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CHAPTER 1

INTRODUCTION

1.1 Elementary shortest path problem with negative cycles

The Elementary Shortest Path Problem (ESPP) in a directed network seeks a directed

path from a speci�ed source node to a speci�ed sink node such that the sum of arc

weights of all the arcs on the path is a minimum. A network is said to contain a

negative cycle if it contains a directed cycle, with sum of its arc weights being negative.

ESPP in networks without negative cycles is a well-solved problem. However, �nding

an elementary shortest path in networks containing negative cycles is an NP-hard

problem [1].

Algorithms solving ESPP seek a directed walk of the shortest length. A directed

walk can be visualized as a directed path with directed cycles attached to it. If the

directed cycles attached to the path are not negative cycles, then it is possible to

remove those cycles from the walk without increasing the objective function and a

shortest path can be identi�ed. However, in the presence of a negative cycle, it is

no longer possible to remove the cycle without increasing the objective function. In

order to �nd a directed path in a network containing negative cycles, it is necessary to

restrict walks from revisiting nodes. This additional requirement makes this problem

more di�cult to solve. This thesis proposes and investigates a new approach to solve

the Elementary Shortest Path Problem with Negative Cycles (ESPPNC).
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1.2 Motivation

The Longest Path Problem (LPP) is used to �nd the longest distance between two

nodes in a graph. LPP is used to calculate critical paths in the parallel precedence-

constrained job scheduling problem i.e. scheduling jobs on identical processors when

certain jobs have to be completed before beginning certain other jobs, such that all

the jobs are completed in the minimum amount of time while still respecting the

constraints [2]. In this problem, a feasible path is a subgraph in which each task

must wait for the one before it to get completed. Any path with two parallel tasks

is excluded from the solution because they may violate the precedence constraints.

On the contrary, no job on the longest path can start before the previous tasks are

�nished; so each task is �nished as soon as the longest path to its end point is �nished.

Consequently, the whole job is �nished as the longest path is completed.

Unlike the shortest path problem, LPP is an NP-hard problem [3]. Some e�ective

approximation algorithms are available in the literature which can solve LPP [4, 5].

In order to �nd the longest path in a graph with nonnegative arc weights, all arc

weights can be multiplied by -1 and a shortest path algorithm can be used. During

this procedure negative cycles may be created. So an ESPPNC algorithm can also be

used to �nd a longest path.

ESPPNC also arises as a sub-problem in column generation schemes for the vehicle

routing problem with time-windows [6, 7]. When this problem is solved using a

branch-and-price algorithm, arcs with negative reduced cost can be involved and

consequently paths with negative reduced cost can also be involved. However, the

optimal solution is identi�ed when there are no more negative reduced cost paths.

So, �nding a most negative reduced cost path is necessary to validate the optimality

of a solution, but since there are arcs with negative reduced cost, negative cycles can

be present. An ESPPNC model can be used here to identify improving columns.
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1.3 Organization

This thesis is organized as follows: The remainder of this chapter discusses the

ESPPNC, including formal de�nitions and a review of the classical algorithms used to

solve the ESPP, before providing the reasons why the classical approaches fail to cor-

rectly solve the ESPPNC. This chapter also presents the approaches in the literature

to solve the ESPPNC and introduces the research problem. Chapter 2 introduces our

decomposition ideas and the resulting decomposition and branch-and-cut algorithms

for this problem.

Chapter 3 is devoted to the computational study, which presents the objectives

of the experiments, provides implementation details, summarizes the results and dis-

cusses the �ndings. Finally, Chapter 5 presents the conclusions of this thesis and

directions for future research.

1.4 De�nitions and notations

Consider a simple, �nite and directed graph G = (N,A), consisting of N , a set of

nodes and A, a set of arcs. This graph G contains n nodes and m arcs (|N | = n and

|A| = m). For each arc (i, j) ∈ A, i is the tail node and j is the head node. The

arc is oriented from the tail node to the head node. The cost or weight of an arc

(i, j) ∈ A is cij. In many practical cases, the networks have nonnegative arc weights,

but in some cases networks can have negative arc weights. For each node i, Γ+(i)

represents all nodes which are out-neighbors of node i. Similarly Γ−(i) represents all

nodes which are in-neighbors of node i. Formally, Γ+(i) = {j ∈ N | (i, j) ∈ A} and

Γ−(i) = {j ∈ N | (j, i) ∈ A}.

De�nition 1 In a directed graph, a directed walk is a sequence of nodes v1, v2, ....., vk,

such that (vi, vi+1) ∈ A, for i = 1, 2, ..., k − 1.
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(a)

(b) (c)

Figure 1.1: (a) A directed walk between node 1 and 5; (b)A directed path between

node 1 and 5; (c)A directed cycle 2-3-4-2

In a directed walk, the nodes need not be distinct i.e., there may be repetition of

nodes. In the above de�nition, v1 and vk are the end nodes of the walk.

De�nition 2 A directed path is a directed walk without any repeated nodes.

De�nition 3 A directed cycle is a closed directed path v1, v2, ....., vk, such that (vk, v1) ∈

A.

