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Abstract:  

Cultural eutrophication has decreased overall water quality and increased the occurrence 

and intensity of cyanobacteria blooms. Eutrophication may interact with other stressors 

such as invasive species. Zebra mussels (Dreissena polymorpha) are an invasive species 

causing severe ecological and economic impacts. Zebra mussels are effective filter 

feeders on phytoplankton, causing top down control and redistributing nutrients from 

pelagic to benthic environments. It is less well known how zebra mussels affect aquatic 

food webs along a gradient of eutrophication. The objective of this research was to better 

understand the interactions between eutrophication and invasive zebra mussels.  I 

conducted a series of mesocosm experiments to determine how phosphorus additions 

interacted with zebra mussels and influenced zebra mussel feeding rates. An outdoor 

mesocosm experiment tested if phosphorous enrichment and zebra mussels affected water 

quality and plankton. In an established phosphorous gradient, phosphorus had a 

significant effect on chlorophyll a but not zebra mussels. Cyanobacterial (measured as 

phycocyanin) biomass was affected by the interaction of phosphorus and zebra mussels.  

Cladoceran abundance increased with increasing phosphorus but decreased in mussel 

treatments. Copepod abundance also increased with phosphorus, but was not affected by 

zebra mussels. An indoor mesocosm experiment tested how zebra mussels were affected 

by phosphorus concentration in their algal resources.  Zebra mussel filtering rates 

significantly decreased with increasing phosphorus enrichment. The feeding rate for low 

(no phosphorus) and medium (520 µg/L phosphorus) each differed from the very high 

treatment (5,200 µg/L) though this concentration is not likely to occur in natural settings. 

The findings of these two studies suggest that zebra mussel effects may not be as strong 

as suspected and that nutrients are a stronger driver than zebra mussel consumption in 

terms of algal biomass. Although mussel feeding was constrained at very high 

phosphorus, it only occurred at concentrations that are not biologically relevant. 

 

 



v 
 

TABLE OF CONTENTS 

 

Sections                                                                                                                    Page 

 

                    

 

I. Introduction ................................................................................................................1 

 

 

II. Methods .....................................................................................................................6 

  

 Outdoor Mesocosm Experiment ..............................................................................6 

 Indoor Mesocosm Experiment .................................................................................9 

      Outdoor Mesocosm Experiment Data Analysis .....................................................10 

 Indoor Mesocosm Experiment Data Analysis .......................................................10 

 

 

III. Results ....................................................................................................................11 

 

 Outdoor Mesocosm Experiment ............................................................................11 

 Indoor Mesocosm Experiment ...............................................................................24 

 

 

IV. Discussion ..............................................................................................................27 

 

 Outdoor Mesocosm Experiment ............................................................................27 

 Indoor Mesocosm Experiment ...............................................................................30 

 Conclusion .............................................................................................................32 

  

  

REFERENCES ............................................................................................................34 

 

 

 

 

 

 

 



vi 
 

LIST OF TABLES 

 

 

Table           Page 

 

1. Chlorophyll a repeated measures ANOVA table (alpha = 0.05). Significant factors are 

bolded. ZM=zebra mussels, P=total phosphorous, X= interaction of variables, 

Tank=mesocosm tank, Date=date of sampling…………………………………….. 12 

 

2. Phycocyanin repeated measures ANOVA table (alpha = 0.05). Significant factors are 

bolded. ZM=zebra mussels, P=total phosphorous, X= interaction of variables, 

Tank=mesocosm tank, Date=date of sampling.………………………......................14 

 

3. Total phosphorous repeated measures ANOVA table (alpha = 0.05). Significant factors 

are bolded. ZM=zebra mussels, P=total phosphorous, X= interaction of variables, 

Tank=mesocosm tank, Date=date of sampling……………………………………...16 

 

4. Sum cladocerans repeated measures ANOVA table (alpha = 0.05). Significant factors 

are bolded. ZM=zebra mussels, P=total phosphorous, X= interaction of variables, 

Tank=mesocosm tank, Date=date of sampling……………………………………...19 

 

5. Sum copepods repeated measures ANOVA table (alpha = 0.05). Significant factors are 

bolded. ZM=zebra mussels, P=total phosphorous, X= interaction of variables, 

Tank=mesocosm tank, Date=date of sampling……………………………………...22 

 

6. Filtering rate one-way ANOVA table (alpha = 0.05). Significant factors are 

bolded…………………………………………………………………..…………....25 

 

 

 

 

 

 



vii 
 

LIST OF FIGURES 

 

Figure           Page 

 

1. Log10 chlorophyll a (RFU) in the outdoor experiment over time. Days are from the 

start of the experiment (Day 1= September 19
th

). Circles are low (L) treatments (25µg/L), 

triangles are medium (M) treatments (50µg/L), squares are high (H) treatments 

(100µg/L), diamonds are very high treatments (V) (200µg/L). ...................................13 

 

Figure 2. Phycocyanin (RFU) from the outdoor experiment. Days are from the start of the 

experiment (Day 0 = Sep 19
th

), although phycocyanin was not measured until Day 14. In 

descending order black circles are low (L) P treatments (25µg/L) without mussels, red 

downward facing triangles are low (L) treatments (25µg/L) with mussels, green squares 

are medium (M) treatments (50µg/L) without mussels, yellow diamonds are medium (M) 

treatments (50µg/L) with mussels, blue upward facing triangles are high (H) treatments  

(100µg/L) without mussels, purple hexagons are high (H) treatments (100µg/L) with 

mussels, teal hexagons are very high (V) treatments (200µg/L) without mussels, grey 

downward facing triangles are very high (V) treatments (200µg/L) with mussels….15 

 

