
DEFENSE AGAINST ATTACKS IN SELF SERVICE

CLOUD USING REINFORCEMENT LEARNING

 By

 SAI SRAVAN GUDIPATI

 Bachelor of Technology in Computer Science

and Engineering

 Gitam University

 Visakhapatnam, Andhra Pradesh

 2013

Submitted to the Faculty of the Graduate College of the

Oklahoma State University in partial fulfillment of
the requirements for the Degree of

MASTER OF SCIENCE
July, 2016

ii	
	

 DEFENSE AGAINST ATTACKS IN SELF SERVICE

CLOUD USING REINFORCEMENT LEARNING

Thesis Approved:

 Dr. Johnson Thomas

Thesis Adviser

Dr. David Cline

 Dr. Ronak Etemadpour

iii	
Acknowledgements	reflect	the	views	of	the	author	and	are	not	endorsed	by	committee	
members	or	Oklahoma	State	University.	

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Johnson Thomas for

his excellent guidance, patience, and providing me with an excellent atmosphere

for doing research. His guidance helped me to successfully complete my research.

Besides my advisor, I would like to thank rest of the thesis committee: Dr. David Cline,

Dr. Ronak Etemadpour for their encouragement and insightful comments.

Last but not the least; I would like to thank my family for supporting me throughout my

life.

iv	
	

Name: SAI SRAVAN GUDIPATI

Date of Degree: July, 2016

Title of Study: DEFENSE AGAINST ATTACKS IN SELF SERVICE CLOUD USING

REINFORCEMENT LEARNING

Major Field: COMPUTER SCIENCE

Abstract:

Cloud computing offers various services which are analogous to traditional data centers.

The on demand supply of resources make this model of utility computing as the platform

for many web based services. However, security is always a major concern. This thesis

proposes a new architecture called Self-service cloud computing with virtual shield (VS)

to secure the entire cloud environment. When a malicious attack is predicated, the Virtual

shield (VS) dynamically changes the configurations of the client virtual machines (VM)

using a reinforcement learning mechanism to achieve the required security. The system

may be dynamically modified in response to changes in system configuration, state,

and/or workload. The reward values generated during the learning process determines the

reconfiguration of the client. Simulation results show that the dynamic reconfiguration of

virtual machines when anticipated to confront an attack, diminishes the likelihood of an

attack and secures the cloud virtual machines.	

v	
		

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Overview ..1
 1.2 Self Service cloud with virtual Shield ...2
 1.3 Reinforcement Learning ..3
 1.4 Problem Statement ...3
 1.5 Research Objective ..3
 1.6 Outline ..4

II. LITERATURE REVIEW ..5

 2.1 Security issues in Cloud Computing ..6
 2.2 Self Service Cloud Computing ..8
 2.3 Attacks in the Cloud... 11
 2.3.1 Denial of Service Attack... 11
 2.3.2 Side Channel Attack..13.
 2.4 Reinforcement Learning ..15
 2.3.1 Elements of Reinforcement Learning ...15

III. PROPOSED WORK ..17

 3.1 Introduction ..17
 3.2 System Building ...17
 3.3 Components ...20
 3.3.1 SDom0 ..20
 3.3.2 Mutually Trusted Service Domain ..20
 3.3.3 Virtual Shield..20
 3.3.4 Domain Builder...21
 3.3.5 Client Meta Domain..21
 3.4 Methodology in Virtual Shield.. 22
 3.4.1 Using Reinforcement Learning ...23
 3.4.1.1 Q-Learning as a model free based approach25

vi	
	

Chapter Page

IV. SIMULATION METHODOLOGY ..29

 4.1 Implementation ..29
 4.1.1 SCC Sub System ...30
 4.1.2 Mutually trusted Service Domain ...30
 4.1.3 Virtual Shield ..30
 4.1.4 Configuration System ...31
 4.1.5 Attack System..32
 4.1.6 Virtual Machine Termination..34
 4.2 Communication Protocol..35
 4.3 Simulation Algorithm...36

V. RESULTS ..39
 5.1 Single Attack on a single Virtual Machine...39
 5.2 Combined Attack on a single Virtual Machine...41
 5.3 Combined Attack on multiple Virtual Machines......................................42

VI. CONCLUSION..44

REFERENCES ..46

vii	
	

LIST OF TABLES

Table Page

 1...1

viii	
	

LIST OF FIGURES

Figure Page

 2.1 Basic Cloud Frameworks ...5
 2.2 Trust between users ..8
 2.3 Self Service Cloud Computing ..10
 3.1 Self Service with virtual shield ..19
 3.2 The agent-environment interaction in reinforcement learning22
 4.1 Communication protocol ...35
 4.2 State Diagram...36
 5.1(a) Attack graph for a single virtual machine...40
 5.1(b) Reward values graph for a single virtual machine..40
 5.2(a) Attack graph for single virtual machine with combined attacks...................41
 5.2(b) Reward values graph for single virtual machine with combined attacks......42
 5.3(a) Attack graph for simultaneous combined attacks..43
 5.3(b) Reward values graph for simultaneous combined attacks.............................43

1	
	

CHAPTER I

INTRODUCTION

1.1 OVERVIEW

Cloud computing is a novel architecture in the field of information technology. Cloud computing

offers various services which are analogous to traditional data centers. Software as a service

(SAAS), Infrastructure as a service (IAAS), Application as a service (AAAS), Platform as a

service (PAAS) promotes cloud computing to various organizations [7]. Cloud computing

provides location independent services to the user. Resource allocation, data management, load

balancing is under the control of cloud service providers. However, security is always a major

concern in cyber cloud technology. The principles, methodologies, and tools for secure cloud

computing are yet to be developed. Various cloud security systems such as advanced cloud

systems (ASP) through secure virtualization [8], cloud protector through cloud trace back

mechanism [10], hierarchical attribute encryption [11] have been proposed to enhance security in

the cloud environment. However, these mechanisms degrade the performance of the system and

counter only known attacks.

2	
	

A novel architecture called self-service cloud computing [1] has been introduced to resolve the

security faced by guest virtual machines. This system is not concerned about the security of the

host operating system since most of the privileges exists within the guest Meta domain created.

Moreover, there is no standard way of measuring the cloud system with respect to security. This

paper introduces an extension to self-service cloud computing [1] to dynamically configure the

privileges between the host operating system and guest virtual machines in SSC (Self Service

Cloud Computing).This protects the host operating system from the guest virtual machines.

1.2 SELF SERVICE CLOUD WITH VIRTUAL SHIELD

Self-service cloud computing is a service oriented architecture which mitigated security and

privacy issues related to client virtual machines. Inflexible control, which requires cloud

providers to define security measurements like VMware introspection, migration and check

pointing are handed over to the client’s Meta domain in SSC. The Hypervisor and hardware are

assumed to be a TRUSTED COMPUTING BASE since they are provided by trusted

organizations in this architecture. In self-service cloud computing the host operating system has

no privileges to view the guests virtual CPU, memory or the configuration parameters of the Meta

domain. The operating system acts to initiate the boot up process and hold the privileges to shut

down the virtual machines. Though this architecture provides a MUTUALLY TRUSTED

SERVICE DOMAINS (MTSDs) which is a regulatory compliance between cloud providers and

users it is not sufficient to handle the misuse of the cloud infrastructure by the guest operating

systems.

