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Abstract:  

 

Bone cutting has been widely used in orthopedic surgery for repairing bone fractures and 

attaching implantable prosthetics. Temperature rise in the cutting process can cause 

necrosis when it is beyond a threshold value, depending on the species and age of the 

bone. Excessive cutting force may induce bone micro-fractures which lead to breakdown 

at the repair site. This thesis investigates the effect of cutting parameters on temperature 

and force in cutting of bovine and equine cannon bones. Vibration assisted drilling which 

enables intermittent contact between the cutting tool and the bone is conducted, and the 

effect of vibration assistance on the cutting performance is evaluated. Damages caused at 

the drill site of the bone are characterized by Micro-CT. Bone milling is used to shave the 

end of the bone to fit the plane of the artificial joint precisely. In this study, Taguchi 

method is used to evaluate the influence of the parameters such as spindle speed, feed 

rate and depth of cut on the milling process. This thesis provides insights in the 

mechanics of bone cutting process used in orthopedic surgery. The results provide 

optimum cutting operations to minimize the process induced bone damage. 
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CHAPTER 1 
 

 

INTRODUCTION 

 

1.1 Background 

Bone fracture is a common injury to human and animal bodies due to accident, disease or aging. 

Fractures are usually caused by sudden occurrence of external load that exceeds bone strength, or 

cyclic loads (well below bone strength) that gradually accumulate bone damages at a rate that 

cannot be repaired. When a bone is broken, the periosteum (outer surface cell layer) and 

endosteum (inner surface cell layer next to the marrow) provide bone-forming cells which aid in 

bridging the fracture. Drilling is usually performed for screw insertion and plate fixing operation 

in order to restore function, length and aid in healing of bone. The bone cutting is one of the 

oldest surgical procedures in the history of medicine. At present, implant surgeries on knee and 

hip are considered the most common practices which are performed all around the world. For 

example, the number of hip fractures world-wide was estimated to be 1.66 million in 1990 and 

expected to increase to 6.26 million by 2050 [1].  A well-known treatment in bone surgery is joint 

replacement by implanting mechanical structures made of metal and composites to imitate 

kinematic and dynamic functions of a human joint. Approximately, around 300,000 knee 

arthroplasties are performed each year in the United States alone, with the total number 

increasing annually [2]. Originally, screws used for orthopedic surgery are made of bio-

compatible metals, such as titanium, stainless steel and cobalt chrome alloys. In recent years, 
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direct machining of bone for producing bone screws to replace metals is becoming popular. Bone 

screws has the advantages of enabling micro movements at fracture sites and minimizing per-

implant osteopenia (a condition where bone’s mineral density is lower than normal) [3] Bone 

cutting operations include scraping, grooving, sawing, drilling, milling, boring, grafting and 

shearing. Among these methods, drilling is a surgical operation that is most discussed in the 

literature. Figure 1.1 shows an example of study of fixation pin insertion after stepwise drilling of 

bones[4] . 

 

Fig. 1.1. Image of testing procedure for insertion of fixation pin [4] 

Characterization of bone machining process and machined bone quality is critical for surgeons to 

achieve optimum operation conditions. Bone machining has been a challenge because of the 

sensitivity of osteocytes to the heat produced during the machining process. The heat causes 

thermal damages on bone cells and can result in necrosis. It can also lead to cutting problems like 

clogging or built up edge. If the cutting parameters such as feed speed, spindle speed are not 

selected properly, the cutting force induces further bone cracks, which lead to the loosening of 

fixation. Therefore, determination of temperature and force is necessary to avoid the damage to 

the bone.  
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Bone is one of the fastest healing tissues in the body compared to tendons and ligaments. For 

example, humans and small animals heal faster when compared to equine. With the correct 

treatment, horses can return to their previous athletic activity. Internal fixation is a technique that 

makes fracture repair possible and allowing weight-bearing on a fractured leg. This technique 

requires machining like drilling and tapping to be performed on the bone. Drilling of bone is a 

frequently used process for orthopedic implantation by equine surgeons.  

Bone material plays a significant role in the force and temperature generation in bone machining 

process. New machining techniques have been developed for bone cutting in orthopedic surgery 

in recent years. Vibration assisted drilling is a cutting process where the tool vibrates at a certain 

frequency in the z axis, resulting in intermittent or discontinuous cutting process. The bone-tool 

interaction in conventional drilling and ultrasonic vibration assisted drilling has been of interest to 

researchers [5]. The ultrasonic vibration assisted cutting has already been implemented in 

aerospace industries to cut metal alloys and composites. It has been confirmed that the reduced 

temperature and cutting forces are achieved with vibration assistance. Hence, the curiosity lies in 

the behavior of biomaterial under the influence of ultrasonic vibration. The literature available so 

far has been concentrating on bovine femur bones, and no research has been done on the equine 

cannon bone, which is prone to fracture more often than the bovine bone. The high density of the 

equine bone may also make it susceptible to thermal injury and micro-fracture during cutting. 

Bovine cannon bones are used instead of equine, as the samples are more available and 

expendable when compared to equine bone. 

As previously mentioned, arthroplasty is a surgical replacement of joints with artificial parts. The 

cut ends of the bones must be milled to properly accept the implant. Therefore, it is necessary to 

obtain the optimum milling parameters to conduct the procedure. The milling operation is also 

conducted to prepare specimens to perform studies related to temperature measurement on bones, 

while using thermocouples. Drilling of equine cannon bone is the heart of this thesis, and there is 
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no research material available on cannon bone milling. Hence, this topic is also addressed as part 

of this thesis.     

There are two parts in this research. Firstly, In vitro experimental investigations are conducted to 

analyze the effect of process parameters on cortical temperature and the drilling forces in equine 

cannon bone drilling. Particular attention has been paid to benefits, if any, of vibration assisted 

drilling. The damage caused by the drilling processes are evaluated by micro-CT. Micro-CT of 

the drilled bones can provide the detailed information on the effect of damage caused by each 

cutting condition and the comparison of the cracks from results can provide the reasoning behind 

the caused damage. The investigator is unaware of any research that has been conducted on 

verifying the effects of vibration assisted drilling on equine bone.  Hence, one of the objectives of 

the research is to investigate the effects of two drilling techniques- conventional versus vibration 

assisted. 

Secondly, statistical analysis is performed on experimental data gathered during milling of bovine 

cannon bone to find optimum milling parameters such as spindle speed, feed per tooth and depth 

of cut. 

1.2 Specific Aims and Objectives 

The main objective of this research is to gain an in depth understanding of drilling of equine 

cannon bone in vitro with conventional and vibration assisted drilling process, and determine the 

optimum cutting parameters in order to improve the surgical procedure. It is expected that the 

results of this research will be used as a benchmark to incorporate the use of vibration assisted 

drilling in orthopedic surgery for equine bone. 

The experiments carried out in this research are mainly focused on simulating the conditions 

encountered during cutting of cortical bone in orthopedic surgery in a machining center and study 
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the influence of various cutting parameters on temperature and cutting forces in the presence and 

absence of vibration.  

The specific aims of this thesis are: 

1. To study the influence of cutting parameters on bone temperature and cutting forces of 

equine and bovine metacarpal and metatarsal bone in vitro. 

2. To investigate the damage caused by drilling in both conventional and vibration assisted 

drilling on equine metacarpal and metatarsal bone in vitro using micro-CT. 

3. To measure cutting temperatures experimentally using thermocouples in the in vitro 

study of bovine and equine metacarpal bone. 

1.3 Organization of thesis 

A brief overview of the various chapters is as follows. 

Chapter 2: Literature Review 

A review of the literature work in bone machining is presented in this chapter. Bone preservation 

techniques are discussed. A brief discussion of various bone machining processes like bone 

milling and bone drilling is described. Various new bone drilling techniques and vibration 

assisted machining techniques has been outlined. 

Chapter 3: Conventional and Vibration Assisted Drilling of Equine Cannon Bone. 

A detailed description of sample preparation, experimental setup of both conventional and 

vibration assisted drilling, and experimental procedure is given in this chapter. Results and 

analysis of conventional versus vibration assisted drilling of equine cannon bone is discussed.  