3. Log10 total phosphorous (µg/L) in the outdoor experiment over time. Days are from the 

start of the experiment (Day 0 = Sep 19
th

). Circles are low (L) treatments (25µg/L), 

triangles are medium (M) treatments (50µg/L), squares are high (H) treatments 

(100µg/L), diamonds are very high (V) treatments (200µg/L)………………………17  

4. Log10 sum cladoceran abundance in the outdoor experiment over time. Days are from 

the start of the experiment (Day 0 = Sep 19
th

). Circles are low (L) treatments (25µg/L), 

triangles are medium (M) treatments (50µg/L), squares are high (H) treatments 

(100µg/L), and diamonds are very high (V) treatments (200µg/L)……………….....20 

5. Log10 sum cladoceran abundance in the outdoor experiment over time. Days are from 

the start of the experiment (Day 0=Sep 19
th

). Circles are treatments without zebra 

mussels, triangles are treatments with zebra mussels ……………………….............21 

6. Log10 sum copepod abundance in the outdoor experiment over time. Days are from the 

start of the experiment (Day 0=Sep 19
th

). Circles are low (L) treatments (25µg/L), 

triangles are medium (M) treatments (50µg/L), squares are high (H) treatments (50µg/L), 

and diamonds are very high (V) treatments (200µg/L)……......................................23  



viii 
 

7. Log10 Zebra mussel filter rate measured in Relative Fluorescent Units per hour 

(RFU/hour). Treatment levels were low (0µg/L), medium (520µg/L), high (2200µg/L), 

and very high (5200µg/L). Different letters represent significant differences between 

treatments based on Tukey’s post-hoc tests (P<0.05). Treatment levels were low (0µg/L), 

medium (520µg/L), high (2200µg/L), and very high (5200µg/L)………………….26  
 



1 
 

 

 

 

CHAPTER I 
 

 

EFFECTS OF PHOSPHOROUS ENRICHMENT ON ZEBRA MUSSELS  

Introduction 

 A major stressor affecting water quality in lakes and reservoirs is non-point 

source pollution (Schindler and Vallentyne 2008). Although legislation since 1979 has 

diminished point source pollution, such as industrial waste, in the United States, non-

point sources of pollution have become more prevalent (Jeppesen et al. 2005, Schindler et 

al. 2012). Two significant sources of non-point source pollution are synthetic fertilizers 

and animal waste runoff from agricultural activities (Carpenter et al. 1998, Paerl and 

Fulton 2006). These substances contain large concentrations of nitrogen (N) and 

phosphorus (P) to stimulate higher agricultural yields, but surplus nutrients, particularly 

P, often enters adjacent water bodies leading to eutrophication, (Sardans et al. 2012, 

Arbuckle and Downing 2001). Nurnberg (1996) gives the following criteria for P levels 

for quantifying the trophic state of a water body: oligotrophic (0-12 µg/l (parts per 

billion/ppb) phosphorus), mesotrophic (12-24 µg/l), eutrophic (24-96 µg/l), and hyper 

eutrophic (96+ µg/l) In recent decades eutrophication has increased the overall 

productivity of many lakes, causing a shift from lower productivity (oligotrophic or 

mesotrophic) to higher productivity (eutrophic or hyper eutrophic) (Cooke et al. 2011).  

 One of the negative consequences of surplus nutrients entering lakes and 

reservoirs is an increase in the frequency and intensity of cyanobacteria (Wetzel 1990, 
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Anderson et al. 2002). Under high nutrient conditions, cyanobacteria undergo rapid 

population growth that is driven by P inputs in the system (Downing et al. 2001). The 

genus Microcystis, particularly Microcystis augreonosia, produces harmful toxins known 

as microcystin, as a defense against predation from phytoplankton grazers such as 

Daphnia (Lambert 1982). At high cyanobacteria densities, these toxins can concentrate 

and reach levels that lead to further habitat degradation and become severe health 

concerns for both wildlife and humans (Knoll et al. 2008, Pires et al. 2004, World Health 

Organization 2003).  

Invasive or non-native species are another stressor that has the potential to impact 

water quality and ecosystem health (Havel et al. 2005). Historically aquatic species were 

restricted to specific watersheds, isolated by geo-physical barriers, water body 

heterogeneity, and flow regimes which limited expansion (Rahel 2002). However, 

anthropogenic activity such as the intentional and unintentional movement of species, 

connected waterways, and modified aquatic habitats have reduced those barriers and led 

to species spreading into new environments on multiple spatial scales (Rahel 2002).  A 

notable invasive species in North American aquatic ecosystems is the zebra mussel, 

Dreissena polymorpha, which invaded the Great Lakes in the late 1980’s unintentionally 

via the ballast water of transatlantic cargo ships (MacIsacc et al. 1992, Johnson and 

Padilla 1996, Ricciardi and MacIsaac 2000). Since their introduction zebra mussels have 

spread across the Mississippi river drainage including 18 states and two Canadian 

provinces (Johnson and Padilla 1996), including rivers and reservoirs in Oklahoma 

(Drake and Bossenbroek 2004). Zebra mussel adults and larval veligers can be moved 

unintentionally by residing in boat live wells and other water filled containers, allowing 
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them to move to unconnected water bodies.  These dispersal mechanisms have helped to 

greatly increase their distribution in the United States (Johnson and Padilla 1996, 

MacIsacc et al. 1992, Johnson and Carton 1996, Havel and Stelzleni-Schwent 2000).  

