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Abstract: Population growth and alternative use of agricultural lands continues at an 

alarming rate, posing many challenges to food growers worldwide— particularly for 

meat-animal producers. Limited grazing land availability, adverse weather conditions, 

excess feedyard capacity, and volatility in the market are among the factors that have 

stimulated interest in the expansion of semi-confinement and confinement systems 

(controlled environments) for beef cattle production. The purpose of this research is to 

define cow and calf responses to a range of feed intakes and resulting energy provided to 

the cows. A total of 40 lactating beef cows were fed 135, 159, 176, 200, and 223 kcal 

NEm·(kg BW0.75)-1·d-1 for 111 d until weaning. This range of feed energy was 

accomplished by increasing the amount of feed provided using the same diet across all 

treatments. The diet consisted primarily of Sweet Bran® (wet corn gluten feed), prairie 

hay, cracked corn, and mineral supplement. Steer calves were offered the same diet as ad 

libitum creep feed along with milk and did not have access to cow feed. Body weight, 

body condition, milk yield and composition, and body composition were measured on 

cows; BW, creep intake, and body composition was also taken for steer calves. Eight 

cows were fed each of the energy intake levels in separate pens. Dependent variables 

were regressed on the linear and quadratic terms of energy intake. Increasing cow energy 

intake beyond maternal tissue maintenance is inefficient, as cows gained BW (P < .05) 

and condition (P < .01) and calves became fleshy (P < .05). Milk production increased 

(P < .01) as intake increased, which was not well-utilized by the calf. Additionally, cows 

maintained maternal tissue maintenance during lactation at an intake of 157 kcal NEm·(kg 

BW0.75)-1·d-1 and maintenance energy requirement was calculated at 84.7 kcal NEm·(kg 

BW0.75)-1·d-1, based on feed energy values. Utilizing digestibility data, a lactating beef 

cow required 108 kcal NEm·(kg BW0.75)-1·d-1.
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CHAPTER I 
 

 

REVIEW OF THE LITERATURE 

Nutrient Partitioning 

Feed Energy to Calf BW 

One of the most important, yet overlooked, cow characteristics in calf production 

is the conversion of cow intake to calf performance. Genetics and environment determine 

calf performance during two periods of cow to calf nutrient conversion: prenatally 

through transfer of nutrients via the umbilicus and postnatally by nursing. Uterine 

environment and nutrient availability conditions the fetus for the postnatal environment 

(Ford and Long, 2012). Both under- and over-nutrition of the dam can have adverse 

effects on the growth and development of the calf in utero (Du et al., 2010; Ford and 

Long, 2012). Nutrition of the pregnant dam not only effects development of the fetus, but 

programs the fetus for the outside, perceived environment, which affects lifetime growth 

of offspring (Du et al., 2010). Over- and under-feeding gestating cows has been linked to 

obesity, cardiovascular problems (Ford and Long, 2012), decreased hyperplasia in muscle 

fibers, and a change in musculoskeletal composition (Du et al., 2010). 

  Postnatally, milk yield, milk composition, and the interaction of milk with other 

nutrients (forage or mixed ration) available to the calf can affect its growth and 
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performance. Some of the factors that can affect milk yield and composition include 

genetics, nutrition, body composition, physiological state of the dam, and suckling-rate of 

the offspring. One study aimed to estimate energy requirements of maintenance plus 

lactation in various breeds of cows and described differences among breeds in their 

ability to convert cow energy intake to calf body weight (BW) gain (Jenkins et al., 1991). 

Calves from Angus x Hereford -sired cows weighed less at birth and continued to weigh 

less throughout the trial than the Brown Swiss, Chianina, Gelbvieh, Maine Anjou, and 

Red Poll sire-breeds. These other breeds consumed more feed (with the exception of the 

Red Poll-sired cows) and, in turn, produced more milk. The authors also reported that 

calves from higher-milking cows consumed less creep feed than their counterparts 

(Jenkins et al., 1991). Pairs originating from Angus x Hereford–sired dams had an 

increased or equal efficiency as the other breed-types that had greater milk and/or growth 

potential. Although cows with higher milk yields were able to produce heavier calves, 

those cows required more energy to maintain BW, thus were less efficient (Jenkins et al., 

1991). It has also been found that cows that produce lower milk yields become fatter by 

the end of lactation (Mondragon et al., 1983), which may be attributed to the partitioning 

of nutrients to fat deposits rather than milk production. In this case, cows with a tendency 

to gain BW may be putting more energy into lipid storage rather than using those 

nutrients for milk production. In successive parities, it was found that fatter cows had 

reduced milk yields compared to thin cows (Mondragon et al., 1983). Regardless of milk 

production, excessive fleshiness is not a desirable trait for cows due to the increased 

energy requirements and, in warmer climates, extra insulation (NRC, 2000). 
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 Wyatt et al. (1977) found that increased milk production decreased the conversion 

of milk to calf gain efficiency by 51-72% and decreased forage intake of calves by 32 or 

38%, depending on genetics. However, those calves receiving low levels of milk, 

although more efficient, had smaller weaning weights (WW) and gained less quickly 

than their counterparts.  

A study examining the effect of energy intake of the cow on milk production, 

subsequent calf gain, and creep feed intake of the calf was performed using a 63% total 

digestible nutrients (TDN) diet fed at 120% or 100% NRC (1976) of estimated cow 

energy requirements (Bartle et al., 1984). Energy requirements of the cows were 

estimated by Bartle et al. (1984) using the following equation by Petit and Micol (1981):  

𝑅𝐸𝑄 (𝑀𝑐𝑎𝑙 𝑀𝐸) = 0.12 ∗ 𝐵𝑊0.75 + 1.3 ∗ 𝑚𝑖𝑙𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑘𝑔), 

where REQ = energy requirement in Mcal of ME and BW0.75 = metabolic body weight. 

Calves did not have access to cow feed and half of the calves in each treatment were 

allowed creep feed, whereas the other half did not have feed other than milk until average 

daily gain (ADG) reached a specified critical point (Bartle et al., 1984). Results from this 

trial yielded no difference in calf BW between treatments, even though cows fed 120% 

energy requirements produced more milk (0.2 kg) than the 100% treatment. Altogether, 

the calves required 7.5 kg of milk plus 2.3 kg of creep feed in order to gain 1 kg/d (Bartle 

et al., 1984). The authors also indicate that by wk-9 of lactation, milk can only sustain a 

calf’s maintenance requirements; thus, supplemental feed is needed for gain at this time 

point. 

 



4 
 

Digestibility 

Digestibility is the percentage of a feedstuff that is absorbed into the body after 

digestion. The simplest technique to determine digestibility is to measure how much feed 

is taken in minus fecal output (Cochran and Galyean, 1994). In the past, nutrient values 

of the feed alone have been used to estimate digestibility (Mertens, 1987). It is known, 

however, that differences in animal type, sex, stage of production, and environment play 

a large role (Mertens, 1987). Much of the available data on digestibility come from 

maintenance experiments conducted on sheep and feeder cattle, which are tabulated as 

“book-values” (Tyrrell and Moe, 1975); this research is applied to beef cows, although 

little digestibility work has been completed directly with beef cows. Linear regression on 

digestible energy of a total mixed ration (TMR) fed to lactating dairy cows has been 

shown to account for 86% of the variation in the net energy (NE) requirement for milk 

when they are applied to dairy cows (Tyrrell and Moe, 1975). These authors indicate that 

NRC-predicted TDN values consistently overestimate the observed values for lactating 

cows by an average of 12%. In the same way, the digestibility of a certain diet fed to 

high-producing dairy cows was significantly lower than that of the same diet fed to steers 

fed at maintenance (Moe et al., 1965). It was concluded (via regression analysis) that 

TDN gradually declines as intake increases, even up to an increase of 5x maintenance 

level (Moe et al., 1965). Digestion has also been found to decrease in lactating cows as 

compared to when they are dry (Tyrrell and Moe, 1975). This conclusion, along with 

other results reviewed by Tyrrell and Moe (1975), indicate that the main reason book 

values are not accurate for a TMR fed to lactating cows is due to differences in intake, 

such that as intake increases, digestibility decreases (Tyrrell and Moe, 1975; Shaver et 
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al., 1986; Okine and Mathison, 1991). This can be easily explained by the reduction in 

retention time with greater feed intake, which is necessary for greater intake (Shaver et 

al., 1986; Okine and Mathison, 1991). Diet composition also plays a factor in 

determining the rate of decline in digestibility (Moe et al., 1965). Some diets have been 

shown to decrease TDN more rapidly than others as intake of those diets increases (Moe 

et al., 1965). The reason for this variability is mostly due to different ingredients (or the 

same ingredients from differing sources) and different forms of ingredients (long, 

chopped, pelleted, etc.). The type of diet also plays a role in digestibility. As the 

proportion of concentrate to hay or silage of the TMR increases, digestibility also 

decreases (Tyrrell and Moe, 1975). Shaver et al. (1986) concluded that digestability 

decreases as the proportion of grain increases, which is most likely due to a reduction in 

ruminal pH resulting in reduced digestion in the rumen. Likewise, digestibility was 

reduced for lactating cows fed a 68% concentrate (15.95% corn silage, 15.95% alfalfa 

haylage, 53.17% shelled corn, 11.83% soybean meal, 3.1% vitamin/mineral mix) diet 

compared to cows fed an 83% forage (41.43% corn silage, 41.42% alfalfa haylage, 7.35% 

shelled corn, 7.65% soybean meal, 2.15% vitamin/mineral mix) diet (Colucci et al., 

1982). The authors proposed that the decline in digestibility was due to an increased grain 

rate of passage, although they did not measure rate of passage. For high-concentrate diets, 

methods of slowing passage rate could be used to take full advantage of the increased 

energy density of the diet by giving the gastrointestinal tract more time for digestion and 

absorption. Achieving this goal, however, would most-likely require adding roughage to 

the diet, thereby decreasing the energy concentration. 
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 Broderick (2003) reported a linear increase in apparent digestibility of organic 

matter and dry matter, while NDF and ADF apparent digestibility decreased linearly for 

cows fed increasing levels of energy. In cows that were limit-fed to 80% ad libitum 

intake, dry matter digestibility was improved compared with cows at 90 or 100% ad 

libitum, which were both similar (Clark et al., 2007). In that study, the authors attempted 

to keep energy constant between feeding treatments and they admit that the greater 

energy density of the 80% restriction ration could have attributed to their results other 

than just that of dry matter intake (Clark et al., 2007). Separating the two variables is 

difficult. Another method would be to use the same diet for each treatment, thereby 

eliminating the effects of energy density. The problem with this approach is not only is 

DMI restricted, but energy is also restricted.  

