
CREATING SCALABLE NEURAL NETWORKS WITH MAXIMAL

FPGA RESOURCES

By
EVAN WILLIAMS

Bachelor of Science in Electrical Engineering
Oklahoma State University

Stillwater, OK, USA
2013

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

MAY, 2015

COPYRIGHT c⃝

By

EVAN WILLIAMS

MAY, 2015

CREATING SCALABLE NEURAL NETWORKS WITH MAXIMAL

FPGA RESOURCES

Thesis Approved:

Dr. Martin T. Hagan

Committee Chair and Advisor

Dr. Carl D. Latino

Committe Member

Dr. James E. Stine

Committe Member

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Hagan for allowing me to work with

him. I greatly value his guidance, patience, and understanding that he has shown. I

appreciate the time he has spent helping me through the challenges that this work

brings.

I want to thank Dr. Latino and Dr. Stine for being on the committee and

encouraging me to pursue a masters degree. Their guidance in my undergraduate

studies were very influential in my decisions to continue my education. I greatly value

their input and discussion because it has been so important to my understanding.

I also deeply respect Dr. Hagan, Dr. Latino, and Dr. Stine for their commitment

to helping their students learn. Attending courses and working closely with them,

it’s obvious how much they care.

Finally, I would like to thank all of my friends, colleagues, and family for support-

ing me through my education with many wonderful memories here.

iv
Acknowledgments reflect the views of the author and are not endorsed by

committee members or Oklahoma State University.

Name: EVAN WILLIAMS

Date of Degree: MAY, 2015

Title of Study: CREATING SCALABLE NEURAL NETWORKS WITH MAXI-
MAL FPGA RESOURCES

Major Field: ELECTRICAL ENGINEERING

Abstract: Hardware implementations of Artificial Neural Network (ANN) architec-
tures can take advantage of parallelism in the ANN algorithm. Using automated
procedures, arbitrary amounts of Field Gate Programmable Array (FPGA) resources
can be allocated to calculate arbitrary ANN algorithms. This document analyzes
trade-offs between the speed and area required as an arbitrary ANN algorithm is
computed over arbitrary hardware sizes. Comparing the calculated number cycles
and area as the number of inputs to a neuron and the number of neurons in a layer
vary, it is found that there exists an optimal number of inputs and neurons for a given
ANN algorithm.

v

TABLE OF CONTENTS

Chapter Page

1 Introduction 1

2 Literature Review 3

3 Single Input Hardware Neuron 6

3.1 Computation of a Neural Network . 6

3.2 Overview of Hardware Implementation of Single-Input Hardware Neuron 11

3.3 Hardware Considerations . 14

3.3.1 Hardware Descriptive Language Considerations 15

3.3.2 FPGA Selection . 15

3.3.3 Number Representation . 17

3.3.4 Xilinx Intellectual Property Cores 18

3.4 Implementation in VHDL . 19

3.4.1 The Single-Input Hardware Neuron Schematic 19

3.4.2 Adding the Weight ROM to the Neuron 24

3.4.3 Adding the Bias ROM to the Neuron 26

3.4.4 The Network Module . 27

3.5 Clock Cycle Requirements . 30

3.6 Slice Requirements . 31

3.7 Simulation Testing and Verification in Vivado 32

3.7.1 Testing the Output Values of the Network 33

3.7.2 Cycle Analysis . 37

vi

3.7.3 Slice Analysis . 38

3.8 Single-Input Hardware Neuron Summary 40

4 Multiple Single-Input Hardware Neurons 41

4.1 Overview of Hardware Implementation of Multiple Single-Input Hard-

ware Neurons . 41

4.2 Implementation of Multiple Single-Input Hardware Neurons in VHDL 43

4.2.1 Weight ROM Changes . 44

4.2.2 Bias ROM Changes . 46

4.2.3 Changes in the Network Block 49

4.3 Clock Cycle Requirements . 53

4.4 Slice Requirements . 56

4.5 Simulation Testing and Verification in Vivado 57

4.5.1 Verification Comparing Output Values 57

4.5.2 Cycles and Gate Analysis after Synthesis 57

4.6 Multiple Single-Input Hardware Neuron Summary 62

5 Multi-Input Hardware Neuron 63

5.1 Overview of Hardware Implementation of Multi-Input Hardware Neuron 63

5.2 Implementation in VHDL . 66

5.2.1 Modification to the Neuron 66

5.2.2 Adding the Weight ROMs . 69

5.2.3 Adding the Bias ROM . 70

5.2.4 Modification to the Network Block 71

5.3 Clock Cycle Requirements . 74

5.4 Slice Requirements . 76

5.5 Simulation Testing and Verification in Vivado 78

5.5.1 Verification Comparing Output Values 79

vii

5.5.2 Cycles and Slice Analysis After Synthesis 80

5.6 Multi-Input Hardware Neuron Overview 83

6 Multiple Multi-Input Hardware Neurons 85

6.1 Overview of Hardware Implementation of Multiple Multi-Input Hard-

ware Neurons . 85

6.2 Implementation in VHDL . 88

6.2.1 Changes in the Neuron . 88

6.2.2 Changes When Adding the Weight ROMs 91

6.2.3 Changes When Adding the Bias ROMs 92

6.2.4 Changes to the Network Schematic 94

6.3 Timing Analysis . 100

6.4 Slice Requirement Analysis . 101

6.5 Simulation Testing and Verification in Vivado 103

6.6 Summary for the Multiple Multi-Input Hardware Neurons 109

7 Summary 111

7.1 Accomplishments . 111

7.2 Conclusions . 113

7.3 Future Work . 114

BIBLIOGRAPHY 116

A 16-Bit Floating and Fixed Slice Comparison 119

B Master and Slave handshaking schemes. 121

C Tables of Required Cycles 123

D Tables of Measured and Calculated Slice Requirements 126

viii

E Detailed Schematics 127

ix

LIST OF TABLES

Table Page

3.1 Artix R⃝-7 FPGAs[19] . 16

3.2 Neuron Schematic Signals . 22

3.3 Weight ROM Schematic Signals . 25

3.4 Bias ROM Schematic Signals . 26

3.5 Network Schematic Signals . 29

3.6 Cycle Variables . 31

3.7 Slice Variables . 32

3.8 Structure ROM . 34

3.9 Input/Output RAM . 34

3.10 Bias ROM . 34

3.11 Weight ROM . 35

3.12 Calculation of the First Neuron in Matlab 36

3.13 Calculation of the First Neuron in Behavioral Simulation 36

3.14 Comparison of Layer Outputs Between Matlab and Simulation 37

3.15 Cycle Variables . 38

3.16 Cycles Required for Each Layer . 38

3.17 Slice Requirements . 39

4.1 Weight ROM Schematic Signals . 46

4.2 Bias ROM Schematic Signals . 48

4.3 Network Schematic Signals . 51

4.4 Cycle Variables . 55

x

4.5 Slice Variables . 56

4.6 Comparison of Layer Outputs During Simulation at Different HWN Sizes 58

4.7 Modified Values of Cycle Variables 59

4.8 Expected and Measured Cycles for varying Number of Hardware Neurons 60

4.9 Slice LUT Requirements by Hardware Neuron Count 61

5.1 Neuron Schematic Signals . 68

5.2 Weight ROM New or Important Schematic Signals 70

5.3 Bias ROM New or Important Schematic Signals 73

5.4 Network Schematic New or Important Signals 75

5.5 Cycle Variables . 78

5.6 Slice Variables . 79

5.7 Comparison of Layer Outputs During Simulation at Different MLT

Values . 80

5.8 Modified Values of Cycle Variables 81

5.9 Expected and Measured Cycles for varying Number of Hardware Neurons 82

5.10 Slice LUT Requirements by Number of Inputs Count 84

6.1 Neuron Schematic Signals . 90

6.2 Weight ROM New or Important Schematic Signals 92

6.3 Bias ROM New or Important Schematic Signals 95

6.4 Network Schematic New or Important Signals 98

6.5 Cycle Variables . 101

6.6 Slice Variables . 102

6.7 Final Layer Output Across Changing HWN and MLT 103

6.8 Values of Cycle Variables . 104

6.9 Measured and Calculated Cycle Requirements Across HWN and MLT 105

6.10 Measured LUT Slice Requirements Across HWN and MLT 107

xi

6.11 Calculated LUT Slice Requirements Across HWN and MLT 107

A.1 16-bit Fixed-Point and Floating-Point Core Sizes 119

A.2 16-bit Fixed and Floating Core Sizes with DSP Slices 120

C.1 Calculated Cycles and Speedup for 1 input and 23 Software-Neurons

Layer . 124

C.2 Calculated Cycles and Speedup for 23 inputs and 1 Software-Neuron

Layer . 125

D.1 Slice Register Requirements by Hardware Neuron Count 126

xii

LIST OF FIGURES

Figure Page

3.1 Single-Input Software Neuron . 7

3.2 Tansig Graph . 8

3.3 Multi-Input Software Neuron . 9

3.4 Multi-Input Single-Layer Neural Network 10

3.5 Multi-Input Multiple-Layer Neural Network 11

3.6 General Single-Input Hardware Neuron Diagram 13

3.7 Neuron Schematic . 21

3.8 Neuron Control Block Flow Diagram 24

3.9 The w hardware neuron Schematic 24

3.10 The w mem Flow Diagram . 25

3.11 The bw hardware neuron Schematic 26

3.12 The b mem Flow Diagram . 27

3.13 Network Schematic . 28

3.14 The Network Control Flow Diagram 28

3.15 The A Loader Store Flow Diagram 30

4.1 General Multiple Single-Input Hardware Neurons 42

4.2 Adding the Weight ROM Schematic 45

4.3 The w mem Flow Diagram . 47

4.4 Adding the Bias ROM Schematic . 47

4.5 The b mem Flow Diagram . 49

4.6 Neural Network Multiple Single-Input Hardware Neurons Schematic . 50

xiii

4.7 Flow Chart for Network Control Multiple Hardware Neuron 52

4.8 The b loader Flow Diagram . 53

4.9 The w loader Flow Diagram . 54

4.10 The a loader store Flow Diagram . 54

4.11 Speedup as Hardware Neurons Increase with 1 Input and 23 Neurons 60

5.1 The General Multi-Input Hardware Neuron Diagram 65

5.2 Adder Tree Structure . 66

5.3 The Multi-Input Neuron Schematic 67

5.4 Adding the Weight ROMs Schematic 69

5.5 The w mlt mem Flow Diagram . 71

5.6 Adding the Bias ROM Schematic . 72

5.7 The b mem Flow Diagram . 72

5.8 Neural Network Multi-Input Single-Hardware Neuron Schematic . . . 74

5.9 The network control Flow Diagram 76

5.10 The w loader Flow Diagram . 77

5.11 The a loader store Flow Diagram . 77

5.12 Speedup as Hardware Neurons Increase with 23 Inputs and 1 Neuron 83

6.1 The General Multiple Multi-Input Hardware Neurons Diagram 87

6.2 The Final Hardware Neuron Schematic 89

6.3 The Final Hardware Neuron Flow Diagram 89

6.4 The Final Weight ROMs Schematic 91

6.5 The Final w mlt mem Flow Diagram 93

6.6 The Final Bias ROMs Schematic . 94

6.7 The Final Bias ROMs Schematic . 96

6.8 The Final Scalable Hardware Neural Network 97

6.9 The Final a loader store Flow Diagram 97

xiv

6.10 The Final b loader Flow Diagram . 99

6.11 The Final w loader Flow Diagram . 99

6.12 Speedup for 23 Input 23 Software Neuron Network 106

6.13 Speedup as MLT and HWN Increase for 23 Input 23 Software Neuron

Network . 108

6.14 Achievable Speedup for 23 Input 23 Software Neuron Network 109

6.15 Speedup for 23 Input 23 Software Neuron Network - Fixed Point . . . 110

B.1 Master and Slave RTS and CTS Signaling 121

E.1 Schematic of Single Neuron Network 128

E.2 Detailed Schematic of Single Neuron Network 129

E.3 Schematic of Neural Network Multi-Input Single-Hardware Neuron . 130

E.4 Schematic of Final Scalable Hardware Neural Network 131

E.5 Schematic of Final Hardware Neuron Schematic 132

xv

CHAPTER 1

Introduction

The goal of this thesis is to develop the most reconfigurable and efficient implemen-

tation of a neural network on a field programmable gate array (FPGA). The result

should allow multilayer networks of arbitrary architecture to be implemented on FP-

GAs with arbitrary resources. A reconfigurable neural network is useful because it

allows a designer to easily make and test trade-offs between area, delay, and power

consumption of different sizes of neural network. Hardware is known for its ability to

process data and signals in parallel. Parallel processing typically decreases the delay

for an output value but comes at a cost of increased logic gates and therefore power

consumption. By providing simple variables to control the parallelization, and equa-

tions that characterize the cycles and slices required, the optimal amount of hardware

needed to implement a given neural network for a given FPGA chip can be calculated.

A fully reconfigurable design should use modularized blocks to test different number

representation and bit length for changes in size and accuracy. By making careful

design decisions, the size and efficiency of the design can be maximized for a given

artificial neural network (ANN) algorithm.

The main contribution of this thesis is a fully reconfigurable FPGA implemen-

tation of arbitrary multilayer neural networks. This was developed by the following

stages: the single-input hardware neuron, the multiple single-input hardware neurons,

the multi-input hardware neuron, and the multiple multi-input hardware neurons.

The construction of each of these stages is described structurally and behaviorally.

Each case is important, because comparing each of the stages allows for verification

1

of each of the designs and shows the development process along the way to a fully

functional and fully reconfigurable network. Equations are also developed in each

chapter to make predictions about the speed of computation and hardware space

requirements.

The thesis begins with some background of the project, and then the development

process leads up from a simple case to the fully scalable and reconfigurable network.

In Chapter 2, the problem is presented, and is discussed in the context of previous de-

velopments. Next, in Chapter 3, the single-input hardware neuron design is analyzed.

In Chapter 4, the multiple single-input hardware neurons case, a hardware layer is

created by copying multiple hardware neurons, and the concept of hardware layer

iterations is introduced. Then, in Chapter 5, the neuron is modified to accept mul-

tiple inputs. This introduces an adder tree to the neuron and the concept of input

iterations. Finally, in Chapter 6, the ideas are combined into the multiple multi-

input hardware neurons, where both input iterations and hardware layer iterations

are combined to form the final equation for the cycle requirements. These equations

are coupled with the required slice equations and the limitations of an FPGA chip to

see what networks would be most efficient for certain cases. Chapter 7 summarizes

the results and provides recommendations for future work.

2

CHAPTER 2

Literature Review

The objective of this research can be stated as follows. Consider that there are a

limited amount of FPGA resources available. Design an automated procedure to

make maximum use of these resources in such a way that arbitrary neural networks

can be simulated most efficiently. This has not been done before, but there have been

FPGA implementations of neural networks that have been proposed previously. This

chapter reviews some of that earlier work.

Artificial neural networks (ANN) are known for their ability to be implemented

in parallel hardware structures. Three types of parallelism intrinsic to an ANN have

been described as spacial parallelism, algorithmic parallelism, and layer parallelism

[1]. Spacial parallelism is equivalent to increasing the number of neurons in a layer,

while algorithmic parallelism is equivalent to increasing the number of inputs to a

hardware neuron. Layer parallelism duplicates the hardware layers, but is not truly

parallel in computation, because the layers only allow for pipelining. The work by

Zhu [1] focused on the general concept of computing the ANN algorithm in parallel,

but did not consider arbitrarily sized networks.

Using a single hardware neuron, and no parallelism, it has been shown that ar-

bitrary multi-layer perceptron (MLP) networks can be calculated by using minimal

hardware resources [2]. This design considered the fully parallel structure and found

that, when using floating-point, the design would consume significant resources for an

increase in speed. Because the hardware consumed such a small area, the design was

considered quite useful. Other strategies have implemented ANN algorithms with

3

some degree of scalability.

Static sizes of software networks have been considered in other works, and they

have shown that networks can be computed more quickly by exploiting spacial par-

allelism over a single hardware layer [3], [4], [5], [6]. Using a single hardware layer is

referred to as muxing the inputs to the layer. However, these designs used a single

processing element, a neuron that accepts only one input.

Another design has shown that networks can be computed more quickly by ex-

ploiting algorithmic parallelism [7]. However, this design did not consider adding

multiple neurons to a hardware layer and used layer muxing over a single neuron to

run the calculations.

There exist many other ANN hardware designs which have been implemented, but

these do not account for arbitrary networks, or use only a single hardware description

[8], [9], [9], [10]. These designs found that using fixed-point representation achieves

the maximum accuracy with the smallest hardware requirements.

There exists an implementation of ANN hardware which requires less space in

floating-point representation than fixed-point [11], but most papers have found that

fixed-point consumes significantly less space and is more accurate for general imple-

mentations of an ANN [7], [12].

Using an optimized efficient hardware structure for floating-point dot-product cal-

culations [13] could make floating-point more viable for scalable networks. However,

more efficient fixed-point dot-product calculations that use a single carry propagate

adder (CPA), instead of an adder tree, have been suggested [7]. So, using fixed-point

may still be better. Other optimizations, like efficient pipelined matrix multiplica-

tion, can calculate various sizes of matrix-matrix multiplications [14], [15]. However,

because the calculation for an MLP ANN is a vector-matrix multiplication, the struc-

tures for matrix-matrix multiplication are not very useful.

This thesis analyzes the trade-offs between algorithmic parallelism and spacial

4

parallelism when implementing arbitrary software networks. Changing the number of

inputs to a neuron and changing the number of hardware neurons in a layer provides

an increase in speed while consuming more hardware resources. Using memory to

store the arbitrary network, any amount of hardware will be able to compute any

ANN algorithm at varying speeds. These trade-offs are analyzed by developing equa-

tions to predict the cycles and slices required by the hardware, then comparing the

measurements to the predictions. Instead of using the most efficient floating-point

or fixed-point computation methods, a generic multiplier and adder tree structure

can allow either fixed-point or floating-point modules to be configured by the user.

However, optimizations could be made to the current design to increase speed and

decrease area when increasing the number of inputs to a layer.

The research described in this thesis is different than previous work described

above, in that the proposed automated procedures can make maximum use of an

arbitrary amount of FPGA resources. In addition, arbitrary multilayer neural network

architectures can be simulated on the resulting hardware.

5

CHAPTER 3

Single Input Hardware Neuron

In developing a scalable neural network, of the simplest hardware to analyze is the

single-input hardware neuron (SIHN) case. This case allows for easier testing and

verification during the beginning of development because the block diagram can be

more easily represented, and the algorithms are more easily compared to the speed

and size of the network. This limited hardware must calculate any size of network.

The neurons in the network to be calculated are called software neurons because they

are represented in memory. A hardware neuron is a combination of logic gates used

to calculate a single neuron’s output. A more clear distinction between software and

hardware neurons is covered in a later section of this chapter. Understanding a SIHN

in the context of a software neural network is the foundation for describing a scalable

hardware network, the goal of the document. In order to understand the context of

a SIHN, the software neural network should be described first.

3.1 Computation of a Neural Network

Of the multiple types of neural networks that could be considered, the primary net-

work of discussion will be the feed-forward multi-layer network. This type of network

contains multiple neurons stacked in layers that cascade to a final output or set of

outputs. To better understand this structure, we should first consider the simplest

component of the network, the software neuron.

