/15/10 20:00 1.589 18.7 15.4 68.3 
7/15/10 20:05 1.593 18.7 15.2 68.7 
7/15/10 20:10 1.586 18.7 15.0 68.3 
7/15/10 20:15 1.589 18.7 14.9 68.3 
7/15/10 20:20 1.587 18.7 14.7 68.3 
7/15/10 20:25 1.586 18.7 14.6 68.3 
7/15/10 20:30 1.589 18.7 14.6 68.3 
7/15/10 20:35 1.589 18.6 14.5 68.3 
7/15/10 20:40 1.588 18.6 14.5 68.3 
7/15/10 20:45 1.588 18.6 14.4 68.3 
7/15/10 20:50 1.585 18.6 14.3 68.3 
7/15/10 20:55 1.584 18.6 14.2 68.3 
7/15/10 21:00 1.583 18.6 14.2 68.3 
7/15/10 21:05 1.584 18.6 14.2 67.9 
7/15/10 21:10 1.584 18.5 14.1 68.3 
7/15/10 21:15 1.585 18.5 14.1 68.3 
7/15/10 21:20 1.579 18.5 14.1 68.3 
7/15/10 21:25 1.583 18.5 14.1 68.3 
7/15/10 21:30 1.583 18.5 14.2 68.3 
7/15/10 21:35 1.580 18.5 14.3 67.9 
7/15/10 21:40 1.579 18.4 14.4 67.9 
7/15/10 21:45 1.581 18.4 14.5 67.9 
7/15/10 21:50 1.580 18.4 14.5 67.9 
7/15/10 21:55 1.581 18.4 14.6 67.9 
7/15/10 22:00 1.578 18.4 14.6 67.9 
7/15/10 22:05 1.578 18.3 14.6 67.4 
7/15/10 22:10 1.578 18.3 14.6 67.9 
7/15/10 22:15 1.580 18.3 14.6 67.4 
7/15/10 22:20 1.578 18.3 14.5 67.4 
7/15/10 22:25 1.577 18.2 14.5 67.4 
7/15/10 22:30 1.577 18.2 14.4 67.4 
7/15/10 22:35 1.573 18.2 14.4 67.4 
7/15/10 22:40 1.574 18.1 14.3 67.0 
7/15/10 22:45 1.573 18.1 14.2 67.0 
7/15/10 22:50 1.571 18.1 14.2 67.0 
7/15/10 22:55 1.578 18.1 14.1 67.0 
7/15/10 23:00 1.573 18.0 14.1 67.0 
7/15/10 23:05 1.572 18.0 14.1 67.0 
7/15/10 23:10 1.573 18.0 14.0 67.0 
7/15/10 23:15 1.572 18.0 14.0 67.0 
7/15/10 23:20 1.575 17.9 13.9 66.6 
7/15/10 23:25 1.574 17.9 13.9 66.6 
7/15/10 23:30 1.573 17.9 13.8 66.6 
7/15/10 23:35 1.573 17.9 13.7 66.6 
7/15/10 23:40 1.575 17.8 13.7 66.6 
7/15/10 23:45 1.575 17.8 13.6 66.6 
7/15/10 23:50 1.576 17.8 13.5 66.6 