 Zebra mussels can attain high population densities in their nonnative range 

causing widespread economic and ecological impacts (Kelly et al. 2013, Johnson and 

Padilla 1996). Some of the ecological effects include increasing water clarity, modifying 

nutrient concentrations, and shifting native species distribution (Naddafi et al. 2009). In 

the United States, zebra mussels have contributed to increased water clarity of the Great 

Lakes, but also reduced phytoplankton community composition and abundance, leading 

to a top-down trophic cascade. Zebra mussels achieve this by removing P and other 

nutrients from pelagic food webs and distributing them to benthic habitats (Vanderploeg 

et al. 2010).  

 Key to the zebra mussel’s success as an invader is that they are highly efficient 

filter feeders (Bastviken et al. 1998). A significant amount of research has quantified 

zebra mussel filtration rates, though rates vary across studies. Kryger and Rissgard (1998) 

and Kotta et al. (1998) found that individual mussels filtered up to 234ml of water per 

hour. Vanderploeg et al. found that mussels feeding in the presence of cyanobacteria, 

zebra mussel reduced algae at a rate of 18.5-51.0ml per square cm per hour (2009). 

MacIsaac et al. (1992) reported that some areas of Lake Eire, zebra mussels living at high 

densities could filter 132,000l of water per square meter per day.  

 With their high population densities and high filtration rate, zebra mussels can 

manipulate aquatic habitats by consuming particulates, particularly algae, which has 

major implications for all aquatic species because algae form the energetic base of 
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aquatic food webs (Johnson and Padilla 1996, Wojtal-Frankiewicz and Frankiewicz 2001, 

Vanderploeg et al. 2010). While zebra mussels can graze on cyanobacteria colonies, they 

are not a preferred food source (Vanderploeg et al. 2001). Rather, cyanobacteria can be 

extruded as pseudofeces in which the algae cells are filtered by the mussel, but wrapped 

in mucus and released back into the water column (Vanderploeg et al. 2001). This 

process does not kill the algae, allowing them to continue growing (Vanderploeg et al. 

2001). Zebra mussels can also prey on microzooplankton (e.g. rotifers) and compete with 

macrozooplankton, (e.g. Daphnia) for algal resources (Wojtal-Frankiewicz and 

Frankiewicz 2001). Higgins et al. (2011) found that top down effects on phytoplankton 

from mussel filtration had a proportional effect on zooplankton species (Feniova et al. 

2015). Zooplankton are important in aquatic ecosystem as they are an important linkage 

between primary producers and higher level consumers, distributing chemical energy 

throughout the food web (Bowen and Johannsson 2011).  

 A large body of research suggests that zebra mussels can interact with 

eutrophication to affect aquatic ecosystems.  For example, zebra mussels can directly 

affect nutrient concentrations in invaded systems. Goedkoop et al. (2011) found that 

zebra mussels in Lake Ekoln were able to limit cyanobacteria growth by grazing on 

phytoplankton that had taken up excess P and N from effluent entering the lake. In 

contrast, Higgins et al. (2011) found that zebra mussels negatively affected relationships 

between P and chlorophyll a in lakes in the northern United States.  Chlorophyll a 

concentrations decreased due to zebra mussel grazing while total phosphorus (TP) 

concentrations were not affected due to increased P excretion from mussels (Higgins et 

al. 2011). These effects of zebra mussels have important implications for lake and 



5 
 

reservoir health as the P released from zebra mussels has the potential to increase the 

intensity and frequency of harmful cyanobacteria blooms (Knoll et al. 2008).   

 The effects of zebra mussels on plankton may also be context-dependent and vary 

based on the amount of P in a system.  For example, lakes in Michigan with zebra 

mussels had higher Microcystis concentrations than lakes without mussels, but only at TP 

concentrations less than 25µg/l (Raikow et al. 2004). One hypothesis is that zebra mussel 

feeding rates are negatively affected by excess P.  While under most environmental 

conditions P is limited and species growth and maintenance is restricted by the lack of 

this element, there is evidence that excess P and other nutrients can be detrimental to 

growth due to imbalances with other elements (e.g., C or N) (Plath and Boersma 2001, 

Acharya et al. 2006 Boersma and Elser 2006,).  A growing body of research suggests that 

the growth of several algal grazers, including both Daphnia and zebra mussels, can be 

negatively impacted by excess P in their algal food resources (Morehouse et al. 2013, 

Plath and Boersma 2001). With respect to zebra mussels, Morehouse et al. (2013) found 

that zebra mussel growth was reduced when they were feed P-rich algae (low C:P ratio), 

which led to an increase in ammonia production from the breakdown of internal proteins 

due to lack of carbohydrates in their diets. As excess P is taken up by phytoplankton in 

eutrophic systems and then ingested by zebra mussels, surplus P in the zebra mussel diet 

allows them to meet their dietary P requirements for growth, leading to reductions in 

feeding rates. Similarly, Plath and Boersma (2001) observed that Daphia increased 

feeding rates in conditions of high C:P (low P) to increase their P intake. Alternatively, at 

lower C:P ratios (high P), Daphnia feeding rates were reduced as metabolic requirements 

were quickly attained. A similar reduction in feeding rate may occur in other filter 
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feeders such as zebra mussels and could explain the dynamics between zebra mussels and 

phytoplankton in high P environments.    

 The purpose of this study was to determine how the effects of zebra mussels 

varied along a gradient of P enrichment in two mesocosm experiments.  I hypothesized 

that the overall effects of zebra mussels on aquatic ecosystems would be context-

dependent and the strength of these effects would vary based on P concentrations in the 

mesocosms.  At low P concentrations, mussel feeding rates will be higher, which will 

reduce phytoplankton and zooplankton.  In contrast, as the concentration of P increases, 

zebra mussel feeding rates will decrease due to stoichiometric imbalances created by 

excess P, reducing impacts on phytoplankton and zooplankton. 