Chapter 4:  Milling of Bovine Cannon Bone 
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The experimental setup, procedure and results are discussed in detail. Statistical analysis is 

performed using Taguchi method to find the most influencing cutting parameter for each response 

(temperature, surface roughness and cutting forces). Response Optimizer tool is used to find the 

most optimized cutting condition for a desired response.  

Chapter 5: Conclusion and Future scope 

This chapter documents the work discussed in this thesis with concluding remarks and areas for 

future scope.  
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CHAPTER 2 
 

 

LITERATURE REVIEW 

 

In this chapter, previous studies in bone preservation techniques, temperature and force 

measurement techniques in bone machining are reviewed. The research related to vibration 

assisted machining for bones is also discussed. The knowledge gap based on the literature survey 

and the motivation of this study are introduced. 

2.1 Equine Metacarpal and Metatarsal Bone Anatomy and Biomechanical Properties 

Cannon bone is a weight bearing bone in the lower leg and stretches from the knee joint to the 

ankle (fetlock joint).  In medical terminology, it refers to the third metacarpal or metatarsal bone 

in hoof stock animals. This third metacarpal bone of thoroughbred racehorses is an excellent 

example of the ability of skeleton to adapt to variable physical activity. This adapting mechanism 

is also called as Wolff’s law [6].  

The bone is a complex tissue with multiple functions. But, its primary function is to be stiff, 

resisting deformation.  Bone strength can be increased in a number of ways, e.g., by adding bone 

mass, changing geometry of bone or by microstructure alterations via processes such as 

Haversian remodeling. The strength of the bone is adapted with respect to the forces undergone 

by a bone. Typically bones are loaded in four possible ways- Axial compression, Bending, 

Twisting and Shear [6]. But cannon bone is mostly loaded with compression force, as it is the 

weight bearing bone .The cannon bone is a cortical bone, and its osteons are called Haversian 
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systems [7]. They are cylindrical in shape and form branching network within cortical bone. The 

osteons of cannon bone are as shown in the figure 2.1. 

 

Fig. 2.1. Typical osteonal structure in the equine third metacarpal [8]. 

The dorsal cortex of the third metacarpal bone is one of the most common injuries that results in 

lost training and racing time in Thoroughbreds. “Bucked shins” has been extensively (and 

variably) described in the lay and medical literature. Dorsal cortical injury in young 

Thoroughbreds is a result of some unknown product of the number and amplitude of loading 

cycles applied to their metacarpi during race horse training at high speed [8]. It is also evident 

from clinical experience and published data that geometric changes of the metacarpi consequent 

to training and maturation will lead to bones with improved mechanical properties capable of 

withstanding the “normal” cyclic loading of a Thoroughbred racehorse.
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In horses, incomplete dorsal cortical fracture of the left third metacarpal bone occurs 

predominantly in flat racing Thoroughbreds.  Treatment such as osteostixis alone can lead to 

healing, but a combination of screw placement and osteostixis is considered by some to be an 

additional treatment option.  

2.2 Bone Handling and Preservation: 

The biomechanical properties of bone vary with age, health and anatomical site. In addition, the 

preparation and storage of bone specimens can also affect the mechanical properties of the bone 

[9]. When a bone specimen is isolated from its blood supply, and no alternative sources are taken 

to provide for the viability its cells, the cells will die in a matter of hours, which causes change in 

mechanical properties. Greenberg et al. [10] non-destructively tested intact skulls and tibias 

within living, anesthetized dogs and again immediately after killing the animal for structural 

stiffness changes. It is found that the effect of death on structural stiffness was insignificant (2% 

maximum). Gustafson et al. [11] found that storing equine bone specimens in normal saline at 

room temperature for 10 days diminished their bending stiffness by 2.4% and storing in saline 

buffered with CaCl2 prevented such changes. 

There are different kinds of preservation techniques: Freezing and various Chemical 

Preservations using Formalin, Ethyl Alcohol and Embalming [12]. Literature review of all the 

above mentioned techniques are discussed in detail in this subsection.  

2.2.1 Freezing of Bone: 

Freezing allows the ability to store bones without any changes in mechanical properties [54]. 

However, there is evidence in some reports that this may not be the case. Pelker et al [13] tested 

rat femur specimens stored at -20, -70 and -196 ̊ C. He found that elastic modulus and failure 

stress is significantly higher while freezing at -20 and -70 ̊ C, while it is less significant in case of 

-196 C̊.  In contrast to that, Frankel et al. [12] states that storing the proximal femur specimens at 
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-25 ̊ C did not affect structural strength. Similarly, Goh et al. [14] states that there is no significant 

change in bending and torsional properties of feline humeri and femora when stored at -20 ̊ C for 

21 days. However, Linde et al. [15] states that the mechanical behavior of bone changes with 

time.  

2.2.2 Chemical Preservation of Bone: 

Chemical preservation is mostly used to prevent tissue decay, but also to preserve the cell 

structure for microscopic examination. The chemical solutions used for preserving the 

biomaterials/specimens include ethyl alcohol, glutraldehyde, formalin, phenol, glycerin and 

saline. Sedlin et al. [16] tested preserving the cortical bones machined from human femur in 40% 

ethyl alcohol, and found that the flexural modulus increases by 4%. With increase in alcohol 

content in the preservation solution, studies by Ashman et al. [17] and Linde et al. [15] found that 

there is a decrease in elastic modulus and a significant increase in hysteresis energy by 34%. Use 

of ethyl alcohol is suggested as better than formalin, but formalin is better in preserving the cell 

membranes. According to Weaver et al. [18] and Goh et al. [14], the stiffness of the bone 

increases by around 10% when ethyl alcohol is used. Although it is concluded that the formalin 

fixation produces slightly stiffer bones, the difference was not significant, especially when the 

formalin was buffered and made neutral.  

2.2.2 Embalming of Bone: 

Embalming is the technique of preserving biomaterials by treating them in chemicals to forestall 

decomposition. Calabrisi and Smith et al. [19] investigated the embalming effects on cortical 

bone of humans and found that the mean compressive strength decreased by 13%. Mcelhaney et 

al. [20] investigated the effect of embalming on the mechanical properties of bovine cortical 

bone, and found that there is a reduction of 12% in compressive strength. Porta et al. [21] studied 

the effect of embalming on human cadaver, and found that bone fragmentation decreased.  
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2.3 Bone Machining 

2.3.1 Orthogonal Bone Cutting 

Bone cutting is done in orthopedic surgeries for pin insertion and plate fixation when a bone is 

fractured. Orthogonal cutting of bone is often introduced to investigate cutting characteristics 

such as forces, chip formation and surface quality with respect to cutting conditions. Jacobs et al. 

[22] showed that the cutting forces increased linearly with feed and decreased with increased rake 

angle in all directions with respect to osteon orientation. In 1978, Wiggins and Malkin [23] 

investigated cutting forces with respect to feeds, rake angle and cutting directions at a larger 

range. They proposed a fracture based chip formation model and correlated specific energy with 

surface to volume ratio of chip linearly. In 1987, Krause [24] investigated the effect of rake angle 

and cutting speed on the cutting forces and concluded that the cutting forces and specific cutting 

energy decreased when the cutting speed increased. 

In 2008, Screening Design of Experiments and ANOVA were introduced by Yeager et al. [25] to 

distinguish the relative importance of independent variables on the normalized cutting force. 

However, significance level of each variable is not analyzed in their study and the trend of cutting 

characteristics with respect to each variable could not be identified because they used only two 

levels of variables. As an alternative to these experimental methods, analytical and finite element 

models have been introduced to estimate forces and temperature. Equivalent heterogeneous 

material (EHM) was adopted by Alam et al. [26] to resemble bone material, and a continuous 

chip formation was supposed to study cutting forces with respect to different cutting conditions. 

Lee et al. [27] developed a mechanistic model for predicting thrust forces and torques during 

bone drilling and verified the model with experiments. Merchant’s analysis of orthogonal cutting 

was introduced by Jacobs et al. [22] to estimate cutting forces with respect to cutting direction 

relative to preferred osteon direction. They concluded that Merchant’s analysis had limited 
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application to bone material based on calculation of cutting forces with the same shear stress 

value for all three cutting directions.  