Table S2: Compilation of Levelogger and barologger data of river water from Maun 
over 24 h recorded in five minute increments 
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7/15/10 23:55 1.572 17.8 13.4 66.6 
7/16/10 0:00 1.574 17.8 13.3 66.2 
7/16/10 0:05 1.573 17.7 13.1 66.2 
7/16/10 0:10 1.574 17.7 13.0 66.2 
7/16/10 0:15 1.573 17.7 12.8 66.2 
7/16/10 0:20 1.572 17.7 12.7 66.2 
7/16/10 0:25 1.576 17.6 12.6 66.2 
7/16/10 0:30 1.571 17.6 12.5 66.2 
7/16/10 0:35 1.574 17.6 12.3 66.2 
7/16/10 0:40 1.574 17.6 12.2 65.8 
7/16/10 0:45 1.576 17.5 12.0 65.8 
7/16/10 0:50 1.573 17.5 11.8 65.8 
7/16/10 0:55 1.571 17.5 11.6 65.8 
7/16/10 1:00 1.578 17.5 11.5 65.8 
7/16/10 1:05 1.576 17.4 11.3 65.8 
7/16/10 1:10 1.576 17.4 11.2 65.4 
7/16/10 1:15 1.575 17.4 11.1 65.4 
7/16/10 1:20 1.573 17.3 11.0 65.4 
7/16/10 1:25 1.574 17.3 10.9 65.4 
7/16/10 1:30 1.579 17.3 10.9 65.4 
7/16/10 1:35 1.575 17.3 10.9 65.4 
7/16/10 1:40 1.576 17.3 10.8 65.4 
7/16/10 1:45 1.576 17.3 10.8 65.4 
7/16/10 1:50 1.577 17.2 10.8 65.4 
7/16/10 1:55 1.581 17.2 10.8 65.4 
7/16/10 2:00 1.577 17.2 10.7 65.0 
7/16/10 2:05 1.574 17.2 10.7 65.0 
7/16/10 2:10 1.577 17.1 10.6 65.0 
7/16/10 2:15 1.576 17.1 10.5 65.4 
7/16/10 2:20 1.576 17.1 10.4 65.4 
7/16/10 2:25 1.578 17.1 10.2 65.0 
7/16/10 2:30 1.581 17.1 10.1 64.5 
7/16/10 2:35 1.573 17.0 10.0 65.0 
7/16/10 2:40 1.579 17.0 9.9 64.5 
7/16/10 2:45 1.580 17.0 9.8 64.5 
7/16/10 2:50 1.578 17.0 9.7 64.5 
7/16/10 2:55 1.577 17.0 9.6 64.1 
7/16/10 3:00 1.578 16.9 9.5 64.1 
7/16/10 3:05 1.577 16.9 9.4 64.5 
7/16/10 3:10 1.576 16.9 9.4 64.1 
7/16/10 3:15 1.574 16.9 9.3 64.1 
7/16/10 3:20 1.578 16.8 9.2 64.1 
7/16/10 3:25 1.578 16.8 9.2 64.1 
7/16/10 3:30 1.578 16.8 9.1 64.1 
7/16/10 3:35 1.575 16.8 9.1 63.7 
7/16/10 3:40 1.578 16.7 9.1 64.1 
7/16/10 3:45 1.578 16.7 9.1 63.7 
7/16/10 3:50 1.576 16.7 9.1 63.7 
7/16/10 3:55 1.576 16.7 9.1 63.7 
7/16/10 4:00 1.581 16.7 9.0 63.7 
7/16/10 4:05 1.583 16.6 9.0 63.7 
7/16/10 4:10 1.578 16.6 9.0 63.7 
7/16/10 4:15 1.577 16.6 8.9 63.7 
7/16/10 4:20 1.578 16.6 8.9 63.7 
7/16/10 4:25 1.577 16.5 8.8 63.3 
7/16/10 4:30 1.580 16.5 8.8 63.3 
7/16/10 4:35 1.581 16.5 8.7 63.3 
7/16/10 4:40 1.576 16.5 8.7 63.3 
7/16/10 4:45 1.579 16.4 8.6 63.3 
7/16/10 4:50 1.577 16.4 8.5 63.3 
7/16/10 4:55 1.579 16.4 8.4 63.3 
7/16/10 5:00 1.582 16.4 8.4 63.3 
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7/16/10 5:05 1.576 16.3 8.3 62.9 
7/16/10 5:10 1.583 16.3 8.2 62.9 
7/16/10 5:15 1.583 16.3 8.1 62.9 
7/16/10 5:20 1.583 16.3 8.0 62.9 
7/16/10 5:25 1.576 16.3 7.9 62.9 
7/16/10 5:30 1.582 16.2 7.8 62.9 
7/16/10 5:35 1.579 16.2 7.7 62.5 
7/16/10 5:40 1.580 16.2 7.6 62.5 
7/16/10 5:45 1.579 16.2 7.5 62.5 
7/16/10 5:50 1.580 16.2 7.4 62.5 
7/16/10 5:55 1.577 16.1 7.3 62.5 
7/16/10 6:00 1.579 16.1 7.2 62.5 
7/16/10 6:05 1.583 16.1 7.1 62.5 
7/16/10 6:10 1.579 16.1 7.0 62.0 
7/16/10 6:15 1.582 16.1 6.9 62.0 
7/16/10 6:20 1.583 16.0 6.8 62.0 
7/16/10 6:25 1.580 16.0 6.8 62.0 
7/16/10 6:30 1.582 16.0 6.7 62.0 
7/16/10 6:35 1.585 16.0 6.6 62.0 
7/16/10 6:40 1.582 16.0 6.4 62.0 
7/16/10 6:45 1.585 15.9 6.3 62.0 
7/16/10 6:50 1.581 15.9 6.2 62.0 
7/16/10 6:55 1.581 15.9 6.1 62.0 
7/16/10 7:00 1.581 15.9 5.9 61.6 
7/16/10 7:05 1.581 15.9 5.8 61.6 
7/16/10 7:10 1.585 15.8 5.7 61.6 
7/16/10 7:15 1.584 15.8 5.6 61.6 
7/16/10 7:20 1.581 15.8 5.6 61.6 
7/16/10 7:25 1.583 15.8 5.5 61.6 
7/16/10 7:30 1.580 15.8 5.5 61.6 
7/16/10 7:35 1.581 15.8 5.4 61.6 
7/16/10 7:40 1.582 15.8 5.4 61.6 
7/16/10 7:45 1.585 15.7 5.5 61.6 
7/16/10 7:50 1.582 15.7 5.5 61.6 
7/16/10 7:55 1.584 15.7 5.7 61.2 
7/16/10 8:00 1.583 15.7 5.8 61.2 
7/16/10 8:05 1.584 15.7 6.0 61.2 
7/16/10 8:10 1.585 15.7 6.1 61.2 
7/16/10 8:15 1.582 15.7 6.3 61.2 
7/16/10 8:20 1.585 15.6 6.5 61.2 
7/16/10 8:25 1.579 15.6 6.6 61.2 
7/16/10 8:30 1.582 15.6 6.8 61.2 
7/16/10 8:35 1.577 15.6 7.0 61.2 
7/16/10 8:40 1.581 15.6 7.2 61.2 
7/16/10 8:45 1.579 15.6 7.3 61.2 
7/16/10 8:50 1.578 15.6 7.5 61.2 
7/16/10 8:55 1.577 15.5 7.7 61.2 
7/16/10 9:00 1.577 15.6 7.8 61.2 
7/16/10 9:05 1.579 15.6 8.0 61.2 
7/16/10 9:10 1.583 15.6 8.1 61.2 
7/16/10 9:15 1.581 15.6 8.3 60.8 
7/16/10 9:20 1.578 15.6 8.5 61.2 
7/16/10 9:25 1.576 15.6 8.6 60.8 
7/16/10 9:30 1.579 15.6 8.8 60.8 
7/16/10 9:35 1.577 15.6 8.9 60.8 
7/16/10 9:40 1.576 15.6 9.1 60.8 
7/16/10 9:45 1.574 15.6 9.4 60.8 
7/16/10 9:50 1.576 15.6 9.6 60.8 
7/16/10 9:55 1.575 15.6 10.0 60.8 