Every directed walk from nodes s to node i can be decomposed into a directed path

from node s to i and arc-disjoint directed cycles [8, p.79-81].

1.5 Classical approaches for the shortest path problem

The ESPP without negative cycles is a well-solved problem, which has several strongly

polynomial time algorithms [8]. The classical combinatorial algorithms typically solve

the single source shortest path problem by �nding a shortest path tree, a directed

out-tree rooted at the source node that contains shortest paths from the source node s

to all the other nodes. None of the classical approaches work correctly in the presence

of negative cycles. In this section, the working principle of the classical algorithms as

well as the reason they fail to �nd a shortest path in the presence of negative cycles
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is discussed.

The elementary shortest path problem can be solved in polynomial time in directed

acyclic graphs, by scanning out-neighbors of nodes in a topological order, but this does

not apply to the graphs that contain a directed cycle as no topological ordering exists

for those graphs. For such non-acyclic graphs, the well-known Dijkstra's Algorithm

[9] can be used, but it can fail to correctly identify a shortest path in the presence of

an arc with negative weight.

1.5.1 Label-correcting algorithms

A label-correcting algorithm typi�ed by the Bellman-Ford Algorithm [10, 11, 12] is

e�cient for �nding shortest paths in networks with directed cycles and negative arc

weights, but not in the networks containing negative cycles. Label-correcting algo-

rithms are iterative approaches that work on the basis of distance labels. In label-

correcting algorithms, the distance labels on nodes are updated as better (shorter)

paths are discovered in each iteration, until the termination condition is reached.

The nodes are guaranteed to receive optimal distance labels only after the algorithm

termination. The optimality condition on which the label-correcting algorithms are

based is as follows:

Theorem 1 [8, p.136] Consider a directed network G = (N,A) with no directed neg-

ative weight cycles. For each node j ∈ N , let d(j) < ∞ be the distance label that

denotes the length between source node s and j on a directed path. Then, d(j) is

optimal if and only if d(j) ≤ d(i) + cij ∀(i, j) ∈ A.

This condition states that the shortest path distance label of node j is not greater

than shortest path length up to node i along with the length of arc (i, j). Reduced

arc lengths or reduced costs with respect to distance label vector d is associated with

each arc (i, j) ∈ A as cdij = cij + d(i) − d(j). Some of the properties associated with

reduced arc length are as follows [8, p. 44] :
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Property 1 For any directed cycle W ,
∑

(i,j)∈W cdij =
∑

(i,j)∈W cij.

Property 2 d is optimal if and only if, cdij ≥ 0 ∀(i, j) ∈ A

The generic label-correcting algorithm shown in Algorithm 1, works based on

this optimality condition. This algorithm arbitrarily chooses any arc (i, j) ∈ A that

violates the optimality condition (cdij < 0) and updates the distance lable d(j) ac-

cordingly.

Algorithm 1 Generic label-correcting Algorithm

Require: G = (N,A) without any negative cycles, source node s and cij

1: d(s) := 0, pred(s) := 0

2: d(j) :=∞ ∀j ∈ N \ {s}

3: while some arc (i, j) ∈ A satis�es d(j) > d(i) + cij do

4: d(j) := d(i) + cij, pred(j) := i

5: end while

In the presence of negative cycles Algorithm 1 does not terminate. Consider a

directed cycle W which contains arcs that satis�es the optimality condition. Prop-

erty 2 implies that
∑

(i,j)∈W cdij ≥ 0. On the contrary, Property 1 implies that∑
(i,j)∈W cdij =

∑
(i,j)∈W cij ≥ 0. So, in the presence of negative cycles no distance

labels could satisfy the Properties 1 and 2. Because of this reason, the optimality

condition which serves as the basis of label-correcting algorithms is no longer reached

in the presence of negative cycles. Figure 1.2 shows a directed graph with a negative

cycle 1-2-1 of cost -7. Generic label-correcting algorithm keeps on traversing this cy-

cle, because with each iteration the new distance label of node 1 and 2 will be lesser

by 7 units than the previous label.

1.5.2 Linear programming

Flow on an arc (i, j) ∈ A represented by xij, is the decision variable of the Linear Pro-

gramming (LP) formulation for the ESPP. If the arc (i, j) is on a shortest path, then
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Figure 1.2: A cycle detected from a graph after termination of Bellman-Ford algorithm

xij is 1 and 0 otherwise, as every extreme point optimal solution to this formulation

is binary. The following is the LP formulation for the ESPP.

Formulation 1

Min
∑

(i,j)∈A

cijxij (1.1)

Subject to:

∑
j∈Γ+(i)

xij −
∑

j∈Γ−(i)

xj i =


+1, i = s

−1, i = t

0, otherwise

(1.2)

0 ≤ xij ≤ 1 ∀(i, j) ∈ A (1.3)

If this LP formulation is used to solve ESPP, the extreme point optimal solutions

are integral because of the totally unimodular structure of the node-arc incidence

matrix [8, p. 449].

