INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing oit until complete.
4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased aî additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

Monney, James Grant

GRAPH-THEORETIC APPROACH TO THE ANALYSIS AND OPTIMAL DESIGN OF WATER DISTRIBUTION NETWORK

Copyright 1981

by
Monney, James Grant All Rights Reserved

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad \checkmark
11. Pages) \qquad lacking when materiai received, and not available from school or author.
12. Pages) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Other

THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

GRAPH-THEORETTC APPROACH TO THE ANALYSIS AND OPTTMAT DESIGN OF WATER DISTRIBUTION NETWORK

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of
DOCTOR OF PHILOSOPHY

BY

JAMES GRANT MONNEY
Norman, Ok1ahema
1381

GRAPH-THEORETIC APPROACI TO THE ANALYSIS AND OPTIMAL
DESIGN OF WATER DJSTRIBUTTON NETWORK

ACKNOWLEDGEMENTS

This work was made possible through a World Health Organization Fellowship awarded to the Government of Ghana by the Regional Office for Africa in Brazzaville, Republic of Congo. The author is greatly indebted to efforts put in by Prof. A. M. Wright, Head, Civil Engineering Department, University of Science and Technology, Kumasi, Ghana and the Director of Medical Services, Ministry of Health, Accra, Ghana in securing the Fellowship. I appreciate, a great deal, the study-leave granted me by the authorities of the University of Science and Technology to pursue further studies.

I sincerely thank Prof. George W. Reid, Academic Advisor and Chairman of Dissertation Committee for the pieces of advice he gave me throughout the study period. It must also be mentioned with gratitude that Prof. George W. Reid showed sympathy and understanding in other matters related to the adninistration of Fellowship Program.

Thanks also go to other members of the Disssertation Committee, namely: Prof. Leale Streebin, the Director, Civil Engineering Department, Prof. Ed. Crim Jr. and Assoc Prof. James Robertson, for the guidance and direction they gave me in the preparation of this work.

Finally, special thanks go to my wife, Nellie, for her valuable contributions in the preparation of this Dissertation and my children, James, Brenda, and Alfred for their patience and endurance during the entire stay in this country.

TABLE OF CONTENTS

Page
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF APPENDICES ix
Chapter
I. INTRODUCTION 1
A Brief Review of Techniques Developed: 5
Water Distribution System Analysis 5
Optimal Design of Hydraulic Networks 18
Some Observations from above Discussion 30
The Layout of this Thesis 33
II. THE DEVELOPMENT OF THE ANALYSIS AND THE
OPTIMIZATION MODELS 34
Introduction 34
The Development of the Analysis Hodel 34
The Selection of Components 42
The Measurements on the Components 43
The Component Terminal Equations 43
The Origin or Production (source or supply) Components 43
The Transportation Component 44
The Destination Areas 46
The Construction of the System Graph 51
The Formulation and Solution of the System Equations 52
The Solution of the System Equations 56
The Development of the Optimization Model: 58
The Hew Approach 59
Network Analysis 60
Optimal Design 60
Elimination Process 65
III. THE APPLICATION OF MODELS DEVELOPED FOR THE ANALYSIS AND THE OPTIMAL DESIGN OF HYDRAULIC NETWORK 76
Introduction 76
Application of Analysis Model 76
Application of the Optimization Model 91
Optimization of a Hypothetical .Network 96
The Application of Optimization Techniques to Existing Network Including Proposed Extensions 98

TABLE OF CONTENTS (Continued)

Page
IV. SUMMARY, CONCLUSION, AND RECOMPENDATION 104
Introduction 104
Summary 105
Conclusion 112
Recomendation for Further Research and the 113 11
Application of the modeis
BIBLIOGRAPHY 116
APPENDICES 124

LIST OF TABLES

TABLES Page
1-1. Estimated per cent of population having reasonable access to safe and adequate water-1975. 1
2-1. Variation of " C " values with pipe material and age. 47
3-1. A Coded map of example problem 82
3-2. Results of the destination element flows of hypothetical network. 88
4-1. Results of Optimal design of a hypothetical problem: chords not considered. 108
4-2. Results of optimal design of a hypothetical problem: chords considered. 109
4-3 Results of optimal design of a portion of Norman Water Distribution Network (1971) including proposed Extension: Chords not considered. 110
4-4. Results of optimal design of a portion of Norman Water Distribution Network (1971) including proposed extension: chords considered 111

LIST OF FIGURES

FIGURE PAGE
2-1. Schematic representation of a component and its corresponding terminal graph 39
2-2. Schematic diagram of a hydraulic system and its correspinding system graph 40
2-3. Simple linear graph of a network with a possible tree drawn in bold lines. 54
2-4. Typical tree-like configuration of an off-shore pipeline network. 61
2-5. Spanning trees of a 12 node 17 element network 62
2-6. Varition of pipe cost and pumping cost with pipe diameter. 67
3-1. Physical system of pipes and junction as a directed network. 77
3-2. Linear graph of a physical system shown in Fig. 3-1 78
3-3. Norman Water Distribution Network-1971. 89
3-4. Linear graph of Norman Water Distribution Network 90
3-5. Spanning trees of an example problem. 93
3-6. Tree-like configuration of example problems. 95
3-7. A hypothetical network 97
3-8. Spanning Tree of Norman Water Distribution Network. 99
3-9. Tree-1ike configuration of Norman Water Distribution. 100
FIGURE PAGE
3-10. Numbering system used on figures 3-8 and 3-9. 102
B-1 Schematic diagram of a physical system 146
B-2 Linear graph of a physical system shown in Fig. B-1.147
C-1 A coded map of Norman Water Distribution Network. 161

LIST OF APPENDICES

APPENDIX Page
A Linear Graph Theory. 124
B The Application of System Model 138
C Computer Program for the Systems Model 156
D Listings of Program SPTREE. 176
E Listings of Program MERGEP and SUBROUTINE MERGES 178
F Listings of Program SYSAL 247
G Storage Residency and CPU Time for Various Programs
Ran on IBM Computer Model 370/158 256
H Data for Hypothetical Network. 257

Introduction

The Surveys made by the World Health Organization for a selection of ninety-one developing countries in 1970, updated for selected countries in 1975, provide what appears to be the only sets of data as to the proportion of population having reasonable access to safe water supply. References (1) and (2) give detailed information. However, the overall picture for 1975 may be summarized as shown in Table I-1 below:

TABLE I-1. Estimated percent of population having reasonable access to safe and adequate water-1975.

Region	Rural	Urban
Americas	32	81
Eastern Mediterranean	16	80
Europe	63	81
South East Asia	19	70
Western Pacific	30	90

The overall estimate, with the exception of the Peoples Republic of China and a few other countries, indicates that about 12 percent of the rural population had "adequate" water supplies in 1970 , and the level had reached 20 percent five years later.

In view of the fact that the incidence of water-borne disease is reduced
considerably, if not eliminated altogether, thereby improving the health of all people through the use of increased quantities of water of a higher bacteriological quality for all uses, the Second United Nations Development Decade had set modest targets for improvement in community water supply, involving a doubling of the proportion of the world's people served with adequate water. The United Nations Conforence on Human Settlements held in 1976 recommended a more ambitious goal. It proposed that safe water supply and hygienic waste disposal should receive priority with a view to achieving measurable qualitative and quantitative targets serving all the population by a certain date.

The conference also went on to urge member countries to "adopt programs with realistic standards for quality and quantity to provide water for urban and rural areas by 1990 , if possible." The United Nations Water Conference held in 1977 reaffirmed the 1976 Habitat commitment, and recommended, among other things, the following (3):

1. that with a view to achieving these ends, the nations which need to develop their systems for providing drinking water and sanitation should prepare for 1980 programs and plans to provide coverage for populations and to expand and maintain existing systems; institutional development and human resources utilization; and identification of the resources which are found to be necessary;
2. that the United Nations agencies should co-ordinate their efforts to help Member States, when they so request, in the work of preperation referred to in subparagragh (1) above;
3. that in 1980 the national programs which have been implemented for that purpose, and that extent to which the countries concerned have succeeded in mobilizing local and national support should be reviewed
by an appropriate mechanism to be determined by the Economic and Social Council and based on the use of existing machinery with a view to attaining co-ordinated action toward agreed targets.

The estimated annual investment for the conventional water supply systems to meet targets set, namely, water for all urban and rural areas by 1990, if possible, ran into serveral billions of dollars. Clearly, the expenditure involved in such undertaking is so huge that alternative and cheaper means of providing wholesome water had to be devised. To this end, the World Health Organization International Reference Center for Community Water Supply at The Hague, in conjuction with the Dutch Government in 1975 mounted a program in selected developing countries to produce water relatively cheaply through the use of Slow Sand Filtration method for treating surface waters. Other projects being undertaken by the International Reference Center includes design of suitable hand pumps for use on wells.

Water production is only part of the story; the other part is getting the treated water to the consumer. It is widely believed that the most costly parts of most water supply systems are the facilities for water distribution. The facilities include pipe networks as well as the pumping units and storage tanks or reservoirs. No doubt, this complex system must be designed to satisfy a multitude of criteria imposed by many different water users, ranging from fire fighting, car washing and lawn sprinkling to the various industrial and domestic needs. Although water supply system, as a whole, undergoes an expansion process dictated by the increase in water consumption resulting from city growth, the distribution system appears to be the most dynamic component of the entire system. To design facilities to serve the various needs of consumers, in most cases with very limited resources (as is the case in developing countries); is a challenging goal. It stands to reason, therefore,
that the economically efficient allocation of resources to water distribution facilities is unlikely without systematic, objective and computationally efficient design methodologies. With the increasing energy cost and worldwide inflation, it is no wonder that the optimal design of water distribution system has, quite recently, received a great deal of attention by a number of researchers some of whom will be discuased in this thesis. The discussion on the optimal design of water distribution network will be preceeded by a discussion of network analysis.

Water Distribution System Analysis

The objective of water distribution analysis is to determine the pressure for each node and also the magnitude and the direction of flow in each pipe for given input, draw-oifis, pipe sizes and pipe configurations. The oldest method for systematic solution of water distribution networks is the Hardy Cross method (5). The method consists of making assumptions, initialiy of a particular flow distribution pattern throughout the grid and then determining the head loss that would occur between the source of supply and critical points in the system. Basic to the method are the principles which obey the following physical laws of the network:

1. the total flow reaching any junction of two or more pipes must equal the total flow leaving the junction;
2. the change in pressure between any two points in a closed network is the same by any and all paths connecting the points.

In addition to above conditions, a proper relation between head loss and flow must exist for each pipe.

For a pipe of specified diameter, length and roughness the frictional
head loss is given by the expression:

$$
\begin{equation*}
h=k Q^{m} \tag{1-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& h=\text { frictional headioss } \\
& Q=\text { flow rate } \\
& k=\text { constant }
\end{aligned}
$$

Based on condition (2) above, if the assumed flow pattern were correct the head loss around the ciscuit according Equation (1-1) would be

$$
\begin{equation*}
h=\sum k Q^{m}=0 \tag{1-2}
\end{equation*}
$$

For an incorrect flow distribution pattern, the correction for each pipe would be:

$$
\begin{equation*}
Q=0_{9}+\Delta Q \tag{1-3}
\end{equation*}
$$

where

$$
\begin{aligned}
Q & =\text { correct flow pattern } \\
Q_{0} & =\text { assumed flow pattern } \\
\Delta Q & =\text { flow correction }
\end{aligned}
$$

Substituting Equation (1-3) into Equation (1-1) we have

$$
\begin{align*}
k Q^{m} & =k\left(Q_{0}+\Delta Q\right)^{m} \\
& =k\left(Q_{0}{ }^{m}+m Q^{m-1} \Delta Q+\ldots \ldots\right) \tag{1-4}
\end{align*}
$$

If Q_{0} is small compared with Q_{0}, the higher powers of ΔQ in Equation (1-4) can be neglected. Once again for all pipes in a loop or circuit,

$$
\begin{equation*}
\sum k Q^{m}=\sum k Q_{0}^{m}+m \Delta Q \sum k Q_{0}^{m-1} \tag{1-5}
\end{equation*}
$$

From Equations (1-2) and (1-5) and rearranging, we have

$$
\begin{align*}
\Delta Q & =-\frac{\sum k Q_{0}^{m}}{m \sum k Q_{0}^{m-1}} \\
& =\frac{h_{0}}{m \sum\left(h_{0} / Q_{0}\right)} \tag{1-6}
\end{align*}
$$

where

$$
h_{0}=\text { frictional headioss computed on basis of assumed f1ow, } Q_{0}
$$

It must be cautioned here that in using Equation (1-6) care must be exercised with regard to sign of head loss in both the numerator and denominator. By convention, flow in the clockwise direction around a circuit is considered of one sign and flow in the counterclockwise direction is considered of the other sign. The summation of head losses in the denominator is computad using
the absolute values of the individual head losses, whereas, the head losses in the numerator are computed with due regard to the signs. Thus the flow correction ΔQ has a single direction for all pipes in the circuit.

This method can be applied to solve the system of head equations or the flow equations. It is well suited for solution by hand, and is easily adapted for machine computations. With the advent of the computer, and as larger and more complex networks were analyzed, the Hardy Cross method was found to frequently converge too slowly if at all. To this end, a number of measures have been suggested and used with the view to improving its convergence characteristics. Various researchers including (6), (7), (8) and have written computer programs to perform the Hardy Cross analysis on a Digital Computer.

Long before digital computers were first used to perform network analysis, Camp and Hazen (12) adapted linear resistance direct current electric power computing boards to the balancing of water distribution networks. In 1943, Camp (13) reported on a similar alternating current linear resistance computing boards. These boards then became known as Analogue Computer. The principle under which the computing boards work is that the head loss in a water pipe can be expressed in a form similar or analogous to the voltage drop in an electric circuit. Thus, if the voltage drop, E, aczoss a linear resistance, R, is given as:

$$
\begin{equation*}
E=I R \tag{1-7}
\end{equation*}
$$

where

$$
I=\text { Current }
$$

the expression for the head loss, analogous to potential drop in a water pipeline may be reduced to

$$
\begin{equation*}
\hat{n}=k q^{m} \tag{1-8}
\end{equation*}
$$

where

$$
k=\text { constant and is a resistance tenn embodying length diameter }
$$ and friction coefficient of pipe

$Q=$ flow rate analogous to current and
$m=a$ power varying between 1.75 and 2.00 for turbulent flow. To obtain an analogy, Equation (1-8) can be rewritten in the form of Equation (1-7) i.e. in linear form as follows:

$$
\begin{align*}
h & =\left(k Q^{m-1}\right) Q \\
& =k_{0} Q \tag{1-9}
\end{align*}
$$

By successive adjustment of the linear electrical resistance, values R analogous to k_{o}, a final set of k_{0} values can be obtained which satisfy Equation (1-9) in the case of each and every pipe. The adjustments comprise successive changes in the settings of ordinary. linear resistors in the direction indicated by the proceeding trial. Because the linear resistance electrical network is always in balance the algebraic sums of currents at junctions and voltage drops around loops are automatically zero. Nevertheless, for each pipe only one Q and only one associated value of k_{0} will satisfy simultaneously the prescribed k in $k Q^{m-1}$. The general feature of alternating current calibrating boards have been given by Reid and Wolferson (4).

A breakthrough in the alternating current computing boards came when McIlory (14) introduced a direct reading electric analyzee for pipeline networks. The cutstanding feature of the McIlory Analyzer is a system of nonlinear resistances called FLUISTORS. For a fluistor with a direct current supply

$$
E=R I^{m}
$$

where

$$
E=\text { potential drop }
$$

$$
\begin{aligned}
& R=\text { resistance } \\
& I=\text { current and } \\
& R=a \text { constant. }
\end{aligned}
$$

Measured voltages and currents can be read directly on a special multiplier meter scale in units of headloss and flow rate. One draw back is that each analyzer is tailored to customer's specifications. With tremendous improvements made in djgital computer programing McIlory Analyzer is not much in use. Further details on the features of analogue computers used in water network analysis can be found in works by McPherson and Radzidul (15), McPherson (16) and Wood (17).

Other methods of mathematical solution of networks resulted from work on electrical networks. Warga (18) applied Duffin's (19) work on non-linear networks to distribution system. Warga proved the existance of a unique solution for the heads at the nodes under steady state flows in a network whose elements satisfy certain conditions. According to Warga, if the general law relating flow and headloss in any element is given by

$$
Q_{j i}=f_{j i}\left(H_{i}-H_{j}\right)
$$

then these conditions are that
(1) $f_{j i}(x)=-f_{i j}(-x)$,
(2) $f_{j i}(x)$ is continous for all x;
(3) for all couples $(j, i), f_{j i}(x)$ is nondecreasing as x increases;
(4) there exists a path between any two nodes in the network along which every element has an $\mathrm{f}_{\mathrm{ji}}(\mathrm{x})$ which increases as x increases and takes on all values. He discusses (17) two iterative procedures for solving a network which satisties the above conditions. The development of the procedures is in terms of Procedure I, "apparentiy new" and Procedure II, based on the Newton-Raphson method for iteration convergence. Procedure I always converges,
although slowly, from any starting assumption, whereas, procedure II, converages rapidly from a reasonable assumption but may not converge at all if the initial assumption is unreasonable. However, these procedures permit an extremely simple program to be written for digital computers, with the minimum use of memory space.

Newton-Raphson Method

The Newton-Raphson technique is a root finding process which determines new improvements or correction to the values of the unknowns in each iteration. These corrections are computed from the Inearized Taylor Series Expansion and evaluated at the present state of the solution. It will perhaps be helpful, at this stage, to consider the Taylor Series Expansion and how the NewtonRaphson technique is derived from it.

Suppose that an arbitrary non-linear function $f(x)$ hāing derivatives of $a 11$ orders is represented by a power series expansion of the form

$$
\begin{equation*}
f(x)=C_{0}+C_{1}\left(x-x_{0}\right)+C_{2}\left(x-x_{0}\right)^{2}+\ldots+C_{n}\left(x-x_{0}\right)^{n} \tag{1-10}
\end{equation*}
$$

where
x_{0} is as shown in Fig. (1-1) below is the value being sought such that

$$
\begin{equation*}
f(x)_{x}=x_{0}=f\left(x_{0}\right)=0 \tag{1-11}
\end{equation*}
$$

Since a power series, by a theorem, may be differentiated term by term within its interval of convergence we have
$f^{\prime}(x)=C_{1}+2 C_{2}\left(x-x_{0}\right)+3 C_{3}\left(x-x_{0}\right)^{2}+\ldots+n C_{n}\left(x-x_{0}\right)^{n-1}$
$f^{\prime \prime}(x)=2!C_{2}+3!C_{3}\left(x-x_{0}\right)+\ldots n(n-1) C_{n}\left(x-x_{0}\right)^{n-2}$
$f^{\prime \prime \prime}(x)=3!C_{3}+\ldots n(n-1)(n-2) C_{n}\left(x-x_{0}{ }^{n}\right.$
$f^{\prime}, f^{\prime \prime}$ and $f^{\prime \prime \prime}$ are respectively first, second and third order
differentiation. In general $f^{(n-1)}(x)=(n-i)!C_{n-1}+n!C_{n}\left(x-x_{0}\right)+\ldots$

FIGURE 1-1: ILLUSTRATION OF THE NEWTON-RAPHSON NETHOD.

If we substitute $x=x_{0}$ in these equations and also in Equation (1-10), we can solve for the C 's as follows:

$$
\text { If } x=x_{0} \text { and } f(x)=f\left(x_{0}\right)=C_{0}
$$

then

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)=C_{1} \quad \text { i.e. } C_{1}=f^{\prime}(a) \\
& f^{\prime \prime}\left(x_{0}\right)=2!C_{2} \quad \text { i.e. } C_{2}=f^{\prime \prime}\left(x_{0}\right) / 2! \\
& f^{\prime \prime \prime \prime}\left(x_{0}\right)=3!C_{3} \quad \text { i.e. } C_{3}=f^{\prime \prime \prime}\left(x_{0}\right) / 3! \\
& f^{(n-1)}\left(x_{0}\right)=(n-1)!C_{n-1} \quad \text { i.e. } C_{n-1}=f^{(n-1)}\left(x_{0}\right) /(n-1)!
\end{aligned}
$$

Thus $f(x)$ can be represented in a power series involving the differentials of $f(x)$ itself namely:

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} / 2!+, \ldots,+f^{(n-1)}\left(x_{0}\right)\left(x-x_{0}\right)^{n-1} /(n-1)! \tag{1-13}
\end{equation*}
$$

Equation (1-3) is what is known as the Taylor's Series.
The Newton-Raphson method ignores the second and the higher orders of differentiation. Thus Equation (1-13) becomes

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \tag{1-14}
\end{equation*}
$$

where
$x-x_{0}=$ the improvement or the correction to be applied.
From Equation (1-14) if $f(x)=0$, then

$$
x-x_{0}=-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right) .
$$

From Fig. (1-1), at the $k^{\text {th }}$ iteration, the approximation for x_{0} is denoted by $x_{\text {? }}$. The next epproximation is given by

$$
x_{k+1}=x_{k}+\Delta x_{k}
$$

where
or

$$
\Delta x_{k}=-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)
$$

$$
\begin{equation*}
x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right) . \tag{1-15}
\end{equation*}
$$

in which $f^{\prime}\left(x_{k}\right)$ or $d f\left(x_{k}\right) / d x$ is the derivative of $f(x)$ at x_{k}. The equation for the $k^{\text {th }}$ improvement x_{k}, can be expressed as:

$$
\begin{equation*}
f(x)=\frac{d f}{d x} \Delta x=0 \tag{1-16}
\end{equation*}
$$

In Equation (1-16) both $f(x)$ and its derivative are evaluated using the present value of x. Since the second order differential was ignored in deriving the expression for the Newton-Raphson method, the error in the $(k+1)^{\text {th }}$ iterate, which is $\left(x-x_{k}\right)^{2} f^{\prime \prime}\left(x_{k}\right) / 2 f^{\prime}\left(x_{k}\right)$, is seen to be proportional to the square of the error in the $k^{\text {th. }}$ iterate. Convergence of this type is referred to as quadratic convergence. This implies that each subsequent error reduction is proportional to the square of the previous error. Because the method requires an initial guess to the solution if this is say 20 per cent (i.e. 0.2) in error, successive iterations will produce errors of 4 per cent (i.e. 0.04), 1.6 per cent (i.e. 0.016), 0.026 per cent (0.00026), e.t.c.

To apply this method to the solution of a hydraulic network, if there are n equations to be satisfied:

and n unknowns ($x_{1}, \ldots \ldots \ldots \ldots, x_{n}$) to be solved for, the set of n improvements or corrections ($x_{1}, \ldots \ldots \ldots . . . x_{n}$) will be the solution of the set of n simultaneous linear equations of the form

Thus the technique deals with the whole network at the same time, unlike Hardy Cross method, so that corrections are applied simultaneously to account for the
joint interaction of all corrections. This method considers the effect of changing any one variable (e.g. pressure, resistance or demand at a node) on the entire network. This latent sensitivity information makes the NewtonRaphson method extremely useful for analysis and design purpose.

As mentioned earlier, Newton-Raphson method may encounter convergence problems. A number of researchers including Martin and Peters (20), Giudice (21), Pitchai (22), Jacoby and Twigg (23), Shamir and Howard (24) Epp and Fowler (25), Lam and Wolla (28) and Gagnon and Jacoby (31) have made substantial contributions to the efficient use of the Newton-Raphson method. For instance, Epp and Fowler (25) introduced a method of reducing core storage requirement by means of a Loop Defining Algorithm and a method of estimating initial flows that leads to fast convergence. Contributions made thus far have permitted Newton-Raphson method to be used to solve any of the three sets of equations describing flow in pipe networks. These sets of equation are obtained by considering

1. the flow rate in each pipe unknown,
2. the head at each junction unknown or
3. the corrective flow rate around each loop unknown.

Work by Shamir and Howard (24) made it possible for unknown consumptions and/or pipe resistances to be determined. Methods that allow network balancing and new pipe sizing to be accomplished without the need for repeated trials are described by Donachie (30). Other techniques developed are

1. relaxation based on repetitive solution of linear equation sets
2. general network analysis based on-linear theory.

The linear theory method, which bears close resemblance of the alternating current computing boards technique discussed earlier, has some distinct advantages over the Newton-Raphson or the Hardy Cross methods. First, it does not require an initialization of flows. Secondly, according to Wood and Charles (37) it always converges in a relatively few iterations. However, its use in solving head oriented equations or the corrective loop oriented equations is not recommended. Critics of this approach claim that large computer memory space is required for large networks.

Both Hardy Cross and Newton-Raphson methods can be applied to solve a set of equations based on either the node law (which states that the total flow reaching any junction of two or more pipes must equal the total flow leaving the junction) or the loop or circuit law (which states that the change in pressure between any two points in a closed network is the same by any and all paths connecting the points). The linear theory method, however, uses a combination of a set of equations obeying the node and circuit laws.

If the network comprises n nodes and e pipe elements then, from graph theory, the number of independent set of equations based on the node law is n-1. Since e is the total number of unknowns and is greater than $n-1$, a set of $e-(n-1)$ or $e-n+1$ equations based on circuit laws are used in conjunction with set of $n-1$ equations to solve a set of equations in e unknowns simultaneously.

Symbolically, at each of the n-1 nodes, this relationship based on the node law holds:

$$
\begin{equation*}
Q_{\text {in }}=O_{\text {out }} \tag{1-18}
\end{equation*}
$$

where

$$
\mathrm{Q}=\text { flow rate }
$$

In addition, the set of e-n+1 loop equations are of the form

$$
\begin{equation*}
\sum h_{1}=0 \tag{1-19}
\end{equation*}
$$

where $\quad h_{1}=$ head loss in a pipe contained in a loop and is a function of the flow rate other things being held constant.

The head loss, h_{1}, is given by the expression

$$
\begin{equation*}
h_{1 i}=k_{i} Q_{i}^{m} \quad i=1, \ldots \ldots, e-n+1 \tag{1-20}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{h}_{1 i}= & \text { head loss in } 100 p 1 \\
\mathrm{k}_{1}= & \text { a pipeline constant which is a function of pipe length, } \\
& \text { diameter and type of pipe material } \\
m= & \text { constant with values ranging from } 1.8 \text { to } 20 .
\end{aligned}
$$

From Equations (1-19) and (1-20), we have

$$
\begin{equation*}
\sum h_{l i}=\sum k_{i} Q_{i}^{m}=0 \quad i=1, \ldots \ldots e e^{-n+1} \tag{1-21}
\end{equation*}
$$

It is seen that a set of equations indicated by Equation (1-21) are nonlinear, whereas, those indicated by Equation (1-18) are linear.

By the linear theory, the e-n+1 non-IInear loop equations are transformed into linear equations by approximating the head in each pipe by,

$$
\begin{align*}
h_{1} & =k_{i} Q_{i_{0}}^{m-1} Q_{i} \\
& =k_{i}^{\prime} Q_{i} \tag{1-22}
\end{align*}
$$

where
$Q_{i c}=$ the approximate discharge in pipe 1.
It is noted that Equation (1-22) is analogous to that of (1-9). Combining these so called artificial linear loop equations with $n-1$ node continuity equations provide a system of e linear equations which can be solved by linear
algebra. The initial solution produces yet another approximate solution for the flows, and hence k_{i}^{\prime} 's. When $Q_{i o}$ approaches the actual Q_{i}, Equation (1-22) becomes an exact expression of the head loss. Lam and Wolla (28), Kesayan and Chandrashekar (31), Hall (32) Chandrashekar and Steward (33) used the linear graph theory in the formulation of system equaitions. Hall (32) describes a geometric programming technique for the solution of the set of system equations obtained whereas the others solve the equations using Newton-Raphson method. Hall's approach considers optimal design (i.e. cost minimization) as well. A brief discussion of the linear graph theory is given in Appendix A.

To sum up, basicallỳ, about five different techniques have so far been developed for the analysis of hydraulic networks. These are:

1. Hardy Cross method;
2. Analogue Computer method based on the use of McIlory Analyzer principle;
3. Newton-Raphson method;
4. Linear Theory method and
5. Linear Graph Theory method.

Of these, Hardy Cross and Newton-Raphson methods are currently being used extensively for network analysis and design. The preponderance of previous work on distribution network analysis has centered on solving the non-1inear equations that describe their hydraulic behaviour. In the next chapter, it will be shown how, based on linear graph theory, head loss and flow in each pipe are obtained without directly solving the non-inear terminal equations describing the relationship between flow and head loss.

Optimal Design of Hydraulic Networks

A hydraulic network problem may be considered a design problem if the diameter of each pipe in the network is unknown and is to be determined. In such a case, there usually exists a number of solutions which satisfy specified design criteria. In the wake of ever increasing energy costs coupled with world wide high inflation rate, it has become increasingly important (in the design of this nature) to find the solution that gives the least cost in terms of investment cost and operating cost. Compared to the development of techniques for hydraulic network analysis, optimal design of hydraulic networks began to receive some attention about mid $60^{\prime} s$, which may be considered recently. Within a relatively short period of time a number of papers have been published on the subject, Some of the techniques developed to date will be described, briefly, next.

Towards the end of 1960^{\prime} s, the hydraulic network design practice was based, more or less, on arbitrary selection of pipe sizes and pump heads. The hydraulics of the network were then evaluated to determine if given requirements or constraints with respect to flow rates and pressures at various nodal points were satisfied. If this was not the case, then some of the pipe diameters were varied, and the pressures and flow rates re-evaluated. This process was repeated until a hydraulically acceptable network configuration with respect to pipe sizes was found. Since there usually exists a number of solutions which satisfy specified design criteria the cost of each hydraulically feasible alternative design was computed, and the design yielding the lowest cost was chosen. This design procedure, no doubt, was cumbersome, time consuming, uneconomical and not guaranteed to yield an optimal solution to the problem. Jacoby (39) and Karmeli, et al (40) finding this practice very unsatisfactority
contributed to the solution of the design problem by applying techniques which had been used very successfuily in Operation Research field in optimization problem. They, respectively, used Non-Linear and Linear programing techniques. According to Phillips, et al (66), the term linear programming merely defines a particular class of programming that satisfy the foilowing conditions:

1. The decision variables involved in the problem are non-negative (i.e., positive or zero).
2. The criterion for selecting the "best" values of the decision variable can be described by a linear function of these variables, that is, mathematical function involving only the first powers of the variables with no cross products. The criterion function is normally referred to as the objective function.
3. The operating rules governing the process (e.g., scarcity of resources) can be expressed as a set of linear equations or linear inequalities. This set is referred to as the constraint set.

Define the following generalized mathematical program:

$$
\begin{aligned}
& \text { Maximize (or Ninimize): } f(x) \quad x \in E^{n} \\
& \text { Subject to. : } H_{j}(x)=0 \quad j=1,2, \ldots \ldots \ldots, M \\
& G_{k}(x)=0 \quad k=1,2, \ldots \ldots, 0: 0, \bar{M} \\
& x=\left(x_{1}, x_{2}, \ldots \ldots, \ldots, x_{n}\right) .
\end{aligned}
$$

From above, there are n decision variables defined by M equality constraints.
and $\overline{\mathrm{M}}$ inequality constraints.
$f(x)$ which is referred to as the objective function can take the form:

$$
z=c_{1} x_{1}+c_{2} x_{2}+, \ldots \ldots \ldots,+c_{n} x_{n}
$$

$H_{j}(x)$ or $G_{k}(x)$ may take the form:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots ., a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots \ldots, a_{2 n} x_{n}=b_{2} \\
\cdot \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots \ldots \ldots, a_{m n} x_{n}=b_{m}
\end{gathered}
$$

$$
\begin{aligned}
& x_{l}=0, x_{2}=0, \ldots \ldots \ldots \ldots, x_{n}=0 \\
& b_{1}=0, b_{2}=0, \ldots \ldots \ldots, b_{m}=0
\end{aligned}
$$

If both the objective function and all constraints are linear, then we have a linear programing problem. If on the other hand, any component of $f(x)$, $H_{j}(x)$ or $G_{k}(x)$ contains non-linear functions, then we have a non-1inear programing problem. Any solution vector x which satisfies all sets of M equality constraints and \bar{M} inequality constraints is called an admissible or feasible solution. A feature about this approach is that a particular set of solution variables which yield a minimizing value for $f(x)$ is called the optimizing solution vector.

A number of techniques are available for solving linear programming problems once they have been expressed mathematically. Graphical solution is possible when the number of variables is not more than two. But a more conmon, all-purpose method is the simplex algorithm. An algorithm by definition, is a systematic method for testing various solutions; it guarantees that each successive solution will represent an improvement until the best solution is reached. Detailed information on these forms of optimization techniques (i.e. linear and non-linear programing) can be found in Phillips, et al (66).

In 1966 Pitchai (22) formulated the hydraulic design problem as a nonlinear integer progranming problem. Both the cost function and constraints were expressed in non-linear variables which were restricted to a set of discret values, hence, non-1inear integer programing. Because at that time there were no known algorithms for direct computation of solutions to nonlinear integer optimization problems, he overcame this difficulty by solving the problem by a random search technique. Cost of pipes and the annual cost of energy in operating the system were considered in the objective function to be minimized. Constraints which were stated as equalities Included these:
minimum permissible pipe sizes; maximum permissible head loss along a specified path and operating pressures to coincide with pump characteristic curves. One aspect about the formulation procedure is that the constraint on maximum permissible head loss along a specified path was used to augment the objective function as a penalty function.