7/16/10 10:00 1.571 15.6 10.3 61.2 
7/16/10 10:05 1.573 15.6 10.5 60.8 
7/16/10 10:10 1.573 15.6 10.8 60.8 
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7/16/10 10:15 1.572 15.6 11.0 61.2 
7/16/10 10:20 1.576 15.6 11.3 61.2 
7/16/10 10:25 1.571 15.6 11.6 61.2 
7/16/10 10:30 1.571 15.6 11.7 61.2 
7/16/10 10:35 1.572 15.6 11.9 61.2 
7/16/10 10:40 1.572 15.6 12.2 61.2 
7/16/10 10:45 1.570 15.6 12.4 61.2 
7/16/10 10:50 1.574 15.7 12.6 61.2 
7/16/10 10:55 1.566 15.7 12.8 61.2 
7/16/10 11:00 1.574 15.7 13.2 61.2 
7/16/10 11:05 1.567 15.7 13.6 61.2 
7/16/10 11:10 1.570 15.8 14.0 61.6 
7/16/10 11:15 1.570 15.8 14.4 61.6 
7/16/10 11:20 1.563 15.8 14.6 61.6 
7/16/10 11:25 1.567 15.8 14.9 61.6 
7/16/10 11:30 1.561 15.9 15.3 61.6 
7/16/10 11:35 1.569 15.9 15.7 61.6 
7/16/10 11:40 1.564 15.9 15.9 62.0 
7/16/10 11:45 1.566 16.0 16.2 62.0 
7/16/10 11:50 1.558 16.0 16.4 62.0 
7/16/10 11:55 1.565 16.0 16.5 62.0 
7/16/10 12:00 1.562 16.0 16.7 62.0 
7/16/10 12:05 1.562 16.1 16.9 62.5 
7/16/10 12:10 1.563 16.1 17.0 62.5 
7/16/10 12:15 1.566 16.1 17.2 62.0 
7/16/10 12:20 1.566 16.2 17.2 62.5 
7/16/10 12:25 1.566 16.2 17.3 62.5 
7/16/10 12:30 1.564 16.2 17.6 62.5 
7/16/10 12:35 1.562 16.3 17.8 62.5 
7/16/10 12:40 1.562 16.3 18.0 62.9 
7/16/10 12:45 1.563 16.3 18.3 62.9 
7/16/10 12:50 1.557 16.4 18.6 62.9 
7/16/10 12:55 1.564 16.4 18.9 62.9 
7/16/10 13:00 1.560 16.5 19.0 63.3 
7/16/10 13:05 1.562 16.5 19.3 62.9 
7/16/10 13:10 1.562 16.6 19.5 63.3 
7/16/10 13:15 1.558 16.6 19.7 63.3 
7/16/10 13:20 1.560 16.6 19.9 63.7 
7/16/10 13:25 1.562 16.7 20.3 64.1 
7/16/10 13:30 1.558 16.7 20.7 64.1 
7/16/10 13:35 1.555 16.8 20.9 64.1 
7/16/10 13:40 1.553 16.8 21.1 64.1 
7/16/10 13:45 1.555 16.9 21.3 64.1 
7/16/10 13:50 1.556 16.9 21.6 64.1 
7/16/10 13:55 1.556 17.0 21.7 64.5 
7/16/10 14:00 1.552 17.0 21.9 64.5 
7/16/10 14:05 1.555 17.1 22.1 65.0 
7/16/10 14:10 1.550 17.1 22.3 65.0 
7/16/10 14:15 1.555 17.2 22.7 65.0 
7/16/10 14:20 1.554 17.2 23.0 65.0 
7/16/10 14:25 1.555 17.3 23.2 65.4 
7/16/10 14:30 1.552 17.3 23.5 65.4 
7/16/10 14:35 1.550 17.4 23.8 65.4 
7/16/10 14:40 1.551 17.4 23.9 65.4 
7/16/10 14:45 1.554 17.4 24.0 65.4 
7/16/10 14:50 1.553 17.5 24.1 65.8 
7/16/10 14:55 1.553 17.5 24.4 65.8 
7/16/10 15:00 1.549 17.5 24.5 65.8 
7/16/10 15:05 1.552 17.6 24.6 65.8 
7/16/10 15:10 1.548 17.6 24.8 65.8 
7/16/10 15:15 1.551 17.6 25.0 66.2 
7/16/10 15:20 1.551 17.7 25.2 66.2 
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7/16/10 15:25 1.552 17.7 25.3 66.2 
7/16/10 15:30 1.548 17.8 25.5 66.2 
7/16/10 15:35 1.550 17.8 25.6 66.2 
7/16/10 15:40 1.545 17.8 25.7 66.2 
7/16/10 15:45 1.552 17.8 25.9 66.6 
7/16/10 15:50 1.547 17.9 26.0 66.6 
7/16/10 15:55 1.548 17.9 26.1 66.6 
7/16/10 16:00 1.548 17.9 26.2 66.6 
7/16/10 16:05 1.549 17.9 26.4 66.2 
7/16/10 16:10 1.546 17.9 26.5 66.6 
7/16/10 16:15 1.552 18.0 26.5 66.6 
7/16/10 16:20 1.549 18.0 26.7 66.6 
7/16/10 16:25 1.553 18.0 26.7 66.6 
7/16/10 16:30 1.548 18.0 26.8 66.6 
7/16/10 16:35 1.549 18.0 27.0 66.6 
7/16/10 16:40 1.549 18.1 27.2 66.6 
7/16/10 16:45 1.548 18.1 27.2 67.0 
7/16/10 16:50 1.548 18.1 27.2 67.0 
7/16/10 16:55 1.549 18.1 27.4 67.0 
7/16/10 17:00 1.547 18.1 27.5 67.0 
7/16/10 17:05 1.542 18.0 27.6 67.0 
7/16/10 17:10 1.546 18.0 27.6 67.0 
7/16/10 17:15 1.548 18.0 27.5 66.6 
7/16/10 17:20 1.545 18.0 27.1 66.6 
7/16/10 17:25 1.546 18.0 26.4 66.6 
7/16/10 17:30 1.548 18.0 25.5 66.6 
7/16/10 17:35 1.549 18.0 24.6 66.6 
7/16/10 17:40 1.550 18.0 23.8 66.6 
7/16/10 17:45 1.548 18.0 23.0 66.6 
7/16/10 17:50 1.550 18.0 22.3 66.6 
7/16/10 17:55 1.554 17.9 21.5 66.6 
7/16/10 18:00 1.552 17.9 20.7 66.6 
7/16/10 18:05 1.550 17.9 19.9 66.6 
7/16/10 18:10 1.555 17.9 19.1 66.6 
7/16/10 18:15 1.556 17.9 18.4 66.6 
7/16/10 18:20 1.556 17.9 17.7 66.6 
7/16/10 18:25 1.554 17.9 17.0 66.6 
7/16/10 18:30 1.558 17.8 16.4 66.6 
7/16/10 18:35 1.556 17.8 15.8 66.6 
7/16/10 18:40 1.559 17.8 15.2 66.6 
7/16/10 18:45 1.562 17.8 14.7 66.6 
7/16/10 18:50 1.559 17.8 14.2 66.6 
7/16/10 18:55 1.559 17.7 13.7 66.6 
7/16/10 19:00 1.562 17.7 13.3 66.2 
7/16/10 19:05 1.564 17.7 12.9 66.2 
7/16/10 19:10 1.562 17.7 12.5 66.2 
7/16/10 19:15 1.564 17.6 12.2 66.2 
7/16/10 19:20 1.563 17.6 11.9 66.2 
7/16/10 19:25 1.563 17.6 11.6 66.2 
7/16/10 19:30 1.565 17.6 11.3 66.2 
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Mohembo 

Date &Time 
(hrs) 

Water 
Level 
(m) 

Water 
Temp. 
(°C) 

Air 
Temp. 
(°C) 

Cond. 
(µS/cm) 

PAR 
(µA/mol*Sm2) 