The above formulation is su�cient to solve ESPP on a directed graph with negative

arc weights, but if negative cycles are present then the optimal solution obtained may

not necessarily be a directed path; it is however guaranteed to be a directed walk
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Figure 1.3: A solution to the basic LP formulation

from source node to sink node which satis�es the �ow conservation constraints. An

example for this case is shown in Figure 1.3. The optimal solution here is a directed

walk from the source node to the sink node with a negative cycle attached to it

(1-2-1). The optimal solution is not a directed path, but still the �ow conservation

constraints are satis�ed.

These classical approaches can fail to produce correct results while solving the

ESPPNC. Presenting and analyzing two new approaches to solve the ESPPNC is the

objective of this thesis.

1.6 Literature review

The ESPPNC is a class of problem that has received very sparse attention in this

�eld. In this section, the studies focused on solving the ESPPNC are summarized

before the new algorithms are presented.

Drexl [13] proposed a method by which violated Subtour Elimination Constraints

(SEC) can be identi�ed while solving the ESPP in a branch-and-cut framework. The

conventional approach for identifying violated SECs was maximum �ow algorithms

[14]. The minimum cut which has a strong relationship with maximum �ow was used
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in [15] to identify violated SECs in the asymmetric traveling salesman problem. In

[13], a di�erent approach for the separation problem was proposed. This approach is

based on the graph construct called strong component.

De�nition 4 [13] A strong component is a strongly connected subgraph G′ = (N ′, A′)

of graph G = (N,A), such that there are no nodes i ∈ N ′ and j ∈ N \N ′ containing

a directed i− j path and a j − i path.

A nontrivial strong component is a strong component containing more than one

node. The separation procedure presented in [13] is based on the fact that a subtour

contains exactly one non trivial strong component. Based on the results, the time

taken for separation problem (identifying violated SECs) was shown to be compara-

tively much better than maximum �ow algorithms. The approach proposed in this

paper is not limited only to ESPP. It is also applicable to various NP-hard problems,

including shortest Hamiltonian path problem, Traveling Salesman Problem (TSP) and

its variations.

Ibrahim et al. [16] analyzed two types of �ow based formulations to �nd an el-

ementary shortest path in directed networks containing negative cycles. This work

was mainly focused on presenting two di�erent exact formulation approaches. The

�rst formulation was closely associated with the asymmetric TSP [15]. SEC lie at the

heart of this �ow-based formulation.

Formulation 2

Min
∑

(i,j)∈A

cijxij (1.4)

Subject to:

Constraint (1.2)

∑
(i,j)∈S

xij ≤ |S| − 1 ∀S ⊆ N, 2 ≤ |S| ≤ |N | (1.5)

9



xij ∈ {0, 1} ∀(i, j) ∈ A (1.6)

Formulation 2 has an exponential number of constraints. However, Formulation

3 also introduced in [16], has a polynomial number of constraints. It is a MIP for-

mulation which is closely related to the earlier work done by Maculan et al. [17]. In

Formulation 3, a binary variable yi is associated with each node i ∈ N ; yi = 1, if the

node i is in the elementary s − t shortest path P and yi = 0 otherwise. The �ow

through an arc (i, j) ∈ A, from source node s to some other node k is de�ned by

variable zkij.

Formulation 3

Min
∑

(i,j)∈A

cijxij (1.7)

Subject to: ∑
j∈Γ+(s)

zksj −
∑

j∈Γ−(s)

zkjs = yk ∀k ∈ N \ {s} (1.8)

∑
j∈Γ+(i)

zkij −
∑

j∈Γ−(i)

zkji = 0 ∀k ∈ N \ {s}, i ∈ N \ {s, k} (1.9)

∑
j∈Γ+(k)

zkkj −
∑

j∈Γ−(k)

zkjk = −yk ∀k ∈ N \ {s} (1.10)

∑
j∈Γ+(i)

xij = yi ∀i ∈ N \ {s, t} (1.11)

∑
j∈Γ−(i)

xji = yi ∀i ∈ N \ {s, t} (1.12)

∑
j∈Γ+(s)

xsj = 1 (1.13)

∑
j∈Γ−(t)

xjt = 1 (1.14)

0 ≤ zkij ≤ xij ∀(i, j) ∈ A, k ∈ N \ {s} (1.15)

xij ∈ {0, 1} ∀(i, j) ∈ A (1.16)

yi ∈ {0, 1} ∀i ∈ N (1.17)
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Directed walks from the source node to the sink node are no longer feasible to

Formulation 3. Consider Figure 1.3 which is a directed walk from the source node to

the sink node, an optimal solution to the LP formulation of ESPP. In this solution,

y1 = 1, because node 1 is in the solution. Note that, node 1 is a 4 degree node with

two units of in�ow and two units of out�ow. However, Constraints (1.11-1.12) ensures

that, if yi = 1 then i is a 2 degree node. So, a directed walk which is optimal to the

LP formulation is infeasible to Formulation 3.

In a graph with n nodes and m arcs, Formulation 3 yields (n − 1) (n + 2m + 2)

constraints. The linear relaxation of Formulation 3 was also investigated in [16]. The

performance of the LP relaxation of Formulation 3 was comparativley better than

Formulation 2.