This research focuses on shifting the privileges between the host operating system and guest

virtual machines. A Virtual Shield (VS) is introduced to act according to the information

3	
	

provided by the MTSDs. The Virtual shield is a virtual machine designed to dynamically

configure the guest virtual machines with the help of a reinforcement learning algorithm.

1.3 REINFORCEMENT LEARNING

In the proposed architecture the virtual shield learns from the environment using reinforcement

learning. This learning in turn facilitates the configuration of the host and guest virtual machines

dynamically. The shifting of privileges reduces the probability of an attack in self-service cloud

computing.

1.4 PROBLEM STATEMENT

Guest operating systems misuse the cloud infrastructure for malicious activities. At the moment,

there is no way to identify the attacks because most of the privileges exist within the Meta

domain of the guest. This increases the chances of an attack and results in various attacks on the

host virtual machine and hypervisor.

1.5 RESEARCH OBJECTIVE

The objective of this work is to reduce the probability of an attack even before it actually happens

in self-service cloud computing by introducing a virtual shield in the system. The virtual shield

has the capability to learn from the environment and dynamically configure the host and guest

operating systems. This learning is based on the reinforcement learning methodology.

4	
	

1.6 OUTLINE

The rest of the thesis is organized as follows: Chapter 2 provides the review of literature, Chapter

3 presents the proposed work, Chapter 4 covers simulations and Chapter 5 with the results.

Finally, Chapter 6 concludes our paper and provides some insights into future work.

5	
	

CHAPTER II

 LITERATURE REVIEW

Cloud computing refers to computing over the internet where dynamically scaled shared

resources (mostly virtual) are provided as a service by using virtualization platforms. The cloud

architecture is based on virtualization of the resources. Below is the basic cloud architecture [7].

	

	

Figure 2.1: Basic Cloud Frameworks

6	
	

Cloud computing utilizes a service oriented architecture to utilize the services of the cloud.	There

are different types of virtualizations that are used in cloud computing such as Storage, Network

and server virtualization [8] which yields a different set of security concerns for each type of

virtualization technique used.	

2.1 SECURITY ISSUES IN CLOUD COMPUTING

The client or user is unaware of which physical system the process is actually running on and

where the data is stored. If a malicious user is from same Physical system, he can get the data

from the physical system. This is because VM’s (Virtual Machines) map the data on storage

provided logically but all the data resides physically on single storage. Data centers are located

across the globe. A user should be able to define where his data and process should reside

because each country has different security policies.

Different data centers have different security policies and different VM’s run on different zones

of security leading to loss of policies and increased security concerns. Because all these VM’s

from different security zones communicate with each other on a Virtual Network, a weak link

will pose a severe threat to the whole application [9].

Since the cloud uses virtualization, it needs to keep up to date with the latest patches for all the

virtual machines which is very difficult to manage. Security configuration management is a

serious problem and administrators have to keep track of each VM and all the security policies

related to data and localization. The Cloud uses different service models such as SaaS, Paas,

Daas, Iaas, and NaaS [7], which introduces different levels of security systems for each kind of

service models.

7	
	

Virtualization introduces many more problems into the cloud [8]. Using virtualization introduces

many new OS types over which the applications are run. These new OS’s are a security concern.

Different virtual OS’s have different security mechanisms. If one of the new OS is attacked, then

the attacker will try to get access to the underlying physical host. This means it will affect the

security of all other virtual machines running on this physical host.

The VM’s communicate with each other over the network which opens avenues for the guest to

guest attack where one virtual machine tries to attack other virtual machines. Moreover, it is

difficult to keep track of the VM’s. In this scenario two VM’s communicate with each other over

a network. VM1 can get information regarding VM2 by sending queries while communicating.

VM1 might be an intruder or a malicious user. Since it’s difficult to keep track of VM’s it is

difficult to determine who the malicious user is and what information has been compromised.

All the services (Saas, Paas, IaaS, Security as a Service, DaaS, NaaS) [7] are offered using web

services or Web browsers. Hence VM security alone is not enough. Using these web services

users will get access to the VM’s on which these services run. we therefore need to secure the

way users communicate with these VMs. Cloud provider need to trust when a user uses an

application developed on the cloud. A different user in another VM from the cloud can

communicate with the application running on the Cloud. Hence, we need to have trust between

the users in the cloud when they communicate with each other.

8	
	

	

	

	

	

Figure 2.2 Trusts between Users

The dynamic and elastic nature of cloud introduces new threats [7]. When new resources are

added to the existing cloud they must be compatible with existing security policies before use.

This introduces dynamic security assignment before use.

The proposed work is related to self-service cloud computing [1]. The self-service cloud

computing architecture is modified to enhance security and reduce the chances of attack on the

system. To enhance the security of the cloud system, reinforcement learning methods can be

used. Furthermore, the virtual shield can be configured with different security metrics to defend

against various attacks on the host virtual machine.

2.2 SELF SERVICE CLOUD COMPUTING

Self-service cloud computing is a computing model that resolves two shortcomings in the

traditional cloud architecture. Virtualization is the key to any cloud architecture [7]. Virtual

machine monitors are used in many cloud architectures to administer and execute client virtual

machines. These virtual machine monitors comprises of a Hypervisor, Hardware and a host

virtual machine called dom0. The hypervisor and hardware are assumed to be a trusted computing

base whereas the dom0 is considered to be the source of different attacks. Since most of the

Application1	
User	1	

VM-1	

Application2	
User2	
	

VM-2	

9	
	

privileges lies within dom0 there is a high risk of utilizing this administrative domain for

malicious activities.

The two major problems in traditional cloud computing are

• Security and privacy of the client virtual machine

The state of the client virtual machine can be inspected by dom0. It holds the privileges

to inspect the contents of the client VMs and their configurations. The client virtual

machines security and privacy can be compromised due to various attacks by the host

virtual machine’s (Dom0). Misconfiguration and malicious system administrators can be

the source of attacks.

• Inflexible control over the client VMs

Virtualization facilitates different services to the client. It has the potential to enable

services like, migration, check pointing and VM introspection [1]. However, the

deployment of these services in the present cloud architecture is under the control of

cloud infrastructure providers. The client virtual machines have no control over the

adoption of these services. Upon the request of the Client, the virtual machines are

configured with these services. However, these services won’t fit for all the clients. A

few client VMs may use encryption to securely transfer data packets, but the service that

checks the malicious content using signatures may not be able to use the encryption

mechanism. The client virtual machines may need different security mechanisms for

different kinds of attacks. Thus the present cloud architecture has inflexible control over

the client VMs.