7/21/2010 19:00 1.777 17.1 20.1 11.2 0.0 
7/21/2010 19:05 1.786 17.1 20.0 11.2 0.0 
7/21/2010 19:10 1.783 17.1 19.8 11.2 0.0 
7/21/2010 19:15 1.783 17.1 19.7 11.2 0.0 
7/21/2010 19:20 1.777 17.1 19.5 10.8 0.0 
7/21/2010 19:25 1.782 17.1 19.4 11.2 0.0 
7/21/2010 19:30 1.783 17.1 19.3 10.8 0.0 
7/21/2010 19:35 1.784 17.1 19.2 11.2 0.0 
7/21/2010 19:40 1.779 17.1 19.1 10.8 0.0 
7/21/2010 19:45 1.781 17.1 19.0 10.8 0.0 
7/21/2010 19:50 1.783 17.1 18.9 10.8 0.0 
7/21/2010 19:55 1.783 17.1 18.8 11.2 0.0 
7/21/2010 20:00 1.783 17.1 18.7 11.2 0.0 
7/21/2010 20:05 1.775 17.1 18.7 11.2 0.0 
7/21/2010 20:10 1.776 17.1 18.6 10.8 0.0 
7/21/2010 20:15 1.780 17.0 18.5 11.2 0.0 
7/21/2010 20:20 1.781 17.0 18.4 10.8 0.0 
7/21/2010 20:25 1.780 17.0 18.3 10.8 0.0 
7/21/2010 20:30 1.779 17.0 18.3 11.2 0.0 
7/21/2010 20:35 1.777 17.0 18.2 11.2 0.0 
7/21/2010 20:40 1.778 17.0 18.1 11.2 0.0 
7/21/2010 20:45 1.778 17.0 18.0 11.2 0.0 
7/21/2010 20:50 1.776 17.0 18.0 11.2 0.0 
7/21/2010 20:55 1.777 17.0 17.9 11.2 0.0 
7/21/2010 21:00 1.778 17.0 17.8 11.2 0.0 
7/21/2010 21:05 1.785 17.0 17.7 10.8 0.0 
7/21/2010 21:10 1.778 17.0 17.7 11.2 0.0 
7/21/2010 21:15 1.778 17.0 17.6 10.8 0.0 
7/21/2010 21:20 1.779 17.0 17.6 10.8 0.0 
7/21/2010 21:25 1.778 17.0 17.5 11.2 0.0 
7/21/2010 21:30 1.776 17.0 17.4 10.8 0.0 
7/21/2010 21:35 1.782 17.0 17.4 11.2 0.0 
7/21/2010 21:40 1.783 17.0 17.3 10.8 0.0 
7/21/2010 21:45 1.780 17.0 17.2 10.8 0.0 
7/21/2010 21:50 1.779 17.0 17.2 10.8 0.0 
7/21/2010 21:55 1.779 17.0 17.1 10.8 0.0 
7/21/2010 22:00 1.781 16.9 17.1 11.2 0.0 
7/21/2010 22:05 1.781 16.9 17.0 10.8 0.0 
7/21/2010 22:10 1.778 16.9 17.0 10.8 0.0 
7/21/2010 22:15 1.772 16.9 17.0 10.8 0.0 
7/21/2010 22:20 1.776 16.9 17.0 10.8 0.0 
7/21/2010 22:25 1.778 16.9 17.0 10.8 0.0 
7/21/2010 22:30 1.777 16.9 17.0 10.8 0.0 
7/21/2010 22:35 1.779 16.9 16.9 10.8 0.0 
7/21/2010 22:40 1.776 16.9 16.9 10.8 0.0 
7/21/2010 22:45 1.780 16.9 16.9 10.8 0.0 
7/21/2010 22:50 1.781 16.9 16.9 10.8 0.0 
7/21/2010 22:55 1.780 16.9 16.8 10.8 0.0 
7/21/2010 23:00 1.780 16.9 16.8 10.8 0.0 
7/21/2010 23:05 1.784 16.9 16.7 10.8 0.0 
7/21/2010 23:10 1.778 16.9 16.7 10.8 0.0 