When solving the ESPPNC to optimality, Formulation 3 can identify an elemen-

tary shortest path even in the presence of directed negative cycles. However, �nding

the optimal solution by directly solving this MIP model is di�cult.

Ibrahim et al. [18] builds on Formulation 3 presented in [16]. In [18], the optimal

solution of the LP relaxation of Formulation 3 was identi�ed and gradually strength-

ened by adding violated inequalities in a cutting plane algorithm framework. Also,

in [18] two di�erent families of lifted inequalities (simple lifted valid inequalities and

co-cycle lifted valid inequalities) were proposed and investigated. Simple lifted valid

inequalities proved to be more e�ective when used in this exact algorithm.

All the past work in the literature involves exact algorithms that strengthen ex-

act formulations by adding cutting planes. However, a decomposition approach has

not been explored to solve ESPPNC. Two algorithms are presented in this thesis

that solve ESPPNC using a decomposition and branch-and-cut technique (DBC).

DBC approaches start with a master relaxation of the original formulation and then

strengthen the master relaxation by adding lazy constraints in a branch-and-bound

(BB) framework.
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CHAPTER 2

DECOMPOSITION ALGORITHMS FOR ESPPNC

2.1 Complete formulation

A complete formulation for the ESPPNC is presented in this section before introduc-

ing the master relaxation. Our complete formulation is a di�erent presentation of

Formulation 3 discussed in Section 1.6.

In order to model the shortest path problem in a network containing negative cycles,

we employ additional constraints called cycle elimination constraints. Similar to SEC,

for every negative cycle containing q arcs, a constraint enforcing the selection of at

most q − 1 arcs from that cycle is included in the formulation. We refer to this as a

cycle elimination constraint.

Formulation 4

Min
∑

(i,j)∈A

cijxij (2.1)

Subject to:

Constraint (1.2)

∑
(i,j)∈E(W )

xij ≤ |W | − 1 ∀W ∈ W (2.2)

xij ∈ {0, 1} ∀(i, j) ∈ A, (2.3)

where,W is the collection of all the negative cycles in the network. Constraints (2.2)

represents the cycle elimination constraints.
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In some graph instances, the number of negative cycles can be exponential. Assum-

ing a bidirected, complete graph with negative arc weights and n nodes, the worst

case scenario is a total of 2n−1 negative cycles. This exact formulation becomes

unmanageable if we aim to solve it directly using a commercial MIP solver. So, a

master relaxation to the complete formulation is proposed where the cycle elimination

constraints are relaxed, which is then used in a decomposition and branch-and-cut

algorithm.

2.2 Master relaxation

De�nition 5 A Path-Cycle tuple (PC-tuple) is a subgraph containing exactly one

elementary s-t path and at least one directed cycle, with the path and cycle(s) being

pairwise node-disjoint.

An example of a PC-tuple is shown in Figure 2.1. In order to add a cycle elimina-

tion constraint in a cutting plane algorithm, a negative cycle in the solution should be

identi�ed �rst. This process of detecting a negative cycle in the solution is the separa-

tion problem. The negative cycle elimination constraints are relaxed at the beginning

of the DBC algorithm and a Master Relaxation Problem (MRP) is obtained.

Formulation 5 (MRP)

Min
∑

(i,j)∈A

cijxij (2.4)

Subject to:

Constraint (1.2)

∑
j∈Γ+(i)

xij ≤ 1 ∀i 6= s, t (2.5)

∑
j∈Γ−(s)

xjs = 0 (2.6)

13



Figure 2.1: A PC-tuple; Total cost: -47 (Path P : -19, Cycle W1: -28)

∑
j∈Γ+(t)

xtj = 0 (2.7)

xij ∈ {0, 1} ∀(i, j) ∈ A (2.8)

If there is no elementary s-t path in the network, then the set of solutions satisfying

the above constraints is empty. Apart from relaxing cycle elimination constraints,

three new constraints are added to the master relaxation. Constraint (2.5) makes

sure that no node has more than single unit of out�ow. Constraint (2.6) ensures that

there is no in�ow into the source node. Constraint (2.7) ensures that there is no

out�ow from the sink node. Note that this formulation is still a relaxation because

every s-t path satis�es Constraints (2.5), (2.6) and (2.7).

Proposition 1 Every feasible solution to the MRP corresponds to a PC-tuple.

A solution feasible to the master relaxation is shown in Figure 2.1. The node set for

the path P from the source node to the sink node is {0, 1, 5} and also a cycle W1

can be found whose node set is {2, 3, 4}. This solution is a PC-tuple.

A PC-tuple containing cycles with positive weight can be feasible to the MRP.

But it cannot be optimal to the MRP because the objective function value can then

14



be improved by removing the arcs of the positive weight cycle from the solution.

