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The aim of this thesis is to evaluate the potential of a technique for cross-modal
label based retrieval of images, from previously unseen classes, using a ranking
support vector machine and investigate attributes of the system that effect perfor-
mance.
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Chapter I

Introduction

This paper describes the development and implementation of an image retrieval

method using a Ranking Support Vector Machine (RSVM) to retrieve images from

a database based solely on their similarity to a textual query. More specifically

this paper evaluates the potential of this model for zero-shot retrieval, which is

the retrieval of images belonging to a class that the model has not been trained

on. Chapter I discusses the need for a system that can generalize to unknown

classes and the method for doing so is introduced. Chapter II reviews some of the

literature in the areas of image and zero-shot classification that lay the groundwork

for this method. Chapter III details the development of the proposed method and

the training of the RSVM used for retrieval. In Chapter IV the results are analyzed.

Chapter V concludes the paper and discusses future work.

1.1 Background

In classic supervised machine learning a large labeled dataset with n classes is

used to train a n-way classifier. While this can obtain excellent results in image

classification by using a large number of visual classes in a neural network [12],[7],
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having a discrete number of classes makes classifying a class that was neglected

from training intractable. This problem cannot be solved by simply giving the

classifier more classes because if a class is not present at training time then the

classifier will have zero knowledge of the missing class to use in order to make a

reasonable attempt at classification.

There are many situations where the ability to make a zero-shot attempt is useful.

Sometimes it is difficult to obtain enough labeled training data for a specific class

or it may not be possible to obtain any training data at all. There may also be the

case where new classes are constantly being introduced, such as new products or

new models of existing items; in these cases having zero-shot capabilities is very

appealing.

In the case of a multi-media analyst, using a classifier with a rigid set of classes

limits their flexibility when searching a database. The analyst would need to be

aware of what classes could be searched for to make effective use of the classi-

fier. However, having zero-shot capabilities would mean being able to have more

classes available than the classifier had previously trained on and that new classes

could be added to the classifier without having to retrain on new data.

1.2 Knowledge Bases

In order for a system to make a zero-shot attempt it needs to be able to draw knowl-

edge from somewhere. Recent works have looked to using language as a source of

knowledge to classify visual classes. Research in natural language processing has
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found a method to create a vector space that embeds the semantic relationship be-

tween words in a language into the space by using unsupervised training methods

on massive amounts of freely available text articles, such as Google news articles,

from the web.

One such system, Word2Vec, implements both continuous bag-of-words (CBoW)

[18] and skip-gram [17] architectures to learn vector representations of individual

words in the English language. The CBoW learns to represent words by learn-

ing to predicting a word from the context of the words around it, so the system

would take the words wi−1, wi−2, wi+1, wi+2 around wi as input and then predict

the word wi. Skip-gram operates in the reverse, and tries to predict the context

words wi−1, wi−2, wi+1, wi+2 around wi. These embedded word spaces often con-

tain millions of words that cluster in semantically similar groups while keeping

dissimilar groups distant from each other in the space. For example words related

to animals such as ‘dog’ and ‘cat’ would be found nearby to one another while

words representing vehicles like ‘truck’ and ‘car’ would cluster close together but

separately from the group of animal words. Because of this semantic embedding

if one were given the coordinates of a single unknown word in this vector space

it would be possible to discover semantic information about this mystery word

just by observing the words nearest to it. Recent works [23], [4], [26], [20] have

proposed mapping images and words into a common spaces so that pictures can

be automatically annotated or identified. Figure 1.1 shows visualization of this

process.

3



Dog

Car

Images TextFeature vectors Word vector space

FIGURE 1.1: Images feature vectors being extracted and projected into
a word-space

1.3 Initial Work

Previous work at Lincoln Laboratory by Davis King showed that it is possible to

directly compare the similarity of images and words for image retrieval by map-

ping the image feature vectors into this rich semantic embedding space with a

transform matrix learned from a multi-modal structural SVM. This transform ma-

trix would map images close to corresponding words in the embedded space; for

example dog images would map closely to the word ‘dog’ like in figure 1.1, allow-

ing for images to be retrieved from free text queries based on the vector similarity

of the transformed images and the search text. Interestingly he found that this

method was capable of making reasonable selections from combinations of words,

such as retrieving mostly buses and trains when given the ‘public ‘+‘transport’ as
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a query. This paper builds on the work of king and investigates this model’s ability

to retrieve zero-shot images by using the similarity of an image from an unknown

class mapped into this embedded space with that of known words already present

in the space.

5



Chapter II

Previous Works

Zero-shot learning is a topic that has gained a lot of attention in recent years; in

particular zero-shot classification of images has become a popular topic of research

in computer vision as image classification progresses. While deep neural networks

are still the best in image recognition [7] there is a clear interest from researchers

in developing models that are capable of generalizing to unknown classes. The

ability to recognize a new class can be critical in situations where it is not possible

to obtain training data or when there is an ever growing number of classes. In

any other case it is a welcomed property that enhances the capabilities of a typical

classifier. The following section will discuss previous work in the area of zero-shot

learning and other works that were used in the method introduced by this thesis.

2.1 Zero-Shot learning

In [20] the authors describe as general approach to zero-shot learning using a se-

mantic knowledge base to predict novel classes that were not present during the

training of a classifier. Rather than trying to learn a function f : Xd → Y to assign

raw input data Xd directly to an output label Y , the authors learn a mapping to

6



a p dimensional intermediate space constructed from a semantic knowledge base.

This intermediate space encodes each of the p dimensions with the value of a differ-

ent semantic property; there also exist a one-to-one mapping of each p dimensional

vector in the space to a single output label. So the goal of the classifier is to map

input data into the semantic space and then find the nearest output label in the

space. That is if the function f : Xd → Y is separated into two functions S and L

then:

S : Xd → Ip

L : Ip → Y

Where S maps the raw inputXd to a p dimensional vector Ip in the semantic space,

then the L function finds the nearest class label Y to the semantic vector. For zero-

shot learning this means that the classifier can first learn to map input data to a

continuous semantic space, that way when data for a new class is input it can

be mapped to a new position in the space. If this mapping is close to the true

encoding of the class label then the L map in the second stage has a reasonable

chance of recovering the correct class label. The authors note that for this method

the knowledge base K must know the encodings of many more class labels in the

semantic space than the number of classes used for training. So typically M >>

N , where M is the number of semantic vectors to class label pairs known by the

knowledge base and N is the number of classes present for the training of the

classifier.

Recently [23] implemented a zero-shot learning method that builds off of [20] us-

ing a neural network to project image feature vectors into a semantic word space,

7



learned from the distribution of words in a text corpus [8], and use the known

words in this space for a knowledge base for classification. The zero-shot method

in [23] extends [20] by using a novelty detector to first differentiate between known

and unknown classes and then applying different classifiers depending on the re-

sult. The authors experimented on the CIFAR-10 dataset, which contains images

of ten different classes of animals and vehicles. Zero-shot performance was mea-

sured by withholding two classes at a time from training. As a result of different

combinations of holdout sets it was discovered that in order to be able to make a

reasonable attempt at classifying novel data the classifier needed to be trained with

at least one class semantically similar to that of the unknown class. For example,

holding out the ’car’ and ’dog’ class will lead to good zero-shot results, but if ’cat’

and ’dog’ are both held out zero-shot performance suffers because there is not a

similar enough class for each of the two held out for the classifier to make a dis-

tinction between the two. However, the use of two different classifiers is cumber-

some; preferably a zero-shot classifier would work with both known and unknown

classes without having to apply a different model before classifying.

The choice of semantic space can be crucial to performance as it is where infer-

ences are drawn for zero-shot classifications. A popular choice is to use attribute

based label embedding [1], where each dimension of the semantic space represents

a different attribute, such as has a tail or has feathers. Another choice is to use an

automatically learned semantic space where the dimensions of the feature vectors

do not necessarily have a human understandable meaning. One of these learned

spaces, Word2Vec, uses a shallow neural network to learn the semantic relation-

ships between words by training on a massive amount of text data, such a Internet

news articles. The result is a vector space where each of the p dimensional vectors

8



in the space represents a single word. This can create a knowledge base of mil-

lions of labels, where words cluster in groups based on learned semantic relation-

ships. Word2Vec can be implemented with two different architectures, the original

continuous-bag-of-words version [18], and a slightly newer skip-gram version [17]

which is more effective for large amounts of training data. The effectiveness of this

knowledge base can be seen in both [4] and [19] where it is used to perform zero-

shot automatic image annotation. [4] uses a similar method as [23] but at a much

larger scale (1000 classes instead of 10) and with a knowledge base created by the

previously mentioned Word2Vec. They also eliminate the need for two separate

classifiers by using a neural network to directly predict the semantic embedding

vectors for an input image. More recently [19] uses the same knowledge base for

the same task but rather than having a neural network predict the embedding vec-

tors they obtain the vectors for the class labels of an existing n-way classifier and

then map new images into the semantic space using a convex combination of the

embedding vectors for the class labels for that image. The convex combination in

this case is just the vector addition of the scaled embedding vectors, such that the

sum of the elements in the new vector is 1. More specifically, they employ a n-way

neural network classifier that finds the probability of an image belonging to any

of the n classes and then sums the embedding vectors for each class scaled by the

probability of the image belonging to that class for the T classes with the highest

probabilities. The image is then automatically annotated by collecting several of

the closest words in the embedded space. This method is beautifully simple and

makes effective use of existing models and tools, but it requires that the feature

vector used for images has labels connected to each dimension of the vector and

would be unsuitable for more general image feature vectors where the features

9



may not have a label with a corresponding embedding vector.

The method investigated in this thesis is most similar to [26] in which the author

uses a structural SVM as described in [24] to learn a bilateral association between

images and text. Text and images are represented using ‘unimodal probability dis-

tributions of topics learned using latent Dirichlet allocation’. The structural SVM

is trained on a joint text-image representation, Φ (x, y) where x is the image feature

vector, y is the word embedding vector, and Φ = x ⊗ y, which is the tensor prod-

uct of the image feature vector and the embedding vector. They also consider two

loss functions, the Manhattan distance ∆M and the Euclidean distance ∆E . Once a

weight vector w is learned images can be retrieved from a database by sorting the

scores of f (x, y|w) = w · Φ (x, y) or, in the case of textf (y, x|w), where the higher

the score the more relevant the image or text. Our approach differs from the previ-

ous in the following ways, firstly [26] does not consider the zero-shot application

which is the primary concern for this thesis, secondly a freely available knowledge

base trained on the Google news dataset using the method described in [17] is

used, and finally because the final objective is to rank images or text based on rele-

vance this thesis implements a ranking SVM, which is a variation of the structural

SVM, as described in [9].

This section only covers a few of the key works on zero-shot learning, if the reader

is interested they are encouraged to review the following papers: [22, 14, 13].

10



Chapter III

Methodology

The development, implementation, and testing setup used in this thesis are dis-

cussed in the next section. First the development of the original method created at

Lincoln Laboratory that gave rise to this thesis is introduced.

3.1 Objective

While zero-shot retrieval is the attribute investigated in this paper, the primary

goal of the original system was to project words and images into a space where

they are directly comparable. This multi-modal approach allows for images and

text to be used interchangeably to search directly for each other, e.g. an image

could be used to find the words most relative to it, or a text query could be used

to find an image most like the words in the query. The intuition behind using this

method for a zero-shot attempt is that, if words can be directly used to retrieve

images with relatively high accuracy then it should be possible to use a large col-

lection of known words to describe a class that was not trained on and to retrieve

an image belonging to this unknown class.
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To reduce training time, increase ease of use, and ease of replication, freely avail-

able models were used for word representation [17] and image feature extraction

[25]. A publicly available machine learning library [11] was also used for the RSVM

implementation.

3.2 Development

Three versions of the system were developed; the first by Lincoln Lab personnel,

specifically King, and the final two by the author. First, once while employed

with Lincoln Lab and finally, here at Oklahoma State University. As each iteration

helped lead to the final version used in this thesis, the first two iterations will be

briefly discussed to show the full development path.

3.2.1 King’s System

The zero-shot retrieval method examined in this thesis is an extension of the multi-

modal image retrieval method originally created at Lincoln Laboratory, with the

multi-modal aspect coming from the use of textual words to label images. Previous

work by King at Lincoln Laboratory on using words as noisy labels for images lead

to the development of a method to retrieve images based on their likeness to a text

search.

If ~w is taken to be a vector representing a word or phrase and ~i is another vector

that represents some image then the goal is to find a mapping M such that the

image vector is mapped to a point in the word-space, which is better defined and

easier to search within than the image-space, this can be written as, M : ~i → ~wi.

12



Where ~wi is a new point in the word-space where the image ~i is mapped to. The

search word or phrase ~w can then be compared with the mapped image-word ~wi,

and if the two points are close enough then the image is considered to be similar

to the search word or phrase, with a likeness based on the cosine similarity of the

two points in the word-space.

The finding of the image-word vector ~wi can be done with a simple matrix multi-

plication given by:

~wi =~i ·M

Where the image vector~i is projected into the word space by the mapping M . The

matrix M can’t be directly calculated, but a machine learning algorithm can be

used to determine a suitable M from a set of images with tag words describing the

image. Because images tagged by the same word can vary greatly, the words act as

noisy labels to the images. Learning the mapping M can be seen as a supervised

learning problem, where input images~i are supplied with their noisy ground truth

labels ~w.

To solve for the mapping matrix M a Structural SVM (SSVM) was employed.

A standard SVM is a supervised learning algorithm that learns to classify data

by creating a set of hyperplanes that separates the data with the widest gap be-

tween classes as possible. However, a standard SVM can only give binary outputs,

yes/no, as to whether a new data point belongs to a class, and the desired output

space is a word embedding vector of real values, which is complex. A SSVM how-

ever is capable of predicting complex, or structured outputs [10], such as a real

valued high dimensional vector.

13



3.2.2 First Recreation

Under the guidance of Dr. Dagli and Dr. Brady while working for Lincoln Labora-

tory, work done by the author of this thesis to recreate Kings’ method revealed pos-

sible areas of improvement and further exploration. One such area was zero-shot

applications. While King’s method was effective at retrieving previously trained-

on images using words or phrases its ability to retrieve an unknown class had not

been investigated.

The first recreation of the system utilized a random projection hash, trained by

King, with a dimension of 8192 for image features, and a 500 dimensional word

vector representation trained on the Gigaword corpus [5], which is ’a comprehen-

sive archive of newswire text data that has been acquired over several years by the

Linguistic Data Consortium (LDC), at the University of Pennsylvania’. To reduce

computational complexity the high dimensional random projection hash was re-

placed with a 1000 dimensional feature vector from the output layer of a deep neu-

ral network [25]. Each dimension of the output vector represented a probability of

an image belonging to one of the 1000 classes. This provided a more meaningful

feature vector and a large reduction in the size of data, which also meant a consid-

erable reduction in training time. The SSVM was trained using the same code as

the original iteration by King. At the time of this writing the SSVM training code

and other software have not yet been disclosed from Lincoln Laboratory.
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3.2.3 Final Recreation

With all software developed at Lincoln Lab confidential the multi-modal retrieval

system had to once again be recreated. Because this iteration was starting from

scratch it was desirable to make the retrieval system more accessible, and therefore

easier to replicate. Only publicly available software and models were used.

The training for the retrieval system can be broken down into three major compo-

nents: the image representation, the word representation, and the learning algo-

rithm. All of the components used are freely available and easily changeable for

different paths of investigation. Figure 3.1 shows a simplified flow-graph of the

process. Images and text are converted into vector representations and then fed

into the Ranking SVM to train the projection matrix S.

“Airplane”

Text Label

Images

MatConvNet
Image 

Feature 
Extraction

Y(1)
Y(2)

.

.

.
Y(n)

X(1)
X(2)

.

.

.
X(n)

300x1

1000x1

Word2Vec

Ranking SVM 
Projection 
matrix S

1000x300

Image Feature Vectors

Word Vectors

FIGURE 3.1: Flow graph of how images and text are fed into the rank-
ing SVM
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Image feature vectors were once again represented with a 1000 dimensional vector

output from a deep neural network [25] with eight layers except with the final

layer, the softmax layer, removed. The softmax function used for the final layer

"squashes" the output to fit in the range of (0,1), using the following equation:

yj =
ezj∑K
k=1 e

zk
for j = 1, . . . , K

While the is a useful function for creating a probability distribution and selecting

the T most probable outcomes, it leaves the majority of the values near zero. These

zero values contribute no real information about the input image. The outputs

from the final hidden layer are the features learned by the neural network that are

normally fed into the softmax layer for classifying an image. These features are

real valued and contain information that is lost from the softmax layer. This final

part of the network is illustrated in figure 3.2.

Word vectors were represented with a freely available Word2Vec model from Google.

The model learned by training a neural network to maximize the skip-gram model,

which given a word attempts to predict the surrounding words, to learn a dis-

tributed representation of words. To explore this method further, see [17]. This

model contains 3 million words, each represented by a 300 dimensional vector and

was trained on the Google News dataset. Finally a publicly available machine

learning library, dlib [11], was used to obtain the RSVM module.
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FIGURE 3.2: Final hidden layer passing inputs to a softmax layer.
Outputs are the softmax results for each neuron

3.3 Implementation

For zero-shot evaluation the RSVM is trained on part of the pascal VOC 2012

dataset [2] and tested on the a-yahoo dataset [3]. The pascal dataset contains 20

classes of objects such as, ’person’, ’car’, and ’dog’, and the a-yahoo set contains 10

new classes not present in the pascal set. Because the overwhelming majority of

pictures in the pascal set contain the ’person’ tag, images of other classes had to be

filtered such that a person was not present in the majority of the images.
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3.3.1 Image Representation

Each image is represented by a 1000 dimensional vector of real values taken from

the output of the last hidden layer, the layer preceding the softmax output layer,

of a deep neural network as seen in figure 3.2. Each image was passed through

the MatConvNet toolbox [25], a convolutional neural network toolbox created for

Matlab, which rescaled each image and used a pre-trained DNN to extract the

feature vectors for each image. The DNN used, [12] ,was trained on 1000 different

classes from ImageNet. The training classes were made up of more specific labels,

such as ’tiger shark’ or ’great white shark’, than general purpose labels like simply

’shark’.

3.3.2 Text Representation

Text labels, words in this case, are represented by 300 dimensional vectors created

by the skip-gram method described in [17]. Rather than training new word vectors

a pre-trained model that contains 3 million word vectors was used. This model was

trained on the Google News dataset allowing it to learn a word-space from real

world documents. These vectors create a space in which the words they represent

are distributed according to their semantic relationships.

Figure 3.3 uses t-distributed stochastic neighbor embedding (t-sne) to visualize

the high dimensional word vectors in a three dimensional space, where color is

the third dimension, to show how semantically similar words cluster together. T-

sne attempts to preserve the structure of local groups in high dimensional space
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together by converting Euclidean distance in this space into a conditional probabil-

ity. This is the probability that a point xi selects point xj as a ’neighbor’. Neighbors

are selected in proportion to a Student t-distribution at point xi. A similar distribu-

tion is defined for points in the lower dimensional space, then the algorithm tries

to minimize the Kullback-Leibler divergence between the two distributions. Using

this dimensionality reduction technique it is easy to see how words of different se-

mantic relationships cluster into distinct groups. For a more in-depth explanation

of t-sne, see [16].

FIGURE 3.3: t-sne visualization of word clusterings for 3 categories:
animals, vehicles, and furniture

Not only do these vectors group based on meaning, they capture connections be-

tween words, which can be seen through vector operations. A popular example

19



is addition and subtraction, such as, ~king − ~man + ~woman which creates a vector

very close to the vector ~queen.

The similarity between words can easily be measured in this space by finding the

similarity between their embedding vectors using the cosine similarity between

two vector A and B, which is defined as:

similarity(A,B) = cos(θ) =
A ·B
‖A‖‖B‖

(3.1)

Where the similarity is in the range [−1, 1] with 1 being exactly the same. Using this

method to compare all of the tags in the Pascal VOC dataset gives the confusion

matrix shown in figure 3.4. In this plot darker red colors indicated more similarity

and darker blue colors represent less similarity. The diagonal is the similarity of a

word with itself and therefore is a perfect 1. Groupings of similarity can be seen

from words in the same category, such as animals like ’dog’, ’cat’ and ’horse’.

3.3.3 Image Retrieval

With the representation for images and words introduced the framework for image

retrieval is now presented. All vectors are assumed to be column vectors, with

~vector
T

representing the transpose of a column vector into a row vector.

Let D = (~I1, ~T1), ..., (~In, ~Tn) be a set of images ~I with corresponding groundtruth

text-labels ~T . Each specific image ~Ii is represented by a p-dimensional vector of

real values and each corresponding text-label ~Ti is represented by a k-dimensional
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FIGURE 3.4: Confusion matrix of the similarity between Pascal VOC
tags. Darker red colors denote higher similarity

real valued vector. Because images of the same class can vary so greatly we will

attempt to return a ranked list ofN most similar images for a query in the set rather

than trying to directly classify the images. A projection is needed to make vectors

of different spaces directly comparable; to project images into the same space as the

text a projection matrix S is used. Once in the same space images and text can be

compared using the cosine similarity shown in equation 3.1. This process is shown

is equations 3.2, with ~IT representing an image vector that has been projected into

the word space.

~IT = ~Ii
T
· S

score = cosine similarity( ~IT , ~Ti)

(3.2)
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With a higher score indicating a better match between image and text. Once a

satisfactory S matrix is found textual queries can be used to search directly for

images in a database.

3.3.4 Ranking SVM

If image A is preferred to image B we will use the notation A � B. Because the

ranking function returns a score for each item we wish to learn a ranking function

such that, F (~Ii, ~Ti) > F (~Ij, ~Ti)⇐⇒ ~w · Φ(~Ii, ~Ti) > ~w · Φ(~Ij, ~Ti) where ~Ii � ~Ij for the

text-label ~Ti and ~w is a learned weight vector. Φ(·) is a joint feature representation

of the image and text features. The weight vector ~w can be found using a RSVM

which solves the following optimization problem [9]:

minimize : V (~w, ~ξ) =
1

2
~w · ~w + C

∑
ξi,j

subject to : ∀(~Ti, ~Tj) ∈ R : ~wΦ(~I1, ~Ti)− ~wΦ(~I1, ~Tj) ≥ 1− ξi,j

. . .

∀(~Ti, ~Tj) ∈ R : ~wΦ(~In, ~Ti)− ~wΦ(~In, ~Tj) ≥ 1− ξi,j

∀i∀j : ξi,j ≥ 0

(3.3)

Here ξ is a non-negative slack variable that allows the solution to be approximated

so that the problem is not NP-hard. C is a parameter that controls the trade-off be-

tween margin size and training error. Higher C values add more weight to training

errors and cause the RSVM to fit to the training data, while lower C values will pe-

nalize errors less, allowing for a larger margin at the cost of a few errors. The
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RSVM aims to minimize ~w · ~w, which maximizes the margin 1
‖~w‖ , giving better gen-

eralization. The RSVM implemented is the svm_rank_trainer provided by dlib [11]

solved using a cutting planes algorithm for efficiency.

3.3.5 Joint Feature Representation

The Φ(·) function provides a joint representation of the input and output space.

This joint input-output relation is what allows the SVM to learn to make structured

predictions, for example predicting an output vector based on the input, rather

than just simple yes/no classifications. Images and text are both represented by

vectors and even though these vectors are found by different methods, they both

describe semantically similar information. For example a picture of a dog and

the word ’dog’ have similar meaning, but it is presented in very different ways.

The same is true for their respective feature vector representations. Because it is

not obvious how the dimensions of the feature vectors represent similar semantic

content it is reasonable to use every interaction between the two to create a joint

representation. This can be done using the tensor product of ~I and ~T . Therefore

Φ(~I, ~T ) = ~I ⊗ ~T ∈ Rr where r = p × k. This leads to a Φ(·) matrix with number

of rows equal to p and the number of columns equal to k, which is a problem as

the RSVM solves for a vector not a matrix. By using row major vectorization to

reshape Φ(·) into a pk × 1 vector the weights ~w can be solved for normally.

For the actual task of image retrieval it is inefficient to calculate the tensor product.

F (~I, ~T ; ~w) = ~w · vect(~I ⊗ ~T ) (3.4)
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By reshaping the pk× 1 vector ~w into a p×k matrix, the result is the projection ma-

trix S from earlier; thus the ranking function F (~I, ~T ; ~w) can be written in bilinear

form:

F (~I, ~T ; ~w) = ~IT · S · ~T (3.5)

Using this approach has the advantage of reducing the number of multiplications

from Π = (pk)2 to Π = pk + k. If p = k = N then the reduction can be more cleanly

seen as reducing Π = N4 to Π = N2 + N . Using the bilinear form in equation

3.5, the final multiplication can be replaced with the cosine similarity as shown

in equations 3.2 with no loss of information since the cosine similarity function is

simply the normalized dot product.

3.4 Experimental Setup

The RSVM retrieval system was fully implemented in the python programming

language. While the core functions of the dlib rank svm training code are imple-

mented in C++, a python API exists for the rank svm trainer, making it easy to set

training parameters and pass data to the C++ functions. To test the performance

of the RSVM at a retrieval task the average precision of each retrieved class is ex-

amined along with the mean average precision (MAP) of the database searched.

All experiments and code were run using a 64-bit home computer with an Intel

i7-4790k processor, which has a clock speed of 4.2 GHz and 8 cores (4 physical, 4
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virtual), and 16 GBs of RAM. Python version 2.7 was used with the 64-bit version

of the Enthought Canopy IDE. Please note that the version of Python is important,

Python 2.7 and the newer versions, Python 3.x, have some differences that can

make code complied on one version incompatible with the other, such as how

integer division is handled. So it is not guaranteed that any of the code used in

this thesis will compile or work correctly on Python 3.x.

3.4.1 Creating Training Data

As previously mentioned the RSVM was trained on a subset of the Pascal VOC

2012 dataset. Matlab was used with the MatConvNet toolbox to create a training

file of the full set of images. This file contained the name of the images, the tags as-

sociated with each image and the feature vector for each image. The Matlab script

used for the Pascal set reads in every image in a target directory and uses the name

of the images to extract the correct tags from the appropriate XML file provided in

the Pascal dataset, then it extracts the image feature vectors as described previ-

ously in section 3.2.3 using the neural network from [12] and writes the data to a

text file that can be used later for training.