Table S3: Compilation of Levelogger, Barologger and Photosynthetically Available Radiation 
meter data of river water from Mohembo over 24 h recorded in five minute increments 
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7/21/2010 23:15 1.778 16.9 16.6 10.8 0.0 
7/21/2010 23:20 1.779 16.9 16.6 10.8 0.0 
7/21/2010 23:25 1.779 16.9 16.5 10.8 0.0 
7/21/2010 23:30 1.779 16.9 16.5 10.8 0.0 
7/21/2010 23:35 1.779 16.9 16.5 10.8 0.0 
7/21/2010 23:40 1.778 16.9 16.5 10.8 0.0 
7/21/2010 23:45 1.784 16.9 16.5 10.8 0.0 
7/21/2010 23:50 1.779 16.9 16.4 10.8 0.0 
7/21/2010 23:55 1.779 16.9 16.4 10.8 0.0 
7/22/2010 0:00 1.777 16.9 16.4 10.8 0.0 
7/22/2010 0:05 1.779 16.9 16.4 10.8 0.0 
7/22/2010 0:10 1.777 16.9 16.3 10.8 0.0 
7/22/2010 0:15 1.783 16.8 16.3 10.8 0.0 
7/22/2010 0:20 1.777 16.9 16.3 10.8 0.0 
7/22/2010 0:25 1.778 16.9 16.4 10.8 0.0 
7/22/2010 0:30 1.775 16.9 16.4 10.8 0.0 
7/22/2010 0:35 1.774 16.9 16.5 10.8 0.0 
7/22/2010 0:40 1.780 16.8 16.5 10.8 0.0 
7/22/2010 0:45 1.779 16.8 16.5 10.8 0.0 
7/22/2010 0:50 1.774 16.8 16.5 10.8 0.0 
7/22/2010 0:55 1.781 16.8 16.6 10.8 0.0 
7/22/2010 1:00 1.781 16.8 16.6 10.8 0.0 
7/22/2010 1:05 1.777 16.8 16.6 10.8 0.0 
7/22/2010 1:10 1.776 16.8 16.6 10.8 0.0 
7/22/2010 1:15 1.780 16.8 16.5 10.8 0.0 
7/22/2010 1:20 1.772 16.8 16.5 10.8 0.0 
7/22/2010 1:25 1.775 16.8 16.4 10.8 0.0 
7/22/2010 1:30 1.777 16.8 16.4 10.8 0.0 
7/22/2010 1:35 1.777 16.8 16.3 10.8 0.0 
7/22/2010 1:40 1.778 16.8 16.3 10.8 0.0 
7/22/2010 1:45 1.777 16.8 16.3 10.8 0.0 
7/22/2010 1:50 1.785 16.8 16.3 10.8 0.0 
7/22/2010 1:55 1.780 16.8 16.2 10.8 0.0 
7/22/2010 2:00 1.780 16.8 16.2 10.8 0.0 
7/22/2010 2:05 1.782 16.8 16.2 10.8 0.0 
7/22/2010 2:10 1.779 16.8 16.2 10.8 0.0 
7/22/2010 2:15 1.780 16.8 16.2 10.8 0.0 
7/22/2010 2:20 1.777 16.8 16.2 10.8 0.0 
7/22/2010 2:25 1.779 16.8 16.2 10.8 0.0 
7/22/2010 2:30 1.780 16.8 16.1 10.8 0.0 
7/22/2010 2:35 1.778 16.8 16.1 10.8 0.0 
7/22/2010 2:40 1.781 16.8 16.1 10.8 0.0 
7/22/2010 2:45 1.778 16.8 16.0 10.8 0.0 
7/22/2010 2:50 1.777 16.8 16.0 10.8 0.0 
7/22/2010 2:55 1.779 16.8 15.9 10.8 0.0 
7/22/2010 3:00 1.781 16.8 15.9 10.8 0.0 
7/22/2010 3:05 1.776 16.8 15.8 10.8 0.0 
7/22/2010 3:10 1.778 16.8 15.8 10.8 0.0 
7/22/2010 3:15 1.776 16.8 15.8 10.8 0.0 
7/22/2010 3:20 1.772 16.8 15.7 10.8 0.0 
7/22/2010 3:25 1.777 16.8 15.7 10.8 0.0 
7/22/2010 3:30 1.779 16.8 15.7 10.8 0.0 
7/22/2010 3:35 1.775 16.8 15.7 10.8 0.0 
7/22/2010 3:40 1.774 16.7 15.7 10.8 0.0 
7/22/2010 3:45 1.778 16.8 15.7 10.8 0.0 
7/22/2010 3:50 1.775 16.7 15.7 10.8 0.0 
7/22/2010 3:55 1.779 16.7 15.7 10.8 0.0 
7/22/2010 4:00 1.777 16.7 15.7 10.8 0.0 
7/22/2010 4:05 1.774 16.7 15.7 10.8 0.0 
7/22/2010 4:10 1.774 16.7 15.7 10.8 0.0 
7/22/2010 4:15 1.776 16.7 15.6 10.8 0.0 
7/22/2010 4:20 1.778 16.7 15.6 10.8 0.0 
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7/22/2010 4:25 1.769 16.7 15.6 10.8 0.0 
7/22/2010 4:30 1.777 16.7 15.6 10.8 0.0 
7/22/2010 4:35 1.779 16.7 15.6 10.8 0.0 
7/22/2010 4:40 1.775 16.7 15.7 10.8 0.0 
7/22/2010 4:45 1.771 16.7 15.7 10.8 0.0 
7/22/2010 4:50 1.778 16.7 15.7 10.8 0.0 
7/22/2010 4:55 1.771 16.7 15.7 10.8 0.0 
7/22/2010 5:00 1.777 16.7 15.7 10.8 0.0 
7/22/2010 5:05 1.774 16.7 15.8 10.8 0.0 
7/22/2010 5:10 1.777 16.7 15.8 10.8 0.0 
7/22/2010 5:15 1.773 16.7 15.8 10.8 0.0 
7/22/2010 5:20 1.776 16.7 15.8 10.8 0.0 
7/22/2010 5:25 1.766 16.7 15.8 10.8 0.0 
7/22/2010 5:30 1.775 16.7 15.8 10.8 0.0 
7/22/2010 5:35 1.779 16.7 15.8 10.8 0.0 
7/22/2010 5:40 1.779 16.6 15.8 10.8 0.0 
7/22/2010 5:45 1.778 16.6 15.8 10.8 0.0 
7/22/2010 5:50 1.777 16.6 15.8 10.8 0.0 
7/22/2010 5:55 1.776 16.6 15.8 10.8 0.0 
7/22/2010 6:00 1.774 16.6 15.8 10.8 0.0 
7/22/2010 6:05 1.772 16.6 15.8 10.8 0.0 
7/22/2010 6:10 1.779 16.6 15.7 10.8 0.0 
7/22/2010 6:15 1.773 16.6 15.7 10.8 0.0 
7/22/2010 6:20 1.776 16.6 15.7 10.8 0.0 
7/22/2010 6:25 1.775 16.6 15.7 10.8 0.0 
7/22/2010 6:30 1.775 16.6 15.6 10.8 0.0 
7/22/2010 6:35 1.769 16.6 15.6 10.8 0.0 
7/22/2010 6:40 1.774 16.6 15.6 10.8 0.0 
7/22/2010 6:45 1.776 16.6 15.5 10.8 0.0 
7/22/2010 6:50 1.769 16.6 15.5 10.8 -0.1 
7/22/2010 6:55 1.778 16.6 15.5 10.8 -0.2 
7/22/2010 7:00 1.776 16.6 15.5 10.8 -0.5 
7/22/2010 7:05 1.775 16.6 15.5 10.8 -0.9 
7/22/2010 7:10 1.775 16.6 15.5 10.8 -1.6 
7/22/2010 7:15 1.775 16.6 15.5 10.8 -2.5 
7/22/2010 7:20 1.780 16.6 15.5 10.8 -3.6 
7/22/2010 7:25 1.780 16.6 15.4 10.8 -4.9 
7/22/2010 7:30 1.777 16.6 15.4 10.8 -6.7 
7/22/2010 7:35 1.777 16.5 15.4 10.8 -8.6 
7/22/2010 7:40 1.775 16.6 15.4 10.8 -10.8 
7/22/2010 7:45 1.775 16.6 15.4 10.8 -13.5 
7/22/2010 7:50 1.773 16.5 15.4 10.8 -15.8 
7/22/2010 7:55 1.779 16.5 15.4 10.8 -18.1 
7/22/2010 8:00 1.776 16.5 15.4 10.8 -20.6 
7/22/2010 8:05 1.775 16.5 15.4 10.8 -21.8 
7/22/2010 8:10 1.774 16.5 15.4 10.8 -24.7 
7/22/2010 8:15 1.781 16.5 15.4 10.8 -25.4 
7/22/2010 8:20 1.776 16.5 15.4 10.8 -27.6 
7/22/2010 8:25 1.773 16.5 15.5 10.8 -31.4 
7/22/2010 8:30 1.771 16.5 15.5 10.8 -35.4 
7/22/2010 8:35 1.775 16.5 15.5 10.8 -38.6 
7/22/2010 8:40 1.773 16.5 15.6 10.8 -43.1 
7/22/2010 8:45 1.776 16.5 15.7 10.8 -45.2 
7/22/2010 8:50 1.776 16.5 15.7 10.8 -46.8 
7/22/2010 8:55 1.777 16.5 15.8 10.8 -49.5 
7/22/2010 9:00 1.776 16.5 15.8 10.8 -54.7 
7/22/2010 9:05 1.774 16.5 15.9 10.8 -60.9 
7/22/2010 9:10 1.774 16.5 16.0 10.8 -66.0 
7/22/2010 9:15 1.775 16.5 16.1 10.8 -72.1 
7/22/2010 9:20 1.774 16.5 16.2 10.8 -80.1 
7/22/2010 9:25 1.775 16.5 16.2 10.8 -90.9 
7/22/2010 9:30 1.775 16.5 16.3 10.8 -96.7 