2.3.2 Bone milling 

Arbabtafti et al. [28] performed several force measurement experiments to verify the accuracy of 

a haptic simulation of bone machining. The effects of drill angles, feed rates and spindle speeds 

on forces when milling bovine femurs were examined. The results indicate the relationship 

between milling parameters and recorded forces suggesting a similar pattern may be identified for 

human temporal bone milling. However, the influence of depth of cut, which is known to affect 

cutting forces and accuracy in industrial milling, was not examined. Plaskso et al. [29] tested 

forces and specific cutting energies for orthogonal milling in bovine cortical bone for the purpose 

of modeling and optimizing bone cutting for orthopedic surgery. The cutting parameters similar 

to those used in clinical practice (very high cutting velocities and shallow depths of cut) were 

selected. It is demonstrated that the cutting forces and specific cutting energy are significantly 

different from the results at lower speeds. Denis et al. [30] examined the effects of chip load and 

spindle speed on forces, surface flatness and temperature rise for robotic total knee arthroplasty 

procedures and concluded that forces increase with feed per tooth. Bast and Englehardt [31] 

examined manual milling forces, temperature, time of procedure, and accuracy of neurosurgeons 

of different skill levels using bovine scapula specimens. They compared robotic milling forces for 

craniotomies with a robot to that of milling forces of neurosurgeons performing the same 

procedure and found that the robot was faster, more accurate, and resulted in lower forces than 

the surgeons. 

Federspil et al. [32] tested milling forces on human temporal bones and also used a robot to 

perform a mastoidectomy. The milling parameters required for robotic bone milling were 

examined by testing milling forces on two temporal bone specimens. The effect of tool rotational 
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speeds, cutting velocities, various path parameters and burr types were tested. A set of parameters 

for calvarium bone and mastoid bone (5 mm/s at 30,000 rpm in calvarium and 1 mm/s at 30,000 

rpm in the mastoid) that best fit within a criterion of 10N maximum force and 60°C maximum 

temperature were obtained. 

2.3.3 Bone drilling 

2.3.3.1 Influence of drilling speed and feed rate 

There has been no consistent trend on the drilling speed on bone drilling temperature suggests in 

the literature. Thompson [33] found that the temperature increased at 2.5 mm and 5.0 mm from 

the drill site with increasing speed from 125 rpm to 2000 rpm during skeletal pin insertion in vivo 

of human femur bone. Vaughan and Peyton [34] studied the influence of the rotational speed on 

temperature rise during tooth cavity preparation and found the temperature increase with the 

increase in drill speed. Matthews and Hirsch [35] investigated human cadaveric femora and found 

that increasing the rotational speed from 345 rpm to 2900 rpm did not cause significant change in 

the temperature during drilling. However, increase in the thrust force results in decrease in 

maximum temperature and their duration. They measured the effect of applied force that varies 

from 19.6 N to 117.6 N along with the drill speeds varying from 345 rpm to 2900 rpm, and 

concluded that both the temperature and time duration above 50 °C decrease as the applied load 

increases. These results are also proved by Augustin et al. [36] who concluded that the peak 

temperature during drilling decreases as the feed rate increases. Brisman [37] reported that the 

drill speed of 1800 rpm and load of 1.2 kg produced the same heat as with the drill speed of 

2400 rpm and the load of 2.4 kg while drilling bovine cortical bone. Increasing either the speed or 

the load caused an increase in temperature in bone. However, increasing both the speed and the 

load together allowed for more efficient cutting with no significant increase in temperature. 

Hillery and Shuaib [38] showed that there is a significant decrease in the temperature generated 

during bone drilling with increasing drill speed from 400 rpm to 2000 rpm with a drill diameter of 
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3.2 mm. Bachus et al. [39] examined cadaveric femur and found that the duration and magnitude 

of maximum temperature decreased with increasing axial thrust force at 820 rpm. Nam et al. [40] 

found that increasing either the speed or the force resulted in temperature rise while conducting 

experiments on bovine ribs by applying a load of 500 g and 1000 g with a drill speed of 600 rpm 

and 1200 rpm. Sharawy et al. [41] conducted experiments using 4 thermocouple technology to 

measure the heat generated from three drilling speeds (1225, 1667, and 2500 rpm). It was found 

that the mean rise in the temperature, the time of drilling and the time needed for the pig jaw 

bones specimen to return to the initial temperature decreases as the drilling speed increases. Apart 

from the studies of Matthews (1972), Hillery (1999) and Sharawy (2002) concluded that there 

was a general agreement in the literature that the temperature increases with drill speed 

approximately up to 10,000 rpm. 

2.3.3.2 Predrill 

Drilling can be performed either in one step or multiple steps. In one step drilling, only one drill-

bit of required diameter is used to produce the desired hole. In case of multiple steps drilling, 

small diameter drill known as predrilling is done. Later, drill diameter gradually increased from 

minimum to the required diameter using a number of drills. Matthews et al. [42] conducted 

experiments on human-cadaveric cortical bone to examine the effect of predrilling during drilling 

of bone and found that predrilling is a highly effective method of minimizing temperature 

elevation. Branemark [43] recommended incremental drilling as it gradually removed the material 

from the drilling site, resulting in less friction and better heat dissipation. Itay and Tsur [44] also 

suggested that predrilling can effectively lessen the temperature during drilling of bone. Udiljak 

et al. [45]
 
investigated with the conventional drill and step drill and showed that the maximum 

bone drilling temperature is much lower in case of step drill as compared to conventional drill. 



15 
 

 

Fig. 2.2 (a) A classic surgical drill and (b) step drill (two phase drill). [45]  

Kalidindi [46] also found similar results and concluded that the maximum temperature obtained 

using incremental drilling is significantly less as compared to single stretch drilling to produce the 

same hole. They suggested that it might be due to the time gap between the changes of drills 

during incremental drilling and hence the new drill is in cool environment as compared to the 

single stretch drill. They have also reported that the temperature reduction is due to the reduction 

in the debris buildup with step drilling. However, with predrilling, there is a disadvantage of 

drilling time being increased resulting in extended operation time. Recently Augustin et al. 

[47] examined the temperature changes in the cortical bone during drilling with a step drill. They 

reported no differences in the maximum bone temperature with two-step drill as compared to the 

standard drill bit of the same diameter. 

2.3.3.3 Heat generation and temperature measurement 

In orthopedics and dental practices, use of drilling process for producing holes is common. The 

heat is produced during bone drilling due to the plastic deformation of the bone chips, referred to 

as bone dust, and the friction between the bone and the drill. As bone has poor thermal 

http://www.sciencedirect.com/science/article/pii/S0976566213000039?np=y#gr12
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conductivity, heat is not dissipated easily, resulting in temperature rise [9]. The heat produced is a 

significant problem because bone is very sensitive to increase in temperature which can cause 

thermal necrosis. The complex relationships between the geometry of the drill bit, drilling 

conditions, mechanism of the chip removal and the properties of the bone presents a great 

challenge in developing a mathematical model for the calculation of the heat generated during 

bone drilling [52]. A few attempts for the development of a thermal model for bone drilling had 

been made. Nevertheless, mostly the theory of orthogonal cutting is applied for the calculation of 

the heat generated during bone drilling because the chips produced during bone drilling indicates 

shear failure which is similar to the chip separated from metal during machining [48] .Heat 

generated during drilling mainly comes from three sources (A) primary shear deformation within 

the shear zone, (B) friction between the rake face of the tool and the chip and (C) friction between 

the flank face of the tool and the newly created surface of the workpiece. 

 

Fig. 2.3.  Zones of heating in orthogonal cutting [49].   