This training file was read into a custom python data object, named Xdata whose

code is found in appendix N, for easier data manipulation. Because many of the

images in the pascal set contain a mixture of classes and the large majority of the

images are of people, images were filtered into a working group of 238 images per

class, this number was taken from the motorbike class which had the lowest num-

ber of images. The reason for this was so that a single class did not dominate the

training set. For example over half of the images contain the ’person’ class, so if a
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classifier were trained on the full set it could achieve 50% accuracy by always pre-

dicting the ’person’ class. The working group was further split in to three smaller

sets, 60% for training (~142 images/class), 20% for cross-validation (~47 images/-

class), and 20% for testing (~47 images/class). The cross-validation set is used to

prevent over-fitting to the training data when tuning the learning parameters. Af-

ter the data is trained it is tuned to increase the accuracy on the cross-validation,

then tested on the testing set. This keeps the algorithm from fitting to the testing

set and receiving good test results but poor general results.

Four of the tags in the Pascal set had to be replaced as either their spellings were

incorrect or were not included in the used Word2Vec model, they are: ’aeroplane’

-> ’airplane’, ’pottedplant’ -> ’potted_plant’, ’tvmonitor’ -> ’TV’, and ’diningtable’

-> ’table’.

The Xdata object also stores a Word2Vec model. The Gensim topic modeling tool

box [21] for python is used to load a pretrained Word2Vec model into the Xdata

object. The Gensim toolbox stores the whole Word2Vec model as a python dictio-

nary, this way it is a simple lookup to find the vector for a given word. The Xdata

object uses the Word2Vec model in a member function called export_training_data()

to create the training file for the RSVM. The function writes data to a file arranged

into groups with a target class word vector, a set of ’relevant’ image vectors that

fall into that class, and a set of ’non-relevant’ examples, which are any images not

of the target class. A random seed is used to randomly select non-relevant and rel-

evant image vectors, up to the maximum number of available examples for a class,

so that no duplicates are used. This is done for each training class and the data is

placed into a single text file, which is readable by the dlib svm_rank_trainer. Ap-

pendix D contains a python script which details the exact steps to create training
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data for the RSVM.

3.4.2 RSVM Training

Two functions are all that is needed to train the RSVM from a given training file.

The first function in the pipeline create_CDSVM_rank_trainer() creates the dlib ob-

ject that does the training with the specified hyper-parameters C, and epsilon. It

also places the training data in a dlib object called ’queries’ that is used for train-

ing. The second function train_CDSVM_rank() simply makes a call to the dlib

smv_rank_trainer to train using the given data, and then outputs the resulting

weight vector into a text file in numpy format, a commonly used scientific com-

puting toolbox for python.

An advantage of using this two step process is that the queries do not need to be

recreated each time one wishes to train the RSVM with different C and eps values.

After the trainer is created all of its controlling parameters can be changed using

’dot’ notation, e.g. trainer.c = new_value. Also when the queries object is created

the tensor product between the image and word vectors is preformed, this way the

RSVM trainer does not need to calculate Φ(·) each time for training. This speeds

up training but requires more memory to store the larger vectors. The output text

file containing the learned weights can be reshaped into the S matrix used for

transforming new image feature vectors into the word-space. A script to perform

RSVM training is included in appendix E.
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3.4.3 Testing Setup

To test zero-shot performance on the a-yahoo set image feature vectors were ex-

tracted using the same method as the Pascal dataset. All the images were loaded

into a Xdata object along with the groundtruth labels. This allows for an easy

lookup to check the class of a retrieved image.

Experiments were run in their own Ipython notebooks to make them easier to test

and edit. The Ipython notebook code was converted to standard python scripts for

readability and included in the appendices.
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Chapter IV

Results

The results of experiments preformed and investigations made are detailed in the

following section.

4.1 Measuring Precision

Evaluating the performance of an information retrieval system can be done sev-

eral ways. A straight forward approach is to observe the precision for all of the

retrieved items. If a system returns a list of items then the precision can be calcu-

lated as:

Precision =
{relevant items} ∩ {retrieved items}

{retrieved items}
(4.1)

If n items are returned then this represents the precision at n or P@n. While this

is an useful for measuring how many of the returned items are relevant to the

search, it does not take into consideration the order in which items are presented

to the searcher. For example, when searching for documents related to preparing
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beef wellington it would be better if recipes appeared before other documents, that

way a user could expect that the most relevant results would be returned first.

The average precision is often used in information retrieval to evaluate the results

of an ordered list. This measure is not the arithmetic mean of the precision over

some range, instead it is the average of the precision after each relevant item is

returned. This weights the precision at each entry based on the ordering by scaling

the precision at n by the inverse of the number of relevant items or total number of

items, whichever is smaller if the entry at n is correct, and zero if it is wrong. This

way results are not penalized by wrong guesses, but are penalized for not ranking

relevant items first. Mathematically average precision is calculated as:

Average Precision =
1

M

M∑
n=1

P@n · I(n) (4.2)

Where

I(n) =


0 if the nth item is irrelevant

1 otherwise.

In the case that there are less relevant items available than the number of items

returned then equation 4.2 becomes

Average Precision =
1

# relevant items

M∑
n=1

P@n · I(n) (4.3)

Taking the mean of the average precision for multiple retrieval tasks gives a good,
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single numerical value representation of the average performance of the system.

The mean average precision at some number of retrieved items N , MAP@N , is

simply:

MAP@N =
N∑
i=1

Average Precisioni
N

(4.4)

4.2 Zero-shot Performance

In the following section the results for the proposed zero-shot retrieval method are

shown. As described in Chapter III, the system will attempt to return a ranked

list of images, from classes not previously trained on, in order of relevancy to the

search term. The model used for all of the following experiments was trained on

100 examples of each of the 20 training classes with an error trade-off parameter,

C, of 0.1 and a convergence radius, epsilon, of 0.01, unless otherwise noted. The

set of zero-shot images contains 12 classes that belong to the a-yahoo dataset [3]

and share no classes with that of the training set from Pascal VOC 2012 [2]. The a-

yahoo data totals 2237 images and does not have an even distribution of classes, for

example there are 366 jetski images and only 48 centaur images. Table 4.1 shows

the distribution of all 12 classes.
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Class # of images
building 213
donkey 128
monkey 156

mug 210
centaur 48

bag 279
carriage 147

wolf 171
zebra 179
statue 191
jetski 366
goat 149

total images 2237

TABLE 4.1: Table of a-yahoo class representation

To find a general representation of the systems performance as a whole the MAP@N

as defined in equation 4.4 is used, which is the average of the Average Precisions

for each class. Figure 4.1 shows the MAP@N score plotted against the number of

items returned for each search.
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FIGURE 4.1: MAP scores verses number of items retrieved

# of items retrieved MAP
1 0.166667
5 0.240556
10 0.229335
50 0.192191

100 0.189675
200 0.196376
300 0.223801
400 0.251852
500 0.277856

1000 0.322208
1500 0.328824
2000 0.329816
2238 0.329816

TABLE 4.2: Table of key zero-shot MAP@N scores

Table 4.2 summarizes the MAP scores with the results at some of the points of

interest on the curve. These points were chosen as usual return values a user might
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Precision AP Recall
bag 0.26 0.100 0.465
mug 0.376 0.341 0.895
goat 0.23 0.259 0.771

donkey 0.204 0.200 0.796
zebra 0.126 0.029 0.351
wolf 0.312 0.253 0.912

monkey 0.216 0.163 0.692
centaur 0.068 0.131 0.708

jetski 0.644 0.830 0.879
carriage 0.25 0.176 0.850
statue 0.226 0.337 0.591

building 0.386 0.511 0.906
Mean 0.275 0.278 0.734

TABLE 4.3: Table of precision, average precision, and recall at 500
samples

be interested in when searching for pictures.

Generally, the MAP increases as the number of returned items increases. This is

an expected result as the Average Precision function does not penalize the retrieval

system for returning incorrect results, it only penalizes relevant items being ranked

after non-relevant items. The downward trend in MAP scores from the initial point

in the graph to a retrieval size of about 134 is interesting, as this is the point at

which the retrieval size close to or slightly greater than the number of relevant

images for all classes, except the jetski class. At this point the equation for Av-

erage Precision at N samples is close to equation 4.3 for the majority of classes.

This indicates that for zero-shot classes the retrieval system returns poor ranking

results when the number of retrieved images is much less than the total number of

relevant images for a given class.
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FIGURE 4.2: Average precision at different retrieval sizes

The MAP begins to increase exponentially after 134 samples, with the Mean Av-

erage Precision increasing by 8% from approximately 134 samples to 500 samples.

Over the next 1000 samples there is only an increase of approximately 5%. This

is perhaps the region in which the systems achieves the best performance as only

about one fifth of the total number of images are retrieved to achieve a MAP of

27% and an average recall of 73%, shown in table 4.3.

Figure 4.2 contains a box plot of the average precision of all twelve classes at sev-

eral return sizes. The box plot visualizes the distribution of the data by splitting it

into three quartiles, with the outliers plotted as ’+’ symbols. In terms of a normal

distribution, the box itself would represent the data falling within approximately

±0.5σ and the whiskers indicate ±2.5σ from the mean. The red dividing line rep-

resents the median value. The boxes were obtained by recording the Average Pre-

cision for each class at the return size indicated on the x-axis.

The same trend is seen here with a slight dip in median performance from 10 to 100
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before increasing steadily to a maximum median average precision at return size of

1000. The box plot gives a better view of the underlying data used for calculating

the MAP scores and shows that the Average Precision closely follows the same

trend as the MAP. It can be seen that the distribution of the average precision is

smallest at a return size of 300 and that there are noticeable outliers that have much

higher average precision scores than the other classes. These outliers were found

to belong to the ’jetski’ class.

In figure 4.3 a precision-recall curve is plotted for each of the twelve zero-shot

classes. Note that the precision-recall curve uses the standard definition of Preci-

sion at N from equation 4.1 and not the Average Precision.

The precision-recall curve is typically used to investigate the trade-off between pre-

cision and recall for different thresholds on a retrieval system, where, as the thresh-

old for the retrieval system to accept or reject an item is lowered, more items are

retrieved until the threshold reaches zero and all items are accepted. The proposed

system however, does not use a threshold and simply returns a chosen amount of

images with the highest scoring first, so as recall increases the number of items

retrieved, relevant or non-relevant, increases. Only plotting the precision against

the recall can be a bit misleading in this case because the recall value represents the

percentage of relevant items that were returned and not the total number of items

retrieved. Because it is not expected that the zero-shot items will have particularly

high precision it is of interest how many total items were retrieved to achieve the

plotted precision-recall values. To clarify this the number of samples is plotted

against the recall as a dashed green line on the graphs to create a precision-recall-

sample graph.
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A perfect precision-recall curve with 100% precision from [0,1] recall would create

a unit box, while a curve with peaks near the origin indicates high-precision at low-

recall. Typically the curve slopes downward as the recall increases because there

are more non-relevant items than relevant and therefore are more false-positives.
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FIGURE 4.3: precision-recall-samples curves
A-L: bag, building, carriage, centaur, donkey, goat, jetski, monkey,

mug, statue, wolf, zebra, respectively

These precision-recall curves give another view into the performance of each zero-

shot class. While some of the classes, such as jetski, building, and statue have

unexpectedly high performance the majority have precision around 20%-40%. The

precision-recall-sample curve for the zebra class shows surprisingly low perfor-

mance for all recall levels; given the understanding that a zebra is similar in many
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ways to that of a horse, a training class, one would expect the zebra class to have a

higher performance than a class with few similar training examples, such as ’bag’.

Table 4.3 shows the precision, Average Precision and recall results for each class at

500 retrieved images. As mentioned previously a return size of 500 is the point at

which the majority of the classes have returned 70% or more of the total number

relevant images.

4.2.1 Comparison to Random Retrieval

To validate that the results of the previous section as better than simply random

guessing this section compares the results to that of random retrieval. As it is diffi-

cult to directly calculate the probability of retrieving a certain number of relevant

images from a large database with a given selection size, Monte Carlo simulations

are used to find the performance of random retrieval for each of the twelve zero-

shot classes.

A Matlab script was written to perform the Monte Carlo simulations. To simulate

a ranking of the 2237 images in the database a sampling without replacement of

the integers ranging from [1,2237] was taken 2237 times, this in effect results in a

randomly ranked list of 2237 unique objects. This was performed 10,000 times. As

each class is considered separately the 10,000 lists can used for all twelve classes.

For each class the first R integers are considered to be positive, where R is the

number of images belonging to a class; for example, the ’wolf’ class contains 179

images so integers [1,179] are considered to be positive results. For each class the

randomly ranked lists are converted to binary row vectors, with 1’s representing

relevant objects and 0’s representing non-relevant, and then the cumulative sum
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dom retrieval

of each vector is taken so that each element represents the number of hits at that

point in the list. The mean of each sample position, the column mean, is found and

rounded to the nearest integer resulting in an average list for each class. From this

list the precision, recall and MAP were calculated for each class at each return size.

Figure 4.4 shows the MAP@N for the Monte Carlo simulations of each class.

Reaching a final value of only about 8% the MAP@N for random image retrieval

is four times lower than maximum the mean average precision of the purposed

retrieval system, about 32%. At a return size of 500 the random MAP score is

approximatively 2% where the proposed method achieves 27%.
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Figure 4.5 contains the twelve precision-recall curves for the Monte Carlo simula-

tion of each zero-shot class. This time the number of samples had a nearly linear

relationship with the recall, whereas in the previously it did not, allowing it to be

easily plotted as a secondary x axis underneath the primary one to give a helpful

visualization of the number of samples at each recall point.
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FIGURE 4.5: precision-recall curves of Monte Carlo simulations
A-L: bag, building, carriage, centaur, donkey, goat, jetski, monkey,

mug, statue, wolf, zebra, respectively

It can be seen that all of the precision-recall graphs for the random selection case

approach a near constant precision for all recall levels. The initial spike is caused

from the averaging and rounding of the 10,000 randomly ranked lists, where there
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is typically a positive hit within the first ten samples, giving the graph a higher

starting point. After enough results are retrieved each of the classes approaches a

constant precision of class size
total .

Table 4.4 summarizes the precision of the Monte Carlo simulations for each class at

several common points and table 4.5 shows the precision of the proposed method

for comparison.

The shaded cells in table 4.5 represent precisions lower than that of random selec-

tion. The worst performance is seen at 10 and 50 items returned. At 100 or more

all classes, excluding ’zebra’, score higher than random and in most cases signifi-

cantly better. With 500 returned items all classes score higher than the Monte Carlo

simulations.

Table 4.6 shows the recall percentage for each class at the same return sizes as used

in table 4.4. An interesting finding here is that the recall for each class at a return

Precision of Random Retrieval
@10 @50 @100 @200 @300 @400 @500

building 0.100 0.100 0.100 0.095 0.097 0.095 0.096
donkey 0.100 0.060 0.060 0.055 0.057 0.058 0.058
monkey 0.100 0.060 0.070 0.070 0.070 0.070 0.070

mug 0.100 0.100 0.090 0.095 0.093 0.095 0.094
centaur 0.000 0.020 0.020 0.020 0.020 0.022 0.022

bag 0.100 0.120 0.120 0.125 0.123 0.125 0.124
carriage 0.100 0.060 0.070 0.065 0.067 0.065 0.066

wolf 0.100 0.080 0.080 0.075 0.077 0.077 0.076
zebra 0.100 0.080 0.080 0.080 0.080 0.080 0.080
statue 0.100 0.080 0.090 0.085 0.087 0.085 0.086
jetski 0.200 0.160 0.160 0.165 0.163 0.163 0.164
goat 0.100 0.060 0.070 0.065 0.067 0.068 0.066

TABLE 4.4: Table of precision scores for random retrieval of classes at
seven values
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Precision of Proposed Method
@10 @50 @100 @200 @300 @400 @500

building 0.5 0.56 0.63 0.565 0.523 0.45 0.386
donkey 0.3 0.22 0.23 0.275 0.25 0.232 0.204
monkey 0.2 0.2 0.26 0.245 0.226 0.2175 0.216

mug 0.2 0.22 0.26 0.42 0.436 0.425 0.376
centaur 0.2 0.18 0.19 0.12 0.086 0.0775 0.068

bag 0.0 0.12 0.16 0.205 0.23 0.2525 0.26
carriage 0.0 0.04 0.1 0.185 0.243 0.2575 0.25

wolf 0.0 0.06 0.16 0.265 0.33 0.335 0.312
zebra 0.0 0.02 0.03 0.04 0.06 0.0875 0.126
statue 1.0 0.7 0.56 0.415 0.313 0.255 0.226
jetski 1.0 1.0 1.0 0.99 0.866 0.7425 0.644
goat 0.4 0.34 0.35 0.34 0.286 0.265 0.23

TABLE 4.5: Table of precision scores for proposed method at seven
values, shaded cells indicate worse than random performance

size of 200 or more is approximately return size
total

.

At a return size of 500 the purposed method’s lowest recall is 35% for the zebra

class and an average of 73%, significantly higher than that of the random retrieval

Recall
@10 @50 @100 @200 @300 @400 @500

building 0.005 0.023 0.047 0.089 0.136 0.178 0.225
donkey 0.008 0.023 0.047 0.086 0.133 0.180 0.227
monkey 0.006 0.019 0.045 0.090 0.135 0.179 0.224

mug 0.005 0.024 0.043 0.090 0.133 0.181 0.224
centaur 0.000 0.021 0.042 0.083 0.125 0.188 0.229

bag 0.004 0.022 0.043 0.090 0.133 0.179 0.222
carriage 0.007 0.020 0.048 0.088 0.136 0.177 0.224

wolf 0.006 0.023 0.047 0.088 0.135 0.181 0.222
zebra 0.006 0.022 0.045 0.089 0.134 0.179 0.223
statue 0.005 0.021 0.047 0.089 0.136 0.178 0.225
jetski 0.005 0.022 0.044 0.090 0.134 0.178 0.224
goat 0.007 0.020 0.047 0.087 0.134 0.181 0.221

TABLE 4.6: Table of recall results for random retrieval of classes at
seven values
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FIGURE 4.6: Word similarity confusion matrices of pascal and ayahoo
tags

simulations.

4.2.2 Learning from Similarities

The information used to retrieve the zero-shot classes is learned by the RSVM

through the relationship of words in the word-space. Figure 4.6a shows a con-

fusion matrix of the cosine similarity between trained on class-labels and the zero-

shot class-labels. The expectation is that the more training classes there are that are

similar to a zero-shot class, the better the projection matrix will be able to project an

image belonging to that zero-shot class to the appropriate point in the word-space.

The animal labels have the highest number of similar training class-labels com-

pared to any of the other zero-shot class-labels. The word ’goat’ has the highest

single similarity score to a training class-label, 64% similar to the word sheep,
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though this was not the class with the highest Average Precision. The highest

performing class, ’jetski’, has high similarity with only two classes, and is mostly

dissimilar to all other training classes. It is likely that the relatively large number

of animal type classes all being similar to each other act as noise, making it more

difficult to distinguish one from another during retrieval. The words ’statue’ and

’building’ both have quite low similarity to any of the training class-labels.

Therefore, one would expect the building and statue classes to have the worse re-

sults than the animal classes, which all have several similar training classes. How-

ever this is found to not be the case, observing table 4.3 the building class has both

a higher Average Precision and recall than any of the animal classes, the statue

class has a higher Average Precision as well, though not a higher recall. Observ-

ing the similarity scores of the first 20 images returned for the building and statue

class revealed that the highest scoring images were only 18-20% similar, while the

top images for the animal classes were 28-30% similar. A likely explanation for the

building and statue results is that, even though they have a low similarity to the

appropriate word, all other classes are so dissimilar that the buildings and statues

are the only images that have any sort of positive similarity. This is supported by

figure 4.6b which shows the self-similarity between all of the class-labels in the

ayahoo set. It is clear that all of the labels are dissimilar from each other, aside

from the animal type labels, and the building label has particularly low similarity

to all other labels, making it easier to distinguish images from this class as they

only need to be slightly similar to the word ’building’ to achieve the highest score.
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4.2.3 Effect of Increasing the Number of Training Samples

For all of the previous experiments the RSVM was trained using 100 examples per

training class. This number was selected because of hardware limitations, 100 and

20 classes consumed nearly all available memory during training. But does more

training examples per class necessarily improve the performance of the retrieval

system?

To test this the RSVM was trained multiple times with the number of training ex-

amples per class increasing from 1 to 100. Afterwards the Average Precision for

each class was calculated at each number of training examples and the MAP for

the entire system found for each point. Average Precision is used here rather than

standard precision because it is indifferent to the number of items returned, so the

entire database can be searched without penalizing the score and a single value

calculated instead of several precision values at set points.

Figure 4.7 shows a scatter plot the results of the MAP percentage against the num-

ber of examples per class, increasing from 1 to 100, along with the line of best fit to

the data in plotted in green with the slope of the line noted in the legend.

There is a definite trend overall of increasing MAP percentage with increasing

numbers of training examples per class, but the slope of the line fitting the data

is relatively small, equal to 0.092, increasing only about 8%, from 28% to 36%. If

fact, observing the data falling between 60 and 100 examples per class, the MAP

has little to no overall improvement with the increase of training examples, though

the variation does appear to reduce a small amount.

The data in Figure 4.7 would seem to suggest that after approximately 60 examples
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FIGURE 4.7: Mean Average Precision of zero-shot classes for increas-
ing number of examples per training class

per class increasing the number of examples per class does not provide much addi-

tion information to the RSVM during training. This is likely an effect of using such

a small number of examples, relative to other similar methods. For example [14]

uses a subset of the Pascal VOC 2008 data, which consists of 12,695 images over the

same 20 classes, giving approximately 600 images per class for training, six times

the number of images per class used above. In [26] a similar SVM based method

uses 17,658 total images with various labels for training a retrieval system and [23]

uses 5,000 examples per class for zero-shot classification in one experiment and 500

per class for 106 classes in another. Compared to a web-scale method [7], which

uses 1.28 million images of 1000 classes, the method in this thesis can be considered

to be operating in a very low resource domain. Thus it is likely that a substantial
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increase, hundreds or thousands, in the amount of examples per class would lead

to better retrieval results.

4.2.4 Effects of Increasing Number of Training Classes

Acquiring more examples for each class is one likely way to improve the perfor-

mance of the retrieval system, another would be obtaining more distinct classes

to increase the known area in the word-space. Distinct in this context meaning

classes of objects or concepts that were not previously known in any form rather

than finer grain classes, such as ’corgi’ when the the class ’dog’ is already known.

To investigate the effect of the number of classes on retrieval performance, three

experiments were performed with the same setup and analysis method as the pre-

vious experiment, except this time the number of classes is increased from 1 to the

maximum available, 20. This is done for three different magnitudes of examples

per class 1, 10, and 100, shown in figure 4.8.
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FIGURE 4.8: Mean Average Precision results for increasing number of
training classes

In all three cases there are significant increases in Mean Average Precision as the

number of classes increases. Expectedly the more classes, and the more exam-

ples for each class, the better the MAP; compared to the effects of increasing the

amount of examples for each class, adding new classes has a much larger impact

on the MAP with each addition. This is understandable, if the entire word-space

is thought of as a plane and each trained on class-label vector is a known point

on the plane, the projection matrix projects points onto the plane in relation to the

already known points; so learning new points on the plane would impart a great

deal of information about the space, especially when only a few points are already

known. However it is probable that there is an upper limit to number of classes
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that provide improved accuracy before the space becomes overly crowded causing

an increase in false positives.

4.3 Effects of Changing Domain

The proposed image retrieval system projects images into a word-space to create

better separation between images for retrieval or classification. Observing class

similarity in different domains gives some insight on how changing a domain can

improve class separation for easier identification. The expectation is that once im-

ages are projected into a word-space by the projection matrix S and compared to

the Word2Vec representation of the class-label there will be a clear separation be-

tween images of the correct class and all other images; for example pictures of dogs

compared to the word ’dog’ will be clearly separable from other pictures other ob-

jects compared to the same word.

Figure 4.9 contains three images of different classes, ’dog’, ’train’, and ’sheep’,

which are clearly identifiable to a human observer. However, in the raw image

feature space this is not so obvious.

(A) A dog (B) A train (C) A sheep

FIGURE 4.9: images used for domain comparison
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4.3.1 Image Domain

Using 100 images from each of the three classes above, taken from the Pascal VOC

dataset, the cosine similarity scores between the image feature vectors for each

class and the vectors for the dog class are found. To be more specific, each of the

100 vectors chosen for the sheep and train classes are compared to each of the 100

vectors selected for the dog class, then to find the similarity of in-class images the

cosine similarities of between each of the 100 dog vectors to each other are found,

excluding the similarity of vectors to themselves which will always be one. The

sheep class is chosen to compare images that are somewhat similar and the train

class is used to display the image feature vector similarity of classes that are very

different. The results are displayed in a set of histograms shown in figure 4.10.

Each histogram contains 100 bins between [-1,1].
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With dog-to-dog similarity plotted in blue, sheep-to-dog in green and train-to-dog

in red the histogram shows a normal distribution for the similarity of the three

classes to the dog class. The image feature similarity of dog images to other dog

images is centered at approximately 0.5, about 50% similarity, with a long tail the

reaches back to nearly -0.25. A negative cosine similarity indicated that the two

vectors are opposite in direction, which can be interpreted as dissimilar for the

domain of these vectors. With a typical similarity of about 50% for images within

the same class, as indicated by figure 4.10, the retrieved image feature vectors from

MatConvNet do not make a clear indication as to what is contained in the image.

Even with a low similarity for in-class images, the train and dog classes are still

separable as one would expect, however the when comparing the sheep class to

the dog class the similarity distribution is nearly identical to the in-class dog-to-

dog similarity. Making it difficult to differentiate between the two classes in the

image feature domain.

4.3.2 Images Projected into a Word-Space

By using the dot product between an image feature vector and a projection matrix

that has been learned by the RSVM as described in chapter III, image feature vec-

tors can be mapped to points in a word-space. The point in the word-space that

the images are mapped to should be close to the class-label associated with that

image. The expectation is that this will help to separate images of different classes

while grouping ones of the same class. Using the same three classes and the same

method as was before the similarity with respect to the dog class was once again

found. The resulting histograms are shown together in figure 4.11.
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FIGURE 4.11: Cosine similarity of image vectors projected into the
word-space

The immediate finding here is that the in-class similarity of projected ’dog’ im-

ages is much higher; the train class is shifted about 0.25 units away from zero to

-0.5. The projection of images into the word-space causes a major spreading of

the sheep-to-dog similarity histogram, though there is still considerable amount of

overlap, and a widening of the train-to-dog histogram, while the in-class results

become shifted towards one.