Methods of measuring in vivo digestibility have been reviewed by Cochran and 

Galyean (1994). The authors review a plethora of literature to aid researchers in choosing 

the best procedures to fit particular studies. Emphasis is placed on variable control, feed 

and water intake, preferred sampling methods and time of sampling, as well as marker 

selection, among other topics (Cochran and Galyean, 1994). Finally, they discuss 

digestibility calculations and analysis. Careful consideration of these research methods 

should be observed according to a researcher’s goals and limitations. One must know 

how the results will be analyzed and reported before protocols begin to limit unnecessary 

work and avoid mistakes in collecting and pooling samples. Common limitations include 

resources (pen space, type of enclosure, animal number, laboratory equipment, etc.), 

time, and personnel. 
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Body Condition 

 The body condition of a cow determines her productivity, reproductive ability 

(especially length of anestrus), health, and profitability (NRC, 2000; Schroder and 

Staufenbiel, 2006; Selk, 2008). Cows will utilize body tissue as an energy source in order 

to make up for a deficit in feed energy (NRC, 2000; Schroder and Staufenbiel, 2006). 

This is especially important for periods of high energy demand when the animal cannot 

physically consume enough feed to meet requirements. Schroder and Staufenbiel (2006) 

estimated that 30% of milk produced in the first month of lactation can be attributed to 

body energy reserves. Thus, cows that lose condition in the first month after parturition 

should produce more milk. 

It is imperative for producers to estimate body condition of the cow herd at 

critical time points throughout the production year (breeding, pre-calving, calving, etc.) 

so adjustments to feed and supplements can be made in order to accommodate optimal 

condition. Traditionally, body condition scoring (BCS; 1-9 scale) is utilized as a predictor 

of body fat and energy reserves (NRC, 2000; Selk, 2008). The subjectivity of BCS has 

demonstrated a need for an objective measurement of body condition (Schroder and 

Staufenbiel, 2006). Ultrasonography has been touted as a quick and easy indicator of 

energy stores in dairy herds through accurate back fat measurements (Schroder and 

Staufenbiel, 2006). The use of ultrasound is also gaining ground in the beef industry, 

especially amongst purebred operations. Trubenbach et al. (2014a) used ultrasonography 

to measure back fat at the 12th rib, rump fat, intramuscular fat, and ribeye area. Calculated 

BCS was determined based on back fat thickness (Herd and Sprott, 1998) and were used 
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to estimate body energy reserves, retained energy, and heat energy utilizing equations 

from the NRC (2000). 

Lactation  

Lactation Efficiency 

Willham (1972) questioned whether or not beef producers should be selecting 

dams with greater potential for milk production. Research at the time suggested more 

milk could be useful early in the lactation period since calves are more limited in their 

ability to utilize forage (Willham, 1972). However, at the point where calves have a well-

developed rumen, more milk might not be desired, especially if extra intake is used for 

lipid deposition rather than lean muscle development (Willham, 1972). Excessive 

fleshiness in weaned calves is undesirable to buyers, because they are paying for more 

BW in fat and those calves have less opportunity for added growth in the feeder stage. 

During the transition to a functioning ruminant, it may be desirable to select for cows that 

have a more rapid decline in lactation. It is also important to match the calves’ growth 

requirements if extra feed (in the form of creep or otherwise) is to be offered. Exceeding 

the calf’s ability to utilize extra nutrients by producing more milk is inefficient (Willham, 

1972).  

A study by van Oijen et al. (1993) concluded that, while WW of calves from low 

milking dams is lower than calves from high milkers, low milkers are more biologically 

and economically efficient. Calves from medium- and high-milking cows required more 

energy per unit gain (van Oijen et al., 1993). Montano-Bermudez and Nielsen (1990) 

found that calves from lower milking cows are not only more efficient, but had better 
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post-weaning performance compared to cows that yielded more milk. In a similar paper, 

it was found that low milking cows required 12% less energy than medium and high 

milkers to maintain BW, whether they were lactating or dry (Montano-Bermudez et al., 

1990). Miller et al. (1999) reported that cows on a higher energy intake diet tended to 

produce more milk (P < 0.10). Greater milking cows lost back fat but did not have a 

change in BW (Miller et al., 1999). This is in agreeance with Mondragon et al. (1983), 

whose research indicated that BW was not associated with milk yield, however fleshiness 

of the cow was. Increased loss of back fat in high-producing cows is indicative of body 

energy reserve usage. The fact that cows lose condition while maintaining BW could be 

due to increased visceral organ mass, which would be necessary to produce more milk 

and process extra nutrients. 

In a study comparing high and low milking cows, it was determined that calf WW 

in the high milking group was 22 and 23% greater (P < 0.05) than cows that gave less 

milk in a drylot and rangeland system, respectively (Wyatt et al., 1977). Calves with 

access to more milk in a range setting required 27.6 kg more milk for every 1 kg of extra 

BW gain compared with calves in the low milking group (Wyatt et al., 1977). The 

authors suggest the difference in efficiency may be due to replacement of milk for grass 

in the low milkers’ calves. Thus, grass that is directly fed to the calf is more efficient than 

grass fed to the cow in order to produce additional milk. In the same study, calves 

receiving more milk consumed less creep feed (26%, P < 0.05) in a drylot than their 

lower milk-intake counterparts (Wyatt et al., 1977). The increased milk intake for this 

group translated to 21% more DE (P < 0.05) and an extra requirement of 26.3 kg of milk 

per kilogram of additional gain (Wyatt et al., 1977). 
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 Miller et al. (1999) reviewed conflicting results in the literature as to whether or 

not increased milk yield in a beef cow increases or decreases efficiency of the calf. It has 

been documented that increased milk production generates larger calf BW and larger 

saleable calf BW is more profitable at harvest (Miller et al., 1999). Although higher-

milking cows required more energy intake, total feed intake for the pairs was not 

different between high and low milking cows. Due to greater profitability at harvest as 

well as a lack of a significant increase in feed, the authors concluded that calves from 

cows that produced more milk were more efficient after the breed, dam age, and birth 

BW effects (Miller et al., 1999). In that study, cows were fed with the goal of keeping 

body condition constant. Different breeds in each group resulted in a range in milk yield, 

creating the possibility that those cows which milked higher partitioned the available 

energy to do so without significantly increasing feed intake to the pair. In general, it is 

expected that higher-milking cows require more feed, thereby reducing pair efficiency. 

Milk Yield and Composition 

A comprehensive review of milk yield and composition of beef cows in the 

literature can be seen in Table 1. Some studies have found that milk yield and/or 

composition explains 60% (Rodrigues et al., 2014) or 66% (Boggs et al., 1980) of the 

variation in calf WW. Dams with male offspring tend to milk more than those with 

female calves (Rodrigues et al., 2014), which may be attributed to increased 

aggressiveness (suckling frequency) of the male (Albertini et al., 2012). Milk yield was 

increased 11.7% by cows with male offspring according to Albertini et al. (2012), who 

also reported an increase of 11.4% and 11.9% in energy and protein, respectively, for 

those dams.



 

 
 

1
1

 

Table 1. Milk yield and composition of beef cows in the literature. 

Source Milk Yield, kg/d Fat, % Protein, % Lactose, % 

Linneen, 20141     

Day of Lactation:     

    41 14.1 - - - 

                          60 10.7 - - - 

Hudson et al., 20101     

Early Weaned 7.53 ± 3.31 3.56 ± 0.17 2.91 ± 0.06 5.00 ± 0.05 

Late Weaned 7.62 ± 3.31 3.68 ± 0.17 2.85 ± 0.06 4.96 ± 0.05 

Rodrigues et al., 20141 7.0 ± 0.4 3.21 ± 0.11 2.90 ± 0.04 4.65 ± 0.03 

Winterholler et al., 20121 8.28 ± 0.61 2.11 ± 0.22 3.05 ± 0.05 4.97 ± 0.05 

Johnson et al., 20033     

Primiparous 9.83 ± 2.13 - - - 

Multiparous 5.65 ± 2.13 - - - 

NRC, 20002 8.01 4.03 ± 1.24 3.38 ± 0.27 4.75 ± 0.91 

Miller et al., 19994     

Day of Lactation:     

68 5.72 ± 2.29 - - - 

117 5.15 ± 2.13 - - - 

185 3.71 ± 1.70 - - - 

Marston et al., 19921 6 9.6 ± 0.3 4.30 ± 0.15 3.49 ± 0.05 4.89 ± 0.03 

Jenkins et al., 19911 6.8 - - - 

Beal et al. 1990     

Weigh-Suckle-Weigh 5.2 ± 0.5 - - - 

Machine-Milked 5.1 ± 0.2 4.1 ± 0.07 3.32 ± 0.02 4.7 ± 0.03 

Bartle et al. 1984     

120% NRC (1976) 6.1 - - - 

100% NRC (1976) 5.9 - - - 

Mondragon et al. 19835     

Machine Milked     

1st calf 4.8 ± 1.7 3.1 ± 0.72 3.4 ± 0.28 5.2 ± 0.22 



 

 
 

1
2

 

(Table 1. Cont.)     

2nd calf 6.4 3.0 3.3 5.3 

3rd calf 5.6 2.3 3.3 5.3 

Weigh-Suckle Weigh     

1st calf 7.6 ± 2.3 - - - 

2nd calf 9.2 - - - 

3rd calf 9.4    

Bond and Wiltbank, 19707     

High Energy     

1st lactation 3.3 - - - 

2nd lactation 4.3 - - - 

Low Energy     

1st lactation 2.4 - - - 

2nd lactation 4.9 - - - 

Kropp, 19708     

Range     

Moderate  5.45 - - - 

High  5.84 - - - 

Drylot     

Moderate  4.73 2.57 - - 

High 4.84 2.78 - - 
1Angus cows 

2Estimates for beef cows 

3Brangus cows 

4Purebred Hereford cows 

5British breeds 

6Compostition measured at 60 d postpartum 

7 Angus heifers fed differing energy levels during 1st and 2nd lactations 

8Hereford cows received either high or moderate energy supplement in the winter  
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 In early lactation, Boggs et al. (1980) found cows ranging in age of 4-8 yr 

produced more milk than younger and older cows; additionally, that age range narrowed 

to 5-8 yr during summer months. They also found that 3 yr old cows produced the least 

amount of milk in early lactation, but there was no difference between 3 and 4 yr cows 

compared with cows 9 yr or older. 