Davidson and James [49] developed an analytical model for the calculation of rate of heat 

entering the bone using the theory of orthogonal machining. For calculating the heat generated, 

they considered only the energy used for shearing of material (Zone A) by neglecting the 

significant effects of moving chips (Zone B), the heat produced between the tool flank and bone 

(Zone C) and the heat transfer between the drill bit and bone. Kalidindi [46] derived and solved 

the homogeneous differential equation for the heat conduction in radial direction. Tu et al. 

http://www.sciencedirect.com/science/article/pii/S0976566213000039?np=y#gr18
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[50] presented an elastic–plastic dynamic finite element model to simulate the temperature rise 

during drilling. Recently Lee et al. [51] suggested a new thermal model based on the theory of 

oblique cutting for applications into orthopedic surgery. All the process parameters are taken as a 

function of the cutting radius. They considered the cutting lips to be divided into finite number of 

cutting elements, each of which experiences oblique cutting mechanics. The temperature was 

calculated by using an explicit finite difference method. 

Measurement of the temperature produced during bone drilling at the tool–bone interface is 

challenging. This is because of the uncertainty associated with the placement of the temperature 

measurement device at a certain distance from the interface. Traditional thermocouple technique 

has been used for the determination of the temperature elevation in both vivo and in vitro 

experiments (shown in figure 2.3a). Recently, use of thermographic camera has increased for the 

determination of the bone temperature during drilling due to ease configuration of the setup in 

measuring the temperature at desired location (figure 2.3b). 

 

Fig. 2.4. Common methods for the estimation of temperature experimentally during bone drilling: 

(a) thermocouple technique[52] and (b) infrared (IR) thermography.[53]  

Researchers often used two or more thermocouples for temperature measurement due to bone 

anisotropy. Sharawy et al. [41] used four thermocouple technique by placing thermocouples in 

four orientations from the hole at the same depth. Kalidindi [46] used both techniques where the 

http://www.sciencedirect.com/science/article/pii/S0976566213000039?np=y#gr19
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thermographic image was utilized as a template for the placement of the thermocouple. Recently 

Goran et al. [36] investigated the temperature distribution in drilling of the porcine femora with 

infrared thermographic camera. The thermographic picture shows that the temperature is the 

maximum along cortical bone, which is the most compact component of the bone. Both the 

methods are accompanied by certain disadvantages. Temperature measurement by thermocouple 

is not a satisfactory method because of poor thermal conductivity and inconsistent properties of 

bone. Also, large number of pilot holes should be prepared for thermocouple insertion during 

experiments. However, infrared thermographic camera only detects the surface temperature; 

therefore it cannot accurately predict the temperature at the actual drilling site. 

2.3.4 Vibration Assisted Machining (VAM) 

VAM is performed by applying high frequency and small amplitude to create a displacement 

between the tool and the workpiece. Due to the presence of simple cutting geometry and 

dynamics in turning as compared to milling, majority of the research on VAM were focused in 

turning. It is found that VAM has numerous advantages over conventional machining (CM), such 

as longer tool life [54-56], improved surface finish, burr suppression[57], and greater depth of cut 

for ductile regime machining of brittle materials[9] as compared to CM. 

Ultrasonic elliptical vibration machining (UEVM) was first introduced in 1994 by Shamoto and 

Moriwaki [58]. This technique is a promising cutting method in terms of all cutting performances 

and has been extensively used since a decade. UEVM was used in several low machinability 

materials such as hardened steel [59], glass [9], and sintered WC [60]. UEVM results in smaller 

cutting force and longer tool life as compared to CM[59]. Numerous research works focused on 

the effect of cutting and vibration parameters on machining performed. The cutting force reduced 

in VAM due to reduced friction between the tool and the workpiece [61, 62] and the separating 

characteristics of the tool and workpiece [57, 63]. In previous studies, it was shown that vibration 
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cutting was more effective at lower cutting speed [57, 62, 63], and at higher vibration frequency 

and amplitude [64, 65]. It is further found that the cutting force at ultrasonic vibration cutting 

method is solely dependent upon the cutting speed, vibration frequency and amplitude [54, 66, 

67].  

In addition to turning, VAM is also used in micro-milling  process to improve the cutting 

performance which reduced the tool wear and improved the surface quality in an aluminum alloy 

[68]. A two-dimensional vibration assisted micro-end milling is employed to machine the 

hardened steel and study the effects of vibration parameters on surface roughness and tool 

wear[69]. A similar work is performed on an aluminum alloy by applying an ultrasonic vibration 

in the micro end milling operation where vibration in feed direction resulted in reduced cutting 

force and uniform small chips [70]. Through the experimental results, it is predicted that the 

surface of the slot bottom is worse and the slot width is better when ultrasonic vibration is applied 

in the feed direction. The vibration assisted milling works in the past are mainly focused to 

investigate an effect of vibration on the cutting force [70-72], tool wear [69, 73, 74], surface 

roughness [69, 72, 74, 75] and tool life. However, effect of vibration assisted drilling on equine 

bone has not been investigated. 

2.4 Investigation of Behavior of Materials and Bio-materials using Micro-CT 

Micro-CT denotes Computed Tomography technique with a spatial resolution of 1 - 100μm. This 

is a non-destructive technique that has replaced the tedious staining techniques required by 

histomorphometric analysis of thin sections and other in vivo investigations on small animals. 

The early development of micro-CT is for the study of bone architecture and density. Recently, 

micro-CT has been applied in the analysis of trabecular structure, like scaffolding in fiber 

reinforced materials, and biomaterials.  
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G.Novajra et al. [76] investigated the effect of different thermal treatments and fiber diameters 

and length on the final scaffold structure of phosphate glass fiber. The measurement of trabecular 

thickness and porosity percentage for different thermal treated samples is obtained from micro-

CT images. Wayne Y. Lee et al. [77] studied the effect of miR-29b-3p on mice femoral fracture 

healing through site-specific delivery with microbubble-ultrasound. Micro-CT is used to analyze 

bone volume fraction of specimen with different bone mineral densities after the injection of the 

compound. Balli An et al. [43] investigated the osseus integration of the titanium implants in the 

rabbit femur bones. X-Ray source was set to 80kV voltage and 50μA current. Pixel size 

resolution is 19.64μm. Figure 2.4 shows the reconstructed 3-D image of bone-implant interface 

from the micro-CT images. 

 

Fig 2.5. 3-D image of bone-implant interface from the micro-CT [78] 

Aymeric Larrue et al. [78] analyzed the 3D morphology of micro cracks in human trabecular 

bone using micro-CT. Micro cracks observed in micro-CT was controlled by epifluorescence 

microscopy. An automatic segmentation method was used for segmenting the micro cracks in 

images from micro-CT, and stacks are created. These stacks were put together, known as 

topographic reconstruction, after which the 3D rendering of micro cracks is obtained. The 

automatic segmentation is again applied to the reconstructed images to observe micro crack. The 

process is illustrated in the figure 2.5. All these work using micro-CT suggest that the biomaterial 
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can be best analyzed by micro-CT and good resolution images can help identify the cracks caused 

by bone machining process. 

 

Fig. 2.6. Steps to reconstruct 2-D images from micro CT to 3-D [78] 
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CHAPTER 3 
 

 

CONVENTIONAL AND VIBRATION ASSISTED DRILLING OF EQUINE CANNON 

BONE 

 

3.1 Overview 

This chapter presents the study on the effect of drilling parameters and vibration assistance on the 

drilling performance for equine bone. A CNC milling machine and 316L Steel Surgical drilling 

tool were used to conduct the experiments. A two-dimensional vibration stage with thin wall 

design was used to apply vibration assistance. The results of effect of the vibration on the 

temperature, thrust force and damages in the form of micro-cracks are discussed in detail. 

3.2 Sample Preparation 

Seventeen Equine cannon bones are harvested from five horses at the time of euthanasia for 

reasons other than for orthopedic issues. The soft tissues are removed from the bones and 

immediately wrapped in saline soaked towels for preventing drying and stored at -20ºC until time 

of use. At the time of testing, the cannon bone is thawed to room temperature and then cut into 

3cm length sections using a high speed bone saw (Exact Technologies in Oklahoma City). The 

specimens are machined using High Speed Steel (HSS) milling tool to create 4 flat surfaces- two 

surfaces parallel to the long axis of the specimen and two surfaces perpendicular to the long axis 

of the specimen, to obtain more dimensional consistency as shown in figure 3.1.
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Fig 3.1 Bone with machined surfaces 

Two drilling experiments per sample are conducted. Hence, to measure the temperature during 

the drilling process at two different depths of 5mm and 7mm from the drill surface, two holes of 

0.8mm diameter are drilled sideways on each side for depths of 5mm and 7mm, parallel to the 

long axis and into the cortical bone to insert thermocouples with the help of glue, as shown in 

figure 3.2. 