However, a PC-tuple containing exclusively negative cycles can be optimal to the

MRP. In such PC-tuples containing negative cycles, any arc (i, j) ∈ A with xij = 1

and not on the directed path P , is on a negative cycle. For example, in Figure 2.1

x24 = 1, but the path in that PC-tuple is 0-1-5 and the arc (2,4) is not on it. This

means that arc (2,4) is a part of a negative cycle. This enables a simpler approach

to the separation problem. Just detecting an arc in the PC-tuple which is not on the

s− t path of that PC-tuple leads to the detection of a negative cycle. This separation

approach is described in Algorithm 2. Note that the separation problem is solved

after obtaining an integer feasible solution to the MRP. The steps of the algorithm

are as follows:

1. Given a PC-tuple, the path from the source node to the sink node is traversed

and all the nodes on the path are marked.

2. All the nodes are scanned in the increasing order of the node label. The �rst

unmarked node i incident to an arc (i, j), such that xij = 1 is selected. By the

foregoing discussion, the arc (i, j) is a part of a negative cycle W .

3. By traversing along the negative cycle W that contains the arc (i, j), all the

internal nodes of that negative cycle are identi�ed and marked.

Note that the cycle is identi�ed from the set of unmarked nodes by scanning in the

increasing order of the node label. Because of this, if there is more than one negative

cycle in a PC-tuple, the cycle containing the node with the smallest index number is

identi�ed �rst.

2.2.1 Lazy constraints

Large number of cycle elimination constraints can be involved in Formulation 4 and

only some of the constraints are violated during the runtime of the algorithm, while
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Algorithm 2 Separation

Require: A graph G = (N,A) containing a PC-tuple corresponding to x ∈ {0, 1}m,

source node s, sink node t

1: Unmark all nodes in N , mark root node s

2: i := s; PATH := ∅;CYCLE := ∅

3: while i 6= t do

4: if node i is incident at an arc (i, j), such that xij = 1 then

5: PATH := PATH ∪ {i}, mark node i

6: i := j

7: end if

8: end while

9: for i=1 to n do

10: if i is unmarked then

11: if node i is incident to an arc (i, j), such that xij = 1 then

12: CY CLE := CY CLE ∪ {i}, mark node i, k := i and i := j

13: while j 6= k do

14: if node i is incident to an arc (i, j), such that xij = 1 then

15: CY CLE := CY CLE ∪ {i}, mark node i

16: i := j

17: end if

18: end while

19: Break for-loop

20: end if

21: end if

22: end for

23: Return CYCLE

16



the remaining constraints are not violated. These constraints need not be included

in the formulation, but the violation of a constraint can be veri�ed only during the

running of the algorithm. The solver package we use has built-in methods for dealing

with this scenario, known as lazy constraints.

Using this feature, a set of constraints are pooled together and a BB algorithm

is executed. If one of the cycle elimination constraints is found to be violated in an

intermediate step using the separation algorithm, then that particular constraint is

enforced. This approach enables dealing with large number of constraints [19].

2.3 Decomposition and branch-and-cut approach

The structure of the proposed decomposition and branch-and-cut approach is dis-

cussed in this section. Branch-and-cut technique is one of the most widely used tools

in integer programming to solve NP-hard problems. Our algorithm begins by solving

the master relaxation of the original formulation which is discussed in Section 2.2.

Each node of the BB tree can represent one of the following cases:

- An elementary s − t path, in which case the BB node is pruned by feasibility

and the incumbent solution is updated as required.

- A fractional solution, in which case we continue branching.

- An infeasible LP relaxation, in which case we prune that BB node by infeasi-

bility.

- A PC-tuple feasible to the MRP, then a sequence of steps are followed as shown

below:

1. The separation problem is solved and the negative cycle is detected.

2. The cycle elimination constraint is added to the current formulation as a

lazy constraint and the LP relaxation is re-solved.
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3. The re-solved LP may terminate yeilding an s− t path (in which case the

BB node is pruned by feasibility) or a fractional solution (in which case we

continue branching) or a PC-tuple (in which case steps 1-3 are repeated).

This algorithm terminates when there are no nodes left in the BB tree to branch.

At that point, the incumbent solution is the optimal elementary s− t path.
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CHAPTER 3

COMPUTATIONAL STUDY

This chapter presents the results of our computational experiments followed by dis-

cussions of speci�c noteworthy observations. The objective of the experiments in this

chapter is to investigate the scalability and computational performance of the DBC

approaches. This includes extracting the runtimes of the algorithms for solving vari-

ous parts of the problem on di�erent test-beds; comparing the computational results

of the DBC algorithms with direct solution of Formulation 3 using a commercial MIP

solver.

3.1 Approaches in implementing cutting planes

In the implementation of the DBC approach, the lazy constraints are added using

the callback function. Two di�erent approaches to implement cutting planes in the

callback function of DBC algorithms are discussed in this section.

Single lazy constraint (DBC-SC): Consider a PC-tuple detected in the callback

function. Assume this PC-tuple contains more than one negative cycle. A single

negative cycle is detected from that PC-tuple and a cycle elimination constraint is

added that eliminates the identi�ed PC-tuple. This means that one lazy constraint

is added for every PC-tuple detected in the DBC algorithm. Recall that the negative

cycle containing the node with minimum node label is identi�ed in this setting.