It has been shown that milk containing higher levels of fat and protein promotes 

calf ADG during the suckling phase (Rodrigues et al., 2014). In contrast, studies 

reviewed by Mondragon et al. (1983) indicate milk composition has little effect on 

suckling calf performance. The authors of that study indicated that as lactation 

progressed, percent protein, total solids, and fat increased, but at a slow rate, while 

lactose dropped significantly (Rodrigues et al., 2014). Fat has been found to be more 

variable than other milk constituents and is negatively correlated with milk production 

(Rodrigues et al., 2014). Albertini et al. (2012) also found that protein, as well as energy, 

was higher at the end of lactation than at the beginning (P < 0.01). In another study 

(Mondragon et al., 1983) milk yield was comparable across the lactation period for the 1st 

calf, but dropped across lactation periods for the 2nd and 3rd calves. Like Rodrigues et al. 

(2014), Mondragon et al. (1983) saw an increase in percent milk protein, however, they 

contrasted in that milk fat decreased and lactose remained fairly constant in the study by 

Mondragon et al. (1983). Although unsure as to the cause of the decreased milk fat, the 

authors attribute it to low fat recovery in the milk (a possible indication of a problem with 

the machine) or incomplete let-down (Mondragon et al., 1983). Energy content of the 

milk can be calculated using 2 similar equations (eq. 4 – 16 and eq. 4 – 17), and 

corresponds to the NEm needed for the production of milk (NRC, 2000). 
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Increased energy intake can result in a linear increase in BW gain, milk yield and 

milk components (protein, lactose, and SNF; Broderick, 2003). In another trial comparing 

two different energy intakes, cows receiving a high energy ration (120%; NRC, 1976) 

produced more milk than cows receiving 100% estimated energy requirements by 0.2 

kg/d (Bartle et al., 1984). Additionally, weekly milk production only dropped by 0.05 

kg/wk for the 120% treatment compared to 0.45 kg/wk for the 100% treated cows. 

Similarly, Moe et al. (1965) reported an increase in milk production as feed energy 

increases, although at a diminishing rate. The reasons for this reduced productive 

efficiency are 3-fold. As energy intake increases: 1) nutritive value of the feed decreases, 

2) more fat is stored as body reserve (inefficient), and 3) body energy reserve is used 

when energy intake is insufficient (Moe et al., 1965). They also point to the idea that 

increased milk production is possible, but only to the acceptable level of fleshiness of the 

cow (Moe et al., 1965). It is obvious that an increase in feed intake beyond maintenance 

is required for milk production. Increased intake negatively influences efficiency of 

production through decreased digestibility of the feed, however, increasing intake also 

partitions more feed to production in such a way that reduces the proportion of total feed 

that goes toward maintenance, thereby increasing efficiency. Although, increasing energy 

intake will help the cow to produce more milk, in turn producing more saleable calf BW, 

it is not enough to overcome the extra cost of feed (Miller et al., 1999). 

Milking Technique 

Weigh-suckle-weigh. Weigh-suckle-weigh (WSW) is a commonly used method 

for determining milk production. Calves are separated from their dams for a period of 

time, weighed, and then allowed to suckle until satiety. After nursing, calves are 
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immediately weighed and the difference in calf BW is determined to be milk yield. 

Rodrigues et al. (2014) used WSW and machine milking techniques to measure milk 

yield. Weigh-suckle-weigh was performed every 21 d for a total of 10 measurements 

(Rodrigues et al., 2014). The day before the WSW procedure, pairs were separated for 6 

h, reunited for 45 min to allow them to suckle-out, and then re-separated overnight for 12 

h (Rodrigues et al., 2014). Two other studies utilized a 4 h (Clutter and Nielsen, 1987) 

and 12 h (Bartle et al., 1984) separation on the day before milking and were separated 

overnight until milking. In the study by Bartle et al. (1984) calves suckled for 30 min 

after the initial separation and were re-separated for 12 h before WSW. Boggs et al. 

(1980) separated pairs for 10 h, allowed calves to nurse out, and then separated again for 

12 h overnight. Their procedure included 3 WSW days that were averaged and used to 

estimate 24 h milk once every mon for a total of 6 mon. Weigh-suckle-weigh accounted 

for 13% of the variation in WW (Rodrigues et al., 2014). Albertini et al. (2012) suggested 

that performing WSW at least 12 times during the lactation period was necessary to 

achieve an r2 of .80.  

Milking Machine. Several studies used a milking machine (MM) at the 

beginning, middle, and end of lactation to directly measure yield and composition 

(Marston et al., 1992; Rodrigues et al., 2014). Rodrigues et al. (2014) separated pairs for 

6 h the day before milking with a 45 min suckle-out period, and 12 h overnight 

separation. Marston et al. (1992) separated pairs for 4-7 h before allowing calves to nurse 

for 45 min and had an overnight separation of approximately 8 h. Oxytocin was given 

intravenously at a dosage of 30 IU (Rodrigues et al., 2014) or 40 IU (Marston et al., 

1992) to warrant milk let-down, the udders were washed and massaged, and the cow was 
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milked until milk flow ceased. After the milking claw was removed, each quarter was 

hand stripped to ensure complete udder evacuation (Marston et al., 1992). One advantage 

of MM is that after weighing the milk, samples can be taken and analyzed for milk 

components (Marston et al., 1992; Rodrigues et al., 2014). Some authors suggest milking 

with a machine is preferred to WSW (Albertini et al., 2012; Rodrigues et al., 2014). 

Standard errors were lower using MM estimates than WSW. Furthermore, WSW 

estimates of milk yield were reliably higher than the MM method (Mondragon et al., 

1983). Machine milking accounted for 25% of the variation observed in WW, compared 

to 13% for WSW (Rodrigues et al., 2014). Overall, the MM method is typically more 

accurate than WSW and has more power to distinguish significant differences according 

to the lower observed standard errors. Albertini et al. (2012) reported the coefficient of 

variance of the WSW procedure to be 54% greater than MM. In that study, the 

repeatability of these milk yields measured by MM was approximately twice that of 

WSW (Albertini et al., 2012). Albertini et al. (2012) recommended using a 16 h interval, 

6 times during the lactation period (r2 = .80) when utilizing the MM technique. Beal et al. 

(1990) reported a high correlation (R = 0.97) between two observations (3-d apart) of 

machine milked data, whereas the correlation was low (R = 0.35) for the WSW 

technique. Repeatability of milk production in beef cows as determined by milking 

machine is comparable to Holstein milk production repeatability (Beal et al., 1990). 

Energy Requirements of Lactating Beef Cows 

Approximately 70-75% of annual feed cost for a cow is spent to meet 

maintenance energy requirements (Ferrell and Jenkins, 1985; Montano-Bermudez et al., 

1990; Evans et al., 2000). Fifty percent of the energy required for beef production is spent 
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in maintaining the cow (Montano-Bermudez et al., 1990; Miller et al., 1999). 

Maintenance energy requirement is defined as the energy required to maintain the 

animal’s body tissue within the thermal neutral zone and does not address changes in 

production cycle (Evans et al., 2000). The ME required for maintenance accounts for 

70% of the total ME required for a beef cow in production (NRC, 2000). The NRC 

(2000) estimates NEm to be 0.077 Mcal/EBW0.75, where empty metabolic BW (EBW0.75) 

is measured in kilograms. 

Visceral organ mass accounts for a large percent of the variation in maintenance 

requirements and it has been shown that increased visceral organ mass increases 

maintenance requirements (Evans et al., 2000). Thus, metabolic BW (most commonly 

defined as BW0.75; NRC, 2000) is used (Evans et al., 2000). Lactation not only increases 

energy requirements as a whole, but due to increased tissue mass, also increases basal 

maintenance needs (Ferrell and Jenkins, 1985; Montano-Bermudez et al., 1990; Evans et 

al., 2000; Jenkins et al., 2000). Increased milk output requires much more energy and 

nutrient intake, not only for the milk itself, but for the increased maintenance demands 

due to larger organ size (primarily larger mammary glands). More production necessitates 

a larger “factory” and a larger factory requires more upkeep and maintenance. 

 Montano-Bermudez and Nielsen (1990) calculated the maintenance metabolizable 

energy required for gestation and lactation in cows with high, medium, and low genetic 

milking potential. The maintenance energy requirements for gestation and lactation were 

97 and 126, 114 and 148, and 110 and 141 kcal ME∙BW(kg)-0.75∙d-1 for low, medium, and 

high milkers, respectively (Montano-Bermudez and Nielsen, 1990). In that same study, it 

was reported that cows genetically marked for lower milk production consumed less 
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energy than cows with a higher genetic potential for milk, even when genetic potential 

for mature size is the same. Van Oijen et al. (1993) used the same methods as Montano-

Bermudez and Nielsen (1990), but assumed equal maintenance and reproduction between 

groups; they reported maintenance energy requirements for gestation and lactation for 

low milkers as 97 and 126 kcal ME∙BW(kg)-0.75∙d-1 and 112 and 145 kcal ME∙BW(kg)-

0.75∙d-1 for medium and high milkers, respectfully. The difference in maintenance energy 

requirements between the high and medium groups were not significantly different, so 

they averaged the two groups to calculate efficiency with those assumptions (van Oijen et 

al., 1993). Montano-Bermudez et al. (1990) concluded that 23% of the variation in 

maintenance energy requirement was explained by differences in milk production. In that 

paper, regression analysis reports that for each 1 kg increase in milk produced, her 

maintenance requirement would increase by 1.6 kcal/d (Montano-Bermudez et al., 1990). 

It has been shown that cows that produce more milk have higher energy requirements 

(Miller et al., 1999), which can have a negative impact on rebreeding interval (Willham, 

1972). Boggs et al. (1980) found a 1.4-d postponement in rebreeding for every extra 

kilogram of milk produced. 