The neuron shown in Figure 3.1 describes the most basic element of a neural

network. The purpose of the neuron is to respond to stimuli in a similar way that

6

a = f (wp + b)

General Neuron

an

Inputs

AAA
AAA
AAA

b

p w

1
AAA
AAA
AAA

Σ f

Figure 3.1: Single-Input Software Neuron

nature responds to inputs. Using numbers to represent the activation state of the

neuron, the internal sensitivities of the neuron can be configured by setting weights

and biases. This neuron takes an input p and multiplies it with a weight w. This

product is then summed with a bias b. The transfer function represented by f is

used to ”activate” the neuron by leveling the output to a range of values, in this

case ±1, similar to how chemicals in nature can increase in concentration in order to

trigger the activation of a subsequent neuron. The transfer function that will be used

in this document is the tansig transfer function found in Equation 3.1. The neuron

has an input transition region, the region of input values where the output values

noticeably change, between approximately ±4. A graph of the tansig function can

be found in Figure 3.2. The importance of this smooth, i.e. differentiable, transfer

function function is that it can be used to train the network through backpropagation

techniques[16, p. 11-6]. However, backpropagation is not the focus of this document,

and so only the forward calculation of the network is analyzed.

a =
en − e−n

en + e−n
(3.1)

Equation 3.1 uses the n variable found in Figure 3.1 and results in the value a,

creating the output of one neuron. The behavior of the transfer function is the key

component to creating a behavior similar to how some neurons in nature respond

7

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

n

ta
ns

ig
(n

)

Figure 3.2: Tansig Graph

to stimuli. This is part of the reason why this algorithm is called a neuron. The

switching behavior of the transfer function can be seen in Figure 3.2.

From Figure 3.3, in order to accommodate R inputs to a neuron, a vector of inputs

and weights, length R, can be used. This multi-input software neuron calculates a

dot-product by multiplying each of the inputs with a corresponding weight. This

dot-product is the fundamental function of a hardware neuron, so it is important

to understand how a dot-product is calculated. Equation 3.2 explicitly shows the

calculation of the n intermediate values. In matrix representation, the size of the

matrix is described as the number of rows by the number of columns, represented as

row× column. When referencing a value within a matrix, it is common to use lower

case, and non-bold letters. This is why the values of w used in Figure 3.3 are not

bold until they are referenced as a matrix in the function below the figure.

n = w1,1p1 + w1,2p2 + ...+ w1,RpR + b (3.2)

After the dot-product is calculated, only one bias added, no matter the number

of inputs, which results in the final value of n passed through the transfer function

resulting in the final neuron output a.

Shown in the equation of Figure 3.3, the p input is now bold in order to represent

the value as a vector, length R, and the W variable is capitalized and made bold

8

in order to show that the weight is now a matrix of values, 1 row by R columns.

Notice how the vectors are multiplied in Figure 3.3 as Wp. This is important for the

notation that will be used in describing the hardware further in the document. A key

concept here is that W has only 1 row for 1 neuron. So when multiplying Wp, the

multiplication of matrices 1×R and R× 1 will result in a 1× 1, single scalar output

value.

Multiple-Input Neuron

p1

an

Inputs

b

p2
p3

pR
w1, R

w1, 1

1

AAA
AAA
AAA

Σ

a = f (Wp + b)

AAA
AAA
AAA

f

Figure 3.3: Multi-Input Software Neuron

Multiple multi-input neurons can be stacked together in order to create a layer

of neurons that provide multiple-layer outputs. Figure 3.4 shows how a layer is

constructed and the equation to calculate the layer. Notice that the bias b has now

changed from a single value to a vector of length S, the number of neurons in the

layer.

There are R inputs to the network, and S neurons per layer. All inputs are fed

into each neuron, meaning that, multiplying W, a matrix now of size S×R, and p, a

vector of size R× 1, will result in a vector of the size of S × 1, the number of neuron

outputs in the layer. The bias variable b is also size of S×1, allowing the addition of

each individual bias to the resulting product. Finally, the transfer function is applied

to each resulting value, and the final vector a is also S × 1. Using matrix notation

allows for a more elegant description of the network as shown at the bottom of Figure

3.4. These outputs will need to be individually stored in order to be used by another

9

Layer

a = f (Wp+b)

f

Inputs

1

1

1

p1

a 2n 2
p2

p3

pR

w
S , R

w 1,1

a S n S

a 1n 1

b 2

b 1

b S

Σ

Σ

Σ

f

f

Figure 3.4: Multi-Input Single-Layer Neural Network

layer in a multi-layer network. An example of a multi-layer network can be found in

Figure 3.5.

Figure 3.5 represents a general network calculation that should be able to be

implemented by any amount of hardware. Notice the notation in Figure 3.5 is similar

to the notation found in Figure 3.4. However, there are additional superscripts for

each output, transfer function, bias vector, and weight matrix, which corresponds

to the layer number. The initial inputs are calculated, then cascaded through the

network resulting in the final value or values. Layering outputs is crucial for a neural

network to be able to represent any arbitrary function, so the hardware must be able

to support the cascade of layers. Notice that each of the layers can have their own

independent number of inputs, or neurons, along with different weights, biases, and

transfer functions.

10

First Layer

a1 = f 1 (W1p + b1) a2 = f 2 (W2a1 + b2) a3 = f 3 (W3a2 + b3)

AAA
AAA

f 1

AAA
AAA

f 2

AAA
AAA

f 3

Inputs

a3
2n3

2

w 3
S

3
, S

2

w 3
1,1

b3
2

b3
1

b3
S

3

a3
S

3n3
S

3

a3
1n3

1

1

1

1

1

1

1

1

1

1

p1

a1
2n1

2
p2

p3

pR

w 1
S

1
, R

w 1
1,1

a1
S

1n1
S

1

a1
1n1

1

a2
2n2

2

w 2
S

2
, S

1

w 2
1,1

b1
2

b1
1

b1
S

1

b2
2

b2
1

b2
S

2

a2
S

2n2
S

2

a2
1n2

1

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

f 1

AAA
AAA

f 1
AAA
AAA
AAA

f 2

AAA
AAA

f 2

AAA
AAA

f 3

AAA
AAA

f 3

a3 = f 3 (W3f 2 (W2f 1 (W1p + b1) + b2) + b3)

Third LayerSecond Layer

Figure 3.5: Multi-Input Multiple-Layer Neural Network

3.2 Overview of Hardware Implementation of Single-Input Hardware

Neuron

The calculation, shown at the bottom of Figure 3.5, can be done with a minimal

amount of hardware, as described in a previous paper [2], but can be sped up by

using more hardware, exploiting parallelism in the function. The increase in speed

obtained through parallelism has been briefly described before [2], however, this docu-

ment intends to explore the topic in greater detail by implementing different amounts

of hardware to perform this calculation. The trade-off is that more hardware uses

more resources on the chip and therefore requires more energy and increases design

complexity. Although Figure 3.5 shows only three layers, the hardware should be able

to calculate any number of inputs and any number of layers no matter what hardware

resources are available.

A clear distinction needs to be made between the hardware and software neurons.

The network described in the previous section is a software neural network, sometimes

11

referred to as the artificial neural network (ANN) algorithm [17, p. 351]. This software

network is described in random access memory (RAM) and read only memory (ROM)

and should be able to be computed for any size of network. The hardware neuron

consists of digital logic circuits, which will be used to implement the software network.

The capabilities of the hardware to process in parallel a neuron or layer is what we

refer to as a hardware neuron or hardware layer. The cases that are considered

will look at multiple-hardware-inputs, and multiple-hardware-neurons. These will be

covered in greater detail later.

Multiple-hardware-layers could be created, but because outputs of one layer must

be calculated before they can be used as inputs to the next layer, the operation

is serial. This serial operation can only be solved efficiently in hardware when a

limitation is put on the number of outputs of a network. If the maximum number of

neurons for a network were known, then multiple hardware layers could be beneficial.

Parallelism could be exploited when saving each output value of each layer, but in

order for the hardware to calculate any size of arbitrary network, the values must be

saved to memory. So, the speedup would be proportional to the cycles required to

store a single value and the number of gates required for an entire hardware layer.

Because the number of cycles to store a value is minimal, and limitations would need

to be placed on the number of software neurons for a layer, the multiple-hardware-

layer case was not considered. Therefore, all hardware networks created will be have

a single layer.

The amount of hardware can be smaller than the software network desired to

be represented, so the hardware must use RAM and ROM to represent the larger

software neural network. Then, the limited hardware can iterate over ROMs and

RAMs in order to compute each input, each neuron, and each layer. For this section

we consider the general calculation using only one SIHN. The diagram in Figure 3.6,

similar to a previous paper [2], shows the general idea for creating a SIHN.

12

R S1 S2 S3 S4 ... Delim p1 p2 ... pR a1
1... aS1

1 a1
2 ... aSi

iSi

Structure ROM Input/Output RAM

w11
1 ...w12

1 wSiSi-1
i

b1
1 ...b2

1 bSi
i

Weight ROM

Bias ROM

Single-Input Neuron

2-1 Mux

q

R S1

n a

Select

In_0

In_1 Out

Figure 3.6: General Single-Input Hardware Neuron Diagram

The neural network algorithm can be computed in hardware using memory mod-

ules, a multiplier, an adder, a lookup table for the transfer function, and a combination

of simple state machines. The memory modules are needed to store the inputs, out-

puts, and values representing the network architecture. The values of the software

network required for the calculation are shown in the RAM and ROM blocks of Figure

3.6.

The Structure ROM contains the number of inputs for each layer. These are the

values that will need to be loaded each time a new layer begins. The last layer is

signaled when a delimiter is reached. The variables R and S come from the notation

in Figure 3.5. Notice that because the inputs for layer i + 1 are the outputs of the

layer i, the Structure ROM can be implemented as a shift register.

For the most basic neuron hardware, a single multiplication module can be used

along with a single adder in order to sum a series of inputs to calculate n, as in

Equation 3.2. Each of the values can be loaded serially from the Weight ROM and

Bias ROM. The 2-1 mux will load the bias on the first iteration in the loop, then

will load the accumulated output n during the dot-product calculation. Values from

13

the weight matrix are loaded for each corresponding input, while the bias values are

updated only after one hardware neuron completes. After iterating over one set of

inputs, the n value can then be passed through a transfer function to calculate a

single neuron’s output. This neuron’s output value, aiSi , where i is the layer number,

can be stored in the Input/Output RAM to be accessed later for each subsequent

layer’s inputs. The Input/Output RAM contains the inputs to the network, and then

the outputs for each neuron. The inputs are loaded one at a time until the number of

inputs in the layer is reached, then a check is made to see if the number of neurons is

reached. If not, then reload the inputs again for the next neuron. Otherwise, begin

the next layer. The previous layer’s outputs are then loaded as the new inputs.

3.3 Hardware Considerations

There are multiple ways to describe hardware structures, and understanding these

methods can aid in understanding the trade-offs in hardware space and cycle require-

ments. Some of the basic decisions are whether a Hardware Descriptive Language

(HDL) should be used or a purely schematic approach. A typical approach is to use

an HDL, creating a combination of schematics (implemented as structural modules

alongside behavioral modules), in order to provide understandable abstractions while

still providing the flexibility of an HDL. The structural modules are implemented by

instantiating the behavioral modules shown in the schematic and then wiring them

together with no behavioral code. The behavioral modules are typically shown with

state machines and flow charts and are described in code with procedural blocks that

allow a compiler to generate gates for the logic described. A field programmable gate

array (FPGA) can be used to test and use the hardware described in the HDL. Be-

ing able to synthesize the hardware would imply that the device could also be turned

into an application specific integrated circuit (ASIC), which typically are run at faster

speeds within a smaller footprint than an FPGA.

14

3.3.1 Hardware Descriptive Language Considerations

Multiple HDLs exist, and there are multiple trade-offs between the languages. Choos-

ing a language is important because the language changes how the behavioral simu-

lation software simulates the timing between modules. Popular languages considered

are Verilog, System Verilog, or VHSIC (Very High Speed Integrated Circuit) Hard-

ware Descriptive Language (VHDL). The main benefit for using VHDL is it’s strong

typing scheme[18], but this trade-off is that the code becomes longer and takes more

time to read through and understand. A strong typing scheme means that the com-

piler will make less assumptions about what the code is attempting to generate, which

can lead to less errors later on in the project. Another benefit is that the timing and

cycles simulation in VHDL is deterministic, meaning that the timing found for given

code is well defined for all computers running the same simulation code, so results

will always be the same. This is not necessarily true for other languages. The longer

VHDL code can be less intuitive to a new user, meaning that modifying the code will

take more time [18]. The main benefit of using Verilog would be decreased design

time and simplicity of code [18], but the behavioral simulation is not guaranteed to

be deterministic for every version of Verilog. Because of the existing framework, and

the strong typing scheme, VHDL was used in order to build on previous work and

avoid errors in the long run.

3.3.2 FPGA Selection

In order to test the network in hardware, an FPGA can be used. Two of the most

popular manufacturers of FPGA’s are Xilinx and Altera. The chips they produce use

different hardware and utilization schemes, but both could implement the hardware

described in this document. Understanding the components on the selected FPGA

can help clarify the size requirements and limitations of the hardware that will be de-

scribed. The manufacturers provide software packages in order to simulate hardware

15

signals and test hardware on their chips. So choosing an FPGA also implies choos-

ing the simulation software you will be using. In order to support newer chips, the

project was moved from Xilinx’s Interactive System Environment (ISE) into Xilinx’s

Vivado. Vivado has essentially the same functionality as ISE, but with a different

graphical user interface (GUI). Even though the project was not implemented with

Altera software, it should be possible to export the majority of the code into Altera’s

editor to test on Altera boards. The Xilinx IP cores would need to be replaced, but

the connections between the cores would be synthasizable afterward. The code should

also be able to be backwards compatible with older boards and chips too because of

the old language standard.

The FPGA that was used was the Artix R⃝-7 100t, part number XC7A100T. A

student learning board, the Nexys 4, comes with the XC7A100T. This board, created

by Digilent, allows for quickly implementing and testing hardware described in HDLs.

Some of the statistics of the Artix R⃝-7 100t can be found in the Table 3.1. The part

number for the chip is XC7A100T. Notice that the number of DSP slices is 240. DSP

slices can be used to create many multipliers so that more neurons can fit on the

board.

Table 3.1: Artix R⃝-7 FPGAs[19]

Part Number XC7A100T XC7A200T

Logic Cells 101,440 215,360

Slices 15,850 33,650

CLB Flip-Flops 126,800 269,200

Max Distributed RAM(Kb) 1,188 2,888

Block RAM/FIFO (36 Kb each) 135 365

Total Block RAM (Kb) 4,860 13,140

DSP Slices 240 740

16

A logic cell contains a Look-up Table (LUT), a flip-flop, and wires to adjacent cells.

A 4 input LUT produces a single bit output, meaning that the LUT can be configured

for gates like an and, or, xor, etc. A flip-flop is a basic memory component used to

save a bit. In this architecture, there are 8 flip-flops and 4 LUTs per slice. Block

RAM is special to Xilinx FPGAs and is located in strips across the chip. Distributed

RAM can be single cycle access memory, making it more convenient to use. In large

sizes of block RAMs, an exceptionally long delay path can be formed when one section

of block RAM is connected to another set of block RAM across the chip. However,

because the block RAM is dedicated memory, unlike a slice, it can be used in order

to free slices for more neurons. The highest range chip in the Artix R⃝-7 family, the

XC7A200T, can more than double the capacity of the current chip. This is significant

in case the hardware limitations of the chip are limiting the desired network.

3.3.3 Number Representation

Bit length and representation of numbers is critical to the size, speed, and capability

of hardware. However, the goal is to describe and analyze a scalable network, so

these trade-offs could be analyzed in greater detail in future work. Two basic repre-

sentations that could be considered are fixed-point and floating-point. Accuracy is

lost when a value cannot be represented in the number of bits available. This means

increasing the bit length of values being multiplied could resolve accuracy issues. The

hardware described should be able to easily accommodate different bit lengths and

bit representations. Appendix A contains an analysis between the areas of floating-

point and fixed-point multiplication and addition Intellectual Property (IP) cores.

Although fixed-point is significantly smaller, floating-point is used in order to avoid

overflow [17, p. 56] during the calculation of the dot-product.

Testing later in the chapters uses the floating-point values and represents them in

hex format. It may be useful to describe how to calculate the base 10 value from the

17

floating-point hex representation. The floating-point values use 5 bits of exponent,

with 11 bits of mantissa, for a total of 16 bits. The signed bit is included in the

exponent, so the calculation for converting the binary value is given in Equation 3.3.

The equation uses a signed bit to make the number negative and an exponent with

an offset to allow for a wider range of value representation. While fixing the exponent

at a range of 1 to 2, the equivalent accuracy for signed fixed-point would be equal to

the number of bits in the mantissa plus 2 bits (one for the constant 1 and another for

the sign), meaning that an equivalent fixed-point representation for this range would

use 11 plus 2 bits. This means that for an equivalent fixed-point bit length of 16 bits,

the accuracy could be increased by 2 raised to the power of the number of additional

bits, or 23. The result is 8 times more accurate over the range of 1 to 2.

−1bit15 × 2bits14:11−7 × (1 +
11∑
i=1

bit11−i × 2−i) (3.3)

3.3.4 Xilinx Intellectual Property Cores

IP cores are provided by Xilinx and Altera in order to speed up development times.

The design described in this thesis uses memory cores and floating-point cores in

order to store information and do the computation. Using cores is not always a good

idea, because they require regeneration every time a parameter describing the core

changes. Regeneration rebuilds the core as a new project, and then synthesizes it for

hardware. For a scalable neural network that has changing memory sizes, it can be

cumbersome to regenerate cores for each new memory size that needs to be tested.

As mentioned earlier, Xilinx provides block RAMs in order to more efficiently

store information on the chip. However, long delay paths can be created using the

block rams. Block RAMs can also have multiple cycle access times. This means that

using distributed RAM is typically faster and easier to analyze. In order to fill up

the entire FPGA with neurons, both the distributed RAM and the block RAM would

18

need to be used.

One of the options when creating the floating-point cores is the number of pipeline

cycles. These can determine the number of delays per cycle to calculate the final out-

put from a multiplier or adder. The simulation tests are behavioral simulations,

meaning that they do not actually consider real timing values. However, the behav-

ioral simulation is still useful to ensure that logic is correct for simulation, and to see

the delay chain between signals that require a clock. Because the floating-point com-

ponents do not require a clock, results could be modified to appear to have infinite

speed when doing a calculation. However, this would be incorrect because longer and

more complicated chains of logic require more time. By using the pipelined versions

of the cores, the reduction in cycles from exploited parallelism can be seen in later

chapters.

3.4 Implementation in VHDL

To describe the network, the neuron can be abstracted so that it is in its own block,

and then a network control block can be coupled with ROMs and RAMs to feed in

and read out data. Using this structure will be useful for when the neuron needs to

be copied multiple times for the multiple neuron case. Using the abstractions means

that there will be multiple schematics, each moving from the most simple level in the

neuron, outward to the entire network structure.

3.4.1 The Single-Input Hardware Neuron Schematic

The fundamental block for the network is the SIHN. This can be described struc-

turally with schematic shown in Figure 3.7. There are five elementary blocks, the

neuron ctrl block, the multiplier block, the b adder block, the b reg block, and the

transfer function block, which can be combined to form the SIHN block called the

neuron. This is significant because with only a single input, weight, and bias at a time

19

into the hardware, the algorithm for a multi-input software neuron can be calculated.