73 
 

7/22/2010 9:35 1.771 16.5 16.4 10.8 -105.9 
7/22/2010 9:40 1.771 16.5 16.5 10.8 -116.0 
7/22/2010 9:45 1.770 16.5 16.6 10.8 -129.6 
7/22/2010 9:50 1.773 16.5 16.8 10.8 -142.0 
7/22/2010 9:55 1.772 16.5 16.9 10.8 -152.8 

7/22/2010 10:00 1.772 16.5 17.0 10.8 -150.4 
7/22/2010 10:05 1.770 16.5 17.2 10.8 -156.4 
7/22/2010 10:10 1.775 16.5 17.3 10.8 -180.2 
7/22/2010 10:15 1.773 16.5 17.5 10.8 -194.2 
7/22/2010 10:20 1.770 16.5 17.7 10.8 -206.5 
7/22/2010 10:25 1.775 16.5 17.8 10.8 -217.8 
7/22/2010 10:30 1.774 16.5 18.0 10.8 -221.2 
7/22/2010 10:35 1.775 16.5 18.2 10.8 -229.4 
7/22/2010 10:40 1.771 16.5 18.4 10.8 -239.3 
7/22/2010 10:45 1.779 16.5 18.6 10.8 -263.3 
7/22/2010 10:50 1.775 16.5 18.9 10.8 -271.1 
7/22/2010 10:55 1.773 16.5 19.1 10.8 -290.2 
7/22/2010 11:00 1.770 16.6 19.3 10.8 -295.7 
7/22/2010 11:05 1.769 16.6 19.6 10.8 -302.0 
7/22/2010 11:10 1.777 16.6 19.8 10.8 -320.3 
7/22/2010 11:15 1.776 16.6 20.1 10.8 -335.4 
7/22/2010 11:20 1.769 16.6 20.4 10.8 -358.8 
7/22/2010 11:25 1.774 16.6 20.6 11.2 -353.7 
7/22/2010 11:30 1.774 16.6 20.8 10.8 -356.0 
7/22/2010 11:35 1.769 16.6 21.1 11.2 -410.4 
7/22/2010 11:40 1.771 16.6 21.3 10.8 -365.1 
7/22/2010 11:45 1.772 16.6 21.5 10.8 -391.7 
7/22/2010 11:50 1.770 16.6 21.6 10.8 -439.8 
7/22/2010 11:55 1.772 16.7 21.8 10.8 -863.6 
7/22/2010 12:00 1.775 16.7 21.9 10.8 -474.5 
7/22/2010 12:05 1.776 16.7 22.1 10.8 -807.7 
7/22/2010 12:10 1.773 16.7 22.2 10.8 -544.4 
7/22/2010 12:15 1.770 16.7 22.3 10.8 -469.9 
7/22/2010 12:20 1.772 16.7 22.4 10.8 -587.7 
7/22/2010 12:25 1.770 16.7 22.6 11.2 -587.5 
7/22/2010 12:30 1.772 16.7 22.8 11.2 -688.3 
7/22/2010 12:35 1.779 16.7 22.9 11.2 -705.4 
7/22/2010 12:40 1.773 16.8 23.1 11.2 -1089.4 
7/22/2010 12:45 1.771 16.8 23.2 10.8 -841.7 
7/22/2010 12:50 1.776 16.8 23.5 11.2 -824.0 
7/22/2010 12:55 1.773 16.8 23.7 11.2 -864.4 
7/22/2010 13:00 1.776 16.8 24.0 11.2 -1077.2 
7/22/2010 13:05 1.775 16.8 24.3 11.2 -894.3 
7/22/2010 13:10 1.765 16.9 24.5 11.2 -901.3 
7/22/2010 13:15 1.778 16.9 24.8 11.2 -1815.6 
7/22/2010 13:20 1.770 16.9 25.2 11.2 -632.4 
7/22/2010 13:25 1.771 16.9 25.5 11.2 -668.7 
7/22/2010 13:30 1.773 16.9 25.7 11.2 -707.1 
7/22/2010 13:35 1.770 16.9 25.9 11.2 -776.6 
7/22/2010 13:40 1.768 16.9 26.0 11.2 -722.1 
7/22/2010 13:45 1.771 17.0 26.1 11.2 -547.8 
7/22/2010 13:50 1.776 17.0 26.2 11.2 -538.9 
7/22/2010 13:55 1.771 17.0 26.3 11.2 -590.4 
7/22/2010 14:00 1.775 17.0 26.4 11.2 -590.1 
7/22/2010 14:05 1.776 17.0 26.6 11.2 -541.3 
7/22/2010 14:10 1.775 17.0 26.7 11.2 -600.0 
7/22/2010 14:15 1.772 17.0 27.0 11.2 -1134.3 
7/22/2010 14:20 1.770 17.0 27.3 11.2 -1232.5 
7/22/2010 14:25 1.774 17.1 27.6 11.2 -649.1 
7/22/2010 14:30 1.770 17.1 27.9 11.2 -1211.8 
7/22/2010 14:35 1.774 17.1 28.3 11.2 -761.7 
7/22/2010 14:40 1.772 17.1 28.6 11.2 -502.3 
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7/22/2010 14:45 1.772 17.1 28.7 11.2 -621.1 
7/22/2010 14:50 1.772 17.1 29.0 11.2 -1047.9 
7/22/2010 14:55 1.774 17.1 29.3 11.2 -555.3 
7/22/2010 15:00 1.768 17.2 29.5 11.2 -674.7 
7/22/2010 15:05 1.775 17.2 29.7 11.2 -524.4 
7/22/2010 15:10 1.771 17.2 29.8 11.2 -427.9 
7/22/2010 15:15 1.773 17.2 29.9 11.2 -501.2 
7/22/2010 15:20 1.768 17.2 30.1 11.2 -487.0 
7/22/2010 15:25 1.771 17.2 30.4 11.2 -732.4 
7/22/2010 15:30 1.772 17.2 30.7 11.6 -622.5 
7/22/2010 15:35 1.768 17.2 30.7 11.6 -415.9 
7/22/2010 15:40 1.768 17.3 30.5 11.6 -371.4 
7/22/2010 15:45 1.769 17.3 30.2 11.6 -231.9 
7/22/2010 15:50 1.770 17.3 29.7 11.6 -213.9 
7/22/2010 15:55 1.770 17.3 29.2 11.2 -182.1 
7/22/2010 16:00 1.767 17.3 28.7 11.6 -159.8 
7/22/2010 16:05 1.767 17.3 28.2 11.6 -128.3 
7/22/2010 16:10 1.771 17.3 27.7 11.6 -107.5 
7/22/2010 16:15 1.767 17.3 27.3 11.6 -94.5 
7/22/2010 16:20 1.769 17.3 26.9 11.6 -88.9 
7/22/2010 16:25 1.773 17.3 26.6 11.6 -83.7 
7/22/2010 16:30 1.771 17.3 26.2 11.6 -85.8 
7/22/2010 16:35 1.765 17.3 25.9 11.6 -87.0 
7/22/2010 16:40 1.768 17.3 25.6 11.6 -83.4 
7/22/2010 16:45 1.770 17.3 25.4 11.6 -77.3 
7/22/2010 16:50 1.766 17.4 25.1 11.6 -70.7 
7/22/2010 16:55 1.770 17.4 24.9 11.6 -62.0 
7/22/2010 17:00 1.770 17.4 24.7 11.6 -59.2 
7/22/2010 17:05 1.772 17.4 24.5 11.6 -53.9 
7/22/2010 17:10 1.773 17.4 24.3 11.6 -48.5 
7/22/2010 17:15 1.769 17.4 24.2 11.6 -43.3 
7/22/2010 17:20 1.766 17.4 24.0 11.6 -37.4 
7/22/2010 17:25 1.766 17.4 23.8 11.6 -32.3 
7/22/2010 17:30 1.771 17.4 23.7 11.6 -27.5 
7/22/2010 17:35 1.770 17.4 23.6 11.6 -29.9 
7/22/2010 17:40 1.767 17.4 23.6 11.6 -23.2 
7/22/2010 17:45 1.771 17.4 23.5 11.6 -15.8 
7/22/2010 17:50 1.771 17.4 23.5 11.6 -12.1 
7/22/2010 17:55 1.765 17.4 23.3 11.6 -8.9 
7/22/2010 18:00 1.772 17.4 23.1 12.1 -6.5 
7/22/2010 18:05 1.769 17.4 22.9 11.6 -4.5 
7/22/2010 18:10 1.768 17.4 22.7 11.6 -2.8 
7/22/2010 18:15 1.769 17.4 22.5 11.6 -1.8 
7/22/2010 18:20 1.772 17.4 22.3 11.6 -1.0 
7/22/2010 18:25 1.763 17.4 22.1 11.6 -0.5 
7/22/2010 18:30 1.771 17.4 22.0 11.6 -0.2 
7/22/2010 18:35 1.765 17.4 21.8 11.6 0.0 
7/22/2010 18:40 1.771 17.4 21.6 11.6 0.0 
7/22/2010 18:45 1.769 17.4 21.4 11.6 0.0 
7/22/2010 18:50 1.770 17.4 21.3 11.6 0.0 
7/22/2010 18:55 1.764 17.4 21.1 11.6 0.0 
7/22/2010 19:00 1.765 17.4 21.0 11.6 0.0 
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Maun 
Date & Time (hrs) PAR (µA/mol*Sm2) 