10	
	

Figure 2.3 Self Service Cloud Computing

 Self-service cloud computing addresses these two shortcomings by assigning more privileges to

client virtual machines. The protocol is designed to protect the client virtual machines from

malicious system administrators and to provide control of the services required by the client. The

SSC (Self-service cloud computing) divides the entire system into two TCBs (Trusted

COMPUTING BASE). The system consists of the system level TCB, with the hardware, the SSC

hypervisor, the domain builder and a client-level TCB, with the Udom0 and service domains.

UDom0 is the client side per user administrative domain that can monitor and control the set of

VMs of a particular client. This virtual machine attempts to start a VM in SSC. It also has the

privileges to perform system services on the client virtual machines.

UDomUs are the actual client side virtual machines with the guest operating systems.

SDs (Service Domains) can be configured with required security services in the system.

MTSDs (Mutually trusted service domains) act as a regulatory compliance between cloud

providers and clients. This holds the policies and mechanisms that the provider will use to control

11	
	

the clients VMs. The information provided by the MTSDs is the key source for the virtual shield

in our prototype model.

All these comprise to form the client side Meta domain.

DomB (Domain Builder) is a virtual machine provided by the cloud provider to build the guest

virtual machines upon the request from client.

SDom0 (System side administrative domain) administers the client virtual machines. It takes care

of starting and stopping of the client VMs.

2.3 ATTACKS IN THE CLOUD

2.3.1 DENIAL OF SERVICE (DOS) ATTACK

A Denial of Service attack [16] is an attempt to obtain excessive computation resources from the

cloud and make them unavailable to its intended users.	 When the cloud computing operating

system recognizes the high workload on specific servers, it will provide more computational

resources to virtual machines and service instances to adapt to the extra workload; this can be due

to a Denial of Service attack causing performance degradation of the system. The Self-service

cloud can be vulnerable to a Denial of Service attack, which can be damaging and might result in

complete shut down or degradation of a client virtual machine.

A malicious client might try to compromise the availability and integrity of cloud computational

resources. A Denial of Service is usually caused by cloud resource usage exceeding the threshold

value or exceeding the threshold rate of change (the threshold rate of change is an estimate of

uptrend and downtrend during peak or non-peak periods).	 A	 Denial of service attack can be

harmful in a cloud environment as one virtual machine can be used as a source of denial of

12	
	

service attack to another virtual machine in the same infrastructure, causing maximum workload

to the co-resident virtual machines [17].

Denial of Service attacks misuse the network bandwidth capacity and deteriorate the quality of

service by creating congestions at the network level. But with improvements in network

bandwidth capacity, the focus of Denial of Service attack have moved from network level to

application level. Denial of Service attack uses legitimate application-layer requests to

overwhelm server resources causing application Denial of Service attack.

	Network based defense models have attempted to identify these attacks by controlling traffic

volume or separating traffic patterns at the intermediate routers. But, these defense models protect

at the network level, which the application Denial of Service attack can bypass. It also suffers

from a high false-positive error rate because sometimes the unseen normal behavior are often

predicted to be an attack. Since every traffic is reviewed against the normal behavior model, this

expands time complexity and introduces extra service delays for non-malicious clients.

Furthermore, in a dynamic environment incorrect prediction of an attack can reduce efficiency of

the overall system.

Testing Virtual servers for Denial of Service attack:

The application Denial of Service attack always aims at disrupting application service rather than

depleting network resources.

• A Denial of Service attack saturates the server buffer with a flood of malicious requests.

Malicious requests will negatively affect the victim server machines; consequently, their

average response time (ART) will be higher than that of normal cases. Therefore, ART

can work as an indicator of an application Denial of Service attack. Therefore, we

calculate the estimated response time (ERT) of the virtual server by inspecting the

resource usage. ERT is monitored to detect initial malicious activities during testing.

13	
	

2.3.2 SIDE CHANNEL ATTACK

The client operates on a virtualized cloud environment sharing its hardware with one or more

virtual machines, co-resident on the same physical server. On the basis of a service level

agreement with the cloud provider, the client presumes that their virtual machines have exclusive

rights over the physical server. Although clients have special administrative powers and

privileges to maintain their own virtual machines, they have no control or visibility on how the

hypervisor does its functions (the hypervisor, also called a virtual machine manager, is a program

that allows multiple virtual machine to share a single physical hardware of the cloud provider).

The hypervisor controls the cloud provider’s processor and resources, allocating what is needed

to each virtual machine while making sure that they cannot disrupt each other [19]. Clients know

only about resources that have been allocated to them.

A malicious client virtual machine may try to exploit its co-residency to extract sensitive data

from co-resident virtual machines without their knowing. Victims are clients running confidential

services in the cloud. We assume that, like any client, a malicious user can run and control many

instances in the cloud, simply by requesting cloud resource instances from the cloud provider.

Further, it is possible that an attacker’s instances might run on the same physical server as target

victims. The attacker utilizes the shared physical server to exploit the victim’s confidential

information.

Testing Virtual servers for Side channel attack:

We assume that the attacker (malicious client) predicts the availability zone and instance type of

the potential target victims.

Availability zone:	 The cloud is hosted in multiple locations worldwide, which are composed of

regions and Availability Zones. Each region is a separate geographic area and has multiple,

isolated locations known as Availability Zones.	Each Availability Zones in a region are connected

14	
	

through low-latency links.	 When we launch an instance, we can select a region that puts our

instances closer to specific target customers. (EC2 for example is divided into 3 availability zones

i.e. zone1, zone2, and zone3)

Instance type:	The cloud provides a wide selection of instance types optimized to fit different use

cases. Instance types comprise varying combinations of CPU, memory, storage, and networking

capacity and gives flexibility to choose the appropriate mix of resources for our applications.

(EC2 for example is divided into 5 instance types i.e. m1.small, c1.medium, m1.large, m1.xlarge

and c1.xlarge)

An attacker (malicious client) can flood using probe instances in two ways. An attacker generates

an attacker instance, which is like a target instance in terms of resource requirements and checks

whether it is co-resident with the target. The two ways are:

• Over some period of time, the attacker repeatedly runs probe instances in the target

availability zone and of the target instance type.

• We assume that an attacker can also launch probe instances soon after the launch of a

target victim instance. The attacker then engages in instance flooding: running as many

instances in parallel as possible in the target availability zone and of the target instance

type.

Each probe instance checks whether it is co-resident with the targets by comparing its instance

UDom0 IP with target instance UDom0 IP.

• A malicious client can determine its UDom0 IP from the first hop of its instance on any

route. The malicious client uses its UDom0 IP to compare it with target UDom0 IP to

confirm co-residency.

• UDom0 IP of target instances is determined by performing a TCP SYN trace route and

inspecting the last hop. (In TCP SYN, trace route malicious clients send IP packets with a

short life, and wait for ICMP (Internet Control Message Protocol) packets to report the

15	
	

death of these packets. An IP packet has a field called "TTL" (as "Time To Live") which

is decremented at each hop; when it reaches 0, the packet dies, and the router on which

this happens is supposed to send back a "Time Exceeded" ICMP message. That ICMP

message contains the IP address of the said router, thus revealing it. TCP SYN trace route

can generate more number of ICMP and UDP packets in the network [18].