The primary connections into the neuron are the clock, enable pin, the weight, the

input value, the bias, and a request to send signal (RTS). The output of the neuron

is a clear to send signal(CTS), neuron done signal, and the output a. When the

neuron ctrl block sees that new inputs are available, it enables the multiplier block.

The multiplier block in Figure 3.7 takes in the weight and the input value, 16-bit

floating-point, and then outputs a 16-bit value. The ready value of the multiplier

is attached to the enable pin of the adder. So, when the output of the multiplier

is done, it triggers the b adder to add. The b adder module, when enabled by the

ready signal of the multiplier, will accept and add the multiplied values and then the

initialized bias. After the first iteration, it will take in the intermediate dot-product

value from the b reg module. When it is complete, the b register latches the value,

and then signals the neuron control block that it is ready for the next set of inputs. If

the b reg value was latched on the last input for the layer, then the transfer function

is enabled, converting the n value into the a output. This is the calculation shown in

Equation 3.2.

20

Figure 3.7: Neuron Schematic

21

Table 3.2: Neuron Schematic Signals

Signal Description

enable Enables only the neuron ctrl block.

clk Clocks signals for timing.

p ct Number of software inputs to process.

rts External module sets high to request to change inputs.

cts Neuron control sets high to allow change of inputs.

neuron state Allows for easy test bench access to states.

w 16 The weight value.

p 16 The input value.

a 16 The output value.

init b The bias value.

neuron done Set high when output is ready.

b reg done Set high when b reg is finished saving.

b reg init Set high when input bias needs loaded into b reg.

mult done Set high when multipliers are complete.

b adder done Set high when the adder is complete.

n rdy Set high when n is computed.

n out The value of n.

b back Value used to accumulate values, initialized as bias.

22

Because the neuron is controlled by the control block using state machines, a flow

chart, seen in Figure 3.8, can describe the states the neuron traverses. The control

states begin by initializing the neuron, this state is entered every time the neuron is

disabled. Upon enabling, the neuron loads a single input and weight multiple times,

until it reaches the number of inputs for the current layer. A counter keeps track of

the number of inputs and compares the value to the p ct wire. The b reg is set with

the input bias when loading the first set of inputs. The module will latch only when

the output values are appropriate in order to prevent an infinite loop of additions

occurring. It is critical that only each partial value is added only once in order for

the calculation to be correct. The control block then waits on the first partial dot

product to be completed. This is signaled after the b register latches the output value.

When all input values to the dot product are calculated, then the transfer function

block signals the b register to turn on the transfer function. The transfer function in

Figure 3.7, will take in the final value from the b register, and then use rounding logic

with a lookup table in order to find the corresponding transfer function value. After

the value is ready in the transfer function block, the neuron will signal to modules

above it that its value is ready. When the transfer function is done, then the control

block signals to upper modules outside of the neuron that the value is ready. The

state that is used as an output is intended for debugging purposes and was not used

for logic in upper modules. Each control block has a state output for this debugging.

Notice that in the schematic of the neuron, Figure 3.8, there is an RTS input, and

a CTS output. These handshaking pins are used by each module with their states in

order to ensure that each value is latched at the correct time. Because each module

will use this convention, it is useful to describe the process in general. A description

of typical handshaking schemes can be found in Appendix B. The modules that send

the data to the neuron have RTS signals, because they send data into the neuron,

23

Figure 3.8: Neuron Control Block Flow Diagram

while the neuron uses a CTS signal in order to tell the modules declared above not

to change values.

3.4.2 Adding the Weight ROM to the Neuron

An abstraction of the neuron is useful to enable easy debugging and understanding

of the project. Before adding all of the ROMs and RAMs to the project, the neuron

can be combined with only the weight ROM to ensure that the weights are loaded

into the neuron correctly. In order to differentiate this block from the neuron block,

it can be named the w hardware neuron.

Figure 3.9: The w hardware neuron Schematic

24

Table 3.3: Weight ROM Schematic Signals

Signal Description

enable Enables both the w mem and neuron.

clk The clock for the modules.

p b rdy Set high when input and bias are ready.

neuron rts Set high when inputs, bias, and weights are ready.

neuron cts Set high when neuron allows values to change.

w 16 The weight value.

w mem state out The state of the w mem for the test bench.

In Figure 3.9, two modules can be seen. The w mem contains a state machine for

loading the values into the neuron and the Weight ROM from Figure 3.6. Although

this may seem to add unnecessary complexity at this development stage, it will make

expanding the number of Weight ROMs easier for later in the project. The only

connections between the w mem block and the Neuron are the RTS signal and the

actual weight value at this time.

Figure 3.10: The w mem Flow Diagram

The states of the w mem module, shown in Figure 3.12, are very simple for the

single input, single neuron case. It simply loads a new value for each time the neuron

requests a new value using the CTS signal. The p b rdy signal is anded with an

internal w mem rdy signal in order to generate the RTS signal for the neuron.

25

3.4.3 Adding the Bias ROM to the Neuron

Combining the w hardware neuron with a bias ROM uses another abstraction to

isolate modules into smaller components. In Figure 3.11, the bias ROM is connected

to the w hardware neuron with the b rdy signal, the bias input, and the hardware

neuron done signal.

Figure 3.11: The bw hardware neuron Schematic

Table 3.4: Bias ROM Schematic Signals

Signal Description

enable Enables b mem and w hardware neuron.

clk Clock for the modules.

p rdy Set high when the input value is ready.

b rdy Set high when the bias value is ready.

b 16 The bias value.

hwn done Set high when the output of the neuron is ready.

The two modules in Figure 3.11 are the w hardware neuron and the b mem mod-

ule. The b mem module contains the bias ROM from Figure 3.6 and control logic, in

26

order to determine when the next value should be loaded. Again, these states seem

simple now but will simplify the design process when adding more parallel hardware.

Figure 3.12: The b mem Flow Diagram

The b mem module will load new values for each time that the neuron is complete.

This is because there is one new bias value for each software neuron.

3.4.4 The Network Module

The network block contains the a loader store block, which contains the Input/Output

RAM from Figure 3.6, the network control block, which contains the Structure ROM,

and the bw hardware neuron, which contains the Bias ROM, Weight ROM and SIHN.

A more detailed diagram is located in Appendix E, Figure E.1. The neuron waits

for data from the bias, weight, and input memory, and begins calculating the first

dot-product. The neuron handshakes a CTS signal to let the memory modules know

when the input, weight, and bias values can be changed. After the neuron is done, the

network control block updates it’s state based on the remaining number of software

neurons in the layer. If the number of software neurons in the layer is complete, then

the next layer information is loaded from the structure ROM. If the structure ROM

contains a delimiter then the network calculation will be complete. This is shown in

the Figure 3.14 flow diagram.

From Figure 3.13, the a loader store RTS and CTS are connected from net-

work control and to the a loader store block. The a ct and p ct values are connected

into the a loader store block from the network control block. This means that the

27

Figure 3.13: Network Schematic

bw hardware neuron block does not see the p ct from the network control, but rather

from the a loader store module. This separation is to ensure that a good p ct value

is held for the neuron during computation, allowing the network control block to

change at any time. The CTS and RTS signals between the a loader store and the

bw hardware neuron block handshake the layer’s input values from the Input/Output

RAM located within the a loader store module.

Figure 3.14: The Network Control Flow Diagram

The Network Control Block traverses the states in the flow diagram in Figure

3.14. Initialization resets the entire network. The first S value, the layer size, needs

to be loaded because the Structure ROM is used as a shift register. Shifting S into

R, the input vector size, causes two values to be loaded into the a ct and p ct wires.

This occurs each time one layer has been completed and the next layer is started.

28

Table 3.5: Network Schematic Signals

Signal Description

enable Enables only the network control.

clk Clock for the modules.

network done Set high when software network has been calculated.

loaders rts Set high when a ct and p ct requested to change.

a loader cts Set high when a ct and p ct safe to change.

a ct Software neurons for layer.

p ct Software inputs for layer.

network ctrl state out State of network control for test bench.

hwn enable Enables the calculation of the hardware layer.

p 16 The input value.

p rts Set high when new input value requested to change.

p cts Set high when new input value safe to change.

a loader state out The state of a loader store for test bench.

p ct neuron The number of software inputs for the layer.

The a ct wire stands for output count, while the p ct wire stands for input count.

Therefore the R, total number of inputs for a layer, is stored into p ct, while the S,

total number of neurons for a layer, is stored into a ct. A comparison is made to see

if the new S value is the delimiter. If it is not the delimiter, then the block waits for

the a loader store block to signal that it is ready for new values. If it is ready, then

the old S is shifted into R, and the new S is loaded and compared to the delimiter.

The a loader store block uses a state machine to control when it loads and stores

inputs. In order to pass inputs into the neuron, it handshakes RTS and CTS pins

in order to load the number of inputs, R, and the number of outputs, S. These

are stored in the variables p ct, and a ct, respectively. The values are loaded from

29

Figure 3.15: The A Loader Store Flow Diagram

the network control block. Then the a loader store block begins loading inputs to the

neuron. The a loader store block handshakes a different set of RTS and CTS pins from

the neuron to know when to update to a new input. If it is finished loading inputs,

then it will store outputs, and then check if more neurons need to be calculated. If

more software neurons exist, then the a loader store block will begin loading the same

layer inputs again. If it is finished storing the software neuron outputs, then it will

signal to the network control block to begin the next layer.

3.5 Clock Cycle Requirements

An equation to predict the time for the computation of a software network can help to

predict speed up when increasing the amount of parallelism in the hardware. Although

the multipliers and adders could be implemented combinatorially without any delay,

the maximum delay was used for each module in order to decrease the delay paths

within the multipliers and adders. Because behavioral simulation was used, the timing

of the combinational logic would not be visible. The variables in Table 3.15 explain the

values that are needed to characterize the cycles required for this hardware structure.

Equation 3.4 explains the equations for calculating the number of cycles per layer,

where cycles1 is the number of cycles required to compute the output of the first

layer, and the cyclesn is the number of cycles required to compute the output of the

30

nth layer.

Table 3.6: Cycle Variables

Variable Description

Rn Number of inputs to the layer n

Sn Number of neurons of the layer n

CA Cycles required for one adder to complete

CM Cycles required for one multiplier to complete

CLNC Cycles of the neuron control logic per input

CTF Cycles required for the transfer function

CSA Cycles required for storing a single output

CLS Cycles required to load a new structure

Cycles1 = R1S1(CM + CA + CLNC) + S1(CTF + CSA) + CLS (3.4)

Cyclesn = Sn−1Sn(CM + CA + CLNC) + Sn(CTF + CSA) + CLS (3.5)

Equation 3.4 says that for each layer, the number of cycles for that layer can be

computed by by summing each stage of the neuron. The first stage is inside the

neuron. Each input will need to be multiplied and then added with the bias or the

partial dot product. This is done for as many times as there are outputs, so it is

multiplied by the number of neurons. The transfer function is only used once per

output, and the same for the number of times the values are stored. Finally, the next

layer structure needs to be loaded.

3.6 Slice Requirements

The determination of the number of gates for the SIHN case is simple, because the

sizes of the hardware do not change. This means that the number of slices per module

31

are constant, because we are keeping the number of neurons, and the number of inputs

per neuron, constant. Table 3.7 shows the descriptions of the variables, and Equation

3.6 shows the slices being added together.

Table 3.7: Slice Variables

Variable Description

SM Slices per multiplier

SA Slices per adder

STF Slices per transfer function

SW Slices per weight ROM

SWL Slices per weight logic

SNC Slices per neuron control block

SB Slices per bias ROM

SBL Slices per bias logic

SPA Slices per a loader store block

SNET Slices per network control block

Slices = SM + SA + STF + SW + SWL + SNC + SB + SBL + SPA + SNET (3.6)

From the equation, simply add the size of each block in order to find the total size.

This will change when the hardware neurons, or the number of inputs, are increased.

Another issue will be the wires connecting the modules, which will cause discrepancies

in the measurements later on.

3.7 Simulation Testing and Verification in Vivado

In order to verify that the device works as expected, a test bench can be used to

simulate inputs into the network. Because the network works primarily off of ROMs,

32

the ROMs can be generated with preset values using a coefficient file. The last letters

of a coefficient file, the codec, is coe. These files provide Vivado with the values that

the ROMs should be set to upon hardware creation. Because the software network

is described using the coe files, the network will only need to be enabled using the

enable pin for the network to start functioning and outputting values. Matlab can be

used to create these coe files and can be used to run calculations on the values stored

in the ROMs to compare the results with the Vivado simulation.

3.7.1 Testing the Output Values of the Network

Using the rand function of Matlab, and then a conversion function, random values

can be generated for a coe file. The rand function attempts to generate numbers

with an equal probability between 0 and 1. This can be mapped to the range -1 to 1

by multiplying by 2 and then subtracting 1. Because Matlab uses double precision,

these will need to be converted down to 16-bit floating precision in order to compare

the values that the network outputs.

Multiple test cases have been used to verify the network, but only one test case

will be used in this document. The memory cores that are generated use the same

structure as specified in Figure 3.6. The test case covered will be a software network

consisting of 4 input values, 10 hidden neurons, and then 1 output neuron. This is

specified by changing the values in the Structure ROM. A table of the values in the

Structure ROM is given in Table 3.8. Notice that the values in the structure ROM are

offset by -1. So an S2 value of 0 means that there is one neuron in layer 2. Also, take

note of the delimiter in the 4th memory address. The memory was generated in order

to test a maximum case of 32 inputs or neurons, which is why the delimiter is 5 bits,

because the maximum value represented in 5 bits is 31. These are fixed-point integer

values, as opposed to the floating-point values in the Weight, Bias and Input/Output

ROMs and RAM. Different cases will be used in later sections to show the increase

33

in speed of the network. However, this case will be used to verify that the output

values are the same or similar to predicted Matlab results.

Table 3.8: Structure ROM

R1 S1 S2 Delim

03 09 00 1F

Using Equation 3.7, the total number of weights can be calculated for the network.

This means that the total number of weights for this network will be 50. The weights

for this case can be found in Table 3.11. Because there will be one bias value per

neuron, there will be 11 bias values. The bias values can be found in Table 3.10. And

finally, the Inputs/Output RAM will need to have the first four values initialized,

found in Table 3.9, because that is the number of inputs to the network, as specified

by the structure ROM.

NumberofWeights = R1S1 + S1S2 (3.7)

Table 3.9: Input/Output RAM

4800 4400 4000 3C00

Table 3.10: Bias ROM

3668 358B AEAC B54A AC73 AD5C 3352 ADFC 373A 3697 3738

Values that should be expected from the network can be calculated using Matlab.

Comparing results from more accurate 64 bit precision calculations and an accurate

34

Table 3.11: Weight ROM

A831 B191 B6D0 AD15 B55C 3677 B7F0 B5A4 2459 356D ...

3787 B283 B205 B2EA 3622 302A 21E7 3470 B412 37B8 ...

3575 2B76 3652 B73A 3153 37BA 31B5 AE75 B4E6 300B ...

B6BE B6EB 355B B47E 3590 2D73 2C35 365F B68B B519 ...

B432 B6E5 B7F6 B42C 3433 3573 A583 B22C B035 B608

transfer function can show the error of the network. Because the hardware is in 16-bit

floating-point precision, instead of 64 bit floating-point, some discrepancies between

ideal and hardware calculations can be expected. The hardware transfer function uses

a lookup table and therefore has non-continuous values, unlike the nearly continuous

values Matlab can generate. Calculating the first output, the partial sum value, n,

will be initialized to the bias. Each input will be multiplied by a corresponding weight,

and added to n. Because this is a single-input neuron, n will need to accumulate the

sum over multiple cycles. Finally, the n value will be passed through the transfer

function lookup table. Table 3.12 shows the value of n at each step of the process

and the final resulting value when calculated in Matlab.

Comparing the values calculated in Matlab from Table 3.12, they can be compared

to the hardware values found in Table 3.13. Notice that because Matlab converts the

values to 64 bit precision, there is a discrepancy, which is underlined, between the

partial dot-product calculation in the column under Input 3. The n value’s mantissa

is incremented by 1 compared to what the Matlab calculation expects. This carries

through to the final value. But because of the error in the transfer function lookup

table, the final value is the same. The error in the transfer function table could result

in final values being much more different than the expected results in Matlab, causing

a large error to propagate through the network.

35

Table 3.12: Calculation of the First Neuron in Matlab

Varible Init Input 1 Input 2 Input 3 Input 4 Output

b 3668

Inputs p 4800 4400 4000 3C00

w A831 B191 B6D0 AD15

wp B431 B991 BAD0 AD15

Outputs n 3668 306E B875 BDA2 BDF3

a BB38

Table 3.13: Calculation of the First Neuron in Behavioral Simulation

Varible Init Input 1 Input 2 Input 3 Input 4 Output

b 3668

Inputs p 4800 4400 4000 3C00

w A831 B191 B6D0 AD15

wp B431 B991 BAD0 AD15

Outputs n 3668 306E B876 BDA3 BDF4

a BB38

After comparing the values for the first neuron, each a output can be calculated

in Matlab in order to compare the results to the resulting values from the behavioral

simulation. Table 3.14 shows the expected Matlab results side by side with the results

of the behavioral simulation. Differences between the calculations are underlined.

Over longer calculations, and larger numbers of layers, and because of the non-

linear nature of neural networks, this error could cause problems in some systems.

Another approach could be used, like using fixed-point, and also increasing the res-

olution of the transfer function lookup table in order to decrease the error through

the network. Notice that the output on the second layer is no longer only one bit of

36

Table 3.14: Comparison of Layer Outputs Between Matlab and Simulation

Variable a11 a12 a13 a14 a15 a16

aMatlab BB38 BBBE 3BC6 BB93 3A6B 3BF9

aSimulation BB38 BBBF 3BC6 BB93 3A6A 3BF9

Variable a17 a18 a19 a110 a21

aMatlab 3BFD BBFA 3BF0 3B11 3A76

aSimulation 3BFD BBFA 3BF0 3B12 3A7B

error, but rather four. With such a small bit range, this error may be significant. The

accuracy of the system should be analyzed in greater detail in order to support larger

networks, even more for recurrent networks, as the error on a recurrent network could

cause the network to become unbounded, forever incrementing values until satura-

tion. However, this is not the focus of this document as the primary goal is to design

a scalable network.

3.7.2 Cycle Analysis

Other than the values the network outputs, other important characteristics are the

size of the hardware and the time it takes to compute outputs. Using values from

the previous sections, we can analyze if the equations are effective at describing the

network.

Plugging in the values found in Table 3.15 into Equation 3.4, the number of

cycles required for each layer and the total number of cycles are found in Table

3.16. This matches what measured by the simulation. Notice that the logic required

for controlling the neuron is significant compared to the number of cycles that the

floating-point adder and multiplier consume.

Each set of cycles was measured through simulation. In order to simplify the

measurement and calculation, some of the cycles between modules were lumped

37

Table 3.15: Cycle Variables

Variable Value Description

R1 4 Number of inputs to the layer 1

S1 10 Number of neurons of the layer 1

S2 1 Number of neurons of the layer 2

CA 8 Cycles required for one adder to complete

CM 6 Cycles required for one multiplier to complete

CLNC 9 Cycles of the neuron control logic per input

CTF 3 Cycles required for the transfer function

CSA 5 Cycles required for storing a single output

CLS 1 Cycles required to load a new structure

Table 3.16: Cycles Required for Each Layer

Layer Calculated Cycles Measured Cycles

Layer 1 1001 1001

Layer 2 239 239

Total 1240 1240

into the logic cycles. For example, the CLNC variable includes delays between the

a loader module, and the w mem module. This is because the neuron handshakes

backwards when to load new values, but the modules take a cycle to register the

value, and then need to load values and handshake to the neuron that it is ready.