7/14/2010 19:30 0.0 
7/14/2010 19:45 0.0 
7/14/2010 20:00 0.0 
7/14/2010 20:15 0.0 
7/14/2010 20:30 0.0 
7/14/2010 20:45 0.0 
7/14/2010 21:00 0.0 
7/14/2010 21:15 0.0 
7/14/2010 21:30 0.0 
7/14/2010 21:45 0.0 
7/14/2010 22:00 0.0 
7/14/2010 22:15 0.0 
7/14/2010 22:30 0.0 
7/14/2010 22:45 0.0 
7/14/2010 23:00 0.0 
7/14/2010 23:15 0.0 
7/14/2010 23:30 0.0 
7/14/2010 23:45 0.0 
7/15/2010 0:00 0.0 
7/15/2010 0:15 0.0 
7/15/2010 0:30 0.0 
7/15/2010 0:45 0.0 
7/15/2010 1:00 0.0 
7/15/2010 1:15 0.0 
7/15/2010 1:30 0.0 
7/15/2010 1:45 0.0 
7/15/2010 2:00 0.0 
7/15/2010 2:15 0.0 
7/15/2010 2:30 0.0 
7/15/2010 2:45 0.0 
7/15/2010 3:00 0.0 
7/15/2010 3:15 0.0 
7/15/2010 3:30 0.0 
7/15/2010 3:45 0.0 
7/15/2010 4:00 0.0 
7/15/2010 4:15 0.0 
7/15/2010 4:30 0.0 
7/15/2010 4:45 0.0 
7/15/2010 5:00 0.0 
7/15/2010 5:15 0.0 
7/15/2010 5:30 0.0 
7/15/2010 5:45 0.0 
7/15/2010 6:00 0.0 
7/15/2010 6:15 0.0 
7/15/2010 6:30 0.0 
7/15/2010 6:45 0.0 
7/15/2010 7:00 -0.6 
7/15/2010 7:15 -3.2 
7/15/2010 7:30 -7.4 
7/15/2010 7:45 -11.9 
7/15/2010 8:00 -16.3 
7/15/2010 8:15 -19.8 

Table S4: Compilation of Photosynthetically Available Radiation meter data of river water from 
Maun over 24 h recorded in fifteen minutes increments 



76 
 

7/15/2010 8:30 -22.6 
7/15/2010 8:45 -24.6 
7/15/2010 9:00 -22.9 
7/15/2010 9:15 -24.5 
7/15/2010 9:30 -27.2 
7/15/2010 9:45 -28.2 