Therefore, during testing, instance count of the clients can work as an initial indicator and then by

monitoring bandwidth usage (number of ICMP and UDP packet generated) of the suspected

clients we can detect the probability of the side channel attack.

2.3 REINFORCEMENT LEARNING

Reinforcement learning is learning what to do and how to map situations to actions to maximize

the numerical reward. Reinforcement learning is defined not by characterizing learning methods,

but by characterizing the learning problem [6].

2.3.1 ELEMENTS OF REINFORCEMENT LEARNING

Policy, a reward function, a value function, and a model of the environment are the different

elements of reinforcement learning.

A policy defines the learning agent’s way of behaving at a given time. It’s a mapping from

perceived states of the environment to actions to be taken when in those states. A reward function

defines the goal in a reinforcement learning problem. It maps each perceived state (or state –

action pair) of that state. A reinforcement learning agent’s sole objective is to maximize the total

reward it receives in the long run. A value function specifies what is good in the long run. The

value of the state is the total amount of reward an agent can expect to accumulate over the future

16	
	

starting from that state. Whereas rewards determine the immediate, intrinsic desirability of

environmental states, values indicate the long-term desirability of states after taking into account,

the states that are likely to follow and the rewards available in those states. For example, a state

might might always yield a low immediate reward but still have a high value because it is

regularly followed by other states that yield high rewards. A model predicts the resultant next

state and reward for a given state and action.

17	
	

CHAPTER III

 PROPOSED WORK

3.1 INTRODUCTION

The goal of this work is to design an architecture, that reduces the probability of an attack in self-

service cloud computing. In addition to the components involved in SSC, the new architecture

will have a virtual shield (VS) that exists between the host virtual machine and meta domain as

shown in fig 3.1.The SSC protocol will be modified to facilitate the interaction between MTSDs

and the virtual shield.

3.2 SYSTEM BUILDING

The basic assumption is that the applications and operating system are secure. Although the cloud

service provider is trusted, the cloud administrator is not. This required for the provider to supply

a Trusted Computing Base (TCB) running a Virtual Machine Monitor (VMM) and the physical

hardware to be equipped with an IOMMU (Input Output Memory Management Unit) and a

Trusted Platform Module(TPM) chip. Cloud system administrators are entrusted with system

tasks and maintaining the cloud infrastructure. Hence, they have access to the administrative

domain (dom0) which is a privileged Virtual Machine (VM) that is used to control and monitor

client VMs. and the privileges that it entails. Cloud system administrators are adversarial (or

could make mistakes), and by extension, that the administrative domain is untrusted.

18	
	

Administrators have the means to misuse dom0’s privileges to snoop or even alter client data.

This threat has been addressed in the SSC model.

The Trusted Computing Base (TCB) of the cloud infrastructure is split in two parts, a system

level TCB, which consists of the hypervisor, domB, BIOS, the boot loader and virtual shield (VS)

which is controlled by the cloud provider, and a client level TCB, which consists of the client’s

Udom0, SDs, and MTSDs. Reconfiguration in this context includes the standard definition, that

is, reconfiguring resources such as allocated processors, memory, disks, network adapters and the

user interface. Reconfiguration in this work also means adding or easing restriction to the kinds of

privileged instructions a virtual machine can execute. In this work, the VS will determine a

course of action if a malicious VM is detected. The VS may recommend the VM be removed

from the cloud or it may recommend a reconfiguration of the VMs.

19	
	

Figure 3.1 Self Service Cloud with Virtual Shield

Figure	3.1	shows	the	proposed	cloud	architecture.	The	main	difference	between	the	proposed	

architecture	and	SSC	[40]	 is	the	addition	of	two	new	units,	the	Virtual	Shield	(VS)	and	the	QoS	

Control	(QC).	MTSDs	(Mutually-trusted	service	domains)	execute	privileged	services	that	check	

regulatory	 compliance	 in	 a	manner	 that	 is	mutually	 agreed	upon	between	 the	 cloud	provider	

and	the	client.

Compliance status

Reconfiguration information to UDom0 and QC

	 UDom0 UDom

Hadoop
Cluster

Service
Domain

MTSD

CLIENT META-DOMAIN

Domain
Builder

Virtual
Shield SDom0

	 HYPERVISOR

 HARDWARE

QoS
Control

Guest Operating System

Host Operating System

 Metadata

 Usage Data
Patterns

Data

Sensitivity
Report

Context
Similarity
Analyzer

Usage
Pattern

Analyzer

Decision
Tree

Reinforcement
Learning

State
of

VM

Instruction
Logic

Instruction
Logic

Reinforcement
Learning

Ensemble

Neural Network

20	
	

3.3 COMPONENTS

3.3.1. SDom0

SDom0 is the system side administrative domain. This domain controls the client virtual

machines. The start and stop of the client virtual machines is done by SDom0. Though this

component has the same functionalities as SDom0 in SSC, it has additional capabilities which

don’t exist in SSC SDom0[1].

The SSC SDom0 has no privilege to view the state of the client virtual machines, i.e. the contents

of virtual CPU, virtual memory etc. But in our proposed new architecture the SDom0 will be

designed to have access if the client virtual machine is found to be malicious. The virtual shield

provides these capabilities to SDom0 by providing the privileges to access the client virtual

machines states.

3.3.2. Mutually trusted Service Domain (MTSD)

MTSDs (Mutually trusted service domains) execute privileged services that check regulatory

compliance in a manner that is mutually agreed upon between the cloud provider and the client.

3.3.3. Virtual Shield

The virtual shield is designed with different functionalities and security measurements. MTSD

designed in the SSC are the key source of information to the virtual shield, which provides the

information about the type of attack and the severity of the attack. In SSC the MTSD act as the

regulatory compliance between client virtual machines and cloud providers. In SSC once, the

client virtual machines are identified to be misusing the cloud infrastructure for malicious

activities the virtual machines are shut down and they lose its state.

21	
	

In our architecture, the virtual machines are not shut down immediately. Once the MTSD identify

the client virtual machine to be malicious, it triggers the virtual shield with the information.

The information from the MTSD is used by the virtual shield for the reinforcement learning

process designed to virtually configure the virtual machines to maximize security. The virtual

shield holds a table with appropriate actions to be taken based on the state of the machine. Each

state has a reward value. The actions are the virtual configurations between the host virtual

machine and the client virtual machine. Virtual shield holds one table for each virtual machine.

3.3.4. Domain Builder

 DomB, the domain builder builds the client side Meta domain. Once the client sends the request

to build the virtual machines, these parameters are send to the domain builder and virtual shield.

Domain builder uses these parameters to build the client side Meta domain. The construction of

Meta domain is similar to SSC, whereas the MTSDs are configured to trigger the virtual shield

when the client misuses the cloud infrastructure.