3.7.3 Slice Analysis

For the single neuron case, the size of the structure is the sum of each module. They

are simply added together and put in Table 3.17. The changes in these values will

be critical in later sections when the size of the hardware is changing. It will be

38

interesting to see the non-linear aspects of the hardware in those cases. However,

in this case, only one size of hardware is considered, and therefore there is nothing

interesting to see. The Weight ROM is much larger than needed for this case, and

so uses much more LUTs than it would require for 50 values. This is because it

is cumbersome to regenerate the Weight ROM for each new network size. With a

maximum of 32 inputs and outputs for the first two layers, and then 5 outputs for

the output layer, the total number of weights possible would be 5120. A script could

be used to generate the cores automatically to simplify the process. Alternatively,

memory cores could be created to simplify scalability.

Table 3.17: Slice Requirements

Variable Slice LUTs Slice Registers Description

SM 74 110 Slices per multiplier

SA 178 251 Slices per adder

STF 77 37 Slices per transfer function

SW 1399 16 Slices per Weight ROM

SWL 30 22 Slices per weight logic

SNC 126 54 Slices per neuron control block

SB 64 16 Slices per Bias ROM

SBL 18 16 Slices per bias logic

SPA 179 148 Slices per a loader store block

SNET 49 31 Slices per network control block

Total 2194 701

39

3.8 Single-Input Hardware Neuron Summary

After testing and verification, along with the timing analysis, the SIHN case can be

used to compare against the other hardware size cases. This means that by adding

inputs, or by adding neurons, the hardware can be analyzed for decrease in cycles for

a given network as parallelism is exploited, and the increase in hardware resources as

the speed increases. Using Vivado with behavioral tests, the outputs of the network

can be compared with Matlab in order to see the error caused by hardware limitation.

In the next chapters, similar tests can be used to verify that the modified hardware

still provides the same outputs.

40

CHAPTER 4

Multiple Single-Input Hardware Neurons

Increasing the number of hardware neurons for a hardware layer increases the com-

putation speed of a hardware neural network by taking advantage of parallelism in

the ANN algorithm. This chapter will, first, outline the general change in structure

to the hardware, and then will verify correctness and analyze computation time and

size requirements. A new variable for the number of hardware neurons is introduced,

the variable HWN. The key concept for increasing the number of hardware neurons,

is that the single Bias ROM and single Weight ROM, from Figure 3.6, will need to

be split into parallel memory modules based on the number of hardware neurons in

the network. The parallel memory modules maximize the amount of parallelism in

the network. In order to load hardware neurons with their portion of the weight

and bias matrices, special loader modules are developed. More justification and a

detailed discussion of these modules is given in a later section. Finally, the chapter

will analyze the increase of speed and size of the hardware network by comparing the

results to the size and speed of the hardware network introduced in Chapter 3.

4.1 Overview of Hardware Implementation of Multiple Single-Input

Hardware Neurons

By adding in multiple single-input hardware neurons to the hardware network, a

software layer can be computed in less time. However, there will only be an increase

in speed during certain conditions. In order to provide parallel computation, each

hardware neuron will require each of the components that make up a neuron, and

41

then an additional Bias ROM and Weight ROM. The diagram in Figure 4.1 shows a

specific case of the scalable multiple single-input hardware neuron (MSIHN) neural

network where there are two hardware neurons. The Weight and Bias ROM of the

first neuron contain the odd rows of the bias vector and weight matrix from the

equation in Figure 3.5. The Weight and Bias ROMs corresponding with the second

hardware neuron use the even rows of the weight matrix and bias. This will make the

logic for the hardware more simple and will reduce the number of connections between

modules. Because the weight matrix is the size S × R and the number of software

neurons to be calculated is S, the number of Hardware Neurons will correspond to

the value of S. This means the Weight ROMs will need to be split across the weight

matrix rows as the number of hardware neurons changes.

R S1 S2 S3 S4 ... Delim p1 p2 ... pR a1
1... aS1

1 a1
2 ... aSi

iSi

Structure ROM Input/Output RAM

w11
1 ...w12

1 wSi-1Si-1
i

b1
1 ...b3

1 bSi-1
i

Weight ROM

Bias ROM

Single-Input Neuron

2-1 Mux

q

R S1

n a1

Select

w21
1 ...w22

1 wSiSi-1
i

b2
1 ...b4

1 bSi
i

Weight ROM

Bias ROM

Single-Input Neuron

2-1 Mux

q

n

Select

a2

When S is divisible by the number of Hardware Neurons

In_0

In_1 Out

In_0

In_1 Out

Figure 4.1: General Multiple Single-Input Hardware Neurons

This hardware has inefficiencies when the desired software layer is not divisible

42

by the number of hardware neurons. As shown in Figure 4.1, the values for b11 are in

the same Bias ROM address as the b12 value. A single address will be used to control

these ROMs in order to reduce signals, so, if the variable for b12 does not exist for

the software network, then a zero should be stored in that memory location. This is

wasteful, so the memory required could be reduced in a later work by changing the

logic that controls how the Weight and Bias ROMs are fed into the neuron. Perhaps

by using an address for each ROM, but only incrementing when the condition for

loading the next value, and therefore incrementing the address, is met.

Another important aspect of this diagram is that there are multiple outputs being

fed back from the hardware layer to the Input/Output RAM. The Input/Output

RAM is only a single input storage device. This means that additional logic will be

required in order to save the multiple values into their destination addresses. The

Input/Output RAM will need to serially increment the address for each hardware

neuron until the number of hardware neurons are loaded, then after checking if the

layer was completed, load a new input into the hardware layer starting from a new

address. If the software layer has not finished computation, then the input values for

the current layer will need to be loaded by resetting the the address counter variables.

4.2 Implementation of Multiple Single-Input Hardware Neurons in

VHDL

One of the goals of the VHDL code is to test different ranges of sizes for software

and hardware neurons efficiently. Because the contents of the Weight ROMs and

Bias ROMs will change based on the number of hardware neurons in a hardware

layer, ways to mitigate compile time should be considered. At a fundamental level,

the memory modules could be optimized to contain only necessary values and be the

smallest size for the desired software network. A scripting tool would need to be used

to generate the core’s coe files and IP core parameters for each test, as described

43

in the previous chapter. Alternatively, the coe files could be made for each case,

but this is not scalable, because each test case would require a new coe for each

Weight and Bias ROM. At 3-6 minutes of generation for each generation, creating

each individual memory core for each case could take a significant period of time. For

example, to test 10 hardware neurons, each coe file would need to be created, then

each core generated, resulting in 10 generations for Weight ROMs, 10 generations for

Bias ROMs, and a final regeneration for the project, resulting in 21 generation cycles.

For only one test case, this process would require, at minimum, an hour of time.

This is an unreasonable amount of required generation time for gathering information

about the scalable network. In order to avoid the regeneration process when changing

the number of hardware neurons per hardware layer, the memory modules can use

additional logic to load and store values from a Weight ROM and a Bias ROM that

match the specifications in Chapter 3 to allow for only a single regeneration cycle of

the entire project after changing the HWN variable. The modules that contain the

Weight ROM and Bias ROM that match the previous chapter’s specification will be

instantiated inside the loader modules and be called the top ROMs. The memory

modules that are loaded with values and are duplicated HWN number of times will

be called the nested ROMs.

Because the hardware neuron is still a single-input neuron, as in Chapter 3, there

are no changes to be made to the neuron schematic or control flow chart. So, when

building up in abstraction levels from the hardware neuron to the total hardware

network, the first change can be seen when adding the Weight ROM to the hardware

neuron.

4.2.1 Weight ROM Changes

The w mem module, shown in Figure 4.2, displays the neuron connected with the

w mem module. The w mem module contains the Weight ROM from the general

44

diagram in Figure 4.1. Compared to the schematic from Chapter 3 Figure 3.9, this

schematic has new RTS, CTS, w write, and w data signals in preparation to clock in

data from modules above it. These signals follow the same scheme as described in

Appendix B, loading a new value when RTS is high, then toggling CTS. This module

is encapsulated into a module called the w neuron. A VHDL generate statement can

be used to copy the module multiple times, providing abstraction that makes the

VHDL description easier to understand in code. At this level, the other signals are

the same as for the single input neuron from the last chapter. However, the states of

the w mem module will need to be changed.

Figure 4.2: Adding the Weight ROM Schematic

The w mem module needs new states to accept the values from the w loader

module, described in a later section at a higher level of abstraction. The new states,

which can be seen in Figure 4.3, check if a new value is present and then store the value

and increment the address. The w write pin is what switches the module between

writing new values and loading old values. When the module is enabled and the

w write pin is high, values will be clocked into the Weight ROM until the module

is reset by setting the enable signal and w write signals low. When clocking in the

45

Table 4.1: Weight ROM Schematic Signals

Signal Description

enable Enables both the w mem and neuron.

clk The clock for the modules.

p b rdy Set high when input and bias are ready.

neuron rts Set high when inputs, bias, and weights are ready.

neuron cts Set high when neuron allows values to change.

w 16 The weight value.

w mem state out The state of the w mem for the test bench.

w write Set high when the Weight ROMs are being written to.

w data The data being stored into the Weight ROMs.

w rts Set high when w data is requested to change.

w cts Set high when w data is safe to change.

data, the address is always increased by 1 for each data stored. The data loaded

from the module above will be shown to each hardware neuron, but only the neuron

that is supposed to receive the value will receive an RTS signal that is high. This is

how each hardware neuron can be selected by an upper module. Because there is an

infinite loop for the storage of values, the module will need to be disabled by setting

the enable pin low, then back high in order to start loading values. Moving up a layer

in abstraction, we can analyze the changes when adding the Bias ROM.

4.2.2 Bias ROM Changes

Shown in Figure 4.4, the b mem module changes from Chapter 3 Figure 3.11, to

the b mhwn mem module. This is because the Bias ROM inside the module is du-

plicated HWN times. Notice also that there are now RTS and CTS pins that talk

to the loader modules, along with a data line and the b write signal to accept the

46

Figure 4.3: The w mem Flow Diagram

loader module data. The goal of duplicating the Bias ROM in the module is to pro-

duce the b hwn 16 signal, which is attached from the b mhwn mem module to the

multi hardware neuron.

Figure 4.4: Adding the Bias ROM Schematic

The schematic in Figure 4.4 also shows the multi hardware neuron module. This

block contains a VHDL generate statement that duplicates the w neuron HWN num-

ber of times. The RTS and CTS signals going into the w mem module are an HWN

size array of signals to connect all of the w neurons that were duplicated. This also

means that this module after encapsulation, called the mhwn b mem module, will

have an output that is an array of 16-bit wires of length HWN.

The b mhwn mem module needs to have additional states added to handle multi-

47

Table 4.2: Bias ROM Schematic Signals

Signal Description

enable Enables b mem and w hardware neuron.

clk Clock for the modules.

p rdy Set high when the input value is ready.

b rdy Set high when the bias value is ready.

b 16 The bias value.

hwn done Set high when the output of the neuron is ready.

b rts Set high when b data is requested to change.

b cts Set high when b data is safe to change.

b write Set high when values are being written to Bias ROMs.

b data The value being stored into the Bias ROMs.

ple numbers of neurons. These states are only for loading values because the outputing

values are still exactly same as the prior case. As seen in Figure 4.5, a comparison is

made to test whether the values have been initialized. This is done with the b write

signal shown in Figure 4.4. If the signal is high, then the values will be written to

the memory, if the signal is low, then values will be loaded. Notice that the states

do not go back to the initialization state. This means that the module will need to

be disabled before the values can be loaded into the neurons. A key difference be-

tween the w mem module and the b mhwn mem module is that when loading values,

a HWN counter will keep track of which nested Bias ROM is supposed to receive

the new data value. Because the data is loaded serially, only one Bias ROM is ever

enabled at one time. The b mhwn mem module alternates between the ROMs using

the counter, and then resets to the first ROM when the HWN counter overflows.

48

Figure 4.5: The b mem Flow Diagram

4.2.3 Changes in the Network Block

Key differences to the Network Block, see Figure 3.13 and Figure 4.6, will be that

there are new loader modules that interface with a module named the mhwn b mem

module. A more detailed schematic is located in Appendix E, Figure E.2. In order

to handle an initialization step for the network, the network control module will need

to modified. As shown in Figure 4.6, multiple signals must be added between the

network control module and the b loader and the w loader. The main changes in

signals for this module are the CTS signals that are sent backwards from the loader

modules. These CTS signals must be high in order for the a ct and p ct values to

change. The write all signal acts as an enable pin for the b loader and w loader

modules. So, when the values from the top memory modules are being sent to the

nested memory modules, the write all signals will need to be set high. The b loader

and w loader modules each connect RTS and CTS pins that follow the communication

scheme outlined in Appendix B. One of the key changes in the schematic is that the

a hwn 16 signal is now an array of 16 bit signals. This is because there will be HWN

16-bit signals. The naming scheme was chosen because the variable a represents the

output of the neurons from Equation 3.1, and there are HWN 16-bit signals, creating

the name a hwn 16. Using an array that can be defined in code allows for the number

49

of outputs for this one block to be easily scalable.

Figure 4.6: Neural Network Multiple Single-Input Hardware Neurons Schematic

A set of new states, shown in Figure 4.7, will need to be added to handle the

initialization of values into the nested memory modules. The change is a comparison

on an internal flag to see if the values have been initialized. If they have not, then

the values are initialized, otherwise the network is calculated as normal. Notice that

during these states, the values are loaded for the loader only once, and then the

network repeats the computation.

The top ROMs are stored in the w loader and b loader modules, as seen in Figure

4.6. These modules communicate using an RTS and CTS scheme, as seen in Appendix

B. The primary goal of the loaders is to filter the values being sent to the nested

memory modules, setting the values to zero for hardware neurons that do not need

to be calculated. A key difference between the b loader and the w loader is that the

b loader only has one set of RTS and CTS lines attached to the mhwn b mem block,

while the w loader has an array the size of the number of hardware neurons. The

number of abstraction levels causes the w mem blocks to be copied the same number

50

Table 4.3: Network Schematic Signals

Signal Description

enable Enables only the network control.

clk Clock for the modules.

network done Set high when software network has been calculated.

loaders rts Set high when a ct and p ct requested to change.

a loader cts Set high when a ct and p ct safe to change.

a ct Software neurons for layer.

p ct Software inputs for layer.

network ctrl state out State of network control for test bench.

hwn enable Enables the calculation of the hardware layer.

p 16 The input value.

p rts Set high when new input value requested to change.

p cts Set high when new input value safe to change.

a loader state out The state of a loader store for test bench.

p ct neuron The number of software inputs for the layer.

of times as the neurons, while the b mem block is only created once.

The b loader is more simple than the w loader, so it is easier to look at the states

of the b loader first. From the b loader flow diagram in Figure 4.8, it can be seen that

there are two counters which load each Bias ROM with the correct corresponding bias

or zero value. First, the current layer’s software neuron count is loaded, and then

another counter is set to the value of HWN, the number of hardware neurons. Notice

that the loop will always repeat for the number of hardware neurons, even if there

are no longer any remaining software neurons for the layer. This will occur when

the number of software neurons is not divisible by the number of hardware neurons.

Because of this, zero values are loaded into the Bias ROMs.

51

Figure 4.7: Flow Chart for Network Control Multiple Hardware Neuron

Looking at Figure 4.9, the w loader flow diagram performs a similar operation as

the b loader but has states for loading the number of inputs for the current software

layer. The idea is that if a neuron needs to be skipped, then all of the inputs will need

to be set to zero. So, if all software neurons have been loaded for this layer, then it will

send p ct number of zeros into each remaining hardware neuron’s Weight ROM until

all Weight ROMs of that software layer have zeros stored for nonexistent variables

in the software network. However, if the counter for the number of HWNs has been

reached, the module will continue storing values by reseting the HWN counter.

Compared to the a loader store module from Chapter 3 (see Figure 3.13), the

a loader store module of this chapter will require some modification in order to handle

multiple outputs. This is done by using a counter which is set to the number of HWNs,

and then storing HWN values, but only until the number of outputs for the current

software layer have been stored. It will not store values from the hardware neurons

that do not contain useful data values. Notice in Figure 4.10 that there is a conditional

block added to the flow diagram compared to the a loader store flow diagram in the

single-input single-hardware-neuron case. If the a loader store module has completed

the storage of the hardware neurons’ outputs, then the module will begin loading new

52

Figure 4.8: The b loader Flow Diagram

inputs to calculate another set of neurons. However, if the calculation of software

neurons are complete for that layer, then the module will load a new S value. This is

significant, because it means that not all hardware neurons will be stored when the

software neurons are not divisible by the hardware neurons.

4.3 Clock Cycle Requirements

During the computation of a software layer, the hardware layer will only be able to

produce the number of hardware neuron outputs that exist in the hardware layer,

the variable HWN . This means that if the number of software neurons desired,

the variable S, is not divisible by the number of hardware neurons, there will be

some inefficiency in the calculation. In order to keep the hardware logic simple, the

hardware network can always calculate all hardware neurons. This means that the

values of the weights and biases for the wasted software neurons can be set to zero,

and then the outputs of the hardware neurons can be ignored when saving values.

As shown in Equation 4.1 the number of iterations over the hardware layer can be

calculated by taking the ceiling of the number of software neurons in the desired

software layer and dividing by the number of hardware neurons in the network.

53

Figure 4.9: The w loader Flow Diagram

Figure 4.10: The a loader store Flow Diagram

HardwareLayerIterations =

⌈
S

HWN

⌉
(4.1)

The number of layer iterations calculated in Equation 4.1 can be substituted

into Equations 3.4 and 3.5 (repeated here in Equation 4.2 and Equation 4.3). The

description of the variables can be found in Table 5.5. The result is significant because

it means that we will see a somewhat linear trend of the increase in speed when looking

at a layer with a large number of outputs. Notice that there are two terms that are

multiplied by the number of hardware layer iterations in Equation 4.2 and Equation

4.3. The cycles required by the logic to store the outputs from the neurons, CSAL,

needs to be separated from the cycles required to store the outputs, CSA, because the

54

variables were added together and combined in the previous chapter as CSA. Because

multiple values are stored in a repetitive state, the logic to reach the storing state

is used only once per hardware layer calculation. This is why CSAL is multiplied

by the number of hardware layer iterations, while CSA is multiplied by the number

of software neurons to be stored. Table 5.5 shows the new variable underlined with

description.