4.3.3 Comparing Projected Images to Word Vectors

Finally each of the images are projected into a word-space and compared with the

word vector representation of ’dog’. This way the desired class should show clean

separation from other classes and less similar images should have a lower cosine

similarity score. The same 100 images projected into the word-space are used for

each of the three classes and their cosine similarities to the ’dog’ word vector are

reported in figure 4.12. Again the histograms contain 100 bins from [-1,1].
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FIGURE 4.12: Cosine similarity of the word vector for ’dog’ and three
different image-classes projected into the word-space

The three classes separate better when compared to the word vector for ’dog’. As

expected the images of dogs have the highest similarity to the word vector while

the majority of the sheep images are near zero and the pictures of trains have a

similarity less than zero. The similarity score for the correct class, dog, has the

majority of the images centered at approximatively 0.5. While this is enough to

separate the correct class from the incorrect it is lower than expected. A likely cause

is the size of the training dataset used; with a larger data set a better projection

matrix can be learned that can mapped images closer to the correct point in the

word-space.
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4.4 What the Transformation Matrix Represents

The final output from the RSVM training is a vector of weights that, when re-

shaped, becomes the projection matrix used to map image feature vectors, from

both known and unknown classes, into the word-space. Once reshaped it is un-

clear what, if anything, the rows and columns of the matrix represent.

The method in [19] projects images into a semantic space in a similar way to the

method used in this thesis. As mentioned in chapter II, the probabilities of an im-

age belonging to 1000 different classes with known semantic embedding vectors

are found, then the top N probabilities are used to scale the appropriate embed-

ding vectors before being summed together to create a new vector. If the 1000

known classes are thought of as a matrix, then each row is a word embedding vec-

tor and the new vector is found by a simple dot product between the matrix and

the image feature vector, a list of probabilities in this case. One reasonable hypoth-

esis then, is that the rows of the projection matrix learned by the RSVM are the

embedding vectors of the necessary class-labels needed to project image feature

vectors into the word-space.

Figure 4.13 shows the results of finding the most similar word, or words, in the

known vocabulary of the Word2Vec model used to each of the rows in the projec-

tion matrix plotted as bar graphs, in descending order of number of occurrences

for each word. Sub-figure 4.13a shows the results considering only the single most

similar word for each row and plotting only those which were a top result five or

more times. 4.13b show a similar experiment considering the top five terms most

alike each row, this time only plotting those which appeared at least 30 times.
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FIGURE 4.13: Bar plots of top 1(a) and top 5(b) most similar words to
the rows of the projection matrix

The twenty highest occurring words in the bar plot (a) are in fact the class-labels

from the Pascal dataset, with the ’person’ label similar to twice as many of the rows

in the matrix; of the remaining four words K.Kahne_###-### is a mostly mean-

ingless token that was learned from the Google News articles used to train the

Word2Vec model, and the other three are the plural forms, or synonyms, of the

training class-labels. On average the words shown for 4.13a had a similarity of

51.8% to the rows they were most alike. Table 4.7 shows the average cosine simi-

larity score for each word that was the most similar word to a row in the projection
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Average Similarity
chair 0.539803

K.Kahne_###-### 0.324566
sofa 0.520213

motorcycle 0.466810
bicycle 0.576961

boat 0.581447
bird 0.508973
cow 0.507324
table 0.497650
sheep 0.515342
horse 0.512639

motorbike 0.536742
cats 0.419419

potted_plant 0.549266
horses 0.455139

bus 0.569031
train 0.495481
car 0.583734
cat 0.522745

airplane 0.509863
person 0.574499

TV 0.503211
dog 0.628177

bottle 0.54876

TABLE 4.7: Table of average cosine similarity scores for the labels in
figure 4.13a

matrix. For example, when ’chair’ was the most similar word to a row of the pro-

jection matrix it, on average, had a cosine similarity of 53.9%. Looking five words

deep for each row in 4.13b shows that, after the class-labels, synonyms or plural

forms are the most similar terms, which is to be expected as the terms most nearest

a word in the word-space are those with similar meanings, such as the pluraliza-

tion.

It would seem then that the values learned by the RSVM are approximations of

58



the embedding vectors of the training labels. These ’anchor’ words are used as

reference points to map images into a word-space. A likely cause of repetition of

some terms and the appearance of nonsense tokens from the word-space is the

difference in the number of training class-labels and the size of projection matrix,

leaving a large portion of it unused.

Whether this method could lead to greater performance than that in [19] remains to

be seen though, as it is not only difficult to directly compare the two, the tasks eval-

uated are quite different, as [19] evaluates automatic image annotation whereas the

method investigated here evaluates image retrieval, but because of the disparity in

number of classes available to each model, they use 1000 where only 20 are used

here. It is very likely that including more classes during training will lead to the

RSVM learning more approximations of relevant terms in the word-space allow-

ing better mappings between the image and word spaces. A potential advantage

to learning approximate terms rather than using existing embedding vectors is the

RSVM can estimate a shifted version of the words to create better separation be-

tween to like terms in the word-space. For example the terms ’cat’ and ’dog’ have

a cosine similarity of 0.76, which can make it difficult to distinguish between im-

ages of the two, as an image of a ’cat’ mapped slightly too far towards the word

’dog’ may cause it to be classified as such. By placing the learned vectors for ’dog’

and ’cat’ farther away from each other than the actual embedding vectors a slight

bias is created when projecting words that may improve separation. The potential

disadvantage of this is of course that vectors may be shifted towards other terms

causing a loss in similarity to the correct embedding vector.
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4.5 Performance on Training Classes

While zero-shot retrieval is the main focus in this thesis performance on seen

classes cannot be ignored. Not only is it valuable for the system to be able to

identify training classes at a high accuracy, the performance on trained-on classes

represents the best case performance of the system.

While the user knows what classes are present in the zero-shot dataset, when train-

ing the RSVM it is impossible to predict what classes the system will have to iden-

tify in real world use, so instead of tuning the C and epsilon hyper-parameters

to the already known zero-shot classes, tuning was done as one would do for a

standard classifier, to a cross-validation set with the same classes as the training

set.

When training C parameter controls the trade-off between margin size, the dis-

tance between the two closest points, and error; epsilon controls the radius of con-

vergence, which has a direct effect on the number of iterations performed. As

described in chapter III, the RSVM was trained on a training set made up of 60%

of the Pascal VOC data and then the performance was tuned with the training set

and the cross-validation set, made up of half of the remaining data, about 20% of

the total data. The reason for using both sets is to not over fit the RSVM on any

one set of data. If parameter tuning was done only on the training set the RSVM

would be able to achieve high scores quite easily by increasing the C parameter,

which adds more penalties to miss-classifications causing a stronger fit to the train-

ing data, but when used on a new set of images the performance would be poor

because of over-fitting. The same applies to using only the cross-validation set. By

observing the MAP of both sets the hyper-parameters, C and epsilon, can be tuned
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FIGURE 4.14: Plot of MAP scores for the Cross-validation, noted as
’CV’ in the legend, and Training sets, noted as TS, at the 3 epsilon

values [.2,.1,.01] over 6 decades of C values from 0.001 to 1000

without fitting to either of these datasets to make the learned model more general.

The values that result in the highest performance between both sets are taken as

the optimal values.

Figure 4.14 shows MAP of the system at different C and epsilon values on the cross-

validation set and the training set. In the figure the cross-validation scores are

plotted in red and the training set scores in blue, results sharing the same epsilon

values are plotted with the same shaped marker; a maximum for both sets is seen

at a C value of 0.1 and an epsilon value of 0.01. Call outs on the graph show

the maximum score for each set, 65% for the training set and 63% for the cross-

validation set.
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FIGURE 4.15: Graph Mean Average precision of the test set vs return
size

Using the selected best C and epsilon combination, 0.1 and 0.01 respectively, per-

formance is measured using the Pascal testing set, which is composed of the re-

maining 20% of the data. The same method is used as with the zero-shot classes,

where the MAP@N is found and plotted for the entire dataset at every position

in the list. Figure 4.15 displays the MAP at different selection sizes and table 4.8

summarizes the MAP scores at several points.

A similar downward trend is seen for the first 177 results as was seen with the

zero-shot data, the difference here being that the minimum MAP score is only 53%

and the performance for the first ten images is a great deal higher, 82%. After a

return size of 177 the MAP quickly rises again to its final value of approximately

66% for the full size of the dataset, 2840.
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return size MAP
1 0.947368
5 0.820526
10 0.824378
50 0.746607

100 0.660107
200 0.554058
300 0.578800
400 0.607274
500 0.620319

1000 0.651903
1500 0.657473
2000 0.658678
2840 0.659056

TABLE 4.8: Table of MAP@N scores on seen classes at key points

Table 4.8 shows that the average precision for the first image returned by each class

is 95% and 82% for the first ten images from seen classes. The MAP score places

weight on ranking position, so a score of about 82% for 10 images either means that

on 2 of the 10 images were non-relevant or the one non-relevant image was ranked

higher than some of the relevant pictures. The results indicate that the projection

matrix learned by the RSVM is able to retrieve images of trained classes on from a

database at a high precision with a relatively small amount of training data.

4.6 Comparisons to Other Methods

The work done by the authors in [26] uses a similar SVM based method to the

one described in this thesis and while the authors do not consider zero-shot po-

tential the experiments performed on text-based image retrieval provide a useful

comparison for the method purposed by this thesis. There are some differences

between the two methods however, the authors in [26] use a Structural SVM and
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learn their own image and text representations, which are both probability distri-

butions over learned visual and textual topics respectively; training and testing are

done on the IAPR TC-12 dataset [6], which is a collection of 20,000 natural images

ranging from animals to ’action-shots’ with the labels for each image taken as the

nouns in the provided free-flowing text describing it. Whereas this thesis uses a

Ranking SVM with deeply learned image features and word embedding vectors,

and evaluates retrieval from the Pascal dataset, which has only 20 classes, though

multiple classes may appear in a single image.

The method in [26] uses the inner product of the weights learned by the SSVM

and the joint-feature vector of image and word vectors, Φ(·), to determine rele-

vance, where higher scores are more relevant, whereas in this paper the weights

are reshaped into a matrix to first project image feature vectors into a word-space

where the cosine similarity is used to determine relevance. In both methods the

joint-feature vector Φ(·) used for training is the tensor product of image and word

vectors, that is Φ(~I, ~T ) = ~I ⊗ ~T .

In one experiment in particular they report the results of an image retrieval exper-

iment where given a text label images are ranked according to relevance. Perfor-

mance is reported with precision at 1 (P@1), precision at 5 (P@5) and MAP score,

mean Average Precision; they do not report how many images were retrieved for

the MAP score but it is likely that this is the MAP for the entire set of images. Table

4.9 compares these results with those of the purposed method.

P@1 P@5 MAP
BITR 11% 8% 5%

Proposed 95% 85% 66%

TABLE 4.9: Comparison of [26]’s method BITR and the purposed
method
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FIGURE 4.16: Bar graphs comparing several image retrieval results
[26]

Figure 4.16 shows the results of several other image retrieval systems that used

text labels to retrieve images, Text2Im, that were compared with the results from

[26] in their paper. The purposed retrieval method out scores [26]’s methods, all

of the BITR bars in figure 4.16, and the various other methods they compare to

by significant amounts in every reported precision metric. A likely reason for the

large difference in performance is the choice of datasets for training and evalua-

tion. The IAPR TC-12 dataset consists of many different categories and uses free-

flowing text to describe them, making the dataset much more complex, where the

Pascal dataset only has 20 categories and uses only the labels to describe the im-

ages making the image labeling much more consistent. Another likely reason is the

difference in image and word representations. The word-space used in this thesis

was trained on the Google news dataset which included about 100 billion words

to learn vector representations of words, [26] does not state the number of words

used to learn their text representation for labels.

Comparing results to other zero-shot methods is difficult as most other methods
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evaluate on classification results instead of retrieval. One aspect that is compara-

ble across all zero-shot methods however is the size of the training data used. In

comparison to other methods cited in this document, [14, 23, 19, 4], both in terms

of the number of classes and examples per class, the method purposed here uses

very little data. The closest method in comparison uses the same number of classes

but approximately six times the number of pictures, and evaluates on classification

results from the same zero-shot classes [14].

4.7 Viability

The image retrieval system purposed in this thesis shows high performance at

retrieving images from a text label and has superior performance compared to

several other similar methods in [26], though the difference in dataset complexity

must be considered. The system also displays encouraging results at retrieving

zero-shot images, those belonging to classes that the RSVM has never trained on

or received any information about. The performance is exciting given the small

amount of training data, especially that of the zero-shot which will likely improve

with additional training data.

With acceptable performance on trained-on image classes adding the ability to

make a reasonable zero-shot attempt adds considerable value to an image retrieval

system. Having zero-shot capabilities makes the system much more robust, as in

the case of text-based retrieval it allows the user to search with the most appropri-

ate term rather than specific training labels. Being able to project images into the

same space as text makes operations between the two much easier and allows for

applications that extend beyond retrieval, such as automatic annotation.
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The three main blocks that compose this method, the word-space model chosen,

the type of image features used, and the SVM, are all separate from each other

allowing any one to be exchanged for a different model or algorithm easily for

further experimentation or different applications. The process for determining rel-

evancy of an image is a simple matrix inner product and a normalized vector in-

ner product, the cosine similarity, which requires no extra steps aside from sorting

scores from highest to lowest. The training and evaluation require little in terms of

computer resources and can be performed on a home computer system. Training

takes only minutes using 20 classes with 100 images each and the mathematical

operations for determining relevance are simple, making experimentation, imple-

mentation, and evaluation available to users without the use of high-end hardware

or supercomputers.

Currently this is a supervised training method, where the groundtruth label must

be provided with the training images. However, since the words used as label are

considered noisy they need not be expertly labeled. This allows for the possibility

of using large amounts of ’casually’ labeled data, data that is not purposefully

labeled for high accuracy, for example images from flikr where users of the app

tag the pictures that they take. This would provide a large source of easy to obtain

noisily labeled images from many different categories to train the RSVM with.

In this document the images from each dataset were transformed into their re-

spective image feature vectors before performing retrieval. To make the system

real world implementable additional code would be needed to extract the feature

vector for images from an arbitrary source, in order to project the pictures into a

word-space. This step would likely be application dependent and its implementa-

tion would be left up to the user.
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Chapter V

Conclusion

5.1 Conclusion

An evaluation of a method for retrieving images which had no labeled data avail-

able for training from a database, based on the similarity between the images and

the text search term in the same semantic space, was performed. The results show

that method is able to achieve better than random results for most classes at small

retrieval sizes and better than random for all classes at retrieval sizes greater than

400. While there is no other zero-shot method to directly compare with, the per-

formance on unknown classes is exciting.

Several training factors were investigated to determine avenues of further experi-

mentation that are likely to improve zero-shot results. The size of the training data

used, both in terms of number of images per class and the amount of classes, seems

to have a direct impact on the zero-shot performance and results indicate that in-

creasing the amount of training data would be a simple way to improve overall

performance, the caveat to this being that increased data will lead to an increase

in training time and for big data, with thousands of classes and images, use of

supercomputing may be necessary.
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Experiments were performed on the projection matrix learned by the RSVM to

determine what the RSVM is learning from the training data. Results indicated that

the rows of the matrix are learned word vectors from the training classes, much

like those in [19]; based on the number of rows that all learn the same word vector

approximation the results support the idea that more training data will improve

performance by allowing the RSVM to learn different word vector approximations

for each row.

Finally the purposed method was compared to another label based image retrieval

paradigm in terms of performance on seen training classes. The purposed method

was found to have significantly greater performance, though the difference in

datasets used must be considered. With a precision of 95% for the first image

returned however, the results are impressive enough to encourage further devel-

opment of the system.

5.2 Future Work

Evaluation of the zero-shot performance was done in a ’clean’ space consisting

of only the zero-shot images, further testing should be done using a ’dirty’ space

where both trained-on and zero-shot images are present. Results for this experi-

ment will give a better indication of how the method will perform in a real world

environment and how well the method can differentiate between trained-on classes

and new zero-shot ones.

Zero-shot performance should be re-evaluated using large amounts of data as

there is evidence that a substantial increase in the amount of training data can lead
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to significant improvements in zero-shot accuracy. The results should be analyzed

for varying amounts of data to determine at which point the increased amount of

data begins to give only minor improvements for the increase in training time.

The method could also be modified to accept multiple words or phrases as the

search term to allow for finer retrieval. Because of the nature of the semantic space

multiple word vectors can be averaged together from a search phrase to obtain a

new aggregate vector that can be compared to images projected into a word-space

in the same manner as before to determine relevance. The effect of this on zero-

shot accuracy should be analyzed as there may be other ways to combine word

vectors, such as weighting those which are considered to be more important or

informative, that lead to better results. The process could also be reversed to allow

for automatic image annotation based on the closest word vectors to a given image

projected into a word-space.

It would also be interesting to use different word-space models and image feature

vectors to observe their effects on performance. One worthwhile experiment may

be to use the popular scale-invariant feature transform, SIFT, features to represent

images [15]; because the method purposed here makes no assumption on the im-

age feature vectors used the user can train the RSVM using any image features.

SIFT features may be a good choice because of their robustness, easy of computa-

tion and popular use in object recognition.

5.2.1 Structural SVM Implementation

The method described in this paper is implemented with a Ranking SVM because

the final goal was to return a ranked list of results, but for other applications it may
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be more beneficial to use a standard Structural SVM, SSVM. When implementing a

SSVM the most violated constraint of all the training examples must be calculated

and added to the current working set of constraints. The optimization problem the

SSVM solves is as follows:

min
w,ξ≥0

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

s.t. w · Φ(xi, yi)− w · Φ(xi, ȳ) ≥ ∆(yi, ȳ)− ξi(∀i, ȳ 6= yi)

Where yi is the correct label for input xi, ȳ is an incorrect label, ξ is a slack-variable,

∆(yi, ȳ) is the loss for predicting ȳ when the correct label is yi, and w is the weight

vector learned by the SSVM. In this paper the joint-feature vector Φ(x, y) is the

tensor product of the input x and output y. The SSVM calculates the joint-feature

vector multiple times each iteration and the tensor product is expensive to calcu-

late, however, as shown in equations 3.4 and 3.5 the product of the tensor product

and the weight vector can be rewritten in a bilinear form that requires only two

inner products, which is much easier to compute. As most SSVM code is written

to work with weight vectors and not a matrix a change would have to be made to

the SSVM code to implement this speed up. This change would need to be made

by the user but for implementations or experiments done using a SSVM this small

change would result in a considerable speed up in training time especially as the

number of training examples used grows.
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Appendix A

GetPascalFeatsScript.m

1 %% Pasca l VOC data e x t r a c t i o n s c r i p t

%

3 %

% Evan Novotny

5 % 9/25/2015

%

7 % This s c r i p t c r e a t e s a data f i l e t h a t has the fol lowing contents :

% fi lename : someimage . jpg

9 % tags : some extraced tags . . . l a s t t a g

% s c o r e s : # # # # # # # . . . #

11 % . . .

% fi lename i s the name of the image f i l e t h a t has the fol lowing tags

l i s t e d

13 % in tags : and vgg f e a t u r e score l i s t e d in s c o r e s :

%

15 % The VGG f e a t r u e s are taken from the l a y e r preceeding the softmax l a y e r

%

17 % what t h i s f i l e does :

% This f i l e e x t r a c t s the r e l e v a n t tags f o r a pasca l VOC d a t a s e t image

19 % from the provided annotat ion xml f i l e s and then uses matconvnet to

% c a l c u l a t e the vgg f e a t u r e s f o r the image . These are combined in the

21 % output f i l e conta t ing data f o r each of the images in the d a t a s e t to

76



% c r e a t e a . t x t f i l e with the format above , which i s readable by the

23 % Xdata python o b j e c t .

% S p e c i f i c a l l y t h i s s c r i p t f i r s t e x t r a c t s a l l of the tags f o r each

image

25 % and removes any d u p l i c a t e s and s t o r e s the r e s u l t s in a c e l l array ,

then

% c a l c u l a t e s the vgg s c o r e s f o r each image and wri tes them with the

27 % appropriate tags to a . t x t f i l e .

29 %% set−up path and f i l e v a r i a b l e s

% t i c %uncomment f o r timing

31

%change d i r e c t o r i e s to the one conta in ing the Pasca l VOC d a t a s e t

33 cd D:\ Thesis\ t r a i n i n g _ d a t a \Pasca l\VOCdevkit\VOCcode

%path to the xml f i l e s

35 xmlPATH = ’D:\ Thesis\ t r a i n i n g _ d a t a \Pasca l\VOC2012\Annotations\ ’ ;

%d i r e c t o r y conta in ing the xml f i l e s

37 x m l _ f i l e s = di r ( ’D:\ Thesis\ t r a i n i n g _ d a t a \Pasca l\VOC2012\Annotations\∗ .

xml ’ ) ;

39 % path to images

imPATH = ’D:\ Thesis\ t r a i n i n g _ d a t a \Pasca l\VOC2012\JPEGImages\ ’ ;

41 i m _ l i s t = di r ( ’D:\ Thesis\ t r a i n i n g _ d a t a \Pasca l\VOC2012\JPEGImages\∗ . jpg ’ )

;

43 %f i l e to wri te to

o u t p u t _ f i l e = ’D:\ Thesis\ t r a i n i n g _ d a t a \pydata_no_sofmax . t x t ’ ;

45 %% e x t r a c t tags from xml f i l e s

img_ce l l = c e l l ( length ( x m l _ f i l e s ) , 3 ) ; %c o nt a i ne r f o r a l l the tags

47
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s p r i n t f ( ’ E x t r a c t i n g annotat ions . . . ’ )

49 f o r i = 1 : length ( x m l _ f i l e s )

xml_soup = VOCreadxml ( [ xmlPATH, x m l _ f i l e s ( i ) . name ] ) ;

51 numtags = length ( xml_soup . annotat ion . o b j e c t ) ; %get number of c l a s s e s

present

tags = c e l l ( 1 , numtags ) ;

53

imgname = xml_soup . annotat ion . f i lename ;

55 img_ce l l { i , 1 } = imgname ;

57 f o r j =1 : numtags

tags { j } = xml_soup . annotat ion . o b j e c t ( j ) . name ;

59 end

img_ce l l { i , 2 } = unique ( tags ) ; %remove d u p l i c a t e s

61

end

63 s p r i n t f ( ’Done!\n ’ )

65 %% get vgg s c o r e s

67 %change d i r e c t o r i e s to the MatConvNet d i r e c t o r y

cd ’D:\ L i b r a r i e s \Documents\GitHub\matconvnet ’

69 s p r i n t f ( ’ Running matconvnet setup . . . ’ )

run matlab/vl_setupnn

71 s p r i n t f ( ’Done!\n ’ )

73 %load our net

s p r i n t f ( ’ Loading nueral net moodel . . . ’ )

75 net = load ( ’ imagenet−c a f f e−a lex . mat ’ ) ;
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77 % Get f e a t u r e l a y e r before softmax ( l a s t l a y e r )

net . l a y e r s = net . l a y e r s ( 1 : end−1) ;

79 s p r i n t f ( ’Done!\n ’ )

81 s p r i n t f ( ’ Ca lc u la t i n g vgg s c o r e s . . . ’ )

N = numel ( i m _ l i s t ) ; % get number of images in d i r e c t o r y

83 f o r i =1:N

imgname = i m _ l i s t ( i ) . name ;

85 im = imread ( [ imPATH imgname ] ) ;

im_ = s i n g l e ( im ) ; % note : 255 range

87 im_ = imres ize ( im_ , net . normal izat ion . imageSize ( 1 : 2 ) ) ;

im_ = im_ − net . normal izat ion . averageImage ;

89

% run the CNN

91 r es = vl_simplenn ( net , im_ ) ;

93 % get c l a s s i f i c a t i o n s c o r e s

s c o r e s = squeeze ( gather ( re s ( end ) . x ) ) ;

95

%can ’ t be t o t a l l y sure images were readin in the same order as

97 %annotat ions , so f ind the c e l l index t h a t conta ins the proper image

%name and s t o r e the score in the s c o r e s column

99 idx = f ind ( strcmp ( img_ce l l ( : , 1 ) , imgname ) ) ;

img_ce l l { idx , 3 } = scores ’ ;

101

end

103 s p r i n t f ( ’Done!\n ’ )

105 %% write to f i l e
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107 %name of f i l e

f i l e I D = fopen ( o u t p u t _ f i l e , ’wt ’ ) ;

109 s p r i n t f ( ’ wri t ing to f i l e . . . ’ )

f o r i = 1 :N

111 f p r i n t f ( f i l e I D , [ ’ f i lename : ’ , img_ce l l { i , 1 } , ’\n ’ , ’ tags : ’ ] ) ;

%wri te a l l a s s o c i a t e d tags

113 f o r j = 1 : length ( img_ce l l { i , 2 } )

f p r i n t f ( f i l e I D , [ img_ce l l { i , 2 } { j } , ’ ’ ] ) ;

115 end

f p r i n t f ( f i l e I D , [ ’\n ’ , ’ s c o r e s : ’ , num2str ( img_ce l l { i , 3 } ) , ’\n ’ ] ) ;

117 end

f c l o s e ( f i l e I D ) ;

119 s p r i n t f ( ’Done!\n ’ )

% toc %uncomment f o r timming
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Appendix B

GetaYahooFeats.m

%% aYahoo data e x t r a c t i o n funct ion

2

func t ion [ f i l e I D ] = GetaYahooFeats ( Path , o u t p u t _ f i l e )

4 %Function to e x t r a c t image f e a t u r e s of the aYahoo data s e t

% Var iab les :

6 % Path − a s t r i n g path to the f o l d e r conta in ing the aYahoo images

% o u p u t _ f i l e − the path the the f i l e to output r e s u l t s to

8 %

% Provide the path to a f o l d e r conta in ing the images with the Path var

.

10 % VGG f e a t u r e s w i l l be e x t r a c t e d using matconvnet and placed output to

% a t e x t f i l e with the path provided in o u t p u t _ f i l e

12 % The data i s formatted f o r the Xdata python o b j e c t with :

% fi lename : someimage . jpg

14 % tags : some extraced tags . . . l a s t t a g

% s c o r e s : # # # # # # # . . . #

16 % . . .

% The VGG f e a t r u e s are taken from the l a y e r preceeding the softmax

l a y e r

18 %

% For aYahoo the tag i s e x t r a c t e d from the f i lename as the word before

20 % the underscore . So bag_21 w i l l take the word ’ bag ’ as i t s tag . This
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% funct ion would be appropriate f o r other image s e t s in t h i s format .