 

Methods 

 I conducted two mesocosm experiments, one outdoors in 2014 and the other 

indoors in 2015.  The first experiment (Outdoor Mesocosm Experiment) was designed to 

determine how zebra mussels impacted nutrients and plankton along a P gradient. The 

second experiment (Indoor Mesocosm Experiment) was designed to specifically 

determine how zebra mussel filtering rates varied along a P gradient.  

 

Outdoor Mesocosm Experiment 

 I set up 32 individual mesocosms (Rubbermaid 568 liter cattletanks, 147.3cm x 

99.1cm x 61.0cm) in the OSU pond facility at Lake Carl Blackwell (36° 8'0.37"N, 

97°11'21.49"W). The mesocosms were placed in a single pond basin in a four by eight 

pattern in a random order. The mesocosms were filled with approximately 500L of water 
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from Lake Carl Blackwell that was pumped to the pond through an underground pipe. A 

sieve screen (5.0mm mesh) was placed on the inflow pipe to keep fish, larger 

invertebrates, and debris out of the mesocosms as they were being filled. Zooplankton 

were collected from Babcock Park (36° 6'15.25"N, 97° 5'27.09"W), Boomer Lake (36° 

9'6.39"N, 97° 3'50.26"W), and Lake Carl Blackwell (36° 8'6.94"N, 97°13'0.72"W) using 

a 240.0µm net. The zooplankton from these sites were homogenized in a large carboy 

and then added to each mesocosm to allow zooplankton communities to develop. After 

the mesocosms were filled the holding pond was also filled around the mesocosms to 

provide thermal insulation and to help limit evaporation from the tanks. The mesocosms 

were left undisturbed for approximately two weeks before the P and zebra mussel 

treatments were established. After this two week establishment period the experiment 

was conducted for 49 days from September 19 to November 6, 2014. 

 I manipulated P and zebra mussels in the mesocosms using a 4 x 2 factorial 

design for a total of eight treatments each replicated in quadruplicate (N=32). I 

manipulated P by adding KH2PO4 to the mesocosms to mimic four P concentrations: 

mesotrophic (~25µg/L [L=Low]), eutrophic (50µg/L [M=Medium]), and two levels of 

hypereutrophic (100µg/L [H=High] and 200µg/L [V= Very High]) systems (Nurnberg 

1996). The P concentrations were maintained through weekly P additions assuming a 

daily loss rate of 5% (Lennon et al 2003) and by measuring and comparing P 

concentrations from previous sampling dates in each mesocosm treatment.  

 I manipulated the presence of zebra mussels, which were collected from docks at 

Lake McMurtry (36°10'15.60"N, 97°11'19.69"W) and Lake Carl Blackwell (36° 

8'6.94"N, 97°13'0.72"W). Before mussels were introduced into the mesocosms, they were 
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kept in a 45.4l cooler with a filter airstone, and seston from source lakes. Approximately 

175 zebra mussels (mean mass 20.41g) were added to +Z treatments (N=16) (0.35 

mussels/l); (Dzialowski 2013). No zebra mussels were added to the remaining 16 

mesocosms (-ZM).  

 I sampled phytoplankton and P weekly by collecting 1.0l water samples by 

submerging a plastic brown bottle to a depth of 0.5m. A Turner Trilogy Fluorimeter 

(Turner Designs, Mountain View California) was used to measure relative chlorophyll 

fluorescence using the blue module and relative phycocyanin fluorescence was measured 

using the orange module. The fluorometer provided a relatively quick method for 

estimating algal biomass that is highly correlated with laboratory extracted chlorophyll a 

concentrations (Dzialowski unpublished data).  A 10.0ml cuvette was washed with the 

sample; the cuvette was then filled using a plastic disposable pipette and then placed in 

the fluorometer. RFU was measured <24 hours after collection. Generally the samples 

were run first with the blue module and then the orange module, within 1.0 hour of each 

other. TP was measured within 24 hours of collection. TP was measured using a 

spectrometer (Genesys 20, Thermo Scientific,Waltham MA) after persulfate digestion 

(APHA 2005).  

 I collected zooplankton samples bi-weekly using a depth-integrated PVC sampler. 

A different sampler was used for each nutrient treatment for a total of four individual 

samplers.  The samples were taken from the center of each mesocosm and the sampler 

collected water from the entire water column of the mesocosm. The samplers had one-

way valves that opened to collect water in the sampler when they were pushed down into 

the mesocosms, but closed when they were pulled up.  Multiple samples were collected 
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from each mesocosm and transferred into a bucket until 11.0l of water was collected from 

each individual mesocosm. This sample was then poured through a 45.0µm mesh filter to 

collect zooplankton that were preserved in Lugols solution.  

 Zooplankton were identified and enumerated using a round plexiglass counting 

tray to suborder for copepods, species for cladocerans, and genus for rotifers using the 

University of New Hampshire online key (http://cfb.unh.edu/cfbkey/html/index.html).  

Zooplankton were subsampled as necessary.    

 

Indoor Mesocosm Experiment 

I set up sixteen 20Lmesocosms in the laboratory, filled them with19L of 

dechlorinated tap water, and added 45mm of a single species of green algae (Selenastrum 

capricornutum)  Four P concentrations: 0µg/L (Low=L), 520µg/L (Medium=M), 

2200µg/L (High=H), 5200µg/L (Very high=V) were established, each replicated in 

quadruplicate. Fluorescent shops lights were placed on the top of the mesocosms and left 

undisturbed for 24 hours for the algae to take up the P (Plath and Boersma 2001). I 

collected a 1L water sample to measure initial chlorophyll concentrations. Two zebra 

mussel treatments were then established with either zebra mussels present (+Z, N=5 

mussels, mean mussel mass per mesocosm=1.51g) or absent (-Z). Water samples were 

collected after 12 hours of zebra mussel inoculation for chlorophyll analysis (RFU). A 

disposable plastic pipette was used to first stir each mesocosm, and then a sample was 

collected in a brown 1.0l bottle and analyzed using the blue module in the Turner 

Fluorometer as described above. 