  

a)    b) 

Fig 3.2 a) Two thermocouple holes, and b) Two thermocouples being stuck into the holes. 
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3.3 Drilling Experiments of Equine Cannon Bone 

3.3.1 Experimental setup  

Firstly, conventional drilling experiments are performed to investigate the effect of drilling 

parameters on thrust force and temperature. The equine cannon bone is machined flat on top and 

bottom sides. Straight holes of diameter 0.8mm are drilled, right and left, for placing 

thermocouple holes at distances of 5 mm and 7 mm from the top surface. A commercial MDA 

precision machining center is used to perform the machining experiments. Figure 3.3 shows the 

machining center and the experimental setup, along with the system for collecting force and 

temperature data. A Kistler make 9257A type sensor that is able to measure a maximum force of 

5000N in all three directions is used in this project. The thermometer used for measuring 

temperature is an Omega HH801B, which can measure a range of -200 ̊ C to 1372 ̊ C. The K type 

5TC-TT-K-36-36 thermocouples used (Omega) are able to sense a maximum temperature of 

1200 ̊ C and a minimum temperature of -250 ̊ C respectively.  A mist coolant setup was used to 

provide a continuous supply of 0.9% veterinary grade saline (NaCl) for irrigation at 60ml/min to 

reduce thermal necrosis in all drilling experiments. 

      

a)      b) 
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Figure 3.3 a) MDA precision machining center and b) Experimental setup 

The drill bits used for the experiment are 3.2mm diameter and 130mm long surgical drill bit 

manufactured by Synthes. It is made of 316L surgical steel, with a core diameter of () and the 

flute has helix angle of 20 degrees with the length of 38mm. The total length of the surgical drill 

bit was reduced from 130mm to 78mm for use in the 3 axis CNC machine. Its length is decreased 

to reduce the wobbling (flexing) in drilling operation (figure 3.4). Twenty drilling experiments 

are performed using one drill bit.  

 

Fig 3.4 Drill bit used for bone drilling. Drill bit of reduced length is shown on the right - to 

minimize wobbling (flexing) during drilling.  

Drilling experiments are conducted at four different spindle speeds of 5000, 7000, 40000 and 

60000 rpm and four different feed speeds of 5, 10, 30 and 50mm/min. Three experiments are 

conducted per drilling condition for repeatability and 60ml/min flood coolant has been used to 

reduce the occurrence of thermal necrosis. 
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3.3.2 Experimental setup and Procedure for Vibration Assisted Drilling  

A two dimensional vibration stage with thin wall design, attached with two piezo actuators is 

used for providing vibration during drilling. The trunnion system of the MDA CNC machine is 

used to hold the vibration stage at 90 degrees, so that one piezo acts as z-axis vibration source. An 

L-clamp is fastened on to the vibration stage, upon which bone is clamped as shown in figure 3.5. 

Drill bit, force sensor, thermometer and thermocouple used in this setup are of the same 

specifications as in conventional drilling. 

 

Fig. 3.5 The vibration assisted drilling experimental setup  

The experiments are conducted on the bones for 5 different spindle speeds of 5000, 7000, 10000, 

40000 and 60000 rpm and four different feed speeds of 5, 10, 30 and 50mm/min to characterize 

the behavior of temperature and thrust force in low and high spindle speed and feed speed.  

Similar to the conventional drilling, 60ml/min flood coolant of 0.9% veterinary grade NaCl 
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Saline is used during the experiments to reduce the thermal necrosis and each experiment is 

repeated three times for repeatability. The vibration frequency is kept constant at 8160Hz and the 

corresponding amplitude is 40microns. Some experiments are conducted for 20mm/min feed 

speed as well for better understanding of behavior of temperature and force. The depth of drilling 

is kept constant at 20mm from top surface of the specimen.  

 

 

3.4 Results and Analysis 

3.4.1 Dimensional consistency of hole: 

             

(a)      (b) 

Figure 3.6 (a) Setup of Bone Drilling Experiments (b) Geometry of Drilled Holes. 

From the three experiments performed for each drilling condition, it is found that the diameter of 

the hole is enlarged at the bone surface as a result of the drilling process. The measurement of the 

hole diameter was performed at the surface of the hole using a Mitutoyo Vernier Caliper with a 

least count of 0.001mm. The diameter is measured at three different places along the 

circumference of the hole, and the average is documented. 
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 The figure 3.6b shows two enlarged holes. The hole marked 1is caused by 40000 rpm and the 

hole marked 2 is caused by 60000 rpm. For spindle speeds of 40000 and 60000 rpm, at feed speed 

of 30mm/min, the maximum surface diameter of drilled holes measured 3.85mm and 4.85mm 

respectively. For feed speed of 5mm/min, it measured 3.45mm and 4.5mm respect4ely. The 

vibration assisted machining for same drilling conditions does not improve the geometry of the 

hole, as the maximum surface diameter at feed speed of 30mm/min measured 4.05mm and 

4.93mm for 40,000 and 60,000 rpm respectively. It is because of the increased wallowing of the 

drill bit due to the applied external vibration. Variation in drill hole diameter is shown in the 

Figure 3.6. The enlarged surface diameter of the hole observed in the figure above might be 

because of the high vibration of drilling tool at higher spindle speeds due to the large overhanging 

length. This also implies that the overhanging drill length has a significant effect on the drilled 

hole diameter at higher spindle speeds.   

3.4.2 Temperature: 

Figure 3.7 shows variation in temperatures for constant spindle speed and different feed speeds: 

 

a)      b) 
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c)      d) 

Fig 3.7. Graphs showing variation of Temperature at different feed speeds and constant spindle 

speed 

In all the graphs above, it can be observed that, for constant spindle speed and increase in feed, 

there is increase in temperature from 5mm/min to 10mm/min because of increasing friction due to 

sliding contact (rubbing) because of low speed machining. It is also evident that there is decrease 

in temperature from 10mm/min to 30mm/min, as there is more cutting mechanism taking place 

than rubbing, which reduces the friction. The increase in temperature form 30mm/min to 

50mm/min is because of the high deformation happening due to larger chip load. Also, another 

fact that can be observed is that, temperature at 7mm depth is higher than temperature at 5mm 

due to heat accumulation. The temperature for vibration assisted drilling is found to be less than 

the conventional drilling because of the intermittent cutting process happening instead of the 

continuous cutting process. 

Figure 3.8 shows variation in temperature for same feed speed and different spindle speed. When 

the feed rate was kept constant, an increase of tool rotation speed led to an increase in sliding 

distance between tool and the workpiece within a fixed period of time. This is the reason why the 

cutting temperature increases as spindle speed increased from 5000 to 40000rpm. Decrease in 
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temperature from 40000 rpm to 60000 rpm is because of hole enlargement leading to saline 

irrigation reaching the depths of hole, which resulted in temperature decrease. 

 

a)      b) 

 

c)      d) 

Fig. 3.8. Graphs showing variation of Temperature at different spindle speeds and constant feed 

speed 

For the vibration assisted drilling at 10mm/min, temperature at 60000 rpm is higher than 40000 

rpm, defying the overall trend. It is because, the wobbling tool at high spindle speed makes 

contact with the thermocouple directly, that causes hike in temperature. It can also be observed 

that the temperature of the vibration assisted drilling is less than that of the conventional drilling. 
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It is because of the fact that the vibration assistance makes the drilling process intermittent 

instead of continuous, which reduces the friction.  

3.4.2.1 Variation of Temperature with time during thermocouple measurements: 

In this section, variation of temperature during the measurement using thermocouple is discussed. 

Thermocouples are placed at 0.5mm from the drilling tract by inserting them at 5mm and 7mm in 

the sites. Figure 3.9 shows the variation of temperature at 50mm/min for different spindle speeds 

with and without vibration assistance at 5mm depth. 