22

% Evan Novotny 1/20/2016

24

%% get vgg s c o r e s

26

cd ’D:\ L i b r a r i e s \Documents\GitHub\matconvnet ’

28 s p r i n t f ( ’ Running matconvnet setup . . . ’ )

run matlab/vl_setupnn

30 s p r i n t f ( ’Done!\n ’ )

32 %load our net

s p r i n t f ( ’ Loading nueral net moodel . . . ’ )

34 net = load ( ’ imagenet−c a f f e−a lex . mat ’ ) ;

s p r i n t f ( ’Done!\n ’ )

36

% obtain and preprocess an image

38 imPATH = Path ;

i m _ l i s t = di r ( [ Path ’ ∗ . jpg ’ ] ) ;

40

s p r i n t f ( ’ Ca lc u la t i n g vgg s c o r e s . . . ’ )

42 N = numel ( i m _ l i s t ) ;

44 % c r e a t e a 3 column c e l l to hold the filename , tags and vgg score f o r

each

% image

46 img_ce l l = c e l l (N, 3 ) ;

48

% Get f e a t u r e l a y e r before softmax ( l a s t l a y e r )
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50 net . l a y e r s = net . l a y e r s ( 1 : end−1) ;

52 f o r i =1:N

imgname = i m _ l i s t ( i ) . name ;

54

%get image name and tag

56 img_ce l l { i , 1 } = imgname ; %get image fi lename

tags = s t r s p l i t ( imgname , ’ _ ’ ) ; %s p l i t name at underscore

58 img_ce l l { i , 2 } = tags { 1 } ; %the f i r s t word before _ becomes the tag

60 im = imread ( [ imPATH imgname ] ) ;

im_ = s i n g l e ( im ) ; % note : 255 range

62 im_ = imres ize ( im_ , net . normal izat ion . imageSize ( 1 : 2 ) ) ;

im_ = im_ − net . normal izat ion . averageImage ;

64

% run the CNN

66 r es = vl_simplenn ( net , im_ ) ;

68 % get c l a s s i f i c a t i o n s c o r e s

s c o r e s = squeeze ( gather ( re s ( end ) . x ) ) ;

70

% s t o r e the score

72 img_ce l l { i , 3 } = scores ’ ;

74 end

s p r i n t f ( ’Done!\n ’ )

76

78 %% write to f i l e

f i l e I D = fopen ( o u t p u t _ f i l e , ’wt ’ ) ;
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80 s p r i n t f ( ’ wri t ing to f i l e . . . ’ )

f o r i = 1 :N

82 f p r i n t f ( f i l e I D , [ ’ f i lename : ’ , img_ce l l { i , 1 } , . . .

’\n ’ , ’ tags : ’ , img_ce l l { i , 2 } , . . .

84 ’\n ’ , ’ s c o r e s : ’ , num2str ( img_ce l l { i , 3 } ) , ’\n ’ ] ) ;

86 end

f c l o s e ( f i l e I D ) ;

88 s p r i n t f ( ’Done!\n ’ )

90 end
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Appendix C

monte_carlo_sims.m

1 % Monte c a r l o s imulat ions f o r r e t r i e v i n g images from a database .

% Each c l a s s i s reduced to a binary yes/no problem where there are

3 % X r e l e v a n t images in the database which t o t a l s Y images

% t h e r e f o r e the p r o b a i l i t y of choosing a r e l e v a n t image i s X/Y

5 % each time the database i s sampled without replacement

% t h i s i s acomplished in matlab using the randsample funct ion which

samples

7 % a vector of values 1 : n Z times without replacement

% t h i s way the f i r s t X values are considered p o s i t i v e f o r a c l a s s and

9 % the remaining values are negat ive

11 % Evan Novotny

% 4/12/2016

13

%% i n i t i a l i z e v a r i a b l e s and a l l o c a t e c o n t a i n e r s

15 %number of examples f o r each c l a s s

bui lding = 2 1 3 ;

17 donkey = 1 2 8 ;

monkey = 1 5 6 ;

19 mug = 2 1 0 ;

centaur = 4 8 ;

21 bag = 2 7 9 ;
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c a r r i a g e = 1 4 7 ;

23 wolf = 1 7 1 ;

zebra = 1 7 9 ;

25 s t a t u e = 1 9 1 ;

j e t s k i = 3 6 6 ;

27 goat = 1 4 9 ;

29 % the break points f o r p o s i t i v e /negat ive f o r each c l a s s

break_points = [ bui lding donkey monkey mug centaur bag c a r r i a g e . . .

31 wolf zebra s t a t u e j e t s k i goat ] ;

33 s ize_database = sum( break_points ) ;

35 %number of times to run random sampling

num_experiments = 10000 ;

37

%c r e a t e array to hold monte c a r l o r e s u l t s

39 monte_carlo = zeros ( num_experiments , s ize_database ) ;

41 %c r e a t e a s t r u c t u r e to hold the r e s u l t s of monte c a r l o f o r each c l a s s

r e s u l t s = s t r u c t ( ’ bui lding ’ , zeros ( num_experiments , s ize_database ) , . . .

43 ’ donkey ’ , zeros ( num_experiments , s ize_database ) , . . .

’monkey ’ , zeros ( num_experiments , s ize_database ) , . . .

45 ’mug ’ , zeros ( num_experiments , s ize_database ) , . . .

’ centaur ’ , zeros ( num_experiments , s ize_database ) , . . .

47 ’ bag ’ , zeros ( num_experiments , s ize_database ) , . . .

’ c a r r i a g e ’ , zeros ( num_experiments , s ize_database ) , . . .

49 ’ wolf ’ , zeros ( num_experiments , s ize_database ) , . . .

’ zebra ’ , zeros ( num_experiments , s ize_database ) , . . .

51 ’ s t a t u e ’ , zeros ( num_experiments , s ize_database ) , . . .
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’ j e t s k i ’ , zeros ( num_experiments , s ize_database ) , . . .

53 ’ goat ’ , zeros ( num_experiments , s ize_database ) . . .

) ;

55 % get the f i e l d names f o r the r e s u l t s

fns = fieldnames ( r e s u l t s ) ;

57

%% Monte Carlo

59 f o r i = 1 : num_experiments

61 %take a random sampling of the database . This can be done once f o r

a l l

%c l a s s e s as only the number of p o s i t i v e s change

63 monte_carlo ( i , : ) = randsample ( 1 : s ize_database , s ize_database ) ;

65 end

67 %% Reduce r e s u l t s f o r each c l a s s to Precision@n

f o r j = 1 : numel ( fns )

69

% reduces the s imulat ion r e s u l t to a binary matrix f o r values l e s s than

71 % or equal to the break point of the current c l a s s

binary = ( monte_carlo <= break_points ( j ) ) ;

73

%index s t r u c t u r e row 1 , f i e l d j ( a matrix of r e s u l t s ) = cumulative

75 %sum of each row of the binary matrix

r e s u l t s ( 1 ) . ( fns { j } ) = cumsum( binary , 2 ) ;

77 end

79 %% Ca l c u l a te p r e c i s i o n and r e c a l l f o r each c l a s s
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81 p r e c i s i o n = s t r u c t ( ’ bui lding ’ , zeros ( 1 , s ize_database ) , . . .

’ donkey ’ , zeros ( 1 , s ize_database ) , . . .

83 ’monkey ’ , zeros ( 1 , s ize_database ) , . . .

’mug ’ , zeros ( 1 , s ize_database ) , . . .

85 ’ centaur ’ , zeros ( 1 , s ize_database ) , . . .

’ bag ’ , zeros ( 1 , s ize_database ) , . . .

87 ’ c a r r i a g e ’ , zeros ( 1 , s ize_database ) , . . .

’ wolf ’ , zeros ( 1 , s ize_database ) , . . .

89 ’ zebra ’ , zeros ( 1 , s ize_database ) , . . .

’ s t a t u e ’ , zeros ( 1 , s ize_database ) , . . .

91 ’ j e t s k i ’ , zeros ( 1 , s ize_database ) , . . .

’ goat ’ , zeros ( 1 , s ize_database ) . . .

93 ) ;

r e c a l l = s t r u c t ( ’ bui lding ’ , zeros ( 1 , s ize_database ) , . . .

95 ’ donkey ’ , zeros ( 1 , s ize_database ) , . . .

’monkey ’ , zeros ( 1 , s ize_database ) , . . .

97 ’mug ’ , zeros ( 1 , s ize_database ) , . . .

’ centaur ’ , zeros ( 1 , s ize_database ) , . . .

99 ’ bag ’ , zeros ( 1 , s ize_database ) , . . .

’ c a r r i a g e ’ , zeros ( 1 , s ize_database ) , . . .

101 ’ wolf ’ , zeros ( 1 , s ize_database ) , . . .

’ zebra ’ , zeros ( 1 , s ize_database ) , . . .

103 ’ s t a t u e ’ , zeros ( 1 , s ize_database ) , . . .

’ j e t s k i ’ , zeros ( 1 , s ize_database ) , . . .

105 ’ goat ’ , zeros ( 1 , s ize_database ) . . .

) ;

107

sample_array = 1 : s ize_database ; %an array of i d e a l rank 1 to end

109

%c o n t i n e r s f o r s imulat ion mean and standard devia t ion
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111 sim_mean = zeros ( 1 , s ize_database ) ;

sim_std = zeros ( 1 2 , s ize_database ) ;

113

%average p r e c i s i o n co nt a i ne r

115 AP = zeros ( 1 2 , s ize_database ) ;

117 %f o r each c l a s s f ind the mean r e s u l t of random ranking and c a l c u l a t e the

%mean p r e c i s i o n and r e c a l l a t each sample point f o r the average randomly

119 %ranked l i s t

f o r j = 1 : numel ( fns )

121

sim_mean = round (mean( r e s u l t s ( 1 ) . ( fns { j } ) ) ) ;

123 sim_std ( j , : ) = std ( r e s u l t s ( 1 ) . ( fns { j } ) ) ;

125 p r e c i s i o n ( 1 ) . ( fns { j } ) = sim_mean ./ sample_array ;

% p r e c i s i o n ( 1 ) . ( fns { j } ) = mean( bsxfun ( @rdivide , r e s u l t s ( 1 ) . ( fns { j } ) ,

sample_array ) ) ;

127 r e c a l l ( 1 ) . ( fns { j } ) = sim_mean/break_points ( j ) ;

% r e c a l l ( 1 ) . ( fns { j } ) = mean( r e s u l t s ( 1 ) . ( fns { j } ) /break_points ( j ) ) ;

129

% measure Average Prec i s ion , the r e c a l l i n c r e a s e s monotonically , so

when

131 % there i s an i n c r e a s e there i s a h i t . This i n c r e a s e s the running sum

rsum of

% p r e c i s i o n . F i n a l l y divide the rsum f o r P@n by the minimum(# of

133 % p o s i t i v e samples , # of samples returned which i s the p o s i t i o n in the

% ranked l i s t )

135 prev_val = 0 ; %r e i n i t i a l i z e f o r each c l a s s

rsum =0;

137 f o r k =1: length ( sample_array )
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%when r e c a l l i n c r e a s e s there ’ s a h i t

139 i f prev_val < r e c a l l ( 1 ) . ( fns { j } ) ( k )

rsum = rsum + p r e c i s i o n ( 1 ) . ( fns { j } ) ( k ) ;

141 prev_val = r e c a l l ( 1 ) . ( fns { j } ) ( k ) ;

end

143 AP( j , k ) = rsum/min ( k , break_points ( j ) ) ;

145 end

end

147 %c a l c u l a t e MAP score f o r Average P r e c i s i o n s

MAP = mean(AP) ;

149

%% P l o t r e s u l t s

151

%p l o t p r e c i s i o n vs p o s i t i o n in ranked l i s t (# of samples returned )

153 f o r i = 1 : numel ( fns )

f i g u r e ( i )

155

%c r e a t e secondary axes f o r sample values

157 b=axes ( ’ P o s i t i o n ’ , [ . 1 . 1 . 8 1e−12]) ;

s e t ( b , ’ Units ’ , ’ normalized ’ ) ;

159 s e t ( b , ’ Color ’ , ’ none ’ ) ;

x l a b e l ( ’ Samples ’ )

161

%c r e a t e primary axes

163 a=axes ( ’ P o s i t i o n ’ , [ . 1 . 2 . 8 . 7 ] ) ;

s e t ( a , ’ Units ’ , ’ normalized ’ ) ;

165

%get unique values and i n d e c i e s

167 [U, ia , i c ] = unique ( r e c a l l . ( fns { i } ) ) ;
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169 %s t a i r p l o t p r e c i s i o n vs r e c a l l

s t a i r s ( r e c a l l . ( fns { i } ) ( i a ) , p r e c i s i o n . ( fns { i } ) ( i a ) )

171 s e t ( b , ’ xlim ’ , [ 1 max( sample_array ( i a ) ) ] ) ;

t i t l e ( fns { i } ) ;

173 x l a b e l ( ’ R e c a l l ’ )

y l a b e l ( ’ P r e c i s i o n ’ )

175

% save f i g u r e to l o c a t i o n given

177 % saveas ( f i g u r e ( i ) , s t r c a t ( ’D:\ Thesis\GIT\ l a t e x \Figures\monte_carlo_

’ , fns { i } ) , ’ pdf ’ )

179 end

181 %P l o t MAP s c o r e s

f i g u r e ( i +1)

183 s t a i r s (MAP)

xlim ( [ 1 s ize_database ] )

185 t i t l e ( ’Mean Average P r e c i s i o n of Random R e t r i e v a l ’ )

x l a b e l ( ’ Samples ’ )

187 y l a b e l ( ’Mean Average P r e c i s i o n ’ )

% save f i g u r e to l o c a t i o n given

189 % saveas ( f i g u r e ( i +1) , ’D:\ Thesis\GIT\ l a t e x \Figures\MAP_random’ , pdf ’ )
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Appendix D

training_data_filtering_script.py

1 # coding : utf−8

3 # This s c r i p t f i l t e r s the output of the Matlab f i l e data_munge so t h a t ’

person ’

# i s not the dominate c l a s s and c l a s s e s t h a t are missing word l a b e l s are

5 # converted to an equiva lent c l a s s . Al l p i c t u r e conta in ing only the

person c l a s s

# are removed then t r a i n i n g data i s crea ted using images t h a t do not

conta in

7 # people f o r the person c l a s s , h a l f conta in only people and h a l f conta in

people

# with other c l a s s e s .

9 #

# Evan Novonty

11 # 4/12/2016

13 # s c r i p t from Ipython notebook python_make_training_data . ipynb

import random , math

15 random . seed ( 2 0 1 5 )

import numpy

17 import Xdata
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19 a l l _ d a t a = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /

pydata_no_softmax . t x t ’ ) # load in a s e t of a l l the images with tags ,

and image f e a t u r e s

21 data_length = len ( a l l _ d a t a . names )

23 tags = [ ’ a i r p l a n e ’ , ’ car ’ , ’ bus ’ , ’ t r a i n ’ , ’ boat ’ , ’ motorbike ’ , ’ b i c y c l e ’ , ’

person ’ , ’ c a t ’ , ’ dog ’ , ’ horse ’ , ’ sheep ’ , ’cow ’ , ’ b ird ’ , ’ pot ted_plant ’ , ’

c h a i r ’ , ’ t a b l e ’ , ’ so fa ’ , ’TV ’ , ’ b o t t l e ’ ]

25 # r e p l a c e tags t h a t aren ’ t in the word2vec model with ones t h a t are

f o r i in range ( 0 , data_length ) :

27 a l l _ d a t a . tags [ i ] = [ ’ a i r p l a n e ’ i f x == ’ aeroplane ’

e l s e ’ pot ted_plant ’ i f x == ’ pot tedplant ’

29 e l s e ’TV ’ i f x == ’ tvmonitor ’

e l s e ’ t a b l e ’ i f x == ’ d i n i n g t a b l e ’

31 e l s e x f o r x in a l l _ d a t a . tags [ i ] ]

33 noppl =[ idx f o r idx , t a g _ s e t in enumerate ( a l l _ d a t a . tags ) i f ’ person ’ not

in t a g _ s e t ]

35 # get index s e t s of only people tags and mixture with people tags

37 onlyppl = [ idx f o r idx , t a g _ s e t in enumerate ( a l l _ d a t a . tags ) i f ’ person ’

in t a g _ s e t and len ( t a g _ s e t ) ==1]

# p r i n t len ( onlyppl )

39 withppl = [ idx f o r idx , t a g _ s e t in enumerate ( a l l _ d a t a . tags ) i f ’ person ’

in t a g _ s e t and len ( t a g _ s e t ) >1]

# p r i n t len ( withppl )

41
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# i n i t i a l i z e some cons tants

43

# taken from the s m a l l e s t represented c l a s s to give a even c l a s s

r e p r e s e n t a t i o n

45 t o t a l _ p e r _ c l a s s = 238

# 60% f o r t r a i n i n g ~142 each

47 # 20% f o r c r o s s v a l i d a t i n g and t e s t i n g ~47 each

num4training = i n t ( math . f l o o r ( t o t a l _ p e r _ c l a s s ∗ 0 . 6 ) )

49 num4crossvalidate = i n t ( math . f l o o r ( t o t a l _ p e r _ c l a s s ∗ 0 . 2 ) )

num4test = i n t ( math . f l o o r ( t o t a l _ p e r _ c l a s s ∗ 0 . 2 ) )

51

# c r e a t e t r a i n t e s t cv s e t s note : these are l i s t s of i n d e c i e s

53 t r a i n i n g _ i d x = l i s t ( )

CV_idx = l i s t ( )

55 t e s t _ i d x = l i s t ( )

57 # f o r person tag get h a l f with only ppl and h a l f mixed with other c l a s s e s

person_samples = i n t ( math . f l o o r ( t o t a l _ p e r _ c l a s s / 2 . 0 ) )

59

# c o n t r u c t t r a i n i n g , c r o s s v a l i d a t i o n and t e s t i n g s e t s by taking random

samples

61 #from each c l a s s

f o r tag in tags :

63 # p r i n t tag

c l a s s _ t o t a l = l i s t ( )

65

# f o r a nonperson c l a s s take a sample f o r the t o t a l number of images used

,

67 # then divide t h a t i n t o 60/20/20 f o r t r a i n c r o s s v a l i d a t e and t e s t s e t s

i f tag != ’ person ’ :
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69 imgs_with_tag = [ idx f o r idx in noppl i f tag in a l l _ d a t a . tags [

idx ] ]

71 #random sampling of t o t a l _ p e r _ c l a s s images with desired tag .

returned

# in sample order so doesn ’ t need to be sampled again to keep

randomness

73 c l a s s _ t o t a l . extend ( random . sample ( imgs_with_tag , t o t a l _ p e r _ c l a s s ) )

75 t r a i n i n g _ i d x . extend ( c l a s s _ t o t a l [ 0 : num4training ] )

CV_idx . extend ( c l a s s _ t o t a l [ num4training : num4crossvalidate+

num4training ] )

77 t e s t _ i d x . extend ( c l a s s _ t o t a l [ num4crossvalidate+num4training : ] )

79 # f o r the person tag j u s t take h a l f the samples from the l i s t of

images with

# only people and h a l f from the one t h a t i s a mixture same 60/20/20

d i v i s i o n

81 e l s e :

c l a s s _ t o t a l . extend ( random . sample ( withppl , person_samples ) )

83 c l a s s _ t o t a l . extend ( random . sample ( onlyppl , person_samples ) )

random . s h u f f l e ( c l a s s _ t o t a l ) # s h u f f l e the person c l a s s f o r

s l i c i n g

85 t r a i n i n g _ i d x . extend ( c l a s s _ t o t a l [ 0 : num4training ] )

CV_idx . extend ( c l a s s _ t o t a l [ num4training : num4crossvalidate+

num4training ] )

87 t e s t _ i d x . extend ( c l a s s _ t o t a l [ num4crossvalidate+num4training : ] )

89 f = open ( ’D:/ Thesis/ t r a i n i n g _ d a t a /seperated_pascal_tra in ing_nsm . t x t ’ , ’w’

)
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f o r i in t r a i n i n g _ i d x :

91 #numpy array of s c o r e s to s t r i n g

r e l = numpy . a r r a y _ s t r ( a l l _ d a t a . s c o r e s [ i ] )

93 r e l = r e l . t r a n s l a t e ( None , " [ ] \ n" )

95 # j o i n elements seperated by a space

l a b e l s = ’ ’ . j o i n ( a l l _ d a t a . tags [ i ] )

97

# wri te fi lename , tags , score to f i l e

99 f . wri te ( ’ f i lename : ’+ a l l _ d a t a . names [ i ]+ ’\n ’

+ ’ tags : ’+ l a b e l s + ’\n ’

101 + ’ s c o r e s : ’+ r e l + ’\n ’ ) #no space f o r s c o r e s

f . c l o s e ( )

103

f = open ( ’D:/ Thesis/ t r a i n i n g _ d a t a /seperated_pascal_CV_nsm . t x t ’ , ’w’ )

105 f o r i in CV_idx :

#numpy array of s c o r e s to s t r i n g

107 r e l = numpy . a r r a y _ s t r ( a l l _ d a t a . s c o r e s [ i ] )

r e l = r e l . t r a n s l a t e ( None , " [ ] \ n" )

109

# j o i n elements seperated by a space

111 l a b e l s = ’ ’ . j o i n ( a l l _ d a t a . tags [ i ] )

113 # wri te fi lename , tags , score to f i l e

f . wri te ( ’ f i lename : ’+ a l l _ d a t a . names [ i ]+ ’\n ’

115 + ’ tags : ’+ l a b e l s + ’\n ’

+ ’ s c o r e s : ’+ r e l + ’\n ’ )

117 f . c l o s e ( )

119 f = open ( ’D:/ Thesis/ t r a i n i n g _ d a t a /seperated_pascal_tes t_nsm . t x t ’ , ’w’ )
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f o r i in t e s t _ i d x :

121 #numpy array of s c o r e s to s t r i n g

r e l = numpy . a r r a y _ s t r ( a l l _ d a t a . s c o r e s [ i ] )

123 r e l = r e l . t r a n s l a t e ( None , " [ ] \ n" )

125 # j o i n elements seperated by a space

l a b e l s = ’ ’ . j o i n ( a l l _ d a t a . tags [ i ] )

127

# wri te fi lename , tags , score to f i l e

129 f . wri te ( ’ f i lename : ’+ a l l _ d a t a . names [ i ]+ ’\n ’

+ ’ tags : ’+ l a b e l s + ’\n ’

131 + ’ s c o r e s : ’+ r e l + ’\n ’ )

f . c l o s e ( )
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Appendix E

RSVM_training_script.py

# Evan Novotny

2 #4/12/2016

4 # coding : utf−8

6 # s c r i p t f o r t r a i n i n g the RSVM. The weights are output to the f i l e

o u t f i l e as

# a numy array .

8

import Xdata

10 import CD_rank_svm

12 # load the pasca l t r a i n i n g data i n t o a Xdata o b j e c t

t r a i n _ d a t a = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /

seperated_pascal_tra ining_nsm . t x t ’ )

14

t r a i n _ d a t a . load_word_space ( ) # load a knowledge base

16

# output path f o r the t r a i n i n g f i l e being crea ted

18 t r a i n i n g _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/

num_examples_compare/nsm100 . t x t ’
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20 # use the pasca l t r a i n i n g s e t to c r e a t e a t r a i n i n g f i l e readable by the

RSVM t r a i n e r

t r a i n _ d a t a . e x p o r t _ t r a i n i n g _ d a t a ( num_examples =100 , o u t _ f i l e = t r a i n i n g _ f i l e )

22

del t r a i n _ d a t a # f r e e up memory

24

# c r e a t e the t r a i n e r with desired C and eps i lon values

26 # c r e a t e the j o i n t f e a t u r e r e p r e s e n t a t i o n and save v e c t o r s i n t o quer ies

[ t r a i n e r , quer ies ] = CD_rank_svm . create_CDSVM_rank_trainer (C= 0 . 1 , eps

=0 .01 ,

28 max_iter =10000 , i n f i l e =

t r a i n i n g _ f i l e )

# output f i l e to save learned weights to

30 o u t f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/no_softmax_models/C0 . 1

_eps0 . 0 1 _samp100 . t x t ’

32 # t r a i n the RSVM using the previously crea ted t r a i n e r and quer ies

CD_rank_svm . train_CDSVM_rank ( t r a i n e r , queries , o u t f i l e = o u t f i l e )

34 p r i n t ’ model saved to ’+ o u t f i l e
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Appendix F

parameter_tuning_script.py

# −∗− coding : utf−8 −∗−

2

# Evan Novotny

4 #4/12/2016

6 # coding : utf−8

8 # S c r i p t to f ind the MAP s c o r e s f o r the cross−v a l i d a t i o n and t r a i n i n g

s e t s a t d i f f e r e n t

# C and eps i lon values

10

import gensim

12 import Xdata

import CD_rank_svm

14

# load in a word−space model . I f memory i s an i s s u e a reduced d i c t i o n a r y

of needed word

16 # v e c t o r s can be used where the python d i c t i o n a r y key i s the word and

the value i s the

# numpy vector from the word−space model

18 model_path= ’D:/ Thesis/ t r a i n i n g _ d a t a /Google/GoogleNews−vectors−

negat ive300 . bin . gz ’
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i s B i n a r y=True

20 word_space = gensim . models . Word2Vec . load_word2vec_format ( model_path ,

binary=i s B i n a r y )

22 # load in the cross−v a l i d a t i o n and t r a i n i n g s e t to use f o r parameter

tuning

CV = Xdata . Xdata ( ’D:/ Thesis/ t r a i n i n g _ d a t a /seperated_pascal_CV_nsm . t x t ’ )

24 t r a i n _ d a t a = Xdata . Xdata ( ’D:/ Thesis/ t r a i n i n g _ d a t a /

seperated_pascal_tra ining_nsm . t x t ’ )

26 # t r a i n i n g f i l e used to r e t r a i n the RSVM at d i f f e r e n t C and eps i lon

values

t r a i n i n g _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/

num_examples_compare/nsm100 . t x t ’

28

# To reduce run time pre−c a l c u l a t e j o i n t−f e a t u r e r e p r e s e n t a t i o n which i s

the tensor

30 # product of the image and word v e c t o r s .

quer ies = CD_rank_svm . get_data ( t r a i n i n g _ f i l e )

32

# C and eps i lon hyper−parameter range

34 C_values = [ 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 1 , 1 0 , 1 0 0 , 1 0 0 0 ]

eps i lon_va lues = [ 0 . 2 , 0 . 1 , 0 . 0 1 ]

36

# Sweep over the C and eps i lon values using the cross−v a l i d a t i o n s e t and

t r a i n i n g s e t .