Multiple lazy constraints (DBC-MC): If a PC-tuple containing more than one

negative cycle is detected in the callback function, then all the negative cycles present
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in that PC-tuple are used to generate cuts. Cycle elimination constraints are added

to eliminate this PC-tuple. This means that one lazy constraint is added for each

negative cycle within every PC-tuple detected in the DBC algorithm. This approach

is expected to strengthen the relaxation more than the DBC-SC approach that has

enumerated the same number of BB nodes as more cutting planes are added. However,

we cannot strictly guarantee this as the search tree is also di�erent under these two

settings and are not directly comparable.

3.2 Implementation details

The DBC algorithms and the MIP formulation were implemented in C++, and

GurobiTM optimizer 6.0.2 was used to solve all the instances. All experiments were

conducted on a 64-bit computer equipped with a 2.20 GHz Intel R© coreTM i3-2328M

CPU and 4.00 GB RAM. The operating system on the computer was Windows R© 8.1.

Data was collected and stored using Microsoft R© Excel R©. The results were analyzed

and visualized using Microsoft R© Excel R© and MATLAB R©. The runtimes were ex-

tracted in seconds. The maximum time limit for any approach to solve any instance

was set to 3000 seconds.

3.3 Experiments

Computational experiments are executed on two di�erent test-beds to compare the

performances of DBC-SC, DBC-MC and direct solution of Formulation 3 using Gurobi.

In both test-beds, test instances are directed networks with a source node, a sink node;

and a list of integer arc weights with unrestricted sign. The �rst test-bed (Test-bed

1) is a set of 17 instances used by Ibrahim et al. [18] to study their exact formulation.

The largest network in this test-bed consists of 200 nodes and 370 arcs. The second

test-bed (Test-bed 2) consists of 14 dense networks (bidirected, complete graphs). In

this test-bed, arc weights are randomly generated between a lower and upper bound.
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Some networks consist of negative arc weights for all the arcs, while the remaining net-

works contain arcs with nonnegative arc weights. The largest network in the second

test-bed consists of 120 nodes and 14280 arcs.

Performance pro�les [20] are used for evaluating the performance of the three

approaches. Let tp,u be the time taken by algorithm u to solve the network instance

p. Let t∗p denote the lowest time taken by any algorithm to solve the network instance

p. The ratio rp,u is de�ned as

rp,u =
tp,u
t∗p

(3.1)

Let ρu(τ) be the probability that the ratio rp,u for an algorithm is within a factor

τ of the best ratio value.

ρu(τ) =
no. of instances such that rp,u

total no. of instances
≤ τ (3.2)

For each approach, ρu(τ) is plotted for which the runtime is within a factor τ of

the best runtime. The top curve of the plot is the approach that solves most of the

instances in a time that is within a factor τ of the best runtime.

3.3.1 Results from Test-bed 1

The results from Test-bed 1 are shown in Table 3.1. From the results, all three

approaches (DBC-SC, DBC-MC and direct MIP) are able to optimally solve all 17

instances. In Table 3.1, the fastest runtime for every network is highlighted in bold

font. From the total runtime, it can be seen that both DBC approaches solve all the

instances much faster than the direct MIP approach. Looking at the total runtimes

of the DBC approaches, DBC-MC performs better than DBC-SC in 15 instances.

DBC-SC performs better than DBC-MC in 1 instance and both the DBC approaches

solve one instance in the same runtime.
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Figure 3.1: Performance pro�les on τ [0, 1000] (Test-bed 1)

The number of callbacks (number of times the callback function is executed) show

that the DBC-MC approach solves all the instances with fewer callbacks. This in

turn reduces the total runtime of the DBC-MC approach on this test-bed. Note that

the number of lazy constraints added in dav763 is much higher than other graphs of

the same size. The reason for this behavior is discussed in Section 3.3.3.

The performance pro�les of the three approaches on Test-bed 1 is shown in Figure

3.1. From this �gure, the probability that DBC-MC is the best approach for a given

instance is about 0.94. The probability that DBC-SC is the best approach for a given

instance is about 0.12. By this measure DBC-MC is the most favorable algorithm for

Test-bed 1.

3.3.2 Results from Test-bed 2

The results from Test-bed 2 are shown in Table 3.2. From the results, the DBC

approaches are able to optimally solve all 14 instances. However, the direct MIP
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Table 3.1: Comparison of performance on Test-bed 1