 

Fig 3.9. Temperature vs Time at 50mm/min and different spindle speeds with and without 

vibration assistance 

No significant temperature rise is recorded until the cutting edge approached the location where 

the thermocouples are placed. It may be due to the low thermal conductivity of the bone.  This is 

the reason behind the quick rise and fall of temperature seen in the figure. The same trend is 

followed at 7mm depth as well, while the magnitude is different because of heat accumulation. 
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The figure 3.10 shows the variation of temperature at 7000rpm for different feed speeds. The time 

taken by the drilling process at different feed speeds is evident from the graph. Also, the peak 

temperature is achieved more quickly at higher feed speed due to higher process speed. 

 

Fig 3.10 Temperature vs Time at 7000rpm and different feed speed 

3.4.3 Thrust Force 

Thrust force graphs with constant spindle speed are shown in figure 3.11.  

The x axis is feed speed in mm/min and y axis is thrust force in N. The graphs below show that 

the thrust force increasing with increase in feed speed at all spindle speeds except for 40000 and 

60000 rpm at 50mm/min in conventional drilling. At these particular drilling conditions, rupture 

caused in bone initially makes the tool-workpiece contact irregular, resulting in less force. In case 

of vibration assisted drilling, the thrust force is less in case of higher feed rate, because the 

external vibration results in a lower depth of cut for each tooth on the tool due to the intermittent 

contact. 
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a) 

 

b) 

Fig. 3.11. Graphs showing variation of Thrust force at different feed speeds and constant spindle 

speed 
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Figure 3.12 shows thrust force versus spindle speed with feed speed as constant. From the graphs, 

it can be conceived that the thrust force increases with the increase in spindle speed because of 

more sliding contact with increased tool rotation. However, the thrust force decreases from 40000 

to 60000 rpm in case of cannon bone because of the wobbling of drill bit, and the damage caused 

because of that. This rupture results in enlarged holes, which reduces the tool- workpiece contact. 

It is also evident that the vibration assisted drilling has less thrust force when compared to the 

conventional counterpart because of the drill bone contact becomes being intermittent instead of 

continuous. 

 

a) 
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b) 

Fig.3.12 Graphs showing variation of Thrust force at different spindle speeds and constant feed 

speed 

 

3.4.4 Comparison of drill wall images from Micro-CT  

The regions of the drilled hole in the samples are scanned in micro-computed tomography (micro-

CT) in Skyscan 1172 model at 11.76μm resolution, 87kV voltage and 120μA current. The 

samples are cut into small pieces of approximately 24mm in height and width, as shown in figure 

3.13a, in order to increase the resolution of the images. The Skyscan 1172 system as shown in 

figure 3.13b, has x-ray source on right side and the detector is on left side of the machine. 

Medium camera of 2000*1048 pixels is chosen to scan the whole specimen. The specimen is 

mounted on micro-CT stage for scanning as shown in figure 3.13c. 
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a) 

 

 

b)       c) 

Fig.3.13 a) Downsized sample for scanning b) Skyscan 1172 microCT equipment 

c) Sample mounting stage 

900 images are obtained for each sample. One image is generated for every 0.4 degree rotation of 

the sample. Images are saved in the 16 byte TIFF format to retain overall detail. These images are 

reconstructed using software called NRecon. Misalignment, ring reduction and beam hardening 

are the parameters employed to enhance the images to retain the details. The reconstructed 

images provide cross-section images of the specimen, where the wall of the drilled hole can be 

seen as shown in figure 3.14. 
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  a) 5000 rpm and 10 mm/min no vibration and with vibration 

  

b) 5000 rpm and 30 mm/min no vibration and with vibration 

    

c) 7000 rpm and 10mm/min no vibration and with vibration 

      

d) 7000 rpm and 30 mm/min no vibration and with vibration 

        

e) 60000 rpm and 10 mm/min no vibration and with vibration 
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f) 60000 rpm and 30 mm/min no vibration and with vibration 

Fig.3.14 Drill hole quality observation form reconstructed micro-CT images. 

From the figure 3.14 e and 3.14 f, it is evident that the drill wall is not straight and the diameter is 

not maintained throughout. This is because of wobbling of the drill bit occurs at higher spindle 

speed such as with 60000 rpm. Moreover, it can be observed that chunks of materials are attached 

to the wall of 60000 rpm at 10mm/min and 60000 rpm at 30 mm/min with no vibration because 

of wobbling drill bit, as there is most likely no frequent tool contact with the wall. Although the 

hole diameter is not consistent throughout with the vibration assisted drilling; however, there is 

no material attached to the wall. This may be due to vibration in z axis direction along with the 

wobbling of tool creating a larger diameter (elliptical path). In addition, walls appear cleaner due 

to its frequent contact with the tool. It is noticeable in figures 3.14a to 3.14c that the walls are 

clean and straight at lower spindle speeds, except for debris remaining in the no vibration 

specimens. It can also be observed that at 60000 rpm and 10mm/min, more uncut material is 

adhering to wall compared to 60000 rpm and 30mm/min. It is caused by extensive micro-fracture 

occurring with lower drilling speed. Therefore, it can be concluded that the vibration assisted 

drilling provides improved results compared to conventional drilling at higher spindle speeds.
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CHAPTER 4 
 

 

MILLING OF BOVINE CANNON BONE 

 

4.1 Overview 

In this chapter, the investigation on effect of slot milling parameters including spindle speed, feed 

per tooth and depth of cut on cannon bone’s surface roughness, milling forces on both x and y 

directions and temperature is discussed. Taguchi method is used to find the most deterministic 

parameter on surface roughness, force and temperature.  

4.2 Sample Preparation 

Bovine cannon bones are prepared the same as described for the equine canon bones and stored at 

-20ºC. The cannon bones are cut into 3cm sections for testing using a precision bone saw as 

shown in figure 4.1a. The bone sections are machined flat on top and bottom of the cortical bone 

(hard part) as shown in figure 4.1b. These machined pieces are taken to Exact Technologies for 

sectioning the specimens into two halves (cross-sectionally) and creating grooves in one of the 

half sections to accommodate thermocouples in them (figure 4.1b). Marrow is removed from the 

cut sections and thermocouples are implanted at a calculated distance from the surface, so that the 

tool’s tip comes within 0.5mm from the thermocouple. Epoxy is then prepared and poured into 

the marrow cavity. The specimens are left to cure for 8 hours wrapped in saline soaked towel at 

room temperature. 
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a)     b)  

 

    c)   

Fig.4.1. a) The pathological saw, b) The grooved half of bovine cannon bone and c) The 

epoxy filled bone. 

4.3 Experimental Setup  

A commercial MDA precision micro milling machine was used for the experiment. Its maximum 

spindle speed is less than 60,000 rpm. A four-flute High Speed Steel (HSS) end mill 

(MICROCUT) with 1/8 in (3.175 mm) diameter and 30º helix angle was used. Kistler 9317c 
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dynamometer was used to measure force. It can measure a maximum force of 500N in all three 

directions. The bone is directly clamped to the Kistler 9317c force sensor, by drilling a 2.6mm 

hole and tapping a 3mm bolt to it. Both x and y direction force due to milling operation is 

measured. The temperature is measured using Omega HH801B thermometer, and a K type 5TC-

TT-K-36-36 omega thermocouple. This temperature measuring setup can measure any 

temperature between -200 ̊ C to 1372 ̊ C. After the experiments, surface roughness is measured 

using Mitutoyo SJ 210.The experimental setup and the surface roughness tester is shown in the 

figure 4.2b. 