38 # CD_rank_svm . Tune_parameters re turns dataframes t h a t can be used to

# v i s u a l i z e the r e s u l t s

40 CV_tuning = CD_rank_svm . Tune_parameters (CV, C_values , eps i lon_values ,

t r a i n i n g _ f i l e , word_space , with_queries = quer ies )
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42 t r a i n i n g _ t u n i n g = CD_rank_svm . Tune_parameters ( t ra in_data , C_values ,

eps i lon_values , t r a i n i n g _ f i l e , word_space , with_queries = quer ies )
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Appendix G

zero-shot_evaluation.py

# −∗− coding : utf−8 −∗−

2 # Evan Novotny

#4/12/2016

4

# S c r i p t f o r zeo−shot performance a n a l y s i s .

6 # This s c r i p t c a l c u l a t e s and p l o t s the MAP@n f o r each of the ayahoo zero

−shot

# c l a s s e s and p l o t s the prec i s ion−r e c a l l−sample curves f o r each c l a s s .

8

import numpy

10 import m a t p l o t l i b . pyplot as p l t

import Xdata

12

# c r e a t e l i s t of a l l of the aYahoo tags f o r evaluat ion

14 yahoo_tags = [ ’ bag ’ , ’mug ’ , ’ goat ’ , ’ donkey ’ , ’ zebra ’ , ’ wolf ’ , ’monkey ’ , ’

centaur ’ , ’ j e t s k i ’ , ’ c a r r i a g e ’ , ’ s t a t u e ’ , ’ bui lding ’ , ]

16 # c r e a t e an Xdata o b j e c t f o r the aYahoo s e t

xyahoo = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /ayahoo_nsm . t x t ’ )

18

## load in the d e f a u l t word−space . Provide a path to a d i f f e r n t word−

space i f des ired

103



20 xyahoo . load_word_space ( )

22 # load in the RSVM weights

xyahoo . load_RSVM_weight_vector ( ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

no_softmax_models/C0 . 1 _eps0 . 0 1 _samp100 . t x t ’ )

24

# Find the AP and MAP@n f o r every c l a s s a t every point in the ranked

l i s t

26 # d a t a _ r e s u l t s i s a 13 by 2238 pandas dataframe of the r e s u l t s

d a t a _ r e s u l t s = Xdata . AP_sweep ( xyahoo , xyahoo . s ize , yahoo_tags )

28

#some points of i n t e r e s t and adjusted points f o r 0 indexing

30 p o i n t s _ o f _ i n t e r e s t = [ 1 0 , 5 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 1 0 0 0 , 1 5 0 0 , 2 0 0 0 ]

points_ad jus ted = [ 9 , 4 9 , 9 9 , 1 9 9 , 2 9 9 , 3 9 9 , 4 9 9 , 9 9 9 , 1 4 9 9 , 1 9 9 9 , 2 2 3 6 ]

32

# p l o t the MAP at each point

34 b x _ l i s t = l i s t ( )

f ig , ax = p l t . subplots ( )

36 ax . p l o t ( d a t a _ r e s u l t s . l o c [ ’MAP’ ] )

ax . s e t _ x l a b e l ( ’Number of Items Retr ieved ’ )

38 ax . s e t _ y l a b e l ( ’Mean Average P r e c i s i o n ’ )

f i g . t i g h t _ l a y o u t ( )

40 f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/MAPvSamples . pdf ’ )

f i g . show ( )

42

f ig , ax = p l t . subplots ( )

44 # c r e a t a box p l o t of average p r e c i s i o n a t our points of i n t e r e s t

f o r p in p o i n t s _ o f _ i n t e r e s t :

46 b x _ l i s t . append ( d a t a _ r e s u l t s . i l o c [ : , p ] )

ax . boxplot ( b x _ l i s t , widths = . 5 , l a b e l s = p o i n t s _ o f _ i n t e r e s t )
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48 ax . s e t _ x l a b e l ( ’Number of Items Retr ieved ’ )

ax . s e t _ y l a b e l ( ’ Average P r e c i s i o n ’ )

50 f i g . t i g h t _ l a y o u t ( )

f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/AP_boxes . pdf ’ )

52 f i g . show ( )

#

54 ## p r i n t some points of i n t e r e s t , remember in python indexs from 0

p o i n t s _ o f _ i n t e r e s t = [ 0 , 4 , 9 , 4 9 , 9 9 , 1 9 9 , 2 9 9 , 3 9 9 , 4 9 9 , 9 9 9 , 1 4 9 9 , 1 9 9 9 , 2 2 3 6 ]

56 p r i n t d a t a _ r e s u l t s . l o c [ ’MAP’ , p o i n t s _ o f _ i n t e r e s t ]

58 # p i c k l e data to save i t

d a t a _ r e s u l t s . t o _ p i c k l e ( ’D:/ Thesis/ p i c k l e _ j a r /zero_shot_MAP_results . pkl ’ )

60

62 r e c a l l _ l e v e l s = [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 ]

p r _ l i s t = l i s t ( )

64 x = numpy . l i n s p a c e ( 0 , 1 , 2 2 3 7 )

66 # c r e a t e prec i s ion−r e c a l l−sample curves f o r each zero−shot c l a s s a t the

r e c a l l

# l e v e l s in the r e c a l l _ l e v e l s v a r i a b l e

68 f o r t in yahoo_tags :

ROC = Xdata . g e t _ t r u e _ f a l s e _ r a t e ( xyahoo , t )

70 p r _ l i s t . append (ROC)

f ig , ax1 = p l t . subplots ( )

72 ax1 . p l o t (ROC. i l o c [ 0 , : ] ,ROC. i l o c [ 2 , : ] , l a b e l = t )

ax1 . s e t _ t i t l e ( t )

74 ax1 . se t_yl im ( [ 0 , 1 . 0 ] )

ax1 . s e t _ x l a b e l ( ’ R e c a l l ’ )

76 ax1 . s e t _ y l a b e l ( ’ P r e c i s i o n ’ )
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78 ax2 = ax1 . twinx ( ) # clone axes f o r double y a x i s

# p l o t on same x a x i s so legend works

80 ax1 . p l o t (ROC. i l o c [ 0 , : ] , x , ’g−− ’ , l a b e l = ’ Samples ’ )

ax2 . s e t _ y l a b e l ( ’ Samples ’ )

82 ax2 . s e t _ y t i c k l a b e l s ( [ 1 , 4 4 7 , 8 9 5 , 1 3 4 2 , 1 7 9 0 , 2 2 3 7 ] )

ax1 . legend ( l o c = ’ upper r i g h t ’ )

84 f i g . t i g h t _ l a y o u t ( )

f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/PR_ ’+ t + ’ . pdf ’ )

86 f i g . show ( )
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Appendix H

seen_class_evaluation_script.py

2 # coding : utf−8

# Evan Novotny

4 # 4/12/2016

# This s c r i p t c a l c u l a t e s and p l o t s the MAP@n f o r each of the Pasca l

d a t a s e t

6 # c l a s s e s and p l o t s box p l o t s of the average p r e c i s i o n a t 10 points

8 import m a t p l o t l i b . pyplot as p l t

import Xdata

10

# l i s t of tags to evaluate on

12 tags = [ ’ a i r p l a n e ’ , ’ car ’ , ’ bus ’ , ’ t r a i n ’ , ’ boat ’ , ’ motorbike ’ , ’ b i c y c l e ’ , ’

person ’ , ’ c a t ’ , ’ dog ’ , ’ horse ’ , ’ sheep ’ , ’cow ’ , ’ b ird ’ , ’ pot ted_plant ’ , ’

c h a i r ’ , ’ t a b l e ’ , ’ so fa ’ , ’TV ’ , ’ b o t t l e ’ ]

14 # load in the t e s t i n g s e t

t e s t s e t = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /

seperated_pascal_tra ining_nsm . t x t ’ ) # load cross−v a l i d a t i o n s e t

16

# load d e f a u l t word space

18 t e s t s e t . load_word_space ( )
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20 # load the RSVM weights

t e s t s e t . load_RSVM_weight_vector ( ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

no_softmax_models/C0 . 1 _eps0 . 0 1 _samp100 . t x t ’ )

22

# Find the AP and MAP@n f o r every c l a s s a t every point in the ranked

l i s t

24 # s e e n _ c l a s s _ r e s u l t s i s a pandas dataframe of the r e s u l t s

s e e n _ c l a s s _ r e s u l t s = Xdata . AP_sweep ( t e s t s e t , t e s t s e t . s ize , tags ) # get a

pandas dataframe f o r the ap and map @ i )

26

# p i c k l e data to save i t

28 s e e n _ c l a s s _ r e s u l t s . t o _ p i c k l e ( ’D:/ Thesis/ p i c k l e _ j a r / s e e n _ c l a s s _ r e s u l t s .

pkl ’ )

30 p o i n t s _ o f _ i n t e r e s t = [ 1 0 , 5 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 1 0 0 0 , 1 5 0 0 , 2 0 0 0 ]

points_ad jus ted = [ 9 , 4 9 , 9 9 , 1 9 9 , 2 9 9 , 3 9 9 , 4 9 9 , 9 9 9 , 1 4 9 9 , 1 9 9 9 ]

32 b x _ l i s t = l i s t ( )

34 # p l o t and save MAP@n

f ig1 , ax1 = p l t . subplots ( )

36 ax1 . p l o t ( s e e n _ c l a s s _ r e s u l t s . l o c [ ’MAP’ ] )

ax1 . s e t _ x l a b e l ( ’Number of Items Retr ieved ’ )

38 ax1 . s e t _ y l a b e l ( ’Mean Average P r e c i s i o n ’ )

f i g 1 . t i g h t _ l a y o u t ( )

40 f i g 1 . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/seenMAPvSamples . pdf ’ )

f i g 1 . show ( )

42

# l i s t of l i s t of values f o r each point in box p l o t

44 f o r p in points_ad jus ted :
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b x _ l i s t . append ( s e e n _ c l a s s _ r e s u l t s . i l o c [ : , p ] )

46

# p l o t and save boxplots f o r AP at d i f f e r e n t points

48 f ig2 , ax2 = p l t . subplots ( )

ax2 . boxplot ( b x _ l i s t , widths = . 5 , l a b e l s = p o i n t s _ o f _ i n t e r e s t )

50 ax2 . s e t _ x l a b e l ( ’Number of Items Retr ieved ’ )

ax2 . s e t _ y l a b e l ( ’ Average P r e c i s i o n ’ )

52 f i g 2 . t i g h t _ l a y o u t ( )

f i g 2 . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/AP_boxes . pdf ’ )

54 f i g 2 . show ( )

56 # p r i n t out some points t h a t may be of i n t e r e s t

p o i n t s _ o f _ i n t e r e s t = [ 0 , 4 , 9 , 4 9 , 9 9 , 1 9 9 , 2 9 9 , 3 9 9 , 4 9 9 , 9 9 9 , 1 4 9 9 , 1 9 9 9 , 2 8 3 9 ]

58 p r i n t s e e n _ c l a s s _ r e s u l t s . l o c [ ’MAP’ , p o i n t s _ o f _ i n t e r e s t ]
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Appendix I

tag_similarity_confusion_

matrix_script.py

# −∗− coding : utf−8 −∗−

2 #Evan Novotny

# 4/13/2016

4

# This s c r i p t p l o t s confusion matr ices of the s i m i l a r i t i e s between word

v e c t o r s

6 #from the used word−space . More s p e c i f i c a l l y , i t p l o t s confusion

matr ices f o r

# the pasca l d a t a s e t c l a s s tags s i m i l a r i t y to each other and to the

ayhaoo c l a s s

8 # tags as well as the ayahoo c l a s s tag s i m i l a r i t y to each other

10 import gensim

import numpy

12 import m a t p l o t l i b . pyplot as p l t

14 # tags used

ayahoo_tags = [ ’ bag ’ , ’mug ’ , ’ goat ’ , ’ donkey ’ , ’ zebra ’ , ’ wolf ’ , ’monkey ’ , ’

centaur ’ , ’ j e t s k i ’ , ’ c a r r i a g e ’ , ’ s t a t u e ’ , ’ bui lding ’ , ]
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16 p a s c a l _ t a g s = [ ’ a i r p l a n e ’ , ’ car ’ , ’ bus ’ , ’ t r a i n ’ , ’ boat ’ , ’ motorbike ’ , ’

b i c y c l e ’ , ’ person ’ , ’ c a t ’ , ’ dog ’ , ’ horse ’ , ’ sheep ’ , ’cow ’ , ’ b ird ’ , ’ p lant ’ , ’

c h a i r ’ , ’ t a b l e ’ , ’ so fa ’ , ’ t e l e v i s i o n ’ , ’ b o t t l e ’ ]

18 # load in a word−space model to use

word_space = gensim . models . Word2Vec . load_word2vec_format ( ’D:/ Thesis/

t r a i n i n g _ d a t a /Google/GoogleNews−vectors−negat ive300 . bin . gz ’ , binary=

True )

20

# c r e a t e an array to hold confusion matrix values

22 pascal_cm = numpy . zeros ( ( 2 0 , 2 0 ) )

24 # c a l c u l a t e s i m i l a r i t y between each word in p a s c a l _ t a g s

f o r i in range ( 0 , 2 0 ) :

26 f o r j in range ( 0 , 2 0 ) :

pascal_cm [ i , j ] = word_space . s i m i l a r i t y ( p a s c a l _ t a g s [ i ] ,

p a s c a l _ t a g s [ j ] )

28

# p l o t confusion matrix with imshow ( ) with diagonal as s e l f s i m i l a r i t y

and darker

30 # red c o l o r s represent ing higher s i m i l a r i t y

f ig , ax = p l t . subplots ( )

32 cax = ax . imshow ( pascal_cm , i n t e r p o l a t i o n = ’ none ’ )

ax . s e t _ x t i c k s (numpy . arange ( 0 , 2 0 ) )

34 ax . s e t _ x t i c k l a b e l s ( pasca l_ tags , r o t a t i o n =90)

ax . s e t _ y t i c k s (numpy . arange ( 0 , 2 0 ) )

36 ax . s e t _ y t i c k l a b e l s ( p a s c a l _ t a g s )

f i g . co lo rb a r ( cax )

38 f i g . t i g h t _ l a y o u t ( )

f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/ t a g _ s i m i l a r i t y _ m a t r i x . pdf ’ )
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40 f i g . show ( )

42 # get confusion matrix of yahoo to pasca l tag s i m i l a r i t y

yahoo_pascal_cm = numpy . zeros ( ( 2 0 , 1 2 ) )

44 f o r i in range ( 0 , 2 0 ) :

f o r j in range ( 0 , 1 2 ) :

46 yahoo_pascal_cm [ i , j ] = word_space . s i m i l a r i t y ( p a s c a l _ t a g s [ i ] ,

ayahoo_tags [ j ] )

48

# p l o t confusion matrix with imshow ( ) with darker red c o l o r s represent ing

50 # higher s i m i l a r i t y

f ig , ax = p l t . subplots ( )

52 cax = ax . imshow ( yahoo_pascal_cm , i n t e r p o l a t i o n = ’ none ’ )

ax . s e t _ x t i c k s (numpy . arange ( 0 , 1 2 ) )

54 ax . s e t _ x t i c k l a b e l s ( ayahoo_tags , r o t a t i o n = 90)

ax . s e t _ y t i c k s (numpy . arange ( 0 , 2 0 ) )

56 ax . s e t _ y t i c k l a b e l s ( p a s c a l _ t a g s )

f i g . co lo rb a r ( cax )

58 f i g . t i g h t _ l a y o u t ( )

f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/

ayahoo_pasca l_ tag_s imi la r i ty_matr ix . pdf ’ )

60 f i g . show ( )

62 # get confusion matrix of yahoo tag s e l f s i m i l a r i t y

yahoo_cm = numpy . zeros ( ( 1 2 , 1 2 ) )

64 f o r i in range ( 0 , 1 2 ) :

f o r j in range ( 0 , 1 2 ) :

66 yahoo_cm [ i , j ] = word_space . s i m i l a r i t y ( ayahoo_tags [ i ] , ayahoo_tags

[ j ] )
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68 # p l o t confusion matrix with imshow ( ) with diagonal as s e l f s i m i l a r i t y

and darker

# red c o l o r s represent ing higher s i m i l a r i t y

70 f ig , ax = p l t . subplots ( )

cax = ax . imshow ( yahoo_cm , i n t e r p o l a t i o n = ’ none ’ )

72 ax . s e t _ x t i c k s (numpy . arange ( 0 , 1 2 ) )

ax . s e t _ x t i c k l a b e l s ( ayahoo_tags , r o t a t i o n = 90)

74 ax . s e t _ y t i c k s (numpy . arange ( 0 , 1 2 ) )

ax . s e t _ y t i c k l a b e l s ( ayahoo_tags )

76 f i g . co lo rb a r ( cax )

f i g . t i g h t _ l a y o u t ( )

78 f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/ayahoo_tag_s imi lar i ty_matr ix .

pdf ’ )

f i g . show ( )
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Appendix J

domain_change_script.py

1 # −∗− coding : utf−8 −∗−

# Evan Novotny

3 # 4/13/2016

# coding : utf−8

5

#image s i m i l a r i t y comparision s c r i p t . S c r i p t p l o t s the image s i m i l a r i t y

7 # in d i f f e r e n t domains , used in ch4 image domain comparision .

9 import m a t p l o t l i b . pyplot as p l t

import numpy as np

11 from scipy import s p a t i a l

import Xdata

13

# load d a t a s e t of images as Xdata o b j e c t

15 d a t a s e t = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /

seperated_pascal_tra ining_nsm . t x t ’ )

17 # get the s e t of images with dogs in them

l i s t _ o f _ d o g s = d a t a s e t . with_tags ( [ ’ dog ’ ] )

19 # get the v e c t o r s f o r images 0−100

l i s t _ o f _ d o g _ v e c t o r s = [ d a t a s e t . s c o r e s [ ind ] f o r ind in l i s t _ o f _ d o g s

[ 0 : 1 0 0 ] ]
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21

# get a l i s t of cos ine s i m i l a r i t y between dog images

23 i n c l a s s _ s i m i l a r i t y = l i s t ( )

f o r vec in l i s t _ o f _ d o g _ v e c t o r s :

25 f o r im in l i s t _ o f _ d o g _ v e c t o r s :

i f np . not_equal ( im , vec ) . a l l ( ) :

27 i n c l a s s _ s i m i l a r i t y . append(1− s p a t i a l . d i s t a n c e . cos ine ( vec , im ) )

29

# get the s e t of images with t r a i n s in them

31 l i s t _ o f _ t r a i n s = d a t a s e t . with_tags ( [ ’ t r a i n ’ ] )

# get the v e c t o r s f o r images 0−100

33 l i s t _ o f _ t r a i n _ v e c t o r s = [ d a t a s e t . s c o r e s [ ind ] f o r ind in l i s t _ o f _ t r a i n s

[ 0 : 1 0 0 ] ]

35 # get a l i s t of cos ine s i m i l a r i t y between dog and t r a i n images

train_dog_sim = l i s t ( )

37 f o r t ra in_im in l i s t _ o f _ t r a i n _ v e c t o r s :

f o r dog_im in l i s t _ o f _ d o g _ v e c t o r s :

39 train_dog_sim . append(1− s p a t i a l . d i s t a n c e . cos ine ( train_im , dog_im ) )

41

# get the s e t of images with sheep in them

43 l i s t _ o f _ s h e e p = d a t a s e t . with_tags ( [ ’ sheep ’ ] )

# get the v e c t o r s f o r images 0−100

45 l i s t _ o f _ s h e e p _ v e c t o r s = [ d a t a s e t . s c o r e s [ ind ] f o r ind in l i s t _ o f _ s h e e p

[ 0 : 1 0 0 ] ]

# get a l i s t of cos ine s i m i l a r i t y between dog and sheep images

47 sheep_dog_sim = l i s t ( )

f o r sheep_im in l i s t _ o f _ s h e e p _ v e c t o r s :
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49 f o r dog_im in l i s t _ o f _ d o g _ v e c t o r s :

sheep_dog_sim . append(1− s p a t i a l . d i s t a n c e . cos ine ( sheep_im , dog_im ) )

51

53 # P l o t histograms of image space s i m i l a r i t y

f ig1 , ax1 = p l t . subplots ( )

55 bins = np . l i n s p a c e (−1 ,1 ,100) # s e t bin count −1 to 1 in 100 bins

# note alpha c o n t r o l s opac i ty

57 ax1 . h i s t ( i n c l a s s _ s i m i l a r i t y , bins , alpha = 0 . 5 , l a b e l = ’dog−dog ’ )

ax1 . h i s t ( train_dog_sim , bins , alpha = 0 . 5 , l a b e l = ’ t r a i n−dog ’ )

59 ax1 . h i s t ( sheep_dog_sim , bins , alpha = 0 . 5 , l a b e l = ’ sheep−dog ’ )

61 #add legend t i t l e l a b e l s and such

ax1 . legend ( l o c = ’ upper l e f t ’ )

63 ax1 . s e t _ x l a b e l ( ’ Cosine s i m i l a r i t y [−1 ,1] ’ )

ax1 . s e t _ y l a b e l ( ’Number of samples ’ )

65 ax1 . s e t _ t i t l e ( ’ Image S i m i l a r i t y in Image Feature Domain ’ )

f i g 1 . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/

Similarity_of_images_in_image_domain . pdf ’ )

67 f i g 1 . show ( )

69 # load a RSVM weight vec tor and reshape i n t o p r o j e c t i o n matrix

S = np . l o a d t x t ( ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/no_softmax_models/

C0 . 1 _eps0 . 0 1 _samp100 . t x t ’ )

71 S = np . reshape ( S , [ 1 0 0 0 , 3 0 0 ] )

73 # transform dog images i n t o word space

wordimage_dogs = [ np . dot ( im , S ) f o r im in l i s t _ o f _ d o g _ v e c t o r s ]

75 # get a l i s t of cos ine s i m i l a r i t y between dog images in the word−space

wordimage_dog_sim = l i s t ( )
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77 f o r vec in wordimage_dogs :

f o r im in wordimage_dogs :

79 i f np . not_equal ( im , vec ) . a l l ( ) :

wordimage_dog_sim . append(1− s p a t i a l . d i s t a n c e . cos ine ( vec , im ) )

81

# transform t r a i n images i n t o word space

83 wordimage_trains = [ np . dot ( im , S ) f o r im in l i s t _ o f _ t r a i n _ v e c t o r s ]

# get a l i s t of cos ine s i m i l a r i t y between dog and t r a i n images in the

word−space

85 wordimage_train_dog_sim = l i s t ( )

f o r vec in wordimage_trains :

87 f o r im in wordimage_dogs :

wordimage_train_dog_sim . append(1− s p a t i a l . d i s t a n c e . cos ine ( vec , im )

)

89

91 # transform sheep images i n t o word space

wordimage_sheep = [ np . dot ( im , S ) f o r im in l i s t _ o f _ s h e e p _ v e c t o r s ]

93 # get a l i s t of cos ine s i m i l a r i t y between dog and sheep images in the

word−space

wordimage_sheep_dog_sim = l i s t ( )

95 f o r vec in wordimage_sheep :

f o r im in wordimage_dogs :

97 wordimage_sheep_dog_sim . append(1− s p a t i a l . d i s t a n c e . cos ine ( vec , im )

)

99 # p l o t histogram of s i m i l a r i t y between images p r o j e c t e d i n t o a word−

space

f ig2 , ax2 = p l t . subplots ( )

101 bins = np . l i n s p a c e (−1 ,1 ,100)
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# note alpha c o n t r o l s opac i ty

103 ax2 . h i s t ( wordimage_dog_sim , bins , alpha = 0 . 5 , l a b e l = ’dog−dog ’ )

ax2 . h i s t ( wordimage_train_dog_sim , bins , alpha = 0 . 5 , l a b e l = ’ t r a i n−dog ’ )

105 ax2 . h i s t ( wordimage_sheep_dog_sim , bins , alpha = 0 . 5 , l a b e l = ’ sheep−dog ’ )

107 #add legend t i t l e l a b e l s and such

ax2 . legend ( l o c = ’ upper l e f t ’ )

109 ax2 . s e t _ x l a b e l ( ’ Cosine s i m i l a r i t y [−1 ,1] ’ )

ax2 . s e t _ y l a b e l ( ’Number of samples ’ )

111 ax2 . s e t _ t i t l e ( ’ S i m i l a r i t y of Images P r o j e c t e d i n t o the Word−Space ’ )

f i g 2 . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/

Similar i ty_of_images_in_wordspace . pdf ’ )

113 f i g 2 . show ( )

115 # load a word−space model

d a t a s e t . load_word_space ( )

117

# get vec tor r e p r e s e n t a t i o n of words

119 dog = d a t a s e t . Word2Vec [ ’ dog ’ ]

t r a i n = d a t a s e t . Word2Vec [ ’ t r a i n ’ ]

121 cow = d a t a s e t . Word2Vec [ ’cow ’ ]

wolf = d a t a s e t . Word2Vec [ ’ wolf ’ ]

123

# get a l i s t of cos ine s i m i l a r i t y between dog images in the word−space

125 dog_dogword_sim = l i s t ( )

train_dogword_sim = l i s t ( )

127 sheep_dogword_sim = l i s t ( )

129 f o r vec in wordimage_dogs :

dog_dogword_sim . append(1− s p a t i a l . d i s t a n c e . cos ine ( vec , dog ) )
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131 f o r vec in wordimage_trains :

train_dogword_sim . append(1− s p a t i a l . d i s t a n c e . cos ine ( vec , dog ) )

133 f o r vec in wordimage_sheep :

sheep_dogword_sim . append(1− s p a t i a l . d i s t a n c e . cos ine ( vec , dog ) )

135

137 # p l o t histogram of p r o j e c t e d word s i m i l a r i t y to word vector dog

f ig3 , ax3 = p l t . subplots ( )

139 bins = np . l i n s p a c e (−1 ,1 ,100)

# note alpha c o n t r o l s opac i ty

141 ax3 . h i s t ( dog_dogword_sim , bins , l a b e l = ’ dog ’ )

ax3 . h i s t ( train_dogword_sim , bins , alpha = 0 . 5 , l a b e l = ’ t r a i n ’ )

143 ax3 . h i s t ( sheep_dogword_sim , bins , alpha = 0 . 5 , l a b e l = ’ sheep ’ )

145 #add legend t i t l e l a b e l s and such

ax3 . legend ( l o c = ’ upper l e f t ’ )

147 ax3 . s e t _ x l a b e l ( ’ Cosine s i m i l a r i t y [−1 ,1] ’ )

ax3 . s e t _ y l a b e l ( ’Number of samples ’ )

149 ax3 . s e t _ t i t l e ( ’ S i m i l a r i t y of Images in the Word−Space with the Word Dog ’

)

f i g 3 . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/

Similari ty_of_images_to_word_dog . pdf ’ )

151 f i g 3 . show ( )
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Appendix K

varying_number_

of_samples_script.py

1 # −∗− coding : utf−8 −∗−

# Evan Novotny

3 # 4/13/2016

5 # S c r i p t to measure MAP at d i f f e r e n t number of t r a i n i n g examples .