 

http://cfb.unh.edu/cfbkey/html/index.html
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Data Analysis Outdoor Mesocosm Experiment 

I used a two way Repeated Measures Analysis of Variance  (RM-ANOVA) to 

determine how target P and zebra mussels affected  chlorophyll (measured as RFU) on 

days 0-49, phycocyanin on days 14-49, and TP and days 0-49. All data were log 

transformed to meet the assumptions of normality and homogeneity of variance.  

Significant treatment and interaction terms were compared using Tukey’s post-hoc 

comparison tests (P<0.05). The RM-ANOVAs were conducted using NCSS 2007.   

  I also used a RM-ANOVA to compare zooplankton abundance between the P and 

zebra mussel treatments. Zooplankton were summed according to order: Cladocera 

(Daphnia, Cerodaphnia, Diaphansoma, Simsocephalus, Bosmina, Alona, Chydorus) and 

Copepoda (Calanoids and Cyclopoids). Zooplankton data was log transformed and 

Tukey’s Post-Hoc comparison tests were used when significance were found (P<0.05). 

The RM-ANOVAs were conducted using NCSS 2007 

 

Data Analysis Indoor Mesocosm Experiment 

Zebra mussel feeding rates (RFU/hour) were determined by subtracting the 12 

hour RFU reading from the starting RFU reading (time=0) in each mesocosm with zebra 

mussels and dividing by 12.  Feeding rates were corrected for change in algal biomass 

resulting from P additions by subtracting the average RFU change over the 12 hour 

period observed in the non-mussel mesocosms with the corresponding P levels. Filtering 

rate data were log transformed to meet the assumptions of normality and homogeneity of 

variance.  A one-way ANOVA was used to compare filtering rates between the different 

phosphorous treatments and Tukey’s Post-Hoc comparison tests were used to compare 
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individual treatments when significance was found (P<0.05) . The one-way ANOVA was 

conducted using sigmaplot 10.0.  

 

Results 

Outdoor Mesocosm Experiment 

Chlorophyll a responded to the P treatment (RM-ANOVA, P=0.003, Figure 1) 

and increased in the H treatment which had the highest concentrations.  Chlorophyll a 

concentrations in the V treatment were similar to the concentrations that were observed in 

the M treatment.  The zebra mussel treatment did not have a significant effect on 

chlorophyll a (RM-ANOVA, zebra mussel effect, P=0.919, Figure 1).  P additions also 

affected phycocyanin (RM-ANOVA, P=0.002).  Phycocyanin concentrations were higher 

in the H and V treatments than they were in the L and M treatments, especially on the 

first and second sampling dates (Figure 2).  Phycocyanin increased from the start of the 

experiment, reaching a maximum on day 36 and then declining to concentrations below 

the starting values by the end of the experiment in all treatments.  The presence of zebra 

mussels did affect phycocyanin (RM-ANOVA, zebra mussel effect, P=0.995).  

Phycocyanin was higher in H mesocosms with zebra mussels compared to H mesocosms 

without zebra mussel (RM-ANOVA, P x zebra mussel interaction, P=0.0497, Table 2). P 

additions resulted in a significant P gradient in the mesocosms where all four of the P 

treatments differed in TP concentrations over the course of the experiment (RM-

ANOVA, P effect P<0.001, Figure 3). Zebra mussel treatment did not affect P 

concentrations and there were no differences between mesocosms with and without zebra 

mussels for any of the nutrient treatments (RM-ANOVA, zebra mussel effect, P=0.644). 
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Source 

Term 

Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F-Ratio Probability 

Level 

Power 

ZM 1 0.002 0.003 0.01 0.919 0.051 

P 3 4.520 1.507 6.07 0.003 0.923 

ZM X P 3 1.271 0.424 1.71 0.194 0.386 

Tank 23 5.713 0.248    

Date 6 1.201 0.201 8.27 <0.001 0.999 

ZM X Date 6 0.302 0.050 2.07 0.061 0.733 

P X Date 18 1.860 0.103 4.25 <0.001 0.999 

ZM X P X 

Date 

18 0.568 0.003 1.30 0.197 0.825 

(Tank X 

Date) X 

(ZM X P) 

138 3.354 0.002    

Table 1. Chlorophyll a repeated measures ANOVA table (alpha = 0.05). Significant 

factors are bolded. ZM=zebra mussels, P=total phosphorous, X= interaction of variables, 

Tank=mesocosm tank, Date=date of sampling. 
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Figure 1. Log10 Chlorophyll (RFU) in the outdoor experiment over time. Days are from 

the start of the experiment (Day 1= September 19
th

). Circles are low (L) treatments 

(25µg/L), Triangles are medium (M) treatments (50µg/L), squares are high (H) 

treatments (100µg/L), diamonds are very high treatments (V) (200µg/L). 
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Source Term Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F-Ratio Probability 