The solution process begins with an initiai guess of each diameter in the network. These diameters serve as a so-called central design. NewtonRaphson method is then used to analyze the network for flows under one loading pattern. Using the cost function, the total cost for that particular design is computed. The next step is to generate a set of designs randomly about the central design. Then the corresponding total design cost in each design is computed and the best design among them is selected to serve as the central design of next random cost. Results obtained indicated that the system total cost decreased with the number of casts, but there is no proof that the global optimum is found.

In 1968, Jacoby (39) also used a non-linear integer programming technique in the optimal design of a hydraulic network having two loops, seven pipes, five consumption nodes and one pump supply node. Unlike Pitchai's approach, constraints were stated as inequalities; cost function and the constraints were combined to form a "merit function". Like Pitchai.'s approach, optimal solution was obtaind by a gradient-random search iteration method. Jacoby did not make guesses of each diameter in the network but assumed each diameter to be a continous variable. After the solution was obtained for each diameter, it was rounded off to the nearest integer size available on the market, If these round-offs resulted in infeasible solution, Hardy Cross method was applied to eiiminate this infeasibility. Because the objective function has
many local optima, the technique does not assure that the global optimum will be found. The author cautions that care should be exercised to avoid local minima.

In 1968, the same year that Jacoby came up with his method (39), Karmeli et al led the way in the use of linear programing method in hydraulic network optimai design. He considered a network without loops i.e., a simple branched network with only one source of supply. The decision variables were the piezometric head at the sources and the length of each pre-determined diameter to be allocated to each branch of the tree-shaped network. (The configuration of the network considered made it very easy for flows in each pipe to be computed directly once demands at the nodal points were known). The total length of each pipe and the minimum allowable piezometric head at each node formed the constraints. Subsequent contributions to the optimal network design problem which used linear-progranming technique as a design tool are those of Gupta (41), Schaake and Lai (42), Koh1haas and Mattern, (45) Kally (46), and Cembrowicz and Harrington (48),

An approach very similar to that of Karmeli, et al, was adopted by Gupta in 1969 in dealing with a simple branched network. The decision variables were taken as the lengths of pipe segments with a specified diameter since pipe resistance and pipe cost are linear functions of its length. He considered constraints on heads at nodes as linear inequalities imposed on the decision variables.

In the same year, Schaake and Lai (42) came up with a linear programing formulation which was based on two steps: Variable transformation, which linearizes the constraints, and a linear approximation of the objective function. The objective function was derived by considering one loading
condition although extension to multiple loadings was developed. They considered fiow as a constraint.

Two years later, Kohlhaas and Mattern (45) observed that the application of the linear programming technique to a loop network resulted in "branch" or tree-like system because of the linear programing property that the solution of a probiem of in decision variables and m constraints results in $n-m+1$ zero decision variables. According to them this presents no problem so long as additional pipes within the existing looped system are being optimized. However, they contended, 'the use of the linear programing for developing an optimal looped system in those areas not now served by existing pipes, requires an extension of existing water distribution system linear programming theory." To overcome this difficulty, they used separable programing to determine the optimal diameters, pumps, and reservoirs in a looped system in which all heads were given in advance.

Separable programming first introduced by C.F. Miller in 1963, is usually described as "probably the most useful non-linear programming technique." In separable programoing, non-linear programuing problems are solved by approximating the non-linear functions with piecewise linear functions and then solving the optimization problem through the use of a modified simplex algorithm of the linear programing, or in special cases, the ordinaty simplex algorithm. Basic assumption is that all functions in the problem must be separable. In other words, consider a function of two variables such as:-

$$
f\left(x_{1} x_{2}\right)=x_{1}^{3}-2 x_{1}^{3}+x_{1}+x_{2}^{2}-x_{2}
$$

This function is separable because it can be separated into two functions each a function of one variable:
where

$$
\begin{aligned}
& f_{1}\left(x_{1}\right)=x_{1}^{3}-2 x_{1}^{2}+x_{1} \\
& f_{2}\left(x_{2}\right)=x_{2}{ }^{2}-x_{2} .
\end{aligned}
$$

The objective function they formulated was non-linear in the flow decision variables and costs of pipe, pumps, and reservoirs were considered; the constraints were inear.

In 1972, Kally (46) introduced a method which is equally applicable to tree-1ike and to looped network layouts. The method is based on a combination of two techniques: One is computation of the hydraulic data of the network by the Hardy Cross method, and the other is finding the optimum solution using linear programming technique. The objective function is linear in structure, whereas, constraints are inequalities in linear form. The length of a pipe is used as the decision variable.

Cembrowicz and Harrington (48) whilst working on the capital-cost minimization of hydraulic network developed a method for the evaluation of the global minimum of the non convex capital cost function based on a deterministic single load pattern and continious diameters. Results of their work was published in 1973. Using fundamental graph theory, the problem was decomposed into independent sets of convex functions subject to linear constraints. A standard algorithm was used in solving the transformed version whose variables are the flows and head losses in each pipe.

A year later Shamir (50) approached the optimal design and operation of water distribution systems as a linear programming program but the solution was based on a combination of the generalised reduced gradient method which draws on some of its variants used in optimal power flow solution. He considered the system being operated under one or several loading condition. In 1977, Alperovits and Shanir (55) improved upon the solution technique by
using linear programing gradient (LPG) method. Briefly, the first step in developing the LPG method is to sssume flow distribution in the network. This permits constraints on heads at nodes to be formulated. It must be pointed out that the cost of a pipeline is assumed to be Iinearly propotional to its length. Once the linear programing problem is formulated, it is then solved. If a vector of flows in all links, which satisfy continuity at all nodes, is denoted by Q, then for any Q the Optimal cost of the network is expressed as:

```
Cost= = LP(Q)
```

where

LP implies that cost is the outcome of a linear program.
The next stage is to develop a method for systematically changing Q with the view to improving cost. If Q_{p} denotes the change in flow in path p. then

where
$b_{p}=$ known head difference between the end nodes of path p
$W_{p}=$ value of the dual variable of the constraints for path P. W p_{p} may be either positive or negative.

Apart from linear and non linear programming, dynamic programming is the other optimization technique which has been applied to hydraulic network optimization problem. Dynamic programming, the most complicated of the mathematical programing variants, is a technique which deals with the optimization of multistage decision processes. This technique was developed by Richard Bellman in early 1950's. In this technique, decision regarding a certain problem are typically optimized at subsequent stages, rather than simultaneously. This implies that the original decision problem is divided
into small subproblems which can then be handled more efficiently from a computational view point. Some of the basic features of this technique are that:

1. at each stage the total decision process is related to its adjoining stages by a quantitative relationship called a transition function which can either reflect discrete quantities or continous quantities depending upon the mature of the problem;
2. given the current state, an optimal policy for the remaining stages in terms of a possible input state is independent of the policy adopted in previous stages and that the solution procedure always proceeds by finding the optimal policy for each possible input state at the present stage.

In 1971, Liang (43) applied this optimization technique to the optimal design of a single pumping source serial type water distribution system under a single loading pattern. Four years later, Fine (52) extended the technique to two cases involving (a) looped system and (b) serial system (both under single and multiple pumping scurces systems) in the optimal planning and design of the water distribution systems. This technique has the advantage of being able to handle virtually any type of non-linear cost function. very efficiently.

At the time "check design" approach was being used in the optimal design of hydraulic network, Tong, et al., (35) in 1960, introduced the concept of the equivalent pipe. By definition, an equivalent pipe is one in which the Doss of head for a specified flow is the same as the loss in head of the system which it replaces.. For any system, there are theoretically an infinite number of equivalent pipes. By this approach, equivalent lengths of pipes in a loop are balanced and proper sizes of pipes ate obtained from prescure
surfaces. They hold the view that for a given network the total weight of pipe required is minimal when the total sum of the equivalent lengths of pipe in a loop is minimal. Further work on this line was carried out by Raman and Raman (36), and Deb and sarkar (44).

Raman and Raman agreed with the equivalent pipe concept and went on further to demonstrate mathematically the necessary condition for minimum equivalent length. Deb and sarkar, however, disagreed with this concept and pointed out that equivalent length is inversely proportional to the diameter raised to the power 4.87 and that by minimizing the equivalent length of pipes, the cost of network is increased. In 1971, they in turn, came up with investment minimization procedure based on both equivalent pipe and equivalent diameter concepts. The technique was applied to a branched network in which pressure surface profile i.e. heads must be known as well as head at the inlet. A method for determining the optimal pressure surface profile and inlet head was developed. The objective function includes the initial investment cost and reflects the cost of one loading condition to meet specified demands. Three years later and also in 1976 , Deb $(51,54)$ considered similar problem but this time he considered both the capital cost and operational cost. In both works, a discrete problem was treated as a continous one.

In 1973, Watanatada (49) tackled the least cost design of water distribution system problem by using the non-linear progranming formulation technique. Mathematically, the problem is stated as follows:

$$
\begin{array}{ll}
\text { Minimize: } C_{T}(D, H, Q) \\
\text { Subject to: } & T_{k}(D, H, Q)=0, \\
& k=1, \ldots \ldots, M \\
H_{k}=H_{M_{k} ;} & k=1, \ldots \ldots, M \\
Q_{n k}=0 ; & k=1, \ldots, M, M S
\end{array}
$$

$$
D_{p} \equiv D_{\min } \quad p=1, \ldots, p
$$

where

$$
\begin{aligned}
& C_{T}=\text { total cost of the system and } \\
& C_{T}(D, H, Q)=\sum_{p=1}^{P} U_{p} L_{p}+\sum_{k=1}^{M S} S_{k} \\
& P=\text { total number of pipe in the network } \\
& U_{p}=\text { Unit cost of pipe, } p \text {. } \\
& I_{p}=\text { length of pipe, } p \text {. } \\
& \text { MS = number of source nodes. } \\
& M C=\text { number of consumption nodes. } \\
& M=M S+M C \text {, the total number of nodes. } \\
& S_{k}=\text { present value cost of supplying a quantity } Q_{N K} \text { at pressure } \\
& \mathrm{H}_{\mathrm{k}} \text { 。 } \\
& \mathrm{H}_{\mathbb{M} \mathfrak{k}}=\text { prescribed minimum allowable delivery pressure } \\
& \text { (consumption nodes only). } \\
& D_{p}=\text { internal diameter of pipe, } \\
& D_{\text {min }}=\text { minimum permissible pipe diameter } \\
& T_{k}=\text { flow residual or sum of flows leaving the node. } \\
& =Q_{L p}-\sum Q_{L p}+Q_{N k} . \\
& D=\left(D_{1}, D_{2}, \ldots, D_{p}\right)^{T} \text {, a column vector of } P \text { dimensions: } \\
& H=\left(H_{12} H_{21}, \ldots, H_{m}\right)^{T} \text {, a column vector of } M \text { dimension. } \\
& Q=\left(Q_{N 1}, Q_{N 2}, \ldots ., Q_{N m}\right)^{T} \text {, a colum vector of MS } \\
& \text { dimensions (} T \text { Eranspose). } \\
& \text { Since the constraints stated above do not permit the design vectors, } D, H \\
& \text { and } Q \text {, to vary freely, the non-linear programming problem is referred to as } \\
& \text { constrained, otherwise, it is unconstrained. In his work, Watanatada }
\end{aligned}
$$

employed a method developed by Box (67), to eliminate inequality constraints while the equality constraints were handled by the "gradient balancing" method of Haarhoff and Buys (68). The equality constraints are handled by the use of Lagrangian function.

Like others, the technique suffers from the fact that discrete problem is treated as continous since diameters obtained are rounded off to give sizes available on the market. However, the method is able to solve large networks say 50 nodes or more as well as several sources.

A method labelled as a "simplified optimization of water supply systems" was developed by Rasmusen (53) in 1976. The non-linear programing formulation was almost similar to that of Watanatada described previously. The difference lies in the method of solution. In Rasmusen's approach, the original problem is decomposed into two subproblems:

1. a hydraulic network flow problem which for any known values of pipe diameters and nodal consumption can be readily be solved; and
2. a diameter modification algorithm which attempts to modify the pipe diameters towards an optimal solution.

The decomposition, according to Rasmusen, implies that the hydraulic flow and diameter modifications must be solved iteratively until the optimal solution is found. The method considers discrete diameters available on the market but the diameter modifications are limited to one of three options.

The final hydraulic network optimization method to be discussed is the one proposed in 1972 by Barlow and Markland. The method optimizes the network by using the concept of cost-effictiveness as a criterion to decide between aiternative possible changes to a tentative design, Cost-effectiveness is
defined as friction head loss per unit cost. The concept may also be applied to produce an economic modification to an existing network.

Some Observations from above Discussion

In this chapter some of the techniques developed so far, both the analysis and the optimal design of a hydraulic network have been discussed. The treatment of the subject is by no means exhaustive. Nevertheless, it is believed that sufficient ground has been covered for some observations to be made.

Of the methods developed for hydraulic network analysis, Hardy Cross method and Newton-Raphson method are widely used. In spite of their widespread use, Hardy Cross method requires initial guesses of flow distribution which comply with the node law, whereas Newton-Raphson method requires inftial guesses for either flow distribution or nodal heads. A big set back in these approaches is that a very bad initial estimates of either flow distribution pattern or heads at nodal points can lead to slow convergence or, in some cases, a situation where the successive trials to not converge and solution cannot be found. Hardy Cross method is known to converge much slower, if at all, than that of Newton-Raphson.

Quite apart from convergence problem encountered, both methods require large computer memory space for large networks. Attempts have been and are still being made to improve upon the efficiency of Newton-Raphson method by reducing memory space requirement. The use of a set of loop equation instead of a set of flow equations which obey the node law (thereby reducing the number of equations to be solved) has been suggested. To this end Epp and Fowler (25) have come up with a Loop Labelling Algorithms to enchance efficiency. Other
researchers, for instance, Chandrashekar and Stewart (33) recommend the use of sparse matrix to reduce computer memory space requirement.

Techniques developed so far are aimed at solving for flows and heads in the network through iteration procedures. With the exception of the linear theory method, both the Hardy Cross and Newton-Raphson methods require initial estimates of either (1) flow distribution satisfying the node law or
(2) head at each nodal point.

In this thesis, linear graph theory is used in a method which solves a
hydraulic network for head loss and flow through each link in the network in a straightforward fashion i.e., without iterative procedure. The technique developed does not require initialization of any form. Observations from discussion on techniques developed for optimal design of hydraulic network follows next.

From above it is apparent that the early attempt at optimal design of hydraulic network is what may be referred to as "check design." This is a procedure whereby, based on specified design criteria, the cost of each hydraulically feasible alternative design is computed and the design yielding the lowest cost in terms of either investment alone or investment and operation is chosen. This design procedure, which was adopted by Pitchai (18), Shamir an Howard (20), Epp and Fowler (22), and McCormick and Bellamy (30), no doubt, is cumbersome, uneconomical and not guaranteed to yield a global optimal solution to the problem.

The "equivalent pipe" method, which received some attention ($35,36,44$, 51, 54), lacks mathematical justification for cost equivalence between the actual and the equivalent pipes. The method also suffers from the fact that It cannot be applied to a system of multiple supply sources because a
hydraulic pressure surface over the network must be created artificially even before the selection of pipe sizes can be made.

Linear and Non-linear programing techniques have been applied to both branched and looped network. Although these techniques are used extensively there are a number of drawbacks. Some of these are:
I. aimost invariably, pipe diameter is considered as a continous variable. After a feasible solution has been obtained, the diameter of each link is rounded off to the next size corresponding to the one available on the market. Such round offs render the optimal solution obtained invalid. A common deficiency of these techniques is that a discrete problem is treated as a continous one,
2. the application of the linear programing nethod to a looped network may result in a "branch" or a tree-1ike network.
3. where link in a looped network is considered as a decision variable, the optimal solution gives a combination of pipes of different sizes for a link spanning two nodal points. In practice this is unacceptable.
4. in some cases the non-linear objective function or the nonlinear constraints are approximated as linear functions through linear transformation, Clearly, an optimal solution obtained in this way is far from the global one.

Even though the dynamic programming technique has the capability of handling virtually any type of non-linear cost function very efficiently its use, so far, is limited to the optimal design of a serial type water distribution under singie (43) or multiple pumping (52) condition. In 1975, Fine (52)
extended the application to a single looped network under multiple loading condition. No successful attempt has been made to develop a model for an optimal design of a multi-looped network based on dynamic programming method.

The Layout of this Thesis

The foregoing pari of this thesis has discussed the major drawbacks of some of the existing models for the analysis and optimal design of hydraulic network and has advocated the need for new models for both the analysis and the optimal design of hydraulic network.

Chapter II of the thesis gives a description of the theoretical derivation of the models based upon past efforts in these fields and the large body of analytical procedures and tools in the fields of network analysis and circuit theory. Chapter III describes the application of these models to the analyses and optimal designs of an example problem and an actual network. In the final chapter of the thesis an evaluation of the two models developed, in juxtaposition to the existing models, will be made. Certain recommendations for their future applications and developments will be made.

THE DEVELOPMENT OF THE ANALYSIS AND

THE OPTIMIZATION MODELS.

Introduction

The purpose of this chapter is to develop mathematical models for the analysis and optimal design of a water distribution network based on the graph theory which is a branch of mathematics founded with Leonhard Euler's formulation and solution of the first graph theory problem in 1736 . Over a century later James Clerk Maxwell and Gustav Robert Kirchhoff discovered certain basic principles of network analysis in the course of their studies of electrical cirouits. Since then network analysts have relied very heavily on graph theory. Linear graph theory, therefore, provides concepts and techniques which are often used in the process of formulating the set of equations necessary for the analysis of many types of physical systems (57). The optimal design of the network is based on the assumption that the flow through each pipe of the network is known. It is, therefore, considered appropriate to develop the model for the analysis of the network first and that of the optimal design next.

The Development of the Analysis Model

Generally, all systems (including water distribution system) are collections of parts or components designed to accomplish certain objectives.

Specifically, water distribution systems consist of water treatment plants, reservoirs and pumps on one hand and consumers, both commercial or domestic, on the other hand. They are interconnected by pipes of different size and type. Each of these parts, elements or components has certain properties inherent in its nature. Each system has a specific structure or interconnection pattern by which it eonstraints its components to perform only in certain ways. It is possible to identify the components of the system by their function in the total system and classify them in such a manner that each class of components have properties that are common to the class and differ from those of the other classes. Once the system components are thus classified it is possible to analyse the total system by techniques used for Network Analysis.

Network analysis is the study of connected lines and points. The lines, referred to as branches, can represent water mains or the generalized channels through which comodities flow, for example, roads, railroad tracks, airline routes or even powerlines and telephone wires. The points called the nodes, can represent cormunities, highway intersections, water reservoirs, railroad yards, airline terminals, power stations or telephone exchanges; in general, a node can represent any point where a flow originates, is relayed (or transmitted) or terminates. The natural limitations and capacities of the network's n@des and branches can be described by numbers. These numbers can be fixed, as in the case of the study of steady state or instantaneous flow conditions, or they can vary with time, as in the case of time variant flow conditions. In telecommunication networks, for instance, or even in transportation networks, the node numbers can even be random numbers whose values cannot be predicted precisely.

The fundamental objective of the network analysis technique is to relate mathematically the characteristics of a system to the characteristics of the component parts and their mode of interconnection. Regardless of what the pattern of interconnection is, a water distribution system has to obey certain fundamental physical laws whose roots are to be found in graph theory. These laws are: (1) the flow of any comodity or fluid, in this case water, into a junction must equal that out of this node. This is known as the node law. (2) the total headloss or propensity drop around a loop is zero. This is the circuit law. These two laws are respectively analogous to Kirchhoff's current and voltage laws. (3) each element of the system has a functional relationship between its pressure, voltage or propensity drop and flow rate. Some of the fundamental concepts of network analysis, which can also be considered as a systems analysis, will be presented here. This will be followed by a dissussion on how the method can be applied to a water distribution network.

The following are the steps to be followed in the analysis of a system by network analysis:

Step 1. The identification of the system component by purpose or function.

Step 2. The measurements on the components
Step 3. The determination of the terminal equations of the system components.

Step 4. The construction of the system graph.
Step 5. The establishment of a tree on the system graph.
Step 6. The formulation of the system equations.
Step 7. The numerical solution of equations.
The first step in the analysis of a system is the choice of units of
the system components. This choice, generally, depends upon the type of the system being analyzed as well as the purpose of the system analysis. Thus, to the designer of a hydraulic solenoid valve, this component is a collection of valves, coils, pipes and pumps to the designer of electronic amplifiers, the amplifier is a collection of resistors, inductors, capacitors, transitors and/or vacuum tubes.

The second step of the systems analysis is the mathematical description of the components selected in step 1. This description is connected with measurements on the components. For the purely physical systems (such as electrical, mechanical, heat transfer) these measurements are such that one is a "through" or "series" measurement represented by the letter Y and the other an "across" or "paralle1" measurement represented by a letter X. For instance, in the electrical system X is voltage and Y is current; in the mechanical system X is a force and Y is displacement; in the thermal system X is temperature and Y is the heat flow and in the hydraulic system X is pressure and Y is fluid flow.

Once the components have been selected and the basic measurements chosen, it is possible to formulate mathematical equations describing the characteristics of the component in teras of the basic measurements. These equations are the terminal equations of the components and generally have the formula:

$$
Y=k f(x)
$$

where
k is a constant depending on component parameters and Y and X are fundamental measurements.

The next step of the analysis of the system is to formulate a mathematical
equation describing quantitatively the interaction of the components of the system. The nature of the system is a factor in determining which technique is to be used to accomplish this. For instance, in some mechanical systems the system components are initially described by energy functions or the well known Lagrange's equations and the equations describing the component interconnection obtained by taking partial derivatives of the fegrange equations. The application of the linear graph theory has been found to be a powerful tool in electrical network analysis.

The use of linear graph theory requiris that the paysical system, in this case water distribution system, must be reduced to a system graph made up of line segments. To achieve this each component is represented by an oriented line segment called the component terminal graph. A pipe, for example, has two ends called the terminals, at which it can be connected to a network. Similarly, a pump operating under certain conditions, can be connected at two ends (suction and delivery), also known as texminals, to the network to deliver a certain flow through it. The inlet and the outlet ends of a reservoir or storage tank, valves and other hydraulic fixtures or equipment can be considered as terminals, Thus, a water distribution system is considered as a system of two-terminal components. Fig. $2-1$ shows a schematic representation of a component and its corresponding component terminal graph. A system graph is obtained by uniting the vertices of the component terminal graphs in one-to-one correspondence with the union of the component terminals. The system graph for the hydraulic system of Fig. $2-2 a$ is shown in Fig. $2-2 b$. It is seen that the system graph is simply a collection of the teminal graphs used in presenting the characteristics of the components. An important feature of the twoterminal component systems is that the system graph has a geometric appearance

COMPONENT

TERMINAL GRAPH

FIGURE 2-1: SCHEMATIC REPRESENTATION OF A COMPONENT AND ITS CORRESPONDING TERMINAL GRAPH

(a) Hydraulic System

(b) System G̣raph

FIGURE 2-2: SCHEMATIC DIAGRAM OF A HYDRAULIC SYSTEM AND ITS CORRESPONDING SYSTEM GRAPH.
similar to the schematic diagram in Fig. 2-2a.
Linear graph theory provides concepts and techniques which are of help in the process of formulating the set ci equations necessary for the analysis of many types of physical systems (57). The power of the linear graph technique lies in the ease and simplicity with which it describes the system's interconnections or formulates the system equation. The description of the system's equations is based upon two postulates. The first postulate is a generalization of Kirchhoff's Node Law and it is referred to as the "cut-set" or vertex postulate. Simply, this law states that the algebraic sum of the fundamental flow or through variable, Y, at any node in the system graph must equal zero. Mathematically, if the system graph contains e oriented elements and Y_{j} represents the fundamental flow variable of the $J^{\text {th }}$ element, then the node law can be expressed as follows:

where
$a_{j}=0$ if $j^{\text {th }}$ element is.not incident at $k^{\text {th }}$ vertex $=1$ if $j^{\text {th }}$ element is oriented away from $k^{\text {th }}$ vertex $=-1$ if $j^{\text {th }}$ element is oriented toward $k^{\text {th }}$ vertex.

The second postulate, called the "circuit" postulate, is a generalization of Kirchhoff's circuit law which states that if a linear graph contains e oriented elements and X_{j} represents the fundamental across variable of the $j^{\text {th }}$ element then for the $k^{\text {th }}$. circuit the following mathematical relationship holds:
where

$$
\sum_{j=1}^{e} b_{j} x_{j}=0
$$

$b_{j}=0$ if $j^{\text {th }}$ element is not included in $k^{\text {th }}$ circuit $=1$ if orientation of $j^{\text {th }}$ element is same as orientation chosen

$$
\begin{aligned}
& \text { for } k^{\text {th }} \text { circuit } \\
&=-1 \text { if orientation of } j^{\text {th }} \text { element is opposite to that of } k^{\text {th }} \\
& \text { } \\
& \text { circuit. }
\end{aligned}
$$

The terminal characteristics of a two-terminal hydraulic or any other component are described completely when an equation is given which relates the X_{j} and Y_{j} variables. Such an equation, called a terminal equation, together with the two sets of equations obtained from the "cut-set" and "circuit" postulates, constitute the set of systems equations. The method of solution of these equations for the fundamental through and across variables, the Y^{\prime} s and the $X^{\prime} s$, depends upon the type of the system and the number of components. One of the main advantages of the linear graph technique is that the formulation procedure is independent of the numerical technique used in solving the resulting set of non linear equations. In other words, once the equations are formulated, a suitable numerical method for solution can be selected. Appendix A explains a basis for formulating the system equation for straighforward solution.

The above discussion has been quite general but it applies to all systems; electrical, mechanical, heat transfer, hydraulics or transportation. Dissussion centering mainly, on the application to a hydraulic system follows next.

The Selection of Components

It has been mentioned earlier on that water distribution systems consist of, among other things, water treatment plants, reservoirs and purps on the one hand and consumers on the other hand. It was also stated that these are interconnected by pipes of different size and type and that each of these parts, elements or components has certain properties inherent in its nature.

This hydraulic system can thus be classified as a system consisting of a class of origin components (representing water treatment plants, reservoirs, storage tanks, pumps or generally supply or source areas), a class of destination components (representing all classes of consumers) and a class of transportation links (representing pipes or any conduit).

The Measurements on the Components

With reference to previous discussions, the two fundamental measurements on the components of the hydraulic system are the flow of water or any commodity through the components represented by Y, and the pressure causing this flow, also designated by the letter X .

The Component Terminal Equations

It is possible to establish, quantitatively, relationship between the X and the Y variables. That relationship is called the component terminal equation. The terminal equations for the three classes of components in the hydraulic system will be discussed below.

The Origin or Production (Source or Supply) Components

The cannonical formula for the origin component or production component can be written as

$$
\begin{equation*}
Y_{o i}=\text { known } \tag{2-1}
\end{equation*}
$$

where

$$
Y_{o i}=\text { known flow from origin or supply point } 1 .
$$

This assumption is made because in water supply industry there are techniques for estimating or forecasting total water requirement for a given community or supply area. Total water requirement will, henceforth, be referred to as total water demand.

There are a number of ways in expressing the relationship between the X and the Y variables. One form is the Chezy equation which is expressed as

$$
\begin{equation*}
V=c \sqrt{R S} \tag{2-2}
\end{equation*}
$$

where

```
V = mean velocity, in feet per second
C = Chezy coefficient
R = hydraulic radius, feet. This is defined as the cross-sectional
area of flow divided by the wetted or "frictional" perimeter.
S = slope
```

The value of C to be used in Eq. 2-2 for pipes of various construction, size, and shapes is difficult to ascertain. For this reason, this form of relationship is not used in hydraulic network analysis.

The Darcy-Weisbach equation is the other form of equation written to express relationship between the X and Y variables. The equation is generally written as:

$$
\begin{equation*}
h_{1}=f \frac{L V^{2}}{D 2 g} \tag{2-3}
\end{equation*}
$$

where

```
\(h_{1}=\) friction loss or across variable, feet
    \(f=\) coefficient of friction
    \(L=\) length of pipe, feet
    \(\mathrm{D}=\) diameter of pipe, feet
    \(\mathrm{V}=\) mean velocity, feet per second
        \(=\) flow (Y-variable)/cross sectional area of pipe (A)
```

$\mathrm{g}=$ acceleration due to gravity in feet per second.
Although the formula is fundamentally sound, independent of units used, and in excellent agreement with experimental measurements, the DarcyWeisbach equation, according to Davis and Jeppson (65), is less used in practice than the Hazen-Williams empirical equation which will be given later. Eq. 2-3 is used less often because the friction factor, \hat{f}, is generally unknown until a solution has been obtained. The use of this formula, therefore, requires the solution of the network by trial and error method. Hazen-Williams equation developed in 1902 is the most commonly used for expressing the relationship between the through variable, Y, and the across variable, X. The formula is expressed as

$$
\begin{equation*}
Q_{i j}=0.279 C_{i j}{ }^{2.63}\left(H_{i}-H_{j}\right){ }^{0.54} \frac{1}{0.54} L_{i j} \tag{2-4}
\end{equation*}
$$

where

```
            \(Q_{i j}=\) the flow or through variable, \(Y\), from point \(i\) to point \(J\), in
                m.g.d.
            \(C_{i j}=\) Hazen-Williams coefficient for pipe ij
            \(D_{i j}=\) diameter of pipe \(i j\), in feet
            \(L_{i j}=\) length of pipe ij, in feet
                    \(H_{i}-H_{j}=\) across variable, \(X\), or headloss, in feet
```

According to Davis and Jeppson (65), results obtained by using this form of relationship may be at great variance (20 per cent) with those obtained from the Darcy-Weisbach equation which is considered as more fundamentally sound. The discrepancy is quite evident for networks whose flows are sensitive to external conditions, networks with high velocities (or rough pipes), or
networks with low velocities in some pipes. Because of the difficulty in using the Darcy-Weisbach equation, despite the fact that it applies for viscous flows such as ofls and for gas flows such as natural gas and it is equally applicable in the English system of units (ES) or the International system (SI) without modification of coefficient, Hazen-Williams equation is currently being used extensively in expressing the relationship between the through variable, Y, and the across variable, X.

The Hazen-Williams coefficient, which is known for short as "C" value, is considered as the link resistance factor. It is a measure of the condition of the inside surface of a link or a pipe, in this case. A high value, usually, 140 or 150 depending on the pipe material, indicates that the pipe surface is relatively very smooth, whilst a low value of say 120 for a new pipe of another material indicates that the pipe surface is rough. It has been observed that the " C " value varies with the age of the pipe and that a reduction in the " C " value of the order of 20 percent is possible over a period of $10-15$ years or more. Table $2-1$ shows the variation of " C " values with pipe material and age. A high " C " value implies that the across variable is less than is the case when the " C " value is low for a given flow, pipe diameter and pipe length. The " C " value is reasonably constant over a wide range of flow conditions. This is probably one of the reasons for its widespread use. Unlike Hazen-Williams "C" value, the " f " value in the DarcyWeisbach equation is sensitive to flow conditions which may be laminar or turbulent.

The Destination Areas

The destination areas will be considered as the draw-off or demand areas. On the micro level where the network is sexving a village, a town or a city,

TABLE 2-1

VARIATION OF HAZEN-WILLIAMS "C" VALUE
 WITH PIPE MATERIAL

PIPE MATERIAL "C" Value
New cast iron. 130
5-year-old cast iron 120
20-year-old cast iron. 100
Average concrete 130
New welded steel. 120
Asbestos cement. 140
Steel, riveted, coated with
coal tar. 110
Wood stave. 120
Cast iron lined with cement or
bituminous enamel 140
the draw-off or demand areas will be assumed to be concentrated at pipe junctions or at nodal points of the network although consumers are tapped on the links or pipes. The assumption, no doubt, introduces errors on the network analysis. On the macro level where the network is serving a district or a regional water supply system, the destination aieas will be taken as the villages, towns and cities considered in the network. Thus, villages, towns or cities will be regarded as nodal points and the pipes connecting the villages, towns or cities will represent network links or elements.

Two cases arise when modelling the destination areas. The first case is when the demand for the comodity (water in this case) at each destination or draw-off point is known. This is particularly the case for the network on the macro level. Here the cannonical formula for the destination areas is written as:

$$
Y_{d i}=k n o w n
$$

where

$$
Y_{\mathrm{di}}=\text { the demand for water at destination } \text { i. }
$$

The second case is where the demand for water cannot be specified directly and accurately. This is the case for the network on the micro level. Draw-offs from water distribution networks are time dependent: they vary from (1) hour to hour of the day, (2) day to day of the week, (3) week to week of the month and (4) month to month of the year. What seems to complicate the flow pattern in the water distribution network, just like any other physical system, is that as more and more consumers are added to the system in response to the completion of the construction of apartment complexies, housing estates, comercial cencers, instititions and factories demand for water goes up accordingly.

The equation for the destination areas in this case is given as

$$
Y_{d i}=K A_{d i} f\left(\Delta X_{d i}\right)
$$

where

$$
\begin{aligned}
Y_{d i} & =\text { the flow or demand at destination } i \\
K & =\text { model calibration constant } \\
A_{d i} & =\text { the demand factor } \\
\Delta X_{d i} & =\text { the propensity or desire for water or a commodity at node } i .
\end{aligned}
$$ It should be noted that the propensity or desire for water is different for water used for domestic, industrial and institutional uses.