3.3.5. Client Meta Domain

The Client Meta domain holds UDom0, UDomU, SDs and MTSD. All these components are

assumed to have the same functionalities as in SSC, except the MTSD. The MTSD is modified to

trigger the virtual shield when the guest virtual machines try to perform security attacks.

22	
	

3.4 METHODOLOGY IN VIRTUAL SHIELD

The MTSDs are configured to regularly update the Virtual Shield (VS) with status information

about complying to the agreement between the cloud provider and the client. The VS keeps a log

of usage patterns, generates metadata about data in the cloud repository that the client is accessing

and generates a sensitivity report of the data. The decision tree in the VS re-assigns the access

control rights based on a data sensitivity report, information from the MTSD, along with the

output from the usage pattern analyzer, context similarity analyzes and internal states of the VM.

The status information from the MTSD, along with the output from the usage pattern analyzer,

internal states of the VM and access control rights output by a decision tree is input to a

reinforcement learning process which will recommend a reconfiguration to maximize security if

malicious activity is detected. The VS also holds a table with appropriate actions to be taken

based on the state of the machine. Each state has a reward value. The actions are the virtual

configurations between the host virtual machine and the client virtual machine.

The proposed Virtual Shield will dynamically re-configure guest VMs when the big data cloud is

under attack by a VM.

The cloud is designed to dynamically re-configure the system when an attack takes place based

on the observed states. This work defines re-configuration to be one of the following: (a) re-

configure resources such as allocated processors and memory to a VM; (b) re-define the set of

privileged instructions a VM can execute; (c) both re-configure resources and re-define the set of

privileged instructions a VM can execute; (d) shut down a VM.

We use an ensemble approach for reconfigurations (a), (b), (c) or (d). An ensemble approach is

used because the results of a set of reconfigurations when combined together yields a better

security solution rather than just applying one approach. The input to the reconfiguration is

compliance status from the MTSD, the internal states of the VMs.

23	
	

3.4.1 Using Reinforcement Learning

Reinforcement Learning (RL) is used for re-configuration (a), that is, re-configure allocated

resources to a VM. RL provides a knowledge-free trial-and-error methodology in which a learner

tries various actions in numerous system states and learns from the consequences of each action.

A big advantage therefore is RL will learn even if there is no available training set. That is RL

does not depend on supervised training with known attack types. RL can therefore learn new

previously unseen attacks. However, RL suffers from poor scalability whose search space grows

exponentially with the number of state variables. Moreover, due to the absence of domain

knowledge, the initial security improvement achieved by RL may be poor. Instead of conducting

RL search in the whole configurable state space, we first reduce the search space to a much

smaller but “promising” state set. In our approach domain knowledge and security parameters are

used to guide the reduction in the search space. This avoids performance degradation caused by

random exploration.

One of the reinforcement learning methodologies will be used for the learning process in the

virtual shield [6].

A Wide range of applications can be framed as reinforcement learning problems. The application

in the virtual shield is framed to one of reinforcement learning tasks and provided with the

method to learn.

The aim of the reinforcement learning problem is learning from interaction to achieve a goal. The

decision maker is called the agent. The agent interacts with the environment, that is, everything

that is outside the agent. This is a continuous process; the agent selects the actions and the

environment responds to those actions and provides new situations to the agent. The environment

also provides the numerical rewards, which the agent tries to maximize over time. A task is

defined as a configuration change, which is one instance of the reinforcement learning problem.

24	
	

 Figure 3.2 The agent-environment interaction in reinforcement learning

At discrete time steps, t=0, 1, 2, 3 … the agent and the environment interact with each other. At

each step t, the agent is provided with some representation of the environment’s state St ∈ S,

where S is the set of possible states and St is one of the states of S. A (St) are the set of actions

available in that state. After selecting the action A t ∈ A (St), the agent receives a numerical

reward, rt+1 ∈ R and enters a new state.

At each time step, a mapping from states to probabilities of selecting each passible action is

implemented. This mapping is called the agent’s policy ∏t, where ∏t (S,A) is the probability that

At = A if St = S where S is State and A is Action). In reinforcement learning the agent changes its

policies as a result of experience. The agent’s goal is to maximize the total amount of reward it

receives over time. In our system the mutually trusted service domain is framed as the

environment and the virtual shield is framed to be the agent.

25	
	

3.4.1.1 Q-Learning as a model free based approach

Q-Learning is a model free reinforcement technique. It can be used to find an optimal action-

selection policy for any given (finite) Markov decision process (MDP). It works by learning an

action-value function that ultimately gives the expected utility of taking a given action in a given

state and following the optimal policy thereafter. When an action-value function is learned, the

optimal policy can be constructed by selecting the action with the highest value in each state. One

of the advantages of Q-Learning is that it is able to compare the expected utility of the available

actions without requiring a model of the environment.

Algorithm:

The model consists of an agent, states S and a set of actions per state A. By performing an action

a∈A, the agent can move from state to state. Executing an action in a specific state provides the

agent with a reward (a numerical score). The goal of the agent is to maximize its total reward. It

does this by learning which action is optimal for each state. The action that is optimal for each

state is the action stat has the highest long term reward. This reward is a weighted sum of the

expectation values of the rewards of all future steps starting from the current state, where the

weight for a step from a state ∆t steps into the future is calculated as γ∆t. Here, γ is a number

between 0 and 1 (0≤ γ≤1) called the discount factor.

The algorithm has a function that calculates the Quantity of a state-action combination

Q: S X A → R

Before the start of learning, Q returns an (arbitrary) fixed value. Each time the agent selects an

action, and observes a reward and a new state that may depend on both the previous state and

selected action, “Q” is updated. It assumes the old value and makes a correction based on

the new information.

26	
	

Where Rt+1 is the reward observed after performing at in st, and where αt(s, a) (0<α≤1) is the

learning rate.

Learning Rate:

The learning rate determines to what extent the newly acquired information will override the old

information. A factor of 1 will make the agent not learn anything, while a factor of 1 would make

the agent consider only the most recent information. A constant learning rate is used for

implementation of the algorithm, such as αt (s, a) = 0.1 for all t.

Discount Factor:

The discount factor γ determines the importance of future rewards. A factor of 0 will make the

agent by only considering current rewards, while a factor approaching 1 will make it strive for a

long-term high reward. If the discount factor meets or exceeds 1, the action values may diverge.

Initial Conditions (Q0)

As Q-Learning is an iterative algorithm, it implicitly assumes an initial condition before the first

update occurs.

27	
	

PSEUDO-CODE:

// s, s’ → states

// a, a’ → actions

// Q→ state-action value

// γ, α → learning parameters (learning rate, discount factor)

1. Initialize Q (s, a) arbitrarily

2. Observe current state s

3. repeat

i. Take action a observe reward r, state s’

ii. Q(s,a) ß Q (s,a) + α[r+ γ. maxa .Q(s’,a’)-Q(s,a)]

iii. S ß s’

4. Until termination

Action Selection Strategies:

In each state (except the terminal state), the agent must select an action. There are several ways in

which to decide which action to take. The simplest form is greedy selection: the agent always

selects the action that the highest state-action value. This method is pure exploitation. Boltzmann

selection is another action selection strategy where there would be a balance between exploration

and exploitation.