Table 4.4: Cycle Variables

Variable Description

Rn Number of inputs to the layer n

Sn Number of neurons of the layer n

CA Cycles required for one adder to complete

CM Cycles required for one multiplier to complete

CLNC Cycles of the neuron control logic per input

CTF Cycles required for the transfer function

CSA Cycles required for storing a single output

CLS Cycles required to load a new structure

CSAL Cycles required for the logic to begin storing values

Cycles1 = R1

⌈
S1

HWN

⌉
(CM +CA +CLNC) +

⌈
S1

HWN

⌉
(CTF +CSAL) +S1CSA +CLS

(4.2)

Cyclesn = Sn−1

⌈
Sn

HWN

⌉
(CM+CA+CLNC)+

⌈
Sn

HWN

⌉
(CTF +CSAL)+SnCSA+CLS

(4.3)

55

4.4 Slice Requirements

Space requirements for this hardware network can be expected to expand by multi-

plying the size of the neurons and the memory modules by the HWN value. As the

network fills the FPGA, the actual required number of slices and cells can be expected

to change non-linearly. Variables that make up the new slice equation, found in Table

4.5, now include the size of the b loader and a loader blocks. These two variables

are underlined for convenience. Equation 4.4 is modified in order to multiply the

variables that are duplicated by the number of hardware neurons.

Table 4.5: Slice Variables

Variable Description

SM Slices per multiplier

SA Slices per adder

STF Slices per transfer function

SW Slices per weight ROM

SWL Slices per weight logic

SNC Slices per neuron control block

SB Slices per bias ROM

SBL Slices per bias logic

SPA Slices per a loader store block

SBLD Slices per b loader block

SWLD Slices per w loader block

SNET Slices per network control block

Slices = HWN(SM+SA+STF+SW+SWL+SNC+SB)+SBL+SPA+SBLD+SWLD+SNET

(4.4)

56

4.5 Simulation Testing and Verification in Vivado

To test if the hardware structure works correctly, the same test case from Chapter 3

verification can be used in order to see that the hardware calculates the same values.

The error compared to Matlab does not need to be considered here, because it should

be the same as the previous test case. The increase in speed can be verified using

the same test case, but should be analyzed under more controlled conditions to see

the maximum increase in speed. This can be done by setting the number of software

inputs to 1, and the number of software neurons to a large value. By increasing the

number of hardware neurons for each test, the increase in speed can be seen clearly.

4.5.1 Verification Comparing Output Values

Using the behavioral simulation from Chapter 3, the weight values will be loaded

into the Weight ROMs in a well ordered manner, as shown in Figure 4.1, along with

zero values for neurons that do not matter. The values that are calculated will be

stored into the Input/Output RAM serially after they are all calculated. As seen in

Table 4.6, there are no discrepancies between the calculated values of multiple sizes

of HWN. This means that the network is able to scale the amount of hardware and

perform the same calculation.

4.5.2 Cycles and Gate Analysis after Synthesis

The number of cycles required for each layer should be verified for the test case.

However, to see the increase in speed more clearly, a software layer should be set to

1 input and to a large number of neurons. The maximum number of software and

hardware neurons in this example will be 23. Using Equation 4.2 and Equation 4.3,

a table of expected values can be constructed and used to anticipate the increase in

speed. In order to calculate the increase in speed, the total number of cycles can be

divided by the number of cycles required when the HWN count is equal to 1. This

57

Table 4.6: Comparison of Layer Outputs During Simulation at Different HWN Sizes

Variable a11 a12 a13 a14 a15 a16

aHWN=1 BB38 BBBF 3BC6 BB93 3A6A 3BF9

aHWN=2 BB38 BBBF 3BC6 BB93 3A6A 3BF9

aHWN=3 BB38 BBBF 3BC6 BB93 3A6A 3BF9

aHWN=4 BB38 BBBF 3BC6 BB93 3A6A 3BF9

Variable a17 a18 a19 a110 a21

aHWN=1 3BFD BBFA 3BF0 3B12 3A7B

aHWN=2 3BFD BBFA 3BF0 3B12 3A7B

aHWN=3 3BFD BBFA 3BF0 3B12 3A7B

aHWN=4 3BFD BBFA 3BF0 3B12 3A7B

will result in a ratio of required cycles that we can call the speedup. These values

can be compared with a line equal to the HWN value for an ideal reference point.

Table 4.8 shows the expected and the measured speedup found in simulation. This is

significant, because it means that the equation can accurately predict the number of

cycles for any software network. The values that changed from the previous chapter

are shown in Table 4.7, and the equations for calculating the number of cycles are

shown again for convenience in Equation 4.5 and Equation 4.6.

Cycles1 = R1

⌈
S1

HWN

⌉
(CM +CA +CLNC) +

⌈
S1

HWN

⌉
(CTF +CSAL) +S1CSA +CLS

(4.5)

Cyclesn = Sn−1

⌈
Sn

HWN

⌉
(CM+CA+CLNC)+

⌈
Sn

HWN

⌉
(CTF +CSAL)+SnCSA+CLS

(4.6)

The resulting values from Table 4.8 match the calculation, and therefore the equa-

tions for the cycles have been verified. The equation can be used to extrapolate over

58

Table 4.7: Modified Values of Cycle Variables

Variable Value Description

R1 4 Number of inputs to the layer 1

S1 10 Number of neurons of the layer 1

S2 1 Number of neurons of the layer 2

CA 8 Cycles required for one adder to complete

CM 6 Cycles required for one multiplier to complete

CLNC 9 Cycles of the neuron control logic per input

CTF 3 Cycles required for the transfer function

CSA 1 Cycles required to store a single value

CSAL 4 Cycles required for the logic to begin storing values

CLS 1 Cycles required to load a new structure

new cases. The maximum ratio for speedup will occur when there is one input and

a large number of outputs. Appendix C shows the values calculated for the number

of cycles in these cases, and Figure 4.11 shows the speedup in a graph. In order to

calculate speedup, Equation 4.7 is used. Notice the speedup will be equal to 1 when

HWN is equal to 1. The ideal speedup is plotted with the speedup of the network for

better clarity.

Speedup =
TotalCycles1

TotalCyclesHWN
d (4.7)

Notice that the graph in Figure 4.11 is not smooth. This is because of the ceiling

function, which causes discontinuities. Just by doubling the number of neurons, the

computation time for this layer is nearly doubled. However, as the number of hard-

ware neurons approach the number of software neurons, the benefit of the investment

in hardware resources diminishes. Coupling this with the equation for the size re-

59

Table 4.8: Expected and Measured Cycles for varying Number of Hardware Neurons

Layer HWN = 1 HWN = 2 HWN = 3 HWN = 4

Layer 1 1001 506 407 308

Layer 2 239 239 239 239

Total 1240 745 646 547

Figure 4.11: Speedup as Hardware Neurons Increase with 1 Input and 23 Neurons

quirements, a heuristic could be used to determine the appropriate size of hardware

network for certain sizes of software networks.

Using the equation for the size of the hardware network, the estimated size of

the network can be determined. Other slice requirements are considered in Appendix

D. A key thing to note is that as the number of hardware neurons increase, the

logic that controls them changes size. This logic is created using a compiler that

does optimizations, and so the slices required will not only vary in size as the HWN

value increases, but will vary within the same project as modules are duplicated.

The slices required for a certain module may be slightly different in size when the

60

Table 4.9: Slice LUT Requirements by Hardware Neuron Count

Variable HWN=1 HWN=2 HWN=3 HWN=4 HWN=5

SM 74 74 74 74 74

SA 178 178 178 178 178

STF 77 77 77 77 77

SW 1399 1399 1399 1399 1399

SWL 30 29 30 28 28

SNC 126 127 125 123 123

SB 64 64 64 64 64

SBL 18 47 48 46 48

SPA 179 170 192 215 195

SBLD 81 83 83 85 87

SWLD 246 253 289 265 274

SNET 49 49 58 53 54

TotalMeasured 2521 4514 6519 8563 10402

TotalCalculated 2521 4498 6511 8436 10373

module is duplicated, due to overlapping logic or space limitations on the FPGA.

This means that the size can only be approximated. The size of these modules

vary greatly, depending on the size of network required, and so, in order to form a

good approximation, the parameters of the project, like the FPGA being used or the

number of bits required for accuracy, may be critical in order to determine an optimal

hardware network size.

61

4.6 Multiple Single-Input Hardware Neuron Summary

This chapter has shown that MSIHNs can be used in order to speedup the calculation

of the ANN algorithm on an FPGA. Using a modular approach, the design can

be abstracted so that VHDL generate statements, along with arrays of signals, can

be used to create dynamically scaling hardware to exploit parallelism in the ANN

algorithm. Using equations that model the structure of the hardware and the number

of required cycles for a software network, the size and required cycles can be predicted.

The exact size of the hardware cannot be easily predicted, because compilation of

VHDL code changes the size of the control logic. Other ways to increase speed of the

network should be considered in order to find an optimal area and cycle requirements

for a given software network. One way is to increase the number of inputs to a

hardware neuron, which will be discussed in the next chapter.

62

CHAPTER 5

Multi-Input Hardware Neuron

This chapter will describe the process of adding multiple inputs to a single hardware

neuron. Processing multiple inputs to a neuron will allow for an increase in speed

by increasing the slices used and power consumption. After describing the hardware

architecture, equations for the increase in speed and the area will be analyzed. Finally,

tests will be performed on a sample problem to verify correct network calculations

and to verify the theoretical equations for speedup and area requirements.

5.1 Overview of Hardware Implementation of Multi-Input Hardware

Neuron

Computing a software neuron requires multiplying multiple software inputs with cor-

responding weights. These values are added together to produce a sum, previously

described in Chapter 3 as the variable n (see Equation 3.1). A single input neuron

(see Figure 3.6) contains a single multiplier module which accepts both one input

value and one weight value. This process can be parallelized by instantiating multi-

ple multipliers within the neuron. Because of this fundamental idea, the variable for

the number of inputs may sometimes be referenced as the MLT count. This variable

is used in the schematics when creating arrays of signals. So, a hardware neuron that

accepts two inputs will contain two multipliers, meaning that the neuron will be able

to multiply two input values and two weights at the same time. In Figure 5.1, the

general neuron diagram shows the hardware neuron containing multiple multipliers.

Notice that there is an additional adder that is now required. When using more than

63

two multipliers, an adder tree will need to be used in order to sum the multiplications

in parallel. A description of adder trees is given later in this section. Notice that the

Weight ROM will need to be divided along the columns, which contrasts with the pre-

vious chapter, where the weight matrix was divided along the rows. This is because

the weight matrix is an S ×R matrix. Notice that the outputs are distributed along

the rows, and the inputs are distributed along the columns. Because in Figure 5.1

there are two inputs to the neuron, the first Weight ROM contains the even columns,

while the second Weight ROM contains the odd columns. Because the weights are

controlled by a single address signal, the number of columns in the Weight ROMs will

need to be divisible by the number of inputs. This means that values for the weight

matrix that do not exist should be set to zero. Because the Input/Output RAM can

still only be serially accessed, additional logic will be required to load multiple inputs

into the neuron.

Within the hardware neuron, an adder tree is required to compute the sum of

multiple multipliers in parallel. The adder tree will generate a single sum that can be

input into the accumulating adder which calculates the sum of n over multiple input

iterations based on the number of software inputs. The adder tree, shown in Figure

5.2, shows the basic structure of an adder tree. This is similar to a structure used in

computer science called a complete binary tree. The value of Inputs is the number of

inputs to the neuron. Notice that when there are 3 inputs, the top group of adders

will contain 2 adders being fed down into a final adder. This is not the most efficient

way to make the adder tree, because the adders could be cascaded in a way that only

two adders are used. However, the code to generate this regular structure is much

more understandable than the alternative. The timing and size requirements of this

structure are more easily calculated too. The depth of the tree can be calculated

by taking the log of the number of inputs. This is critical for counting the number

of cycles and for generating the hardware of the adder tree, because each depth will

64

R S1 S2 S3 S4 ... Delim p1 p2 ... pR a1
1... aS1

1 a1
2 ... aSi

iSi

Structure ROM Input/Output RAM

w12
1 ...w14

1 wSiSi-1
i

b1
1 ...b2

1 bSi
i

Weight ROM

Bias ROM

Multiple-Input Neuron

2-1 Mux

q

R S1

n a

Select

In_0

In_1 Out

w11
1 ...w13

1 wSiSi-1-1
i

Weight ROM

Figure 5.1: The General Multi-Input Hardware Neuron Diagram

contribute an additional delay of an adder module.

Calculating the area of the adder tree requires knowing the total number of nodes

in the tree. Instead of calculating the summation for each of the rows, a closed form

solution can be used. The closed form equation for the number of nodes in a complete

binary tree is given by Equation 5.1. The variable N is the number of nodes on the

top group of adders in the tree, sometimes called the leaf nodes. Therefore, as shown

in Equation 5.2, by substituting in the number of inputs to the tree, we can relate

the number of nodes in the adder tree to the number of inputs to the neuron.

Nodes =
N∑

n=1

n =
N(N + 1)

2
(5.1)

Nodes =

⌈
Inputs

2

⌉
(
⌈
Inputs

2

⌉
+ 1)

2
(5.2)

65

Figure 5.2: Adder Tree Structure

5.2 Implementation in VHDL

Abstraction levels of the previous designs will need to be modified in order to add

multiple inputs to the hardware neuron. Similar to the last chapter, a loader module

can be used in order to store values into a new module that contains the Weight

ROMs, both described later in this section. Modifications to the state machines that

control how values are stored and loaded into the Weight ROMs are described too.

Arrays of signals will need to be added to each abstraction layer to make the design

scalable based on the number of inputs. The first module that should be analyzed is

at the lowest level of abstraction - the hardware neuron.

5.2.1 Modification to the Neuron

In order to accommodate the additional inputs, the neuron will need to have a mod-

ule that creates multiple multipliers, and another module to create the adder tree.

These two modules are the key differences between the neurons described in previous

chapters (see Figures 3.6 and 4.1) and the new neuron schematic, shown in Figure 5.3.

The control signals are the same as those in the previous chapters, but the input and

weight signals are now updated to arrays of 16-bit signals, length MLT. Notice the

signals going into the multipliers block have the new notation w mlt 16 and p mlt 16.

66

This means that these signals are an array of 16-bit signals, length MLT. The control

for the neuron is the same as those in the previous chapters, and will not be described

here. The multipliers module uses the variable MLT in order to generate the number

of multipliers, and outputs all of results as an array of values, size
⌈
Inputs

2

⌉
. The

adders module generates the adder tree using loops of VHDL generate statements

that are based on the total number of nodes in the adder tree. Combining each of the

modules together, the inputs and outputs can be abstracted into a smaller module,

the neuron module.

Figure 5.3: The Multi-Input Neuron Schematic

67

Table 5.1: Neuron Schematic Signals

Signal Description

enable Enables only the neuron ctrl block.

clk Clocks signals for timing.

p ct Number of software inputs to process.

rts External module sets high to request to change inputs.

cts Neuron control sets high to allow change of inputs.

neuron state Allows for easy test bench access to states.

w mlt 16 Array of MLT 16-bit weight values.

p mlt 16 Array of MLT 16-bit input values.

a 16 The 16-bit output value.

init b The bias value.

mul mlt 16
⌈
MLT

2

⌉
16-bit multiply results.

mult done Enables the adder tree when multipliers values are computed.

adders done Enables the b adder when the adder tree output value is computed.

neuron done Set high when transfer function has been computed.

b reg done Set high when b reg is finished saving b adder output.

b reg init Set high when input bias needs loaded into b reg.

b adder done Enables b reg when the b adder is complete.

n rdy Set high when n is computed.

n out The value of n.

b back Value used to accumulate values, initialized as bias.

68

5.2.2 Adding the Weight ROMs

The Weight ROM will need to be broken up into multiple ROMs to produce multiple

inputs for the neuron. Figure 5.5 shows the new w mlt mem module, which contains

a VHDL generate statement producing MLT Weight ROMs. The output of each

Weight ROM is clustered into the w mlt 16 signal, which is connected to the neuron.

The logic controlling the w mlt mem module changes from the w mem modules in

the previous chapters by including logic for storing values from a w loader module.

The w write signal is used to tell the module whether or not values are being written

into the module, or if the values are being clocked out of the ROMs into the neuron.

The RTS and CTS pins are used to signal to the loader when the neuron is ready to

load more data into the ROMs.

Figure 5.4: Adding the Weight ROMs Schematic

The flow diagram, shown in Figure 5.5, shows the new states for the module. If

the values have been loaded, then the values are clocked into the neuron as usual. An

additional counter is required in order to enable and disable specific Weight ROMs.

69

Table 5.2: Weight ROM New or Important Schematic Signals

Signal Description

enable Enables both the w mem and neuron.

clk The clock for the modules.

p b rdy Set high when input and bias are ready.

neuron rts Set high when inputs, bias, and weights are ready.

neuron cts Set high when neuron allows values to change.

w mlt 16 Array of MLT 16-bit weight values.

w mem state out The state of the w mem for the test bench.

w write Set high when the Weight ROMs are being written to.

w data The data being stored into the Weight ROMs.

w rts Set high when w data is requested to change.

w cts Set high when w data is safe to change.

This means that the address is not incremented until the total number of MLT values

have been stored into each of their respective memories. The combination of blocks

and signals can be encapsulated into the hardware neuron module.

5.2.3 Adding the Bias ROM

Other than the connections for the hardware neuron, the control signals and the states

of the bias loader are exactly the same as the single-input single-hardware neuron case

because there is only one neuron in the hardware neuron block. The b mem module

does not need to be modified to handle multiple hardware neurons. The b mem

module is attached to the hardware neuron module by the b 16 wire, the value of

the bias for a given software neuron. The b mem contains only one Bias ROM, and

therefore does not require a loader module. Figure 5.6 shows the schematic of the

hardware neuron with the Bias ROM attached.

70

Figure 5.5: The w mlt mem Flow Diagram

The states of the b mem module are strictly for loading the bias values into the

neuron and making them simple. If the hwn done flag is set, then the bias value will

update by increasing the address value to load the new input. Figure 5.7 shows the

states the module traverses.

5.2.4 Modification to the Network Block

The primary changes to the network for the multi-input hardware neuron (MIHN)

are the introduction of a w loader module and the modification of the input signal

p 16 to an array of 16-bit signals, p mlt 16. The schematic in Figure 5.8 shows the

changes included in the schematic from Chapter 3. A more detailed schematic is

located in Appendix E, Figure E.3. The network control module contains the same

flow diagram from Chapter 4, because it uses the same logic for all of the loader

modules.

The states of the network control module, shown in Figure 5.9, describe how the

71

Figure 5.6: Adding the Bias ROM Schematic

Figure 5.7: The b mem Flow Diagram

memory is clocked out of the Structure ROM. The values first check a flag to see if

the memory is loaded, if not, then the loaders will need to write all of the values into

the hardware neuron. After they have been loaded, the hardware neuron is reset, and

the values are loaded again for the hardware neuron and loader modules. To signal

the memory modules below that values are stored, the write all flag will be set to

low.

Splitting the weight matrix with the loader modules ensures that testing multiple

cases in the behavioral simulation can be done quickly. The w loader needs to use

the number of inputs to the neuron and the corresponding layer inputs in order to

decide when to load zeros into the weight ROMs inside the neuron. Shown in Figure

5.10, a counter is used to load MLT weights, but if the p ct value, the number of

software inputs, is zero, then no more weights exist for this hardware layer, meaning

72

Table 5.3: Bias ROM New or Important Schematic Signals

Signal Description

enable Enables b mem and w hardware neuron.

clk Clock for the modules.

p rdy Set high when the input value is ready.

b rdy Set high when the bias value is ready.

b 16 16-bit bias values.

a 16 16-bit output values.

hwn done Set high when the output of the hardware neuron is ready.

w rts RTS values for w hwn mem.

w cts CTS values for w hwn mem.

that a zero value should be stored. If the values have been stored, then the w loader

module will stay in the initialization state, so no values are clocked in.