From the expression just given above, both the demand, $Y_{d i}$ and the desire or propensity for water, X_{i}, are unknown. However.; the demand factor can be constructed. The principle underlying the form or the structure of the demand factor of a destination is that water is transported to that draw-off point because of the demand for that commodity. The construction of the demand factor involves making a listing of the factors contributing to the demand for that commodity and the assessment of the contribution of each of these factors to the destinations draw-off pattern.

Basically, there are two approaches to the construction of the demand factor or attraction index in transportation system. One approach, useful in the absence of sufficient data, is to construct an approximate set of demand factors based on intuitive and subjective considerations. According to Gyanfi (60), these indices can be used to calibrate the model after which they are fine tuned by repeated adjustments to fit observed data. One disadvantage in this approach is that not much information is obtained on why an index has particular value. This is most undesirable because in the planning of new extensions to the network it is usually useful to know the
contribution of each new draw-off point to the system.
The other approach is the use of powerful statistical tools and all avallable data to derive an accurate set of indices prior to the running of the model. The statistical tool normally used is the linear regression model. In this method, linear regression is performed on the factors considered important in the assessment of demand at a particular nodal point. For some demand patterns, such as the domestic water demand, these factors will be few in number and the linear regression can be performed very easily. In a very simple case, domestic water demand will be highly correlated to such factors as population characteristics and distribution, and the medium income of the population in the destination area (draw-off) area.

For aggregate water demand estimation or forecasting, variables contriauting to the desire or propensity for water may be quite numerous. In this instance, it is absolutely necessary to reduce the large number of variables to a relatively small number of factors for regression. A very effective statistical tool for such a reduction is the factor analysis method. Various textbooks including (69) which treat this subject in detail are available, hence, it will not be considered in this thesis. Computer subroutine programs for performing such analysis is also available.

In brief, the objective of factor analysis is to resolve a set of variables linearly in terms of a small number of factors or categories. This is done by the analysis of the correlations among the large number of variables. The success of this method will be evident when it is possible to describe completely the original set of variables. The use of this method requires one to postulate the factors necessary to describe the demand pattern. The postulate is based on intutive or subjective judgement.

The Construction of the System Graph

The construction of the system graph follow procedures already explained. To recapitulate the procedure, the linear graph theory requires that the water distribution system be reduced to a system graph made up of line segments. To achieve this each component is represented by an oriented line segment referred to as the component terminai graph. Fig 2-1 shows a schematic representation of a component and its corresponding component terminal graph. A system graph is obtained by uniting the vertices of the component terminal graphs in one-to-one correspondence with the union of the component terminals. Fig. B-2 in Appendix B represents the linear graph of the physical system shown in Fig, B-1. The link from node 8 to node 1 is omitted for clarity. It is seen that the system graph is a collection of the terminal graphs used in presenting the characteristics of the components. The water distribution system is considered a two-terminal component system because each of the component (e.g. pipes, valves, reservoirs, pumps e.t.c.) has two terminals, namely inlet and outlet. An important feature of the two-terminal component system is that the system graph has geometric appearance similar to the schematic diagram of Fig. B-1.

It is worthy to note that all the draw-off points and the source or supply points are connected to a reference node 1 to form pseudo-loops. This form of arrangement is analogous to connecting to earth (i.e. grounding in electrical networks). In hydraulics, this point is taken as the datum and the elevation of the hydraulic grade-line at each nodal point is measured or described with respect to this point. The nodes are numbered consecutively with the flow in each pipe being in the direction of the node with a lower number to that with a higher number. While the order of numbering the nodes
and links of the linear graph is inmaterial for the solution of the system, there is some computational advantage to be gained from such numbering system.

The Formulation and Solution of the System Equations

Irrespective of the pattern or the coriplexity of the network, a water distribution system obeys certain fundamental physical laws. These are, fiñt, the flow of a current, fluid or any commodity into a junction equals that which flows out of it. This is the "cut-set" postulate which is a generalization of Kirchhoff's current law. Secondly, the total headioss (in the case of water or any other fluid or gas) or the total voltage drop (in the case of an electrical circuit) around a loop is zero. This, it will be recalled, is the "circuit" postulate.

From the "cut-set" postulate, one set of equations can be written for the through variable, Y, at each vertex (node) of the system linear graph. Symbloically, this set of equations can be written as:

$$
\sum_{j=1}^{e} a_{j} y_{j}=0
$$

where all the symbols are as defined earlier.
The second set of equations involving the ecross variable, X, can be written for each circuit in the system linear graph. Once again, the symbolic expression for the set of equations is as follows:

$$
\sum_{j=1}^{e} b_{j} x_{j}=0
$$

where all the symbols are as explained earlier. These two sets of equations together with the set of component terminal equations form the basis for the formulation and solution of the network.

Theoretically, it should be possible to solve these equations to obtain the X and the Y-variables of each component. Unfortunately, the system of equations, particularly those obtained through the use of the "cut-set" and the "circuit" postulates, are usually not all independent. The interdependence of a set of equations renders the system unsolvable since a singular matrix is obtained. A technique for formulating system equations that are all independent is the choice of a set of linear segments in the linear graph called the formulation tree. By definition, if a connected linear graph G contains V vertices, then the connected subgraph G, of G, containing all V vertices and no circuits is called a tree. Fig2-3 shows a simple linear graph with a possible tree drawn in bold lines. The line segments in the tree are called branches whilst the rest are called chords. Since each chord forms a fundamental circuit with a set of branches in a tree, there are as many fundamental circuits as there are chords. Each of the set of equations obtained from fundamental circuits through the use of the "circuit" postulate is independent. In Appendix A, the significance of a tree and other properties of linear graph are discussed in detail. The resulting sets of "cut-set" and "circuit" equations based on the formulation tree in Fig. 2-3 are shown below for the purpose of illustration.

FIGURE. 2-3: SIMPLE LINEAR GRAPH OF A NETWORK WITH A POSSIBLE TREE DRAWN IN BOLD LINES.

$$
\begin{aligned}
& \text { "Cut-set" Equations } \\
& {\left[\begin{array}{cc}
\\
Y_{1} \\
Y_{2} \\
Y_{3} \\
\cdot \\
\cdot \\
\cdot \\
Y_{15} \\
Y_{16} \\
Y_{17}
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
Y_{18} \\
Y_{19}
\end{array}\right]=0 \quad(2-5)}
\end{aligned}
$$

where

$$
\mathbf{u}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrrrrr}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
-1 & -1 & -1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \text { Circuit Equations }
\end{aligned}
$$

The Solution of the System Equations
The power of the linear graph theory lies in the fact that the formulation procedure is independent of the numerical technique used to solve the resuliting set of equations which may be ifnear or non-iinear. In other words, once the equations are formulated, a suatable numerical method for solution is adopted. The method employed in the solution of the systems equations depends on the explicit relationship between the fundamental variables, X , and Y , for the components as given by the component terminal
equations, For an eletrical network, there is a linear relacionship between the X and the Y-variables whereas in hydraulic network such a relationship is non-linear. Appendix A illustrates methods of solution for the case of a linear relationship between X and Y-variables and the case for any general nonlinear relationship between them. For large networks the number of components increases, hence it becomes necessary to use shortcuts in solution of the system equations to reduce computer memory requirements. Some of the shortcuts are incorporated in the computer program, for the system's model and explained in detail in Appendix C.

As discussed in chapter 1 , a number of researchers have made various contributions to the optimization of water distribution system. Such contributions have focused mainly on either a branch system or a loop system. Techniques used, amongst others, are as follows:-

1. Linear programming
2. Non-linear programming
3. Non-linear integer programing
4. Dynamic programming and
5. Equivalent diameter concept.

Alperovits, E., and Shamir, V. (55) in 1977 categorized these techniques as:

1. Methods requiring the use of a network solver whereby, at each iteration of the optimization, one solves fon the heads and flows in the network. The solution thus obtained is used in some procedure to modify the design.
2. Methods which do not require the use of a conventional network solver. Examples of works which come under the first category are those of Jacoby (39), Kally (46), Watanatada (49), Shamir (50), and Rasmusen (53). According to Alperovits and Shamir, techniques used by Lai and Schaake (42), and Kohlhaas and Mattern (45) did not use a network solver, but both works treated the case In which the head distribution in the network is considered fixed. To overcome this shortcoming they proposed a linear programming gradient (LPG) method which incorporates the flow solution into the optiaization procedure without
making any assumptions about the hydraulic solution of the network. Like the other linear and non-linear techniques, the authors admit that their method can end up with 'zero elements" (i.e., eliminate certain elements) thereby allowing some measure of selection between alternate system configurations. In other words, the optimal design of a looped network may end up as a branched or a tree configuration.

The New Approach

The method, presented here, is applicable to a branched or tree-like network and to looped network configurations. It is based on a combination of two techniques: one is the computation of flows through each link of the network based on known demand or draw-off at each nodal point and the other is the optimal design based on the dynamic programming approach developed by Rothfarb, B., et al (56) in 1968 whilst on a project supported by the Executive Office of the President, Office of Emergency Preparedness, Washington, D. C. The project, which was authorised by the Federal Power Commission was on "Optimal Design of Off-shore Natural-Gass Pipeline Systems." Techniques were developed for solving the following problems: (1) selection of pipe diameters in a specified pipeline network to minimize the sum of investment and operation cost; (2) selection of minimum-cost network structures, given gas-field locations and flow requirements; (3) optimal expansion of existing pipeline networks to include newly discovered gas fields. Techniques developed incorporated procedures for globally optimizing pipeline diameters for fixed tree structures and heuristic procedures for generating low-cost structures.

Network Analysis

The computation of flows through each link of the network (i.e. network analysis) may be performed efther by the method described earlier or by any other well known method developed for the analysis of water distribution network. The objective here is to obtain, as accurately as possible, flows through each pipe at the required veiocity, and sacisíying draw-ōfí requirements at specified nodal points. In short, the optimization technique is to be applied to a balanced network, primarily, in terms of flows and/or pressures. It is assumed that draw-off at each node is either known in advance or can be computed.

Optimal Design
Fig. 24 shows a typical tree-like configuration of an off-shore pipeline network. The techniques developed by Rothfarb et al (56) were applied to such network cinfiguration. It stands to reason, therefore, that if by some means a water distribution network can be reduced to such a configuration the technique developed can be applied. Fortunately enough, by means of linear graph theory, computer programs or algorithms for listing or obtaining spanning trees of a network is now available. It will be recalled that a tree is defined as a connected subgraph of a connected graph G containing all V vertices and no circuits. A tree T is said to be a spanning tree of a connected graph G if T is a subgraph of G and T contains all vertices of G. One such algorithm published in a textbook by Narsingh Deo (63) was used to obtain trees as shown in Figs. $2-5 a, 2-5 b, 2-5 c$ and $2-5 d$. A line between two nodes is called a branch and the branches, forming the tree of a given network, are shown in solid lines; the dashed lines are chords.

The key to the solution of the design problem is the development of rules

FIGURE 2-4: A TYPICAL

FIGURE 2-5: SPANNING TREES OF A 12 NODE 17 ELEMENT NETWORK.
to eliminate uneconomical diameter combinations in networks without enumeration. For example, given a tree containing nodes and, therefore, n-1 branches (with, say, seven diameter choices for each branch to maintain the necessary velocity of flow in that branch) there are 7^{n-1} possible diameter assigments. Thus, for the 12 -node tree shown in Fig. 2-5, there are 7^{11} diameter assignments. Out of these possible choices of diameters the application of the rules should make it possible for one to find one choice that leads to the least expensive diameter combinations in terms of total investment and operating cost.

From the component terminal equation, which may be expressed as:

$$
\begin{equation*}
\mathrm{Q}=0.279 \mathrm{CD}^{2.67 \mathrm{H}_{1}-\mathrm{H}_{2}}\left[\frac{L_{1}}{0.54}\right. \tag{2-7}
\end{equation*}
$$

where $Q=$ flow through a pipe or a branch in m.g.d.
$C=$ Hazen-Williams "C" value
$D=$ internal pipe diameter, in feet
$L=$ length of pipe, in feet
$H_{1}=$ Outlet pressure, in feet.
since flow in each branch of a tree is known through a network analysis procedure, by specifying a diameter for a branch also specifies the head loss or pressure drop across that branch. It follows, therefore, that given a diameter assignment for all the branches, the node at which the pressure is greatest or least, as the case may be, can be determined. Thus, H_{1} and H_{2} are the only unspecified variables given in the component terminal equation shown above. It is assumed that flow through the network is due to pumping at a specified node, However, the technique being described is applicable also to the case whereby the supply is either by gravity or under pressure by pumping into more than one point on the network. There are major pressure
constraints to be observed. First, the maximum allowable pressure in a pipeline should not exceed $P_{\max }$, which is a specified constant. Secondly, water must be delivered to the most remote or the farthest nodal point on the network at a pressure greater than or equal to $P_{\max }$, which is another specified constant with $P_{\min }\left\langle\mathrm{P}_{\max }\right.$. Thirdly, the pressure available at each draw-off or demand point musi be, at least, ${ }^{2}$ min. Since there is a minimum allowable node pressure $\mathcal{P}_{\mathrm{min}}$, the pressure at the pump (or the elevation of the top water level in a storage tank) must be set high enough so that the necessary head loss or pressure drop can be maintained without falling below the pressure limit anywhere in the network. The path in the tree from the supply node (pumping unit(s) or elevated storage tank) to the node of the least pressure is called the Critical Path. The sum of the head loss or pressure drop along the critical path determines the pumping head, and hence, the pumping cost. It must be pointed out that even if the supply to the network is by gravity, in almost all cases, the elevated tank is fed by pumping, hence there is the need to reduce pumping cost to this storage tank.

The choice of diameters for some of the branches and leaving the diameters for the remaining branches unspecified is called a Partial Assignment. Given the very large number of possible diameter assignments, Rothfarb et al (56), developed methods that recognize partial assignments that cannot be in the optimal assignment. The elimination process was performed early, thus keeping the number of candidate partial assignments tractable. It is worthy to note that if one is to find a globally optimal assignment, one cannot discard any partial assignment that might possibly be part of the optimal assignment.

The elimination process is in three steps, namely:

1. computation of vector PCOST and vector PSQ
2. parallel merge and
3. serial merge.

Step 1. Computations of vector PCOST and vector PSQ proceed as follows. From the result of the pipe network analysis performed earlier, flow through each branch is known. This then permits a range of flow velocities to be obtained for each branch from a given range of commercially available diameters. The range of flow velocities must be selected in advance to meet the minimum and the maximum velocity of flow through each branch depending upon the pipe material and the nature of the inside of the pipe. Once the upper and the lower limits of flow velocities are specified for each link, a range of diameters are then obtained. Rothfarb et al (56) considered seven different sizes of diameters for each branch. Irrespective of the number of different sizes of diameters considered, the elimination process remains the same; but it must be pointed out that the larger the number of diameters considered, the larger is the computer memory space requirement. However, it is computationally advantageous to consider the same number of diameters for each link regardless of sizes considered. The installed cost (pipe cost plus cost of excavation, laying and backfilling) of a branch of a given length is a function of the type of pipe and its diameter. This cost must be amortized over some time period to convert total capital cost to an annual cost. Any amortization scheme can be used in the design method. The pipe cost associated with the $i^{\text {th }}$ smallest diameter choice for a given branch is defined as vector PCOST. Similarly, the head loss or the pressure drop across the branch arising from a choice of the $i^{\text {th }}$ smallest diameter size for that branch is referred to
as vector PSQ which is obtained from equation (2-7) by knowing the flow, Q, and D, for that branch. The values of the elements of PCOST are in Increasing order whilst those of PSQ are in decreasing order. Fig. 2-6 shows this trend. The two vectors taken together is called a Branch List. Two techniques developed to be used together on a given tree to efficiently process these branch lists to obtain the optimal diameter assignment are (i) the parailei merge and (2) the serial merge. Detailed discussion of these techniques can be found in the reference cited. A brief discussion of these techniques follow

Step 2. The parallel merge is used on any set of branches that connect directly nodes of degree one to a common node. By definition, the degree of a node is the number of branches that are incident to the node. Branches b_{1} and b_{2} from the tree of Fig. $2-4$ will be used to illustrate the procedure. Assume that the branch lists for these branches are as given below:

	PSQ	$(153,144,125,99,87,73,64)$
$b_{1}:$ list:	PCOST	$(26,34,46,58,72,90,116)$
b_{2} 1ist:	PSQ	$(183,172,151,120,108,103,100)$
	PCOST	$(12,18,28,42,60,80,112)$

Each branch being merged has a column in the testing block tabulated below. If the index in a column is set to i then the PSQ and PCOST entries in that column are the $1^{\text {th }}$ components of the list. Initially, the indices are set to 1.

	b_{1}	b_{2}
PSQ	153	183
$P \operatorname{COST}$	26	12
INDEX	1	1

The largest entry in the PSQ row of the tescing block it located. In this

INTERNAL DIAMETER OF PIPE(INCHES)

FIGURE 2-6: VARIATION OF PIPE COST AND PUMPING COST WITH PIPE DIAFETER
example, the largest entry is to be found in column b_{2}. What this means is that if the smallest pipe diameter is chosen for b_{2}, then b_{1} cannot be on the critical path. Consequently, choosing other than the minimum diameter for b_{1}, when b_{2} has the minimum diameter, will increase the total cost of pipes, but cannot reduce the pumping cost. If an optimal assignment has b_{2} at its minimum diameter, then b_{1} must also have minimum diameter. The largest $P S Q$ entry and the sum of the PCOST entries of the testing block are entered on a new list. This entry on the new list corresponds to a partial assignment of minimum diameters to b_{1} and b_{2} :

```
                                    PSQ
New list:
PCOST
New list:

The index in the \(b_{2}\) column of the testing block is increased by 1 to give the table shown below
\begin{tabular}{lrr} 
& \(b_{1}\) & \(b_{2}\) \\
PSQ & 153 & 172 \\
PCOST & 26 & 18 \\
INDEX & 1 & 2
\end{tabular}
since no better choice of diameter for \(b_{1}\) is possible with \(b_{2}\) at this diameter. In the updated testing block, the new maximum PSQ entry is still in column \(b_{2}\). This implies that, if \(b_{2}\) has the second smallest diameter, it still will not pay to have \(b_{1}\) at any diameter other then the smallest. The updated new list is shown below:

PSQ (183, 172),
New 1ist:
PCOST \((38,44)\).
The updated new list represents a partial assignment of the second smallest diameter to \(b_{2}\) and the smallest diameter \(t_{1}\). The inder in the \(b_{2}\) column is promoted once more to yleld the updated testing block shown on the next page:
\begin{tabular}{lrr} 
& \(b_{1}\) & \(b_{2}\) \\
PSQ & 153 & 151 \\
PCOST & 26 & 28 \\
INDEX & 1 & 3
\end{tabular}

Now the largest entry in the \(P S Q\) row is in column \(b_{1}\) for the first time. If an optimai assignment contains \(\mathrm{b}_{1}\) at its smallest diameter, it cannot contain \(b_{2}\) at a larger diameter than the third smallest, or \(b_{1}\) at a diameter other than the smallest. Updated new list is shown below:

PSQ (183, 172, 153),
New list:
PCOST (38, 44, 54)
and the index in column \(b_{1}\) is promoted to give the table shown below:
\begin{tabular}{lrr} 
& \(b_{1}\) & \(b_{2}\) \\
PSQ & 144 & 151 \\
PCOST & 34 & 28 \\
INDEX & 2 & 3
\end{tabular}

The process comes to an end when the largest entry of PSQ row of the testing block occurs in a column whose index has been promoted to 7 which is the number of different sizes of diameters being considered for each branch. Beyond this point, further promotion of the other indices would correspond to partial assignment of greater pipe cost and no possible savings in pumping cost. Tabulations given below show the remainder of the sequence of testing blocks and the complete resulting new list.
\begin{tabular}{lrrrrrr} 
& \(b_{1}\) & \(b_{2}\) & \(b_{1}\) & \(b_{2}\) & \(b_{1}\) & \(b_{2}\) \\
PSQ & 144 & 120 & 125 & 120 & 99 & 120 \\
PCOST & 34 & 42 & 46 & 42 & 58 & 42 \\
INDEX & 2 & 4 & 3 & 4 & 4 & 4
\end{tabular}
\begin{tabular}{lrrrrrr} 
& \(\mathrm{b}_{1}\) & \(\mathrm{~b}_{2}\) & \(\mathrm{~b}_{1}\) & \(\mathrm{~b}_{2}\) & \(\mathrm{~b}_{1}\) & \(\mathrm{~b}_{2}\) \\
PSQ & 99 & 108 & 99 & 103 & 99 & 100 \\
PCOST & 58 & 60 & 58 & 80 & 58 & 112 \\
INDEX & 4 & 5 & 4 & 6 & 4 & 7
\end{tabular}

The final new list or equivalent branch list for \(b_{1}\) and \(b_{2}\) is as shown belors:
PSQ (183, 172, 153, 151, 144, 125, 120, 108, 103, 100)
\(\operatorname{PCOST}(38,44,54,62,76,88,100,118,138,170)\)
This completes a paralle1-merge of \(b_{1}\) and \(b_{2}\). It must be pointed out that each entry on the equivalent branch list represents an assignment of diameters to the branches \(b_{1}\) and \(b_{2}\). Furthermore, no other partial assignments for these branches need be considered. It is interesting to observe that the number of possible partial assignments for these two branches is \(7^{2}=49\). However, the parallel-merge techniques will produce an equivalent branch list with at most 10 entries, one from the original testing block and one each from the testing blocks resulting from a maximum of 9 index promotions. The minimum number of components on a new list is equal to the number of different:sizes of diameters from which a selection is to be made for each branch.

The concept of the equivalent branch is analogous to that of equivalent pipe. Equivalent branch, therefore, represents a branch connected between node 3 and a node consisting of a combination of nodes 1 and 2. Both PCOST and PSQ of the equivalent branch list are respectively in increasing and decreasing order so that no re-ordering of the list is necessary.

Steps 3. The serial-merge can be used on any two branches incident to a common node of degree two if at least one of the two branches is also inctdent to a node of degree one. The branches may be actual branches or equivalent branches. The objective of this technique is to combine, somehow, the list of the equivalent branch with the list of \(b_{3}\) to produce a new equivalent
branch list for \(b_{1}, b_{2}\) and \(b_{3}\) so as to retain as few partial assignments as possible without eliminating any partial assignments that can possibly be in the optimal assignment. Like the parallel-merge, a testing block will be used in illustrating the serial-merge. Data for the setting up of the testing block are obtained from the equivalent branch 1 ist for \(b_{1}\) and \(b_{2}\) and the following \(\mathrm{b}_{3}\) list:
\(\begin{array}{lll} & \text { PSQ }(127,119,113,94,88,81,65), \\ b_{3} \text { list: } & \\ & \text { PCOST }(16,24,36,52,68,86,114) .\end{array}\)
\begin{tabular}{lrrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
PSQ & 310 & 302 & 296 & 277 & 271 & 261 & 248 \\
PCOST & 54 & 62 & 74 & 90 & 106 & 124 & 152 \\
INDEX & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

The testing block required for a serial-merge is shown above. The \(i^{\text {th }}\) column corresponds to the \(i^{\text {th }}\) smallest diameter choice for \(b_{3}\) and an index equal to \(j\) in a column corresponds to the \(j^{\text {th }}\) partial assignment of \(b_{1}\) and \(\mathrm{b}_{2}\) in the equivalent branch list. It must be recalled that the PSQ and PCOST in a column are the corresponding headloss or pressure drop and pipe cost that would result from such a partial assignment of \(b_{1}, b_{2}\) and \(b_{3}\).

To begin with, the indices are all set to 1 . The testing block given in Table ll-above, therefore, gives all the data for the partial assignments for every choice of diameter for \(b_{3}\) with the partial asslgnment of \(b_{1}\) and \(b_{2}\) corresponding to the first component of the equivalent branch list. Thus, the PSQ entry in the \(i^{\text {th }}\) column of the initial testing block is the sum of the \(i^{\text {th }}\) PSQ component for \(b_{3}\) and the first PSQ component on the equivalent branch list. Similarly, the \(i^{\text {th }}\) column PCOST entry is the sum of the \(1^{\text {th }} b_{3}\) PCOST component and the first equivalent-branch PCOST component.

Next, the maximum entry in the PSQ row of the testing block is located. Initially, this will always occur in the first column. The PSQ and PCOST entries of this column become candidate components in a new equivalent branch list for \(b_{1}, b_{2}\) and \(b_{3}\). The index in the first column is then promoted to give result indicated in tabulation given below:
\begin{tabular}{lrrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & \multicolumn{1}{c}{6} & 7 \\
PSQ & 299 & 302 & 296 & 277 & 271 & 261 & 248 \\
PCOST & 60 & 62 & 74 & 90 & 106 & 124 & 152 \\
INDEX & 2 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

The largest PSQ entry is now in the second column whose PSQ and PCOST entries become the second component in the candidate list. The index of the second column is now increased to 2 to give a revised testing block shown below
\begin{tabular}{lrrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
PSQ & 299 & 280 & 296 & 277 & 271 & 261 & 248 \\
PCOST & 60 & 70 & 74 & 90 & 106 & 124 & 152 \\
INDEX & 2 & 2 & 1 & 1 & 1 & 1 & 1
\end{tabular}

The current candidate list is now this:
PSQ (310, 302, 299),
PCOST (54, 62, 60).
Each component on the candidate list corresponds to a partial assignment of \(b_{1}, b_{2}\), and \(b_{3}\). It is observed that the last PCOST component on the candidate list is smaller than the second PCOST coifponent. According to Rothfarb et al (56), the partial assignment corresponding to the third component on the candidate list is always preferable to the partial assignment corresponding to the second component, since the former has a lower pipe cost and cannot result in a greater cost of compression. The second component is, therefore,
eliminated from further consideration. The updated candidate list is:
\[
\begin{array}{lll} 
& \text { PSQ } & (310,299), \\
\text { Candidate list: } & & (54,60) .
\end{array}
\]

Generally, when a new candidate is added to the list, all the candidates already on the list that have PCOST components not smaller than the latest entry are eliminated from further consideration. After each change, along procedure just described, the PCOST vector components in the candidates 1 ist will be in increasing order. The updating of the candidate list is, therefore, easy to perform.

As the serial-mierge technique proceeds each of the 10 components of the equivalent branch list will form a candidate with each of the seven \(b_{3}\) list components giving a total of 70 candidates to be processed. However, as can be seen, some of these candidates can be eliminated. For the example under consideration, only 16 candidates will be retained out of these 70 candidates. Candidates retained constitute an equivalent branch list for \(b_{1}, b_{2}\) and \(b_{3}\). In general only a small fraction of the possible candidates will be retained. An important point about this technique is that a greater percentage of the earlier and later candidates will generally be retained than those in the middle, so the power of the elimination procedure is not fully evident by the small example given.

By the use of both the parallel and serial-merge techniques, the entire tree can be processed to give a single equivalent branch list. The cost of the diameter assignment corresponding to each entry on this final list can then be evaluated by summing its pipe cost (PCOST) and the cost of pumping associated with the head loss or pressure drop (PSQ). The diameter assignment With the smallest cost is the optimal-diameter assignment. Pumping cost is obtained by first computing horse-power necessary to deliver total water
required in the distribution system against total head loss or pressure drop PSQ, from this expression:
\[
H . P=\frac{Q w h}{550 \eta}
\]
where
\[
\begin{aligned}
& Q=\text { flow delivered by the pump in cubic feet per second (cfs) } \\
& W=\text { specific gravity of water, } \\
& h=\text { total head, in feet, } \\
& \eta=\text { pump efficiency. }
\end{aligned}
\]

Next, the pumping cost is obtained from this expression:
\[
\text { Pumping cost }=0.746 \times H P x I x T
\]
where
\[
\begin{aligned}
& I=\text { electric power cost per kilowatt hour, } \\
& T=\text { number of hours of pumping. }
\end{aligned}
\]

In the development of the mathematical models for the analysis and optimal design of a water distribution network based on the graph theory this thesis has contributed in three ways to the present state-of-the-art of the analysis and optimal design of water distribution network. They are:
1. the solution of the set of non-linear component terminal equations, not by an iterative procedure but by the solution of simultaneous linear set of equations,
2. the introduction of the concept of water demand factor in the quantitative description of the various demand flows, at nodal points, and the propensity or the desire to use water,
3. the decomposition of a network to a tree-1ike structure, thereby, the entire network to be processed to give a single equivalent branch in the optimization process.

The next chapter of this thesis deals with the application of models developed
to example problems and to an actual water distribution network. Examples of the decomposition of a network, with different flow patterns, into tree: like structures are also given.
- 75 -

\section*{CHAPTER III}

THE APPLICATTON OF MODELS DEVELOPED FOR THE ANALYSIS AND THE OPTIMAL DESIGN OF HYDRAULIC NETWORK

\section*{Introduction}

The objective of this chapter is to apply the models developed to the analyses and optimal designs of an example problem and an actual network. The idea, here, is to demonstrate the validity of the models developed to a hypothetical case and also to a real one which, at this instance, is the Norman Oklahoma, water distribution network. It will be shown how the optimization model can be used to design an entirely new system by itself or co design an extension to the existing network. In the optimization model, the network is decomposed into first, a spanning tree and secondly into a number of branchedtrees so that a modified form of the dynamic programming technique can be applied.

\section*{Application of Analysis Model}

Figure (3-1) represents a physical system of pipes and junctions as a directed network. This is the example problem. Each pipe is assigned an arbitray positive direction with flow along the link in this direction being considered positive, while flow in the opposite direction is considered negative. By convention, therefore, a positive direction is given to a flow


FIGURE 3-1: PHYSICAL SYSTEM OF PIPES AND JUNCTIONS AS A DIRECTED NETWORK.


FIGURE 3-2: LINEAR GRAPH OF A PHISICAL SYSTEM SHOWN IN FIG. 3-i
direction oriented away from a node, while a negative direction is given to a flow direction oriented towards a node. Actual directions will become apparent on solving the network. Since this is an analysis problem, it is assumed that the size of each pipe in the network is known in advance.

To analyze this network using the linear graph theory approach, a linear graph of the physical system is to be dram. Figure (3-2) represents the linear graph of the physical system shown in Figure (3-1). The link from node 6 to node 1 is omitted for clarity. The network shown comprises nine nodes and twelve elements or links. For ease in the formulation of the problem, a total of seven fictitious links and one fictitious node are added to the network. Each fictitious link is incident at the fictitious node which is numbered 1. Node 1 is, therefore, a reference node and it is analogous to grounding in an electrical circuit. The first six fictitious links or destination links represent outflow from the network. Consumptions or demands from the network are assumed to flow along such an element or link. The remaining one link originates from the reference node and is incident at the point of the network which serves as the source or the supply point. In the example, there is, thus a fixed rate of supply at node 2 , and a fixed draw-off rate at nodes, \(4,6,7,8\) 9, and 10. The addition of fictitious links and node results in a total of nineteen links and ten nodes.

The cannonical forms of the various classes of components can now be formulated. The supply is assumed to be from a constant flow pump, thus; indicating one loading condition. The form of this component (also known as origin) equation is wxitten as:
\[
Y_{0 i}=\text { known } \quad i=19
\]
where
```