28	
	

Boltzmann selection:

Boltzmann selection involves probability, but takes into account the relative values of the state-

action values. The probability that an action is selected depends on how it is compared to the

other state-action values. If one value is much higher, it is most likely to be taken, but if there are

two actions with high values, both are most equally likely.

At a state s, an action a is selected with probability

where T is called the temperature, and increases as the exploitation rate increases. High

temperatures cause the actions to be all (nearly) equiprobable. Low temperatures cause a greater

difference in selection probability for actions that differ in their value estimates.

29	
	

CHAPTER IV

SIMULATION METHODOLOGY

 4.1 IMPLEMENTATION

CloudSim [14] is used to simulate the cloud environment. Cloudsim is a simulation environment

to simulate the cloud architectures before actual deployment. Cloudsim provides java APIs to

design the various elements of the cloud computing architecture. The underlying architecture

contains different subsystems. Each subsystem is designed and simulated to satisfy the

requirements of the whole architecture.

Different subsystems in the architecture includes

1. SSC SUB SYSTEM

2. MTSD SUB SYSTEM

3. VIRTUAL SHIELD SUB SYSTEM

4. ATTACK SYSTEM

5. CONFIGURATION SYSTEM

30	
	

4.1.1 SSC SUB SYSTEM

The SSC sub system is the main system which initializes the entire architecture. Upon request

from the client, the administrative domain (Broker) in the SSC sub system requests the Data

Center (Hypervisor) to allocate resources to the client. During the initialization, the other

subsystems are also activated or initialized. The current client configuration will be written to the

virtual shield. The mutually trusted service domain is initialized with the different attack models

and configuration parameters, which are in turn used to detect the malicious clients.

4.1.2 MUTUALLY TRUSTED SERVICE DOMAIN (MTSD)

During the client initialization, the mutually trusted service domain is also initialized with the

different attack models to check the client’s attacks.

The Mutually Trusted Service Domain periodically checks the network packets transmitted to

identify the malicious clients. During this process if the MTSD identifies that the client is

misusing the application, it notifies the virtual shield with the attack type. This information is

being received in a configuration file, which contains all the system information and the attack

specifications.

4.1.3 VIRTUAL SHIELD

The mutually trusted service domain triggers the virtual shield periodically with the activities of

the client. If the MTSD identifies that the client is misusing the cloud infrastructure, depending

upon the type of attack, severity of the attack and the existing configuration, it triggers the virtual

shield and the virtual shield reads the configuration file and requests the administrator to change

the configuration of the client for the predicted attack.

31	
	

The Virtual shield uses the simple reinforcement learning mechanism to allocate the different

configuration parameters to the client.

4.1.4 CONFIGURATION SYSTEM

Configuration defines the properties of the virtual machines such as computing capacity in terms

of million instructions per second, image size, memory size, number of cpus, and bandwidth. The

configuration system is a database which holds the different configuration parameters for

different clients. It has the different configurations for different type of attacks. The virtual shield

allocates these configurations to the clients by analyzing the existing configuration and type of

attack the client performed.

Different parameters in the configurations include: MIPS, IMAGE SIZE, MEMORY SIZE,

CPUS, and BAND WIDTH.

MIPS (Million instructions per second) define the number of instructions to be executed per

second.

Image size defines the size of the operating system image.

Memory size defines the size of the internal memory.

CPUs define the number of cpus required by the virtual machine.

Bandwidth defines the network bandwidth (number of bits transmitted per second).

32	
	

4.1.5 ATTACK SYSTEM

The attack system is a database which holds different attacks metrics. These attack metrics are

used by the Mutually Trusted Service Domain to identify the malicious client and notify the

virtual shield with the type of attack and severity of the attack. There can be different metrics to

identify the attack types. In our architecture for the purpose of simulation we used a 15

alphanumeric coded value to identify the attack metrics. An example of 16-digit alphanumeric

coded value would be as follows.

00000000000001F

00 - Virtual machine id in hexadecimal

00 - Host machine id in hexadecimal

00 - Client id in hexadecimal

00 - Datacenter id in hexadecimal

00 - Resource event / reason for the attack in hexadecimal

00 - Type of the attack in hexadecimal

01 - Current state of the when the attack is predicted

F - Usage parameter (Alphabetical A-J)

Type of attack Encodings:

00 - Denial of Service

01 - Side Channel Attack

33	
	

Resource event Encodings:

00 – RAM

01 – Bandwidth

02 – Cpu Usage

03 – Memory Size

04 – MIPS

State Encodings

00 – Good

01 – Warn

02 – Critical

03 – Resume

04 – Alarm

Usage Parameter Encoding

A – 0%-10%

B – 10%-20%

C – 20%-30%

D – 30%-40%

E – 40%-50%

F – 50%-60%

G – 60%-70%

H – 70%-80%

 I – 80%-90%

 J – 90%-100%

34	
	

4.1.6 VIRTUAL MACHINE TERMINATION

The mutually trusted service domain periodically checks the clients meta domain for attacks.

These periodical updates are notified to the virtual shield to calculate the rewards for individual

configurations. The individual rewards of the allocated configurations to the client are aggregated

to identify the overall rewards of the client’s virtual machine. This aggregated reward is used to

determine the threshold for the client termination. Once the virtual shield identifies the total score

is less the threshold designed by the cloud provider or the administrator, the client’s virtual

machine is terminated.

The client is notified every time the configuration changes. If the client still tries to misuse the

cloud infrastructure, the overall reward eventually decreases and finally results in the termination

of the client’s virtual machine. The threshold is defined by the cloud provider for each and every

client virtual machine. If the overall reward of the client virtual machine is less than the threshold,

the virtual shield informs the administrator to terminate the client’s virtual machine. This process

is explained below.

 O (c)= ∑ A(c) for I= 0 to N

 if O(c) < T (c) terminate

O(c) → Client Score

A(c) → Reward of individual Configurations

T(c) → Threshold

N → Number of Configurations.

35	
	

4.2 COMMUNICATION PROTOCOL

Figure 4.1 Communication Protocol

The communication protocol in the above figure4.1 explains how each subsystem in the

architecture interacts with each other. After the initialization of Sdom0, the client requests the

system side administrative domain for the virtual machine by passing the configuration

parameters.

The Dom0 requests the datacenter i.e. the Hypervisor to provide the requested resources to the

client.In this process, the hypervisor initializes the virtual shield and clients meta domain.