     

a)     b) 

Fig.4.2. a) Experimental setup b) Surface Roughness Tester SJ 210 

4.4 Experimental Procedure 

Design of Experiments is used to design a 3 factor 4 level orthogonal matrix list to reduce the 

number of experiments from 64 to 16 as shown in table 4.1. The 3 factors are spindle speed, feed 

per tooth and depth of cut. 
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Table 4.1 Results of Temperature, Cutting forces and Surface roughness obtained from the 16 

milling experiments 

Speed 

(RPM) 

Feed per tooth 

(mm/min) 

Depth of 

cut (mm) 
Fx (N) Fy (N) 

Temp 

(celsius) 

Roughness 

(microns) 

6000 0.1 0.5 4.63 5.1 23.2 1.41 

6000 0.2 0.75 27.9 19.1 23.5 0.38 

6000 0.3 1 24.52 25.32 25.5 0.83 

6000 0.35 1.5 10.33 12.61 34.0 0.82 

8000 0.1 0.75 10.25 12.91 28.6 0.23 

8000 0.2 0.5 14.79 18.72 24.6 0.77 

8000 0.3 1.5 20.72 27.28 27.7 1.13 

8000 0.35 1 18.28 17.87 26.1 1.05 

10000 0.1 1 10.46 17.32 29.8 1.81 

10000 0.2 1.5 14.18 16.70 25.7 0.47 

10000 0.3 0.5 23.19 29.54 24.5 0.61 

10000 0.35 0.75 22.79 35.99 23.4 0.53 

15000 0.1 1.5 21.51 19.38 30.9 0.55 

15000 0.2 1 20.51 25.83 25.4 0.81 

15000 0.3 0.75 21.28 18.36 24.3 0.94 

15000 0.35 0.5 19.31 25.51 23.6 0.66 
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4.4.1 Analysis of the results using Taguchi Method 

Once the results were obtained, Taguchi method was used to analyze the degree of influence of 

each factor for each of the responses including force in x and y direction, temperature and Surface 

roughness. Taguchi method has two types of problems: Static and Dynamic. The problem in this 

study is static in nature. 

4.4.1.1 Static Problem 

Generally, a process to be optimized has several control factors which directly decide the target or 

desired value of the output. The optimization then involves determination of the best control 

factor levels so that the output is at the target value. Such a problem is called "Static Problem".  

This is best explained using a P-Diagram which is shown in figure 4.3. ("P" stands for Process or 

Product). Noise is shown to be present in the process but should have no effect on the output. 

This is the primary aim of the Taguchi experiments - to minimize variations in output even 

though noise is present in the process. The process is then said to have become ROBUST.  

   

 

 

 

 

 

Fig.4.3 Schematic diagram for static problem
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There are 3 Signal-to-Noise ratios of common interest for optimization of Static Problems;  

1) Smaller the better: 

𝑛 = −10 log10[mean of sum of squares of measured data ]  

2) Nominal the best,  

𝑛 = −10 log10[mean of sum of squares of reciprocal of measured data ]  

 

3) Larger the better 

𝑛 = 10 log10

𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑚𝑒𝑎𝑛

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

Taguchi method is accomplished using Minitab 15. The following are the results from Minitab 

15. 

4.4.1.2 Signal to Noise ratio graphs for each response: 

SURFACE ROUGHNESS 

Smaller is better – As smoother surface ensures precise attachment of artificial implants. 

Level 
Spindle Speed (rpm) 

Feed per 

tooth(mm/tooth) 
Depth of cut (mm) 

1 2.1464 2.3383 1.766 

2 3.3207 4.6877 6.6625 

3 2.7477 1.3307 -0.5727 

4 2.7083 2.5665 3.0673 

Delta 1.1743 3.357 7.2353 

Rank  3 2 1 

Table 4.2 Response Table for Signal to Noise Ratios for surface roughness 

Depth of cut is the most influencing parameter for surface roughness output. The reason may be, 

as the depth of cut increases the contact of flank face of the tool increases. The deformation is 
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high due to more shear. This leads to increase in friction and heat production in the process [79]. 

This results in more damage to the surface because of more sticking contact than sliding in the 

flank face. Feed rate and spindle speed are not as dominant as depth of cut because the analytical 

evaluation by Yeager et al proves that and, the larger depth of cut also produces larger debris 

which results in re-deposition on bone matrix causing irregularity in surface, which does not 

depend on feed rate or spindle speed . [25].  
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Fig 4.4 Main Effects plot for SN ratios- roughness 

TEMPERATURE 

Smaller is better – Lower operating temperature is preferred to prevent thermal necrosis. 

Level 
Spindle Speed 

(rpm) 

Feed per tooth 

(mm/tooth) 

Depth of cut 

(mm) 

1 -28.38 -28.94 -27.6 

2 -28.54 -27.9 -27.92 

3 -28.23 -28.13 -28.52 

4 -28.28 -28.46 -29.38 

Delta 0.32 1.04 1.77 

Rank  3 2 1 

Table 4.3 Response Table for Signal to Noise Ratios for temperature 



46 
 

The most deterministic parameter for temperature response is depth of cut. The physical reason 

for this result is, as the area of contact of the tool increases with the bone, so does the increase in 

friction, producing more heat. The feed speed and spindle speed also influences the temperature, 

but not as much as depth of cut, because a big scale brittle fracture can occur in front of the 

cutting edge parallel to the cutting direction, when the cutting edge collides mechanically to the 

workpiece in the tool feed per tooth. So, temperature does not rise because of brittle fracture[80].  
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Fig. 4.5 Main Effects Plot for SN ratios- Temperature 

FORCE IN X DIRECTION 

Smaller is better – Lower cutting forces are preferred for longer tool life and smoother surgery 

(less damages during surgery). 

Level 
Spindle Speed 

(rpm) 

Feed per tooth 

(mm/tooth) 
Depth of cut (mm) 

1 -22.57 -20.14 -22.43 

2 -23.8 -25.4 -25.71 

3 -24.47 -27 -24.92 

4 -26.29 -24.6 -24.08 

Delta 3.72 6.85 3.28 

Rank  2 1 3 

Table 4.4 Response Table for Signal to Noise Ratios for force in X direction 
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Fig. 4.6 Main Effects Plot for SN ratios- Force X direction 

FORCE IN Y DIRECTION 

Smaller is better 

Level 
Spindle Speed 

(rpm) 

Feed per tooth 

(mm/tooth) 

Depth of cut 

(mm) 

1 -22.47 -21.73 -24.29 

2 -25.36 -25.94 -26.06 

3 -27.44 -27.87 -26.53 

4 -26.85 -26.58 -25.23 

Delta 4.97 6.14 2.24 

Rank  2 1 3 

Table 4.5 Response Table for Signal to Noise Ratios for force in Y direction 
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Fig. 4.7 Main Effects Plot for SN ratios – Force in Y direction  

Feed rate is the most influencing factor for force output. The reason is because, the cutting force 

increases with increase in material removal rate. As the feed rate increases, material removal rate 

increases, resulting in high cutting force. Depth of cut and spindle speed are not as dominant as 

feed rate because, the feed rate determines the amount of material removed that directly affects 

the force.  

Summary from Taguchi analysis: 

These results convey that the most influencing parameter for Forces in x and y direction is ‘Feed 

rate’. Similarly, for Surface roughness and Temperature, the most influencing parameter was 

‘Depth of cut’.  

4.4.2 ANOVA- General Linear Model for optimum milling parameters 

4.4.2.1 Response Optimizer: 

Response Optimizer is a tool the software Minitab that helps in identifying the combination of 

input variable settings that jointly optimize a single response or a set of responses. Joint 

optimization must satisfy the requirements for all the responses in the set, which is measured by 
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the parameter called composite desirability. Composite desirability evaluates the extent to which 

a particular condition or setting optimizes a set of responses overall. Desirability has a range from 

0 to 1, where 1 represents the ideal condition and vice versa. Mathematically, it is the weighted 

geometric mean of the ind4idual desirability for the responses. Minitab determines optimal 

settings for input variables by maximizing the composite desirability. 

TEMPERATURE: 

Temperature is considered the most important response. First step is to setup the response 

optimizer by choosing which responses must be maximized or minimized as shown in figure 4.8. 

Then, weight and importance is input according to the need of the scenario. Weight and 

Importance can be rated from a range of 0.1 to 10. For the purpose of this study, the input was 

given as shown in the figure, where the highest weight and importance is selected as 1, with 

percentage in mind.  

 

Fig. 4.8 Setup window from Response Optimizer 
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The next step is to select the constraints in the option, which is to mention the region of values for 

the variable, like holding a particular value, or constraining to a particular region. This makes the 

prediction of most composite desirable condition to fall in the region of interest. In this study, the 

options are chosen as shown in figure 4.9. 