X (oi
supply point i.

```

This assumption is made because in water supply industry, there are techniques available for estimating or forecasting total water requirement for a given comunity or supply area. Total water requirement will, henceforth, be referred to as total water demand.

For reasons given in chapter 2, the Hazen-Williams formula which expresses the non-linear, relationship between flow and head loss through a pipeline is used. The pipe flows are, therefore, modelled by the relationship
\[
Y_{i}=k_{i} \Delta X_{i} \quad i=7,8,9,10 \ldots, 18
\]
where
\[
\begin{aligned}
Y_{i} & =\text { flow on any link in m.g.d. } \\
k_{i}= & \text { the resistance to flow on any link } i . \\
\Delta X_{i}= & {\left[\bar{H}_{i}-H_{i}\right]^{\theta .54} } \\
H_{i}-H_{i}= & \text { the head loss or pressure drop for flow } \\
& \text { on link } i .
\end{aligned}
\]

The resistance to flow on any link is expressed as
\[
k_{i}=0.279 C_{i} D_{i}^{2.63} / L_{i}^{0.54}
\]
where
\[
\begin{aligned}
C & =\text { Hazen-Williams friction coefficient for pipe } i, \\
D_{i} & =\text { internal diameter of pipe } i, \text { in feet } \\
L_{i} & =\text { length of pipe } i, \text { in feet. }
\end{aligned}
\]

The use of \(\Delta X_{i}\) transforms the non-linear flow equation to a linear one.
The demand regions or areas can be modelled by the equation
\[
Y_{d}=k_{d} A_{d} \Delta X_{d}
\]
where
\[
Y_{d}=\text { demand f1ow in m.g.d. } \quad d=2,3, \ldots \ldots, 7
\]
\(k_{d}=\) model calibration factor,
\(A_{d}=\) demand index,
\(\Delta X_{d}=\) (propensity or pressure drop). \({ }^{0.54} \Delta X_{d}\) is referred to as DELTAH in the computer program listings in Appendix \(C\). ( \(\mathrm{Y}_{\mathrm{d}}\) may be known or unknown. \(\mathrm{k}_{\mathrm{d}}\) is determined from computer run but \(\Delta \mathrm{X}_{\mathrm{d}}\) is unknown). The demand index, however, can be calculated. In this work \(A_{d}\) is assumed to be a function of the total demand, including wastage. It is taken to be linearly dependent on the population equivalent (in terms of demand) at respective demand node or region. Where draw-off or demand is known, one way or the other, the demand index is expressed as:
\(A_{d}=\) Nodal demand/Total demand.
This completes the first step in the solution of the problem.
The next step in the system solution is the selection of a tree in the linear graph. In this case, computer Program SYSFM which is described in Appendix \(C\) is used for this purpose. The program chooses a tree of the network made up of supply points, demand regions or areas and elements or links. It then formulates the cut-set (node equations) and, hence, the circuit or loop equations for the network in a form suitable for use in another program referred to as SYSAL. The demand, supply and link elements are respectively designated as D-element, 0-element and I-element.

The input to the Program SYSFM is a coded map of the network being analyzed. Table 3-1 is such a map for the example problem. The coded map is derived from a linear graph of the network which is drawn initially in order to assign numbers to the nodes and elements. It is computationally advantageous to number the nodes consecutively with the number 1 assigned to the common node, as explained earlier. Further discussion on the input data is given in

\section*{TABLE 3-1}

\section*{A CODED MAP OF AN EXAMPLE PROBLEM}
\begin{tabular}{|c|c|c|c|}
\hline TYPE OF ELEMENT & NUMBER ASSIGNED & FROM NODE & TO NODE \\
\hline D & 2 & 1 & 4 \\
\hline D & 3 & 1 & 6 \\
\hline D & 4 & 1 & 7 \\
\hline D & 5 & 1 & 8 \\
\hline D & 6 & 1 & 9 \\
\hline D & 7 & 1 & 10 \\
\hline 1 & 8 & 2 & 3 \\
\hline L & 9 & 2 & 5 \\
\hline L & 10 & 3 & 4 \\
\hline L & 11 & 3 & 6 \\
\hline L & - 12 & 4 & 7 \\
\hline 1 & 13 & 5 & 6 \\
\hline L & 14 & 5 & 8 \\
\hline L & 15 & 6 & 7 \\
\hline L & 16 & 6 & 9 \\
\hline L & 17 & 7 & 10 \\
\hline 1 & 18 & 8 & 9 \\
\hline L & 19 & 9 & 10 \\
\hline 0 & 1 & 1 & 2 \\
\hline
\end{tabular}

Appendix C.
By the use of Program SYSFM, all the demand links are selected as branches of the tree in addition to links 8,10 , and 13 which are re-assigned numbers 9, 7, 8, respectively. The remaining links, shown dotted in Figure (3-2), are referred to as chords. The equations in the \(Y\)-variables for the cut-set postulates for all elements can be written as:
\[
\left[\begin{array}{l:c}
U & A
\end{array}\right]\left[\begin{array}{c}
Y_{1}  \tag{3-1}\\
Y_{2} \\
Y_{3} \\
\vdots \\
\vdots \\
\vdots \\
Y_{16} \\
Y_{17} \\
Y_{18}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
-1
\end{array}\right]\left[\begin{array}{l}
Y_{19}
\end{array}\right]=0
\]
where
\[
U=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \text { and }
\]
\[
A=\left[\begin{array}{rrrrrrrrr}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\]

The equations for the X -variables around fundamental circuits of all elements 1 the graph in terms of elements in the tree are written next. These equations are:
\[
\left[\begin{array}{c}
\Delta \mathrm{x}_{1}  \tag{3-2}\\
\Delta \mathrm{x}_{2} \\
\vdots \\
\vdots \\
\Delta \mathrm{x}_{17} \\
\Delta \mathrm{x}_{18}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{U} \\
\cdots \\
A
\end{array}\right]\left[\begin{array}{c}
\Delta \mathrm{x}_{1} \\
\Delta \mathrm{x}_{2} \\
\vdots \\
\Delta \mathrm{x}_{8} \\
\Delta \mathrm{x}_{9}
\end{array}\right]
\]
where
\[
u=9 \times \dot{9} \text { unit matrix }
\]
\[
A^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 \\
1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0
\end{array}\right]
\]

The component teminal equations explicit in the \(Y\)-variables are:
where
\(A_{1}^{\prime}=k_{d} A\) and \(f\left(\Delta X_{i}\right)\) is taken as \(\Delta X_{i}\) as explained earlier.

Substituting Equation (3-2) into Equation (3-3) and the result into
Equation ( \(\beta-1\) ) we get:


Replacing the \(A_{i}^{\prime}\) and the \(K_{i}^{\prime} s\) by their respective numerical values and evaluating the matrix triple product we get:
\(\left[\begin{array}{rrrrrrrrr}3.96 & -3.16 & -0.80 & 0.00 & 0.00 & 0.00 & 3.16 & -2.35 & 2.35 \\ -3.16 & 4.72 & -0.38 & -0.80 & -0.38 & 0.00 & -3.16 & 3.16 & -2.35 \\ -0.80 & -0.38 & 1.56 & 0.00 & 0.00 & -0.38 & 0.00 & 0.00 & 0.00 \\ 0.00 & -0.80 & 0.00 & 1.61 & -0.80 & 0.00 & 0.00 & -0.80 & 0.00 \\ 0.00 & -0.38 & 0.00 & -0.80 & 1.56 & -0.38 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & -0.38 & 0.00 & -0.38 & 0.76 & 0.00 & 0.00 & 0.00 \\ 3.16 & -3.16 & 0.00 & 0.00 & 0.00 & 0.00 & 3.16 & -2.35 & 2.35 \\ -2.35 & 3.16 & 0.00 & -0.80 & 0.00 & 0.00 & -2.35 & 3.16 & -2.35 \\ 2.35 & -2.35 & 0.00 & 0.00 & 0.00 & 0.00 & 2.35 & -2.35 & 2.35\end{array}\right]\left[\begin{array}{l}\Delta x_{1} \\ \Delta x_{2} \\ \Delta x_{3} \\ \Delta x_{4} \\ \Delta x_{5} \\ \Delta x_{6} \\ \Delta x_{7} \\ \Delta x_{8} \\ \Delta x_{9}\end{array}\right]+\left[\begin{array}{l}-1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1\end{array}\right]\left[\begin{array}{l}y_{19}\end{array}\right]\)

It is seen that Equation (3-5) is a set of a simultaneous linear equations and can thus be solved by any suitable computer program. In this particular case, Gaussian Elimination procedure is used in the subroutine Gauss.

The solution of Equation (3-5) gives the branch flows. The chord flows
are obtained by first substituting the branch pressures in Equation (3-2) for chord pressures and hence into Equation (3-3) for chord flows. Results of the element flows are shown in Table 3-2 from which it is seen that the demand flows sum up to the total supply flows.

The application of the analysis model to the Norman water distribution network follows the same procedure as described above. The difference lies in the size of the computer memory space requirement resulting from dealing with a larger network. The Norman network, as it existed in 1971, is as shown in Figure (3-3). Then, it comprised 140 pipe elements, 7 pumping source, and 5 reservoirs, including a proposed one. Other data, for example, pipe diameter length, "C" value, flow and flow direction, as indicated on Figure (3-3) are those compiled by the Pitometer Associates which analyzed the network at that time. 4 out of the 5 reservoirs are elevated. As can be seen, two of the elevated reservoirs were considered to be filling under the flow condition considered. Thus, these two reservoirs will be taken to be constituting demand nodes in addition to the other 81 demand or draw-off points, making a total of 83 demand nodes. Oxigin or supply nodes will be 10 in number.

As before, a linear graph of the network is drawn first. Figure (3-4) shows such a graph. It is seen that the addition of a reference node and fictitious links has increased the number of nodes and elements to 94 and 233 respectively. Fictitious links originating from the reference node are omitted for clarity. Next, a coded map of the network which serves as an input data to the Program SYSFM is prepared. Figure (C-I) shows such a map. This information is then fed into a computer for the selection of the formulation tree. A brief introduction to the linear graph theory is given in Appendix A. From this theory, if \(n\) is the number of nodes, then the number of branches in

TABLE 3-2: RESULTS OF THE DESTINATION ELEMENT FLOWS OF HYPOTHETICAL NETWORK
\begin{tabular}{ccccc} 
NODE & LINK FACTOR & DELTAH & HEAD LOSS (FT) & COMPUTED DEMAND (MGD) \\
& 0.0000 & 0.000 & 0.000 & \\
1 & 0.0000 & 3.374 & 9.485 & 0.000 \\
2 & 0.1133 & 1.884 & 3.227 & 0.000 \\
3 & 0.0000 & 2.222 & 4.381 & 1.152 \\
4 & 0.1133 & 2.712 & 6.332 & 0.000 \\
5 & 0.1417 & 4.225 & 14.379 & 1.152 \\
6 & 0.1417 & 3.756 & 11.739 & 1.440 \\
7 & 0.1417 & 4.225 & 14.379 & 1.440 \\
8 & 0.3483 & 4.659 & 17.233 & \\
9 & & & & 1.440 \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & &
\end{tabular}


figure 3-4: Linear graph of norman water distribution network
the formulation tree is \(n-1\). This means that the formulation tree for the Norman network will comprise 94-1 i.e. 93 branches. Since the Program SYSFM chooses all the 83 destination elements to form branches of the tree, it means that the remaining 10 branches are selected from the 140 pipe elements. Those pipe elements, 130 in all, not selected as branches become the chords of the formulation tree. In Figure (3-4), branches of the tree are as shown in bold lines. Fictitious links connecting the reference node, i.e. node 1 , to either demand or supply points are onfted for clatity. The output from Program SYSFM is as indicated in Table \(C-1\) of Appendix \(C\). This serves as the input to Program SYSAL which formulates and solves the terminal equations. Solution of the teminal equations give values of estimated draw-offs at nodal points.

\section*{Application of the Optimization Model}

Once again, an example problem will be used to illustrate the principle underlying the new approach to the optimal design of hydraulic network. Emphasis will placed on how networks with different flow patterns are decomposed into a number of parts with each part forming separate tree. The decomposition will result in a collection of trees referred to as forest. The technique will be extended to the Norman, Oklahoma, water distribution network. The new approach is in three phases; (1) the decomposition of the network into a spanning tree (2) the reduction of the spanning tree into a number of separate trees and (3) the application of the parallel merge and the serial merge techniques.

The decomposition of the network into a spanning tree is accomplished through the use of a computer program found on page 324 of Deo's book (63). The listings can be found in Appendix \(D\). The input format for this program is
referred to as the Iwo Linear Arrays. By this format, the network is represented by two arrays, say \(F=\left(f_{1}, f_{2}, \ldots \ldots, f_{e}\right)\) and \(H=\left(h_{1}, h_{2}, \ldots \ldots, h_{e}\right)\). In Figure (3-5a), the network is represented by the two arrays:
\[
\begin{aligned}
& F=(1,1,2,2,3,4,4,5,5,6,7,7,8,8,9,10,11), \\
& H=(0,4,3,5,6,5,7,6,8,9,8,10,9,11,12,11,12) .
\end{aligned}
\]

Each entry in these arrays is a veriex labei. The \(i^{\text {th }}\) edge \(e_{i}\) is from vertex \(f_{i}\) to vertex \(h_{i}\). At each stage in the algorithm a new edge is tested to see if either or both of its end vertices appear in any tree formed so far. Initially, there is no tree formed. The very first edge ( \(\mathrm{f}_{1}, \mathrm{~h}_{1}\) ) considered will always occur in a spanning tree (or forest). Thus the spanning tree (or forest) generated by this algorithm is very much dependent on the ordering of the edges. The output of the program is in the form of ones and zeros in the corresponding positions of the two linear arrays as shown below for input array given above:
\[
(1,1,1,1,1,0,1,0,1,1,0,1,0,1,1,0,0)
\]

Each zero entry inplies that the edge corresponding to that entry is considered as a chord. Figures \((3-5 a),(3-5 b),(3-5 c)\) and \((3-5 d)\) show the spanning trees of a 12 node 17 element network with different assumed flow patterns and supply points. Branches of the tree are shown in solid lines whilst chords are shown dotted. Figure (3-5d) appears to have a different tree from the others which all seem similar in spite of different flow patterns and supply points. In real terms, flow direction in each pipe element will be known following the network analysis by any method which must preceed the network optimization . Having obtained a spanning tree (or forest) of the network, the next step in the optimization procedure is to reduce the spanning tree to a branched or a tree-link network to permit the two forms of optimization techniques discussed earlier (i.e. the parallel merge and the serial merge) to be applied.


FIGURE 3-5: SPANNING TREES OF AN EXAMPLE PROBLEM.

The reduction is to be carried out taking account of the flow direction of each chord. For instance, if the flow direction on any given chord is from one node to another, this chord will be considered to be part of the node from which the flow along the chord originates. In other words, with reference to Figure ( \(3-5 a\) ), three separate branched or tree-1ike network can be obtained: the first tree will consise of branchisi \(14,4-7,7-10\), chords \(4-5,7-8\), and 10-11; the second tree comprises branches \(1-2,2-5,5-8,8-11\), chords \(5-6\), 8-9, and 11-12; and the third part consists of branches \(2-3,3-6,6-9\), and 9-12. This done, the serial merge and the parallel merge techniques can be applied to one tree at a time conmencing at each extreme point and working sequentially towards node 1 , just as it is done in dynamic programing technique. The difference between this technique and that of dynamic programing is the absence of an objective function. This explains the reason for referring to the optimization model as a modified dynamic programming technique. Figure (3-6a) shows a 12 node, 17 element network of Figure (3-5a) reduced to three separate tree.

From this figure, it is. noted that a serial merge will be performed on branches \(7-10\), and \(10-11\). Next, a parallel merge will be performed on the equivalent branch list obtained and the chord \(7-8\) and so on up to node 1. The second tree goes through this sequence; serial, parallel serial, parallel, and serial merges up to node 2. Finally, the third tree goes through three serial merges up to node 2. A parallel werge is then performed on equivalent branches obtained from the second and the third trees up to node 2. The resulting equivalent branch obtained is combined with branch 1-2 to form equivalent branch of the second and third trees. By combining the equivalent branch of the second and the third trees with that obtained from the first


FIGURE 3-6: tREE-LIKE CONFIGURATIOAS OF EXAMPLE PROBLEMS.
tree up till node 1 in a parallel merge gives a single equivalent branch for the entire network. The cost of the diameter assignment corresponding to each entry on this final list can then be evaluate by summing up its pipe cost (PCOST) and the cost of pumping associated with the head loss or pressure drop (PSQ). The diameter assignment with the smallest cost is the optimal diameter assignment. The optimization cechniques described above were applied to (1) a hypothetical network shown in Figure (3-1), page 77, and (2) a portion of 1971 Norman Water Distribution Network including proposed extensions

\section*{Optimization of a Hypothetical Network}

Two cases were considered; optimization of a hypothetical network without chords i.e. the spanning tree (see Figure (3-7a)) and then with chords (see Figure (3-7b)). In both Figures (3-7a) and Figures (3-7b) the numbering is done in such a way that the flow direction is from a node of a higher number to that of a lower number. The numbers in brackets refer to link numbers as used in the computer programs MERGEP AND MERGES. In Figure (3-7b) nodes 1 and 4, 2, and 6, 5 and 9, and 7 and 11 are, in fact, the same in each case but have been separated to give a tree-like configuration of the entire network based the spanning tree obtained for this network and the flow direction in each link obtained previously from a network analysis.

Input of the trees into the optimization models is in the form of Incidence Matrix. Incidence Matrices for Figures (3-7a) and (3-7b) are shown in Tables E-3a and E-3b respectively. For each case, three diameter selections, five diameter selection and seven diameter selection were. considered. Table E-1 in the Appendix E beginning at page 184 show all input data and computed head loss in feet (PSQ) and total installed cost in \(\$ 1,000\) (PCOST) for each link and each diameter considered. Output of computex


FIGURE (3-7a): SPANNING TREE OF EXAMPLE PROBLEM SHOWN IN FIGURE (3-1), PAGE 77

figure (3-7b): tree-Like configuration of entire network shown in figure (3-1)
programs MERGEP and MERGES are as shown in Table E-5 and Table E-6 in the Appendix E beginning at page 178.

\author{
The Application of Optimization Techniques to Existing Network Including Proposed Extensions
}

Methodology described above with reference to a hypothetical network can ba applied to any hydraulic distribution network or a gas distribution network. In dealing with an extension to an existing network a spanning tree is obtained for the ultimate network (which should comprise the existing network, the proposed network extension, the replacement and/or paralleling of one, two or more pipes) after a network analysis has been performed by any suitable method, for example, the Hardy Cross, to determine the flow pattern in the ultimate network.

The decomposition of the spanning tree into a number of separate trees follows procedures outlined earlier. This done, both the serial merge and the parallel merge techniques are applied to individual trees forming the spanning tree. There is one point to be noted here. In computing the PCOST and PSQ vectors, the internal diameters of pipes forming the existing network are condidered known and fixed, hence, no diameter ranges are considered for such pipes. However, for each pipe in the existing network being considered the same diameter must be specified for the number of different pipe sizes being considered in a given range.

In Figure (3-3) the dashed lines represent proposed expansion of the network. As mentioned earlier, the proposal was made in 1971 by a consulting Firm, namely, Pitometer Associates. The computer Program SPTREE was applied to this network to give a spanning tree of the network shown in Figure (3-8).


FIGURE 3-8: SPANNING TREE OF NORMAN WATER DISTRIBUTION NETWORK.


FIGURE 3-9: TREE-LIKE CONFIGURATION OF NORVAN WATER DISTRIBUTION NETWORK.

When chords are added to the spanning tree, a tree-like configuration of the Norman Water Distribution Network shown in Figure (3-9) is obtained. Bearing in mind that no pipe selections are made for pipes already existing in the network parallel merge and serial merge techniques are then applied to the entire network.

With reference to Figure (3-8) and Figure (3-3), the portion of the Norman Water Distribution Network to which the optimization techniques were applied comprises nodes \(25,20,19,3,4,5,6,7,12,13,11,10,61,59\), 23, and 24. Like the hypothetical case, two cases were considered; optimization of the network without chords (i.e. the spanning tree) and the tree like configuration which includes chords. Figures (3-10a) and 3-10b) show the numbering system used in the programs MERGEP and NERGES. The numbering procedure followed is the same as described in the hypothetical case. Table E-2 in the Appendix \(E\) shown input data for the case of a 7-diameter selection. These cases are similar to those cases considered in the hypothetical case. Table 3-3 gives installed cost of various sizes of pipes considered. These costs are national (U.S.A) average costs for sanitary sewer used as a surogatenot a constraint on methodology. The author considers these costs to be approximate to those of water pipelines since the costs for the latter were not available to him. It must be borne in mind that these costs had to be used to demonstrate the procedure. Optimal sizes of pipes obtained through the use of these cost data will be different for a different set of cost data. As a final step, the designed network may be analysed once more for a check upon hydraulic balance. In this work final check did not produce change in hydraulic balance. Output of computer programs MERGEP and MERGEP and MERGES are shown in Table E-6 in the Appendix beginning at page 210.


FIGURE 3-10: NUMBERING SYSTEM USED ON FIGURES 3-8 AND 3-9.

\section*{TABLE 3-3}

\section*{INSTALLED COSTS PER LINEAR FOOT \({ }^{*}\) OF VARIOUS SIZES OF PIPES CONSIDERED (January 1978 Dollars)}
\begin{tabular}{cc} 
Pipe Diameter & Average Cost \\
(inches) & \((\$ /\) foot:)
\end{tabular}

6
 24
\(8 \quad 43\)
\(10 \quad 47\)
1259
\(15 \quad 73\)
18 . 94
21 - 118
\(24 \quad 124\)
27 136
\(30 \quad 178\)

36 215
42250
48302
54337
60 418
66445
72483
* Includes associated appurtenances and non-construction costs. These
are national (U.S.A) average costs for sanitary sewer. Source: reference (70) page 7-10.

\section*{CHAPTER IV}

SUMMARY, CONCLUSION, AND RECOMENDATION

\section*{Introduction}

This chapter is intended to give a summary of a number of issues discussed in this thesis. One issue that motivated the author to work in this area is the fact that surveys conducted by the World Health Organization (1,2) for a selection of ninety-one developing countries in 1970, updated for selected countries in 1975 indicated that, with the exception of the Peoples Republic of China and a few other countries, it is estimated that about 20 percent of the rural population had "adequate" water supplies in 1975 . The picture is even very gloomy when viewed against the fact that, on the average, between 70 per cent and 80 per cent of the population in the Developing or Third World countries live in rural areas. It is not surprising, therefore, that the incidence of water borne diseases is roughly by the same proportion. To reduce this alarming situation considerably, if not eliminated altogether, will require the use of increased quantities of water of a higher bacteriological quality for all uses. Because the provision and the distribution of wholesome water entails heavy expenditure, there is the need for the efficient utilization of financial resources. It is the opinion of the author that the analysis and optimal design of a water distribution network is a contribution to efforts being made worldwide to distribute, cheaply, wholesome water to the
needy. The treatment of this subject is by no means exhaustive. To this end, the chapter will conclude with recommendation on further research areas.

\section*{Summary}

In chapter 1 , a brief review of five techniques developed so far was given. From the iicerature review, it is obvious that past afforts in the development of techniques for hydraulic network analysis had concentrated on solving the set of non-1inear equations expressing relationships between flow and head loss in a given pipe. Some of these techniques appear to be mathematically complicated. This thesis has demonstrated that by judicious application of the linear graph theory, the problem is very much simplified and that it is possible for flow along each element of the network and its corresponding head loss to be determined directly by non-iterative procedure. The key to the solution of the network analysis problem is the ability to express, mathematically, the demand or consumption at each node in terms of the "desire" or "propensity" to consume that commodity and the inclusion of a demand calibration factor to facilitate model calibration. Unlike the Hardy Cross method and the Newton-Raphson method, the analysis model developed does not require initialization. However, it is envisaged that the application of the analysis model to a very large network may result in problem with computer memory space as a result of the addition of fictitious links.

Techniques currently in use for the optimal design of a hydraulic network have been reviewed. Some of these techniques include what is termed a "check design" or a random search technique, non-linear programing, linear programing and dynamic programming. The use of the "check design" or the random search technique is cumbersome and time consuming, whereas, the linear programing technique invariably involves the linearization of the non-linear
objective function. Thus, solution obtained by this approach is ofter far removed from the true optimum. Moreover,it has been noted that the use of linear programming method may result in branched or tree-like network. Dynamic programing method, which has the potential of coping with the solution of non-linear cost minimization problems, has been applied successfully to a single looped network, and branched or tree-iike network. In chapter III, it has been demonstrated that a modified version of the dynamic programming method can be applied to multi-looped network.

Table 4-1 through Table 4-4 give a summary of results obtained through the use of optimization techniques developed in this thesis. In this work, the range of diameter selection for each link or pipe was selected around the pipe size used in the network analysis preceeding the optimization procedure. In other words, if comercially available pipe sizes are, say, \(8^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}\), \(15^{\prime \prime}, 18^{\prime \prime}, 21^{\prime \prime}, 24^{\prime \prime}, 27^{\prime \prime}\), and so on and if \(15^{\prime \prime}\) pipe size is used for a particular link in the network to obtain a balanced flows then the range for a 3-diameter selection will be \(12^{\prime \prime}\), \(15^{\prime \prime}\), and \(18^{\prime \prime}\); that for a 5 -diameter selection will be \(10^{\prime \prime}, 12^{\prime \prime}, 15^{\prime \prime}, 18^{\prime \prime}\), and \(21^{\prime \prime}\) and so on. This needn't be the rule. The program user is free to consider any diameter ranges provided the lower and upper limits of flow velocities to be maintained in each pipe or link are satisfied. But it must be noted that in the serial merge of two links, the largest diameter size in each case is chosen. Therefore, if a \(15^{\prime \prime}\) diameter pipe used in the network analysis is to be retained then the range for a 3diameter selection for that particular link should be \(10^{\prime \prime}, 12^{\prime \prime}\), and \(15^{\prime \prime}\), or for a 5 -diameter selection, the range should be \(6^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}\), and \(15^{\prime \prime}\). This observation does not apply to the optimal selection of pipes based on the parailel merge technique.

Comparison of results obtained for both the hypothetical case and a
portion of the Norman Water Distribution Network indicates that, in each case, optimal pipe sizes selected for branches of the spanning trees obtained in the case where chords are not considered are almost the same as when chords are considered. However, diameters selected for the chords are invariably larger than what is referred to as the original diameter. Based on these observations a true optimum is obtained by considering the entire network (i.e. the spanning tree and the chord).

With reference to the total head loss and the total installed cost (see Table 4-2), it is deduced that, in the hypothetical case, by considering 5diameter range and 7 -diameter range in addition to the 3 -diameter range, the reductions total head losses ace 53.90 per cent and 81.06 per cent respectively. Total installed costs of pipeline, however, increase; the corresponding figures are 17.11 per cent and 45.41 per cent. For the portion of the Norman Distribution Network re-designed (see Table \(4-4\) ) and for the same cases considered, redutions in total head losses for the a 5-diameter range and a 7 diameter range in comparison to the 3 -diameter range are 32.05 per cent and 54.30 per cent respectively. Corresponding figures for increases in total installed costs are 23.39 per cent and 50.14 per cent. It will bé recalled that the horsepower developed by a pumping unit is given by the expression Horse Power \(=\) Specific gravity of fluid \(x\) Total head loss x Total fluid/550 x Pump efficiency.

Provided that (a) the specific gravity of fluid (b) the total flow or supply to the network and (c) pump efficiencies are held constant, then the per cent reductions in total head losses represent per cent reductions in horse power requirements which in turn reflect on per cent reductions in energy costs or pumping costs.

The use of PCOST and PSQ vectors in the partial assignment of diameters

TABLE 4-1: RESULTS OF OPTIMAL DESIGN OF A HYPOTHETICAL PROBLEM: CHORDS NOT CONSIDERED


If il is neglected, and operating (jumpine ) cost is assumed to be \(\$ 100\) for tiac
3-giameter selections, then capltalized cost are as follows:
Capitalized Cost:
\(\$ 4,702.67\)
\(\$ 4,317.50\)
\(\$ 4,658.83\)
\(\mathbf{r}\) is assumed to be at the rate of 6 per cent per annum.

TABLE 4-2: RESULTS OF OPTIMAL DESIGN OF A HYPOTHETICAL PROBLEM: CHORDS CONSIDERED
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{LINK} & \multirow[t]{2}{*}{ORIGINAL DIA.} & \multicolumn{3}{|l|}{3-DIATETER SELECTIONS} & \multicolumn{3}{|l|}{5-DIAMETER SELECTIONS} & \multicolumn{2}{|l|}{7-DIASETER SE} & LECTIONS \\
\hline & & \[
\begin{gathered}
\text { OPTIMAL } \\
\text { DIA. } \\
\text { (INS) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { PSQ } \\
& (\mathrm{FT})
\end{aligned}
\] & \[
\begin{array}{r}
\text { PCOST } \\
(\$ 1000)
\end{array}
\] & \[
\begin{aligned}
& \text { OPTIMAL } \\
& \text { DIA. } \\
& \text { (INS) }
\end{aligned}
\] & \begin{tabular}{l}
PSQ \\
(FT)
\end{tabular} & \begin{tabular}{l}
PCOST \\
(\$1000)
\end{tabular} & \[
\begin{aligned}
& \text { OPTIMAL } \\
& \text { DIA. } \\
& \text { (INS) }
\end{aligned}
\] & PSQ
(FT) & PCOST
\[
(\$ 1000)
\] \\
\hline 1 & 12 & 15 & 8.51 & 292 & 18 & 3.50 & 376 & 21 & 1.65 & 472 \\
\hline 2 & 15 & 18 & 4.67 & 376 & 21 & 2.20 & 472 & 24 & 1.15 & 496 \\
\hline 3 & 21 & 24 & 2.58 & 496 & 27 & 1.45 & 544 & 30 & 0.87 & 712 \\
\hline 4 & 12 & 15 & 7.23 & 292 & 18 & 2.97 & 376 & 21 & 1.40 & 472 \\
\hline \(5(4)\) & 12 & 15 & 4.91 & 292 & 18 & 2.02 & 376 & 21 & 0.95 & 472 \\
\hline 6 & 12 & 10 & 26.05 & 188 & 12 & 10.72 & 236 & 15 & 3.62 & 292 \\
\hline 7(5) & 15 & 15 & 5.23 & 292 & 15 & 5.23 & 242 & 18 & 2.15 & 376 \\
\hline 8 (6) & 21 & 24 & 4.97 & 496 & 27 & 2.80 & 544 & 30 & 1.67 & 712 \\
\hline 9 & 15 & 18 & 3.32 & 376 & 21 & 1.57 & 472 & 24 & 0.82 & 496 \\
\hline 10.7) & 15 & 18 & 10.06 & 376 & 18 & 10.06 & 376 & 24 & 2.48 & 496 \\
\hline 11 & 15 & 12 & 37.70 & 236 & 15 & 12.72 & 292 & 18 & 5.23 & 376 \\
\hline 12(8) & 24 & 21 & 12.70 & 472 & 27 & 3.74 & 544 & 30 & 2.24 & 712 \\
\hline
\end{tabular}