																																																COMMUNICATION	PROTOCOL	
	
Client	(Mips,Image	Size,	BW,CPUs,RAM)-----------(REQ)-------------à	Admin	(Broker)	
	
Admin	(Broker)----------------(REQ)--------------------------àDatacenter(Hypervisor,	H/W)	
	
Datacenter---------(INIT)----àVIRTUAL	SHIELD	
	
Datacenter----------(INIT)---àCLIENT	META	DOMIAN	(CLIENT	VM,	MTSD)	
	
MTSD---------------(TRIG)--àVIRTUAL	SHIELD	
	
VIRTUAL	SHIELD----------(CONF	CHANGE)-----------àADMIN	
	
ADMIN----------------------(CHANGES	THE	CONF)----àCLIENT	

	

36	
	

If the client tries to misuse the resources, MTSD triggers the virtual shield. Based on the type of

the attack the usage parameters, and action would be taken using Q-Learning from Reinforcement

Learning.

4.3 SIMULATION ALGORITHM

 Figure 4.2 State Diagram

There are five different states on which the system has been designed. Initially the system is in

state init, which represents the initialization of the variables and environment. The next flow of

the states is shown in the figure 4.2. Good represents that the system is in a good state, when there

is a probability of an attack it moves to the warn state. If the attack has been reconfigured and

successfully defended, it moves back to the good state, through the resume state which changes

the configurations accordingly. The system retains in the good state as long as there are no

chances of attack on the system. If the attack has not been defended, it moves to the critical state

and then to the alarm state sequentially. Each state has its own set of decision tree mapping; by

which we could select on from the possible actions that could be taken in the system. The

37	
	

reinforcement learning system determines what actions could be probably taken in each state by

learning over a period of time.

The Virtual Shield gets information from the MTSD, to determine if the event (observed

behavior) matches a known attack pattern. If it is determined that the observed behavior is

representative of a known attack pattern, respective actions are taken corresponding to the current

state. If it does not match a known attack pattern, the information layer agent may determine the

probability that the observed behavior represents a previously unknown attack pattern.

Each action has its own reward value which is used to calculate the Q value which has the

ordered pair of state and its action. For simulation purposes, the following are the reward values

for each action taken. Since Shutting down a VM, is the ultimate possible way that a system can

defend itself it is assigned the highest reward value. The virtual agent learns through experience;

this is known as unsupervised learning.

(a) re-configure resources such as allocated processors and memory to a VM -50.

(b) Re-define the set of privileged instructions a VM can execute -100

(c) Both (a) & (b) -150

(d) Shut down a VM -200

The algorithm goes as follows

1. Set the gamma parameter (which is in between 0 & 1) and environment rewards in matrix

R, which is the mapping reward values of state and actions.

2. Initialize Q values to zero

3. For each iteration (when there is a probability of an attack)

a. Select the initial state, which can be obtained through previous data in which

state the VM is, if there is no data present, assume the state to be in good state.

38	
	

b. Do while the goal state hasn’t reached

i. Select on among all possible actions for the current state

ii. Using this possible action, consider going to the next state

iii. Get maximum Q value for this next state based on all possible actions

iv. Compute: Q (state, action) = R (state, action) + Gamma* Max [Q(next

state, all action)]

v. Set the next state as the current state

End do

4. End For

39	
	

CHAPTER V

 RESULTS

The purpose of the simulation using the CloudSim toolkit [14] is to validate the proposed

detection model. We have made several assumptions to simplify the implementation of the

simulation environment. The simulation results provide a reliable overview of the practical

performance of the proposed detection model.

The CloudSim toolkit is a simulation environment used to simulate cloud architectures.

CloudSim provides java APIs to design the various elements of the cloud computing architecture.

We show the efficiency of our detection model by varying the simulation environment settings as

follows:

5.1 Single Attack on a single Virtual Machine

Each attack (Denial of Service and Side Channel) have been simulated separately, where the

attackers tries to target a single Virtual machine. The figure 5.1(a) shows the Attack graph, where

0 represents the attacks has happened, and 1 represents attack has been defended. We can observe

that the system has been stable from 23rd run for the denial of service attack, and 15th run for the

Side Channel Attack. The Stabilization implies that the Attack has been defended successfully

and the system has become stable.

40	
	

Fig 5.1(a) Attack graph for a single virtual machine

The following figure 5.1(b) shows the reward rates for each attacks simulated separately on a

single virtual machine. The initial reward rate is assumed to be 300, it reduces when an improper

decision or when an attack happened and increases when the system is successfully able to defend

the attack. Each time the action to be taken is dependent on Boltzmann selection, which gives the

probabilities for the action to be taken. The reward rates have been rounded off to the nearest

integer to have a smooth graph.

Fig 5.1(b) Reward values graph for a single virtual machine

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Attack	Graph

Denial	of	Service Side	Channel	Attack

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Reward	values	

Denial	of	Service Side	Channel	Attack

41	
	

5.2 Combined Attack on a single Virtual Machine

We have made the simulation combining both the attacks (Denial of Service and Side Channel

Attacks) using the same initial reward rates. Fig 5.2(a) Attack graph and Fig 5.2(b) Shows the

reward rate graph for 50 runs. The figure 5.3 shows that the attacks have been defended at 37th

run, and hence there were no more drops in the graph making the system stable. The X-axis

shows the number of runs (Discrete time steps) and the Y-axis shows for the attack graph shows

0 if the system has been attacked or 1 if its been defended whereas the Y-axis on the rewards

graph shows the reward values for each run.

Fig 5.2(a) Attack graph for single virtual machine with combined attacks

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Attack	Graph

42	
	

Fig 5.2(b) Reward values graph for single virtual machine with combined attacks

5.3 Combined Attack on Multiple Virtual Machines

Combination of the attacks have been simulated where the attackers try to attack the system

simultaneously on ten virtual machines. Fig 5.3(a) shows the attack graph for simultaneous

attacks. Since the attacks happen on multiple virtual machines, the system comes to a stable point

quicker than expected (comparing with single virtual machine) as in each run there would be ten

attacks happening at the same time, which gives the system to learn more quickly. Virtual

machine 6 has been subjected to continuous attacks, by which even after reconfiguring it several

times, the configuration score has dropped over the threshold set by the administrator, which led

to the shut down of the malicious client virtual machine. The graph going down below 0 indicates

that the virtual machine has been shut down. Fig 5.3(b) shows the reward values for combined

attacks on multiple virtual machines.

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Reward	values	Graph

43	
	

Fig 5.3(a) Attack graph for simultaneous combined attacks

Fig 5.3(b) Reward scores graph for simultaneous combined attacks

0

1 1

0

1 1 1 1 1

0 0

1 1

0 0

1 1 1

0

1

0 0

1

0

1 1 1

0 0

1 1

0 0

1 1 1

0

1 1

0 0

1 1 1 1

0 0 0 0 0

-1 -1 -1 -1

0

1

0

1 1

0

1 1 1

0 0

1 1 1

0 0

1 1

0

1

0

1

0 0

1 1 1

0 0

1 1 1 1 1 1 1

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9

Attack		graph	for	simultaneous	combined	attacks	

vm1 vm2 vm3 vm4 vm5

vm6 vm7 vm8 vm9 vm10

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9

Chart	Title

vm1 vm2 vm3 vm4 vm5

vm6 vm7 vm8 vm9 vm10

44	
	

CHAPTER VI

CONCLUSIONS

Self-service cloud computing reduces the attack surface of the traditional cloud architecture by

transferring most of the privileges to the clients Meta domain. However this architecture is not

designed to protect the inter virtual machine attacks and clients vm attacks on the administrative

domain and hypervisor.