To increase the number of inputs to the hwn b mem module, the a loader store

states will need to be changed. Shown in Figure 5.11, whenever values are being

loaded into the neuron, instead of loading a single value, MLT values are loaded.

These will need to be done serially, because the Input/Output RAM is a single output

module. So to get multiple modules, multiple accesses will need to be made into the

memory. After the values have been loaded, the a loader store module will wait for

the CTS flag from the neuron, signaling that new input values are ready to be loaded.

If the counter for the software inputs within the a loader store module is equal to zero,

then all inputs have been loaded. If all inputs have been loaded, then the hardware

neuron done signal will be set, so the output of the neuron can be stored. After all

outputs of the software layer have been stored, new numbers of inputs and outputs

are loaded for the next layer.

73

Figure 5.8: Neural Network Multi-Input Single-Hardware Neuron Schematic

5.3 Clock Cycle Requirements

Required clock cycles are calculated by modifying the equation for the single-input

single hardware neuron to accommodate the division of software inputs by the inputs

to the hardware neuron. To do this, the number of input iterations, shown in 5.3, can

be considered. Because there was previously only one hardware input to the neuron,

the cycles to load the inputs were lumped into the value for one input iteration.

However, because sets of inputs can be computed, multiple inputs can now be handled

in a single input iteration. The iterations are based on the number of software inputs.

If we divide the number of software inputs by the number of hardware inputs, the

remainder of the division represents the fraction of the last iteration that will be

used. However, because the number of input iterations must be an integer, the ceiling

function is used to obtain the total number of iterations.

InputIterations =

⌈
R

MLT

⌉
(5.3)

New cycle variables will need to be added to those defined in the previous chapters.

The new variables are underlined in Table 5.5. They are the number of inputs to the

74

Table 5.4: Network Schematic New or Important Signals

Signal Description

enable Enables only the network control.

clk Clock for the modules.

network done Set high when software network has been calculated.

write all Set high when writing values to nested memory.

loaders rts Set high when a ct and p ct requested to change.

a loader cts Set high when a ct and p ct safe to change.

a ct Software neurons for layer.

p ct Software inputs for layer.

network ctrl state out State of network control for test bench.

hwn enable Enables the calculation of the hardware layer.

p mlt 16 Array of MLT 16-bit input values.

a 16 16-bit output values.

p rts Set high when new input value requested to change.

p cts Set high when new input value safe to change.

a loader state out The state of a loader store for test bench.

p ct neuron The number of software inputs for the layer.

hardware neuron, MLT , and the number of cycles required for loading a value, CLA.

The cycle equations from previous chapters will need to be modified to accommo-

date the serial components of the parallel structures. These sets of serial components

cause delay. The set of multipliers still only counts for the same number of delays,

but the depth of the adder tree has not yet been accounted for. From Equations 3.4

and 3.5 for the single-input neuron, we can derive a new set of equations - Equations

5.4 and 5.5. Originally, the values of the CLNC included the cycles that were required

to load a value. Because multiple values must be loaded for each iteration, and the

75

Figure 5.9: The network control Flow Diagram

number of values change based on MLT, the variable for CLNC can be broken into

MLT ×CLA. In order to accommodate the increase in delay through the adder tree,

the number of adder tree layers can be multiplied by the number of cycles required

per adder. Then, all of the other contributing delays can be added or multiplied as

usual.

Cycles1 =

⌈
R1

MLT

⌉
S1(CM + CA(⌈Log2(MLT)⌉+ 1) + CLNC +MLT (CLA))

+ S1(CTF + CSAL + CSA) + CLS

(5.4)

Cyclesn =

⌈
Sn−1

MLT

⌉
Sn(CM + CA(⌈Log2(MLT)⌉+ 1) + CLNC +MLT (CLA))

+ Sn(CTF + CSAL + CSA) + CLS

(5.5)

5.4 Slice Requirements

The number of slices can be calculated by simply adding up each of the modules that

are instantiated. The only variables that need to be added to the equations from

76

Figure 5.10: The w loader Flow Diagram

Figure 5.11: The a loader store Flow Diagram

the previous chapter are the number of slices per w loader module and the number

of inputs to a neuron. Table 5.6 shows the list of variables with their descriptions.

Instead of simply adding up all of the blocks, as was done in Chapter 3, the number

of inputs should be multiplied by the size of the Weight ROMs and the size of the

multipliers. The number of adders should be counted in order to add them up as

well. Using the equation for the number of adder tree nodes, Equation 5.2, the

nodes can be multiplied by the amount of slices required for a single adder to get the

required number of slices for the adder tree. However, this will not work for the single

input case, because the adder tree structure is completely bypassed with a generate

statement. This means that this slice equation will calculate one too many adders

77

Table 5.5: Cycle Variables

Variable Description

Rn Number of inputs to the layer n

Sn Number of neurons of the layer n

MLT Number of inputs to the hardware neuron

CA Cycles required for one adder to complete

CM Cycles required for one multiplier to complete

CLNC Cycles of the neuron control logic per input

CTF Cycles required for the transfer function

CLA Cycles required for loading a single value

CSA Cycles required for storing a single output

CLS Cycles required to load a new structure

CSAL Cycles required for the logic to begin storing values

when MLT is equal to 1. So, this equation is only valid for MLT values greater than

1.

SlicesMLT>1 = MLT (SM + SW) + (

⌈
MLT

2

⌉
(
⌈
MLT

2

⌉
+ 1)

2
+ 1)SA

+ STF + SWL + SNC + SB + SBL + SPA + SWLD + SNET (5.6)

5.5 Simulation Testing and Verification in Vivado

To verify that the design works as expected, output values for multiple sizes of input

neurons can be tested. This design has been tested extensively using many different

software networks and many different MLT values. However, only a small subset of

values will be shown here. The equations for the number of cycles and slices can

be analyzed in order to ensure that the hardware matches what is expected of the

78

Table 5.6: Slice Variables

Variable Description

MLT Number of Inputs to a hardware neuron

SM Slices per multiplier

SA Slices per adder

STF Slices per transfer function

SW Slices per Weight ROM

SWL Slices per weight logic

SNC Slices per neuron control block

SB Slices per Bias ROM

SBL Slices per bias logic

SPA Slices per a loader store block

SWLD Slices per w loader block

SNET Slices per network control block

system.

5.5.1 Verification Comparing Output Values

Using the same test case from the previous chapters, the values for each neuron output

can be compared as the number of hardware neurons changes. The 16-bit results will

still have the same error when compared to more accurate calculations from Matlab.

However, the goal is to ensure that the values are all calculated the same, no matter

the hardware structure. Table 5.7 shows each of the outputs of each neuron from the

test case. Notice that they are all identical. These values show that the w loader

is storing values into the Weight ROMs correctly, and that the adder tree is able

to compute the correct values. Because multiple input iterations were used for each

case, the storing and loading of inputs are verified.

79

Table 5.7: Comparison of Layer Outputs During Simulation at Different MLT Values

Variable a11 a12 a13 a14 a15 a16

aMLT=1 BB38 BBBF 3BC6 BB93 3A6A 3BF9

aMLT=2 BB38 BBBF 3BC6 BB93 3A6A 3BF9

aMLT=3 BB38 BBBF 3BC6 BB93 3A6A 3BF9

aMLT=4 BB38 BBBF 3BC6 BB93 3A6A 3BF9

Variable a17 a18 a19 a110 a21

aMLT=1 3BFD BBFA 3BF0 3B12 3A7B

aMLT=2 3BFD BBFA 3BF0 3B12 3A7B

aMLT=3 3BFD BBFA 3BF0 3B12 3A7B

aMLT=4 3BFD BBFA 3BF0 3B12 3A7B

5.5.2 Cycles and Slice Analysis After Synthesis

In order to verify that the design is working as expected, the number of required

cycles and slices can be predicted with the equations. First, the individual values can

be measured, and then using the values in the equation, the number of cycles for the

first hardware iteration can be computed. The variables are defined again in Table

5.8, with measured values. These values are found by measuring the time between

states in the simulation. The underlined variables in the table are changed from the

previous chapters. The variable is decreased by one for inputs equal to 1, because,

for the single-input case, the cycles required to load the value were included in the

CLNC value. Now that the equation explicitly loads these values separately, the value

is broken out into the CLA variable. However, when the adder tree is instantiated,

the neuron control logic will use one extra cycle in order to make sure that the adder

tree has been reset. This means that the logic per input will be one greater than

when the adder tree is not instantiated, so, when MLT is greater than one, CLNC is

80

9.

Table 5.8: Modified Values of Cycle Variables

Variable Value Description

R1 4 Number of inputs to the layer 1

S1 10 Number of neurons of the layer 1

S2 1 Number of neurons of the layer 2

CA 8 Cycles required for one adder to complete

CM 6 Cycles required for one multiplier to complete

CMLT=1
LNC 8 Cycles of the neuron control logic per input iteration

CMLT>1
LNC 9 Cycles of the neuron control logic per input iteration

CTF 3 Cycles required for the transfer function

CLA 1 Cycles required for loading a single output

CSA 1 Cycles required to store a single value

CSAL 4 Cycles required for the logic to begin storing values

CLS 1 Cycles required to load a new structure

The calculated and expected cycles for the test case can be found in Table 5.9.

In order to measure the length of the first iteration, the change of states out of the

network control module can be selected in the simulator, then the times between

when new structures are loaded can be subtracted and divided by the frequency of

the clock cycles. In Table 5.9, there is no error in the predicted values for the required

number of cycles for each of the cases. This equation was tested extensively over many

different software networks and hardware configurations. So, the values for this case

can be measured and predicted exactly, meaning that the equations can be used to

extrapolate over a larger range of values.

In order to see the maximum increase in speed, the number of inputs to the

network can be increased to a substantial size, in this case 23. The value 23 was chosen

81

Table 5.9: Expected and Measured Cycles for varying Number of Hardware Neurons

Layer MLT = 1 MLT = 2 MLT = 3 MLT = 4 MLT = 5

Layer1 1001 721 901 501 591

Layer2 239 174 177 138 113

Total 1240 915 1098 649 714

because it is a large prime number. The idea being that if the value is not divisible

by another number, the speedup can be characterized more accurately. Figure 5.12

shows the values for the speedup of a 23 input and 1 software neuron network. The

graph calculates speedup as described in Chapter 4. The maximum speedup is found

when the number of hardware inputs is equal to the number of software inputs. If

the number of hardware inputs is larger than the number of software inputs, then

there will not be any more speedup, because there is no longer any parallelism to

exploit. However, the speedup will actually decrease for the MIHN case, because,

as the number of inputs increases, the layers in the adder tree will increase too.

This adds cycles to the neuron calculation and would also be very inefficient in slice

requirements.

The calculations for the slice requirements are less complex than the cycle require-

ments. As the total number of slices approaches the size limitations on the board,

errors can be expected in the equation. The router will attempt to fill more slices

with more logic, but the connections between the slices may become very large, caus-

ing errors. Table 5.10 shows the total number of slices measured against the values

calculated. These values match very closely. Notice that because the equation being

used is intended for when the number of multipliers is greater than one, the slice

measurement when MLT is equal to 1 contains an extra adder. The adder tree is

bypassed when the number of inputs is one, and so the adder is not generated. Size

restraints of the FPGA could be used with these values and equations to predict the

82

Figure 5.12: Speedup as Hardware Neurons Increase with 23 Inputs and 1 Neuron

maximum number of inputs possible for a single hardware neuron.

5.6 Multi-Input Hardware Neuron Overview

With the development of the MIHN, this chapter has shown that multiple inputs to a

hardware neuron can be processed in parallel, decreasing the number of cycles required

to obtain the result of an ANN algorithm. Multiple multipliers can be instantiated

within the neuron with an adder tree for parallelization. The tree structure can be

characterized by the number of nodes and the height, meaning that the area and

cycles required can be predicted. These values can be analyzed to understand the

trade-offs between required area and speed increase. Modifications could be made to

the size of the Weight ROM to decrease overall area. Ideally, the number of weights

for a software network should only require a certain amount of memory, no matter

the number of inputs to the neuron. So, the area should be able to be fixed with

the number of inputs to a neuron. Because the number of inputs and the number of

outputs can both be parallelized, they can be combined together so that the trade-offs

83

Table 5.10: Slice LUT Requirements by Number of Inputs Count

Variable MLT=1 MLT=2 MLT=3 MLT=4 MLT=5

SM 74 74 74 74 74

SA 178 178 178 178 178

STF 77 77 77 77 77

SW 1399 1399 1399 1399 1399

SWL 30 57 57 64 62

SNC 126 126 122 126 125

SB 64 64 64 64 64

SBL 18 18 16 16 16

SPA 179 192 282 302 333

SWLD 246 246 288 235 251

SNET 49 49 56 57 56

TotalMeasured 2440 4132 6095 7547 9598

TotalCalculated 2618 4131 6093 7545 9595

between the size requirements and speed up can be analyzed more effectively. The

past two chapters have described each of these processes individually, and the next

chapter will explain how to combine the two parallelization techniques together.

84

CHAPTER 6

Multiple Multi-Input Hardware Neurons

In the previous chapters, adding multiple inputs to a hardware neuron or multi-

ple hardware neurons to a hardware layer were used to decrease the number of cy-

cles required to simulate a software network. These concepts can be combined to-

gether to create a hardware layer that contains multiple multi-input hardware neurons

(MMIHN). This chapter will cover the changes that must be made to the hardware

network in order to accommodate the additional inputs and layers. First, the general

problem is described, then the hardware changes that must be made are discussed.

Next, the equations for the required cycles and slices for the general network are in-

troduced. A test case is considered to ensure the calculation is correct, and then the

equations are verified. Finally, a plot of the maximum expected speedup is plotted

and compared against the slices required.

6.1 Overview of Hardware Implementation of Multiple Multi-Input

Hardware Neurons

By combining the multi-input neuron (MIHN) of Chapter 5 with the concept of mul-

tiple hardware neurons from Chapter 4, parallelism can be maximally exploited, with

multiple MIHNs. As shown in Figure 6.1, the neuron contains multiple multipliers

and then an adder tree. This MIHN is then copied. The weight matrix is divided

along the rows for the multiple neurons and divided along the columns for the multiple

inputs. Because the weight matrix is divided in both dimensions, maximal parallelism

is exploited when the number of inputs is equal to the number of rows, and the num-

85

ber of neurons is equal to the number of columns. Adding additional hardware past

this point does not provide any more speedup. This means that the software net-

work determines what kind of hardware should be generated. In this example, the

Weight ROMs in the first neuron contain the odd rows, while the Weight ROMs in

the second neuron contain the even rows. The first Weight ROMs in both neurons

contain the even columns, while the second Weight ROMs in each neuron contain the

odd columns of the weight matrix. In this structure, the values that do not exist in

the weight matrix will need to be set to zero. Logic will need to be added to the

Input/Output RAM to accommodate loading multiple inputs and storing multiple

outputs.

86

R S1 S2 S3 S4 ... Delim p1 p2 ... pR a1
1... aS1

1 a1
2 ... aSi

iSi

Structure ROM Input/Output RAM

w12
1 ...w14

1 wSi-1Si-1
i

b1
1 ...b3

1 bSi
i

Weight ROM

Bias ROM

Multiple-Input Neuron

2-1 Mux

q

R S1

n a1
1

Select

In_0

In_1 Out

w11
1 ...w13

1 wSi-1Si-1-1
i

Weight ROM

w22
1 ...w24

1 wSiSi-1
i

b2
1 ...b4

1 bSi
i

Weight ROM

Bias ROM

Multiple-Input Neuron

2-1 Mux

q

n

Select

In_0

In_1 Out

w21
1 ...w23

1 wSiSi-1-1
i

Weight ROM

•

•

a1
2

Figure 6.1: The General Multiple Multi-Input Hardware Neurons Diagram

87

6.2 Implementation in VHDL

Because of the modular design from the previous chapters, both designs can be com-

bined together by taking certain modules from each chapter. From Chapter 4, the

modules used are the b loader module and the modules which copy the neuron and

Bias ROMs. The modules used from Chapter 5 are the MIHN and the module which

copies the Weight ROM. The w loader and a loader store modules cannot be copied,

because they require additional logic to handle both inputs and outputs. The net-

work control module is the same as in the other chapters, because it needs to control

when values are being loaded into the memory modules within the neuron.

6.2.1 Changes in the Neuron

The neuron is the MIHN from Chapter 5, and there are not any changes to the

schematic or logic controlling the neuron. As seen in Figure 6.2, in order to create a

dynamically scaling number of inputs, the multiplier block is assigned signals w mlt 16

and p mlt 16. A more detailed schematic can be found in Appendix E, Figure E.5.

The variable MLT, short for multipliers, is used as the number of inputs to the neuron,

because the number of inputs to the neuron corresponds to the number of multipliers

within the neuron. By using the notation w mlt 16, the signal stands for the weight

value, copied MLT times, and is 16-bits. The output of the neuron is a single a 16

value, because only one output is computed at this level of abstraction. Table 6.1

provides a description of each of the signals in the schematic.

States of the neuron ctrl module do not change for any number of inputs. The

signals are all based on when b reg is complete or when the transfer function is done.

As seen in Figure 6.3, a value for R is loaded for this software layer. If the inputs

are ready to be calculated, then the multiplier is enabled. The results are cascaded

88

Figure 6.2: The Final Hardware Neuron Schematic

Figure 6.3: The Final Hardware Neuron Flow Diagram

through the multipliers, adder tree, and b adder until the accumulated n value is

produced, setting b reg done high. If it is the last set of inputs, then after b reg is

done, the transfer function will be enabled, causing the neuron done flag to be set

high, and the output a 16 to be set. This completes the calculation of one neuron.

89

Table 6.1: Neuron Schematic Signals

Signal Description

enable Enables only the neuron ctrl block.

clk Clocks signals for timing.

p ct Number of software inputs to process.

rts External module sets high to request to change inputs.

cts Neuron control sets high to allow change of inputs.

neuron state Allows for easy test bench access to states.

w mlt 16 Array of MLT 16-bit weight values.

p mlt 16 Array of MLT 16-bit input values.

a 16 The 16-bit output value.

init b The bias value.

mul mlt 16
⌈
MLT

2

⌉
16-bit multiply results.

mult done Enables the adder tree when multipliers values are computed.

adders done Enables the b adder when the adder tree output value is computed.

neuron done Set high when transfer function has been computed.

b reg done Set high when b reg is finished saving b adder output.

b reg init Set high when input bias needs loaded into b reg.

b adder done Enables b reg when the b adder is complete.

n rdy Set high when n is computed.

n out The value of n.

b back Value used to accumulate values, initialized as bias.

90

6.2.2 Changes When Adding the Weight ROMs

In order to maximize parallelism in the structure, the w mlt mem module, shown

in Figure 6.4, copies memory modules MLT times to create the w mlt 16 array of

signals. This module contains the RTS and CTS signal lines, which are connected to

the loader modules at the highest level of abstraction. The benefit is that the size

and type of the copied memory modules can be changed to optimize area later in

development, without changing the timing analysis.