```

TABLE 4-3: RESULTS OF OPTIMAL DESIGN OF A PORTION OF NORMAN WATER
DISTRIBUTION NETWORK (1971) INCLUDING PROPOSED
EXTENSION: CHORDS NOT CONSIDERED

```


TABLE 4-4: RESULTS OF OPTIMAL DESTGN OF A PORTION OF NORMAN WATER dis'tribution network (1971) including proposed EXTENSION: CHORDS CONSIDERED

is similar to the well known method used in the optimal design of a water transmission pipeline under pressure. As mentioned in Chapter II the optimization model is applicable to a network fed either under pressure or gravity or both.

\section*{Conclusion}

In general, this thesis has contributed to the knowledge with respect to the analysis and optimal design of a hydraulic network in the following manner:
1. Through the application of Theorems in linear graph theory, it is possible to obtain a balance in a hydraulic network by non-iterative procedure and without initialization.
2. The analysis model allocates demands at various nodal points on the network very efficiently. This model has a tremendous potential in making full use of numerous water demand forecasting models already developed in the allocation of water on local district and regional levels.
3. The use of the spanning tree concept of \(P \operatorname{COST}\) and \(P S Q\) vectors simplifies the optimization procedure considerably. The technique developed in this thesis offers the network designer a wide range of choice in the optimal design of network based on conmercially available pipe sizes. This is possible because the technique is very flexible.
4. Another aspect of the use of the spanning tree concept is that branches and chords determined, through the use of the spanning tree concept, can be considered as the primary mains and the secondary mains respectively and designed as such. Hitherto, the selections or the determinations of primary mains and secondary mains have been made in an arbitrary fashion.
5. By the development of simplified techniques for the analysis and the optimal design of both small and large distribution networks for water supply.

Although emphases have been placed on the use of models developed on hydraulic network, they are by no means restricted to this areaa alone. Both models can quite easily be applied to all other networks meant to transport either fluid or gaseous substances. In the analysis model, however, the only change necessary will be the inclusion of an appropriate non-linear relationship between the flow and head loss in a given conduit. In coming up with PCOST vector, ail types of cost may be considered and then reduced to a uniform annual cost by the use of appropriate formulas such as the Capital Recovery Factor or the Present Worth Discount Factor.

Reconmendation for Further Research and Application of the Models

In closure, the following recomendations for further research, development, and the application of the models developed are made:
1. The analysis model is very efficient in the allocation of demands at nodal points. Although the theory is very sound on the computation of chord flows, the Program SYSAL as it exists in its original form does not give balanced flows in the network. In this work, however, balanced flows were obtained for the hypothetical problem by making these three changes. First, the addition of fictitious destination links (with zero link value) to non-draw-off points, thus making the number of destination links equal to the number of nodes on the network, produced a cut-set matrix in the nodal form.

Secondly, the leading non-zero figure on each line of the circuit matrix obtained from the resulting cut-set matrix was put to zero to simplify the computation of chord from DELTAH values computed.

Thirdly, for the same reason given above, computer statements between lines 107 and 121, inciusive, had to be inserted. Such insertions automatically made DELTAH (or llead loss) on some links equal as a result of
filling in the lower triangular matrix of matrix \(G\). By this change it is possible to obtain balanced flows but sum of head losses in a closed loop is not necessarily zero. A way to get round this is to obtain field measurement of head loss for each second link appearing in each column of modified matrix \(G\). The author considers this as acceptable in practice. Nevertheless, it is recomended that further work be done in this area to make the field measurements unnecessary. Such work should focus on : reprogramming the part of Program SYSAL which affects matrix \(G\).
2. The analysis model may be modified to handle continous flow conditions by making pressure and flow time dependent. This is analogous to an electric circuit with some inductance and capacitance elements in it. The analytical techniques for analyzing such systems are already well developed in the field of electrical circuit theory.
3. The program for the parallel merge and the Subroutine MERGES, which performs the serial merges, are still very crude and unsophisticated. The input to these programs is in the form of incidence matrix. In this thesis more emphasis was placed on making them work rather than on ingenuity of programming. Further work on this program is needed to make it more efficient. It should also be possible for coordinates of nodal points of a network to be fed into the program as input instead of the incidence matrix. Taking account of flow directions, improved program should select tree-like configuration of the network automatically by combining it with Program SPTREE.
4. The addition of fictitious links and reference node to the real network increases the number of pipes in the network by between 50 per cent and 65 per cent. This will be a limitation on the size of network to be analyzed.
5. The use of Hardy Cross Method of network analysis in conjunction with
the modified dynamic programming technique developed offers some advantages over existing optimization techniques which just balance hydraulics but do not optimize costs.
6. Finally, it is suggested that the maximum-flow minimum-cut theorem and vulnerability analysis or reliability analysis used extensively in Network Analysis Problems be extended to the analysis and the optimal design of hydraulic distribution network.

It is the hope of the author that this thesis has been successful in advocating the application of the Linear Graph Theory to the analysis and the optimal design of a hydraulic network. The important message being put across to all concerned is that the analysis and the optimal design of a distribution system for water supply is a network problem and should, therefore, be considered and approach as such by making full use of NETWORK ANALYSIS techniques.

\section*{BIBLIOGRAPHY}
1. World Health Organization, "Community Water Supply Program; Progress Report by Director General," Geneva, 1972.
2. World Health Organization, "Community Water Supply and Wastewater Disposal, Mid-Decade Progress Report," Geneva, 1976.
3. United Nations Economic and Social Council, "Report of the United Nations Water Conference," E/C.7/L. 58, 1977.
4. Reid G.W., and Wolfenson, L.B., "How Electric Calculators Solve Water Distribution Problems," Public Works, 84:10:78, 4 pages, oct. 1953.
5. Gross, Hardy, "Analysis of Flow in Networks of Conduits or Conductors," Bulletin No. 286, University of Illinios Engineering Experimental Station, Urbana, Ill:, 1936.
6. Hoag, L.N., and Weinberg, G., "Pipeline Network Analysis by Electronic Digital Computer," Journal of the American Water Works Association, Vol. 49, 1957, pp. 517-524.
7. Graves, Q.B., and Branscome, D., "Digital Computers for Pipeline Network Analysis," Journal of the Sanitary Engineering Division, ASCE, Vo1. 84, No. SA2, Apri1, 1958, pp. 1608-1-1608-18.
8. Adams, R.W., "Distribution Analysis by Electronic Computer," Journal of the Institute of Water Engineers, Vol. 15, 1961 pp. 415-428.
9. Van den Berg, C., "An Iterative Method for Calculating the Pressure and Flow Distribution Pipeline Networks." Werktuig-en Scheepbouw,

Vol. 14, No. 12, 1963, pp. W203-W211.
10. Marlow, T.A., et al., "Improved Design of Fluid Networks with Computers," Journal of the Hydraulics Division, ASCE, Vo1. 92, No. HY 4 Proc. Paper, July, 1966, pp. 43-61.
11. Dillingham, J.H., "Computer Analysis of Water Distribution Systems," Water and Sewage Works, Feb., 1967, pp. 43-45.
12. Camp, J.R., and Hazen, H.L., 'Hydraulic Analysis of Water Distribution System by means of an Electric Network Analyzer," Journal of New England Water Works Association, 48:4 383-407, Dec., 1934.
13. Camp, T.R., Hydraulics of Distribution Systems-same Recent Developments in Method of Analysis," Journal of New England Water Works Association 57: 334-358, Dec., 1943.
14. McIlroy, M.S., Direct Reading Electric Analyzer for Pipeline Networks," Journal of the American Water Works Association, Vo1. 42, April, 1950, p. 347.
15. McPherson, M.B., and Radzidul, J.V., "Water Distribution Design and McIlroy Network Analyzer," Journal of the Hydraulic Division, ASCE, Vol. 84, No. HY 2, April, 1958, pp. 1588-1-1588-15.
16. *McPherson, M.B., "Application of System Analyzer," Water and Sewage Work, Ref. No 1962, pp. R53-R67.
17. Wood, D.J., Analog Analysis of Water Distribution Networks,"

Transportation Engineering, Journal of the American Society of
Civil Engineers, \(17:\) TE2: 281, Paper 8112, May 1971.
18. Warga, J., "Determination of Steady State Flows and Currents in a Network," Proceedings, Instrument Society of America, Vol.9, pt. 5, 1954, Paper 54-43-4.
19. Duffin, R.J., 'Nonlinear Networks," Bulletin of the American Mathematics Society, Vol. 53, 1947, pp. 963-971.
20. Martin, D.W., and Peters, G., "The Application of Newton's Method to Network Analysis by Digital Computer," Journal of the Institute of Water Engineers, Vol. 17, 1963, pp. 115-129.
21. Giudice, J.J., "Analysis of Pipe Networks Based on the Newton-Rapison Method," thesis presented to Massachusetts Institute of Technology, at Cambridge, Mass., in 1965, in partial fulfillment of the requirements for the degree of Master of Science.
22. Pitchai, R., "A Model for Designing Water Distribution Pipe Networks," thesis presented to Harvard University at Cambridge, Mass, in 1966, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
23. Jacoby, S.L.S. and Twigg, D.W., "Computer Solution to Network Problens," Proceedings of the National Symposium on the Analysis of Water Resources Systems-American Water Resources Association, Denver, Colorado, 1968.
24. Shamir, U. and Howard, C.D., "Water Distribution Systems Analysis," Journal of Hydraulic Division, Proceedings of the American Society of Civil Engineers, Jan., 1968, pp. 219-234.
25. Epp, R. and Fowler, A.G., "Efficient Code for Steady State flows in Networks," Journal of the Hydraulic Division, Proceeding of the American Society of Civil Engineers, Jan., 1970, pp. 43-56.
26. Zarghamee, M.S., 'Mathematical Model for Water Distribution Systems," Journal of the Hydraulic Division-ASCE, \(97:\) HYL:1, Jan, . 1971.
27. Lam, C.F., and Wolla, M.L., "Computer Analysis of Water Distribution Systems: Part 1-Formulation of Equations, Journal of the Hydraulic

Division-ASCE, Vol 98, No. HY 2, Feb., 1972.
28. Lam, C.F. and Wolla, M.L., "Computer Analysis of Water Distribution Systems,: Part 11-Numerical Solution, Journal of the Hydraulic Diviston-ASCE, 98:HY 3:447, Paper 8782, March, 1972.
29. Michel, H.L., and Wolfner, J.P., 'Know what is Happening in your Water System, "The American City, 87:6, June, 1972.
30. Donachie, R.P., "Digital Program for Water Network Analysis," journal of the Hydraulic Division-ASCE, 100:HY 3:393, Paper 10424. March, 1974.
31. Gagnon, C.R. and Jacoby, S.L.S., "Computer Simulation of Water Distribution Networks," Transportation Engineering, Journal of the American Society of Civil Engineers, 101:TE 3:553 Paper 11515, August, 1975.
32. Kesavan, H.K., and Chandrashekar, M., "Graph-Theoretic Models for Pipe Network Analysis," Journal of the Hydraulic Division Proceedings of the American Society of Civil Engineers, Vo1. 98, No. HY 2, Feb., 1972, pp. 345-363.
33. Hall, M.A., 'Hydraulic Network Analysis using (Generalized) Geonetric Programming Network, 6:105 (1976).
34. Chandrashekar, M., and Stewart, K.H., "Sparsity Oriented Analysis of Large Pipe Networks," Journal of the Hydraulic Division, ASCE, 101:HY 4:341, April, 1975.
35. Tong, A.L., et al., "Analysis of Distribution Networks by Balancing Equivalent Pipe Lengths," Journal of the American Water Works Association, Vol. 53, Nó. 2, Feb., 1961, p. 192.
36. Raman, V., and Raman, S., 'New Method of Solving Distribution System

Networks Based on Equivalent Pipe," Journal of the American Water Works Association, Bol, 58, No. 5, May, 1966, p. 615.
37. Wood, D.J., and Charles, C.O.A., 'hydraulic Network Analysis Using Linear Theory," Jeurnal of the Hydraulics Diyision ASCE 98, HY 7:1157-1170, July, 1972.
38. McCormick, M., and Bellany, B.E., \({ }^{i \prime A}\) Computer Program for the Analysis of Network of Pipes and Pumps," The Journal of the Institution of Engineers. Australia, March, 1968, pp. 51-58.
39. Jacoby, S.L.S., "Design of Optimal Hydraulic Networks," Journal of the Hydraulic Division, Proceedings of the Anerican Society of Civil Engineers, Vol. 94, No. HY 3, May, 1958, pp. 641-661.
40. Darmeli, D., et al., "Design of Optimal Water Distribution Network," Journal of Pipeline Division, Proceeding of the American Society of Civil Engineers, Vol. 94, No. PL 1, October, 1968, pp. 1-9.
41. Gupta, Ishwar., "Linear Programming Analysis of a Water Supply System," A.I.I.E. Transactions, Vo1. 1, No. 1, March, 1969, pp. 56-61.
42. Schaake, Jr. J.C., and Lai, D., !'Linear Programming and Dynamic Programming Application to Water Distribution Network Design," Report No. 116, Hydrodynamics Laboratory, Department of Civil Engineering, M.I.T., Cambridge, July, 1969.
43. Liang, T., "Design of Conduit System by Dynamic Programing," Journal of Hydraulic Division, ASCE, Vol., 97, No. HY 3, Proc Paper 7988, March, 1971, pp. 383-393.
44. Deb, Arun K., and Sarkax, Asok K., "Optimization in Design of Hydraulic Network," Journal of the Samitary Engineering Division, Proceedings Of the American Society of Civil Engineers, Vol. 97: No. SA 2,

April, 1971, pp. 141-159.
45. Kohlhaas, Charles A., and Mattern, David E., "An algorithm for Obtaining Optimal Looped Pipe Distribution Networks," Symposium on the Application of Computers to the Problems of Urban Society-Association of Computing Michinery, N.Y., 1971, pp. 138-151.
46. Kaily, Eiisha., "Computerized PIanning of the Least Cost Water Distribution," Network, Water and Sewage Works, Reference No. 1972, pp. R-121-R-127.
47. Barlow, J. F., and Markland, E., "Computer Design of Pipe Networks," Institution of Civil Engineers, London, England, Vo1. 53. Part 2, September, 1972, pp. 225-235.
48. Cembiowicz, Ralf G., and Harrington, Joseph J., "Capital-Cost Minimization of Hydraulic Network, "Journal of the Hydraulic Division, Proceedings of the American Society of Civil Engineers, Vol. 99 , No. HN 3, March, 1973, pp. 431-440.
49. Watanatada, Thawat., "Least Cost Design of Water Distribution Systems," Journal of the Hydraulic Division, Proceedings of the American Society of Civil Engineers, Vo1. 99, No. HY 9, September, 1973, pp. 1497-1513.
50. Shamir, Uri., "Optimal Design and Operation of Water Distribution System," Water Resources Research, Vo1. 10, No. 1, Fegruary, 1974, pp. 27-36.
51. Deb, Arun K., "Least Cost Design of Branched Pipe Network System," Journal of the Enviromental Engineering Division, Vol. 100, No. EE 4 August, 1974, pp. 821-835.
52. Fine, Ta Kung., "Optimal Plamning and Design of Water Distribution Systems Ph.D., Dissertation, Univessity of Pittsburg; 1975.
53. Rasmusen, Haris Jprgen., "Simplified Optimization of Water Supply System," Journal of the Environmental Engineming Division, Proceedings of

American Society of Civil Engineers, Vol. 102, No. EE 2, April, 1976, pp. 313-327.
54. Deb, Arun K., "Optimization of Water Distribution Network Systems," Journal of the Environmental Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 102, No. EE 4, August, 1976, pp. 837-851.
55. Alperquits E., and Shamir, U., "Design of Optimal Water Distribution Systems," Water Resources Research, Vo1. 13, No. 6, December, 1977, pp. 885-900.
56. Rothfarb, B., et al., "Optimal Design of Off-shore Natural-Gas Pipeline Systems," Operations Research, Vol. 18, Nov-Dec., 1970, pp 992-1020.
57. Frank, Howard., and Frisch, Ivan T., "Network Analysis," Scientific American, Vol. 223, July, 1970, pp. 94-103.
58. Ellis, J.B., "The Description and Analysis of Socio-Economic System by Physical Systems Techniques," Ph.D. Thesis, Department of Electrical Engineering, Michigan State University, 1965.
59. Ellis, J.B., "A Systems Model for Recreational Travel in Ontario: A Progress Report," Report on Project W-6, Department of Electricîl Engineering, University of Waterl00, Ontario, July, 1967.
60. Gyamfi Peter., "Allocation of Travel Demand to Low Density Areas," Ph. D. Dissertation, University of Califomia, Berkely, 1970.
61. Davis, Allen L., and Jeppson, Rowland W., "Developing a Computer Program for Distribution System Analysis," Journal of the American Water Works Association, 67:7, July, 1975.
62. Koenig, Herman E., and Blackwell, William A., "Electromechanical System Theory," McGraw-iiili Book Company, Inc., New York, 1961.
63. Deo, Narshign., "Graph Theory with Applications to Engineering and Computer Science," Prentice-Hall Series in Automatic Computation, 1974.
64. Scheid, Francis., "Introduction to Computer Science," Schaum's Outline Series,"McGraw-Hill Book Company, 1970.
65. Jeppson, R.W., "Analysis of Flow in Pipe Networks, "Ann Arbor Science, Ann Arbor, Michigan, 1976.
66. Don, T., Phillips, et a1, "Operations Research," John Wiley and Sons, Inc., New York, 1976.
67. Box, M.J., "A Comparison of Several Current Optimization Methods and the use of Transformations in Constrained Problems," The Computer Journal, London, England, Vol. 9, 1966, pp. 67-77.
68. Haarhoff and Buys, J.D., "A New Method for Optimization of a Non-Linear Function Subject to Non-Linear Constraints," The Computer Journal, London, England, Vo1. 13, No. 2, May, 1970, pp. 178-184.
69. Harmon, H.H. , "Modern Factor Analysis," University of Chicago Press, Chicago, 1962.
70. Dames and Moore, "Construction Costs for Municipal Wastewater Conveyance Systems: 1973-1977," Technical Report prepared for United States Environmental Protection Agency, Office of Water Program Operations, Washington, D.C., 20460, Document No. EPA 430/9-77-014 MCD-38, May, 1978.

\section*{APPENDIX A}

\section*{Linear Graph Theory}

The meaning of a linear graph is quite varied depending on the group the term is being addressed to. For instance, to the mathematician linear graph is simply a collection of line segments. To a system analyst the linear graph is considerably more. It forms a basis for combining the differential equations for the components to establish the mathematical description of the system. The idea of using graph theory for predicting the behavior of an electric network originated with G. Kirchhoff in 1847 and was improved upon J. C. Maxwell in 1892. A milestone in graphtheoretic analysis of electrical networks was achieved by W. S. Percival, when he extended the Kirchhoff and Maxwell methods to networks with active elements.

This section is not intended for a detailed treatise on linear graph theory. The subject is well treated in textbooks including these:
1. Koenig, H. E., and Blackwell, W. A. 'Electromechanical Systems Theory", McGraw-Hill Bock Co., Inc, New York, N. Y.,1961.
2. Seshu, S., and Reed, M. B., "Linear Graphs and Electrical Networks", Addison-Wesley, 1961.

A summary of the background needed to understand the application of the linear graph technique is presented below.

Definition l-An oriented line segment (i.e. a line segment with a direction indicated on it) together with its two end points is called an
edge (or an element).
Definition 2-The end point of an edge is called a vertex.
Definition 3-If there exists a path between every pair of vertices of a graph, then the graph is said to be a connected graph.

Definition \(4-\mathrm{In}\) the study of inear graphs it is convenient to refer to a subset of the edges of the graph, Such a subset is a subgraph of the graph.

Definition 5-A circuit is defined as a subgraph of \(G\) such that there are exactly two distinct paths between every pair of vertices of this subgraph.

Definition 6-A frequently used and sfraple concept of graph theory is that of a tree. A tree \(T\) of a connected graph \(G\) is defined as a set of edges which (1) is connected, (2) contains all the vertices of \(G\), but (3) contains no circuits.

Definition 7-The edges of a connected graph \(G\) that are included in a given tree \(T\) are referred to as branches. Those edges of \(G\) which are not in \(T\) constitute a subgraph \(T\), called the complement of \(T\), or the cotree. The edges of the cotree are called chords (or links). The number of branches in a tree \(T\) of a connected graph \(G\) containing \(v\) vertices is \(v-1\). Consequently, if \(G\) contains a total of e edges, then the total number of chords in the cotree is \(e-(v-1)=e-v+1\).

One of the basic properties of a tree is that the addition of a chord between any two of its vertices establishes a circuit. Since, in a connected graph having \(v\) vertices and \(e\) edges, there are \(e-v+1\) chords for any given tree \(T\), a set of \(e-v+1\) circuits is uniquely defined by the chords of \(T\). In this set of e-vit circuits no two circuits are identical, since each contains a chord not included in the other.

Definition 8 -The set of \(e-v+1\) circuits formed by each of the defining chords of a given tree \(T\) is called a fundamental set of circuits or simply fundamental circuits.

Definition 9 -The cut-set of a connected graph \(G\) is defined as a set of edges \(C\) having such properties that (1) when set \(C\) is deleted the graph is in exactly two parts and (2) no subset of \(C\) has the property 1.

Definition 10 The set of \(\mathrm{V}=1\) cut-sets corresponding to any one tree T in \(G\) is defined as a fundamental set of cut-set.

\section*{The Vertex and Circuit Postulates}

Three sets of mathematical equations form the complete basis for formulating the mathematical equations describing the system as a whole regardless of its complexity. Two basic postulates together with the component terminal equations therefore, form the basis for the analysis of systems.

\section*{The Vertex or "Cut-Set" Postulate}

The vertex or "cut set" postulate is a generalization of Kirchhoff \(s\) node law. It states that if the linear graph of a physical system contains e oriented elements, and \(Y_{j}\) represents the fundamental through variable of the \(j^{\text {th }}\) element; then at the \(k^{\text {th }}\) vertex of the graph
\[
\sum_{k=1}^{e} a_{j} Y=0
\]
where
\[
\begin{aligned}
a_{j} & \approx 0 \text { if } j^{\text {th }} \text { element is not incident at } k^{\text {th }} \text { vertex } \\
& =1 \text { if } j^{\text {th }} \text { element is oriented away from } k^{\text {th }} \text { vertex } \\
& =-1 \text { if } j^{\text {th }} \text { element is oriented toward } k^{\text {ch }} \text { vertex. }
\end{aligned}
\] The Circuit Postulate
The circuit postulate is a generalization of Kirchhoff' s circuit law. It states that if the linear graph of a physical system containse orlented
elements, and if \(X_{j}\) represents the fundamental across variable of the \(j^{\text {th }}\) element; then for the \(k^{\text {th }}\) circuit
\[
\sum_{k=1}^{e} b_{j} x=0
\]
where
\[
\begin{aligned}
b_{j}= & 0 \text { if } j^{\text {th }} \text { element is not included in } k^{\text {th }} \text { circuit } \\
= & 1 \text { if orientation of } j^{\text {th }} \text { element is same as orientation } \\
& \text { chosen for } k^{\text {th }} \text { circuit } \\
= & -1 \text { if orientation of } j^{\text {th }} \text { element is opposite to that of } \\
& k^{\text {th }} \text { circuit. }
\end{aligned}
\]

The vertex and circuit postulates imply that (1) one equation involving the through variables, \(Y^{\prime} s\), can be written at each vertex of the linear graph and (2) one equation involving the across variables, \(X\) s can be written for each circuit. However, all these equations are not Independent. To establish techniques for selecting convenient sets of independent circuit and vertex equations, a tree of the graph is chosen.

\section*{The Component Terminal Equation}

The through and across terminal variables of each component are related by a mathematical equation called the terminal equation. The component terminal equations are detemined from a study of the components in isolation.

Using Hazen-William formula for a pipeline we get
\[
Q_{i j}=0.27 \times C \times D_{i j}^{2.63} \times\left[H_{i}-H_{j}\right] \times \frac{1}{0.54} \frac{0.54}{L_{i j}}
\]
where
\(Q_{i j}=f 1.0 w\) through variable for pipe \(1 j\), in m.g.d
\(\mathrm{C}=\) Hazen-William s friction factor
\(D_{i j}\) pipe deameter, in feet
\(L_{1 j}=\) pipe length, in feet
\(H_{i}-H_{j}=\) pressure drop or propensity drop in feet.
The Fundamental Circuit Equation
The fundamental circuit equations are written symbolically as
where
\(B=a\) coefficient matrix corresponding to the branches
\(\mathrm{U}=\mathrm{a}\) unit matrix corresponding to the chords
\(X_{b}=a\) column matrix of the branches
\(X_{c}=a \operatorname{colunn}\) matrix of the chords
The Fundamental Cut-set Equations
The fundamental cut-set equations are written symbolically as
where
\(\left[\begin{array}{l:l} & \\ U & A\end{array}\right]\left[\begin{array}{l}Y_{b} \\ Y_{C}\end{array}\right]=0\)
\(A=a\) coefficient matrix corresponding to the chords
\(\mathrm{U}=\mathrm{a}\) unit matrix corresponding to the branches
\(Y_{b}=a\) column matrix of the branches
\(Y_{c}=\) a column matrix of the chords.
It can be shown that
\[
A=-B^{T}
\]
whére
T
\(B\) is a transpose of \(B\). Thus when the cut-set and circuit coeffieient matrices are written from the same formulation tree, the cut-set coefficient is the negative transpose of the circuit coefficient
matrix. This is a very useful property from both computational and computer programing standpoints. Clearly it is unnecessary to formulate both system of equations, either set is sufficient.

\section*{The Eormulation Technique}

While the solution of the set of cut-set and circuit equations is Independent of the formulation process, the formulation of the systems equations itself is dependent to some extent upon the form of the component teminal equations. For this reason it is sometimes preferable to separate the formulation and solution. Two methods of fomulation are used depending upon the form of the terminal equations. These are branch formulation method and the chord formulation method.

\section*{The Branch Formulation Method}

The branch formulation method is used when the terminal equations are are given explicitly in series variables. The method requires that the given pressures be placed in the branches while the given flows are placed in the chords of the formulation tree.

The cut-set equations thus become
where
\[
\left[\begin{array}{ccc}
u & 0 & a_{11}  \tag{A-1}\\
0 & u & a_{21}
\end{array}\right]\left[\begin{array}{l}
Y_{b 1} \\
Y_{b 2} \\
Y_{c}
\end{array}\right]=0
\]
\(Y_{b 1}=a\) column matrix of flows in branches whose pressures are specified
\(X_{b 2}=\) a column matrix of unknown ftows \(Y_{c}=\) a column matrix of chord flows. The fundamantal circuit equations are written symbolically as
\[
\left[\begin{array}{lll}
B_{11} & B_{12} & 0
\end{array}\right]\left[\begin{array}{l}
x_{b 1}  \tag{A-2}\\
x_{b 2} \\
x_{c}
\end{array}\right]=0
\]
where
\(X_{b 1}\) a colum matrix of known branch pressure
\(X_{b 2}=\) a column marix of unknown branch pressure
\(X_{C}\) a a column matrix of chord pressures
The component teminal equations can be written symbolically as
\[
\left[\begin{array}{l}
Y_{b 2}  \tag{A-3}\\
Y_{c}
\end{array}\right]=\left[\begin{array}{l}
W \\
\end{array}\right]\left[\begin{array}{l}
X_{b 2} \\
X_{c}
\end{array}\right]
\]
where
\[
W=\text { coefficient matrix. }
\]

It is worthy to note that in the expressions given above, the specified across variables are always included in the tree and are written as the first set in the column matrices. There are three major steps in the partial solution of the three sets of equations.

Step 1. Since the terminal equations are explicit in the through variables, they can be substituted into the cut-set equations Eq。 (A-3) into (A-2) .
\[
\left[\begin{array}{l}
u  \tag{A-4}\\
0
\end{array}\right]\left[\begin{array}{l}
Y_{b 1}
\end{array}\right]+\left[\begin{array}{ll}
0 & a_{11} \\
u & a_{21}
\end{array}\right]\left[\begin{array}{l}
W
\end{array}\right]\left[\begin{array}{l}
x_{b 2} \\
x_{c}
\end{array}\right]=0
\]

Step 2. From equation (A-l), express all across variables in equation (A-4) in terms of the across variables of the branches.
\[
\left[\begin{array}{l}
x_{b 2}  \tag{A-5}\\
x_{c}
\end{array}\right]=\left[\begin{array}{cc}
0 & u \\
-B_{11} & -B_{12}
\end{array}\right]\left[\begin{array}{l}
x_{b 1} \\
x_{b 2}
\end{array}\right]
\]

Step 3. Equation(A-5) can now be substituted into equation (A-4)
to obtain the branch equations for the system.
\[
\left[\begin{array}{l}
u \\
0
\end{array}\right]\left[\begin{array}{l}
Y_{b 1}
\end{array}\right]+\left[\begin{array}{ll}
0 & a_{11} \\
u & a_{21}
\end{array}\right]\left[\begin{array}{l}
W
\end{array}\right]\left[\begin{array}{cc}
0 & u \\
-B_{11} & -B_{i 2}
\end{array}\right]\left[\begin{array}{l}
X_{b 1} \\
X_{b 2}
\end{array}\right]=0(A-6)
\]

Note that equation (A-6) can be regarded as two sets of equations and written in the form
\[
\left[\begin{array}{l}
Y_{b 1}
\end{array}\right]+\left[\begin{array}{ll}
0 & a_{11}
\end{array}\right]\left[\begin{array}{l}
W
\end{array}\right]\left[\begin{array}{lc}
0 & u  \tag{A-7}\\
-B_{11}-B_{12}
\end{array}\right]=0
\]
and \(\left[\begin{array}{ll}u & a_{21} \\ & \end{array}\right]\left[\begin{array}{l}W\end{array}\right]\left[\begin{array}{cc}0 & u \\ -B_{11} & -B_{12}\end{array}\right]\left[\begin{array}{l}x_{b 1} \\ x_{b 2}\end{array}\right]=0\)
Equation ( \(A-8\) ) is independent of \(Y_{b 1}\) and represents a set of
simultaneous equations equal in number to the variables contained in the column matrix \(X_{b 2}\). Since \(X_{b y}\) contains specified functions, it is convenient to write equation ( \(A-8\) ) in the form
\[
\left[\begin{array}{ll}
u & a_{21} \\
{[(A-9)} & {\left[\begin{array}{l}
w
\end{array}\right]\left[\begin{array}{l}
u \\
-B_{12}
\end{array}\right]\left[\begin{array}{l}
x_{b 2}
\end{array}\right]+\left[\begin{array}{ll}
v & a_{21}
\end{array}\right]\left[\begin{array}{l}
W
\end{array}\right]\left[\begin{array}{c}
0 \\
-B_{11}
\end{array}\right]\left[\begin{array}{l}
x_{b}=0
\end{array}\right]=0, ~}
\end{array}\right.
\]

A solution of these simultaneous equations, showing the across variables in \(\mathrm{X}_{\mathrm{b}_{2}}\) as explicit functions of \(\mathrm{Y}_{\mathrm{b} 1}\), constitutes a solution to the system. If a solution for \(\mathrm{Y}_{\mathrm{b} 1}\) is required, it is obtained by substituting the solution for \(X_{b 2}\) into equation ( \(A-7\) )

Note that if \(n_{x}\) represents the number of elements for which the across variables are known and, \(v\) the number of vertices of the graph, then the number of simultaneous equations to be solved is \(v-1-n_{x}\). Also since
\[
\begin{align*}
& {\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]=\left[\begin{array}{ll}
-B_{11} & -B_{12}
\end{array}\right]\left[\begin{array}{c}
-B_{11}^{\prime} \\
-B_{12}^{\prime}
\end{array}\right]}  \tag{A-10}\\
& \text { or } a_{11}=-B_{11}^{\prime} \text { and } a_{21}=-B_{12} \\
& \text { then }\left[\begin{array}{cc}
0 & u \\
B_{11} & -B_{12}
\end{array}\right]=\left[\begin{array}{ll}
0 & a_{11} \\
u & a_{21}
\end{array}\right] \tag{A-11}
\end{align*}
\]

Equation (A-11) has two important implications. First, it implies that the triple product in equation ( \(A-6\) ) is symetric if \(W\) is gymetric. Secondly, equation (A-10) indicates that the first triple product in equation \((A-9)\) is symetric when \(W\) is symmetric. These properties lead to some computation advantage.

\section*{The Chord Formulation Method}

The chord formulation method is used when the across variable are given as an explicit function of the through variables. In choosing a tree to use as a basis of formulation, the elements having specified through variables are always placed in the chord system and included as the last elements itithe column matrix.

The circuit equations can then be written as
\[
\left[\begin{array}{lll}
B_{11} & u & 0  \tag{A-12}\\
B_{21} & 0 & u
\end{array}\right]\left[\begin{array}{l}
x_{b} \\
x_{c l} \\
x_{c 2}
\end{array}\right]=0
\]

The cut-set equations can be written as
\[
\left[\begin{array}{ccc}
u & -B_{11}^{\prime} & -B_{21}
\end{array}\right]\left[\begin{array}{l}
Y_{b}  \tag{A-13}\\
Y_{c 1} \\
Y_{c 2}
\end{array}\right]=0
\]
where
\[
Y_{c} 2=\text { Specified chord flows, }
\]

The terminal equation can be written as
\[
\left[\begin{array}{l}
x_{b}  \tag{A-14}\\
x_{c 1}
\end{array}\right]=[z]\left[\begin{array}{l}
X_{b} \\
Y_{c 1}
\end{array}\right]
\]

The solution of equations ( \(A-12\) ), ( \(A-13\) ), ( \(A-14\) ) follow steps below:

Step 1. The terminai equations (A-14), are substituted into the circuit equations. The resuit is
\[
\left[\begin{array}{ll}
B_{11} & u \\
B_{21} & 0
\end{array}\right]\left[\begin{array}{l}
z
\end{array}\right]\left[\begin{array}{l}
Y_{b} \\
Y_{c 1}
\end{array}\right]+\left[\begin{array}{l}
u \\
0
\end{array}\right]\left[\begin{array}{l}
X_{c 2} \\
\end{array}\right]=0 \quad(A-15)
\]

Step 2. All the through variables in equation (A-15) are expressed in terms of the chord variables. This yields
\[
\left[\begin{array}{l}
X_{b}  \tag{A-16}\\
Y_{c 1}
\end{array}\right]=\left[\begin{array}{ll}
B_{11}^{\prime} & B_{21} \\
u & 0
\end{array}\right]\left[\begin{array}{l}
Y_{c 1} \\
Y_{c 2}
\end{array}\right]
\]

Step 3. Equation ( \(A-16\) ) is substituted into equation ( \(A-15\) ) to give


In general when \(\eta_{y}\) of the chord through variables are specified, the number of simultaneous equations required is \(e-v-n_{y}+1\).

\section*{Summary of Bianch and Chord Formulation}

Up to this point the discussion has been limited to systems containing components having either specified through variables or specified across variables, not both. In the situations where both types
of variables are specified grouping the variables into appropriate sets reduces the complexity of algebra considerably. The basic equations are written down as follows:
1. The cut-set equations
\[
\left[\begin{array}{llll}
u & 0 & a_{11} & a_{12}  \tag{A-18}\\
0 & u & a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
Y_{b 1} \\
Y_{b 2} \\
Y_{c 1} \\
Y_{c 2}
\end{array}\right]=0
\]
2. The fundamental circuit equations
\[
\left[\begin{array}{llll}
B_{11} & B_{12} & u & 0  \tag{A-19}\\
B_{21} & B_{22} & 0 & u
\end{array}\right]\left[\begin{array}{l}
X_{b 1} \\
x_{b 2} \\
X_{c 1} \\
X_{C 2}
\end{array}\right]=0
\]
where
\[
\begin{aligned}
& X_{b 1}=\text { specified across variable } \\
& X_{b 2}=\text { specified through variable }
\end{aligned}
\]
3. The component terminal equations.

If the resulting equations are to be formulated in terms of the through variables, the component terminal equations must be explicit in the across variables
\[
\left[\begin{array}{l}
x_{b 2}  \tag{A-20}\\
x_{c 1}
\end{array}\right]=\left[\begin{array}{l}
z
\end{array}\right]\left[\begin{array}{l}
y_{b 2} \\
y_{c 1}
\end{array}\right]
\]

If the system equations are to be formulated in terms of the across variables then the omponent equations must be explicit in the through variables
\[
\left[\begin{array}{l}
\mathrm{Y}_{\mathrm{b} 2}  \tag{A-21}\\
\mathrm{Y}_{\mathrm{c} 2}
\end{array}\right]=[\mathrm{W}]\left[\begin{array}{l}
\mathrm{X}_{\mathrm{b} 2} \\
\mathrm{X}_{\mathrm{c} 1}
\end{array}\right]
\]

The procedure for solving the final equations is similar to that described for the branch and chord formulation techniques. The example problem in Appendix B illustrates the application of linear graph theory to a sample water distribution network.

\section*{Selecting the Formulation Tree}

The tree used as a basis for writing the cut-set and circuit equations is selected such that all elements with specified across variables are included as branches and all eiements with spacified through variables are included as chords. If this is not possible, a complete solution cannot be obtained.

Relationship between Coefficient Matrices of the cut-set and Circuit Equations.

It has been mentioned earlier that if the fundamental circuit and the cut-set equations are written from the same formulation tree,
\[
\begin{align*}
& {\left[\begin{array}{ll}
B & u
\end{array}\right]\left[\begin{array}{l}
X_{b} \\
X_{c}
\end{array}\right]=0}  \tag{A-22}\\
& {\left[\begin{array}{ll}
u & A
\end{array}\right]\left[\begin{array}{l}
Y_{b} \\
Y_{c}
\end{array}\right]=0} \tag{A-23}
\end{align*}
\]
then \(B=-A^{\prime}\)
where \(A^{\prime}\) is the transpose of \(A\).
Equations (A-22) and (A-23) can be written as
\[
\left[\begin{array}{l}
x_{b}  \tag{A-25}\\
x_{c}
\end{array}\right]=\left[\begin{array}{l}
u \\
-B
\end{array}\right]\left[\begin{array}{l}
x_{b}
\end{array}\right] \text { and }
\]
\[
\left[\begin{array}{l}
Y_{b}  \tag{A-26}\\
Y_{c}
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{A} \\
\mathbf{u}
\end{array}\right]\left[\begin{array}{l}
Y_{c}
\end{array}\right]
\]
respectively.
By applying the identity in equation (A-24) equations (A-25) and (A-26) become
\[
\begin{align*}
& {\left[\begin{array}{l}
x_{b} \\
x_{c}
\end{array}\right]:\left[\begin{array}{l}
u \\
A^{\prime}
\end{array}\right]\left[\begin{array}{l}
x_{b}
\end{array}\right] \text { and }}  \tag{A-27}\\
& {\left[\begin{array}{l}
Y_{b} \\
Y_{c}
\end{array}\right]=\left[\begin{array}{l}
B^{\prime} \\
U
\end{array}\right]\left[\begin{array}{r}
Y_{C}
\end{array}\right.} \tag{A-28}
\end{align*}
\]

Equation (A-27) implies that all across variables of the system graph can be expressed as linear combinations of the across variables of the formulation tree by using the transpose of the cut-set matrix. From equation (A-28) we see that all through variables of the system graph may be expressed as linear combinations of the through variailes of the complement of the formulation tree by using the transpose of the fundamental circuit matrix.

The Case of a Non-Linear Terminal Equations
The analysis given above can also be applied to the case of a non-linear terminal equation or a general functional ralationship of the type
\[
Y_{c}=G \times f\left(\Delta X_{c}\right)
\]
where
\[
\begin{aligned}
& Y_{c}=\text { the flow through a component } \\
& \Delta X_{C}=\text { the propensity or pressure drop across the component } \\
& G=a \text { constant }
\end{aligned}
\]

\section*{The Circuit and Cut-set Equations}

The circuit and cut-set equations do not depend on the characteristics of the components but only on their mode of interconnection. Hence, for non-linear case they remain the same as their linear case as shown below.

The cut-set equation is
\[
\left[Y_{b}\right]=\left[\begin{array}{l}
\text { cut-set } \\
\text { matrix }
\end{array}\right]\left[Y_{c}\right]
\]

This is a set of \(n_{b}\) equations in \(n\) unknowns.
The circuit equations are
\[
\left[X_{c}\right]=\left[\begin{array}{l}
\text { cut-set } \\
\text { matrix }
\end{array}\right]\left[\begin{array}{l}
X_{b}
\end{array}\right]
\]

This is a set of \(n_{c}\) equations of components is now written as


This is a set of \(n\) equations in the \(2 n\) unknots in equations above.
The number of unknowns to be determined by the three equations above is given by
\[
\mathbb{N}_{u}=n+n
\]
while the number of independent equations is
\[
\begin{aligned}
N_{1} & =n_{b}+n_{c}+n \\
& =2 n_{0} .
\end{aligned}
\]

It, therefore, follows that the system of equations can be solved algebraically. Once the equations are formulated, a suitable numerical method for the solution of the non-inear simultaneous equations can be chosen.

\section*{APPENDIX B}

\section*{The Application of System Model}

Figure ( \(B-1\) ) represents a physical system of pipes and junctions as a directed network. The pipes are referred to as elements (or links) and the junctions as vertices (or nodes). The links are numbered \(d+1, \ldots \ldots\) ......, n while the nodes are numbered 2, 3, ............, m. Each link is assigned an arbitrary positive direction with flow along the link in this direction being considered positive, while flow in the opposite direction is considered negative.

To analyse this network using the Graph Theoretic Approach, a linear graph of the physical system is to be drawn. Figure (B-2) represents the linear graph of the physical system shown in Figure ( \(B-1\) ). The link from node 8 to node 1 is omitted for clarity. For ease in the formulation of the problem a total of \(d+0\) fictitious links and one fictitious node are added to the network, Each fictitious link is incident at fictitious node which is numbered 1. Node 1 is, therefore, a reference node and it is analogous to grounding in an electrical network. The first d fictitious iinks or destination links represent outflow from the network. Consumptions or demands from the network are assumed to flow along such an element or link. The remaining 0 links originate from the reference node and are incident at the points of the natwork with known inflow rate, In the
example, \(d=5, m=10, n=17\) and \(0=2\). From Figure \((B-1)\), there is a fixed rate of supply at nodes 2 and 3, and a fixed draw-off rate at nodes \(5,7,8,9\), and 10 .

The cannonical forms of the various classes of components can now be formulated. The supply is assumed to be from constant fiow pumps. The form of this component (also known as origin) equation is writiten as:
\[
Y_{i}=\text { known } \quad i=18,19
\]
where
\[
Y_{i}=\text { flow of water in m.g.d. }
\]

The pipe flows are modelled by the relationship
\[
Y_{i}=k_{i} \Delta x_{i} \quad i=6,7,8,9,10, \ldots \ldots \ldots \ldots 17
\]
where
\[
\begin{aligned}
Y_{i} & =\text { flow on any link in } m . g . d . \\
k_{i} & =\text { the resistance to flow on any link } 1 . \\
\Delta X_{i} & =\left[H_{i}-H_{j}\right]^{0.54} \\
H_{i} & =H_{j}=\text { the head loss or pressure drop for flow across link } i .
\end{aligned}
\]

The use of \(\Delta X_{i}\), thus, transformed the non-linear flow equation to a linear equation.

The demand regions can be modelled by the equation
\[
Y_{d}=k_{d} A d X_{d}
\]
where
\[
\begin{aligned}
Y_{d} & =\text { demand flow, in m.g.d. } \quad d=1,2,3,4,5 \\
k_{d} & =\text { model correction factor } \\
A_{d} & =\text { demand index } \\
\Delta X_{d} & =\text { (pressure drop) }
\end{aligned}
\]
( \(Y_{d}\) may be known or unknown. \(K_{d}\) is determined from computer run. \(\Delta X_{d}\) is unknown.) The demand index can be calculated. \(A_{d}\) in this case was assumed to be a function of the total demand, including wastage. It was taken as linearly dependent on the population equivalent (in terms of demand) at each demand node or region. Where draw-off or demand is known the demand index is expressed as:
\[
A_{d}=\frac{\text { Nodal demand }}{\text { Total demand }}
\]

This completes the first step in the solution of the problem.
The next step in the system solution is the selection of a tree in the Ilnear graph. In this case, links \(1,2,3,4,5,6,7,8\), and 9 can be selected as the tree in Figure ( \(B-2\) ). The equations in the Y-viriables for the cut-set postulates for all elements can be written as:
\[
\left[\begin{array}{l}
u \\
u
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3} \\
\vdots \\
\vdots \\
\vdots \\
Y_{15} \\
Y_{16} \\
Y_{17}
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
Y_{18} \\
Y_{19}
\end{array}\right]=0
\]
where
\(u=\left[\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\) and
\(A=\left[\begin{array}{rrrrrrrr}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ -1 & -1 & -1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\)
The equations for the \(X\)-variables around fundamental circuits of all elements in the graph in terms of elements in the tree axe written next. These equations are:

(B-II)
(Equation ( \(B-I I\) ) is the application of equation ( \(A-28\) ) of Appendix \(A\) )
The component terminal equations explicit in the \(Y\) - variables are :

where
\[
A_{i}^{\prime}=k_{d} A_{i} \text { and } f(\Delta X i) \text { is taken as } \Delta X_{i} \text { as explained earlier. }
\]

Substituting equation ( \(B-I I\) ) into equation ( \(B-I I I\) ) and the result into ( \(B-1\) ) we get:


Replacing the \(A_{i}^{\prime} s\) and the \(k_{i}^{\prime}\) s by their respective numerical values and evaluating the matrix triple product we get:
\(\left[\begin{array}{rrrrrrrrr}1.15 & -0.26 & -0.44 & -0.44 & 0.00 & 0.00 & 0.00 & 0.00 & 0.44 \\ 0.26 & 0.70 & 0.00 & 0.00 & -0.44 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.44 & 0.00 & 1.15 & -0.26 & 0.00 & -0.44 & 0.00 & 0.00 & -0.44 \\ -0.44 & 0.00 & -0.26 & 1.40 & -0.26 & 0.00 & -0.44 & 0.00 & 0.00 \\ 0.00 & -0.44 & 0.00 & -0.26 & 1.15 & 0.00 & 0.00 & -0.44 & 0.00 \\ 0.00 & 0.00 & -0.44 & 0.00 & 0.00 & 0.96 & -0.52 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & -0.44 & 0.00 & -0.52 & 1.50 & -0.52 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & -0.44 & 0.00 & -0.52 & 0.96 & 0.00 \\ 0.44 & 0.00 & -0.44 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.44\end{array}\right]\left[\begin{array}{l}\Delta x_{1} \\ \Delta x_{2} \\ \Delta x_{3} \\ \Delta x_{4} \\ \Delta x_{5} \\ \Delta x_{6} \\ \Delta x_{7} \\ \Delta x_{8} \\ \Delta x_{9}\end{array}\right]\)
\[
\div\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & -1 \\
1 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
Y_{18} \\
Y_{19}
\end{array}\right]=0
\]

For the small network, as it is in this example, it is quite easy to perform a matrix triple product in the conventional way. For much larger network this might require multiplying large matrices. This might be time consuming exercise even on a computer. However, it is possible to use time saving algorithms. Koenig and Blackwell (62) have suggested an algorithm which enables one to write equation ( \(B-V\) ) once the cut-set matrix \(A\) in equation ( \(B-1\) ) is written down. This is the algorithm used in the computer programme for the systems model listed in Appendix C.

It is seen that equation ( \(B-V\) ) is a set of simulataneous linear equations and can thus be solved by any suitable computer programme. In this particular case, Gaussian Elimination procedure was used in the subroutine Gauss,

The solution of equation ( \(B-V\) ) gives the branch flows. The chord flows are obtained by first substituting the branch pressures in equation (B-II) for chord pressures and hence into equation (B-III) for chord flows.

The results of the element flows are shown in Table F-1 from which it is seen that the demand flows sum up to the total supply flows.


FIGURE B-1: SCHEMATIC DIAGRAM OF A PHYSICAL SYSTEM.


FIGURE B-2: LINEAR GRAPH OF A PHYSICAL SYSTEM SHOWN IN FIG. B-1.

\section*{APPENDIX C}

\section*{A Computer Program for the Systems Model}

Two main programs are used to solve the two main steps of the systems analysis. The first program codes the network and formulates the system equations while the second solves the system's equations for element flows and pressures. The two main programs are SYSFM and SYSAL.

\section*{Program SYSFM}

Function of Program SYSFM
Program SYSFM chooses a tree of the network made up of origins (supply points), destinations (demand regions) and elements (pipes or any other appertunances). It then formulates the cut-set and hence, the circuit equations for the system in a form suitable for use in program SYSAL. The destination, origin and link elements are designated as D-element, 0-element and L-element respectively.

\section*{Program Input}

A coded map of the system or network being analyzed serves as the input to the program. The coded map is derived from a linear graph of the network which is drawn initially in order to assign numbers to the nodes and elements. It is computationally advantageous to number the nodes consecutively with the number 1 assigned to the common node (i.e. reference point of ail origin and destination eiemento. The first
input card is the parameter card which stipulates the total number of elements (NE), the total number of nodes (N), the total number of origin (NQ) and the total number of destination (ND) elements in the linear graph of the network according to the format (4I5). This is followed by a set of data cards, each card being a coding of the individual elements of the graph. The form of the coding is the type of element, its assigned number and its origin and destination nodes. The direction of flow is assumed to be from the node with the smaller number to that with a higher number. The format in this case is (A1,3I5). The set of cards is arranged so that all D-elements are together as are all the 0 and L-elements. The three groups are placed in the order D-L-O. Figure C-1 shows the form of the input deck for the Norman, Oklahoma, Water Distribution Network.

\section*{Mechanics of Program SYSFM}

Following the input of the linear graph of the network, the internal working of program SYSFM is as follows:
1. Choice of formulation tree and renumbering of elements.
2. Formulation of the circuit matrix.
3. Formulation of cut-set matrix
4.. Output of the redesignated network and cut-set matrix. The first step is the choice of the formulation tree. All the D-elements are chosen as part of this tree. A check is then made on the uncommon node of each of the D-elements to see if any of the \(5-e l\) ements incident on that node can be made part of the tree. If the above does not yield a complete tree then the program considers each node in turn and checks for L-elements incident on thatmode that can be made part of the tree. Once the complete
tree has been selected the remaining elements are chosen as chords of the tree. Figure (C-3) is a listing of the cut-set program developed originally by L. A. White of the Department of Electrical Engineering in the University of Waterloo. According to J. B. Ellis (59) the FORTRAN IV computer program was written for the "express purpose of picking cutsets of linear graphs representing highway networks." The teminology used is peculiar to the branch equation formulation procedures of linear system theory.

The next step is the formulation of the cut-set matrix of the system equation. The program actually builds a circuit matrix and obtains the cut-set matrix from it by using the relationship
Cut-set matrix = Circuit matrix

In order to build the circuit matrix each chord in the graph is taken in turn and a circuit of branches formed for the chords.

\section*{Output of Program SYSFM}

The first set of output consists of a printout of a list containing the type of element, the number the programer assigned to it, the new number assigned to it by the program SYSFM which is the number used for the rest of the program. Table C-2 . shows an example output for the Norman, Oklahoma, Water Distribution Network.

The second set of output is in a form suitable for use as part of the input to Program SYSAL. The first printout is a complete list of cut-set eiements. This is followed by a list of the cut-set elements, excluding the origin elements. This is both printed and punched on cards to form the basis of formulating the matrix triple product in Program SYSAL. A list of the cut-sets, excluding the 0 and L-elements, is also printed
and punched on cards, for use in Program SYSAL in quantifying the right hand side of the system equations.

\section*{Computer Program SYSAL}

The function of Program SYSAL is to formulate the circuit and terminal equations of the system and solve the resulting systems equation resuiting from all three sets of equations i.e. the cut-set equations, the circuit equations and the component terminal equations. Program SYSAL comss in two different forms. One form is based on the assumption of a linear relationship between element flows and pressure or propensity drops. This is called Program LSYSAL. The other form makes allowance for the use of a non-linear relationship between flow and pressure or propensity drop. This is called Program NSYSAL.

\section*{Mechanism of Program LSYSAL}

Program LSYSAL attempts to formulate and solve a system of equations

where
\([A]=\) the fundamental cut-set matrix
\([W]=\) the component teminal matrix
\(\left[Y_{b}\right]=\) the vector product of the placement matrix and known chord
fiows
The usuallmethod of evaluation the triple matrix product \([A][W][A]\) is to pre-multiply \([W]\) by \([A]\) and then post-multiply the product by [A]. A might be of the order quite lengthy and tedious. Koenig and Blackwell (62) have suggested the algorithm described below upon which the program LSYSAL is based 0

To Illustrate the algorithm consider as an example the triple matrix
product \([A][W][A]\) that expands into say
\[
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{lllll}
K_{2} & & & & \\
& K_{3} & & & \\
& & K_{4} & & \\
& & & W_{5} & \\
& & & & W_{6}
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
\]

It can be observed that since \([W]\) is diagonal when it is pre-multiplied by \([A]\) each term of \([A]\) is simply multiplied by the respective diagonal term in \([W]\). Thus \([A][W]\) can be written as:
\[
[A][W]=\left[\begin{array}{ccccc}
K_{2}: & K_{3} & K_{4} & W_{5} & W_{6}  \tag{C-11}\\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
\]

Since the \(j^{\text {th }}\) column of \([A]\) is identical with the \(j^{\text {th }}\) row of \([A]\) the result of post-multiplying \([A][W]\) by \([A]\) is obtained without the necessity of writing down \([A]\). Specifically the entry in \((1,1)\) of \([A][W][A]\) is given by multiplying the first row of \([A]\) into itself with each term and the sum mulciplied by its appropriate coefficient in \([W]\), the coefficient written above the columns in equation ( \(C-11\) ). For example, entry (1, 1) is \(0 \times 0 \times K_{2}+\left(0 \times 0 \times K_{3}\right)\) \& \(\left(0 \times 0 \times K_{4}\right)+\) \(\left(1 \times 1 \times W_{5}\right)+\left(1 . \times 1 \times W_{6}\right)=W_{5}+W_{6}\).
The coefficients in the ( 1,2 ), \((1,3)\) and ( 1,4 ) positions are obtained by multiplying the first row of \([A]\) into the second, third and fourth rows respectively with each tem in the sum multiplied by the coefficient written
above the column of \([A]\). The same procedure holds good for the entries in \((2,2),(2,3)\) and \((2,4)\). The result of the triple product is a symmetric matrix and the terms below the diagonal be obtained imediately.

In the computer program itself the input into LSYSAL of the matrix \([A]\) is in the form.

Number of elements
3
3
5

3

Elements
\begin{tabular}{rrrrr}
-11 & -12 & -13 & 0 & 0 \\
-10 & -14 & -15 & 0 & 0 \\
10 & 11 & 12 & 14 & -16 \\
13 & 16 & -17 & 0 & 0
\end{tabular}

It must be noted that only the non-zero elements are input inoo the model. A - ve sign before the number of the element indicates a ( -1 ) entry while its absence indicstes a ( +1 ) entry. The entry ( 1,1 ) of \([A][W][A]^{\prime}\) is obtained by the sum of ( \(1 \times 1 \times\) W5) and \(1 \times 1 \times\) W6). Similarly, entry \((2,2)\) is obtained from \(\left(1 \times 1 \times K_{2}\right)+\left(1 \times 1 \times W_{5}\right)+\left(1 \times 1 \times W_{6}\right)\). For entries \((1,2),(1,3)\) and \((1,4)\) of \([A][W][A]\) the program multiplies the common elements of Row, 1 and Rows 2,3 and 4 respectively, multiplying each term in the sum by the coefficient in the \([W]\) corresponding to the element number. Thus, for the \((1,2)\) entry the result is ( \(1 \times 1 \times\) W5 \(+\left(1 \times 1 \times W_{6}\right)\), for the \((1,3)\) entry \(\left(1 \times 1 \times W_{6}\right)\) and for the \((1,4)\) entry Zero. The program uses the same procedure to obtain the \((2,3)\) and \((2,4)\) entries of \([A][W][A]^{\prime}\). The terms below the diagonal are obtained by symmetry.

In computing the vector \(B\) of equation ( \(C-1\) ) the computer uses a similar approach; only the non-zero elements of the placement matrix are considered in evaluating the product of the placement matrix and the origin
flows. Once the matrix triple product is evaluated the next step in the solution of the set of the resulting simultaneous linear equations of the form \([G]\left[Y_{b}\right]=\left[\begin{array}{l}B\end{array}\right]\)
where \(G\) is the triple matrix product of rank equal to the number of branches or less and \(\left[Y_{b}\right]\) and \([B]\) are as previously defined.

A number of methods are available for solving equation (C-111). The Gauss-Siedei iteration method which is the method cominonly used in the past for small numbers of simultaneous equations is not suitable here for a number of reasons. The first is the large number of iterations required to achieve reasonable convergence to the solution. The second is the large numerical errors that occur with large sets of equations, A Gaussian Elimination procedure was used in the Subroutine Gauss.

\section*{Computation of the Chord Flows}

Solution of above equations results in a list of branch flows or demand flows and the flows across the pipes in the formulation tree. Program LSYSAL next calculates the chord flows. It first computes the propensity drops or pressure drops across the links in terms of the drops across the elements of the tree. The flow through the chord elements are then calaulated from the terminal equations. If a prior calibration of the model is required the program performs statistical analysis to evaluate the degree of fit of model predictions to observed data. The analysis includes the computation of individual departures between model predictions and observed flows for the elements, the accumulated error of prediction over the entire system and the standard deviation of predictions. A listing of Program LSYSAL with a sample output is shown in Appendix \(F\) and and Table F-1 respectively.

\section*{Program NSYSAL}

Program NSYSAL is the version of Program SYSAL based on a general relationship between the flow through the elements and the propensity or pressure drops across them. It assumes terminal equations of the form
\[
Y_{i}=K_{i} f\left(\Delta X_{i}\right)
\]

Input to Program NSYAL is the same as that for Program LSYSAI, and also comes from Program SYSFM but the former has to revert the cut-set equations into 0,1 or \(Y\) format. The author did not find it necessary to use Program NSYSAL since the non-linear flow equations were linearized as explained in Appendix B page (138)

A COMPUTER PROGRAM FOR SYSFM MODEL

C PROGRAM SYSFM(INPUT, OUTPUT, PUNCH) \(\operatorname{DINENSION} \operatorname{ID}(972,4), \operatorname{MM}(972,2), \operatorname{IBO}(972), C(250,250), \operatorname{IB}(250)\), 1NB(250),IX(165)
READ \(1, N E, N, N D, N O\)
1 FORMAT (4I5)
\(\operatorname{READ} 2,((\operatorname{ID}(I, J), J=1,4), I=1, N E)\)
2 FORMAT (A1,3I5)
\(\mathrm{NB} 1=\mathrm{N}-1\)
NCI \(=\mathrm{NE}-\mathrm{NBI}\)
DO \(5 \mathrm{I}=1\),NB1
DO \(5 \mathrm{~J}=1, \mathrm{NCl}\)
\(5 \mathrm{C}(\mathrm{I}=\mathrm{J})=0.0\)
CALL STCHAI (LE, 1HD)
\(\mathrm{I}=1\)
\(3 \mathrm{NM}(\mathrm{I}, 1)=1\)
\(\operatorname{MM}(I, 2)=I D(I, 4)\)
\(\operatorname{IBO}(I)=I D(I, 2)\)
\(\mathrm{I}=\mathrm{I}+1\)
\(\operatorname{IF}(\operatorname{ID}(I, 1)-\operatorname{LE}) 4,3,4\)
ADDITION OF BRANCHES TO D ELEMENTS.
4 CALL STCHAR (LE, 1 HL )
\(\mathrm{M}=\mathrm{I}\)
\(\mathrm{K} 1=1\)
\(16 \mathrm{~J}=\mathrm{NM}(\mathrm{K} 1,2)\)
\(\mathrm{K}=\mathrm{M}\)
\(13 \mathrm{~L}=3\)
\(10 \operatorname{IF}(\operatorname{ID}(\mathrm{~K}, \mathrm{~L})-\mathrm{J}) 6,7,6\)
\(6 \operatorname{IF}(\mathrm{~L}-4) 8,9,9\)
\(8 \mathrm{~L}=4\)
GO TO 10
\(9 \operatorname{IF}(\mathrm{~K}-\mathrm{NE}) 11,12,12\)
\(11 \mathrm{~K}=\mathrm{K}+1\)
GO TO 13
\(12 \operatorname{IF}(\mathrm{~K} 1-\mathrm{ND}) 14,15,15\)
\(14 \mathrm{Kl}=\mathrm{Kl}+1\)
GO TO 16
7 IF (L.-3) 18,18,19
\(18 \mathrm{JJ}=\mathrm{ID}(\mathrm{K}, \mathrm{L}+1)\) 60 TO 20
\(19 \mathrm{JJ}=\mathrm{ID}(\mathrm{K}, \mathrm{L}-1)\)
\(20 \mathrm{Jl}=1\)
\(27 \mathrm{~J} 2=1\)
\(24 \mathrm{IF}(\mathrm{NM}(\mathrm{J} 1, \mathrm{~J} 2)-\mathrm{JJ}) 21,9,21\)
\(21 \mathrm{IF}(\mathrm{J} 2-2) 22,23,23\)
\(22 \mathrm{~J} 2=2\) GO TO 24
23 IF ( \(\mathrm{Jl}=\mathrm{I}+1\) ) \(25,26,26\)
\(25 \mathrm{Jl}=\mathrm{Jl}+1\)

\section*{APPENDIX C (Continued)}

046
047 048 049 050 051

052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067.

068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084

085
086
087
088
089
090
091
```