In the proposed architecture (SSC with Virtual Shield), the client side attacks have been mitigated

by dynamically configuring the virtual machines based on the type and severity of the attacks

performed by the clients.

SSC with virtual shield is a new computing model designed to protect the host virtual machine

from various attacks by the guest virtual machines. The proposed new design has the capability to

shift the privileges between the system side administrative domain and client side administrative

domain. This dynamic configuration of virtual machines reduces the attack surface and makes the

cloud more secure.

If the client tries to misuse the cloud infrastructure, the configuration changes according to the

information present in the configuration subsystem. The simulation and results section explains

the configuration changes and virtual shield termination.

45	
	

In the proposed architecture, the reinforcement learning algorithm has been used to make the

virtual shield learn from the environment. This algorithm holds good for a minimum number of

client virtual machines, since a single virtual shield runs this algorithm to calculate the rewards.

The overhead on the virtual shield increases to handle multiple clients and multiple virtual

machines. Moreover, if the virtual shield fails, there is no way to protect the entire system from

the attacks of the client. The virtual shield can fail because of hardware problem or may be due to

the extra over head in handling multiple virtual machines.

The proposed architecture can be enhanced by removing the single point of failure by having a

backup virtual shield called a Stand-by Virtual Shield which performs backup tasks by

snapshotting. Snapshotting is the process of identifying the virtual machines state and securely

storing the states in external devices. If the active Virtual Shield fails, the stand-by virtual shield

can be made active. Multiple clients can be simultaneously handled by introducing the concept of

multiple VM clusters in the virtual shield. Multiple virtual machines are associated with single

virtual shield. This works by replacing the reinforcement learning algorithm with map and

reduce functions running on the cluster of VM’s. This removes the overhead on the system and

can provide more accurate results by analyzing the system log files for different kind of attacks.

46	
	

REFERENCES

[1] Shakeel Butt, H.Andres Lager-Cavilla, Abinav Srivastava and Vinod Ganapathy,
“Self Service Cloud Computing”, ACM Conference on Computer and
Communications Security, pages 253-264, October 2012.

[2] Nils Gruschka and Mieko Jensen, “Attack Surfaces: A taxonomy for Attacks on
Services” 3rd International Conference on Cloud Computing, pages 276-279,
2010.

[3] Asoke K Talukder, “Analyzing and Reducing the Attack Surface for a Cloud-

ready Application” Indo-US Confeence on Cybersecurity, Cybercrime and
Cyberforensics, August 2009.

[4] Trend Micro White Paper, “Cloud Computing Security”,	 website:	
http://www.securecloud.com/cloud-
content/us/pdfs/business/whitepapers/wp_cloudsecurity-unlock-opportunities.pdf
, May 2010

[5] Pratyusa K. Manadhata and Jeannette M. Wing, “A Formal Model for a System’s
AttackSurface” Technical Reports HPL-2011-115, website:
http://www.hpl.hp.com/techreports/2011/HPL-2011-115.html, 2011.

[6] Richard S. Sutton and Andrew G. Barto, “ Reinforcement Learning An
Introduction” A Bradford Book, 1988

[7] Shyam Patidar, Dheeraj Rane and Pritesh Jain , “A Survey Paper on Cloud
Computing” Second International Conference on Advanced Computing &
Communication Technologies, pages 394-398, 2012

[8] Flavio Lombardi and Roberto DI pietro ,” Secure virtualization for Cloud
computing” Journal of Network and Computer Applications, volume 34, issue 4,
pages 1113-1122, June 2011

[9] Farhan Bashir Shaikh and Sajjad Haider, “ Security Threats in Cloud Computing”
6TH International Conference on Internet Technology and Secured Transactions,
pages 214-219, December 2011

47	
	

[10] S VivinSandar and SudhirShenai , “ Ecnomic Denial of Sustainbility in Cloud
Services using HHT and XML based DDoS Attacks” International Journal of
Computer Applications, volume 41, issue no-20, pages 11-16, March 2012.

[11] Guojun Wang, Qin Liu and Jie Wu, “ Hierarchical Attribute-Based Encryption for
Fine- Grained Access Control in Cloud Storage Services” 17th ACM conference
on Computer and communication security, pages:735-737, 2010.

[12] Balachandra Reddy Kandukuri, Ramakrishna Paturi V and Dr. Atanu Rakshit,
“Cloud Security Issues” IEEE International Conference on Services Computing,
pages: 517-520, 2009.

[13] Tien-Hao Tsai, Yen-Chung Chen, Hsiiu-Chuan Huang, Pei-Ming Huang and
Kuo-Sen Chou, “A Practical Chinese Wall Security Model in Cloud Computing”
Network Operations and Management Symposium, pages:1-4, 2011

[14] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and
Rajkumar Buyya, CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algorithms,
Software: Practice and Experience (SPE), Volume 41, Number 1, Pages: 23-50,
ISSN: 0038-0644, Wiley Press, New York, USA, January, 2011.		

	
[15] Using the amazon EC2 console to create an alarm to stop an instance Website:

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/UsingA
larmActions.html

	
[16] M. T. Thai, Y. Xuan, I. Shin, and T. Znati, “On Detection of Malicious Users

Using Group Testing Techniques,” in Proceedings of International Conference on
Distributed Computer Systems, 2008.	

	
[17] R Udendhran “ New Framework to Detect and prevent Denial of Service attack in

Cloud Computing Environment” Asian Journal of Computer Science and
Information Technology, 4/12 2014	

	
[18] Yinqian Zhang, Ari Juels, Alina Oprea, Michael K. Reiter “HomeAlone: Co-

residency detection in the cloud via side channel analysis” in Proceedings of the
IEEE Symposium on Security and Privacy, 2011.	

	
[19] Vidhyalakshmi Parthasarathy “Cloud Risk Management” International Journal of

Research in Marketing, Volume 2, Issue 2, February 2012.

48	
	

VITA

SAI SRAVAN GUDIPATI

Candidate for the Degree of

Master of Science

Thesis: DEFENSE AGAINST ATTACKS IN SELF-SERVICE CLOUD USING

REINFORCEMENT LEARNING

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at
Oklahoma State University, Stillwater, Oklahoma in July, 2016.

Completed the requirements for the Bachelor of Science in Computer Science at
GITAM University, Vizag, Andhra/India in 2013.

Experience:

Software Developer Intern May 2012-Aug 2012
Symbiosys Technologies, Vizag, Andhra/India.

	

	