Figure 6.4: The Final Weight ROMs Schematic

The final states of w mlt mem are shown in Figure 6.5. They are the same as

in Chapter 5, because this level of abstraction contains no changes to the design

when adding multiple hardware neurons. The w mlt mem module checks the w write

signal to see if values are ready, then stores mlt values into each of the copied Weight

ROMs. After MLT values have been saved, the counter is reset in order to start

storing from the first Weight ROM again. If values have already been saved, the

values are immediately clocked out in parallel by changing the address after each

91

Table 6.2: Weight ROM New or Important Schematic Signals

Signal Description

enable Enables both the w mem and neuron.

clk The clock for the modules.

p b rdy Set high when input and bias are ready.

neuron rts Set high when inputs, bias, and weights are ready.

neuron cts Set high when neuron allows values to change.

w mlt 16 Array of MLT 16-bit weight values.

w mem state out The state of the w mem for the test bench.

w write Set high when the Weight ROMs are being written to.

w data The data being stored into the Weight ROMs.

w rts Set high when w data is requested to change.

w cts Set high when w data is safe to change.

time the values are loaded.

6.2.3 Changes When Adding the Bias ROMs

A VHDL generate statement can be used to duplicate the hardware neurons in the de-

sign. The number of hardware neurons is assigned the variable HWN, which stands for

hardware neurons. The VHDL statement is encapsulated in the multi hardware neuron

block shown in Figure 6.6. Notice that the a outputs are an array of values, denoted

a hwn 16, along with the weight ROM’s RTS and CTS signals. This allows for indi-

vidual communication to each set of Weight ROMs to the loader modules at a higher

level of abstraction. Notice that the input signals for w data are not copied, and nei-

ther are the p mlt 16 input signals. This is because all inputs into the hardware layer

will be the same at each input iteration. A table of all new or important values is

shown in Table 6.3 for convenience. The b mhwn mem module does not change from

92

Figure 6.5: The Final w mlt mem Flow Diagram

Chapter 4. It contains HWN copies of the nested Bias ROM in order to parallelize

the inputs.

The states of the b mhwn mem module are the same as in Chapter 4 as well. If

the values have been loaded, signaled by b write being set low, then the values are

clocked out in parallel, updating the address for each set of values loaded. However, if

b write is set high, then the values will need to be stored individually into each ROM.

This is done by only updating the address signal after HWN values have been loaded.

In Figure 6.7, the states for when to store or load values, and when to increment

the address, are shown. When loading values, if a new value is present, decrement

a counter, if the counter has reached zero, then reset the counter. This is used to

enable and disable individual memory modules.

93

Figure 6.6: The Final Bias ROMs Schematic

6.2.4 Changes to the Network Schematic

The final network schematic, shown in Figure 6.8, shows the parallelized mhwn b mem

module next to the loader modules and the network control. A more detailed schematic

is located in Appendix E, Figure E.4. The mhwn b memmodule contains the MMIHN

layer and the b mhwn mem module. This block contains the parallelized hardware

layer. The loader modules talk to the memory modules within the hardware layer

to set values at initialization. The only major change to the schematic from the one

in Chapter 4 is the p mlt 16 signal going from the a loader store module into the

mhwn b mem module. Table 6.4 contains a description of the new or important sig-

nals. The network control module contains the Structure ROM and the a loader store

module contains the Input/Output RAM. The b loader and w loader contain only one

Bias ROM and one Weight ROM that match the description from Chapter 3.

The a loader store module needs to accommodate both multiple inputs and mul-

tiple outputs. The logic to handle these cases is shown in Figure 6.9. For each input

iteration, MLT inputs are serially loaded into an array of wires. When all inputs are

ready, the RTS flag is set high. This signals to the neuron that the input values are

ready to be input into the neuron. The neuron will handshake back to the loader

94

Table 6.3: Bias ROM New or Important Schematic Signals

Signal Description

enable Enables b mem and w hardware neuron.

clk Clock for the modules.

p rdy Set high when the input value is ready.

b rdy Set high when the bias value is ready.

b hwn 16 Array of HWN 16-bit bias values.

a hwn 16 Array of HWN 16-bit output values.

mhwn done Set high when the output of the multi hardware neuron is ready.

b rts Set high when b data is requested to change.

b cts Set high when b data is safe to change.

b write Set high when values are being written to Bias ROMs.

b data The value being stored into the Bias ROMs.

w rts hwn Array of HWN RTS values for w hwn mem.

w cts hwn Array of HWN CTS values for w hwn mem.

when it is ready for the next set of values. When all inputs to the neuron have been

loaded, the final set of output values need to be stored. First, the remaining S values

are checked to prevent bad output values from being saved. Then HWN hardware

neuron values are checked. If there are remaining software neurons, but all HWN

neurons have been stored, then the layer is not complete, so new values of R and S

are not loaded, and the process continues by loading MLT input values again. If there

are no longer any software neurons to be saved, then the layer is complete, and new

values for R and S can be loaded, which indicates a new layer is to be calculated.

The b loader will use the number of hardware neurons and the layer software

neurons to decide whether to clock in zero values to the nested memory. Figure 6.10

shows this process. If the HWN counter has remaining hardware neurons, then check

95

Figure 6.7: The Final Bias ROMs Schematic

if the a ct counter, the remaining software neurons, requires values to be stored. If

there are software neurons, then the value is stored, and the counters each have a

value subtracted. If the a counter runs out of values, then a zero is stored and the

HWN counter has a value subtracted. If the HWN counter is zero, but there are

values remaining, then the HWN counter is reset. Otherwise the process is complete

and a new value for a ct is loaded.

The w loader must check for the number of hardware neurons, the number of

software neurons, the number of inputs to a hardware neuron, and the number of

software inputs to a layer. All values are initialized with a counter. If there is a

remaining value, then a value is loaded. When software inputs have been loaded,

then zeros begin loading until the MLT counter runs out. When the MLT counter

runs out, if software inputs remain, the MLT counter is reset. Otherwise, the MLT

counter is reset and the HWN and a ct counters are decremented. Whenever the a ct

counter runs out of software neurons, MLT zeros will need to be stored. The p ct

96

Figure 6.8: The Final Scalable Hardware Neural Network

Figure 6.9: The Final a loader store Flow Diagram

signal should still be decremented in these states in order to store the correct number

of zeros into the memory modules. The HWN counter is decremented after the

correct number of zeros have been stored. After HWN is zero, if there are remaining

software neurons, the HWN counter is reset, but if there are no more software neurons

remaining, new values of a ct and p ct are loaded to start a new layer.

97

Table 6.4: Network Schematic New or Important Signals

Signal Description

enable Enables only the network control.

clk Clock for the modules.

network done Set high when software network has been calculated.

write all Set high when writing values to nested memory.

loaders rts Set high when a ct and p ct requested to change.

a loader cts Set high when a ct and p ct safe to change.

a ct Software neurons for layer.

p ct Software inputs for layer.

network ctrl state out State of network control for test bench.

mhwn enable Enables the calculation of the hardware layer.

p mlt 16 Array of MLT 16-bit input values.

a hwn 16 Array of HWN 16-bit output values.

p rts Set high when new input value requested to change.

p cts Set high when new input value safe to change.

a loader state out The state of a loader store for test bench.

p ct neuron The number of software inputs for the layer.

98

Figure 6.10: The Final b loader Flow Diagram

Figure 6.11: The Final w loader Flow Diagram

99

6.3 Timing Analysis

Because the outputs are divided by the number of hardware neurons, and the inputs

are divided by the number of inputs to the hardware neuron, concepts of input itera-

tions and hardware layer iterations can be used. These calculate the total number of

cycles that are required for a given layer. Equations 6.1 and 6.2 show how to calculate

the iterations. Input iterations represent the number of times that inputs will need

to be loaded into the neuron in order to calculate n. The hardware layer iterations

are based on the number of times that all inputs must be reloaded to calculate the

set of neuron outputs.

HardwareLayerIterations =

⌈
S

HWN

⌉
(6.1)

InputIterations =

⌈
R

MLT

⌉
(6.2)

All variables, found in Table 6.5, have been described in previous chapters. The

variables account for the modules which require different numbers of cycles to transi-

tion through their states. By modularizing the design, the cycles can be more easily

measured by looking at the state transitions for each module.

Using the variables described, the total cycles required for a layer can be calculated

using Equations 6.3 and 6.4. The number of input iterations multiplied by the number

of output iterations gives the total number of iterations of the hardware layer. The

cycles which are multiplied by this number are the number of cycles that are required

for computation at each iteration. Cycles which are multiplied only by the output

iterations only occur when a neuron’s or set of neurons’ outputs are ready to be

100

Table 6.5: Cycle Variables

Variable Description

Rn Number of inputs to the layer n

Sn Number of neurons of the layer n

CA Cycles required for one adder to complete

CM Cycles required for one multiplier to complete

CLNC Cycles of the neuron control logic per input

CTF Cycles required for the transfer function

CLA Cycles required for loading a single value

CSA Cycles required for storing a single output

CLS Cycles required to load a new structure

CSAL Cycles required for the logic to begin storing values

stored. The final addition of cycles occur only once per layer.

Cycles1 =

⌈
R1

MLT

⌉⌈
S1

HWN

⌉
(CM +CA(⌈Log2(MLT)⌉+1)+CLNC +MLT (CLA))

+

⌈
S1

HWN

⌉
(CTF + CSAL) + S1CSA + CLS (6.3)

Cyclesn =

⌈
Sn−1

MLT

⌉⌈
Sn

HWN

⌉
(CM +CA(⌈Log2(MLT)⌉+1)+CLNC +MLT (CLA))

+

⌈
Sn

HWN

⌉
(CTF + CSAL) + SnCSA + CLS (6.4)

6.4 Slice Requirement Analysis

Slices variables, found in Table 6.6, represent each module that exists within the

design. These variables change when the size of the network changes. This means that

quick calculations cannot be extrapolated exactly. However, they will stay relatively

constant and can be used to extrapolate within a margin of error.

101

Table 6.6: Slice Variables

Variable Description

SM Slices per multiplier

SA Slices per adder

STF Slices per transfer function

SW Slices per weight ROM

SWL Slices per weight logic

SNC Slices per neuron control block

SB Slices per bias ROM

SBL Slices per bias logic

SPA Slices per a loader store block

SBLD Slices per b loader block

SWLD Slices per w loader block

SNET Slices per network control block

Because each module is created a certain number of times, the slices required

by each module can be multiplied by that component to calculate the total slices.

Because the adder tree is completely removed when MLT is 1, Equation 6.6 should

be used during that case. Equation 6.5 represents the general case for the size of the

structure. This combines multiplying the number of hardware neurons by the size of

the MIHN.

SlicesMLT>1 = HWN(MLT (SM + SW) + (

⌈
MLT

2

⌉
(
⌈
MLT

2

⌉
+ 1)

2
+ 1)SA

+ STF + SWL + SNC + SB) + SBL + SPA + SBLD + SWLD + SNET (6.5)

102

SlicesMLT=1 = HWN(SM + SW + SA + STF + SWL + SNC + SB)

+ SBL + SPA + SBLD + SWLD + SNET (6.6)

6.5 Simulation Testing and Verification in Vivado

Using a test bench, a behavioral simulation can verify that the design works as ex-

pected. The same test case as the three previous chapters can be used in order to

ensure that, over different hardware sizes, the same calculation can be performed

using more area and less time. This test case uses 4 inputs, 10 hidden neurons, and

a single last layer neuron. This case will test that the neurons are being split up as

expected and that multiple layers can be transitioned correctly. As seen in Table 6.7,

all final values for the output layer are correct for all numbers of hardware neurons

and all numbers of inputs into the hardware neurons. This scalable network was

tested extensively over multiple software networks of different sizes and was found to

calculate the correct values in all cases.

Table 6.7: Final Layer Output Across Changing HWN and MLT

a12 MLT = 1 MLT = 2 MLT = 3 MLT = 4 MLT = 5

HWN = 1 3A7B 3A7B 3A7B 3A7B 3A7B

HWN = 2 3A7B 3A7B 3A7B 3A7B 3A7B

HWN = 3 3A7B 3A7B 3A7B 3A7B 3A7B

HWN = 4 3A7B 3A7B 3A7B 3A7B 3A7B

HWN = 5 3A7B 3A7B 3A7B 3A7B 3A7B

Cycles can be measured from the state transitions in the test bench. The variables

needed to compute the number of cycles in Equation 6.3 and 6.4 can be found in Table

6.8. Notice that because the adder tree is not generated when MLT is equal to 1,

103

the number of cycles for the neuron ctrl module is one cycle less. This is because

the neuron ctrl module waits for the adder tree to reset before starting the next set

of inputs which takes one cycle. All other values are not changed from the previous

chapters.

Table 6.8: Values of Cycle Variables

Variable Value Description

R1 4 Number of inputs to the layer 1

S1 10 Number of neurons of the layer 1

S2 1 Number of neurons of the layer 2

CA 8 Cycles required for one adder to complete

CM 6 Cycles required for one multiplier to complete

CMLT=1
LNC 8 Cycles of the neuron control logic per input iteration

CMLT>1
LNC 9 Cycles of the neuron control logic per input iteration

CTF 3 Cycles required for the transfer function

CLA 1 Cycles required for loading a single output

CSA 1 Cycles required to store a single value

CSAL 4 Cycles required for the logic to begin storing values

CLS 1 Cycles required to load a new structure

Plugging the measured cycles into Equations 6.3, the number of cycles can be

calculated as shown in Table 6.9. These are the values measured and calculated for

the software network. The equations match the measured values exactly, and so can

be used to extrapolate over larger hardware networks. Notice that the number of

cycles required decreases more quickly when adding hardware neurons than when

increasing the number of inputs.

Extrapolating these equations over a software network of 23 inputs and 23 software-

neurons, Figure 6.12 plots the speedup as the number of inputs to a hardware-neuron

104

Table 6.9: Measured and Calculated Cycle Requirements Across HWN and MLT

Cycles MLT = 1 MLT = 2 MLT = 3 MLT = 4 MLT = 5

HWN = 1 1240 915 1098 649 714

HWN = 2 745 550 643 399 419

HWN = 3 646 477 552 360 360

HWN = 4 547 404 461 301 301

HWN = 5 349 331 370 242 229

and the number of hardware neurons increase. Notice that the speedup as HWN

increases is increasing consistently faster than when MLT increases. MLT also causes

the network to slow down after another layer of the adder tree is added into the

hardware. This should hint that, depending on the software network, the number

of hardware neurons should generally be created before the multipliers are added.

However, to ensure this is the case, the amount of hardware that is consumed by

these cases should be considered too.

As shown in Tables 6.10 and 6.11, the calculated number of slices does not perfectly

match the measured number of slices. This is because the variables representing the

number of slices for each module change as MLT and HWN change. They are also

not constant within the same MLT and HWN. The copied modules consume different

amounts of space, even when using the same MLT and HWN. They generally consume

about the same amount of space across the cases, but this means that exact values

cannot be calculated. Because the calculations for speedup and area cutoff can be very

close, it may be critical to ensure that these equations are more accurate. However,

because of the difficulty of this problem, using an iterative process, the largest and

fastest network could be created despite the inaccuracy of the slice equations.

Because the equations are accurate enough to justify extrapolation, the equations

can be used to look at the LUT slices required by a software network of 23 inputs

105

0
5

10
15

20
25

0
5

10
15

20
25

0

20

40

60

80

100

120

MLT

MHWN 23 Software Inputs 23 Software Neurons as HWN and MLT Increase

HWN

S
pe

ed
up

Figure 6.12: Speedup for 23 Input 23 Software Neuron Network

and 23 software neurons as the HWN and MLT values change. Figure 6.13 shows

the area as the HWN and MLT vary. Notice that the area required is smooth and

has an almost constant gradient. This means that increasing HWN increases the

area by roughly the same amount as increasing MLT. The maximum slices could be

compared with the speedup table to see which configuration would be most optimal

for this case.

Assuming that the nested memory modules in the hardware are sized correctly,

the memory space will be approximately constant, instead of being multiplied by

HWN or MLT. The calculated slices can be used to ignore the points on the speedup

graph that are unobtainable. Using the LUT slices with a maximum value of 16000,

Figure 6.14 shows the number of slices that can be achieved for this structure. The

106

Table 6.10: Measured LUT Slice Requirements Across HWN and MLT

Slices MLT = 1 MLT = 2 MLT = 3 MLT = 4 MLT = 5

HWN = 1 2521 4132 6095 7633 9684

HWN = 2 4514 7941 11658 14553 18674

HWN = 3 6519 11579 17133 21477 27620

HWN = 4 8563 15174 22598 28537 36579

HWN = 5 10402 18844 28077 35743 45513

Table 6.11: Calculated LUT Slice Requirements Across HWN and MLT

Slices MLT = 1 MLT = 2 MLT = 3 MLT = 4 MLT = 5

HWN = 1 2521 4172 5912 7385 9303

HWN = 2 4469 7771 11251 14197 18033

HWN = 3 6417 11370 16590 21009 26763

HWN = 4 8365 14969 21929 27821 35493

HWN = 5 10313 18568 27268 34633 44223

maximum speedup, 22.8, is found when setting HWN to 12 and MLT to 4. This

speedup is almost the same as setting HWN to 23, a speedup of 22.56. Because

adding inputs uses slightly less space than adding an entire neuron, there are points

along the speedup chart that can be obtained which provide an optimal speedup for

the area required. The structure of the neuron could be changed so that some neurons

would not include a transfer function, which would change the finding. The spike in

the center of the graph represents the largest speedup. Other values are set to zero

to more clearly see where the maximum speedup is. The second highest speedup is

the spike at the edge of the graph. More designs can be considered by modifying the

equations.

If fixed-point, instead of floating-point calculations were used, the adders could be

107

0 5 10 15 20 25

0510152025
0

2

4

6

8

10

12

x 10
5

MLTHWN

S
lic

es

Figure 6.13: Speedup as MLT and HWN Increase for 23 Input 23 Software Neuron

Network

completed in a single cycle, so the speedup for adding inputs could rival the speedup

for adding hardware neurons. Figure 6.15 shows the maximum speedup for this case.

The number of LUT slices decreases dramatically for the fixed-point case, because

the DSP slices can be used. Notice that the available area for this case is significantly

greater than in the floating-point case. This allows for many more multipliers to be

instantiated. However, this design would require 276 DSP slices at the maximum

peak. Because the board only has only 240 DSP slices, the multipliers would need to

be loaded off to the LUT slices. Because fixed point multipliers use about 400 LUT

slices each, and 36 would need to be instantiated, there is not enough space on the

board for the maximum speedup in this graph. However, the next smallest peak is

at 23 hardware neurons and 8 inputs, which would be achievable. So, for fixed-point,

108

0
10

20

0
10

20

0

5

10

15

20

MLT

Speedup with Constant Memory Sizes − Max at HWN=12 MLT=4

HWN

R
ea

lis
tic

 S
pe

ed
up

Figure 6.14: Achievable Speedup for 23 Input 23 Software Neuron Network

the speedup could be more than double the speedup of the floating-point case. It is

interesting that, for this software network, it is more efficient to use fewer multipliers

because of the adder tree and the way the inputs are loaded into the network. An

optimization could be made by loading inputs into the network in parallel while the

neuron output is being calculated.

6.6 Summary for the Multiple Multi-Input Hardware Neurons

This chapter outlined the final steps in creating a fully configurable scalable hardware

neural network and provided equations to analyze the size and cycle requirements of

the architecture. Using two variables, MLT and HWN, the number of inputs to the

neuron and the number of hardware neurons can be easily changed. This, combined

109

0 5 10 15 20 25 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

HWN

Maximum Speedup in Fixed−Point − Max at HWN=23 MLT=12

MLT

R
ea

lis
tic

 S
pe

ed
up

Figure 6.15: Speedup for 23 Input 23 Software Neuron Network - Fixed Point

with the verification that the calculations produce valid results, shows that the design

produces valid output and is scalable. By using a modular approach, each module

can be encapsulated to represent a particular piece of the project that can be verified.