Limit-Feeding Drylot Cows 

It is evident that grazing cattle expend more energy than cattle in a drylot due to 

the increased need for travel, but it is not well known if there is a difference in energy 

demand for other functions, such as ruminating, feed prehension, standing, etc. (NRC, 

2000). It has been estimated that animals in a drylot have maintenance energy 

requirements that are 10 to 20% and 50% lower compared with grazing animals in good 

and bad grazing conditions, respectively (CSIRO, 1990).  
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 Limiting DMI improves diet digestibility, ADG, and feed efficiency in finishing 

steers (Clark et al., 2007). As intake increases beyond maintenance, organs enlarge as do 

maintenance requirements; the opposite is true when intake is restricted (Clark et al., 

2007). Therefore, a decrease in intake should result in reduced maintenance requirements 

(Clark et al., 2007). Trubenbach et al. (2014a) reported that non-lactating cows which 

were limit-fed a high-energy diet achieved maintenance at NEm = 0.062 Mcal/EBW0.75 

compared with the NRC (2000) estimated NEm of 0.077 Mcal/EBW0.75. In a 2x2 factorial 

experiment comparing high and low density diets fed at 120% or 80%  estimated NRC 

(2000) NEm requirements, cows fed the higher energy diet had decreased maintenance 

energy requirements (9.9%) than cows on a low-energy dense diet (Trubenbach et al., 

2014b). Likewise, limit-fed cows had reduced maintenance requirements of 29.1%  

compared to cows receiving 120% requirements (Trubenbach et al., 2014b). 

Creep Feed 

Consumption and Capacity 

Ruminoreticular volume of calves is approximately 44, 300, and 230-360 ml/kg 

EBW for newborns (36 kg), 13 wk-olds (94 kg), and 542 kg calves, respectively (Jenkins, 

2014). Lusby et al. (1976) reported a decrease in calf creep intake (Miller et al., 1999) 

and digestibility as milk intake increased. Likewise, Wyatt et al. (1977) and Boggs et al. 

(1980) found that at higher milk intakes, calves consumed less forage. Contrary to earlier 

data, Wyatt et al. (1977) found that milk intake was not significantly affected by the 

calf’s growth-rate potential. Miller et al. (1999) also found no relationship between milk 

yield and total energy intake of cow-calf pairs. A calf begins consuming grass alongside 
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its dam before 3 wk of age and by 3 mon it is estimated that calves will consume about 

1% BW in forage DM (Jenkins, 2014). Newborn calves are preruminants, therefore, their 

diet other than milk (which bypasses the rumen) is necessary for ruminoreticular growth 

and development (Church, 1988). For these reasons, it is necessary for the calves to have 

access to high-quality creep feed early on if pairs are kept in a drylot to replace growing 

forage. 

Work reviewed by Arthington et al. (2008) showed that creep intake and BW 

increased over time as calves had longer access to the creep. This is to be expected based 

on behavioral and physiological reasoning. Behaviorally, as calves learn where the creep 

area is and how to use it, their creep intake will increase over time. Physiologically, as 

their feed intake increases, their rumen will adapt and develop to the creep feed diet, also 

allowing ration intake to increase.  

Calf Performance on Creep  

Creep-feeding has been shown to increase calf gain during the suckling phase 

(Stricker et al., 1979; Faulkner et al., 1994; Tarr et al., 1994). Some studies have shown 

the efficiency of supplemental feed has been low (Stricker et al., 1979). Decreased 

efficiency has been proposed to be due to higher grain intakes, which lowers ruminal pH 

and, therefore, has a negative-associative effect on forage intake (Tarr et al., 1994). 

Assuming this is true, ways to improve efficiency are warranted for creep feeding to be a 

viable technique for improving calf gains.  

Conventionally, when creep feed is fed, it is offered ad libitum to nursing calves. 

However, excessive creep can lead to fleshy calves at weaning, which is not a desirable 
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trait to buyers (Taylor et al., 1938). Some researchers suggest that limit-feeding creep can 

be done in order to improve performance and efficiency without producing overly-fleshy 

calves. Calves can be limited to a certain amount of feed per feeding period, or to a 

certain time of day, or creep feeding can be limited to a period of time before weaning.  

Calves with limited creep intakes have been shown to gain 39% more BW during 

the suckling phase than calves without supplemental feed; furthermore, calves with 

unlimited access to creep outperformed the limited calves by an additional 13% gain 

(Faulkner et al., 1994). Unlike previous research (Stricker et al., 1979), Faulkner et al. 

(1994) found no supplemental feed efficiency differences between limit-fed and ad 

libitum-fed calves. 

Calves that had access to creep for 28 d did not perform better than those without 

in the suckling phase, whereas creep feeding for 56- and 84-d periods improved gain 

(Tarr et al., 1994). In that study, 56 d of creep feeding showed to be the most efficient. 

Another technique to improve efficiency of creep feeding is using commodities 

with positive-associative effects on forage consumption for calves on pasture. Intuitively, 

as creep feed intake increases, forage consumption is expected to decrease (Faulkner et 

al., 1994). Faulkner et al. (1994) reported no difference in fescue intake between creep 

feeds of different sources (corn- or soybean hull-based). However, calves with access to 

soybean hulls had significantly greater NDF and ADF digestibilities of fescue than calves 

with corn-based creep (Faulkner et al., 1994). These results indicate the importance of the 

type of creep feed on pre-weaning efficiency.  
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Conflicting reports exist regarding the effects of creep feeding on feedlot 

performance. Control calves (no creep) outperformed creep-fed calves in the feedlot in 

one year, while no differences existed in the other years (Tarr et al., 1994). Calves with 

access to creep feed beginning at 45 d before shipping had improved feedlot gains 

(Arthington et al., 2008). Conversely, another study reports creep-fed calves (limit-fed 

and unlimited creep) had lower gains and reduced F:G ratios compared with non-creep-

fed calves (Faulkner et al., 1994). However, the improved F:G efficiency in the suckling 

phase of creep-fed calves combined with the feedlot ratios generated no difference in 

lifetime efficiency (Faulkner et al., 1994).  Calves fed corn-based creep had an improved 

feedlot F:G ratio over soybean hull-fed calves, most likely due to ruminal adaptation to a 

higher concentrate diet (Faulkner et al., 1994). Decisions would need to be made to 

determine what to use as creep depending upon the marketing technique (retaining 

ownership or selling calves for finishing). 

It is not recommended to creep replacement heifers as any BW advantage at 

weaning is lost by 1 yr of age (Martin et al., 1981). Excessive fat in the pelvic area and 

mammary gland is also detrimental to reproductive performance when replacement 

heifers become fleshy. Martin et al. (1981) showed creep-fed heifers weaned fewer calves 

that were lighter at birth, 120-d old, and 210-d old. However, the correct amount of feed 

can add saleable BW and also condition calves to eat grain during the finishing phase. 

Cattle that were creep fed had higher quality grades, but they gained less BW after 

weaning than non-creep-fed calves (Martin et al., 1981). Steers receiving creep out-

gained those that did not during the suckling phase, but ADG was not different during 

finishing in a 2-yr study by Myers et al. (1999). In that study, overall ADG tended to 
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favor steers that had access to creep, although harvest BW was not different. 

Additionally, there were no differences in yield grade, marbling score, or longissimus 

muscle area in 1 of 2 yr, where yr 2 returned a higher yield grade in creep-fed steers 

(Myers et al., 1999).  

There are also effects on the cows of calves consuming creep. Studies have shown 

significantly higher conception rates for cows with creep-fed calves (Stricker et al., 

1979). The authors of that study did not understand the reason for this and speculated it 

could be due to increased energy consumption from eating spilled creep or old creep orts 

that were discarded in the pasture. It is reasonable to believe that calves consuming creep 

would nurse less and the reduced suckling stimulus therefore caused a more rapid decline 

in milk production. This would effectively reduce maintenance plus lactation energy 

requirements. It was reported that cows whose calves consume creep also gained BW and 

BCS (Tarr et al., 1994). These authors speculate this is due to greater forage availability 

to the cow due to decreased forage consumption of the calf. It is also reasonable in this 

case to believe decreased milk also effected BW and BCS for reasons just described. 

Increased condition, to an extent, is also important for improved conception rates (Selk, 

2008). 

Suckling Steer Calf Performance 

Milk is the primary source of nutrients for young calves, hence, lactation is 

paramount to the calf’s performance (Rodrigues et al., 2014). Clutter and Nielsen (1987) 

found that calves from low milking cows utilized 66% less milk in order to have the same 

BW gain as calves from medium and high milking dams, thus having a lower 
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maintenance energy requirement. These calves better utilized available milk and relied 

more heavily and at an earlier age on feed sources other than milk. However, calves from 

high milking dams were significantly heavier at weaning and maintained much of that 

advantage through the feedlot period (Clutter and Nielsen, 1987), which is in agreement 

with Miller et al. (1999) and Mondragon et al. (1983).  

Beal et al. (1990) reported a high correlation (r = .76) between calf gain in the 

suckling phase and milk production. Two separate studies with similar results report that 

milk production explains 60 or 65% of the variation in WW (Willham, 1972). A different 

study concluded that composition did not explain a significant amount of variation in 

WW (Mondragon et al., 1983). These results indicate that milk production is still the 

largest contributing affecter of WW(Beal et al., 1990). 

 Jenkins and Ferrell (1994) found a linear decrease in conversion of feed to calf 

BW as DMI of the cow increased. In a similar study, Jenkins et al. (2000) showed that 

low cow energy intakes produced maximum efficiency, however, their lowest energy 

intake was at 100% recommended requirements (NRC, 2000). 

Past literature has indicated over half of the calf’s energy intake is sourced from 

feeds other than milk by the third month of lactation (Boggs et al., 1980). Boggs et al. 

(1980) reported a suckling-phase ADG of 0.69 kg/d and that for each extra kg of milk 

taken in, calves gained an extra 7.20 kg of 205-d adjusted WW, on average. Conversely, 

they found that grass intake was negatively correlated with ADG in early lactation and 

forage consumption only showed a tendency to improve ADG during mid to late lactation 

at 0.02 kg/d. 
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Cows that produce more milk raised calves that gained more during the suckling 

phase were heavier upon feedlot entry and had heavier carcasses, although they did not 

have an advantage in post-weaning growth (Miller et al., 1999). It has been found that 

calves with access to higher levels of milk were less efficient in the feedlot (Willham, 

1972) or tended to be less efficient (Miller et al., 1999) possibly due to excess fat 

accumulation in the suckling phase. Miller et al. (1999) calculated calf efficiency as the 

final carcass BW of the calf divided by total feed intake of the cow and calf. 
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CHAPTER II 
 

 

ENERGY REQUIREMENTS AND PRODUCTION EFFICIENCY OF LACTATING BEEF 

COWS IN A DRYLOT SYSTEM 

INTRODUCTION 

There are many challenges and opportunities for beef production. Increased 

population leads to more demand for beef and more competition for resources. 