Level 

Power 

ZM 1 <0.000 <0.000 0.00 0.995 0.050 

P 3 0.051 0.017 7.04 0.002 0.957 

ZM X P 3 0.022 0.007 3.03 0.0497 0.635 

Tank 23 0.056 0.002    

Date 5 5.721 1.144 1183.68 <0.000 1.000 

ZM X Date 5 0.012 0.002 2.45 0.038 0.756 

P X Date 15 0.013 0.001 0.88 0.587 0.548 

ZM X P X 

Date 

15 0.025 0.002 1.73 0.054 0.897 

Tank X Date 

by ZM by P 

185 0.111 0.001    

Table 2.Phycocyanin repeated measures ANOVA table (alpha = 0.05). Significant factors 

are bolded. ZM=zebra mussels, P=total phosphorous, X= interaction of variables, 

Tank=mesocosm tank, Date=date of sampling. 
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Figure 2. Phycocyanin (RFU) from the outdoor experiment. Days are from the start of the 

experiment (Day 0 = Sep 19
th

), although phycocyanin was not measured until Day 14. In 

descending order black circles are low (L) P treatments (25µg/L) without mussels, red 

downward facing triangles are low (L) treatments (25µg/L) with mussels, green squares 

are medium (M) treatments (50µg/L) without mussels, yellow diamonds are medium (M) 

treatments (50µg/L) with mussels, blue upward facing triangles are high (H) treatments  

(100µg/L) without mussels, purple hexagons are high (H) treatments (100µg/L) with 

mussels, teal hexagons are very high (V) treatments (200µg/L) without mussels, grey 

downward facing triangles are very high (V) treatments (200µg/L) with mussels. 
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Source Term Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F-Ratio Probability 

Level 

Power 

ZM 1 0.034 0.034 0.22 0.644 0.073 

P 3 19.787 6.596 42.10 <0.001 1.000 

ZM X P 3 0.024 0.008 0.05 0.984 0.058 

Tank 23 3.603 0.157    

Date 6 2.752 0.459 15.93 <0.001 1.000 

ZM X Date 6 0.198 0.033 1.15 0.338 0.441 

P X Date 18 0.336 0.019 0.65 0.854 0.449 

ZM X P X 

Date 

18 0.287 0.016 0.55 0.926 0.379 

Tank X Date 

by ZM by P 

138 3.973 0.029    

Table 3.Total phosphorous repeated measures ANOVA table 

(alpha = 0.05). Significant factors are bolded. ZM=zebra mussels, P=total phosphorous, 

X= interaction of variables, Tank=mesocosm tank, Date=date of sampling. 
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Figure 3.Log10 total phosphorous (µg/L) in the outdoor experiment over time. Days are 

from the start of the experiment (Day 0 = Sep 19
th

).circles are low (L) treatments 

(25µg/L),triangles are medium (M) treatments (50µg/L), squares are high (H) treatments 

(100µg/L), diamonds are very high (V) treatments (200µg/L). 
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Zooplankton were affected by the P and zebra mussel treatments.  Cladoceran 

abundance increased with P and was highest in the V treatment (RM-ANOVA, 

phosphorus effect, P=0.022) (Figure 5).  In contrast, cladoceran abundance decreased in 

the presence of the mussels, as it was lower in  zebra mussel treatments across all P 

treatments (RM-ANOVA, zebra mussel effect, P=0.001) (Table 4).  Copepod abundance 

also increased with P (RM-ANOVA, P effect, P=0.004), but there was no effect from 

zebra mussels (RM-ANOVA, zebra mussel effect, P=0.501) (Figure 6).   
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Source Term Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F-Ratio Probability 

Level 

Power 

ZM 3 1.841 0.614 3.86 0.022 0.754 

P 1 2.372 2.372 14.93 0.001 0.960 

ZM X P 3 0.694 0.231 1.46 0.251 0.335 

Tank 24 3.812 0.159    

Date 3 46.473 15.491 199.88 <0.001 1.000 

ZM X Date 9 1.045 0.116 1.50 0.165 0.663 

P X Date 3 0.205 0.068 0.88 0.454 0.234 

ZM X P X 

Date 

9 0.417 0.046 0.60 0.795 0.270 

Tank X Date 

by ZM by P 

72 5.580 0.078    

Table 4.Sum cladocerans repeated measures ANOVA table 

(alpha = 0.05). Significant factors are bolded. ZM=zebra mussels, P=total phosphorous, 

X= interaction of variables, Tank=mesocosm tank, Date=date of sampling. 
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Figure 4. Log10 sum cladoceran abundance in phosphorous treatments over time. Days 

are from the start of the experiment (Day 0 = Sep 19
th

). circles are Low (L) treatments 

(25µg/L), triangles are medium (M) treatments (50µg/L), squares are high (H) treatments 

(100µg/L), and diamonds are very high (V) treatments (200µg/L).   
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Figure 5-Log10 sum cladoceran abundance in zebra mussel treatments over time. Days are 

from the start of the experiment (Day 0=Sep 19
th

). Circles are treatments without zebra 

mussels, triangles are treatments with zebra mussels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

 
Source Term Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F-Ratio Probability 

Level 

Power 

ZM 3 1.169 0.390 5.90 0.004 0.917 

P 1 0.031 0.031 0.47 0.501 0.101 

ZM X P 3 0.313 0.104 1.58 0.221 0.361 

Tank 24 1.585 0.066    

Date 3 44.122 14.707 239.96 <0.001 1.000 

ZM X Date 9 0.366 0.041 0.66 0.739 0.301 

P X Date 3 0.252 0.084 1.37 0.258 0.350 

ZM X P X 

Date 

9 0.244 0.027 0.44 0.908 0.201 

Tank X Date 

by ZM by P 

72 4.413 0.061    

Table 5.Sum copepods repeated measures ANOVA table (alpha = 0.05). Significant 

factors are bolded. ZM=zebra mussels, P=total phosphorous, X= interaction of variables, 

Tank=mesocosm tank, Date=date of sampling. 
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Figure 6. Log10 sum copepod abundance in phosphorus treatments over time. Days are 

from the start of the experiment (Day 0=Sep 19
th

). Circles are low (L) treatments 

(25µg/L), triangles are medium (M) treatments (50µg/L), squares are high (H) treatments 