60 TO 27
$26 \operatorname{MM}(I, 1)=I D(K, 3)$
$N M(I, 2)=I D(K, 4)$
$I B O(I)=I D(K, 2)$
$I=I+1$
GO TO 9
C *** ADDITION OF THE REMAINING BRANCHES.
$15 \mathrm{~L}=2$
$40 \mathrm{~K}=1$
C $* * *$ PROGRAM FOR CUT SETS OF NETWORKS.
$37 \mathrm{~J}=3$
$34 \operatorname{IF}(\operatorname{ID}(\mathrm{~K}, \mathrm{~J})-\mathrm{L}) 30,31,30$
$30 \operatorname{IF}(\mathrm{~J}-4) 32,33,33$
$32 \mathrm{~J}=4$ GO TO 34
$33 \operatorname{IF}(\mathrm{~K}-\mathrm{NE}) 35,36,36$
$35 \mathrm{~K}=\mathrm{K}+1$
GO TO 37
$36 \operatorname{IF}(\mathrm{~L}-\mathrm{N}) 38,39,39$
$38 \mathrm{~L}=\mathrm{L}+1$ GO TO 40
$31 \operatorname{IF}(\operatorname{ID}(K, 1)$.NE .DX) GO TO 33 $\operatorname{IF}(\operatorname{ID}(\mathrm{K}, 1), \mathrm{EQ} . D X) \in 0$ TO 41
$41 \operatorname{IF}(\mathrm{~J}-3) 42,42,43$
$42 \mathrm{JJ}=\mathrm{ID}(\mathrm{K}, 4)$ GO TO 44
$43 \mathrm{JJ}=\mathrm{TD}(\mathrm{K}, 3)$
$44 \mathrm{~J} 1=1$
$51 \mathrm{~J} 2=1$
$48 \operatorname{IF}(\operatorname{NN}(\mathrm{Jl}, \mathrm{J} 2)-\mathrm{JJ}) 45,33,45$
$45 \operatorname{IF}(\mathrm{~J} 2-2) 46,47,47$
$46 \mathrm{~J} 2=2$ GO TO 4B
$47 \mathrm{IF}(\mathrm{J} 1-\mathrm{I}+1) 49,50,50$
$49 \mathrm{~J} 1=\mathrm{J} 1+1$
GO TO 51
$50 \mathrm{NM}(\mathrm{I}, 1)=\mathrm{ID}(\mathrm{K}, 3)$
$\operatorname{NM}(\mathrm{I}, 2)=\mathrm{ID}(\mathrm{K}, 4)$
$\operatorname{IBO}(I)=I D(K, 2)$
$I=I+1$
GO TO 33
C ADDITION OF THE CHORDS.
39 IC=I
NB1=T-1
$\mathrm{L}=\mathrm{ND}$
$55 \mathrm{~K}=1$
$58 \operatorname{IF}(\operatorname{ID}(\mathrm{~L}, 2)-\mathrm{IBO}(\mathrm{K})) 53,54,53$
$54 \mathrm{~L}=\mathrm{I}+1$
GO TO 55

```

\section*{APPENDIX C (Continued)}

092
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
```