7/15/2010 10:00 -30.2 
7/15/2010 10:15 -31.5 
7/15/2010 10:30 -33.6 
7/15/2010 10:45 -41.1 
7/15/2010 11:00 -40.6 
7/15/2010 11:15 -37.1 
7/15/2010 11:30 -47.8 
7/15/2010 11:45 -77.2 
7/15/2010 12:00 -76.6 
7/15/2010 12:15 -82.5 
7/15/2010 12:30 -121.3 
7/15/2010 12:45 -187.4 
7/15/2010 13:00 -268.2 
7/15/2010 13:15 -369.0 
7/15/2010 13:30 -443.1 
7/15/2010 13:45 -481.3 
7/15/2010 14:00 -476.5 
7/15/2010 14:15 -485.2 
7/15/2010 14:30 -423.4 
7/15/2010 14:45 -413.2 
7/15/2010 15:00 -420.7 
7/15/2010 15:15 -333.7 
7/15/2010 15:30 -317.8 
7/15/2010 15:45 -302.6 
7/15/2010 16:00 -287.5 
7/15/2010 16:15 -233.2 
7/15/2010 16:30 -188.9 
7/15/2010 16:45 -134.6 
7/15/2010 17:00 -85.6 
7/15/2010 17:15 -55.9 
7/15/2010 17:30 -21.8 
7/15/2010 17:45 -12.8 
7/15/2010 18:00 -5.1 
7/15/2010 18:15 -1.1 
7/15/2010 18:30 -0.1 
7/15/2010 18:45 0.0 
7/15/2010 19:00 0.0 
7/15/2010 19:15 0.0 
7/15/2010 19:30 -0.1 
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Time 
(hrs) 

Water 
Column 
Location 

Water 
Temp. 
(°C) 

Cond 
(µS/cm) 

DO 
(mg/
L) 

DO 
(%) pH ORP Alk 

(mg/L) 

Silica 
(mg/L

) 

Fe2+ 
(mg/L) 

TDS 
(mg/L) 

19:30 Top 18.0 100.0 13.2 139.0 7.0 -172.6 48.0 35.7 0.0 0.1 
 Bottom 17.9 100.0 11.8 124.6 6.9 -169.7 47.8 4.44 0.0 0.1 

20:30 Top 17.9 100.0 11.2 118.5 6.8 -167.7 48.5 38.5 0.0 0.1 
 Bottom 17.8 100.0 10.2 107.5 6.9 -168.7 48.2 38.5 0.0 0.1 

21:30 Top 17.7 100.0 11.1 116.5 6.9 -169.3 48.5 49.5 0.0 0.1 
 Bottom 17.6 100.0 10.1 105.2 6.9 -168.7 48.5 44.9 0.0 0.1 

22:30 Top 17.5 100.0 11.6 122.2 6.8 -168.6 49.3 38.3 0.0 0.1 
 Bottom 17.4 100.0 9.4 98.6 6.8 -168.3 48.5 37.4 0.0 0.1 

23:30 Top 17.3 100.0 9.8 101.5 6.8 -166.4 49.5 35.0 0.0 0.1 
 Bottom 17.2 100.0 9.1 94.6 6.8 -166.9 48.4 35.6 0.0 0.1 

0:30 Top 17.1 100.0 9.4 97.5 6.7 -165.9 47.3 37.6 0.1 0.1 
 Bottom 16.9 100.0 8.7 90.2 6.7 -165.2 48.3 29.2 0.0 0.1 

1:30 Top 16.8 100.0 9.2 93.7 6.7 -164.3 48.4 29.2 0.0 0.1 
 Bottom 16.7 100.0 8.7 89.5 6.7 -164.2 47.4 30.5 0.0 0.1 

2:30 Top 16.6 99.0 9.3 95.7 6.7 -163.7 48.7 40.8 0.1 0.1 
 Bottom 16.5 99.0 8.7 89.5 6.7 -103.5 48.0 37.2 0.0 0.1 

3:30 Top 16.3 99.0 9.5 97.6 6.7 -163.0 49.1 33.6 0.0 0.7 
 Bottom 16.3 99.0 8.7 88.3 6.7 -162.2 - - - 0.1 

4:30 Top 16.2 99.0 9.2 93.6 6.7 -164.2 47.9 30.3 0.1 0.6 
 Bottom 16.2 99.0 8.3 84.8 6.7 -162.0 48.5 28.4 0.0 0.6 

5:30 Top 15.9 99.0 9.6 96.8 6.6 -160.3 45.8 32.2 0.0 0.1 
 Bottom 15.9 99.0 8.5 86.3 6.6 -160.3 45.5 31.9 0.0 0.1 

6:30 Top 16.0 99.0 9.5 95.3 6.7 -160.9 46.0 25.2 0.0 0.1 
 Bottom 15.9 99.0 8.2 83.6 6.6 -161.3 - - - 0.1 

7:30 Top 15.7 99.0 8.7 87.4 6.8 -161.7 46.2 31.9 0.0 0.1 
 Bottom 15.8 99.0 8.5 85.5 6.7 -160.1 - - - 0.1 

8:30 Top 15.7 99.0 10.1 98.5 6.6 -160.5 47.4 34.5 0.1 0.1 
 Bottom 15.8 98.0 8.1 80.9 6.7 -161.2 47.5 40.3 0.0 0.1 

9:30 Top 15.7 99.0 8.9 90.1 6.7 -160.5 45.7 40.9 0.0 0.1 
 Bottom 15.9 98.0 7.9 79.4 6.7 -161.3 45.7 - - 0.1 

10:30 Top 16.1 99.0 8.8 89.1 6.7 -161.0 46.0 41.3 0.0 0.1 
 Bottom 16.1 99.0 8.2 83.3 6.7 -161.5 45.6 40.9 0.0 0.1 

11:30 Top 16.3 100.0 9.0 92.1 6.8 -161.5 48.0 41.6 0.1 0.1 
 Bottom 16.4 99.0 8.2 83.6 6.8 -162.5 - - - 0.1 

12:30 Top 16.9 99.0 9.9 102.3 6.9 -165.1 47.0 43.7 0.1 0.1 
 Bottom 16.9 99.0 8.2 84.9 6.8 -165.9 48.2 43.1 0.1 0.1 

13:30 Top 17.5 100.0 8.9 93.6 6.9 -164.8 48.3 44.6 0.1 0.1 
 Bottom 17.6 100.0 7.9 83.2 6.9 -165.3 - - - 0.1 

14:30 Middle 18.2 100.0 9.2 97.6 6.9 -166.7 48.8 43.0 0.1 0.1 
15:30 Middle 18.6 100.0 8.7 92.7 7.0 -169.2 49.1 46.2 0.1 0.1 
16:30 Middle 18.7 100.0 8.4 90.1 7.0 -169.7 47.0 44.7 0.1 0.1 
17:30 Middle 18.9 100.0 8.3 89.3 7.1 -169.8 47.1 42.6 0.0 0.1 
18:30 Middle 18.8 100.0 7.9 85.7 7.0 -169.9 46.9 41.2 0.0 0.1 
19:30 Middle 18.7 100.0 7.9 84.4 7.0 -168.9 46.9 39.5 0.0 0.1 

Table S5: Compilation of raw Yellow Springs Instrument multi-parameter probe data 
of river water from Maun, recorded over 24 h at different locations in the water 
column.  
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