Alternative uses of agricultural lands along with adverse weather conditions decrease 

forage availability and grazing capacity. It is becoming increasingly necessary for 

producers to raise more beef with less land. There are also empty drylot pens that were 

former small dairies or feedlots, which give producers in the southern Great Plains the 

ability to place cow-calf pairs in a confinement or semi-confinement drylot setting 

(controlled environment, CE). This allows producers to fill facility vacancies as a 

potential buffer to market risk and volatility as well as a way to correctly manage their 

pastures without liquidating the herd. There is also an opportunity to increase ranch 

carrying capacity without harm to pasture resources, thereby increasing cow numbers and 

satisfying beef demand. In the northern Great Plains, CE systems are more common due 

to the close vicinity to cropland, grain, and co-products and more extreme weather. In the 

southern Great Plains, differing resources, conditions, and management styles present 

challenges in implementing CE, but many producers are already adopting variations of 



 

35 
 

year-round or short-term confinement systems. A distinct advantage of CE systems is the 

ability to control intake. Limit-feeding is a key management tool, which is a fairly new 

concept in the management of mother cows (Jenkins, 2014). Benefits to limit-feeding 

moderate energy rations include: decreased feed cost and land area requirement, 

improved digestibility of feedstuffs, and decreased gut size, thereby reducing basal 

metabolic requirements. The current accepted estimation of NEm required for 

maintenance of beef cattle is 0.077 Mcal/EBW0.75 (NRC, 2000), where EBW0.75 = empty 

metabolic body weight. Due to increased apparent digestibility from limit-feeding 

(Trubenbach et al., 2014) and limited activity in the drylot (CSIRO, 1990), it is 

hypothesized that maintenance energy requirements for cows would decrease, therefore 

the current Beef Cattle NRC (2016) model may not be applicable to cows in CE. 

Additionally, cow size and milk production has increased dramatically in the past few 

decades (Lalman et al., 2013), therefore, data used in NRC (2016) to estimate energy 

requirements and milk production may not be applicable to the current U.S. population of 

beef cows. The objectives of this study were to determine: 1) the energy intake necessary 

to maintain BW and body composition of lactating beef cows and, 2) the efficiency of 

energy intake of cows to calf growth in a CE system. 

MATERIALS AND METHODS 

Animals 

All protocols were approved by the Oklahoma State University Institutional 

Animal Care and Use Committee (ACUP AG-15-8). A total of 40 lactating beef cows (6 

± 2.0 yr, 539 ± 46 kg BW) along with their suckling steer calves (60 ± 9.4 d, 107 ± 13 kg 
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BW) were utilized. The cows were Angus and Angus x Hereford and the calves were 

sired by Angus bulls. Average calving date was March 15, 2015. Steers were castrated at 

birth by banding and received an anabolic implant (Ralgro, Merck Animal Health, 

Madison, NJ) at approximately 2 mo of age. Pairs were stratified by calf age and milk 

yield (determined on May 13, 2015 by methods described later), then assigned to 1 of 5 

pen groups (experimental unit) in a completely randomized design. Each group was fed 

the same moderate-energy diet (Table 1) in varying amounts (limit-fed; Table 2) in order 

to achieve 135, 159, 176, 200, and 223 kcal (NEm)∙(kg BW0.75)-1∙d-1. Although no pen 

effects were expected, pen groups were rotated among the physical pens approximately 

every 28 d in order to minimize any potential pen effect bias.  

Facilities 

The experiment was performed at the Range Cow Research Center, South Lake 

Carl Blackwell Range Unit located West of Stillwater, Oklahoma. Pairs were offered 

increasing levels of the experimental ration for 11 d before trial initiation as a warm-up 

period. Experimental treatments were initiated on June 10 and continued through 

weaning on September 29, 2015 for a total of 111 days. Average monthly temperature 

and precipitation for months during the trial and long-term averages for those months is 

shown in Table 3. 

Each pen contained concrete, fence-line feed bunks with 0.9 m of linear bunk 

space per cow and a creep area with 0.3 m of linear bunk space per calf. Cows and calves 

did not have access to each other’s feed. Calves were penned up under shade until cows 

consumed their ration. Calves had unrestricted to the creep area access (except when 
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penned away from cow feed) via a creep gate, which the cows could not access. All 

animals had access to a source of 65% shade (4.18 m per cow) as well as an automatic 

waterer. Feeding occurred at approximately 0800 h once daily.  

Diet 

The diet was a total mixed ration (TMR) that was formulated to contain 1.59 

Mcal NEm/kg, 14.7% CP, 27.3% ADF, and 52.9% NDF (Table 1). Dietary total digestible 

nutrients (TDN) was determined using in vitro neutral detergent fiber digestibility (NRC, 

2001) and an equation from Weiss (2000): 

𝑇𝐷𝑁 = (𝐶𝑃 × 𝑒−1.2×𝐴𝐷𝐼𝑁) + (0.98 × [100 − 𝑁𝐷𝐹𝐶𝑃 − 𝐶𝑃 − 𝐴𝑠ℎ − 𝐸𝐸]) +

([𝐸𝐸 − 1] × 2.7) + (.75 × [𝑁𝐷𝐹𝐶𝑃 ×
𝐼𝑉𝑁𝐷𝐹

100
] -7 

where CP = crude protein, ADIN = acid detergent insoluble nitrogen (& of total N), 

NDFCP = crude protein-free neutral detergent fiber, and IVNDF = in vitro digestible 

neutral detergent fiber. Calves were fed the same TMR diet as their dams in daily 

amounts to insure ad libitum intake with minimal refusal. Calf orts were removed and 

sampled approximately once weekly, or when adverse weather (especially precipitation) 

occurred. A vitamin and mineral supplement (11.7% Ca, 10.29% P, 1.2% Mg, 1,047 ppm 

Cu, and 7,631 ppm Fe) was top-dressed, which also contained Altosid IGR (Central Life 

Sciences, Schaumburg, IL 60007) for insect control and chlortetracycline (Aureomycin, 

Zoetis Services, LLC, Florham Park, NJ 07932) for the prevention of anaplasmosis. 

Protein supplement (cottonseed meal) was provided at 0.23 kg/cow for cows offered the 

low energy ration (135 kcal NEm/kg) as that group was in a negative protein balance for 

their given ration.  
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Preventative Medicine 

On May 19, 2015 steer calves received a clostridial vaccine (Covexin 8, Merck 

Animal Health, Madison, NJ), and pour-on dewormer (Normectin, Norbrook Inc., 

Lenexa, KS), while cows received a pour-on dewormer (Ivermectin, Durvet Inc., Blue 

Springs, MO). Cows and calves were poured with an insecticide (Synergized Permethrin, 

Durvet Inc., Blue Springs, MO), and drenched with a dewormer (Valbazen, Zoetis Inc., 

Florham Park, NJ) on June 6. Cows were given another dose of pour-on Permethrin for 

fly control 26 d later. Approximately 1 month later, insecticide ear tags (XP820, Y-Tex 

Corporation, Cody, WY) were deployed in the cows. On September 23, steers were 

revaccinated with Covexin 8 and BoviShield Gold 5 (Zoetis Inc., Florham Park, NJ) 1 

week prior to weaning. All incidences of morbidity were documented and addressed 

according to standard operating procedures. 

Milk Production 

Cows were milked (described below) 28 d before study initiation on May 13 for 

pre-trial analysis and treatment allocation. During the study they were milked every 28 d 

beginning on June 30 (d-21) and ending on September 22 (d-105). The milking procedure 

was adapted from Marston et al. (1992). A portable milking machine (Portable Vacuum 

System, Springville, UT 84663) was used. The day before milking, pairs were separated 

at 1400 h. All animals had access to water, but calves were not allowed creep feed. At 

2000 h, pairs were reunited for a 45 min nurse-out period. Calves were separated by 2100 

h and milking began at 0500 h the following day, for an overnight separation of 8 h. 

Cows were combined into a large pen and brought randomly into the working facility. 
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Individuals were weighed on calibrated scales (Sooner Scale Inc., Oklahoma City, 

Oklahoma 73108) and sent to 1 of 2 chutes, allowing 2 animals to be milked 

simultaneously. Upon entering the chute, cows were injected intramuscularly with 1 ml 

oxytocin (Oxoject, Henry Schein Animal Health, Dublin, OH 43017) for milk let-down. 

Udders were washed with soapy water, dipped with an antibacterial solution, dried, and 

stripped before the claw was applied. Milking claws were removed when milk flow 

ceased and each quarter was stripped by hand to insure complete udder evacuation. After 

milking, teats were re-dipped with the antibacterial solution and the cow was returned to 

her calf. Hand stripped and machine milk were combined, weighed on a calibrated 

platform scale (Defender 5000, Ohaus Corp., Parsippany, New Jersey 07054), and a 

sample was taken in a vial containing 2-bromo-2-nitropropane-1,3-diol for preservation 

and shipped to the Heart of America Dairy Herd Improvement Association laboratory 

(Manhattan, KS 66506) for composition analysis. Milk energy content for each sample 

was calculated using Eq. 4 – 17 (NRC, 2000): 

𝐸 = (0.092 × %𝐹𝑎𝑡) + (0.049 × %𝑆𝑁𝐹) − 0.0569 

where E = energy content (Mcal/kg milk) and SNF = solids-non-fat. Milking time for 

each cow was recorded and yields were adjusted to 8 h and multiplied by a coefficient 

corrected for overnight separation time to determine 24 h milk production. 

Body Measurements  

Cows were weighed in the morning before feeding and body condition scored 

(BCS; 1 – 9 scale) and calves were weighed every 28 d. Scales were calibrated. 

Ultrasonography was used to measure back fat (BF, 12th rib), rib eye area (REA), rump 
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fat (RF), and intramuscular fat (IMF; marbling). Ultrasonography (Aloka 500, Hiachi 

Aloka Medical, Ltd., Wallingford, CT 06492) was performed by a certified technician 

(Ultrasound Technologies, Fletcher, OK 73541) at d 0 and 105. Images were interpreted 

with Beef Image Analysis Pro Plus software (Designer Genes Technologies Inc., 

Harrison, AR 72601). 

Cow BCS and BW were used to calculate total body energy (TBE) for each 

energy level group (Eq. 19-70, 1971, 19-78, 19-79, and 19-80; NRC, 2016). Retained 

energy (RE) was calculated as the change in TBE from trial initiation to end (Trubenbach 

et al., 2014). The maternal tissue maintenance level (MML) of energy intake is the point 

at which RE = 0. 