Name |N | |A| #Cuts #Callbacks Callback Total

runtime runtime

SC MC SC MC SC MC SC MC MIP

g100e5 100 180 24 26 26 19 0.37 0.31 0.89 0.67 14.97

g100e6 100 180 18 20 20 13 0.29 0.24 0.74 0.59 13.81

g100e8 100 180 40 40 43 23 0.53 0.40 0.96 0.81 13.28

g100e9 100 180 42 40 44 27 0.54 0.44 1.01 0.84 13.67

g100e10 100 180 35 36 37 33 0.48 0.48 0.90 0.90 13.37

g100e12 100 180 11 11 14 9 0.19 0.15 0.57 0.50 13.3

g100e14 100 180 216 198 219 170 3.08 2.63 3.82 3.48 13.9

g100e15 100 180 14 15 16 10 0.25 0.19 0.74 0.64 14.78

g100e17 100 180 10 11 12 6 0.16 0.10 0.51 0.42 14.46

g200e2 200 342 69 69 70 29 0.86 0.63 1.56 1.38 97.61

g200e4 200 342 27 28 29 13 0.39 0.28 1.05 0.91 94.28

dav33 200 370 99 46 102 34 1.99 0.90 3.25 1.83 100.78

dav194 200 370 23 21 25 8 0.45 0.22 1.14 0.85 98.69

dav229 200 370 59 62 61 19 0.89 0.53 1.59 1.30 98.95

dav277 200 370 23 23 25 7 0.54 0.24 1.47 0.97 102.83

dav280 200 370 48 37 50 12 0.65 0.32 1.38 0.93 99.19

dav763 200 370 1975 1975 1979 1915 38.31 42.78 61.26 67.55 107.01
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Figure 3.2: Performance pro�les on τ [0, 1000] (Test-bed 2)

approach takes more than 3000 seconds to solve 7 instances. In Table 3.2, the fastest

runtime for every network is highlighted in bold font. Like Test-bed 1, both the DBC

approaches solve all the instances much faster than the direct MIP approach. Looking

at the total runtimes of the three approaches, DBC-MC performs signi�cantly better

than DBC-SC in 8 instances. DBC-SC performs marginally better than DBC-MC in

remaining 6 instances. Even though the most favorable approach is not as evident as

it is in Test-bed 1, on average, DBC-MC appears to be the better approach among

the two.

The performance pro�les of the three approaches on Test-bed 2 is shown in Figure

3.2. From this �gure, it is clear that the DBC approaches perform better than the

direct MIP approach. The probability that the direct MIP approach is the best

approach to solve any given instance in Test-bed 2 is 0, mainly because it takes more

than 3000 seconds to solve 50% of the instances in Test-bed 2.

In order to better compare DBC-SC and DBC-MC, Figure 3.3 shows the perfor-

mance pro�les on τ [0, 100]. From this �gure, the probability that DBC-MC is the
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Figure 3.3: Performance pro�les on τ [0, 100] (Test-bed 2)

best approach for a given instance is about 0.58. The probability that DBC-SC is the

best approach for a given instance is about 0.42. By this measure DBC-MC is the

most favorable algorithm for Test-bed 2.

3.3.3 Number of lazy constraints in dense networks

Intuitively, we expect a lot of negative cycles to be detected in dense instances dur-

ing the execution of the DBC algorithms, but on the contrary the number of lazy

constraints added are much smaller. This phenomenon is explained by the following

observations. Consider the dense network fn50 from Test-bed 2, with 50 nodes and

2450 arcs. The lower bound on arc cost is −32 and the upper bound is −1. After

solving it in DBC-MC approach, a shortest path is obtained (best OF= −1536), after

adding 3 lazy constraints. This means that three PC-tuples are detected before ob-

taining the answer. After closer inspection on these PC-tuples following observations

are made:
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Table 3.2: Comparison of performance on Test-bed 2

Name |N | |A| #Cuts #Callbacks Callback Total

runtime runtime

SC MC SC MC SC MC SC MC MIP

sp20 20 380 3 3 6 6 0.04 0.06 0.49 0.48 4.10

fn20 20 380 23 32 27 28 0.27 0.31 1.02 1.30 8.09

sp50 50 2450 38 14 43 8 0.72 0.16 5.13 2.70 258.16

fn50 50 2450 3 3 5 5 0.06 0.09 2.28 2.37 167.77

sp60 60 3540 16 12 18 7 0.33 0.15 4.67 3.30 483.44

fn60 60 3540 69 12 74 4 1.40 0.13 8.06 3.41 375.53

sp80 80 6320 0 0 2 2 0.02 0.03 6.16 6.60 >3000

fn80 80 6320 19 22 21 14 0.54 0.41 7.74 7.35 2401.42

sp90 90 8010 3 6 6 4 0.11 0.13 8.01 7.89 >3000

fn90 90 8010 16 37 18 24 0.64 1.08 10.12 10.33 >3000

sp100 100 9900 31 54 34 30 1.27 1.55 11.57 12.32 >3000

fn100 100 9900 19 19 21 12 0.63 0.57 10.68 10.31 >3000

sp120 120 14280 26 42 29 23 1.46 1.71 18.08 18.45 >3000

fn120 120 14280 17 23 20 16 0.86 0.82 17.14 16.54 >3000
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1. The path in all of these PC-tuples contains the majority of nodes (always more

than 40).

2. Since a large number of nodes are already in the path of PC-tuple, only lim-

ited number of nodes are available to form negative cycles. So, if the path in

PC-tuple contains a large number of nodes, then the number of negative cyle

detected decreases; furthermore, the opposite is also true.

3. The number of nodes in the path of all the PC-tuples stays large (around 40)

and this enables detection of very few negative cycles throughout the algorithm,

before determining the optimal solution. Hence, very few lazy constraints are

added.

In order to validate these observations, the cost of the arc (s, t) in graph fn50 was

modi�ed from −29 to −37 (note that −32 was the lower bound on the arc weights).