 53 IF(X-I+1)56,57,57
 56 K=k+1
 GO TO 58
 57 NM(I,1)=ID (L,3)
 NM(I,2)=ID (L,4)
 IBO(I)=ID (L, 2)
 I=I+1
 IF (L-NE)54,60,60
 C*** PRINT OUT OF LOD VRS NEW NUMBER.
6 0 ~ I = 1
PRINT }8
82 FORMAT(1H1,15X,4HTYPE, 8H OLD NO., 8H NEW NO./)
PRINT }8
83 FORMAT (5X, 8HBRANCHES/)
94 L=IBO(I)
90 K=1
93 IF(L-ID(K,2))91,92,91
91K=K+1
G0 T0 93
92 PRINT 84,ID(K,1),ID (K,2),I
84 FORMAT(17X,Al,4X,13,5X,I3)
IF (I-NB1)85,86,85
86 PRINT }8
87 FORMAT(5X,6HCHORDS/)
85 IF (I-NE) 88,89,89
88 I=I+1
G0 T0 94
C *** FORMULATION OF THE CUT SET MATRIX.
89 M=1
81 J1=NM(IC,1)
J2=NM(IC,2)
K=1
78 I=1
69 J=1
66 IF (NM(I,J)-J2)62,63,62
62 IF(J-2)64,65,65
64 J=2
GO TO 66
65 IF(I-NB1)67,68,68
67 I=I+1
G0 T0 69
68 K=K-1
I=IB(K)
J2=NB(K-1)
C(I,M)=0.
GO TO 65
63 IF((K-1).LE,0)GO TO 70
IF(I-IB(K-1))70,65,70
70 IB(K)=I

```
            \(\operatorname{IF}(\mathrm{J}-1) 71,71,72\)
    \(71 \mathrm{NB}(\mathrm{K})=\mathrm{NM}(\mathrm{I}, 2)\)
            \(\operatorname{IF}(\mathrm{J} 2-\mathrm{Mi}(\mathrm{I}, 2)) 99,100,100\)
        \(99 \operatorname{IF}(I-N D) 74,74,73\)
    \(100 \mathrm{IF}(\mathrm{I}-\mathrm{ND}) 73,73,74\)
    \(73 \mathrm{C}(\mathrm{I}, \mathrm{M})=1\).
        GO TO 75
    \(72 \mathrm{NB}(\mathrm{K})=\mathrm{NM}(\mathrm{I}, 1)\)
        \(\operatorname{IF}(J 2-\operatorname{NM}(I, 1)) 99,100,100\)
    \(74 C(I, M)=1\).
    \(75 \operatorname{IF}(\mathrm{~J} 1-\mathrm{NB}(\mathrm{K})) 76,77,76\)
    \(76 \mathrm{~J} 2=\mathrm{NB}(\mathrm{K})\)
        \(K=K+1\)
        GO TO 78
    77 IF (IC-NE) 79, 134, 134
    79 IC=IC+1
        \(M=M+1\)
        GO TO 81
    C \(2 \times\) PRINT OUT THE F- CUT SETS.
        \(134 \mathrm{~L} 1=\mathrm{NE}-\mathrm{NO}\)
        \(\mathrm{L}=1\)
    123 GO TO \((80,124,125)\), L
        80 PRINT 114
        114 FORMAT (1H1,42HTHE FOLLONING ARE THE FUNDAMENTAL CUT SETS/)
        PRINT 95
        95 FORMAT (15X, 8HNO. OF 8HDEFINING, 10X,8HELENENTS)
            PRINT 96
        96 FORMAT (4X,9HELEMENTS , 8H BRANCH )
            GO TO 126
    124 PRINT 127
    127 FORMAT (1H1,5X,8HCUT SET)
        GO TO 126
    125 PRINT 128
    128 FORMAT (1H1, \(5 \mathrm{X}, 8 \mathrm{HORIGINS}\) )
    \(126 \mathrm{I}=1\)
    \(97 \mathrm{~K}=1\)
        D0 \(108 \mathrm{LL}=1,20\)
    \(108 \mathrm{IX}(\mathrm{LL})=00000\)
        ISUM=0
        \(J=1\)
        \(98 \operatorname{IF}(C(I, J)) 109,102,110\)
    110 IX \((K)=J+N B 1\)
            GO TO 115
    109 IX (K) \(=-(\mathrm{J}+\mathrm{NB} 1)\)
    115 GOTO ( \(101,116,117\) ), L
    116 IF ( \(\mathrm{J}+\mathrm{NB} 1-\mathrm{L} 1\) ) \(101,101,118\)
    117 IF (J+NB1-L1) 118,118,101
    118 IX \((K)=00000\)
            GO TO 102
    \(101 \mathrm{~K}=\mathrm{K}+1\)

\section*{APPENDIX C (Concluded)}

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

ISUM \(=\) ISUM +1
\(102 \mathrm{IF}(\mathrm{J}-\mathrm{NE}+\mathrm{NBI}) 103,104,104\)
\(103 \mathrm{~J}=\mathrm{J}+1\)
GO TO 98
104 GO TO \((129,130,130) \mathrm{L}\)
129 PRINT 105,ISUM, I (IX (K) , \(K=1,20\) )
105 FORMAT ( \(7 \mathrm{X}, 13,5 \mathrm{X}, 13,5 \mathrm{X}, 20 \mathrm{I} 5\) )
GO TO 111
130 PRINT 112,ISUM, \(I(\operatorname{IX}(K), K=1,20)\)
112 FORMAT(13x, \(13,1 H+, I 3,20 I 4)\)
PUNCH 119, ISUM, \(I\), (IX (K) , \(K=1,16\) )
119 FORMAT (I3, \(1 \mathrm{H}+, \mathrm{I} 3,16 \mathrm{I} 4\) )
111 IF (I-NB1) 106,107,107
\(106 \mathrm{I}=\mathrm{I}+1\)
GO TO 97
\(107 \mathrm{IF}(\mathrm{L}-3) 121,122,122\)
\(\mathrm{L}=\mathrm{L}+1\)
GO TO 123
122 CALL EXIT
STOP
END

FIGURE C-1: A CODED MAP OF NORMAN WATER
DISTRIBUTION NETWORK

233 9483 10
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{} \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline
\end{tabular}

FIGURE C-1 (Continued)
\begin{tabular}{|c|c|c|c|}
\hline D & 47 & 1 & 56 \\
\hline D & 48 & 1 & 57 \\
\hline D & 49 & 1 & 58 \\
\hline D & 50 & 1 & 59 \\
\hline D & 51 & 1 & 60 \\
\hline D & 52 & 1 & 61 \\
\hline D & 53 & 1 & 62 \\
\hline D & 54 & 1 & 63 \\
\hline D & 55 & 1 & 64 \\
\hline D & 56 & 1 & 65 \\
\hline D & 57 & 1 & 66 \\
\hline D & 58 & 1 & 67 \\
\hline D & 59 & 1 & 68 \\
\hline D & 60 & 1 & 70 \\
\hline D & 61 & 1 & 72 \\
\hline D & 62 & 1 & 73 \\
\hline D & 63 & 1 & 74 \\
\hline D & 64 & 1 & 75 \\
\hline D & 65 & 1 & 76 \\
\hline D & 66 & 1 & 77 \\
\hline D & 67 & 1 & 78 \\
\hline D & 68 & 1 & 79 \\
\hline D & 69 & 1 & 80 \\
\hline D & 70 & 1 & 81 \\
\hline D & 71 & 1 & 82 \\
\hline D & 72 & 1 & 83 \\
\hline D & 73 & 1 & 84 \\
\hline D & 74 & 1 & 85 \\
\hline D & 75 & 1 & 86 \\
\hline D & 76 & 1 & 87 \\
\hline D & 77 & 1 & 88 \\
\hline D & 78 & 1 & 89 \\
\hline D & 79 & 1 & 90 \\
\hline D & 80 & 1 & 91 \\
\hline D & 81 & 1 & 92 \\
\hline D & 82 & 1 & 93 \\
\hline D & 83 & 1 & 94 \\
\hline L & 94 & 2 & 3 \\
\hline L & 95 & 2 & 8 \\
\hline L & 96 & 3 & 4 \\
\hline L & 97 & 3 & 19 \\
\hline L & 98 & 4 & 5 \\
\hline L & 99 & 4 & 9 \\
\hline \(L\) & 100 & 5 & 6 \\
\hline L & 101 & 5 & 10 \\
\hline L & 102 & 6 & 7 \\
\hline L & 103 & 6 & 11 \\
\hline L & 104 & 7 & 12 \\
\hline L & 105 & 8 & 9 \\
\hline L & 106 & 8 & 22 \\
\hline
\end{tabular}

FIGURE C-1 (Continued)
\begin{tabular}{llll}
L & 107 & 9 & 10 \\
L & 108 & 9 & 59 \\
L & 109 & 10 & 11 \\
L & 110 & 10 & 60 \\
L & 111 & 11 & 12 \\
L & 112 & 11 & 34 \\
L & 113 & 12 & 13 \\
L & 114 & 13 & 14 \\
L & 115 & 13 & 34 \\
L & 116 & 14 & 15 \\
L & 117 & 14 & 63 \\
L & 118 & 15 & 16 \\
L & 119 & 15 & 65 \\
L & 120 & 16 & 17 \\
L & 121 & 17 & 18 \\
L & 122 & 17 & 54 \\
L & 123 & 18 & 49 \\
L & 124 & 19 & 20 \\
L & 125 & 19 & 24 \\
L & 126 & 20 & 21 \\
L & 127 & 21 & 25 \\
L & 128 & 22 & 23 \\
L & 129 & 23 & 24 \\
L & 130 & 23 & 59 \\
L & 131 & 23 & 41 \\
L & 132 & 24 & 39 \\
L & 133 & 24 & 25 \\
L & 134 & 25 & 26 \\
L & 135 & 26 & 27 \\
L & 136 & 26 & 40 \\
L & 137 & 27 & 28 \\
L & 155 & 156 & 38 \\
L & 138 & 27 & 47 \\
L & 154 & 156 \\
L & 139 & 28 & 29 \\
L & 140 & 28 & 56 \\
L & 141 & 29 & 30 \\
L & 142 & 29 & 35 \\
L & 143 & 30 & 31 \\
L & 144 & 31 & 35 \\
L & 145 & 31 & 32 \\
L & 146 & 32 & 36 \\
L & 147 & 32 & 33 \\
L & 148 & 33 & 46 \\
L & 149 & 33 & 38 \\
L & 153 & 62 \\
L & 37 \\
\hline
\end{tabular}

FIGURE C-1 (Continued)
\begin{tabular}{|c|c|c|c|}
\hline L & 157 & 39 & 40 \\
\hline L & 158 & 40 & 42 \\
\hline L & 159 & 40 & 47 \\
\hline L & 160 & 41 & 42 \\
\hline L & 161 & 41 & 70 \\
\hline L & 162 & 42 & 44 \\
\hline L & 163 & 42 & 74 \\
\hline L & 164 & 43 & 44 \\
\hline L & 165 & 43 & 77 \\
\hline I & 166 & 44 & 45 \\
\hline L & 167 & 44 & 58 \\
\hline L & 168 & 45 & 84 \\
\hline L & 169 & 45 & 55 \\
\hline L & 170 & 46 & 85 \\
\hline L & 171 & 47 & 57 \\
\hline L & 172 & 48 & 49 \\
\hline L & 173 & 48 & 52 \\
\hline L & 174 & 49 & 53 \\
\hline L & 175 & 50 & 86 \\
\hline L & 176 & 50 & 51 \\
\hline L & 177 & 51 & 52 \\
\hline L & 178 & 51 & 85 \\
\hline L & 179 & 52 & 53 \\
\hline L & 130 & 53 & 87 \\
\hline \(L\) & 181 & 54 & 87 \\
\hline L & 182 & 55 & 85 \\
\hline L & 183 & 56 & 57 \\
\hline L & 184 & 57 & 58 \\
\hline L & 185 & 59 & 61 \\
\hline L & 186 & 59 & 68 \\
\hline L & 187 & 60 & 61 \\
\hline L & 188 & 61 & 62 \\
\hline L & 189 & 61 & 91 \\
\hline L & 190 & 62 & 64 \\
\hline L & 191 & 62 & 91 \\
\hline L & 192 & 63 & 64 \\
\hline L & 193 & 63 & 65 \\
\hline L & 194 & 64 & 67 \\
\hline L & 195 & 65 & 66 \\
\hline L & 196 & 66 & 67 \\
\hline L & 197 & 67 & 92 \\
\hline L & 198 & 68 & 71 \\
\hline L & 199 & 68 & 72 \\
\hline L & 200 & 68 & 69 \\
\hline L & 201 & 69 & 70 \\
\hline L & 202 & 71 & 73 \\
\hline L & 203 & 72 & 75 \\
\hline L & 204 & 72 & 73 \\
\hline I & 205 & 73 & 91 \\
\hline
\end{tabular}

\section*{FIGURE C-1 (Continued)}
\begin{tabular}{llll}
L & 206 & 74 & 76 \\
L & 207 & 74 & 77 \\
L & 208 & 75 & 76 \\
L & 209 & 75 & 79 \\
L & 210 & 76 & 78 \\
L & 211 & 77 & 80 \\
L & 212 & 77 & 78 \\
L & 213 & 78 & 81 \\
L & 214 & 78 & 79 \\
L & 215 & 79 & 82 \\
L & 216 & 79 & 83 \\
L & 217 & 80 & 84 \\
L & 218 & 80 & 81 \\
L & 219 & 81 & 82 \\
L & 220 & 82 & 88 \\
L & 221 & 83 & 89 \\
L & 222 & 83 & 91 \\
L & 223 & 84 & 85 \\
L & 224 & 84 & 86 \\
L & 225 & 86 & 90 \\
L & 226 & 86 & 87 \\
L & 227 & 87 & 94 \\
L & 228 & 88 & 90 \\
L & 229 & 88 & 89 \\
L & 230 & 89 & 92 \\
L & 231 & 91 & 93 \\
L & 232 & 92 & 93 \\
L & 233 & 92 & 94 \\
0 & 84 & 1 & 2 \\
0 & 85 & 1 & 22 \\
0 & 86 & 1 & 23 \\
0 & 87 & 1 & 28 \\
0 & 88 & 1 & 32 \\
0 & 89 & 1 & 39 \\
0 & 90 & 1 & 43 \\
0 & 91 & 1 & 50 \\
0 & 92 & 1 & 69 \\
0 & 93 & 1 & 71 \\
& & &
\end{tabular}

OUTPUT OE PROGRAM SYSFA FOR THE
HYPOTHETICL NETMAK
\begin{tabular}{rrrr} 
D & 2 & 1 & 4 \\
\(D\) & 3 & 1 & 6 \\
\(D\) & 4 & 1 & 7 \\
\(D\) & 5 & 1 & 8 \\
\(D\) & 6 & 1 & 9 \\
\(D\) & 7 & 1 & 10 \\
\(L\) & 8 & 2 & 3 \\
\(L\) & 9 & 2 & 5 \\
\(L\) & 10 & 3 & 4 \\
\(L\) & 11 & 3 & 6 \\
\(L\) & 12 & 4 & 7 \\
\(L\) & 13 & 5 & 5 \\
L & 14 & 5 & 8 \\
L & 15 & 6 & 7 \\
\(L\) & 16 & 6 & 0 \\
\(L\) & 17 & 7 & 10 \\
\(L\) & 18 & 8 & 9 \\
\(L\) & 19 & 9 & 10 \\
0 & 1 & 1 & 2
\end{tabular}

TYPE ELD NO. NEH ND.

BF ANCHES
\begin{tabular}{rrr}
0 & 2 & 1 \\
7 & 3 & 2 \\
\(D\) & 4 & 3 \\
\(D\) & 5 & 4 \\
\(D\) & 5 & 5 \\
\(D\) & 7 & 6 \\
\(L\) & 10 & 7 \\
\(L\) & 13 & 8 \\
\(L\) & 8 & 9
\end{tabular}

CHOPDS
\begin{tabular}{ccc}
\(L\) & 9 & 10 \\
\(L\) & 11 & 11 \\
\(L\) & 12 & 12 \\
\(L\) & 14 & 13 \\
\(L\) & 15 & 14 \\
\(L\) & 16 & 15 \\
\(L\) & 17 & 16 \\
\(L\) & 18 & 17 \\
\(L\) & 19 & 18 \\
0 & 1 & 19
\end{tabular}
```

TABLE C-1 (Continued)

```

THE FOLLOIING ARE THE FUNDATERTAL CUT-SETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ELEMENTS} & \multirow[t]{2}{*}{NO. ERANCH} & \multicolumn{3}{|l|}{OFDEF INING} & \multicolumn{3}{|l|}{ELEMENTS} & \multirow[b]{3}{*}{0} & \multirow[b]{3}{*}{0} & \multirow[b]{3}{*}{0} \\
\hline & & & & & & & & & & \\
\hline 4 & 1 & -10 & -11 & -12 & 19 & 0 & 0 & & & \\
\hline 5 & 2 & 10 & 11 & -13 & -14 & -15 & 0 & 0 & 0 & 0 \\
\hline 3 & 3 & 12 & 14 & -16 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 4 & 13 & \(-17\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 5 & 15 & 17 & -19 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 6 & 16 & 18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 7 & -10 & \(-11\) & 19 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 8 & 10 & -13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 9 & \(-10\) & 19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

CUT SE.TS
\begin{tabular}{rrrrrrrlllllll}
\(3+\) & 1 & -10 & -11 & -12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(5+\) & 2 & 10 & 11 & -13 & -14 & -15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(3+\) & 3 & 12 & 14 & -16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(2+\) & 1 & 13 & -17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(3+\) & 5 & 15 & 17 & -13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(2+\) & 5 & 16 & 18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(2+\) & 7 & -10 & -11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(2+\) & 3 & 10 & -13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(1+\) & 0 & -10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

ORIGINS
\begin{tabular}{crrrllllllllll}
\(1+\) & 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & \(\epsilon\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(1+\) & 7 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(1+\) & \(¢\) & 19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
```

TABLE C-1 (Continued)

```
\begin{tabular}{rrrr}
\(D\) & 2 & 1 & 2 \\
\(D\) & 3 & 1 & 3 \\
\(D\) & 4 & 1 & 4 \\
\(D\) & 5 & 1 & 5 \\
\(D\) & 6 & 1 & 6 \\
\(D\) & 7 & 1 & 7 \\
\(D\) & 8 & 1 & 5 \\
\(D\) & 9 & 1 & 9 \\
\(D\) & 10 & 1 & 10 \\
\(L\) & 11 & 2 & 3 \\
\(L\) & 12 & 3 & 4 \\
\(L\) & 13 & 2 & 5 \\
\(L\) & 14 & 3 & 5 \\
\(L\) & 15 & 4 & 7 \\
\(L\) & 16 & 5 & 6 \\
\(L\) & 17 & 6 & 7 \\
\(L\) & 18 & 5 & 9 \\
\(L\) & 19 & 6 & 0 \\
\(L\) & 20 & 7 & 10 \\
\(L\) & 21 & 8 & \(G\) \\
\(L\) & 22 & 9 & 10 \\
\(D\) & 1 & 1 & \(?\)
\end{tabular}

TYF: MLJ Nコ. NEW NO.

BRANCHES
\begin{tabular}{rrr}
\(D\) & 2 & 1 \\
\(D\) & 3 & 2 \\
\(D\) & 4 & 3 \\
\(D\) & 5 & 4 \\
\(D\) & 6 & 5 \\
\(D\) & 7 & 6 \\
\(D\) & 8 & 7 \\
\(D\) & 9 & 8 \\
\(D\) & 10 & 9
\end{tabular}

CHORDS
\begin{tabular}{lll}
\(L\) & 11 & 10 \\
\(L\) & 12 & 11 \\
\(L\) & 13 & 12 \\
\(L\) & 14 & 13 \\
\(L\) & 15 & 14 \\
\(L\) & 15 & 15 \\
\(L\) & 17 & 16 \\
\(L\) & 18 & \(i 7\) \\
\(L\) & 19 & 18 \\
\(L\) & 20 & 19 \\
\(L\) & 21 & 29 \\
\(L\) & 22 & 21 \\
\(D\) & 1 & 22
\end{tabular}

\section*{TABLE C-1 (Continued)}

THE FCLLCWING ARE THF FUNDAMENTAL CUT SETS
NO. DFDEFINING ELEMENTS
\begin{tabular}{ccrrrrrrrrl} 
ELEMENTS & BRANCH & & & & & & \\
3 & 1 & -10 & -12 & 22 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 2 & 10 & -11 & -13 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 11 & -14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 4 & 12 & -15 & -17 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 5 & 13 & 15 & -15 & -18 & 0 & 0 & 0 & 0 & 0 \\
3 & 6 & 14 & 16 & -19 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 7 & 17 & -20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 8 & 19 & 20 & -21 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 19 & 21 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

CUT SETS
\begin{tabular}{rrrrrrllllllll}
\(2+\) & 1 & -10 & -12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(3+\) & 2 & 10 & -11 & -13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(2+\) & 3 & 11 & -14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(3+\) & 4 & 12 & -15 & -17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(4+\) & 5 & 13 & 15 & -18 & -18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(3+\) & 6 & 14 & 16 & -19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(2+\) & 7 & 17 & -20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(3+\) & 8 & 18 & 20 & -21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(2+\) & 3 & 19 & 21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

OPIGINS
\begin{tabular}{llllllllllllll}
\(1+\) & 1 & 22 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(0+\) & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

OUTPUT OF PROGRAM SYSFM FOR THE NORMAN WATER DISTRIBUTION NETWORK
the folloying are the fundamental cut sets
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ELEMENTS} & NO. & \multicolumn{3}{|l|}{OFDEFINING} & \multicolumn{3}{|l|}{ELEMENTS} & \multirow[t]{2}{*}{} & \multirow[b]{3}{*}{0} & \multirow[b]{3}{*}{0} & \multirow[b]{3}{*}{0} \\
\hline & ERANCH & & & & & & & & & & \\
\hline 4 & 1 & -94 & -95 & -GE & 224 & 0 & 0 & 0 & & & \\
\hline 3 & 2 & 95 & -97 & -98 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 3 & 57 & -99 & \(-100\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 4 & 99 & -101 & \(-102\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 5 & 101 & -103 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 6 & 94 & -104 & -1Et & 225 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 7 & 98 & 104 & \(-105\) & -106 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 8 & 100 & 105 & -107 & \(-108\) & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 9 & 102 & 107 & -109 & \(-110\) & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 10 & 103 & 109 & \(-111\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 11 & 111 & -112 & \(-11 \geq\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 12 & 112 & -114 & \(-115\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 13 & 114 & -116 & -117 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 14 & 116 & -118 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 15 & 118 & -119 & -120 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 16 & 119 & -121 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 17 & 96 & -122 & -123 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 18 & 122 & -124 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 19 & 124 & -125 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline ¢ & 20 & 122 & 126 & -127 & -128 & -129 & -151 & \(22 \epsilon\) & 225 & 0 & 0 \\
\hline \(\equiv\) & 21 & 125 & 129 & \(-1 \geq 0\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 22 & 130 & -131 & -132 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 23 & 131 & -133 & -134 & -135 & 227 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 24 & 134 & -136 & \(-127\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 25 & 136 & -138 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 26 & \(13 \varepsilon\) & -135 & \(-140\) & -141 & 228 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 27 & 141 & -142 & \(-143\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 28 & 110 & 113 & -144 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 29 & 137 & 139 & \(-145\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 30 & 140 & \(-146\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 31 & 145 & 146 & \(-147\) & -148 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 32 & 143 & -149 & -150 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 33 & 132 & 151 & -152 & \(-153\) & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 34 & 128 & -154 & \(-155\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 35 & 152 & 154 & -156 & -157 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 36 & 156 & -152 & -159 & \(-160\) & 230 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 37 & 159 & -161 & -162 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 38 & 142 & 147 & 150 & -163 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 39 & 133 & 153 & -164 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 40 & 149 & -165 & -i66 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 41 & 121 & 165 & \(-167\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 42 & -162 & -169 & \(-170\) & 231 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 43 & 166 & 169 & -171 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 44 & 167 & 171 & \(-172\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}




 0000000 MOOOONNOOONONAOOOONOOOOOOONOOONKOOOOOO







 Unovnoos


 00000000000000000000000000 全0000000000000000000 0000000000000000000000000 V 0000000000000000000

00000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000 -100000000000000000000000000000000000000000000000



 -Nmmon














 \(00000000000000000000000000 \mathrm{~N}^{N} 0000000000000000000\) 0000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000出 000000000000000000000000000000000000000000000









 n) NAN N N N N N N N N N











```

 MAIN PROGRAM
 DINENSION F (17),H(17),EDGE(34),V1(17),V2(17)
 INTEGER F,H,N,E,DDQE,C
 READ (5,9)`F
 9 FORMAT (17I3)
 READ (5,91) H
 91 FORMAT (17I3)
 READ (5,92) N,E
 92 FORMAT (2I5)
 WRITE (6,11) F,H,N,E
 11 FORMAT (5X,17I3,//5X,17I3,//,5X,2(I3,2X))
 CALL SPTREE (F,H,N,E,EDGE,C)
 NRITE (6,30) (EDGE (K),K=1,E)
 30 FORMAT (///,5X,'THE SPANNING TREE IS',///,5X,17I3)
 STOP
 END
 C *** PROGRAM : SPANNING TREE/FOREST.
SUBROUTINE SPTREE(F,H,N,E,EDGE,C)
INTEGER C,E,EDGE (E),F(E),H(E),VERTEX(34),VI,V2
DO 4 L=1,N
4 VERTEX(L)=0
DO 6 L=1,E
6 EDGE(L)=0
C=0
M=0
K=0
10 K=K+1
VI=F(K)
I=VERTEX(V1)
IF(I.EQ.O)GO TO }3
V2=H(K)
J=VERTEXX(V2)
I=(J.EQ.O)GO TO 36
IF (I-J)21,50,18
18 IJI=J
J=I
I=IJI
21 DO 26 L=1,N
IF (VERTEX (L)-J)26,23,25
23 VERTEX(L)=I
GO TO 26
25 VERTEX(L)=VERTEX(L)-1
26 CONTINUE
DO }32\textrm{L}=1,\textrm{E
IF (EDGE(I)-J)32,29s31
29 EDGE(L)-I
GO TO 32

```

\section*{APPENDIX D (Concluded)}
\(31 \operatorname{EDGE}(L)=\operatorname{EDGE}(L)-1\)
32 CONTINUE \(\mathrm{C}=\mathrm{C}-1\) \(\operatorname{EDGE}(\mathrm{K})=1\) GO TO 49
\(36 \operatorname{EDGE}(\mathrm{~K})=\mathrm{I}\)
VERTEX V2)=I
GO TO 49
\(39 \mathrm{~V} 2=\mathrm{H}(\mathrm{K})\)
J=VER'TEX (V2)
IF (J.EQ.0) GO TO 45
EDGE (K)=J
VERTEX(V1)=J
CO TO 49
\(45 \mathrm{C}=\mathrm{C}+1\)
\(\operatorname{EDGE}(\mathrm{K})=\mathrm{C}\)
VERTEX(V1)=C \(\operatorname{VERTEX}(V 2)=C\)
\(49 \mathrm{M}=\mathrm{M}+1\)
\(50 \operatorname{IF}(\mathrm{M} . E Q .(\mathrm{N}-1), O R, \mathrm{~K}, \mathrm{EQ} \cdot \mathrm{E}) \mathrm{RETURN}\) GO TO 10
EIND

APPENDIX E
LISTINGS OR PROGRAM MERGEP AND SUBROUTINE MERGES
```

\$JCB PACES=80
INTEGER PCCST,EPCOST, SPCOST,CIA,C,CCET
CCNMCN SPSG(SOO),SPCCST(500),SPS(500),SPC(500),NI
DIMENSICA PSG(35,7).FCOST(35,7),EGPSC(35,150),EFCCST{35,150),IM(IE
1,35),EPSC(1\leq0),1PCOST(150),M\times(150),0(35),LEN(35),C(35),CCST(35,7),
201A(35.7),rLCSS(35,7)
DINENSION LTESP2(150):KFLUSJ(150)
NCDES=28
NE=2?
IDIAM=7
IDIAN:=ICIAN+1
NLESSI=NE
OO 2 I=I,NE
READ L:Q(I),LEM(T),C(I)
1. FORMAT (F5.2,2110)
2 continue
DC 4 I=1,NE
REAO I.([IA(I,J).J=1,IOIAM)
3 FCFMAT(715)
4 continue
OO 10 I=1.NE
READ 5.(COST(I,j).j=1.1OIAN)
5 FORMAT(715)
10 continue
paINT 315
3!5 FGRMAT ('1'./////////////1UX,'LIAK',5x,'FLGH'.5X,'LENGTH'.7x.'G',6X
1.'CIANETEK',2X,'UNIT CCST',5X,.FSG'.EX,'PCOST*//)
DO 20 1=1,NE
DC 20 J=1,IDIAN

```

```

 PSC(I,J)=rLCES(1,J)
 PCCST<1,J)=(CST(1,J)*LEN(I)/1000
    ```

```

 15 FOGMAT (/10X,13.F10.2.4110,F13.2,18)
 20 ccatinle
 c
C %\#* READ INCIOENCE MATRIX. ***
C
DO 30 I=1,NLESS1
READ 25.(IM(I.J),J=!,ACDES)
2E FCFMAT (2EI2)
30 CONTINUE
PRINT }60
600 FORMAT ('10./////////////5X0'CUTFUT Cf SEFIAL ANC pafalLEL mEfGES')
C
c *** ccmpute sunmation cF eact cClumn in incicence matrix. ***
C
j=0
35 1 sLM=0
J=\+1
DC 40 I=1,MLESS:
ISCM={M(1, J)+ISUM
IM(NOCES,J)= ISUM
40 cCNTINUE
IF (J.EG.NCDES) GC TO 4E
60 70 3s
C
C *** TESt fCr EIthER SERIES OR parallel ExECuyICN. ***
C
45 JP=0

```
4 8
4s
50
51
52
53
54
55
56
57
58
5 9
6 0
64
62
6 3
64
65
66
6 7
68
6 9
7 0
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
```

 JC=1
    ```
    JC=1
    IR=0
    IR=0
        MS=0
        MS=0
        IRLES2=2
        IRLES2=2
    50 JC=JC+1
    50 JC=JC+1
        JCl=JC+1
        JCl=JC+1
        IR=1R+1
        IR=1R+1
        IF2=IR+2
        IF2=IR+2
        JCLES!=Jく-1
        JCLES!=Jく-1
        JCLES2=JC-z
        JCLES2=JC-z
        JCLES3=JC-3
        JCLES3=JC-3
        JPSC2=JC+2
        JPSC2=JC+2
        NODES!=NCOE $+1
        NODES!=NCOE $+1
        10IFF=JC-IRLES2
        10IFF=JC-IRLES2
        IF {IDIFF.EG.O.OR.ICIFF.EG.1) IFLES2=JC
        IF {IDIFF.EG.O.OR.ICIFF.EG.1) IFLES2=JC
        IF (JC.EG.NOOES.ARD.IH(NCDES.NCOES).EG.2) GO TO 65
        IF (JC.EG.NOOES.ARD.IH(NCDES.NCOES).EG.2) GO TO 65
        IF (JG.EG.NCCESI) GC TO =00
        IF (JG.EG.NCCESI) GC TO =00
        IM(IA,NOCESI)=0
        IM(IA,NOCESI)=0
        DC 6O J= IR2,NODES
        DC 6O J= IR2,NODES
        IF (IN(IF,J)) 60,60.55
        IF (IN(IF,J)) 60,60.55
    55 IRLES2=」
    55 IRLES2=」
        JRLES2=J-2
        JRLES2=J-2
    60 centinue
    60 centinue
        IF(IM(NOCES,JCLESI).EG.O.AND.IH(NCDES,JC).EO.I).JFLUSK=IDIAM
        IF(IM(NOCES,JCLESI).EG.O.AND.IH(NCDES,JC).EO.I).JFLUSK=IDIAM
        PRINT 800.JC.IN(NCDES,JC)
        PRINT 800.JC.IN(NCDES,JC)
    g00 fCRMAT (//EIIE)
    g00 fCRMAT (//EIIE)
        IF (JG.EC.NCCES) GO TC 300
        IF (JG.EC.NCCES) GO TC 300
    65 IF (IN(NCDES.JC)-1) 140,70,150
    65 IF (IN(NCDES.JC)-1) 140,70,150
    70 IF (IM(NOCES,JCLESSI).EQ.2.AND.IN(NCDES,JCI.EC.1) GC TO 80
    70 IF (IM(NOCES,JCLESSI).EQ.2.AND.IN(NCDES,JCI.EC.1) GC TO 80
        IF (IN(NCDES.JCLESI).EG.l.AND.IN(NOCES,JC).EQ.1) GO TO 80
        IF (IN(NCDES.JCLESI).EG.l.AND.IN(NOCES,JC).EQ.1) GO TO 80
        DO 7E JCL=1,JPLUSK
        DO 7E JCL=1,JPLUSK
        EGPSQ(JCLES1,JCL I=PSQ(JCLES1,JCL)
        EGPSQ(JCLES1,JCL I=PSQ(JCLES1,JCL)
        EFCOST(JCLESI:JCL)=FCCST(JCLES1,JCQ)
        EFCOST(JCLESI:JCL)=FCCST(JCLES1,JCQ)
    75 continue
    75 continue
    80 DC 85 L=L,JFLUSK
    80 DC 85 L=L,JFLUSK
        DO ع5 ME=1,ICIAM
        DO ع5 ME=1,ICIAM
        IL=L+MS-1
        IL=L+MS-1
        SPSG(IL)=EGPSQ(JCLESI,L)&FSG(JC,MS)
        SPSG(IL)=EGPSQ(JCLESI,L)&FSG(JC,MS)
        SPCOST(IL)=EPCOST(JCLES1,L)+FCCST(JC,bs)
        SPCOST(IL)=EPCOST(JCLES1,L)+FCCST(JC,bs)
    85 cchtinue
    85 cchtinue
        NI=IL
        NI=IL
        CALL merges
        CALL merges
c
c
C *** OUTPUT EGUIVALENT EfAACH LIST FCR A SEFIAL MERGE. ###
C *** OUTPUT EGUIVALENT EfAACH LIST FCR A SEFIAL MERGE. ###
C
C
        paINT 90
        paINT 90
        90 FORMAT (//15X.*EQUIVALENT ERANCH LISI FOR A SEGIAL MERGE'.//)
        90 FORMAT (//15X.*EQUIVALENT ERANCH LISI FOR A SEGIAL MERGE'.//)
        PRINT }9
        PRINT }9
    95 FOFMAT (//15X,'ITEN',13X,*SFSC'.13X,'SPCCST'./)
    95 FOFMAT (//15X,'ITEN',13X,*SFSC'.13X,'SPCCST'./)
        MI=0
        MI=0
        DC 1:O K=1,A:
        DC 1:O K=1,A:
        1F (SPCOET(K): 100,110.100
        1F (SPCOET(K): 100,110.100
    100 MI=MI+I
    100 MI=MI+I
        SFSG(N1)=SPSC(k)
        SFSG(N1)=SPSC(k)
        SPCOST{NI)=SPCOST(K)
        SPCOST{NI)=SPCOST(K)
        PEINT IOE.H!.SPSG(NI),SPCCST(MI)
        PEINT IOE.H!.SPSG(NI),SPCCST(MI)
    10E FCFMAT (/IIE,FIE.2.lle)
    10E FCFMAT (/IIE,FIE.2.lle)
    100 contimue
    100 contimue
        IF (JF.EC.O) GO TC 125
        IF (JF.EC.O) GO TC 125
        OO 11: K=1,N1
```

 OO 11: K=1,N1
    ```

\section*{APPENDIX E (Continued)}
```

15s
160
161
162
163
164
165
1 6 6
167
168
169
170
171
172
173
174
17E
176
177
278
179
180
181
182
183
184
185
186
88
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
20.
20s
210
211