Digestibility 

An apparent digestibility study was completed for cows and calves from d 90 

through d 96 of the experiment using acid detergent insoluble ash (ADIA) as an internal 

marker (Cochran and Galyean, 1994; Kanani et al., 2014). Feed samples were collected 

from the feed bunks each morning d 90-95. Manure was collected by rectal palpation 

from cows (n ≥ 5) and calves (n ≥ 5) per pen in the morning and evening on d 91-96. Calf 

orts were collected from the bunks each morning before feeding on manure collection 

days. Feed samples were placed in paper sacks and dried in a forced air oven (50°C; 52 

h). Fecal samples were immediately frozen (-80°C). At a later date, fecal samples were 

placed in a freeze dryer (Virtis 213521, SP Scientific, Gardiner, NY 12525) until all 

moisture was extracted. Samples (feed and fecal) were then passed through a 1mm screen 

of a Wiley Mill (Thomas Scientific, Swedesboro, NJ 08085). Samples were pooled 
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within sample type with equal amounts of sample from each sample. Acid detergent fiber 

was determined utilizing an ANKOM 2000 Automated Fiber Analyzer (ANKOM 

Technology, Macedon, NY 14502) according to the manufacturer’s protocols. The ADF 

bags were then ashed (500°C; 8 h) to obtain ADIA. Retrospective energy supply to each 

pen was calculated using dry matter (DM) intake and apparent digestibility using 

equations from the NRC (2016) and Weiss et al (1992).  

Breeding 

Estrus was synchronized for timed artificial insemination using a co-synch 

program (Selk, 2008). A controlled internal drug-release (CIDR; Zoestis Inc., Florham 

Park, NJ) device containing progesterone was inserted into the vagina and Factrel 

(gonadorelin hydrochloride, Zoetis Inc., Florham Park, NJ) was injected IM. The CIDR 

was removed after 7 d and lutalyse (dinoprost tromethamine, Zoetis Inc., Florham Park, 

NJ) was administered IM. Artificial insemination (AI) was performed approximately 60 h 

later along with a second Factrel injection. Semen straws are stored in liquid nitrogen 

until use. At the time of breeding, semen straws are thawed for 45 seconds before being 

inserted into the AI syringe and covered with an aseptic sleeve. Rectal palpation was 

performed to locate the cervix and the syringe was inserted through the vagina and the 

cervix. The semen was deposited just beyond the cervix in the body of the uterus. Cows 

were monitored by Heatwatch Estrus Detection System (CowChips, LLC, Manalapan, NJ 

07726) for an additional 45-d period to determine if AI was successful. If a cow came 

into estrus during this period, she was artificially inseminated 12 h after standing. 

Statistical Analysis 
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For each animal, daily changes in BW and BCS were determined by regressing 

BW and BCS on d of the experiment. Dependent variables included measures of 

production, body composition, and energetic efficiency. Dependent variables were 

regressed on the linear and quadratic terms of energy intake in R software (R Core Team, 

2015). Data from one cow and calf in the 200 pen group were removed from the study 

due to bovine traumatic reticuloperitonitis of the dam. 

RESULTS AND DISCUSSION 

Cow Performance 

Cow and calf BW and cow BCS are presented as raw means in Table 4 for key 

dates throughout the experimental treatment period. Data are shown for June 18 because 

this date represents the maximum shrink (lowest BW) recorded for cows in each 

treatment after the limit-feeding strategy was initiated. Average cow BW within 

treatment group declined dramatically from June 10 to June 18. Some BW loss was 

expected due to the decreased gut fill associated with the limit-feeding strategy. Feed DM 

offered to cows differed by a maximum of about 7 kg per day between the 135 and 223 

pen groups. Therefore, differences in cow BW and calculated weight change could be 

partially due to differences in gut fill. 

Cow BW (P < 0.05) and BCS (P < 0.01) were positively and quadratically 

associated with increasing cow energy supply (Table 6). As expected, body composition 

components were not different (P > 0.5; Table 5) at the initiation of the experiment. 

Changes in REA/BW, IMF, BF and RF over the experimental period were sensitive to 

cow dietary energy intake (P < 0.05; Table 6). Interestingly, there was little change in RF 
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and no change in BF for cows in the lowest energy intake group (135 kcal NEm∙(kg 

BW0.75)-1), even though RE was negative (P < 0.02) for this group. A possible 

explanation for this phenomenon could be due to a loss in visceral organ mass or a loss in 

body protein, as REA per kg BW was reduced over the span of the study in the 2 lowest 

energy intake groups. 

The calculated MML from the RE equation (Table 6; Figure 1) where RE = 0 is 

157 kcal NEm∙(kg BW0.75)-1. This calculation utilizes the energy fed in the feed and 

translates to be 87.4% of the NRC (2016)–recommended energy requirement for this 

herd. Increased digestibility due to limit feeding (Trubenbach et al., 2014), a potential 

reduction in visceral organ mass (Evans et al., 2000), and restricted activity in a CE 

(CSIRO, 1990) are all likely contributing factors to the reduction in MML requirement. 

Comparing the June 10th and June 18th BW of the pen group receiving 159 kcal NEm∙(kg 

BW0.75)-1, maintenance energy requirement plus lactation is reduced by 11.1% in the later 

date due to organ shrink.  

Angus and Angus crossbred cows in this study produced more milk, on average, 

than beef cows from much of the literature (Bond and Wiltbank, 1970; Bartle et al., 1984; 

Jenkins et al., 1991; Marston et al., 1992; NRC, 2000; Johnson et al., 2003; Hudson et al., 

2010; Winterholler et al., 2012; Rodrigues et al., 2014). Milk yield was positively and 

linearly (P < 0.01) related to cow energy supply. These results are similar to those from 

Miller et al. (1999), where milk yield was associated with feed intake. Using the milk 

yield equation from Table 6 and solving for milk yield at 157 kcal NEm∙(kg BW0.75)-1 

resulted in milk yield of 8.4 kg∙d-1 at MML. 
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Few studies in the literature have analyzed for composition of beef milk. Those 

that have (Mondragon et al., 1983; Marston et al., 1992; NRC, 2000; Hudson et al., 2010; 

Winterholler et al., 2012; Rodrigues et al., 2014) report similar values to these findings. 

Milk fat percent increased (P < 0.05) in a linear fashion, whereas milk protein percent 

tended to increase (.05 < P < 0.1) linearly as cow energy intake increased. There was not 

a significant relationship (P > 0.1) between energy intake and percent milk lactose. The 

variance in milk constituents accounted for by energy intake was greatest for milk fat (R2 

= 0.703), followed by milk protein (R2 = 0.586) and the least sensitive milk component 

measured was lactose (R2 = 0.464). Linear coefficients for milk protein and lactose were 

not significant (P > 0.08). Other work with beef (Bartle et al., 1984) and dairy (Moe et 

al., 1965; Broderick, 2003) cows indicates that increased energy intake can result in a 

linear increase in cow BW gain and milk yield. Increased energy intake has also been 

shown to increase milk component density (protein, lactose, and SNF; Broderick, 2003).  

Cow DM and ADF digestibility decreased linearly (P < 0.03) as cow energy 

intake increased (Table 6; Figure 2; Figure 3). Similarly, Clark et al. (2007) reported a 

6.9 percentage unit improvement in DM digestibility when cows were limited to 80% of 

their estimated nutrient requirements. More recent data for non-lactating beef cows 

indicated a 7.5% increase in organic matter digestibility when feed intake of a high-

energy diet was restricted to 80% of maintenance requirements (Trubenbach et al., 2014).  

Observed cow energy intake was estimated by multiplying DMI by true 

digestibility (Weiss et al., 1992) and converting digestible DMI to NEm intake (NRC, 

2016). The relationship of observed energy intake to the original calculated feed energy 

intake is shown in Figure 4. Improved DM digestibility when cow energy intake was 



 

45 
 

restricted resulted in a curvilinear (P < 0.001) relationship between calculated and 

observed energy intake. Declining energy availability with incremental increases in feed 

intake is likely the major factor that explains the declining cow BW and cow BCS change 

response with increasing feed intake.  

The relationship of RE to grams of DMI per kilogram of BW.75 is shown in Figure 

5. The RE response to level of feed intake was curvilinear (P = .011, R2 = 0.988) and 

similar to the observed energy intake (calculated from feed intake and digestibility data) 

shown in Figure 4. Maternal tissue stasis was achieved at 96.9 g of feed intake per 

kilogram BW0.75
 or 157 kcal NEm∙(kg BW.75)-1. This value represents the feed intake 

required for the cows to neither gain nor lose body energy plus that required for milk 

production (MML).  

Furthermore, maintenance requirement for these cows (using feed energy values) 

was estimated to be 84.7 kcal NEm∙(kg BW.75)-1, compared to the 77 kcal NEm∙(kg 

BW.75)-1suggested by NRC (2016). This calculation was accomplished by subtracting the 

energy required for milk production at 157 kcal NEm∙(kg BW.75)-1 and then subtracting 

20% of the remaining feed energy assumed to be associated with increased maintenance 

energy requirement due to lactation (NRC, 2016). Using digestibility data (rather than the 

feed energy offered), observed maintenance energy requirement plus lactation is 108 kcal 

NEm∙(kg BW0.75)-1. This compares to the NRC (2016) –estimate of 92.4 kcal NEm∙(kg 

BW0.75)-1. For a 545 kg beef cow, the NRC (2016) estimates peak milk yield to be 9 kg∙d-

1, whereas cows on this study produced 13.6 kg (shrunk BW = 519 kg). Perhaps a portion 

of the increase in energy requirement at maintenance can be attributed to increased 
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maintenance associated with greater genetic capacity for milk production (Ferrell and 

Jenkins, 1985; Montano-Bermudez et al., 1990; Lalman et al., 2013). 

The NRC (2016) model assumes no change in energy use for milk as energy 

intake increases or declines. However, data from this experiment demonstrates that milk 

yield can be increased by at least 28.8% if energy intake is increased beyond maintenance 

requirements. Ferrell and Jenkins (1985), Montano-Bermudez et al. (1990), and Lalman 

et al. (2013) recognize a relationship between the genetic potential for milk production 

and year-round maintenance energy requirements of the cow.  