This graph was solved by the DBC-MC algorithm after adding 2432 lazy constraints,

a signi�cant increase from 3 lazy constraints before modi�cation. Because of the

lowered arc weight, arc (s, t) stayed as the path in many PC-tuples. Since the path

in all those PC-tuples had only two nodes, rest of the nodes joined to form negative

cycles. The path remained the same for many PC-tuples and that resulted in the

identi�cation of 2432 negative cycles, before terminating with the same objective

function value as before (−1536). The network dav763 from Test-bed 1 also has

a large number of lazy constraints, due to the behavior of the algorithm explained

above. The path in many PC-tuples remained the same before �nding a solution with

a better objective function value.

3.4 Pathological instance

Consider a bidirected, complete graph G = (N,A) in which every arc (i, j) ∈ A

carries negative arc weights between −50 and −1. After �nding the optimal s − t
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path with the DBC-MC algorithm, let the optimal objective function value be −1500.

Note that there are a lot of feasible paths from source node s to sink node t (dense

graph), furthermore the path containing only arc (s, t) is among the feasible solutions.

However, the path containing only arc (s, t) is not the optimal solution, because if

it is the optimal solution, then the lowest value objective function can have is −50

(lower bound on arc weight).

Consider a scenario where the arc weight of arc (s, t) ∈ A alone is changed to

−1501 and solved again using the DBC approach. Now, the path containing only

arc (s, t) is the optimal solution, but consider the iterations in the DBC algorithms

before arriving to that solution. In every PC-tuple of the BB tree, the path will be

arc (s, t) . Since, all the arc-weights in G are negative, all other arcs will join to create

node-disjoint negative cycles. In this case, the DBC-MC approach will detect a large

number of negative cycles and will add cycle elimination constraints for them before

�nding the optimal solution. This is because, no matter how many cycle elimination

constraints are added, it is impossible to �nd a path shorter than −1501; this means

arc (s, t) will continue staying as the path in all the PC-tuples while many negative

cycles are identi�ed and exhausted. This is a pathological instance for the DBC

algorithms. The direct MIP approach by [16] implemented in Gurobi, solves this

instance faster than the DBC approaches.
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CHAPTER 4

CONCLUSION AND FUTURE RESEARCH

This thesis explores new approaches to solve ESPPNC. The literature contains exact

algorithms to solve ESPPNC. However, a decomposition approach to solve ESPPNC

has not been explored. This work is an attempt to solve ESPPNC using a decom-

position and branch-and-cut technique. The major contributions of this thesis are

exploring the DBC approach and evaluating its performance via computational stud-

ies.

Chapter 2 explains the master relaxation of the original formulation. The master re-

laxation enables an e�ective separation approach based on identi�cation of negative

cycles in PC-tuples. This master relaxation is strengthened by adding cycle elimina-

tion constraints in a "lazy" manner in branch-and-bound framework.

Based on how the lazy constraints are implemented, two versions of DBC approach

are proposed and explored as a part of the computational studies. These approaches

are compared with directly solving the MIP formulation for ESPPNC proposed by

Ibrahim et al. [16] using Gurobi on two di�erent test-beds. The results suggest DBC-

MC approach to be comparatively superior to solve ESPPNC, except for pathological

instances in the test-bed where the direct MIP approach exhibits superior perfor-

mance.

In light of the experimental results from this thesis, numerical experiments should

be redesigned to vary edge density in generating the test-bed. Exploring the perfor-

mance of the DBC algorithms on an expanded test-bed, including more pathological

instances is a potential area for further research. Another area for future research lies
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in DBC approaches to solve the single-source shortest path problem with negative

cycles. However, DBC approaches to solve this problem should be very di�erent from

the DBC algorithms for ESPPNC, because the single-source counterpart cannot be

a direct extension of our DBC-SC/-MC approaches; the master relaxation properties

do not continue to apply in this setting, which was critical for the DBC algorithms

introduced in this thesis.
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APPENDIX A

NETWORK DIAGRAMS

This appendix contains diagrams of some network instances from the test-beds used

for testing the performance of the DBC algorithms.

A.1 Test-bed 1

Two networks from Test-bed 1 is shown in this section. With 100 nodes and 180 arcs,

g100e5, g100e6, g100e8, g100e9, g100e10, g100e12, g100e14, g100e15 and g100e17 are

the smallest networks in Test-bed 1. Figure A.1 shows the network g100e5 with the

source node 62 and the sink node 8.

The largest networks in Test-bed 1 are: dav33, dav194, dav229, dav277, dav280

and dav763. These networks contain 200 nodes and 370 arcs. Figure A.2 shows the

network dav763 with the source node 48 and the sink node 12.

A.2 Test-bed 2

Networks sp20 and fn20 are the smallest networks from Test-bed 2. These networks

contain 20 nodes and 380 arcs. Figure A.3 shows the network fn20 with the source

node 1 and the sink node 20.
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Figure A.1: Network g100e5 from Test-bed 1
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Figure A.2: Network dav763 from Test-bed 1
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Figure A.3: Network fn20 from Test-bed 2
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