7 import pandas as pd

import numpy as np

9 import m a t p l o t l i b . pyplot as p l t

import Xdata

11 import CD_rank_svm

import d l i b

13

# load t r a i n i n g data as Xdata o b j e c t

15 t r a i n _ d a t a = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /

seperated_pascal_tra ining_nsm . t x t ’ ) # get s e t of t r a i n i n g data

t r a i n _ d a t a . load_word_space ( ) # load a knowledge base

17
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# c r e a t e t r a i n i n g f i l e s f o r a l l the models f o r each number of examples

per c l a s s

19 #1−100. t h i s way we can r e t r a i n the RSVM at d i f f e r e n t # of examples any

time

f o r i in range ( 1 , 1 0 1 ) : #python counts from 0 so t h i s only reacheas max−1

21 d e s c r i p t o r = ’nsm ’+ s t r ( i ) + ’ . t x t ’

t r a i n i n g _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/

num_examples_compare/ ’+ d e s c r i p t o r

23 t r a i n _ d a t a . e x p o r t _ t r a i n i n g _ d a t a ( e x c l u s i o n _ l i s t = [ ] , num_examples=i ,

o u t _ f i l e = t r a i n i n g _ f i l e )

25 del t r a i n _ d a t a # f r e e space

27

# c r e a t e a d l i b t r a i n e r o b j e c t

29 t r a i n e r = d l i b . svm_rank_trainer ( )

#from CV tuning r e s u l t s

31 t r a i n e r . c = . 1 # f i t t rade of f , from cd t r a i n i n g r e s u l t s

t r a i n e r . eps i lon = 0 . 0 1 # convergence s i z e

33 t r a i n e r . max_ i te ra t ions = 10000 #max # of i t e r a t i o n s

35 # c r e a t e a l l the models from each of the t r a i n i n g f i l e made previously .

Models

# are saved to . t x t f i l e s so they can be resued

37 # C = . 1 eps i lon = 0 . 0 1

f o r i in range ( 1 , 1 0 1 ) : #python counts from 0 so t h i s only reacheas max−1

39 d e s c r i p t o r = ’nsm ’+ s t r ( i ) + ’ . t x t ’

t r a i n i n g _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/

num_examples_compare/ ’+ d e s c r i p t o r
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41 model_out = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

num_examples_compare_C .1/ ’+ d e s c r i p t o r

quer ies = CD_rank_svm . get_data ( t r a i n i n g _ f i l e )

43 CD_rank_svm . train_CDSVM_rank ( t r a i n e r , queries , o u t f i l e =model_out )

del quer ies # f r e e memory

45

# load zero−shot t e s t s e t as Xdata o b j e c t

47 xyahoo = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /ayahoo_nsm . t x t ’ )

xyahoo . load_word_space ( ) # load knowledge base

49

# tags to search f o r

51 tags = [ ’ bag ’ , ’mug ’ , ’ goat ’ , ’ donkey ’ , ’ zebra ’ , ’ wolf ’ , ’monkey ’ , ’ centaur ’ , ’

j e t s k i ’ , ’ c a r r i a g e ’ , ’ s t a t u e ’ , ’ bui lding ’ , ]

53 # Get the AP and MAP s c o r e s f o r each number of examples f o r the

completel l i s t

# t h i s may take some time

55 s e r i e s _ l i s t = l i s t ( )

f o r i in range ( 1 , 1 0 1 ) :

57 d e s c r i p t o r = ’nsm ’+ s t r ( i ) + ’ . t x t ’

model_f i le = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

num_examples_compare_C .1/ ’+ d e s c r i p t o r

59 xyahoo . load_CD_model ( model_f i le )

# get pandas s e r i e s of ayahoo average p r e c i s i o n r e s u l t s

61 new_series = Xdata . c r e a t e _ s e r i e s ( xyahoo , xyahoo . s ize , tags )

s e r i e s _ l i s t . append ( new_series )

63 # concatenate s e r i e s i n t o a dataframe

num_example_results = pd . concat ( s e r i e s _ l i s t , a x i s =1)

65

#uncomment to p r i n t a t a b l e of r e s u l t s
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67 # p r i n t num_example_results

69 # p i c k l e save f o r l a t e r

num_example_results . t o _ p i c k l e ( ’D:/ Thesis/num_samples_C . 1 . pkl ’ )

71

# range i s s e t to only p l o t row 12 , the MAP scores , change to range ( 0 , 1 3 )

to p l o t

73 # a l l of the c l a s s e s

f o r ind in range ( 1 2 , 1 3 ) :

75 f ig , ax = p l t . subplots ( )

# mult iply score by 100 f o r percentage . get degree 1 p o l y f i t

77 [m, b]=np . p o l y f i t ( range ( 1 , 1 0 1 ) ,100 ∗num_example_results . i l o c [ ind , : ] , 1 )

79 # s c a t t e r p l o t MAP@n

ax . p l o t ( range ( 1 , 1 0 1 ) ,100 ∗num_example_results . i l o c [ ind , : ] , ’ . ’ )

81 x = np . asarray ( range ( 1 , 1 0 1 ) ) #x a x i s

# p l o t l i n e of bes t f i t

83 ax . p l o t ( range ( 1 , 1 0 1 ) ,m∗x+b , l a b e l = ’ Slope = ’+ s t r (m) )

85 # p l o t s e t t i n g s

ax . s e t _ x l a b e l ( ’Number of samples per t r a i n i n g c l a s s ’ )

87 ax . s e t _ y l a b e l ( ’Mean Average P r e c i s i o n (%) ’ )

ax . legend ( l o c = ’ lower r i g h t ’ )

89 f i g . t i g h t _ l a y o u t ( )

f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/num_examplesC01 . pdf ’ )

91 f i g . show ( )

123



Appendix L

varying_number_of_classes_script.py

1 # −∗− coding : utf−8 −∗−

# Evan Novotny

3 # 4/13/2016

5 # This s c r i p t eva luates the zero−shot c l a s s e s in the ayahoo d a t a s e t a t

d i f f e r e n t

# numbers of c l a s s e s used f o r t r a i n i n g . The number of examples used f o r

each

7 # c l a s s i s s e t to 1 , 10 , and 1 0 0 .

9 import m a t p l o t l i b . pyplot as p l t

import pandas as pd

11 import numpy as np

import d l i b

13 import Xdata

import CD_rank_svm

15

# load in t r a i n i n g data as Xdata o b j e c t

17 t r a i n _ d a t a = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /

seperated_pascal_tra ining_nsm . t x t ’ ) # get s e t of t r a i n i n g data

t r a i n _ d a t a . load_word_space ( ) # load a knowledge base

19
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# tags to include/exclude

21 tags = [ ’ a i r p l a n e ’ , ’ car ’ , ’ bus ’ , ’ t r a i n ’ , ’ boat ’ , ’ motorbike ’ , ’ b i c y c l e ’ , ’

person ’ , ’ c a t ’ , ’ dog ’ , ’ horse ’ , ’ sheep ’ , ’cow ’ , ’ b ird ’ , ’ pot ted_plant ’ , ’

c h a i r ’ , ’ t a b l e ’ , ’ so fa ’ , ’TV ’ , ’ b o t t l e ’ ]

23 # c r e a t e t r a i n i n g f i l e s with only the f i r s t i tags

f o r num_examples in [ 1 , 1 0 , 1 0 0 ] : # c r e a t e f o r 3 s e t of examples per c l a s s

25 f o r i in range ( 1 , 2 0 ) : # index of tags

# c r e a t e path f o r saving output

27 d e s c r i p t o r = ’nsm_ ’+ s t r ( i ) + ’ _tags_ ’+ s t r ( num_examples ) + ’ _examples

. t x t ’

t r a i n i n g _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/

i n c r e m e n t a l _ c l a s s e s / ’+ d e s c r i p t o r

29

# excluding tags in l i s t a f t e r the i t h entry

31 t r a i n _ d a t a . e x p o r t _ t r a i n i n g _ d a t a ( e x c l u s i o n _ l i s t =tags [ i : ] ,

num_examples=num_examples , o u t _ f i l e = t r a i n i n g _ f i l e )

33 # range stops a t 19 so c r e a t e one more model with a l l the tags

included

d e s c r i p t o r = ’ nsm_al l_tags_ ’+ s t r ( num_examples ) + ’ _examples . t x t ’

35 t r a i n i n g _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/

i n c r e m e n t a l _ c l a s s e s / ’+ d e s c r i p t o r

t r a i n _ d a t a . e x p o r t _ t r a i n i n g _ d a t a ( e x c l u s i o n _ l i s t = [ ] , num_examples=

num_examples , o u t _ f i l e = t r a i n i n g _ f i l e )

37

del t r a i n _ d a t a # f r e e up memory

39

# c r e a t e a d l i b t r a i n i n e r o b j e c t

41 t r a i n e r = d l i b . svm_rank_trainer ( )
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t r a i n e r . c = . 1 # f i t t rade of f ,

43 t r a i n e r . eps i lon = 0 . 0 1 # convergence s i z e

t r a i n e r . max_ i te ra t ions = 10000 #max # of i t e r a t i o n s

45

# c r e a t e a l l the models f o r each number of c l a s s e s a t each s e t of

examples

47 f o r num_examples in [ 1 , 1 0 , 1 0 0 ] :

f o r i in range ( 1 , 2 0 ) : #python counts from 0 so t h i s only reacheas

max−1

49 # c r e a t e path v a r i a b l e s

d e s c r i p t o r = ’nsm_ ’+ s t r ( i ) + ’ _tags_ ’+ s t r ( num_examples ) + ’ _examples

. t x t ’

51 t r a i n i n g _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/

i n c r e m e n t a l _ c l a s s e s / ’+ d e s c r i p t o r

model_out = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

incrementa l_c lasses_C .1/ ex ’+ s t r ( num_examples ) + ’/C. 1 _eps . 0 1 _ ’+

d e s c r i p t o r

53

# c a l c u l a t e j o i n t−f e a t u r e v e c t o r s

55 quer ies = CD_rank_svm . get_data ( t r a i n i n g _ f i l e )

# t r a i n RSVM with current s e t t i n g as save model to o u t f i l e

57 CD_rank_svm . train_CDSVM_rank ( t r a i n e r , queries , o u t f i l e =model_out )

del quer ies # f r e e up memory

59

# repeat with a l l tags included

61 d e s c r i p t o r = ’ nsm_al l_tags_ ’+ s t r ( num_examples ) + ’ _examples . t x t ’

t r a i n i n g _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/

i n c r e m e n t a l _ c l a s s e s / ’+ d e s c r i p t o r
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63 model_out = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

incrementa l_c lasses_C .1/ ex ’+ s t r ( num_examples ) + ’/C. 1 _eps . 0 1 _ ’+

d e s c r i p t o r

quer ies = CD_rank_svm . get_data ( t r a i n i n g _ f i l e )

65 CD_rank_svm . train_CDSVM_rank ( t r a i n e r , queries , o u t f i l e =model_out )

del quer ies # f r e e up memory

67

# load zero−shot data s e t as Xdata o b j e c t

69 xyahoo = Xdata . Xdata ( d a t a _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /ayahoo_nsm . t x t ’ )

xyahoo . load_word_space ( ) # load knowledge base

71 # l i s t of zero−shot tags

yahoo_tags = [ ’ bag ’ , ’mug ’ , ’ goat ’ , ’ donkey ’ , ’ zebra ’ , ’ wolf ’ , ’monkey ’ , ’

centaur ’ , ’ j e t s k i ’ , ’ c a r r i a g e ’ , ’ s t a t u e ’ , ’ bui lding ’ , ]

73

# evaluate change in number of tags f o r 1 example per t r a i n i n g c l a s s

75 num_examples = 1

s e r i e s _ l i s t = l i s t ( )

77 f o r i in range ( 1 , 2 0 ) :

d e s c r i p t o r = ’nsm_ ’+ s t r ( i ) + ’ _tags_ ’+ s t r ( num_examples ) + ’ _examples . t x t

’

79 model_f i le = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

incrementa l_c lasses_C .1/ ex ’+ s t r ( num_examples ) + ’/C. 1 _eps . 0 1 _ ’+

d e s c r i p t o r

xyahoo . load_CD_model ( model_f i le )

81 # get pandas s e r i e s of ayahoo average p r e c i s i o n r e s u l t s

new_series = Xdata . c r e a t e _ s e r i e s ( xyahoo , xyahoo . s ize , yahoo_tags )

83 s e r i e s _ l i s t . append ( new_series )

# evaluate f o r a l l tags

85 d e s c r i p t o r = ’ nsm_al l_tags_ ’+ s t r ( num_examples ) + ’ _examples . t x t ’
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model_f i le = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/incrementa l_c lasses_C

.1/ ex ’+ s t r ( num_examples ) + ’/C. 1 _eps . 0 1 _ ’+ d e s c r i p t o r

87 xyahoo . load_CD_model ( model_f i le )

new_series = Xdata . c r e a t e _ s e r i e s ( xyahoo , xyahoo . s ize , yahoo_tags )

89 s e r i e s _ l i s t . append ( new_series )

# concatenate s e r i e s _ l i s t i n t o dataframe

91 df1ex_C01 = pd . concat ( s e r i e s _ l i s t , a x i s =1)

93

# evaluate change in number of tags f o r 10 examples per t r a i n i n g c l a s s

95 num_examples = 10

s e r i e s _ l i s t = l i s t ( )

97 f o r i in range ( 1 , 2 0 ) :

d e s c r i p t o r = ’nsm_ ’+ s t r ( i ) + ’ _tags_ ’+ s t r ( num_examples ) + ’ _examples . t x t

’

99 model_f i le = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

incrementa l_c lasses_C .1/ ex ’+ s t r ( num_examples ) + ’/C. 1 _eps . 0 1 _ ’+

d e s c r i p t o r

xyahoo . load_CD_model ( model_f i le )

101 # get pandas s e r i e s of ayahoo average p r e c i s i o n r e s u l t s

new_series = Xdata . c r e a t e _ s e r i e s ( xyahoo , xyahoo . s ize , yahoo_tags )

103 s e r i e s _ l i s t . append ( new_series )

# evaluate f o r a l l tags

105 d e s c r i p t o r = ’ nsm_al l_tags_ ’+ s t r ( num_examples ) + ’ _examples . t x t ’

model_f i le = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/incrementa l_c lasses_C

.1/ ex ’+ s t r ( num_examples ) + ’/C. 1 _eps . 0 1 _ ’+ d e s c r i p t o r

107 xyahoo . load_CD_model ( model_f i le )

new_series = Xdata . c r e a t e _ s e r i e s ( xyahoo , xyahoo . s ize , yahoo_tags )

109 s e r i e s _ l i s t . append ( new_series )

# concatenate s e r i e s _ l i s t i n t o dataframe

128



111 df10ex_C01 = pd . concat ( s e r i e s _ l i s t , a x i s =1)

113

# evaluate change in number of tags f o r 100 examples per t r a i n i n g c l a s s

115 num_examples = 100

s e r i e s _ l i s t = l i s t ( )

117 f o r i in range ( 1 , 2 0 ) :

d e s c r i p t o r = ’nsm_ ’+ s t r ( i ) + ’ _tags_ ’+ s t r ( num_examples ) + ’ _examples . t x t

’

119 model_f i le = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

incrementa l_c lasses_C .1/ ex ’+ s t r ( num_examples ) + ’/C. 1 _eps . 0 1 _ ’+

d e s c r i p t o r

xyahoo . load_CD_model ( model_f i le )

121 # get pandas s e r i e s of ayahoo average p r e c i s i o n r e s u l t s

new_series = Xdata . c r e a t e _ s e r i e s ( xyahoo , xyahoo . s ize , yahoo_tags )

123 s e r i e s _ l i s t . append ( new_series )

# evaluate f o r a l l tags

125 d e s c r i p t o r = ’ nsm_al l_tags_ ’+ s t r ( num_examples ) + ’ _examples . t x t ’

model_f i le = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/incrementa l_c lasses_C

.1/ ex ’+ s t r ( num_examples ) + ’/C. 1 _eps . 0 1 _ ’+ d e s c r i p t o r

127 xyahoo . load_CD_model ( model_f i le )

new_series = Xdata . c r e a t e _ s e r i e s ( xyahoo , xyahoo . s ize , yahoo_tags )

129 s e r i e s _ l i s t . append ( new_series )

# concatenate s e r i e s _ l i s t i n t o dataframe

131 df100ex_C01 = pd . concat ( s e r i e s _ l i s t , a x i s =1)

133 # save to p i c k l e f i l e s

df1ex_C01 . t o _ p i c k l e ( ’D:/ Thesis/ p i c k l e _ j a r /incemental_c lasses_1ex_C . 1 . pkl

’ )
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135 df10ex_C01 . t o _ p i c k l e ( ’D:/ Thesis/ p i c k l e _ j a r /incemental_c lasses_10ex_C . 1 .

pkl ’ )

df100ex_C01 . t o _ p i c k l e ( ’D:/ Thesis/ p i c k l e _ j a r /incemental_c lasses_100ex_C

. 1 . pkl ’ )

137

139 # s c a t t e r p l o t r e s u l t s with a l i n e of bes t f i t

141 x = np . asarray ( range ( 1 , 2 1 ) ) #x a x i s

143 # p l o t r e s u l t s f o r 1 example per c l a s s

f o r i in range ( 1 2 , 1 3 ) :

145 f ig , ax = p l t . subplots ( )

ax . s e t _ t i t l e ( df1ex_C01 . index [ i ]+ ’ 1 example ’ )

147 [m, b ] = np . p o l y f i t ( x , 1 0 0 ∗df1ex_C01 . i l o c [ i , : ] , 1 )

ax . s c a t t e r ( x , 1 0 0 ∗df1ex_C01 . i l o c [ i , : ] )

149 ax . p l o t ( x ,m∗x+b , l a b e l = ’ Slope = ’+ s t r (m) )

ax . s e t _ x l a b e l ( ’Number of samples per t r a i n i n g c l a s s ’ )

151 ax . s e t _ y l a b e l ( ’Mean Average P r e c i s i o n (%) ’ )

ax . legend ( l o c = ’ lower r i g h t ’ )

153 f i g . t i g h t _ l a y o u t ( )

f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/num_classes1exC01 . pdf ’ )

155 f i g . show ( )

157 # p l o t r e s u l t s f o r 10 examples per c l a s s

f o r i in range ( 1 2 , 1 3 ) :

159 f ig2 , ax2 = p l t . subplots ( )

ax2 . s e t _ t i t l e ( df10ex_C01 . index [ i ]+ ’ 10 examples ’ )

161 [m, b ] = np . p o l y f i t ( x , 1 0 0 ∗df10ex_C01 . i l o c [ i , : ] , 1 )

ax2 . s c a t t e r ( x , 1 0 0 ∗df10ex_C01 . i l o c [ i , : ] )
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163 ax2 . p l o t ( x ,m∗x+b , l a b e l = ’ Slope = ’+ s t r (m) )

ax2 . s e t _ x l a b e l ( ’Number of samples per t r a i n i n g c l a s s ’ )

165 ax2 . s e t _ y l a b e l ( ’Mean Average P r e c i s i o n (%) ’ )

ax2 . legend ( l o c = ’ lower r i g h t ’ )

167 f i g 2 . t i g h t _ l a y o u t ( )

f i g 2 . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/num_classes10exC01 . pdf ’ )

169 f i g 2 . show ( )

171 # p l o t r e s u l t s f o r 100 examples per c l a s s

f o r i in range ( 1 2 , 1 3 ) :

173 f ig3 , ax3 = p l t . subplots ( )

ax3 . s e t _ t i t l e ( df100ex_C01 . index [ i ]+ ’ 100 examples ’ )

175 [m, b ] = np . p o l y f i t ( x , 1 0 0 ∗df100ex_C01 . i l o c [ i , : ] , 1 )

ax3 . s c a t t e r ( x , 1 0 0 ∗df100ex_C01 . i l o c [ i , : ] )

177 ax3 . p l o t ( x ,m∗x+b , l a b e l = ’ Slope = ’+ s t r (m) )

ax3 . s e t _ x l a b e l ( ’Number of samples per t r a i n i n g c l a s s ’ )

179 ax3 . s e t _ y l a b e l ( ’Mean Average P r e c i s i o n (%) ’ )

ax3 . legend ( l o c = ’ lower r i g h t ’ )

181 f i g 3 . t i g h t _ l a y o u t ( )

f i g 3 . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/num_classes100exC01 . pdf ’ )

183 f i g 3 . show ( )
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Appendix M

projection_matrix_

word_similarity_script.py

1 # −∗− coding : utf−8 −∗−

# Evan Novonty

3 # 4/13/2016

# coding : utf−8

5

# This s c r i p t f i n d s the 5 most s i m i l a r word v e c t o r s to each of the rows

in a

7 # p r o j e c t i o n matrix then p l o t s bar graphs of the number of occurences

f o r each

# word given t h a t i t appear more than a miniumum amount of time to

f i l t e r noise .

9 # The same i s done f o r the s i n g l e most s i m i l a r word to each row .

11 import gensim

import numpy

13 import m a t p l o t l i b . pyplot as p l t

import pandas as pd

15

# load in vocab of a l l known words in the word−space
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17 vocab = gensim . models . Word2Vec . load_word2vec_format ( ’D:/ Thesis/

t r a i n i n g _ d a t a /Google/GoogleNews−vectors−negat ive300 . bin . gz ’ , binary=

True )

19 # load RSVM weights and reshape i n t o a p r o j e c t i o n matrix

weights = numpy . l o a d t x t ( ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

no_softmax_models/C0 . 1 _eps0 . 0 1 _samp100 . t x t ’ )

21 S = numpy . reshape ( weights , [ 1 0 0 0 , 3 0 0 ] )

23 # use gensim b u i l t in most_s imilar funct ion to f ind the top 5 most

s i m i l a r words

# to each of the rows of the p r o j e c t i o n matix

25 l i s t_of_unicode_words = l i s t ( ) #empty l i s t to hold a l l of the topn

unicode words

l i s t _ o f _ s i m i l a r i t y _ s c o r e s = l i s t ( )

27 c o u n t _ l i m i t = 30

p r i n t ’ Finding most s i m i l a r words . . . ’

29 topn = 5

31 f o r index in range ( 0 , 1 0 0 0 ) :

#most_sim i s a tuple of words and t h e i r score in descending order

33 most_sim = vocab . most_s imilar ( p o s i t i v e =[S [ index , : ] ] , topn=topn )

35 p r i n t ’\r ’+ s t r ( index ) ,

37 f o r word_n in range ( 0 , len ( most_sim ) ) :

# get the nth word , the word i s always in the zeroth place in the

tuple

39 l i s t_of_unicode_words . append ( most_sim [ word_n ] [ 0 ] )

l i s t _ o f _ s i m i l a r i t y _ s c o r e s . append ( most_sim [ word_n ] [ 1 ] )
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41

# get a s e t t h a t conta ins each unique word t h a t occures f o r counting

43 unique_words = l i s t ( s e t ( l i s t_of_unicode_words ) )

# keeping i t a l i s t to ensure i t i s ordered

45 p r i n t ’ done ’

47 p r i n t ’ Counting number of words . . . ’

word_counts = l i s t ( )

49 pd_index = l i s t ( )

loop_counter = 0

51 avg_sim = l i s t ( )

53 # count each word t h a t occurs

f o r word in unique_words :

55 loop_counter += 1

p r i n t ’\r ’+ s t r ( loop_counter ) ,

57 count = l is t_of_unicode_words . count ( word )

# only keep words t h a t occure 30 or more times

59 i f count >= c o u n t _ l i m i t :

word_counts . append ( count )

61 pd_index . append ( word )

# get the s i m i l a r i t y s c o r e s f o r t h i s word

63 t h i s _ w o r d _ s i m i l a r i t i e s = [ l i s t _ o f _ s i m i l a r i t y _ s c o r e s [ ind ] f o r ind

, val in enumerate ( l i s t_of_unicode_words ) i f word i s val ]

# f ind the average s i m i l a r i t y to t h i s word each time i t was in

the topn

65 avg_sim . append (sum( t h i s _ w o r d _ s i m i l a r i t i e s ) / f l o a t ( count ) )

67 top5_words = pd . DataFrame ( [ word_counts , avg_sim ] , index =[ ’ words ’ , ’ avg

s i m i l a r i t y ’ ] , columns=pd_index ) . T
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p r i n t ’ done ’

69 # p i c k l e to save data f o r l a t e r

top5_words . t o _ p i c k l e ( ’D:/ Thesis/ p i c k l e _ j a r /S_mat_top5_most_similar . pkl ’ )

71

# p l o t h o r i z o n t a l bar p l o t s of number of word occurences

73 f i g = p l t . f i g u r e ( f i g s i z e = ( 5 , 7 ) )

ax = f i g . add_subplot ( 1 1 1 )

75 t 5 _ s e r i e s = pd . S e r i e s ( top5_words [ ’ words ’ ] )

t 5 _ s e r i e s . s o r t ( ascending=True )

77 t 5 _ s e r i e s . p l o t ( kind= ’ barh ’ , ax=ax , alpha = 0 . 6 )

ax . s e t _ x l a b e l ( ’Number of occurrences ’ )

79 ax . s e t _ t i t l e ( ’Top 5 words per row ’ )

f i g . t i g h t _ l a y o u t ( )

81 f i g . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/S_mat_top5_most_similar . pdf ’ )

f i g . show ( )

83

l i s t_of_unicode_words = l i s t ( ) #empty l i s t to hold a l l of the topn

unicode words

85 l i s t _ o f _ s i m i l a r i t y _ s c o r e s = l i s t ( )

c o u n t _ l i m i t = 5

87 p r i n t ’ Finding most s i m i l a r words . . . ’

topn = 1

89 f o r index in range ( 0 , 1 0 0 0 ) :

#most_sim i s a tuple of words and t h e i r score in descending order

91 most_sim = vocab . most_s imilar ( p o s i t i v e =[S [ index , : ] ] , topn=topn )

p r i n t ’\r ’+ s t r ( index ) ,

93 f o r word_n in range ( 0 , len ( most_sim ) ) :

# get the nth word , the word i s always in the zeroth place in the

tuple

95 l i s t_of_unicode_words . append ( most_sim [ word_n ] [ 0 ] )
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l i s t _ o f _ s i m i l a r i t y _ s c o r e s . append ( most_sim [ word_n ] [ 1 ] )

97

# get a s e t t h a t conta ins each unique word t h a t occures f o r counting

99 unique_words = l i s t ( s e t ( l i s t_of_unicode_words ) )

# keeping i t a l i s t to ensure i t i s ordered

101 p r i n t ’ done ’

103 p r i n t ’ Counting number of words . . . ’

word_counts = l i s t ( )