 

Fig.4.9 Options window from Response Optimizer. 

The final step is to select the number of solutions to be displayed that has top desirability values, 

and perform the analysis with the given inputs. The tool provides several tables along with the 

plot as shown below.  
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Multiple Response Conditions 

 

 

 

 

 

 

a) Multiple solutions 

 

Variable Setting 

Speed (rpm) 6000 

Feed per tooth 

(mm/min) 
0.2 

Depth of cut (mm) 0.5 

b) Most desirable solution 

 

Response Fit  SE Fit 95% CI 95%PI 

Temp 

(Celsius) 
22.78 2.18 (17.43, 28.12) (14.16, 31.39) 

Roughness 

(microns) 
0.708 0.359 (-0.171, 1.587) (-0.709, 2.215) 

Fy (N) 14.4 5.87 (0.05, 28.76) (-8.74, 37.55) 

Fx (N) 16.08 5.17 (3.43, 28.73) (-4.31, 36.48) 

c) Table showing Confidence Interval values 

Table 4.6. Output tables from Response Optimizer from Minitab. 

 

Table 4.6 (a) shows 3 conditions that are possible overall desirable outcome, which gives 

minimum responses as suggested. Then, the most desirable setting is put forth by the software, 

which is 6000 rpm, 0.2mm/min and 0.5 mm for the temperature as priority. Figure 4.10 shows 

individual desirables that led to the collective/composite desirability. 

Solution 

Spindle 

Speed 

(rpm) 

Feed 

per 

tooth 

(mm/

min) 

Depth 

of cut 

(mm) 

Temp 

(ᵒC) 

Roughness 

(microns) 
Fy (N) Fx (N) 

Composite 

Desirability 

1 6000 0.2 0.5 22.77 0.70 14.40 16.08 0.852 

2 8000 0.2 0.5 22.97 0.64 18.06 15.25 0.851 

3 6000 0.2 0.75 22.74 0.36 16.27 21.15 0.826 
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Fig. 4.10. Response Optimizer plot from Minitab 

ROUGHNESS AND FORCE: 

The Response Optimizer was used for both roughness and Fx, Fy individually, with importance 

and weight as 1 as shown in figure 4.11  

 

a) Roughness 
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b) Force 

Figure 4.11 .  Output from the response optimizer for a) Roughness and b) Force  

 

Thus, the overall influence of a particular milling condition for minimal temperature, roughness 

and force with different weights was found. The results from section 4.4.1 suggests that the depth 

of cut is the most dominant factor for both surface roughness and temperature, while feed rate is 

the most deterministic factor for cutting force. The reason for the result is because the optimum 

milling parameters are decided with the input weight factors and the dominant parameters.   
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CHAPTER 5 
 

 

CONCLUSIONS AND FUTURE SCOPE 

 

5.1 CONCLUSION 

This thesis presents two studies involving two different types of machining processes on cannon 

bone - drilling and milling.  

Experimental study 1 - Vibration assisted drilling of equine cannon bone. The effect of drilling 

parameters on temperature and thrust force is investigated. Following conclusions are drawn from 

the results of drilling study: 

1) Drill diameter increases in high speed drilling. At 40000 rpm and 60000 rpm, the 

maximum diameter measured is 3.85mm and 4.85mm at 30mm/min feed speed, and it is 

3.45mm and 4.5 mm at 5mm/min respectively. The enlarged diameter is found to be 

larger than the conventional drilling in the case of vibration assisted drilling. This is 

because of the pronounced wobbling of toll due to the external vibration. 

2) Drilling temperature increases as spindle speed increased from 5000 to 40000rpm. The 

reason is, increase of tool rotation speed led to an increase in sliding distance between 

tool and the workpiece for a constant feed speed. There is a decrease in temperature from 

40000 rpm to 60000 rpm because of hole enlargement leading to saline irrigation 

reaching the depths of hole, which resulted in temperature decrease. Same trend is 

followed in the case of vibration assisted drilling as well. The only
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difference is, the magnitude of temperature was less when compared to the conventional 

drilling because of the Vibration assisted drilling being an intermittent process. 

3) Thrust force for vibration assisted drilling is less than the conventional drilling for the 

most part except at higher spindle speeds. The reason is, in case of enlarged diameter, the 

tool-bone contact was more in case of vibration assistance because of external vibration, 

when compared to conventional drilling. 

4) In micro-CT images, it can be observed that chunks of materials are attached to the drill 

hole wall of 60000 rpm samples at 10mm/min and 60000 rpm at 30 mm/min with no 

vibration because of brittle fracture due to wobbling and less frequent tool contact with 

the wall. There is more uncut material in 10mm/min when compared to 30mm/min, 

because of extended brittle fracture with increased time for drilling (slow process).  

5) From micro-CT images, it is observed that the diameter is not consistent in vibration 

assisted drilling, and there is no material attached to the wall. The vibration in z direction 

along with the wobbling of tool creates larger diameter (elliptical path) may be the reason 

for this phenomenon. In addition, walls are cleaner due to its frequent contact with the 

tool.  

6) The micro-CT images of lower spindle speeds show cleaner and straighter walls in 

vibration assisted drilling, while debris remains in the wall in conventional drilling 

samples.  

Therefore, vibration assisted drilling provides less temperature and thrust force at lower spindle 

speeds when compared to conventional drilling due to intermittent cutting. 

Experimental study 2 - Milling of bovine cannon bones. The degree of influence of cutting 

parameters on temperature, cutting forces and surface roughness created during the milling 

process was evaluated. Following conclusions are drawn from the milling study: 
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(1) From Taguchi analysis, depth of cut is observed to be the most influencing parameter on 

temperature and surface roughness. This is due to the increase in tool contact with the bone which 

increases the friction, producing more heat. The deformation is also high because of more shear, 

causing more sticking contact and damaging the milled surface.  The feed speed and spindle 

speed does not influence temperature as much as depth of cut, because a big scale brittle fracture 

occurs when the front of the cutting edge is parallel to the cutting direction and it collides 

mechanically to the workpiece in the tool feed per tooth. Temperature does not rise because of 

brittle fracture [25]. It does not influence surface roughness because of the analytical evaluation 

by Yeager et al proves otherwise. Also, the larger depth of cut produces larger debris that results 

in re-deposition on bone matrix causing irregularity in the surface. This phenomenon does not 

depend on feed rate or spindle speed. 

The feed speed is found to be the most influencing parameter on cutting force because the 

material removal rate increases with increase in feed rate, which results in high milling force. The 

depth of cut and spindle speed does not affect the cutting force because it does not influence the 

material removal rate or the impact of tool on the workpiece. 

(2) From response optimizer, optimum cutting conditions are found for three different conditions, 

where each responses having different weights and importance parameters as shown in table 5.1. 

Weight values for Responses Parameters 

Temperature 

(Celsius) 

Surface 

Roughness 

(microns) 

Milling 

Forces, Fx, 

Fy (N) 

Spindle 

speed (rpm) 

Feed per 

tooth 

(mm/min) 

Depth of cut 

(mm) 

1 0.7 0.5 6000 0.2 0.5 

0.7 1 0.5 8000 0.2 0.75 

0.7 0.5 1 6000 0.1 0.5 

Table 5.1 Optimum cutting conditions for various responses 
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5.2 Recommendations for Future Work 

In Vibration Assisted Drilling process, for the measurement of temperature, infrared cameras can 

be used in the place of thermocouples to reduce the complication of the experiments that can 

measure temperature within 5% of error. In addition, the vibration frequency and amplitude is 

kept constant in this study. Further work can examine the effects of different vibrations and 

frequencies during drilling of equine bone. To observe the effects of higher frequencies, 

ultrasonic spindle can be used, where the tool is vibrated instead of the workpiece. Histology of 

drilled bones can be studied for better understanding on the cell’s behavior for various conditions. 

In milling of bovine cannon bones, for measuring the temperature, infrared cameras can be used 

instead of thermocouples to reduce the complication. In addition, extending the milling research 

to various other species and comparing the results will give a better understanding on the 

consistency of the mechanics of milling and lead to reduced detrimental effects of drilling in bone 

during orthopedic surgeries. 

.  
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