(50µg/L), and diamonds are very high (V) treatments (200µg/L). 
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Indoor Mesocosm Experiment 

There was a significant effect of the P treatment on zebra mussel filtering rates 

(ANOVA, P=0.018, Table 6). The low treatment and medium treatment filtering rate both 

differed from the very high treatments (P=0.023, P=0.04, table 7), both had an average 

higher filtering rate than the very high treatment (Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 

Source Term Degrees of 

Freedom 

Sum of 

Squares 

Mean Squares F-Ratio  Probability 

Level 

Between 

Groups 

3 0.0859 0.0286 12.155 0.018 

Residual 4 0.009 0.002   

Total 7     

Table 6.Filtering rate one-way ANOVA table (alpha = 0.05).Significant factors are 

bolded.  
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Figure 7. Log10 Zebra mussel filter rate measured in Relative Fluorescent Units per hour 

(RFU/hour). Treatment levels were low (0µg/L), medium (520µg/L), high (2200µg/L), 

and very high (5200µg/L). Different letters represent significant differences between 

treatments based on Tukey’s post-hoc tests (P<0.05). 
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Discussion 

Despite the importance of both eutrophication and zebra mussels, surprisingly 

little is known about the interactions between these two stressors.  The objective of this 

research was to better understand the interactions between eutrophication and invasive 

zebra mussels to help better manage these important stressors. I predicted that treatments 

with higher P concentrations would have higher chlorophyll a levels due to reduced zebra 

mussel feeding rate compared to treatments with low P and mussels. I also hypothesized 

that increased P concentration would lead to a decline in zebra mussel feeding rates and 

increase phytoplankton growth as the zebra mussels would meet their dietary P 

requirements and reduce their feeding rate.  

 

Outdoor Mesocosm Experiment 

    Both chlorophyll a and phycocyanin increased along the P gradient (Figure 1), 

which is consistent with a large body of research showing that phosphorus stimulates 

algal production (Smith 2003). However, my prediction that chlorophyll a would be 

higher in non-mussel treatments was incorrect, as zebra mussels did not decrease 

chlorophyll a. In contrast there was some indication that zebra mussels may have 

increased phycocyanin in the H treatment as indicated by a significant interaction 

between the P and the zebra mussel treatments. This result was somewhat surprising as 

one would expect algae abundance to be reduced due to the zebra mussels feeding. 

However, the literature is conflicting, as Higgins et al. (2011) found through an analysis 

of zebra mussel effects on multiple lakes that the chlorophyll a:TP ratio was reduced by 

zebra mussels because chlorophyll a decreased in invaded lakes. Knoll et al. (2008) and 
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Raikow et al. (2004) showed that there was a positive impact on cyanobacteria in the 

presence of zebra mussels but only at low P conditions (<25µg/L). Wojtal-Frankiewicz 

and Frankiewicz (2011) also observed the highest chlorophyll a levels in zebra mussel 

only treatments as opposed to their controls and Daphnia only treatments.  They 

attributed this to P release by zebra mussels as phosphate concentrations were highest in 

zebra mussel treatments and could imply that P release from zebra mussels could 

contribute to algal blooms (Wojtal-Frankiewicz and Frankiewicz 2001). Although the P 

levels in the current experiment were highest in the V treatments, excess P in the H 

treatment may have been more optimal for mussels, phytoplankton, and/or cyanobacteria.  

Potentially as mussels were taking up phytoplankton in the H treatment they were 

releasing P as waste, and this excess P in turn led to increased phytoplankton and 

cyanobacteria growth. This is supported by Conroy et al. (2005) findings which showed 

an increase in P turnover in mesocosms with zebra mussels present versus those with 

only zooplankton, which could also lead to increased phytoplankton growth. 

Additionally, Hunt and Matveev (2005) found that in a mesocosm study comparing 

grazing effects of a zooplankton grazer (Cerodaphnia) on phytoplankton in the absence 

of small fish predators, phytoplankton abundance tended to increase despite grazing 

presence. They attributed this to nutrient release from zooplankton, which counteracted 

the grazing pressure.   

 The lack of significant effects of mussels on chlorophyll a or interactions between 

P and mussels in the current experiment may be due to the size of mussels that I used in 

the experiment. Mussel size and mass play a role in filter and feeding capacity of zebra 

mussels. Conroy et al. (2005) looked at Dressena remineralization in Lake Eire and 
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found that phosphate release was highest in mussels 15-25mm in shell length, with 

smaller mussels releasing less P into the water column. Due to the lack of readily 

available mussels of larger sizes at local sites when my experiment was established, the 

mussels used in the mesocosms were smaller than 15mm. Due to their size, the smaller 

mussels in this experiment could have less of an impact through filtering since mussels 

did not have a significant effect on P levels but P was observed to be slightly higher in 

mussel treatments.  Larger mussels with increased filter effects may alter P 

concentrations and additional studies should focus on interactions between P and zebra 

mussels of varying sizes. 