A primary concern in utilizing CE and limit-feeding strategies is long-term effects 

on the cows, especially reproductive performance. Obviously, we do not have adequate 

data in this relatively small, single-year experiment to evaluate the influence of energy 

intake on reproductive performance.  They are reported in this thesis for future use in the 

event of more years of replication and/or for meta-analysis. Pregnancy checks were 

performed on December 10, 2016. There was 1 open cow in each of the pen groups being 

offered 135, 159, and 200 Kcal NEm / kg BW.75 and 2 open cows in the 176 and 223 Kcal 

NEm / kg BW.75 pen groups. 

Steer Calf Performance 

Milk availability (P < 0.01) and milk fat (P < 0.05) percent increased and percent 

milk protein tended (P < 0.1) to increase as cow energy intake increased. Greater milk 

intakes that are more nutrient-dense should produce calves that gain significantly more 

BW. Calf BW gain had a strong tendency to increase (linear P = 0.058) as cow energy 

intake increased. We anticipated calves compensating for less milk energy (as cow feed 
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intake declined) by consuming more energy from creep feed.  However, the relationship 

of cow feed intake to calf creep energy consumed was not significant (quadratic P = 

0.111). As a result, total calf energy intake (milk plus creep energy) increased (P < 

0.001; Table 7) with increasing cow energy intake. Therefore, calf efficiency (P < 0.05) 

as well as cow-calf pair efficiency (P < 0.02) declined with increasing cow feed intake. It 

should be noted that these efficiency calculations reflect calf gain and do not consider 

BW or BCS gain or loss by the cows. 

Steer calf BF increased as cow energy intake increased (P < 0.05). Intramuscular 

fat and REA of calves tended (0.05 < P < 0.1) to increase as cow energy intake 

increased. Rump fat and REA/BW were not sensitive to cow energy intake level (P > 

0.1). The significant increase in BF, along with the tendency of BW and REA to increase 

indicates that calves whose dams consume more energy gain more weight in 

subcutaneous fat and put less growth into lean muscle. Lean muscle growth is desired in 

calves over fleshiness. 

Neither DM, nor ADF digestibility by calves were significantly influenced (P > 

0.12) by cow energy intake. A limitation of this data is that only creep feed intake was 

included in this model, whereas milk intake could influence the digestibility estimates. 

Milk nutrients in the feces are not accounted for by creep feed samples (intake), thus the 

apparent digestibility measurement is almost certainly lower than true digestibility. 

As expected, calf DMI increased over time within each treatment group (Table 8). 

Work reviewed by Arthington et al. (2008) found that creep intake and BW 

increased over time as calves had access to the creep. Mean feeding BW (calculated as 



 

48 
 

the average initial and final BW [June 10 and September 29]) and average DMI/d were 

used to calculate creep feed intake as a percent of BW for each treatment. Creep feed 

intakes were 1.83, 1.82, 1.78, 1.75, and 1.61 %BW (DM) for 135, 159, 176, 200, and 

223, pen groups respectively. Faulkner et al. (1994) observed an intake of 1.18 % BW for 

calves receiving ad libitum creep feed on fescue pasture for an 84-d period. Creep intakes 

from the current study were expected to be greater, because calves did not have access to 

growing forage. 

The nutrient-dense diet used in this experiment resulted in relatively great steer 

creep feed intake, rapid calf BW gain, and increased fat deposition in steers (Table 5).  

Consequently, earlier weaning may result in more efficient overall nutrient utilization and 

steer calves that perform better during later stages of production due to less fat 

accumulation. In a study comparing early and normal weaning, early weaned steers 

consumed less feed and had improved feed to gain efficiency in the feedlot and had 

increased IMF  and heavier carcass weights (Myers et al., 1999). 

SUMMARY AND CONCLUSIONS 

Compared to NRC (2016) maintenance energy requirement for these cows was 

estimated to be substantially greater (77 vs 84.7 kcal NEm∙(kg BW.75)-1. However, 

maternal tissue maintenance of lactating cows being limit-fed in a CE was calculated to 

be substantially lower (157 Kcal NEm∙(kg BW0.75)-1) or 87.4% of the NRC (2016) 

recommended requirement for these cows.  

It is clear that cow BW, energy reserves, milk yield, and milk composition are 

dynamic and sensitive to energy intake. Energy is partitioned to both maternal tissue as 
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well as milk production. Increasing cow energy intake beyond MML produces excess 

milk, excessive cow BCS, and fleshy calves. Furthermore, when calves had ad libitum 

access to the high-quality diet, additional nutrient intake from increased milk production 

was not efficiently utilized. More work is needed to determine the optimal amount of 

creep feed to offer calves and the best time to wean in a CE. 
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Table 1. Total mixed ration ingredient formulation and chemical composition 

(DM-basis) 

Commodity Amount (%) 

Corn gluten feed1 54.8 

Prairie hay 30.0 

Corn, cracked 12.7 

Limestone, 38% 2.5 

Composition component Amount 

DM, % 72.70 

NEm, Mcal/kg2 1.59 

Crude Protein, % 14.70 

ADF, % 27.30 

aNDF, % 52.90 

Ash, % 7.99 

TDN, %2 68.80 
1Sweet Bran (Cargill, Inc., Minneapolis, MN 55440). 
2Estimated using summative equation with 48-hr neutral detergent fiber in 

vitro digestibility (NRC, 2001) and equations from Weiss (2000). 
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Table 2. Amount of ration fed to each pen group and the corresponding percent of 

estimated NRC (2000) energy requirements per cow 

Kcal NEm∙ (kg BW0.75)-1∙d-1 Ration, kg (DM)∙d-1 Percent of NRC (2000) 

135 8.7 73.8 

159 10.8 88.5 

176 12.5 101.6 

200 14.1 113.2 

223 15.2 119.8 
1Feed energy offered to each group calculated using in vitro neutral detergent fiber and 

equations from (Weiss, 2000; NRC, 2001). 
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Table 3. Monthly 2015 and long-term temperature and precipitation averages 

 Temperature, °C Precipitation, cm1 

Month 2015 avg2 Long-term avg3 2015 total Long-term avg 

June 26.0 24.6 9.75 12.34 

July 27.6 27.5 9.57 7.75 

August 25.6 27.2 3.30 7.87 

September 24.3 22.3 6.60 9.55 
1Total 2015 and average long-term (1981-2010) monthly precipitation for Lake Carl 

Blackwell Mesonet Station. 
2Average 2015 monthly temperature for Lake Carl Blackwell Mesonet Station. 
3Average long-term (1981-2010) monthly temperature for Payne Co. OK (OK 

Climatological Survey). 
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Table 4. Raw means for cow and steer BW (kg) and BCS (1-9 scale) on key dates1 

 Pen group2 

 135 159 176 200 223 

Cow BW      

June 10 528.3 568.5 586.2 584.9 566.2 

June 18 479.8 512.8 545.9 539.9 518.1 

Sept. 29 484.0 535.0 573.9 580.6 572.1 

Oct. 6 476.9 532.5 571.1 571.5 553.3 

Cow BCS      

June 11 5.21 5.51 5.18 5.31 5.21 

Sept. 29 3.94 5.50 6.13 6.29 6.50 

Steer BW      

June 10 129.1 135.3 135.6 127.8 134.6 

Sept. 29 274.0 296.5 299.9 296.1 307.2 

Oct. 6 280.2 295.9 295.0 287.4 303.2 
1Key dates represent trial initiation (June 10), lowest recorded BW (shrunk BW; June 

18), weaning (September 29), and 1 wk post-weaning (October 6) 
2Pen group indicating daily energy provided expressed as 135, 159, 176, 200, and 223 

Kcal NEm·(kg BW0.75)-1·d-1 (Weiss, 2000; NRC, 2001). 
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Table 5. Mean body composition of cows and steers as determined by ultrasonography 

 

Pen 

Group1 

REA2,        

sq. cm 

REA∙         

(kg BW)-1 

IMF3, 

% 

Back 

Fat4, cm 

Rump Fat, 

cm 

Cows       

June 11 135 23.3 .044 3.38  .23 .23  

 159 25.1 .043 3.69  .27 .26 

 176 24.6 .043 3.53  .25 .20 

 200 25.2 .043 3.48 .24 .28 

 223 24.3 .044 3.52  .27 .28 

Sept. 

23 

135 

21.8 .044 3.71  .23 .19 

 159 26.5 .041 4.08  .30 .31 

 176 25.9 .045 4.29  .37 .40 

 200 28.0 .044 4.44  .52 .60 

 223 29.1 .048 4.37  .53 .64 

Steers       

Sept. 

23 

135 

24.7 .099 3.30  .48  .47  

 159 25.0 .093 3.39  .53  .59  

 176 24.8 .091 3.30  .50  .54  

 200 26.6 .099 3.48 .53  .61  

 223 26.0 .095 3.73  .57 .58  
1Pen group indicating daily energy provided expressed as 135, 159, 176, 200, and 223 

Kcal NEm·(kg BW0.75)-1·d-1 (Weiss, 2000; NRC, 2001). 
2REA = Rib eye area. 