105 pd_index = l i s t ( )

loop_counter = 0

107 avg_sim = l i s t ( )

109 # count each word t h a t occurs

f o r word in unique_words :

111 loop_counter += 1

p r i n t ’\r ’+ s t r ( loop_counter ) ,

113 count = l is t_of_unicode_words . count ( word )

# only keep words t h a t occure 5 or more times

115 i f count >= c o u n t _ l i m i t :

word_counts . append ( count )

117 pd_index . append ( word )

# get the s i m i l a r i t y s c o r e s f o r t h i s word

119 t h i s _ w o r d _ s i m i l a r i t i e s = [ l i s t _ o f _ s i m i l a r i t y _ s c o r e s [ ind ] f o r ind

, val in enumerate ( l i s t_of_unicode_words ) i f word i s val ]

# f ind the average s i m i l a r i t y to t h i s word each time i t was in

the topn

121 avg_sim . append (sum( t h i s _ w o r d _ s i m i l a r i t i e s ) / f l o a t ( count ) )
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123 top1_words = pd . DataFrame ( [ word_counts , avg_sim ] , index =[ ’ words ’ , ’ avg

s i m i l a r i t y ’ ] , columns=pd_index ) . T

p r i n t ’ done ’

125

top1_words [ ’ avg s i m i l a r i t y ’ ]

127

# p i c k l e to save data f o r l a t e r

129 top1_words . t o _ p i c k l e ( ’D:/ Thesis/ p i c k l e _ j a r /S_mat_top1_most_similar . pkl ’ )

131 # p l o t h o r i z o n t a l bar p l o t s of number of word occurences

f i g 2 = p l t . f i g u r e ( f i g s i z e = ( 5 , 7 ) )

133 ax2 = f i g 2 . add_subplot ( 1 1 1 )

t 1 _ s e r i e s = pd . S e r i e s ( top1_words [ ’ words ’ ] )

135 t 1 _ s e r i e s . s o r t ( ascending=True )

t 1 _ s e r i e s . p l o t ( kind= ’ barh ’ , ax=ax2 , alpha = 0 . 6 , c o l o r = ’ g ’ )

137 ax2 . s e t _ x l a b e l ( ’Number of occurrences ’ )

ax2 . s e t _ t i t l e ( ’Top words f o r each row ’ )

139 f i g 2 . t i g h t _ l a y o u t ( )

f i g 2 . s a v e f i g ( ’D:/ Thesis/GIT/ l a t e x /Figures/S_mat_top1_most_similar . pdf ’ )

141 f i g 2 . show ( )
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Appendix N

Xdata.py

1 # Evan Novotny

#4/12/2016

3

# This f i l e conta ins the Xdata o b j e c t c l a s s d e f i n i t i o n s and f u n c t i o n s

used

5 # by the o b j e c t

7 import numpy

import gensim

9 from scipy import s p a t i a l

import random

11 import math

from PIL import Image

13 from PIL import ImageTk

import Tkinter as tk

15 import pandas as pd

17 c l a s s Xdata ( o b j e c t ) :

" " "

19 i n i t with a path to a data s e t with f i lename : XXXXX, tags : XXXXX,

s c o r e s : XXXX
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Order matters ! f i lenames , tags and s c o r e s are s tored in l i s t s such

t h a t

21 the index of f i lename corrosponds to the index of i t s tags and

s c o r e s

" " "

23 def _ _ i n i t _ _ ( s e l f , d a t a _ f i l e = ’D:/ Thesis/GIT/pydata . t x t ’ ) :

# l i s t c o n t a i n e r s f o r the names tags and s c o r e s of each image in

the d a t a s e t

25 s e l f . names = l i s t ( )

s e l f . tags = l i s t ( )

27 s e l f . s c o r e s = l i s t ( )

29 s e l f . Word2Vec = gensim . models . Word2Vec ( ) # i n s t a n t i a t e a word2vec

model

#a l i s t of i n d e c i e s probably used f o r c r e a t i n g the t r a i n i n g data

f i l e

31 s e l f . i n d e x _ l i s t = l i s t ( )

33 f = open ( d a t a _ f i l e , ’ r ’ )

35 # e x t r a c t data from the data f i l e

f o r l i n e in f :

37 i f ’ f i lename ’ in l i n e :

s e l f . names . append ( l i n e . r s t r i p ( ) . s p l i t ( ’ f i lename : ’ ) [ 1 ] ) #

need to remove \n

39

e l i f ’ tags ’ in l i n e :

41 s e l f . tags . append ( l i n e . r s t r i p ( ) . s p l i t ( ) [ 1 : ] ) # t h i s ge ts

ALL the tags with [ 0 ] = ’ tags : ’ so remove the zeroth element
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43 e l i f ’ s c o r e s ’ in l i n e :

s e l f . s c o r e s . append (numpy . array (map(numpy . f l o a t 3 2 , l i n e .

r s t r i p ( ) . s p l i t ( ) [ 1 : ] ) ) )

45

s e l f . s i z e = len ( s e l f . names ) # s i z e of data

47

49 def load_word_space ( s e l f , model_path= ’D:/ Thesis/ t r a i n i n g _ d a t a /Google/

GoogleNews−vectors−negat ive300 . bin . gz ’ , i s B i n a r y=True ) :

" " "

51 Enter the path to a word embedding space model to load with

gensim .

i s B i n a r y = true by d e f a u l t

53 " " "

s e l f . Word2Vec = gensim . models . Word2Vec . load_word2vec_format (

model_path , binary=i s B i n a r y )

55

57 def from_existing_model ( s e l f , model ) :

" " "

59 Load an e x i s t i n g Word2Vec model from the workspace i n t o the

o b j e c t

" " "

61 s e l f . Word2Vec = model

63 def view_images ( s e l f , Image_index_l is t , path= ’D:/ Thesis/ t r a i n i n g _ d a t a /

Pasca l/VOC2012/JPEGImages/ ’ ) :

" " "

65 View images l i s t e d in the image_ index_ l i s t

func t ion attempts to open images in the provided path
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67 " " "

# path = ’D:/ Thesis/ t r a i n i n g _ d a t a /Pasca l/VOC2012/JPEGImages / ’

69 # path = ’D:/ Thesis/ t r a i n i n g _ d a t a /ayahoo_test_images / ’

71 win = tk . Toplevel ( )

73 # es t imate number of column f o r grid

C = i n t ( math . c e i l ( math . s q r t ( len ( Image_index_l i s t ) ) ) )

75

image_count = 0

77

f o r ind in Image_index_ l i s t :

79 #image r e s i z i n g and gridding

image_count += 1

81 r , c = divmod ( image_count−1,C)

img = Image . open ( path+ s e l f . names [ ind ] )

83 r e s i z e d = img . r e s i z e ( ( 8 0 , 8 0 ) , Image . ANTIALIAS)

tkimage = ImageTk . PhotoImage ( r e s i z e d )

85 myvar = tk . Label ( win , image=tkimage )

myvar . image = tkimage

87 myvar . gr id ( row=r , column=c )

89 win . mainloop ( ) #open windows with images

91

def with_tags ( s e l f , search_tags =[None ] , view=False ) :

93 " " " Xdata . with_tags ( l i s t _ o f _ t a g s ) −> l i s t −− re turns a l i s t of

i n d e c i e s

get a l i s t of i n d e c i e s of images with tags in the l i s t given

95 " " "
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#num_tags = len ( t a g _ l i s t )

97 s e l f . i n d e x _ l i s t = l i s t ( ) # c l e a r the current l i s t

99 # f o r tag in t a g _ l i s t :

# f o r each tag t h a t we want the index to get a s e t of tags ,

101 # check t h a t the tag we want i s present ,

# i f the index i s not already in the i n d e x _ l i s t add i t to

the l i s t

103 a l l _ i n d e x _ l i s t =[ idx f o r tag in search_tags

f o r idx , t a g _ s e t in enumerate ( s e l f . tags )

105 i f tag in t a g _ s e t ]

107 s e l f . i n d e x _ l i s t = l i s t ( s e t ( a l l _ i n d e x _ l i s t ) ) #remove d u p l i c a t e s

109 i f view :

s e l f . view_images ( s e l f . i n d e x _ l i s t )

111

re turn s e l f . i n d e x _ l i s t

113

def e x p o r t _ t r a i n i n g _ d a t a ( s e l f , e x c l u s i o n _ l i s t = [ ] , i n c l u s i o n _ l i s t = [ ] ,

num_examples =20 ,

115 o u t _ f i l e = ’D:/ Thesis/ t r a i n i n g _ d a t a /

CDSVM_training/CDSVM_train . t x t ’ , myseed=2015) :

117

e x p o r t _ i n d e x _ l i s t = l i s t ( )

119

# get the i n d e c i e s of the tags to be included/removed , i f

i n c l u s i o n _ l i s t i s empty

121 # or doesn ’ t conta in any va l id tags with_tags w i l l re turn [ ] and
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# e x p o r t _ l i s t w i l l remain empty

123 # note : idx_remove beats idx_inc lude

idx_inc lude = s e l f . with_tags ( i n c l u s i o n _ l i s t ) # i n d e c i e s of tags

to include

125 idx_remove = s e l f . with_tags ( e x c l u s i o n _ l i s t ) # i n d e c i e s of tags to

remove

127

# check t h a t the i n c l u s i o n l i s t contained va l id tags and returned

i n d e c i e s f o r export

129 # i f i t f a i l e d or wasn ’ t used j u s t inc lude everything

i f idx_inc lude :

131 e x p o r t _ i n d e x _ l i s t = [ i f o r i in idx_inc lude i f i not in

idx_remove ]

e l s e :

133 e x p o r t _ i n d e x _ l i s t = [ i f o r i in range ( 0 , len ( s e l f . names ) )

i f i not in idx_remove ]

135

# get a s e t of unique tags in the group to export

137 export_ tags = l i s t ( )

f o r i in e x p o r t _ i n d e x _ l i s t :

139 export_ tags . extend ( s e l f . tags [ i ] )

expor t_ tags = s e t ( export_ tags )

141

# c r e a t e a d i c t i o n a r y where the key i s a tag and values are

i n d e c i e s of images

143 #with t h a t tag

tag2ind = d i c t ( )

145 t r a i n i n g _ s e t _ c o u n t = 0

f o r key in export_ tags :
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147 # the d i c t conta ins every index f o r images with a given tag

c l e a n _ i d x _ l i s t = [ i f o r i in s e l f . with_tags ( [ key ] ) i f i not

in idx_remove ]

149 tag2ind [ key ] = c l e a n _ i d x _ l i s t

151 f =open ( o u t _ f i l e , ’w’ )

153 #remove d u p l i c a t e s

s e t _ a l l = s e t ( e x p o r t _ i n d e x _ l i s t ) # s e t of a l l i n d e c i e s being

exported

155

random . seed ( myseed ) # seed RNG

157

f o r key in export_ tags :

159

t r y :

161 # get embedding vec tor and make i t a s t r i n g f o r wri t ing

t a r g e t = numpy . a r r a y _ s t r ( s e l f . Word2Vec [ key ] )

163 t a r g e t = t a r g e t . t r a n s l a t e ( None , " [ ] \ n" )

165 p r i n t ’\r wri t ing key ’+key ,

167 f . wri te ( ’ t a r g e t : ’+ t a r g e t + ’\n ’ )

169 # get the maximum number of r e l e v a n t v e c t o r s f o r a tag

num_rel = len ( tag2ind [ key ] )

171

173

# i f t h e r e s more than 20 examples of an image only use 20
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175 i f num_rel > num_examples :

num_rel = num_examples

177 r e l _ i n d = random . sample ( tag2ind [ key ] , num_rel )

e l s e : # e l s e j u s t use however many there are

179 r e l _ i n d = tag2ind [ key ]

181 # wri te a l l of the r e l e v a n t v e c t o r s

r e l _ c o u n t e r = 0

183

# wri te s e t of r e l e v a n t image v e c t o r s f o r current c l a s s

185 f o r i in r e l _ i n d :

r e l _ c o u n t e r +=1

187 r e l = numpy . a r r a y _ s t r ( s e l f . s c o r e s [ i ] )

r e l = r e l . t r a n s l a t e ( None , " [ ] \ n" )

189 f . wri te ( ’ r e l e v a n t : ’+ r e l + ’\n ’ )

p r i n t ’\r done , ’ , re l_counter , ’ r e l e v a n t samples ’ ,

191

# get a s e t of r e l e v a n t i n d e c i e s and s u b t r a c t from a l l to

get a

193 # s e t of nonrelevant i n d e c i e s

se t_exc lude = s e t ( r e l _ i n d )

195 s e t _ n o n r e l = s e t _ a l l . d i f f e r e n c e ( se t_exc lude )

f o r i in range ( 0 , num_rel ) :

197 # p r i n t ’ wri t ing nonrelevant ’ , i

nonrel = numpy . a r r a y _ s t r ( s e l f . s c o r e s [ random . sample (

se t_nonre l , 1 ) [ 0 ] ] )

199 nonrel = nonrel . t r a n s l a t e ( None , "\n [ ] " )

f . wri te ( ’ nonrelevant : ’+nonrel+ ’\n ’ )

201 f . wri te ( ’\n ’ )

p r i n t ’\r done , ’ , i , ’ nonrelvant samples ’ ,
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203 t r a i n i n g _ s e t _ c o u n t +=1

205 except KeyError :

p r i n t ’ KeyError f o r key : ’+key

207

p r i n t ’ done\n ’ , t r a i n i n g _ s e t _ c o u n t , ’ t r a i n i n g s e t s wr i t ten ’

209 f . c l o s e ( )

211 def load_RSVM_weight_vector ( s e l f , model_f i le= ’D:/ Thesis/ t r a i n i n g _ d a t a

/CDSVM_models/CD_model . t x t ’ ) :

" " " weights = numpy . l o a d t x t ( model_f i le )−> s e l f . weights

213 Load the weights learned by the RSVM

" " "

215 s e l f . weights = numpy . l o a d t x t ( model_f i le )

217 def word2im ( obj , query , topn =25 , view=False , Path=Fa l se ) :

" " "

219 Take a word or phrase as an input query and f ind the most s i m i l a r

image

in the database

221 " " "

223 # convert query to a vec tor

wordvec = obj . Word2Vec [ query ]

225

# here we append a l l of the s c o r e s f o r each image to a new r e s u l t s

l i s t

227 # order i s important here as the index of the score a l i g n s with the

stored

# score/tag/name information
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229 r e s u l t s = [ ]

S = ob j . weights . reshape ( 1 0 0 0 , 3 0 0 )

231

f o r img_score in ob j . s c o r e s :

233 r e s u l t s . append ( image_word_similari ty ( img_score , wordvec , S ) )

235 # convert to a numpy array and use a r g p a r t i t i o n to ge the INDEX of

the top

#20 or so images

237 r e s u l t s = numpy . array ( r e s u l t s )

239 # ob j . top = numpy . a r g p a r t i t i o n ( r e s u l t s ,− topn ) [−topn : ] # ge ts indeces

of top

#N scores , returned s c o r e s are unordered here s o r t a l l of r e s u l t s

s m a l l e s t

241 # to l a r g e s t , get the top n b i g g e s t andreverse the order so they are

l a r g e s t

# to s m a l l e s t

243

#numpy a r g s o r t re turns the index of the r e s u l t s ordered s m a l l e s t to

l a r g e s t

245 # then the l i s t i s f l i p e d . ob j . top i s a l i s t of i n d e c i e s

ob j . top = numpy . f l i p l r ( [ numpy . a r g s o r t ( r e s u l t s ) [−topn : ] ] ) [ 0 ]

247

top_tags= l i s t ( )

249 s i m i l a r i t y _ s c o r e s = l i s t ( )

f o r i in ob j . top :

251 top_tags . append ( ob j . tags [ i ] )

s i m i l a r i t y _ s c o r e s . append ( r e s u l t s [ i ] )

253
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# get a l i s t of the c l a s s e s found and a l i s t of a l l tags returned

255 unique_tags = l i s t ( s e t ( y f o r x in ob j . tags f o r y in x ) )

a l l _ l i s t = l i s t ( y f o r x in top_tags f o r y in x )

257

# p r i n t the number of each c l a s s in the r e s u l t s

259 p r i n t " c l a s s r e p r e s e n t a t i o n "

f o r i in range ( 0 , len ( unique_tags ) ) :

261 p r i n t unique_tags [ i ] , " : " , a l l _ l i s t . count ( unique_tags [ i ] ) , ’\n ’

263 # p r i n t the number of times the searched f o r c l a s s i s in the top n

p l a c e m e n t s _ l i s t = l i s t ( )

265 p r i n t " search term in top "

f o r i in range ( 0 , len ( top_tags ) ) :

267 p l a c e m e n t s _ l i s t . extend ( top_tags [ i ] )

i f i == 0 :

269 p r i n t ’ 1 : ’ , p l a c e m e n t s _ l i s t . count ( query ) , ’\n ’

e l i f i == 4 :

271 p r i n t ’ 5 : ’ , p l a c e m e n t s _ l i s t . count ( query ) , ’\n ’

e l i f i == 9 :

273 p r i n t ’ 1 0 : ’ , p l a c e m e n t s _ l i s t . count ( query ) , ’\n ’

e l i f i ==24:

275 p r i n t ’ 2 5 : ’ , p l a c e m e n t s _ l i s t . count ( query ) , ’\n ’

p r i n t (1+ i ) , " : " , p l a c e m e n t s _ l i s t . count ( query )

277

#view p i c t u r e s

279 i f view :

i f Path :

281 obj . view_images ( ob j . top , Path )

e l s e :

283 obj . view_images ( ob j . top )
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285 # return l i s t of image tags and s i m i l a r i t y s c o r e s in order of

rankings

return top_tags , s i m i l a r i t y _ s c o r e s

287

def d e t e c t _ o b j ( obj , query , threshold , view=False , Path=Fa l se ) :

289 " " "

Find images in a database t h a t score >= the given threshold

291 " " "

293 # convert query to a vec tor

wordvec = obj . Word2Vec [ query ]

295

# here we append a l l of the s c o r e s f o r each image to a new r e s u l t s

l i s t

297 # order i s important here as the index of the score a l i g n s with the

stored score/tag/name information

r e s u l t s = [ ]

299 r e s u l t s _ i n d e x = [ ]

S = ob j . weights . reshape ( 1 0 0 0 , 3 0 0 )

301

f o r idx , img_score in enumerate ( ob j . s c o r e s ) :

303

s i m i l a r i t y = image_word_similari ty ( img_score , wordvec , S )

305 i f s i m i l a r i t y >= threshold :

r e s u l t s . append ( s i m i l a r i t y )

307 r e s u l t s _ i n d e x . append ( idx )

309 # convert to a numpy array and use a r g p a r t i t i o n to ge the INDEX of

the top 20 or so images
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r e s u l t s = numpy . array ( r e s u l t s )

311

# ob j . top = numpy . a r g p a r t i t i o n ( r e s u l t s ,− topn ) [−topn : ] # ge ts indeces

of top N scores , returned s c o r e s are unordered

313 # here s o r t a l l of r e s u l t s s m a l l e s t to l a r g e s t , get the top n b i g g e s t

and

# reverse the order so they are l a r g e s t to s m a l l e s t

315 obj . top = numpy . f l i p l r ( [ numpy . a r g s o r t ( r e s u l t s ) ] ) [ 0 ]

317 top_tags= l i s t ( )

s i m i l a r i t y _ s c o r e s = l i s t ( )

319 f o r i in ob j . top :

top_tags . append ( ob j . tags [ r e s u l t s _ i n d e x [ i ] ] )

321 s i m i l a r i t y _ s c o r e s . append ( r e s u l t s [ i ] )

323 unique_tags = l i s t ( s e t ( y f o r x in ob j . tags f o r y in x ) )

a l l _ l i s t = l i s t ( y f o r x in top_tags f o r y in x )

325

p r i n t " c l a s s r e p r e s e n t a t i o n "

327 f o r i in range ( 0 , len ( unique_tags ) ) :

p r i n t unique_tags [ i ] , " : " , a l l _ l i s t . count ( unique_tags [ i ] ) , ’\n ’

329

# p r i n t the number of times the searched f o r c l a s s i s in the top n

331 p l a c e m e n t s _ l i s t = l i s t ( )

p r i n t " search term in top "

333 f o r i in range ( 0 , len ( top_tags ) ) :

p l a c e m e n t s _ l i s t . extend ( top_tags [ i ] )

335 i f i == 0 :

p r i n t ’ 1 : ’ , p l a c e m e n t s _ l i s t . count ( query ) , ’\n ’

337 e l i f i == 4 :
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p r i n t ’ 5 : ’ , p l a c e m e n t s _ l i s t . count ( query ) , ’\n ’

339 e l i f i == 9 :

p r i n t ’ 1 0 : ’ , p l a c e m e n t s _ l i s t . count ( query ) , ’\n ’

341 e l i f i ==24:

p r i n t ’ 2 5 : ’ , p l a c e m e n t s _ l i s t . count ( query ) , ’\n ’

343 p r i n t (1+ i ) , " : " , p l a c e m e n t s _ l i s t . count ( query )

345 #view p i c t u r e s

i f view :

347 i f Path :

ob j . view_images ( resu l t s _ ind ex , Path )

349 e l s e :

ob j . view_images ( r e s u l t s _ i n d e x )

351

re turn top_tags , s i m i l a r i t y _ s c o r e s

353

355 def s t a t s ( ob j ) :

" " " p r i n t the c l a s s r e p r e s e n t a t i o n f o r the o b j e c t " " "

357 # l i s t of unique tags

unique_tags = l i s t ( s e t ( y f o r x in ob j . tags f o r y in x ) )

359

# l i s t of every tag with d u p l i c a t e s

361 a l l _ l i s t = l i s t ( y f o r x in ob j . tags f o r y in x )

363 p r i n t " c l a s s r e p r e s e n t a t i o n "

f o r i in range ( 0 , len ( unique_tags ) ) :

365 p r i n t unique_tags [ i ] , " : " , a l l _ l i s t . count ( unique_tags [ i ] ) , ’\n ’

367 def r e t r i e v e _ a l l ( obj , topn =50) :
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" " "

369 re turn a pandas dataframe with the P@1 P@5 P@n AP@n and MAP@n f o r

each c l a s s

in the Xdata o b j e c t .

371 " " "

373 # get a l i s t of unique c l a s s e s in the o b j e c t

unique_tags = l i s t ( s e t ( y f o r x in ob j . tags f o r y in x ) )

375

# l i s t of every tag with d u p l i c a t e s

377 a l l _ l i s t = l i s t ( y f o r x in ob j . tags f o r y in x )

379 # c r e a t e l i s t of a l l tags to search by f inding each tag t h a t occures

query = l i s t ( )

381 query . extend ( unique_tags )

383 S = obj . weights . reshape ( len ( ob j . s c o r e s [ 0 ] ) , len ( ob j . Word2Vec [ query

[ 0 ] ] ) )

385 # Create output data frame with rows l a b e l s = to query tags

query . append ( ’Mean ’ ) # add MAP as a column

387 dataframe = pd . DataFrame ( index=query , columns =[ ’P@1 ’ , ’P@5 ’ , ’P@n ’ , ’AP ’

] )

query . remove ( ’Mean ’ ) #remove i t from tags l i s t

389

# get the number of c l a s s−l a b e l s to search

391 num_words = len ( query )

# c o nt a i ne r f o r AP r e s u l t s

393 np_ap = numpy . zeros ( ( num_words , 1 ) , dtype = numpy . f l o a t 6 4 )
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395 f o r j in range ( 0 , num_words ) :

wordvec = ( ob j . Word2Vec [ query [ j ] ] )

397 r e s u l t s = l i s t ( )

399 f o r img_score in ob j . s c o r e s :

#Get image word s i m i l a r i t y

401 r e s u l t s . append ( image_word_similari ty ( img_score , wordvec , S ) )

403 # convert to a numpy array

r e s u l t s = numpy . array ( r e s u l t s )

405

# get the indeces f o r the topn l a r g e s t s c o r e s

407 obj . top = numpy . f l i p l r ( [ numpy . a r g s o r t ( r e s u l t s ) [−topn : ] ] ) [ 0 ]

409 top_tags= l i s t ( )

t o t _ p r e c = 0 . 0

411 num = 0 . 0

ind = 0 . 0

413

#chane in r e c a l l = min (# of r e l e v a n t items , # of items returned )

415 num_relevant = f l o a t ( a l l _ l i s t . count ( query [ j ] ) )

i f num_relevant > topn :

417 # i f there are more r e l e v a n t items than there are returned

#use number returend as r e c a l l

419 c h a n g e _ i n _ r e c a l l = topn

e l s e : # i f more items are returned than there are r e l e v a n t use #

r e l e v a n t

421 c h a n g e _ i n _ r e c a l l = num_relevant

423 # ob j . top i s a ranked l i s t of the i n d e c i e s of the top tags
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f o r ind , index in enumerate ( ob j . top , s t a r t =1) : # s t a r t counitng at

1

425 top_tags . extend ( ob j . tags [ index ] ) #add tags to a current l i s t

of tags

427 i f query [ j ] in ob j . tags [ index ] : # i f the query i s a tag f o r

image i

num += 1 . 0

429 t o t _ p r e c += num/ f l o a t ( ind ) #sum of p r e c i s i o n up to t h i s

point

431 i f num == 0 :

np_ap [ j , 0 ] = 0 # s e t value to 0 i f 0 items a c o r r e c t

433 e l s e :

np_ap [ j , 0 ] = t o t _ p r e c / c h a n g e _ i n _ r e c a l l # divide sum by change

in r e c a l l

435

# count the number of images with query as a tag in the topn

437 tp = f l o a t ( top_tags . count ( query [ j ] ) )

439 # f ind p r e c i s i o n a t 1 5 and n

pa1 = f l o a t ( ob j . tags [ ob j . top [ 0 ] ] . count ( query [ j ] ) )

441 i f topn >= 5 :

pa5=0

443 f o r ind in range ( 0 , 5 ) :

i f query [ j ] in ob j . tags [ ob j . top [ ind ] ] : pa5 += 1

445 pa5 = pa5 /5.0

e l s e :

447 pa5 = 0
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449 pan = f l o a t ( tp ) /topn # p r e c i s i o n @ topn or # r e l e v a n t a v a i l a b l e

r e c a l l = tp/c h a n g e _ i n _ r e c a l l

451

dataframe [ ’P@1 ’ ] [ query [ j ] ] = pa1

453 dataframe [ ’P@5 ’ ] [ query [ j ] ] = pa5

dataframe [ ’P@n ’ ] [ query [ j ] ] = pan

455 dataframe [ ’AP ’ ] [ query [ j ] ] = np_ap [ j , 0 ]

457 # p r i n t reca l l@n and AP@n

p r i n t query [ j ] , ’ r e c a l l @ ’ , topn , ’ : ’ , r e c a l l , ’ average p r e c i s i o n :

’ , np_ap [ j , 0 ]

459

mean_ap = numpy . mean( np_ap , dtype=numpy . f l o a t 6 4 )

461 dataframe [ ’P@1 ’ ] [ ’Mean ’ ] = dataframe [ ’P@1 ’ ] . mean ( )

dataframe [ ’P@5 ’ ] [ ’Mean ’ ] = dataframe [ ’P@5 ’ ] . mean ( )

463 dataframe [ ’P@n ’ ] [ ’Mean ’ ] = dataframe [ ’P@n ’ ] . mean ( )

dataframe [ ’AP ’ ] [ ’Mean ’ ] = mean_ap

465

p r i n t ’Mean average p r e c i s i o n : ’ , mean_ap

467

re turn dataframe

469

def g e t _ t r u e _ f a l s e _ r a t e ( obj , query ) :

471 " " "

f ind the true p o s i t i v e , f a l s e p o s i t i v e , p r e c i s i o n and AP f o r an

Xdata

473 o b j e c t a t each point over the f u l l s i z e of the s e t of images .