Test benches were created for each module and verified during the design process in

order to make debugging simpler. Working up from the neuron and slowly adding

each higher abstraction module, simple schematics can be made to show small parts

of the project. Using the equations for expected cycles and slice requirements, along

with measured variables, results can be extrapolated to see how the network would

behave in different conditions.

110

CHAPTER 7

Summary

The objective of this research has been to design the most efficient reconfigurable

implementation of a neural network on an FPGA. When power consumption on an

FPGA is not a concern, utilizing the maximum amount of resources for parallelization

can result in speedup of the computation of a neural network. Making the network

reconfigurable implies that any multilayer network architecture can be implemented

using any available FPGA resources. In addition, the VHDL code should be able

to be modified to accommodate different numbers of bits for accuracy and be able

to use different bit-representations, like fixed-point or floating-point. Measuring the

number of cycles needed for each section allows for the equations to be relevant within

the same architecture, no matter the size or representation. Being able to modify the

hardware for speedup and space allows for the most efficient hardware implementation

to be described for any given software neural network. This document described the

multiple stages involved in developing the fully scalable and reconfigurable hardware

neural network.

7.1 Accomplishments

The single-input hardware neuron (SIHN) is the most simple hardware description

that can compute a general multi-layer perceptron network. Creating this structure

forms the base for expanding the number of inputs and the number of neurons for

the hardware layer. The SIHN was implemented in VHDL using Xilinx Vivado on

an Artix-7 100-t FPGA. It was tested for a variety of neural network architectures,

111

and the accuracy was verified. Equations were developed and verified to predict the

number of clock cycles required to perform the neural network computation and the

amount of FPGA resources required to implement the SIHN. These equations formed

the basis for the multi-input and multiple neuron cases.

The multiple-single-input hardware neurons (MSIHN) case was an extension of

the SIHN case. The design uses a VHDL generate statement to dynamically copy

the SIHN so that multiple neurons can be calculated at once. This allows for the

hardware to take advantage of parallelism when the software network requires multiple

software neurons in a layer. Parallelism is achieved by dividing the rows of the weight

matrices among the hardware neurons. To maximize parallelism of the structure,

all components, including the hardware neuron, are copied. This allows for future

work to implement optimizations in special cases for additional speedup. Because the

matrix is being split up as the hardware neurons are increased, the weight and bias

ROM memory sizes should decrease. Memory sizes were not decreased during this

research, because regeneration of the memory cores would take too much time. Using

the idea of hardware layer iterations, the equations for the number of cycles and slices

from the SIHN case were modified to create new equations that change based on the

number of hardware neuron outputs. It was found that the speedup obtained using

MSIHN was almost linear, until the number of hardware neurons exceeded the number

of software neurons. It was also found that the number of required slices changes for

the modules with state machines when the number of neurons is increased, which

means that extrapolating hardware sizes will not be exact.

The multi-input (or multiple multiplier) hardware neuron (MIHN) was designed

in order to take advantage of parallelism by dividing the inputs. This corresponds

to dividing the columns of the weight matrices among the multipliers. An additional

adder tree was used in order to sum the results of the multiple multipliers. The

adder tree causes delay and sometimes consumes more area compared to increasing

112

the number of neurons. The SIHN equations were modified to accommodate the

additional cycles and slices required for the new MIHN design. In part because of the

requirement for the adder tree, the speedup achieved by the MIHN was well below

the ideal linear speedup.

The multiple multi-input hardware neurons (MMIHN) design was created using a

combination of the previous two cases by dividing the inputs and the software neurons

(columns and rows of the weight matrix). Each input requires one multiplier, then

each neuron requires one full set of input multipliers. Equations for the number of

slices were developed using the concept of input iterations and hardware layer iter-

ations. The input iterations are decreased by the number multipliers per hardware

neuron, while the number of hardware layer iterations are decreased by the number of

hardware neurons. As described earlier, increasing the number of hardware neurons

produces better speedup than increasing the number of multipliers, although this will

depend to some extent on the specific software network being computed.

7.2 Conclusions

Comparing the values calculated for speedup to the number of slices required, the

maximum space on the board can be used to find the largest cases that can be cre-

ated. Using the speedup values and the size equations, it was found that the condi-

tions for maximum speedup change dramatically based on the software network being

constructed. There is a trade-off between the number of hardware neurons (HWN)

and the number of multipliers (MLT), because increasing MLT increases speedup

more slowly, but uses less area. This means that some cases use area more efficiently

and can maximize the speedup by utilizing parallelization in ways that could not be

achieved by only copying the number of neurons. Also, because a given software net-

work may not always have equal numbers of inputs and outputs, it is useful to be able

113

to fully tailor the hardware design to the application. However, because the speedup

is more consistent when adding hardware neurons, if there exists enough hardware

to add the maximum amount of hardware neurons, this will generally produce the

fastest speedup. So, inputs to the neuron are generally a lower priority, which makes

sense because of the delay and area cost of the adder tree.

7.3 Future Work

The accuracy of the algorithm could be improved by either increasing the number of

bits in the floating-point representation, or using fixed-point instead. The floating-

point values can prevent overflow in the calculation of n, but will lose accuracy when

the exponent value is shifted. In order to prevent overflow while calculating n, the

number of bits for the adder tree can be increased by 1 during each stage, and then

all adders can be increased by the maximum number of input iterations for the given

software network. Alternatively, the adder tree could be replaced with a block-carry-

look-ahead (BCLG) adder, which would add each component, then have a final carry

propagate adder at the end. Adding the extra internal bits for accuracy will consume

significant area, but will still consume less space than the equivalent floating-point

network. The fixed-point multipliers use significantly less space as well, and so the

multipliers could be moved to any of the 240 DSP slices to make more room on the

board for more control logic or memory space. More information on the trade-offs

between floating and fixed point are given in Appendix A.

Design changes could be made to benefit the overall network design. The sizes of

the memory do not automatically scale to the size that should be required for a given

number of hardware or software neurons. The sizes of other memory modules for the

Weight and Bias ROMs are also based on the software network. The logic which loads

values could also be optimized to minimize the area for each of the ROMs. This could

be done with a scripting tool like python, or ideally a custom VHDL module could

114

be made. An optimization here seems very feasible, because the memory is currently

single cycle access. If the ROMs were moved to the block RAM to save even more

space, then the core modules may have to be automatically generated. Also, if the

hardware layer is equal to the largest number of software layer inputs and software

neurons, then the storing stage could be skipped, speeding up computation.

Another type of neural network can be implemented with some modifications to

the current design. A recurrent network is similar to a multi-layer perceptron network,

but uses feedback and tapped-delay-lines (TDL) in order to model dynamic systems.

All TDLs of the network can be created in hardware using a single shift register,

assuming that all time steps are equal in duration. The connections between the

layers of a recurrent network could be precalculated and stored into a set of memory

modules. The modules could be incremented by one address at a time, loading the

address of each input and the address to store each output. This would be expensive,

but would provide the maximum amount of flexibility. In order to account for multiple

connections between layers, a single output value may need to be stored more than

one time. The scalability of the network may not map very well to the physical world,

because the time step would need to be known beforehand. However, it should be

possible to do the computation with enough precalculation and memory. A Matlab

simulation was created to test this process and was able to calculate a NARX network

(a type of recurrent network), so the calculation in hardware is feasible.

115

BIBLIOGRAPHY

[1] J. Zhu, G. J. Milne, and B. Gunther, “Towards an fpga based reconfigurable

computing environment for neural network implementations,” 1999.

[2] C. Latino, M. A. Moreno-Armendariz, and M. Hagan, “Realizing general mlp

networks with minimal fpga resources,” in Neural Networks, 2009. IJCNN 2009.

International Joint Conference on, pp. 1722–1729, IEEE, 2009.

[3] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and implementation of pa-

rameterized fpga-based general purpose neural networks for online applications,”

Industrial Informatics, IEEE Transactions on, vol. 7, no. 1, pp. 78–89, 2011.

[4] A. Gomperts, A. Ukil, and F. Zurfluh, “Implementation of neural network on

parameterized fpga.,” in AAAI Spring Symposium: Embedded Reasoning, 2010.

[5] E. M. Ortigosa, A. Cañas, E. Ros, P. M. Ortigosa, S. Mota, and J. Dı́az, “Hard-

ware description of multi-layer perceptrons with different abstraction levels,”

Microprocessors and Microsystems, vol. 30, no. 7, pp. 435–444, 2006.

[6] S. Himavathi, D. Anitha, and A. Muthuramalingam, “Feedforward neural net-

work implementation in fpga using layer multiplexing for effective resource uti-

lization,” Neural Networks, IEEE Transactions on, vol. 18, no. 3, pp. 880–888,

2007.

[7] A. W. Savich, M. Moussa, and S. Areibi, “The impact of arithmetic represen-

tation on implementing mlp-bp on fpgas: A study,” Neural Networks, IEEE

Transactions on, vol. 18, no. 1, pp. 240–252, 2007.

116

[8] E. Z. Mohammed and H. K. Ali, “Hardware implementation of artificial neural

network using field programmable gate array,” International Journal of Com-

puter Theory and Engineering, vol. 5, no. 5, 2013.

[9] M. A. Çavuşlu, C. Karakuzu, and S. Şahin, “Neural network hardware imple-

mentation using fpga,” in ISEECE 2006 3rd international symposium on electri-

cal, electronic and computer engineering symposium proceedings. TRNC, Nicosia,

pp. 287–290, 2006.

[10] S. Jung and S. S. Kim, “Hardware implementation of a real-time neural network

controller with a dsp and an fpga for nonlinear systems,” Industrial Electronics,

IEEE Transactions on, vol. 54, no. 1, pp. 265–271, 2007.

[11] X. Li, M. Moussa, and S. Areibi, “Arithmetic formats for implementing artifi-

cial neural networks on fpgas,” Electrical and Computer Engineering, Canadian

Journal of, vol. 31, no. 1, pp. 31–40, 2006.

[12] J. Zhu and P. Sutton, “Fpga implementations of neural networks–a survey of

a decade of progress,” in Field Programmable Logic and Application, pp. 1062–

1066, Springer, 2003.

[13] A. R. Lopes and G. A. Constantinides, “A fused hybrid floating-point and fixed-

point dot-product for fpgas,” in Reconfigurable Computing: Architectures, Tools

and Applications, pp. 157–168, Springer, 2010.

[14] L. Zhuo and V. K. Prasanna, “Scalable and modular algorithms for floating-

point matrix multiplication on fpgas,” in Parallel and Distributed Processing

Symposium, 2004. Proceedings. 18th International, p. 92, IEEE, 2004.

[15] J.-W. Jang, S. B. Choi, and V. K. Prasanna, “Energy-and time-efficient matrix

multiplication on fpgas,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 13, no. 11, pp. 1305–1319, 2005.

117

[16] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural network

design. Martin Hagan, 2014.

[17] A. R. Omondi and J. C. Rajapakse, FPGA implementations of neural networks,

vol. 365. Springer, 2006.

[18] D. J. Smith, “Vhdl and verilog compared and contrasted-plus modeled example

written in vhdl, verilog and c,” in Design Automation Conference Proceedings

1996, 33rd, pp. 771–776, IEEE, 1996.

[19] Xilinx, “Artix R⃝-7 product table.” http://www.xilinx.com/publications/

prod_mktg/Artix7-Product-Table.pdf, 2015. [Online; accessed 8-March-

2015].

[20] D. Goldberg, “What every computer scientist should know about floating-point

arithmetic,” ACM Computing Surveys (CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[21] A. Savran and S. Ünsal, “Hardware implementation of a feed forward neural

network using fpgas,” in The third International Conference on Electrical and

Electronics Engineering (ELECO 2003), pp. 3–7, 2003.

[22] S. Sahin, Y. Becerikli, and S. Yazici, “Neural network implementation in hard-

ware using fpgas,” in Neural Information Processing, pp. 1105–1112, Springer,

2006.

118

APPENDIX A

16-Bit Floating and Fixed Slice Comparison

In general, a floating-point multiplier or adder takes more gates than a fixed-point

multiplier or adder. This also means that the delay time is longer, and the design

will consume more power and be more complex. As shown in Table A.1, from the

generated cores, the fixed-point cores consume less space.

Table A.1: 16-bit Fixed-Point and Floating-Point Core Sizes

Core Generated Fixed Adder Float Adder Fixed Mult Float Mult

LUTs 16 178 416 186

Slice Registers 16 251 31 219

The fixed adder is obviously a significant improvement over the floating adder -

more than a factor of ten. However, the multipliers are not as obvious. LUTs are

used for quick access, while the slice registers are used for combinational or timing

logic. The increased number of Slice registers used for the floating multiplier hints

that the logic is more complicated than that of the fixed multiplier. Using the DSP

slices can reduce the size even further. However, the floating-point adder cannot use

a DSP slice, because we are using a custom number of bits. The sizes of the adders

and multipliers can be found in Table A.2.

Using DSP slices reduces both of the fixed-point cores drastically. However, the

floating-point adder does not benefit at all, while the floating-point multiplier achieves

only a modest improvement. Prior investigation [17, p. 56] has shown that fixed-point

implementations can be 12x greater in speed, and over 13x smaller in area. However,

119

Table A.2: 16-bit Fixed and Floating Core Sizes with DSP Slices

Core Generated Fixed Adder Float Adder Fixed Mult Float Mult

DSP Slices 1 0 1 1

LUTs 1 178 0 74

Slice Registers 1 251 0 110

saturation error can occur with a fixed-point dot-product calculation [17, p. 56].

A similar problem arises with floating-point calculations, but instead of information

being completely destroyed, accuracy is lost.

Because of the values through the transfer function can be trimmed to ±3.999,

the fixed-point notation would be more efficient and more accurate. Although, when

calculating a dot-product over multiple iterations, if a partial sum saturates the n

value, then an addition of a negative number will result in an value with error because

n will re-enter the transition region of the tansig function. This can be solved by

making the adder, or adders within an adder tree increase in bit range to accommodate

the overflow. This may be a viable option considering the size of a floating-point adder

logic. In order to fit the largest number of neurons on a board, the fixed-point notation

is the obvious choice, but until the saturation problem is solved, the floating-point

representation will continue to be used. This is because the goal of the design is to

create a scalable neural network, so the size of the hardware can be optimized at a

later date.

120

APPENDIX B

Master and Slave handshaking schemes.

Typically, handshaking pins are used in a master and slave environment where one

module will behave more quickly. It is defined as the master, and then when a

submodule behaves more slowly, it will be defined as the slave. Masters have the

request to send because they are sending data down into the slave. The slaves have

clear to send signals so the master knows when it is okay to update the values. The

schematics follow a convention that the masters are typically on the righthand side of

the schematic, while the slaves are on the lefthand side. This follows a convention that

inputs are typically on the lefthand side of schematics, while outputs are typically on

the righthand side. Figure B.1 shows a flow chart of a master communicating with a

slave.

Figure B.1: Master and Slave RTS and CTS Signaling

Notice that because the slave is slower than the master, the master will typically

be waiting on the slave’s CTS to go high. However, the slave does not want to clock

121

in bad data, so the master’s RTS pin must go low for one cycle in order for the slave

to verify that new data has been clocked in. Also, note that this convention uses an

active high approach to RTS and CTS handshaking. The neuron is assumed to be

the slave in this construct, because it is accepting data from the uppder modules.

The modules that send the data to the neuron are considered masters and therefore

have the RTS signals and are instantiated above the neuron module abstraction.

122

APPENDIX C

Tables of Required Cycles

Tables are on the next set of pages.

123

Table C.1: Calculated Cycles and Speedup for 1 input and 23 Software-Neurons Layer

Hardware Neurons Linear Speedup Cycles Required Calculated Speedup

1 1 714 1

2 2 384 1.859375

3 3 264 2.704545455

4 4 204 3.5

5 5 174 4.103448276

6 6 144 4.958333333

7 7 144 4.958333333

8 8 114 6.263157895

9 9 114 6.263157895

10 10 114 6.263157895

11 11 114 6.263157895

12 12 84 8.5

13 13 84 8.5

14 14 84 8.5

15 15 84 8.5

16 16 84 8.5

17 17 84 8.5

18 18 84 8.5

19 19 84 8.5

20 20 84 8.5

21 21 84 8.5

22 22 84 8.5

23 23 54 13.22222222

124

Table C.2: Calculated Cycles and Speedup for 23 inputs and 1 Software-Neuron Layer

Hardware Neuron Inputs Linear Speedup Calculated Cycles Calculated Speedup

1 1 5371 1

2 2 3921 1.369803622

3 3 3281 1.637000914

4 4 2481 2.164852882

5 5 2481 2.164852882

6 6 2001 2.684157921

7 7 2001 2.684157921

8 8 1521 3.531229454

9 9 1761 3.049971607

10 10 1761 3.049971607

11 11 1761 3.049971607

12 12 1201 4.472106578

13 13 1201 4.472106578

14 14 1201 4.472106578

15 15 1201 4.472106578

16 16 1201 4.472106578

17 17 1361 3.946362968

18 18 1361 3.946362968

19 19 1361 3.946362968

20 20 1361 3.946362968

21 21 1361 3.946362968

22 22 1361 3.946362968

23 23 721 7.449375867

125

APPENDIX D

Tables of Measured and Calculated Slice Requirements

Table D.1: Slice Register Requirements by Hardware Neuron Count

Variable HWN=1 HWN=2 HWN=3 HWN=4 HWN=5

SM 110 110 110 110 110

SA 251 251 251 251 251

STF 37 37 37 37 37

SW 16 16 16 16 16

SWL 22 22 22 22 22

SNC 54 54 54 54 54

SB 16 16 16 16 16

SBL 16 33 37 35 36

SPA 148 148 148 147 148

SBLD 69 68 68 68 69

SWLD 95 98 100 102 103

SNET 31 31 31 31 31

TotalMeasured 865 1387 1893 2398 2905

TotalCalculated 865 1390 1902 2407 2917

TotalCalculated = HWN(SM + SA + STF + SW + SWL + SNC + SB)

+ SBL + SPA + SBLD + SWLD + SNET (D.1)

126

APPENDIX E

Detailed Schematics

Schematics are on the next pages.

127

Figure E.1: Schematic of Single Neuron Network

128

Figure E.2: Detailed Schematic of Single Neuron Network

129

Figure E.3: Schematic of Neural Network Multi-Input Single-Hardware Neuron

130

Figure E.4: Schematic of Final Scalable Hardware Neural Network

131

Figure E.5: Schematic of Final Hardware Neuron Schematic

132

VITA

Evan Williams

Candidate for the Degree of

Master of Science

Dissertation: CREATING SCALABLE NEURAL NETWORKS WITH MAXIMAL
FPGA RESOURCES

Major Field: Electrical Engineering

Biographical:

Education:
Completed the requirements for the degree of Master of Science in Electrical

Engineering at Oklahoma State University, Stillwater, Oklahoma in May,
2015.

Completed the requirements for degree of Bachelor of Science in Electrical
Engineering at Oklahoma State University, Stillwater, Oklahoma in
December, 2013.

Experience:
Garmin Marine Intern — Software Engineering — Summer 2013

Subsite Division of Charles Machine Works Intern — Electrical and Computer
Engineering — Summer 2011, Summer 2012