3IMF = Intramuscular fat (marbling). 
4Back fat measured between the 12th and 13th ribs. 
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Table 6. Regression equations depicting the relationship of daily cow energy intake to 111-d performance responses.1 

Item2 Intercept Linear Coefficient 

Quadratic 

Coefficient Adj. R2 

P-value 

(linear)3  

P-value 

(quadratic) 

Cow BW ∆, kg -214.6  (62.75) 2.2031 (.33) -5.32e-3 (9.1e-4) .978 .04 .028 

Cow BCS ∆ -5.5  (.497) 0.0487 (5.7e-3) -9.78e-5 (1.57e-5) .996 .003 .025 

Milk Energy, Mcal4 -126.8  (67.9) 5.070  (.374) - .979 < .001 .417 

Milk yield, kg 36.179  (131.95) 5.73  (.728) - .938 .004 .658 

Milk fat, % 2.522  (.3489) 6.23e-3  (1.925e-3) - .703 .048 .491 

Milk protein, % 2.482  (.2438) 3.474e-3  (1.35e-3) - .586 .082 .869 

Milk lactose, % 4.723  (.088) 1.021e-3  (4.83e-4) - .464 .125 .502 

Cow REA/BW ∆, cm2/kg -0.015  (3.47e-3) 9.29e-5  (1.91e-5) - .85 .017 .342 

Cow IMF ∆, % -0.6205  (.3957) 7.16e-3  (2.18e-3) - .709 .047 .492 

Cow BF ∆, cm -0.473  (.121) 3.42e-3  (6.66e-4) - .864 .014 .835 

Cow RF ∆, cm -0.698  (.103) 4.92e-3  (5.7e-4) - .948 .003 .380 

Cow DM digestibility 108.87  (8.91) -0.1873  (.0492) - .772 .032 .331 

Cow ADF digestibility 94.62  (6.59) -0.151 (0.036) - .803 .025 .211 

Retained Energy, linear -840.5  (173.1) 5.35  (.955) - .883 .011 .096 

Retained Energy, quadratic -2583.4  (589) 25.37  (6.71) -0.0558 (.019) .968 .011 .096 
1Standard errors (SE) are shown in parentheses. 
2BW = body weight, BCS = body condition score (1-9 scale), ∆ = change (over the 111-d trial; ultrasound data was collected 105 d apart), REA = 

ribeye area, IMF = intramuscular fat, BF = back fat (between the 12th and 13th ribs), RF = rump fat DM = dry matter, ADF = acid detergent fiber. 
3P-value from the linear model. 
4Milk energy production over 111-d period (Mcal NEm), calculated using NRC (2000) Eq. 4-17: (0.092 * %Fat) + (0.049 * (%SNF) – 0.0569. 
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Table 7. Regression equations depicting the relationship of daily cow energy intake to various 111-d calf performance and efficiency 

responses.1 

Item2 Intercept Linear Coefficient 

Quadratic 

Coefficient Adj. R2 

P-value 

(linear)3  

P-value 

(quadratic) 

Calf BW gain, kg 125.96  (7.997) 0.1325  (4.4e-2) - .667 .058 .826 

Energy from creep, Mcal4 97.3  (247.3) 7.31  (2.82) -0.0215 (7.83e-3) .692 .372 .111 

Total calf energy, Mcal5 640.8  (131.5) 4.68  (.725) - .910 < .001 .241 

Calf REA , cm2 6 21.83  (1.51) 0.0201  (8.33e-3) - .546 .095 .947 

Calf REA/BW , cm2/kg6 0.152  (.058) -6.3e-4  (6.63e-4)  1.72e-6 (1.84e-6) -.338 .439 .448 

Calf IMF , %6 2.626  (.271) 4.54e-3  (1.5e-3) - .672 .056 .182 

Calf BF , cm6 0.362  (.049e-2) 8.89e-4  (2.72e-4) - .708 .047 .879 

Calf RF , cm6 0.342 (.114) 1.197e-3  (6.3e-4) - .394 .154 .369 

Calf efficiency7 0.243  (1.77e-2) -1.36e-3  (2.02e-4)  3.1e-6 (5.62e-7) .987 .016 .031 

Pair efficiency, linear8 0.095  (7.93e-3) -2.2e-4  (4.38e-5) - .858 .015 .065 

Pair efficiency, quadratic8 0.178  (2.25e-2) -1.17e-3  (2.56e-4)  2.64e-6 (7.12e-7) .973 .015 .065 

Calf DM digestibility 124.74  (34.7) -0.659  (.395)  1.97e-3 (1.098e-3) .485 .311 .215 

Calf ADF digestibility 99.45  (19.84) -0.455  (.226)  1.42e-3 (6.28e-4) .775 .124 .152 
1Standard errors (SE) are shown in parentheses. 
2BW = body weight, BCS = body condition score (1-9 scale), ∆ = change (over the 111-d trial; ultrasound data was collected 105 d apart), 

REA = ribeye area, IMF = intramuscular fat, BF = back fat (between the 12th and 13th ribs), RF = rump fat DM = dry matter, ADF = acid 

detergent fiber. 
3P-value from the linear model. 
4Energy consumed from creep (Mcal NEm) summed over 111 d. 
5Total calf energy = the sum of milk and creep energy consumed by calves (Mcal NEm). 
6Calf body composition measurements were taken via ultrasound on September 23, 2015. 
7Calf efficiency calculated as 111-d calf gain divided by the total energy consumed by the calf for the 111-d period. 
8Pair efficiency calculated as 111-d calf gain divided by 111-d creep and cow energy intake. 
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Table 8. Mean steer-calf dry matter intakes (DMI) and average daily gain 

 Group1  

 135 159 176 200 223 

DMI (kg) by period:      

d 1-20 27.9 30.0 30.7 24.4 27.9 

d 21-48 88.7 92.6 88.4 86.7 80.4 

d 49-76 127.4 134.9 134.2 119.3 123.5 

d 77-111 188.1 201.3 199.1 201.7 187.0 

Total DMI, kg 432.1 458.8 452.4 432.1 418.9 

DMI(kg)∙calf-1∙d-1 3.89 4.13 4.07 3.89 3.77 

ADG2, kg 1.29 1.43 1.45 1.46 1.53 
1Pen group indicating daily energy provided expressed as 135, 159, 176, 200, and 223 

Kcal NEm·(kg BW0.75)-1·d-1 (Weiss, 2000; NRC, 2001). 
2ADG = average daily gain, calculated as the total gain (kg) divided by 111 d. 
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Figure 1. The relationship of retained energy (RE; Mcal NEm) and cow energy intake 

(kcal NEm∙(kg BW0.75)-1). 
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Figure 2. The relationship of calf energy intake from creep feed, milk, and the sum of 

both (Mcal NEm) to cow energy intake (kcal NEm∙(kg BW0.75)-1). 
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Figure 3. The effect of dry matter intake on dry matter digestibility (DMD). Dry matter 

digestibility was calculated as apparent DMD minus 7 to represent true DMD (NRC, 

2001). Apparent DMD was determined using acid detergent insoluble ash (Kanani et al., 

2014). 
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Figure 4. The relationship of observed cow energy intake to calculated feed energy 

intake. Feed energy offered = dry matter intake (DMI) * calculated NEm (calculated from 

Weiss et al., 2000 and NRC, 2001). Observed energy = DMI * observed NEm (calculated 

from observed true DMD determined using acid detergent insoluble ash as an internal 

marker (Kanani et al., 2014). 
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Figure 5. The relationship of retained energy (RE; calculated from the NRC, 2016 and 

Trubenbach et al., 2014) and dry matter intake (DMI).  
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APPENDICES 
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Appendix 1. Milk yield and composition least square means for cows that calved (on average) May 

15, 2015 (± 9.6 d). 

  Component 

Pen Group1 Date2 

Yield, 

kg3 

Fat, 

% 

Protein, 

% 

Lactose, 

% 

SNF, 

%4 

MUN, 

mg/dl5 

E, 

Mcal/kg6 

135 May 13 14.67 5.81 2.89 4.74 8.55 16.98 0.925 

 June 30 8.53 3.17 2.79 4.94 8.68 11.24 0.676 

 July 28 7.48 3.13 2.86 4.77 8.53 14.03 0.665 

 August 25 6.78 3.61 3.16 4.87 8.88 12.06 0.728 

 September 22 4.91 3.42 3.24 4.79 8.95 13.47 0.713 

 SE .79 .25 .08 .06 .09 .76 .03 

159 May 13 13.32 5.74 2.85 4.90 8.68 18.86 0.925 

 June 30 10.61 3.16 2.84 4.94 8.72 11.10 0.677 

 July 28 10.14 3.40 2.81 4.88 8.59 12.27 0.694 

 August 25 8.64 3.65 2.92 4.94 8.71 13.11 0.724 

 September 22 7.32 3.43 3.06 4.91 8.89 13.22 0.712 

 SE .79 .25 .08 .06 .09 .76 .03 

176 May 13 14.89 5.85 2.90 4.91 8.75 16.82 0.939 

 June 30 10.68 3.81 2.94 4.92 8.79 10.87 0.743 

 July 28 10.00 3.52 2.98 4.86 8.75 11.02 0.714 

 August 25 9.30 3.65 3.21 4.90 8.95 11.57 0.774 

 September 22 7.28 3.43 3.41 4.84 9.19 12.45 0.769 

 SE .79 .25 .08 .06 .09 .76 .03 

200 May 13 15.30 5.11 2.91 4.79 8.64 16.00 0.862 

 June 30 10.91 3.53 3.06 5.02 9.03 9.12 0.727 

 July 28 12.26 3.36 3.06 4.91 8.89 10.37 0.705 

 August 25 10.47 3.78 3.25 5.01 9.13 11.00 0.757 

 September 22 7.98 4.38 3.56 4.90 9.46 13.15 0.832 

 SE .91 .27 .09 .06 0.1 .81 .03 

223 May 13 16.08 5.42 2.99 4.84 8.78 15.99 0.899 

 June 30 12.60 3.52 3.05 4.97 8.96 8.92 0.723 

 July 28 12.44 4.19 3.11 4.89 8.92 11.48 0.787 

 August 25 11.90 3.73 3.26 4.94 9.04 10.77 0.748 

 September 22 10.49 3.96 3.51 4.91 9.36 12.76 0.786 

 SE .79 .25 .08 .06 .09 .76 .03 
1Pen group indicating daily energy provided expressed as 135, 159, 176, 200, and 223 Kcal 

NEm·(kg BW0.75)-1·d-1 (Weiss, 2000; NRC, 2001). 
2Standard errors (SE) were calculated for dates within the trial period and do not include May 13 

dates. 
3 Milk yield was corrected for the time of separation from calf to obtain a 24-h estimate. 

4SNF = solids-non-fat percent. 
5MUN = milk urea nitrogen (mg / dl). 
6E = milk energy (Mcal NEm / kg), calculated using NRC (2000) Eq. 4-17: (0.092 * %Fat) + (0.049 

* (%SNF) – 0.0569. 
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Appendix 2. Calf feed intake and total feed intake per unit of calf body weight gain by 

period. 

 Group1 

 135 159 176 200 223 

Calf feed/calf gain:      

d 1-20 1.10 0.96 0.93 1.01 0.82 

d 21-48 2.21 2.34 2.37 2.02 1.96 

d 49-76 2.72 2.86 2.57 2.33 2.52 

d 77-111 5.93 4.93 5.12 4.61 4.02 

Total feed/calf gain2:      

d 1-20 8.84 8.14 8.35 12.70 9.91 

d 21-48 8.19 9.90 11.73 11.17 12.29 

d 49-76 7.71 9.16 9.31 10.03 11.14 

d 77-111 15.34 14.08 16.43 15.90 15.49 
1Pen group indicating daily energy provided expressed as 135, 159, 176, 200, and 223 

Kcal NEm·(kg BW0.75)-1·d-1 (Weiss, 2000; NRC, 2001). 
2Total feed = calf creep feed and cow feed. 
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