" " "

475 topn = obj . s i z e

S = obj . weights . reshape ( len ( ob j . s c o r e s [ 0 ] ) , len ( ob j . Word2Vec [ query ] ) )
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477

wordvec = ( ob j . Word2Vec [ query ] )

479

r e s u l t s = l i s t ( )

481

f o r img_score in ob j . s c o r e s :

483 #Get image word s i m i l a r i t y

r e s u l t s . append ( image_word_similari ty ( img_score , wordvec , S ) )

485

# convert to a numpy array and use a r g p a r t i t i o n to ge the INDEX of

the top 20 or so images

487 r e s u l t s = numpy . array ( r e s u l t s )

489 # get the indeces f o r the l a r g e s t s c o r e s

ob j . top = numpy . f l i p l r ( [ numpy . a r g s o r t ( r e s u l t s ) [−topn : ] ] ) [ 0 ]

491

top_tags= l i s t ( )

493 t o t _ p r e c = 0 . 0

num = 0 . 0

495 ind = 0 . 0

497 num_relevant = f l o a t ( len ( ob j . with_tags ( [ query ] ) ) )

i f num_relevant > topn :

499 # i f there are more r e l e v a n t items than there are returned

#use number returend as r e c a l l

501 c h a n g e _ i n _ r e c a l l = topn

e l s e : # i f more items are returned than there are r e l e v a n t use #

r e l e v a n t

503 c h a n g e _ i n _ r e c a l l = num_relevant
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505 tpr = 0 # true p o s i t i v e r a t e / r e c a l l

fpr = 0 # f a l s e p o s i t i v e r a t e

507 count = 0 . 0

509 t p r _ l i s t = l i s t ( )

f p r _ l i s t = l i s t ( )

511 p r e c i s i o n _ l i s t = l i s t ( )

513 # get the t rue and f a l s e p o s i t i v e r a t e and the precision@n

# obj . top i s a ranked l i s t of the i n d e c i e s of the top tags

515 f o r index in ob j . top :

count = count +1.0

517 i f query in ob j . tags [ index ] : # i f the query i s a tag f o r image i

tpr = ( tpr +1)

519 t p r _ l i s t . append ( tpr/ f l o a t ( num_relevant ) )

f p r _ l i s t . append ( fpr/ f l o a t ( topn−num_relevant ) )

521 e l s e :

fpr = ( fpr +1)

523 # fpr = count − tpr

f p r _ l i s t . append ( fpr/ f l o a t ( topn−num_relevant ) )

525 # f p r _ l i s t . append ( fpr/ f l o a t ( count ) )

t p r _ l i s t . append ( tpr/ f l o a t ( num_relevant ) )

527 p r e c i s i o n _ l i s t . append ( tpr/ f l o a t ( count ) )

529 # Ca l c u l a te average p r e c i s i o n

avg_prec is ion = l i s t ( )

531 num=0

ind = 0

533 t o t _ p r e c =0
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535 i f num_relevant > topn :

# i f there are more r e l e v a n t items than there are returned

537 #use number returend as r e c a l l

c h a n g e _ i n _ r e c a l l = topn

539 e l s e : # i f more items are returned than there are r e l e v a n t use #

r e l e v a n t

c h a n g e _ i n _ r e c a l l = num_relevant

541

# ob j . top i s a ranked l i s t of the i n d e c i e s of the top tags

543 f o r index in ob j . top : # s t a r t counitng at 1 ins tead of 0

top_tags . extend ( ob j . tags [ index ] ) #add tags to a current l i s t of

tags

545 ind +=1.0

i f query in ob j . tags [ index ] : # i f the query i s a tag f o r image i

547 num += 1 . 0

t o t _ p r e c += num/ f l o a t ( ind )

549 avg_prec is ion . append ( t o t _ p r e c / c h a n g e _ i n _ r e c a l l )

551 # c r e a t e pandas dataframe with true p o s i t i v e rate , f a l s e p o s i t i v e

rate , and ap

dataframe = pd . DataFrame ( [ t p r _ l i s t , f p r _ l i s t , p r e c i s i o n _ l i s t ,

avg_prec is ion ] , index =[ ’ True p o s i t i v e r a t e ’ , ’ Fa l se p o s i t i v e r a t e ’ , ’

P r e c i s i o n ’ , ’ Average P r e c i s i o n ’ ] )

553

re turn dataframe

555

def image_word_similari ty ( image , word , S ) :

557 " " "

re turn a s i m i l a r i t y score f o r the given word and image using a given

559 t ranformat ion matrix S
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" " "

561 sim = (1− s p a t i a l . d i s t a n c e . cos ine ( numpy . dot ( image , S ) ,word ) )

re turn sim

563

565

def c r e a t e _ s e r i e s ( obj , topn =100 , query = [ ] ) :

567 " " "

c r e a t e a pandas s e r i e s conta in ing the AP@n f o r each point from 1 to

topn

569 f o r the given query

" " "

571

# l i s t of every tag with d u p l i c a t e s

573 a l l _ l i s t = l i s t ( y f o r x in ob j . tags f o r y in x )

575 S = obj . weights . reshape ( len ( ob j . s c o r e s [ 0 ] ) , len ( ob j . Word2Vec [ query

[ 0 ] ] ) )

577 num_words = len ( query )

579 np_ap = numpy . zeros ( ( num_words+1 ,1) , dtype = numpy . f l o a t 6 4 )

f o r j in range ( 0 , num_words ) :

581 wordvec = ( ob j . Word2Vec [ query [ j ] ] )

#wordvec = ( ( wordvec + 0 . 5 ) ) ∗∗2

583

r e s u l t s = [ ]

585

# get the s i m i l a r i t y s c o r e s f o r each image to the current query

587 f o r img_vec in ob j . s c o r e s :
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r e s u l t s . append(1− s p a t i a l . d i s t a n c e . cos ine ( numpy . dot ( img_vec ,

S ) , wordvec ) )

589

r e s u l t s = numpy . array ( r e s u l t s )

591 # get the indeces f o r the l a r g e s t s c o r e s

ob j . top = numpy . f l i p l r ( [ numpy . a r g s o r t ( r e s u l t s ) [−topn : ] ] ) [ 0 ]

593

top_tags= l i s t ( )

595 t o t _ p r e c = 0 . 0

num = 0 . 0

597

num_relevant = f l o a t ( a l l _ l i s t . count ( query [ j ] ) )

599 i f num_relevant > topn :

# i f there are more r e l e v a n t items than there are returned

601 #use number returend as r e c a l l

c h a n g e _ i n _ r e c a l l = topn

603 e l s e : # i f more items are returned than there are r e l e v a n t use #

r e l e v a n t

c h a n g e _ i n _ r e c a l l = num_relevant

605

# ob j . top i s a ranked l i s t of the i n d e c i e s of the top tags

607 f o r counter , index in enumerate ( ob j . top , s t a r t = 1) : # s t a r t

counitng at 1 ins tead of 0

top_tags . extend ( ob j . tags [ index ] ) #add tags to a current l i s t

of tags

609 # ind +=1.0

i f query [ j ] in ob j . tags [ index ] : # i f the query i s a tag f o r

image i

611 num += 1

t o t _ p r e c += num/ f l o a t ( counter )
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613

i f num == 0 :

615 np_ap [ j , 0 ] = 0

e l s e :

617 np_ap [ j , 0 ] = t o t _ p r e c / c h a n g e _ i n _ r e c a l l

619 np_ap [ j +1] = numpy . mean( np_ap [ : num_words ] )

621 row_names = [ ]

row_names . extend ( query )

623 row_names . append ( ’MAP’ )

# c r e a t e a pandas s e r i e s of the average p r e c i s i o n ( ap ) with the query

tags

625 # as the row l a b e l s ( index )

a p _ s e r i e s = pd . S e r i e s ( np_ap [ : , 0 ] , index=row_names )

627

# return t h i s s e r i e s so i t can be placed in a dataframe

629 re turn a p _ s e r i e s

631

def AP_sweep ( obj , topn =100 , query = [ ] ) :

633 " " "

C a l c u la t e the AP@n from 1 to topn f o r each of the tags in query

and return

635 a pandas dataframe conta in ing the data .

" " "

637 # l i s t of every tag with d u p l i c a t e s

a l l _ l i s t = l i s t ( y f o r x in ob j . tags f o r y in x )

639

# reshape weights i n t o the p r o j e c t i o n matrix S
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641 S = obj . weights . reshape ( len ( ob j . s c o r e s [ 0 ] ) , len ( ob j . Word2Vec [ query

[ 0 ] ] ) )

643 num_words = len ( query )

645 # c r e a t e a matrix of average p r e c i s i o n r e s u l t s a t each sample point

np_ap = numpy . zeros ( ( num_words+1 , topn ) , dtype = numpy . f l o a t 3 2 )

647

# i t e r a t e through the word in query

649 f o r j in range ( 0 , num_words ) :

wordvec = ( ob j . Word2Vec [ query [ j ] ] )

651

r e s u l t s = l i s t ( )

653

# get the s i m i l a r i t y s c o r e s f o r each image to the current query

655 f o r img_vec in ob j . s c o r e s :

r e s u l t s . append(1− s p a t i a l . d i s t a n c e . cos ine ( numpy . dot ( img_vec ,

S ) , wordvec ) )

657

r e s u l t s = numpy . array ( r e s u l t s )

659 # get the indeces f o r the l a r g e s t s c o r e s

ob j . top = numpy . f l i p l r ( [ numpy . a r g s o r t ( r e s u l t s ) [−topn : ] ] ) [ 0 ]

661

top_tags= l i s t ( )

663 t o t _ p r e c = 0 . 0

num = 0 . 0

665

num_relevant = f l o a t ( a l l _ l i s t . count ( query [ j ] ) )

667
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# c a l c u l a t e AP f o r the current c l a s s a t every point in the ranked

l i s t

669 f o r counter , tag_index in enumerate ( ob j . top , s t a r t = 1) :

671 i f num_relevant > counter :

# i f there are more r e l e v a n t items than there are

returned

673 #use number returend as r e c a l l

c h a n g e _ i n _ r e c a l l = f l o a t ( counter )

675 e l s e : # i f more items are returned than there are r e l e v a n t

use # r e l e v a n t

c h a n g e _ i n _ r e c a l l = f l o a t ( num_relevant )

677

top_tags . extend ( ob j . tags [ tag_index ] ) #add tags to a current

l i s t of tags

679 # ind +=1.0

i f query [ j ] in ob j . tags [ tag_index ] : # i f the query i s a tag

f o r image i

681 num += 1

t o t _ p r e c += num/ f l o a t ( counter )

683

# j i s the tag index , counter−1 i s the numpy average

p r e c i s i o n index

685 i f num == 0 :

np_ap [ j , counter−1] = 0 #−1 to a d j u s t f o r indexing

687 e l s e :

np_ap [ j , counter−1] = t o t _ p r e c /c h a n g e _ i n _ r e c a l l

689

np_ap [ j + 1 , : ] = numpy . mean( np_ap [ : j , : ] , a x i s =0 , dtype=numpy . f l o a t 3 2 )

691
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row_names = [ ]

693 row_names . extend ( query )

row_names . append ( ’MAP’ )

695 # c r e a t e a pandas datframe of the average p r e c i s i o n ( ap ) with the

query tags

# as the row l a b e l s ( index )

697 prec is ion_dataframe = pd . DataFrame ( np_ap , index=row_names )

699 # return the dataframe

return prec is ion_dataframe
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Appendix O

CD_rank_svm.py

# −∗− coding : utf−8 −∗−

2 # Evan Novotny

#4/12/2016

4

# Module conta in ing RSVM crea t ion , t r a i n i n g and hyper−parameter tuning

f u n c t i o n s

6

# COMPILING THE DLIB PYTHON INTERFACE

8 # Dlib comes with a compiled python i n t e r f a c e f o r python 2 . 7 on MS

Windows . I f

# you are using another python vers ion or operat ing system then you

need to

10 # compile the d l i b python i n t e r f a c e before you can use t h i s f i l e . To

do t h i s ,

# run compile_dlib_python_module . bat . This should work on any

operat ing

12 # system so long as you have CMake and boost−python i n s t a l l e d .

# On Ubuntu , t h i s can be done e a s i l y by running the command :

14 # sudo apt−get i n s t a l l l i b b o o s t−python−dev cmake

16 import d l i b

import numpy as np
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18 import pandas as pd

import Xdata

20

def p s i _ f u n c t i o n ( y , x ) :

22 " " "

re turns the j o i n t−f e a t u r e vec tor f o r x and y , which i s the tensor (

outer )

24 product f l a t t e n d i n t o a vec tor and converted to a l i s t

" " "

26 r e s u l t = np . outer ( x , y ) # r e s u l s t i s dim ( x ) by dim ( y )

r e s u l t = r e s u l t . f l a t t e n ( )

28

r e s u l t = r e s u l t . t o l i s t ( )

30 re turn r e s u l t

32 def get_data ( i n _ f i l e ) :

" " " ge ts data f o r RSVM t r a i n i n g " " "

34

f = open ( i n _ f i l e , ’ r ’ )

36

# these are d l i b o b j e c t s used by the rank svm algorithm

38 quer ies = d l i b . ranking_pairs ( )

data = d l i b . ranking_pair ( )

40

f i r s t _ l i n e = True

42 f o r l i n e in f :

i f ’ t a r g e t ’ in l i n e :

44

# each new t a r g e t marks the end of a ranking pai r so we need

to
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46 # handle the f i r s t time d i f f e r e n t l y from everyother time

i f f i r s t _ l i n e :

48 t a r g e t = np . array (map( np . f l o a t 3 2 , l i n e . r s t r i p ( ) . s p l i t ( )

[ 1 : ] ) )

f i r s t _ l i n e = Fa l se

50 e l s e :

quer ies . append ( data )

52 #we don ’ t need to hold onto the previous data values

because

# they are s tored in the d l i b quer ies v a r i a b l e

54 del data

data = d l i b . ranking_pair ( )

56 #drop the [ 0 ] term because i t i s j u s t the work ’ t a r g e t : ’

and

#map the r e s t as f l o a t 32 to save on memory( d e f a u l t i s

f l o a t 6 4 )

58 t a r g e t = np . array (map( np . f l o a t 3 2 , l i n e . r s t r i p ( ) . s p l i t ( )

[ 1 : ] ) )

60 # nonrelevant needs to be f i r s t so the ’ r e l e v a n t ’ subs t r ing i s n ’ t

found

e l i f ’ nonrelevant ’ in l i n e :

62 nonrelevant = np . array (map( np . f l o a t 3 2 , l i n e . r s t r i p ( ) . s p l i t ( )

[ 1 : ] ) )

# the ps i f u c t i o n i s the j o i n t data r e p r e s e n t a t i o n

64 vec = p s i _ f u n c t i o n ( t a r g e t , nonrelevant )

data . nonrelevant . append ( d l i b . vec tor ( vec ) )

66

e l i f ’ r e l e v a n t ’ in l i n e :
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68 r e l e v a n t = np . array (map( np . f l o a t 3 2 , l i n e . r s t r i p ( ) . s p l i t ( )

[ 1 : ] ) )

vec = p s i _ f u n c t i o n ( t a r g e t , r e l e v a n t )

70 data . r e l e v a n t . append ( d l i b . vec tor ( vec ) )

72

f . c l o s e ( )

74 quer ies . append ( data )

re turn quer ies

76

78

def create_CDSVM_rank_trainer (C=1000 , eps =0 .001 , max_iter =10000 , i n f i l e = ’D

:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_training/CDSVM_train . t x t ’ ) :

80 " " "

c r e a t e a d l i b rank svm t r a i n e r o b j e c t with the input parameters C,

eps , max_iter

82 and c r e a t e a ranking_pairs o b j e c t named quer ies to t r a i n on

" " "

84 # c r e a t e d l i b rank svm t r a i n e r o b j e c t

t r a i n e r = d l i b . svm_rank_trainer ( )

86

t r a i n e r . c = C # f i t t rade of f ,

88 t r a i n e r . eps i lon = eps # convergence s i z e

t r a i n e r . max_ i te ra t ions = max_iter #max # of i t e r a t i o n s

90 # t r a i n e r . be_verbose = 1

92 # c r e a t e a d l i b ranking_pairs o b j e c t and load i t with re levane/

nonrelevant

#from our input data f i l e
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94 quer ies = get_data ( i n f i l e )

96 re turn t r a i n e r , quer ies

98 def train_CDSVM_rank ( t r a i n e r , queries , o u t f i l e = ’D:/ Thesis/

t r a i n i n g _ d a t a /CDSVM_models/CD_model . t x t ’ ) :

" " "

100 Perform RSVM t r a i n i n g and output to the f i l e o u t p u t f i l e

" " "

102 # Do rank svm t r a i n i n g .

rank = t r a i n e r . t r a i n ( quer ies )

104

S = np . asarray ( ( rank . weights ) )

106

# save the c a l c u l a t e d rank svm weights as a numpy vector in a . t x t

f i l e

108 np . s a v e t x t ( o u t f i l e , S )

110

def cross_validate_CDSVM_rank ( t r a i n e r , queries , f o l d s =4) :

112 " " "

preform n fo ld cross−v a l i d a t i o n of d l i b SVM rank t r a i n e r using the

given

114 ranking_pairs quer ies

" " "

116

p r i n t ’C : ’ , t r a i n e r . c , ’ Epsi lon : ’ , t r a i n e r . epsi lon , ’ f o l d s : ’ ,

f o l d s

118 p r i n t ( " Cross v a l i d a t i o n r e s u l t s : { } " . format (

d l i b . c r o s s _ v a l i d a t e _ r a n k i n g _ t r a i n e r ( t r a i n e r , queries , f o l d s ) ) )
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120 p r i n t ’\n ’

122

def Tune_parameters ( obj , c_range , eps_range , t r a i n i n g _ f i l e , l a b e l _ d i c t ,

with_queries =0) :

124 " " "

Preform Cross−v a l i d a t i o n tuning

126

128 Preform Cross−v a l i d a t i o n hyperperameter t r a i n i n g on a s e t of cross−

v a l i d a t i o n

data . To f r e e up memory a d i c t i o n a r y l a b e l _ d i c t must be passed with

the word

130 v e c t o r s f o r t r a i n i n g l a b e l s . A t r a i n i n g o b j e c t i s crea ted along with

the quer ies

used f o r t r a i n i n g .

132

−−−−−inputs−−−−−

134 obj − a Xdata o b j e c t

c_range − a l i s t of C values to evaluate a t

136 eps_range − a l i s t of eps i lon values to evaluate a t

t r a i n i n g _ f i l e − a t r a i n i n g f i l e to r e t r a i n the RSVM with

138 l a b e l _ d i c t − a d i c t i o n a r y or word−space conta in ing word v e c t o r s

with_queries − precomputed quer ies f o r the RSVM, these are the j o i n t

f e a t u r e

140 v e c t o r s used f o r t r a i n i n g .

−−−−−outputs−−−−−

142 r e s u l t s _ f r a m e : a pandas dataframe of r e s u l t s

" " "

144
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image_length = len ( ob j . s c o r e s [ 0 ] )

146 word_length = 300

column_names = [ ’C ’ , ’ eps ’ , ’MAP’ , ’P@1 ’ , ’P@5 ’ , ’ P@100 ’ ]

148 r e s u l t s _ f r a m e = pd . DataFrame ( columns=column_names )

150 # seach f u l l s e t of data

topn = obj . s i z e

152

unique_tags = l i s t ( s e t ( y f o r x in ob j . tags f o r y in x ) )

154

# l i s t of every tag with d u p l i c a t e s

156 a l l _ l i s t = l i s t ( y f o r x in ob j . tags f o r y in x )

158 # c r e a t e l i s t of a l l tags to search by f inding each tag t h a t occures

query = l i s t ( )

160 query . extend ( unique_tags )

162

i f with_queries == 0 :

164 # c r e a t e a rank svm t r a i n e r and quer ies f o r t r a i n i n g C and eps

values don ’ t matter here

[ t r a i n e r , quer ies ] = create_CDSVM_rank_trainer (C=10 , eps = 0 . 1 ,

max_iter =10000 , i n f i l e = t r a i n i n g _ f i l e )

166 e l s e : # i f quer ies were given use them f o r t r a i n i n g

quer ies = with_queries

168 t r a i n e r = d l i b . svm_rank_trainer ( )

170 # c y c l e through eps range

f o r eps_val in eps_range :

172
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t r a i n e r . eps i lon = eps_val

174

# c y c l e through C value range

176 f o r c_val in c_range :

t r a i n e r . c = c_val

178

# p r i n t ’@ C= ’ , s t r ( c_val ) , ’ eps = ’ , s t r ( eps_val )

180

# r e t r a i n with new values

182 rank = t r a i n e r . t r a i n ( quer ies )

184 # get new S matrix by reshaping weights as a numpy array

S = np . asarray ( ( rank . weights ) ) . reshape ( image_length ,

word_length )

186

# save the S models f o r reuse

188 save_weights = ’D:/ Thesis/ t r a i n i n g _ d a t a /CDSVM_models/

no_softmax_models/C ’+ s t r ( c_val ) + ’ _eps ’+ s t r ( eps_val ) + ’ _samp100 . t x t ’

np . s a v e t x t ( save_weights , np . asarray ( ( rank . weights ) ) )

190

# p r e a l l o c a t e arrays f o r holding values

192 num_words = len ( query )

np_ap = np . zeros ( ( num_words , 1 ) ) # average p r e c i s i o n numpy

array

194 p r e c i s i o n 1 _ a r r a y = np . zeros ( num_words )

p r e c i s i o n 5 _ a r r a y = np . zeros ( num_words )

196 p r e c i s i o n 1 0 0 _ a r r a y = np . zeros ( num_words )

198 # evaluate Cross−v a l i d a t i o n r e s u l t s f o r each C eps i lon value

pai r
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f o r j in range ( 0 , num_words ) :

200 #wordvec = ( ob j . Word2Vec [ query [ j ] ] )

wordvec = l a b e l _ d i c t [ query [ j ] ]

202

r e s u l t s = [ ]

204

f o r img_score in ob j . s c o r e s :

206 #Get image word s i m i l a r i t y

r e s u l t s . append ( Xdata . image_word_similari ty ( img_score

, wordvec , S ) )

208

# convert to a numpy array

210 r e s u l t s = np . array ( r e s u l t s )

212 # get the indeces f o r the l a r g e s t s c o r e s

ob j . top = np . f l i p l r ( [ np . a r g s o r t ( r e s u l t s ) [−topn : ] ] ) [ 0 ]

214

top_tags= l i s t ( )

216 t o t _ p r e c = 0 . 0

num = 0 . 0

218 ind = 0 . 0

220 # c a l c u l a t e AP, P@1 , P@5 and

num_relevant = f l o a t ( a l l _ l i s t . count ( query [ j ] ) )

222 i f num_relevant > topn :

# i f there are more r e l e v a n t items than there are

returned

224 #use number returend as r e c a l l

c h a n g e _ i n _ r e c a l l = topn
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226 e l s e : # i f more items are returned than there are

r e l e v a n t use # r e l e v a n t

c h a n g e _ i n _ r e c a l l = num_relevant

228

# ob j . top i s a ranked l i s t of the i n d e c i e s of the top

tags

230 f o r index in ob j . top : # s t a r t counitng at 1 ins tead of 0

top_tags . extend ( ob j . tags [ index ] ) #add tags to a

current l i s t of tags

232 ind +=1.0

i f query [ j ] in ob j . tags [ index ] : # i f the query i s a

tag f o r image i

234 num += 1 . 0

t o t _ p r e c += num/ f l o a t ( ind )

236

# ger average p r e c i s i o n f o r query # j

238 i f num == 0 :

np_ap [ j , 0 ] = 0

240 e l s e :

np_ap [ j , 0 ] = t o t _ p r e c / c h a n g e _ i n _ r e c a l l

242

pa1 = f l o a t ( top_tags [ 0 ] . count ( query [ j ] ) )

244 i f topn >= 5 :

pa5=0

246 f o r ind in range ( 0 , 5 ) :

i f query [ j ] in ob j . tags [ ob j . top [ ind ] ] : pa5 += 1

248 pa5 = pa5 /5.0

e l s e :

250 pa5 = 0
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252 i f topn >=100:

pa100=0

254 f o r ind in range ( 0 , 1 0 0 ) :

i f query [ j ] in ob j . tags [ ob j . top [ ind ] ] : pa100 +=

1

256 pa5 = pa100 /5.0

e l s e :

258 pa100 = 0

260 # save f o r averaging l a t e r

p r e c i s i o n 1 _ a r r a y [ j ] = pa1

262 p r e c i s i o n 5 _ a r r a y [ j ] = pa5

p r e c i s i o n 1 0 0 _ a r r a y [ j ] = pa100

264 # get means f o r the current c eps pa i r

mean_ap = np . mean( np_ap )

266 meanat1 = np . mean( p r e c i s i o n 1 _ a r r a y )

meanat5 = np . mean( p r e c i s i o n 5 _ a r r a y )

268 meanat100 = np . mean( p r e c i s i o n 1 0 0 _ a r r a y )

270 ser ies_Ceps = pd . S e r i e s ( [ c_val , eps_val , mean_ap , meanat1 ,

meanat5 , meanat100 ] , index=column_names )

272 #append r e s u l t s to the r e s u l t s frame

r e s u l t s _ f r a m e = r e s u l t s _ f r a m e . append ( series_Ceps ,

ignore_index=True )

274

re turn r e s u l t s _ f r a m e
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