Seasonality may have also been an important component of this study.  Most field 

and outdoor mesocosm studies are conducted during the summer when there is the 

greatest amount of photo activity and the warmest temperatures.  While field studies 

measuring biotic and abiotic factors can continue throughout the entire year, (MacIsaac et 

al. 1992, Vanderploeg et al. 2009, Bowen and Johannsson 2011) resources in a 

mesocosm are inherently limited, thus a month during peak photo activity is preferred 

and tends to have the highest productivity (Sarnelle 2012). During sampling for my 

project in the fall the temperature maximum was 31.1
o
C with a mean high of 26.7

o
C, a 

minimum temperature of 6.1
o
C with the mean low being 11.1

o
C, and the daytime average 

temperature being 18.9
o
C (https://www.mesonet.org/). As such, the effects of P and zebra 

mussels on algae may have been lower than observed in other summer experiments 

because of colder temperatures and shorter days in the current experiment, particularly at 

the end of the experiment in October.   
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 I predicted that zooplankton communities in mussel treatments would decrease in 

abundance due to interspecific effects, namely predation and competition from zebra 

mussels (Dzialowski 2013). Cladoceran abundance was positively affected by P, but 

negatively affected by zebra mussels as the presence of zebra mussels caused cladocerans 

to decline. Total copepods were similarly affected by P, as abundances increased with 

increasing P. Both cladocerans and copepods had their highest abundances in V and H 

treatments, potentially as these treatments had the greatest available phytoplankton 

biomass for food. Previous studies have found that zebra mussel effects, both direct 

predation on smaller zooplankton taxa and competition for phytoplankton food resources, 

led to declines in zooplankton biomass (Higgins and Vander-Zanden 2010, Bowen and 

Johannsson 2011) explaining the observed decline in cladocerans in zebra mussel 

treatments. The most noticeable decline in zooplankton abundance was in the L 

treatments where lower P concentrations could have contributed to reduced 

phytoplankton biomass, so a decline could have been caused by limited food resources. 

In the mussel treatments this could have been compounded by not only reduced food 

resources but also the increased level of resource competition between mussels and 

cladocerans.  

 

Indoor mesocosm experiment 

 Zebra mussel feeding rate declined with increasing P enrichment in the 

treatments, which I attributed to the excessive P that was added to the mesocosms. 

Although zebra mussels cannot directly take up P, algae can uptake P at very high 

concentrations (>500µg/L) over a relatively short period of time (15 minutes) (Plath and 
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Boersma 2001). Zebra mussels likely became satiated from feeding on the P rich algae 

leading to reduced filtering demands, which is consistent with other studies that looked at 

stoichiometric imbalances under high P conditions.  Plath and Boersma (2001) showed 

that Daphnia exhibited reduced growth and feeding rates under high P conditions. More 

recently, Laspoumaderes et al. (2016) showed that three species of Daphnia exhibited 

increased metabolic costs as indicated by increased respiration rates when feeding on P-

rich algae.  Interestingly, the Daphnia also exhibited increased feeding rates on P-rich 

food although the rates were reduced compared to moderately P-rich food 

(Laspoumaderes et al. 2016).  

There appears to be a cost for maintaining excess internal P. Under nutrient 

limited conditions, nutrients are held as consumers maintain homeostasis of body 

elements despite variability in their food source’s elemental ratio (Urabe 1993). 

Morehouse et al. (2013) showed that the effects of a low C:P diet on zebra mussels 

growth rate had severe physiological effects on mussel condition (release of ammonia 

due to being internal C limited), which resulted in reduced growth rates.  This would 

suggest that an increase in biologically-available P in a system would not result in a 

higher filtering rate, as the mussels would become limited by other elements (e.g., C) in 

their diet (Plath and Boersma 2001). Laspoumaderes et al. (2016) termed this as a 

“stoichiometric knife edge”, in which an optimal internal elemental balance exists and 

diverting from this, either by ingesting food of a lower or higher nutrient:C ratio, has 

immediate detrimental effects. As with established freshwater plankton consumers (Plath 

and Boersma 2001) zebra mussels also seem to be effected by excess P in their diet 

(Morehouse et al. 2013). 
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Interestingly, there did not appear to be a difference in the feeding rate of zebra 

mussels in the L and M treatments despite the large difference in the P concentrations 

between these two treatments. Unlike the outdoor experiment where the total P gradient 

ranged from 25µg/L-200µg/L, the range of P enrichment in the indoor experiment was 

much greater with the difference between the L and M treatments being 15µg/L-520µg/L. 

Despite this substantial difference in P concentration between these two treatments, 

feeding rate did not decrease until P concentrations reached extremely high levels. These 

findings suggest that although there is a restriction for mussel feeding on P-rich algae, the 

restriction occurs at extremely high P concentration (5,200µg/L). My findings suggest 

that the negative effects of P on mussel feeding rates are not likely to occur in natural 

settings because P concentrations in excess of the H and V treatments are relatively rare 

as Laspoumaderes et al. (2016) noted that the P-rich conditions which he tested Daphnia 

in were also not ecologically relevant. It is also important to note that zebra mussel 

feeding rates (as well as other filter feeders) may respond differently under P-rich 

conditions when feeding on more complex algae assemblages and under different water 

quality conditions (e.g., increased turbidity) that occur in nature (Laspoumaderes et al. 

2016). Additional experiments should use mesocosms that are filled with natural lake 

seston under different P conditions (Plath and Boersma 2001). 

 

Conclusion 

 In summary, while P did play a role in phytoplankton and cyanobacteria growth in 

the mesocosms, it did not affect mussels, neither increasing their feeding rate at low P nor 

reducing it at high P in the mesocosm. However P was found to affect feeding rate for 
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mussels at much higher P concentrations, reducing it in very high P treatments, although 

these treatments are beyond what would normally occur in nature, including 

hypereutrophic reservoirs found in the United States. As a theoretical case this study 

provides a unique perspective on excess P in the environment. Although in most cases P 

is a limiting element and is in high demand by many species, it also seems that 

stoichiometric ratios are maintained by organisms (Laspoumaderes et al. 2016). Despite 

an abundance of P too much of this element can be detrimental to organismal function. 

More research is telling us that the stoichiometric balance is more important than 

environmental elemental abundance for proper organismal function. This gives us insight 

not only at an organismal level but also how this can affect communities and ecosystems 

and that the manipulation of elements both intentionally and unintentionally can lead to 

changes on multiple trophic levels. 
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