```
```

 DO 155 JR=1,ICIAN
    ```
    DO 155 JR=1,ICIAN
    EQPSO(IFLESZ,JR)=PSG(JCLES2,JR)
    EQPSO(IFLESZ,JR)=PSG(JCLES2,JR)
    EFCOST(IFLES2.JR)=P(CSI(JCLES2,JR)
    EFCOST(IFLES2.JR)=P(CSI(JCLES2,JR)
    EGFSG(JCLESI,JR)=FSG(JCLESI,JF)
    EGFSG(JCLESI,JR)=FSG(JCLESI,JF)
    EPCOST(JCLES1,JR)=PCCSI(JCLESI,JR)
    EPCOST(JCLES1,JR)=PCCSI(JCLESI,JR)
    155 ccatinue
    155 ccatinue
        ITEST2(JCLES1)=10IAN
        ITEST2(JCLES1)=10IAN
        IF (IM(NOCES.JCLES1).EC.2) IRLES2=JC
        IF (IM(NOCES.JCLES1).EC.2) IRLES2=JC
    ió0 iF {EGPEG(!GIES?:-\)-EGFSG(JCLES\,K)) 175.240.180
    ió0 iF {EGPEG(!GIES?:-\)-EGFSG(JCLES\,K)) 175.240.180
    165 DO 170 JS=1.ICIAN
    165 DO 170 JS=1.ICIAN
        EGFSC(JCLES1.JS)=FSC(JCLES1,JS)
        EGFSC(JCLES1.JS)=FSC(JCLES1,JS)
        EPCOST(JCLESl,.jS)=fCCS!(JCLES!,JS)
        EPCOST(JCLESl,.jS)=fCCS!(JCLES!,JS)
    170 CONTINUE
    170 CONTINUE
        IF (IN(NCDES,JCLES2).EE.\.ANC.IM(NOCES,JC).EO.2) IRLES2=JC
        IF (IN(NCDES,JCLES2).EE.\.ANC.IM(NOCES,JC).EO.2) IRLES2=JC
        ITEST2(JCLES1)=10IAM
        ITEST2(JCLES1)=10IAM
        GC TC 160
        GC TC 160
    17E EPSO(L)=EGPSG(JCLESI,K)
    17E EPSO(L)=EGPSG(JCLESI,K)
        1S=J-1
        1S=J-1
        lF (IS.EG.O) 1S=1
        lF (IS.EG.O) 1S=1
        1PCOST(L)=EPCOST(JCLESI,K)+EPCCST(IRLES2,1S)
        1PCOST(L)=EPCOST(JCLESI,K)+EPCCST(IRLES2,1S)
        EQFSG(JPSO2,K)=EUPSO(JCLESL,K)
        EQFSG(JPSO2,K)=EUPSO(JCLESL,K)
        L=L+1
        L=L+1
        K=k+1
        K=k+1
        IF (K.GT.ITESTR(JCLESI)) GC TO 195
        IF (K.GT.ITESTR(JCLESI)) GC TO 195
        GO ro 1t0
        GO ro 1t0
        180 EPSG(L)=EGPSC(1RLES2,J)
        180 EPSG(L)=EGPSC(1RLES2,J)
            IT=K-1
            IT=K-1
            IF (IT.EG.O) IT=1
            IF (IT.EG.O) IT=1
            IPCOST(L)=EPCCST(IRLES2,J)+EFCCST(JCLESI,IT)
            IPCOST(L)=EPCCST(IRLES2,J)+EFCCST(JCLESI,IT)
        L=L+!
        L=L+!
        J=J+1
        J=J+1
        IF (J.GT.lTEST2(IRLES2J) GC TO 195
        IF (J.GT.lTEST2(IRLES2J) GC TO 195
        GO TO 160
        GO TO 160
    185 J= J\1
    185 J= J\1
        IF {J.EG.1) MIN=2
        IF {J.EG.1) MIN=2
        EPSO(MINI=EGPSO(IRLES2,J)
        EPSO(MINI=EGPSO(IRLES2,J)
        IPCOST(MIN)=EPCOST(IRLES2.J)
        IPCOST(MIN)=EPCOST(IRLES2.J)
        IF (K.EQ.O) GO TO }29
        IF (K.EQ.O) GO TO }29
        60 10 200
        60 10 200
    190 K=x+1
    190 K=x+1
    IF (J.EQ.I,ANO.K.EO.l) HIN=2
    IF (J.EQ.I,ANO.K.EO.l) HIN=2
        EPSC(NIN)=EQPSG(JCLES1:K)
        EPSC(NIN)=EQPSG(JCLES1:K)
        IPCOST(NIN)=EPCCST(JCLESI,K)
        IPCOST(NIN)=EPCCST(JCLESI,K)
        EGFSC{JPSQ2,K)=EQPSG(JCLESI,K)
        EGFSC{JPSQ2,K)=EQPSG(JCLESI,K)
        IF (J.EG.0) GC TC 185
        IF (J.EG.0) GC TC 185
        GO TO 200
        GO TO 200
    195 J=J-1
    195 J=J-1
        K=k-1
        K=k-1
        .MIN={4K+1
        .MIN={4K+1
            IF (N!NoEO.L) NIN=2
            IF (N!NoEO.L) NIN=2
            IF (J.EG.O) GC IC 185
            IF (J.EG.O) GC IC 185
            IF (K.EG.O) GO TC 1s0
            IF (K.EG.O) GO TC 1s0
    200 JPLUSK=J+K
    200 JPLUSK=J+K
c
c
c *** QuTput equivalent brianch list for a parallel menge. ***
c *** QuTput equivalent brianch list for a parallel menge. ***
C
C
PRINT 20E
PRINT 20E
    205 FCRMAT (//IEX,0EQUIVALENT ERANGH LIST FOR A PARALLEL MERGE*.//)
    205 FCRMAT (//IEX,0EQUIVALENT ERANGH LIST FOR A PARALLEL MERGE*.//)
        PRINT 210
        PRINT 210
    210'FORMAT (//IEX.'1TEM*.14X,OPSG'.14X.'FCCST',/)
```

 210'FORMAT (//IEX.'1TEM*.14X,OPSG'.14X.'FCCST',/)
    ```
                                    - 180 -

\section*{APPENDIX E (Continued)}

216 217 218 219 220 221 222 223 224 225
```

 OC 220 Lz1.JPLUSK
    ```
    OC 220 Lz1.JPLUSK
    EQPSO(JCLESIRL)=EPSG(L)
    EQPSO(JCLESIRL)=EPSG(L)
    EPCCST(JCLES1.L)=IPCOST(L)
    EPCCST(JCLES1.L)=IPCOST(L)
    PRINI 21E,L,EQPSO(JCLESI,L), FPCCST(JCLES1,L)
    PRINI 21E,L,EQPSO(JCLESI,L), FPCCST(JCLES1,L)
215 FOGMAT (/IIE,FIE.2.IlE)
215 FOGMAT (/IIE,FIE.2.IlE)
220 CCNTINUE
220 CCNTINUE
    PRINT 22E,J.IRLES2,K.JCLESI
    PRINT 22E,J.IRLES2,K.JCLESI
225 FCSMAT (/4!!0/!
225 FCSMAT (/4!!0/!
    PRINT 230
```

 PRINT 230
    ```


```

 1:,/)
    ```
    1:,/)
    PRINT 2JE,J,EOFSG(IFLESZ,J),K,ECFEG(JFSG2,K).IFLES2,JCLESI
    PRINT 2JE,J,EOFSG(IFLESZ,J),K,ECFEG(JFSG2,K).IFLES2,JCLESI
235 FCSMAT (/5X,12,5X,F6.1,10X,12,EX0F6.1,2114N)
235 FCSMAT (/5X,12,5X,F6.1,10X,12,EX0F6.1,2114N)
240 PRINT 23E,J,EGFSG(1RLES2,J),K,EGPSQ(JFSO2,K),|FLESE,JCLES1
240 PRINT 23E,J,EGFSG(1RLES2,J),K,EGPSQ(JFSO2,K),|FLESE,JCLES1
    IF (JC.EG.NCEES) GO TO 300
    IF (JC.EG.NCEES) GO TO 300
    GC TC 80
    GC TC 80
24S M=1
24S M=1
    ITEST=ICIAM!
    ITEST=ICIAM!
    00 255 [=2,3
    00 255 [=2,3
    Mx(1)=PSG(JCLES3,J)
    Mx(1)=PSG(JCLES3,J)
    Mx(2)=PSC(JCLES2.K)
    Mx(2)=PSC(JCLES2.K)
    Mx(3)=PSC(JCLESI;JKL)
    Mx(3)=PSC(JCLESI;JKL)
    IF (MX(M)-Mx(1)) 250,255,255
    IF (MX(M)-Mx(1)) 250,255,255
250 M=1
250 M=1
25E CCNTINUE
25E CCNTINUE
    IF (M.EO.1) GD TO 26O
    IF (M.EO.1) GD TO 26O
    [F (N.EG.2) GC TC 265
    [F (N.EG.2) GC TC 265
    IF (M.EG.3) GO TO 270
    IF (M.EG.3) GO TO 270
260 EPSG(L)=FSG(JCLES3,J)
260 EPSG(L)=FSG(JCLES3,J)
    K=K-1
    K=K-1
    JKL=JKL-1
    JKL=JKL-1
    IF (K.EG.O) K=1
    IF (K.EG.O) K=1
    IF (JKL.EG.O) JKL=1
    IF (JKL.EG.O) JKL=1
    [PCOST(L)=PCOST(JCLES3.J)+FCCST(JCLES2&K)+FCCST(JCLES1,JKL)
    [PCOST(L)=PCOST(JCLES3.J)+FCCST(JCLES2&K)+FCCST(JCLES1,JKL)
    L=L+1
    L=L+1
    J=\+1
    J=\+1
    IF (J.EQ.ITEST) GO TO 27@
    IF (J.EQ.ITEST) GO TO 27@
    GC TC 245
    GC TC 245
265 EPSO(L)=FSG(JCLES2,X)
265 EPSO(L)=FSG(JCLES2,X)
    J=J-1
    J=J-1
    JKL=JKL-1
    JKL=JKL-1
    IF (J.EG.0) J=1
    IF (J.EG.0) J=1
    IF (JKL.EQ.0) JKL=1
    IF (JKL.EQ.0) JKL=1
    IFCOST(L)=FCOST(JCLES2,K)+FCOST(JCLES1,JKL)+PCOST(JCLES3.J)
    IFCOST(L)=FCOST(JCLES2,K)+FCOST(JCLES1,JKL)+PCOST(JCLES3.J)
    L=L+1
    L=L+1
    K=k+1
    K=k+1
    {F (K.EG.ITEST) GO TC 275
    {F (K.EG.ITEST) GO TC 275
    60 TO 245
    60 TO 245
270 EPSQ(L)=FSG(JCLES!,JKL)
270 EPSQ(L)=FSG(JCLES!,JKL)
    J=J-1
    J=J-1
    K=K-1
    K=K-1
    IF (J.EG.0) J=1
    IF (J.EG.0) J=1
    IF (K.EQ.0) k=1
    IF (K.EQ.0) k=1
    IFCOST(L)=PCOST(JCLES1.JKL.)+PCCET(JCLES3,J)&PCCST(JCLESS2.K)
    IFCOST(L)=PCOST(JCLES1.JKL.)+PCCET(JCLES3,J)&PCCST(JCLESS2.K)
    L=L+1
    L=L+1
    JKL=JKL+1
    JKL=JKL+1
    IF (JKL.EO.ITEST) GC TC 275
    IF (JKL.EO.ITEST) GC TC 275
    GO TO 24E
    GO TO 24E
275 J=J-1
275 J=J-1
    K=K-1 - 3.81 -
```

 K=K-1 - 3.81 -
    ```

\section*{APPEMDIX E (Continued)}

275 276
277
278 275 280 281 282
283 284 285 286 287 288 289 290 291 292 293 294 29E 296 257 298 299

300
301
302
303
304
305
306
            JKL \(=\) JKL -1
            JPLUSK=J+K+JKL
            PRINT 20 S
            PRINT 210
            DC 285 L=1.JPLUSK
            EOPSO(JCLESI,L)=EFSC(L).
            EPCCST/JCLES!,L)=IPCCST(L)
            PRINT 2EO,L, EGPSO(JCLESI,L), EPCCST(JCLESI,L)
    280 FORMAT (/15.F10.2.110/)
    285 CCATIAUE
        PRINT 250

        PRINT 295,J,PSG(JCLES2,J),K, PSG(JCLES2,K),JKL,PSQ(JCLESI, JKL)
    295 FORMAT (//Ex.12, Ex,FE.1.10x.12.EX,F6.1.9X.13,8x,FE.1/)
        GC TC 80
    350 1RLES2=2E
        GO TO 160
    300 PRINY 650
    650 FORMAY ('1., ////////////IIMCIDENCE NATFIXP//////
        PRINT 30E, (IIN(I,J), J=1, NODES), \(\{=1\),NLESSI)
    \(30 \leqslant\) Fofmat ( 2 ell )
        PFINT 310,(IM(NODES,J),J=1,NCOES)
    310 FCEMAT (12813)
        STCP
        End
\(c\)
C *** MERGES fFOGFAMME. ***
\(c\)
        slercltine nerges
        INTEGER PSQ,PCOST,PS.PC
        C(NMCA PSO(S00),FCCST(500),PS(S00), PC(500),N
        DO \(£ 1=1, N\)
        PS(I)=PSG(I)
        PC(I)=PCCST(1)
        5 continue
\(c\)
C *** BEGIA ITH STEP CF SCRTING FRCCESS. ***
c
    \(A N_{1}=\lambda-1\)
    DO \(201=1\), NK 1
    IP \(1=1+1\)
    \(M=1\)
c
C *** MaKe the cippariscns. ***
C *** KEEP thack cf positica cf lafgest numeer of heac cifference. ***
c
        DC \(15 \mathrm{~J}=1 \mathrm{P}\) i. A
        IF ( \(\mathrm{P} \subseteq \mathrm{S}(\mathrm{H})=\mathrm{FSG}(\mathrm{J})) 10.15 .15\)
        io \(\quad \mathrm{m}=\mathrm{J}\)
    15 ccatinue
\(c\)
C \#\#\# SHIFT BCTH PSQ(M) AND fCGST(N) TC ITH FLACE. ***
c
    1 TEMP=PCCST(1)
    PGGST(1)=PCCST(M)
    PCCST(N) =ITEMF
    1 TEMP=PSG(1)
    PSG(I)=PSQ(N)
    PSG(M)=ITEMF

\section*{APPENDIX E (Concluded)}

321

322
323
324
325
326
327
\(32 \varepsilon\)
329

331

20 CONTINUE
\(c\)
C ***ITH STEFISNOHFINISHED****
c
DC \(35 K=3, N\)
\(L=K-1\)
CO \(30 \quad 1=1,1\)
IF (FCOST(K-1)-PCCST(K)) \(30,25,25\)
\(25 \operatorname{PCCST}(K-I)=0\)
PSC(K-I) \(=0\)
30 cCATIAUE
35 CONTINUE
\(c\)
C*** RETUFA AAD CUTPUT. ***
C
gETUFA
END
\&EXEC

\section*{TABLE E-1}
infut data for 7-diameter selections for each link of a HYPOTIETICAL NETHORK
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LIMK & FLCW & LENG \({ }^{\text {P }}\) & \(c\) & dianeter & LNIT COST & PSG & fCOST \\
\hline & (GPM) & (FT) & VALUE & (INS) & ! \$ & & \\
\hline \(i\) & :253 & 9000 & 100 & \(c\) & 24 & 737.71 & 96. \\
\hline 2 & 1253 & 4000 & 100 & 8 & 43 & 181.73 & 172 \\
\hline 1 & 1253 & 4000 & 100 & 10 & 47 & 61.20 & 188 \\
\hline 1 & 1253 & 4000 & 100 & 12 & 59 & 25.23 & 236 \\
\hline 1 & 1253 & 4000 & 100 & 15 & 73 & 8.51 & 292 \\
\hline 1 & 1253 & 4000 & 100 & 18 & 94 & 30:0 & 376 \\
\hline 1 & 12¢3 & 4000 & 100 & 21 & 118 & 1.EE & 472 \\
\hline 2 & 1464 & 4000 & 100 & \(\varepsilon\) & 43 & 242.27 & 172 \\
\hline 2 & 1464 & 4000 & 100 & 10 & 47 & e1.7t & 188 \\
\hline 2 & 1464 & 4000 & 100 & 12 & 59 & 33.64 & 236 \\
\hline 2 & 1464 & 4000 & 100 & 15 & 73 & 11.35 & 292 \\
\hline 2 & 1464 & 4000 & 100 & 12 & 94 & 4.67 & 376 \\
\hline 2 & 1464 & 4000 & 100 & 21 & 118 & 2.20 & 472 \\
\hline 2 & 1464 & 4000 & 100 & 24 & 124 & 1.15 & 496 \\
\hline 3 & 2264 & 4000 & 100 & 12 & 59 & 75.37 & 236 \\
\hline 3 & \(22 \in 4\) & 4000 & 100 & 15 & 73 & 25.42 & 292 \\
\hline 3 & 2264 & 4000 & 100 & \(1 \varepsilon\) & ¢4 & 10.46 & 376 \\
\hline 3 & 2264 & 4000 & 100 & 21 & 118 & 4.94 & 472 \\
\hline 3 & 2264 & 4000 & 100 & 24 & 124 & \(2.5 E\) & 496 \\
\hline 3 & 2264 & 4000 & 100 & 27 & 136 & 1.45 & 544 \\
\hline 3 & . 2264 & 4000 & 100 & 30 & 178 & 0.87 & 712 \\
\hline 4 & 1147 & 4000 & 100 & \(\epsilon\) & 24 & 626.43 & 56 \\
\hline
\end{tabular}

TABLE E-1 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & 1147 & 4000 & 100 & E & 43 & 154.32 & 172 \\
\hline 4 & 1147 & 4000 & 100 & 10 & 47 & 52.06 & 188 \\
\hline 4 & 1147 & 9000 & 100 & 12 & ss & 21.42 & 236 \\
\hline 4 & 1147 & 4000 & 800 & 15 & 73 & 7.23 & 252 \\
\hline 4 & 1147 & 4000 & 100 & 18 & 94 & 2.57 & 376 \\
\hline 4 & 1147 & 4000 & 100 & 21 & 118 & 1.40 & 472 \\
\hline 5 & \(93!\) & 4000 & 100 & 6 & 24 & 425.E3 & S6 \\
\hline 5 & 931 & 4000 & 100 & a & 43 & 104.50 & 172 \\
\hline \(\varepsilon\) & 531 & 4000 & 100 & 10 & 47 & 3E.3s & 182 \\
\hline 5 & 931 & 4000 & 100 & 12 & 59 & 14.56 & 236 \\
\hline 5 & 931 & 4000 & 100 & 15 & 73 & 4.51 & 292 \\
\hline 5 & 931 & 4000 & 100 & 18 & 94 & 2.02 & 376 \\
\hline 5 & 931 & 4000 & 100 & 21 & 112 & 0.55 & 472 \\
\hline 6 & 789 & 4000 & 100 & \(\epsilon\) & 24 & 313.52 & 98 \\
\hline \(\epsilon\) & 785 & 4000 & 100 & 8 & 43 & 77.24 & 172 \\
\hline 6 & 789 & 4000 & 100 & 10 & 47 & 26.0. & 188 \\
\hline 6 & 729 & 4000 & 100 & 12 & 55 & 10.72 & 236 \\
\hline 6 & 7E9 & 4000 & 100 & 15 & 73 & 3.62 & 292 \\
\hline 6 & 789 & 4000 & 100 & 21 & 94 & 1.45 & 376 \\
\hline \(\epsilon\) & 789 & 4000 & 100 & 21 & 118 & 0.70 & 472 \\
\hline 7 & ¢ ¢ 3 & 4000 & 100 & 8 & 43 & 111.E7 & 172 \\
\hline 7 & 963 & 4000 & 100 & 10 & 47 & 37.67 & 108 \\
\hline 7 & S63 & 4000 & 100 & 12 & 59 & 15.50 & 236 \\
\hline 7 & St3 & 4000 & 100 & 15 & 73 & \(5 \cdot 23\) & 252 \\
\hline 7 & 963 & 4000 & 100 & \(1 \varepsilon\) & 94 & 2.15 & 376 \\
\hline 7 & . 963 & 4000 & 100 & 21 & 118 & 1.02 & 472 \\
\hline 7 & se3 & 4000 & 100 & 24 & 124 & 0.53 & 496 \\
\hline 8 & 3227 & 4000 & 100 & 12 & 59 & 145.19 & 236 \\
\hline 3 & 3227 & 4000 & S00 & : & 33 & \(48=98\) & 292 \\
\hline 8 & 3227 & 4000 & 100 & 18 & , 94 & 20.15 & 376 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 8 & 3227 & 8000 & 100 & 21 & 118 & 9.91 & 472 \\
\hline 8 & 3227 & 4000 & 100 & 24 & 124 & 4.57 & 456 \\
\hline 8 & 3227 & 4000 & 100 & 27 & 136 & 2.00 & 544 \\
\hline 8 & 3227 & 4000 & 100 & 30 & 178 & 1.67 & 712 \\
\hline 9 & 1217 & 4000 & 100 & \(\varepsilon\) & 43 & 172.15 & 172 \\
\hline 9 & 1217 & 4000 & 800 & 10 & 47 & 58.08 & 198 \\
\hline 9 & 1217 & 4000 & 100 & 12 & 59 & 23.50 & 236 \\
\hline 9 & 1217 & 4000 & 100 & 15 & 73 & e.ce & 292 \\
\hline 9 & 1217 & 4000 & 100 & \(1 \varepsilon\) & 54 & 3.32 & 376 \\
\hline 9 & 1217 & 4000 & 100 & 21 & 118 & 1.57 & 472 \\
\hline 9 & 1217 & 4000 & 100 & 24 & 124 & 0.82 & 496 \\
\hline 10. & 2217 & 4000 & 100 & \(\boldsymbol{E}\) & 43 & 522.27 & 172 \\
\hline 10 & 2217 & 4000 & 100 & 10 & 47 & 176.17 & 188 \\
\hline 10 & 2217 & 4000 & 100 & 12 & 59 & 72.50 & 236 \\
\hline 10 & 2217 & 4000 & 100 & 15 & 73 & 24.46 & 292 \\
\hline 10 & 2217 & 4000 & 100 & 18 & 94 & 10.06 & 376 \\
\hline io & 2217 & 4000 & 100 & 21 & 118 & 4.75 & 472 \\
\hline 10 & 2217 & 4000 & 100 & 24 & 124 & 2.48 & 496 \\
\hline 11 & 1557 & 4000 & 100 & \(\varepsilon\) & 43 & 271.E2 & 172 \\
\hline 11 & 1557 & 4000 & 100 & 10 & 47 & 91.62 & 182 \\
\hline 11 & 1557 & 4000 & 100 & 12 & 59 & 37.70 & 236 \\
\hline 11 & \(1 \leq \in 7\) & 4000 & 100 & 15 & 73 & 12.72 & 292 \\
\hline 11 & 1557 & 4000 & 100 & \(1 \varepsilon\) & S4 & 5.E? & 376 \\
\hline 11 & 1557 & 4000 & 100 & 21 & 118 & 2.47 & 472 \\
\hline 11 & 1557 & 4000 & 100 & 24 & 124 & 1.29 & 496 \\
\hline 12 & 3773 & 4000 & 300 & 15 & 73 & 65.40 & 252 \\
\hline 12 & 3773 & 4000 & 100 & 18 & 94 & 26.91 & 376 \\
\hline 12 & 3773 & 4000 & 100 & 21 & 118 & 12.70 & 472 \\
\hline 12 & 3773 & 4000 & 100 & 24 & 124 & 6.83 & 496 \\
\hline 12 & 3713 & 4000 & 100 & 27 & 136 & 3.74 & 544 \\
\hline
\end{tabular}

TABLE E-1 (Concluded)
\begin{tabular}{llllllll}
12 & 3773 & 4000 & 100 & 30 & 178 & 2.24 & 712 \\
12 & 3773 & 4000 & 100 & \(3 \epsilon\) & 215 & 0.52 & 860
\end{tabular}

\section*{2ABLE E-2}

INPUT DATA FOR 7-DLAMETER SELECTIONS FOR EACH LINK OF A PORTION OR NORMAN WATER DISTRIBUTION NEIWORK, INCLUDING 1971 PROPOSED EXIENSIONS.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LINK & \[
\begin{aligned}
& \text { FLCW } \\
& \text { (MGD) }
\end{aligned}
\] & \begin{tabular}{l}
t.ENGTH \\
(FT)
\end{tabular} & \(c\) VALUE & diameter (INS) & UNIT COSI \$ & psc & FCOST \\
\hline 1 & 9.15 & 1311 & 130 & 21 & 118 & 6.72 & 154 \\
\hline 1 & 9.15 & 1311 & 130 & 24 & 124 & 3.51 & 162 \\
\hline 1 & 9. 15 & 1311 & 130 & 27 & 136 & 1.5E & 178 \\
\hline 1 & 9.15 & 1311 & 130. & 30 & 178 & 1.18 & 233 \\
\hline 1. & 9.15 & 1311 & 130 & 36 & 215 & 0.49 & 281 \\
\hline 1 & 9.15 & 131! & 130 & 42 & 250 & 0.E3 & 327 \\
\hline 1 & 9.15 & 1311 & 130 & \(4 E\) & 302 & 0.12 & 395 \\
\hline 2 & 8. 52 & E280 & 130 & 21 & 118 & 25.23 & 623 \\
\hline 2 & 8.92 & 5280 & 130 & 24 & 124 & 13.4E & Es4 \\
\hline 2 & 8.92 & ¢280 & 130 & 27 & 1.36 & 7.55 & 718 \\
\hline 2 & 8. 52 & 5280 & 130 & 30 & 178 & 4.55 & 939 \\
\hline 2 & 8.92 & 5280 & 130 & 36 & 215 & \(1 \cdot \varepsilon 7\) & 1135 \\
\hline 2 & 8.92 & 5280 & 130 & 42 & 250 & 0. \(6 \varepsilon\) & 1320 \\
\hline 2 & 8.92 & 5280 & 130 & \(4 E\) & 302 & 0.45 & 1594 \\
\hline 3 & 9.14 & ¢280 & 130 & 21 & 118 & 27.02 & 623 \\
\hline 3 & 9.14 & 5280 & 130 & 24 & 124 & 14.10 & 654 \\
\hline 3 & 9.14 & 5280 & 170 & 27 & 136 & 7.54 & 718 \\
\hline 3 & 9.14 & 5280 & 130 & 30 & 178 & 4.76 & 939 \\
\hline 3 & 9.14 & 5280 & 120 & 36 & 215 & 1.56 & 1135 \\
\hline 3 & 9.14 & 5280 & 130 & 42 & 256 & 0.52 & 1320 \\
\hline 3 & 9.14 & 5280 & 130 & 48 & 302 & 0.42 & 1594 \\
\hline 4 & 0.45 & 5280 & 130 & \(\dot{\mathbf{c}}\) & 24 & 45.5: & :26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & 0.45 & 5280 & 130 & E & 43 & 11031 & 227 \\
\hline 4 & 0.45 & 5280 & 130 & 10 & 47 & 3.82 & 248 \\
\hline 4 & 0.45 & . 5280 & 130 & 12 & 59 & 1.57 & 311 \\
\hline 4 & 0.45 & 5280 & 130 & 15 & 73 & 0.§3 & 385 \\
\hline 4 & 0.45 & ¢280 & 130 & \(1 \varepsilon\) & 94 & 0.22 & 456 \\
\hline 4 & 0.45 & 5280 & 130 & 21 & 118 & 0.10 & 623 \\
\hline 5 & 1.07 & 5280 & 130 & \(\epsilon\) & 24 & 227.55 & 126 \\
\hline 5 & 1.07 & 5280 & 130 & e & 43 & 56.16 & 227 \\
\hline 5 & 1.07 & 5280 & 130 & 10 & 47 & 10.54 & 248 \\
\hline 5 & 1.07 & 5280 & 130 & 12 & 59 & 7.E0 & 311 \\
\hline 5 & 1.07 & 5280 & 130 & 15 & 73 & 2.63 & 385 \\
\hline 5 & 1.07 & 5280 & 130 & 12 & 94 & 1.02 & 456 \\
\hline 5 & 1.07 & 5280 & 130 & 21 & 112 & 0.51 & 623 \\
\hline 6 & 10.42 & 5280 & 130 & 21 & 118 & 34.43 & 623 \\
\hline 6 & 10.42 & 5280 & 130 & 24 & 124 & 17.57 & 654 \\
\hline 6 & 10.42 & 5280 & 130 & 27 & 136 & 10.12 & 718 \\
\hline \(\epsilon\) & 10.42 & 5280 & 130 & 30 & 178 & \(6.0 ¢\) & 939 \\
\hline 6 & 10.42 & 5280 & 130 & 36 & 215 & 2.45 & 1135 \\
\hline 6 & 10.42 & 5280 & 130 & 42 & 250 & 1.18 & :32n \\
\hline \(\epsilon\) & 10.42 & 5280 & 130 & \(4 \varepsilon\) & 302 & OOE 1 & 1594 \\
\hline 7 & 1.22 & 5280 & 130 & 6 & 24 & 290.57 & 126 \\
\hline 7 & 1.22 & 5280 & 130 & \(\varepsilon\) & 43 & 71.58 & 227 \\
\hline 7 & 1.22 & 5280 & 130 & 10 & 47 & 24.15 & 248 \\
\hline 7 & 1.22 & 5280 & 130 & 12 & ¢9 & 9.54 & 311 \\
\hline 7 & 1.22 & ¢280 & 130 & 14 & 73 & 3.35 & 385 \\
\hline 7 & 1.22 & 5280 & 130 & \(1 E\) & 94 & 1038 & 496 \\
\hline 7 & 1.22 & 5280 & 130 & 21 & 118 & D.EE & 623 \\
\hline 8 & 0.77 & 5280 & 120 & \(\varepsilon\) & 24 & 124.02 & 126 \\
\hline 8 & 0.77 & 5280 & 130 & 8 & 43 & 30.55 & 227 \\
\hline 8 & 0.77 & 5280 & 130 & 10 & 47 & 10.31 & 24 e \\
\hline
\end{tabular}

TABLE E-2 (Concinued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 8 & 0.77 & 5280 & 130 & 12 & gs & 4.24 & 311 \\
\hline 8 & 0.77 & 5280 & 130 & 15 & 73 & 2.43 & 385 \\
\hline \(\varepsilon\) & 0.77 & 5280 & 130 & 18 & 94 & 0.55 & 456 \\
\hline 3 & 0.77 & 5280 & 130 & 21 & 118 & 0.28 & 623 \\
\hline 9 & 1.20 & 5280 & 130 & 6 & 24 & 281.22 & 126 \\
\hline \(\varsigma\) & 1.20 & ¢280 & 130 & \(\varepsilon\) & 43 & 69.42 & 227 \\
\hline 9 & 1.20 & 5280 & 130 & 80 & 47 & 23.42 & 248 \\
\hline 9 & 1.20 & 5280 & 130 & 12 & 59 & S.E4 & 311 \\
\hline \(s\) & 1.20 & 5220 & 130 & 15 & 73 & 3.25 & 2 es \\
\hline 9 & 1.20 & 5280 & 130. & \(1 E\) & 94 & 1.34 & 456 \\
\hline 9 & 1.20 & 5280 & 130 & 21 & 118 & 0.63 & 623 \\
\hline 10 & 12.15 & 5280 & 130 & 21 & 118 & 45.74 & E23 \\
\hline 10 & 12.15 & 5280 & 130 & 24 & 124 & 23. 87 & 654 \\
\hline 10 & 12.15 & 5280 & 130 & 27 & 136 & 13.45 & 718 \\
\hline 10 & 12.15 & 5280 & 130 & 30 & 178 & 8.05 & 539 \\
\hline 10 & 12.15 & 5280 & 130 & 36 & 215 & 3. 31 & 1135 \\
\hline 10 & 12.15 & 5280 & 130 & 42 & 250 & 1.56 & 1320 \\
\hline 10 & 12.15 & 5280 & 130 & 48 & 302 & O.EZ & \(1 \leq 94\) \\
\hline 11 & 1.46 & 5280 & 130 & 12 & 59 & 13.85 & 311 \\
\hline 11 & 1.46 & 5280 & 130 & 12 & 59 & 13.85 & 311 \\
\hline 11 & 1. 46 & 5280 & 130 & 12 & 59 & 13.85 & 311 \\
\hline 11 & 1.46 & 5280 & 130 & 12 & 59 & 13.EE & 311 \\
\hline 11 & 1.4E & 5280 & 130 & 18 & 59 & 13.85 & 311 \\
\hline 11 & 1.46 & 5280 & 130 & 12 & 59 & 13.85 & 311 \\
\hline 11 & 2.46 & 5280 & 130 & 12 & 59 & 13.E์ & 311 \\
\hline 12 & 6.84 & 5280 & 130 & 24 & 124 & 8.25 & 65s \\
\hline 12 & 6.E4 & 5280 & 130 & 24 & 124 & 8.25 & 654. \\
\hline 12 & 6.84 & 5280 & 130 & 24 & 124 & E. 25 & 654 \\
\hline 12 & 6.84 & 5280 & 130 & 24 & 124 & B. 25 & 654 \\
\hline 12 & 6.84 & 5280 & 130 & 24 & 124 & 8.25 & 654 \\
\hline & & & & & & & \\
\hline
\end{tabular}

TABLE E-2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 12 & 6.E4 & \$280 & 130 & 24 & 124 & 8.25 & 659 \\
\hline 12 & 6.84 & 5280 & 130 & 24 & 124 & 8. 25 & 654 \\
\hline 13 & 1.39 & 5220 & 130 & 6 & 24 & 369.8E & 126 \\
\hline 13 & 1039 & 5280 & 130 & e & 43 & 91.12 & 227 \\
\hline 13 & 1.39 & 5280 & 130 & 10 & 47 & 30.74 & 248 \\
\hline 13 & 1.39 & 5280 & 130 & 12 & ¢9 & 12.t5 & Eis \\
\hline 13 & 1.35 & 5280 & \(8: 30\) & 15 & 73 & 4.27 & 385 \\
\hline 13 & 1.39 & 5200 & 130 & 10 & 94 & 1.76 & 496 \\
\hline 13 & 1.39 & ¢280 & \(1 \geq 0\) & 21 & 118 & 0.EZ & 623 \\
\hline 24 & 0.65 & ¢ 280 & 130 & 6 & 24 & 148.91 & 126 \\
\hline 14 & 0.85 & 5280 & 130 & \(\varepsilon\) & 43 & 36.EE & 227 \\
\hline 14 & 0.85 & 5280 & 130 & 10 & 47 & 12.37 & 248 \\
\hline 14 & 0.85 & ¢220 & 130 & 12 & 59 & 5.09 & 311 \\
\hline 14 & 0.85 & 5280 & 130 & 15 & 73 & 1.72 & 385 \\
\hline 14 & 0.85 & 5280 & 130 & \(1 E\) & ¢4 & 0.71 & 496 \\
\hline 14 & 0.65 & 5280 & 130 & 21 & 118 & 0.33 & 623 \\
\hline 15 & 13.51 & 5280 & 130 & 21 & 118 & 55.67 & E23 \\
\hline 15 & 13.5t & 5280 & 130 & 24 & 124 & 2s.0§ & 654 \\
\hline 15 & 13.51 & 5200 & 130 & 27 & 136 & 16.37 & 718 \\
\hline 15 & 13.91 & 5280 & 130 & 30 & 178 & 9.80 & 939 \\
\hline 15 & 13.51 & 5280 & 130 & 36 & 215 & 9.0ミ & 1135 \\
\hline 15 & 13. 51 & 5280 & 130 & 42 & 250 & 1.90 & 1320 \\
\hline 15 & 13. 51 & -5280 & 130 & 48 & 302 & 0.55 & 1594 \\
\hline 16 & 0.17 & 5280 & 130 & \(\epsilon\) & 24 & 7. Et & 126 \\
\hline 16 & 0.17 & 5280 & 130 & \(\varepsilon\) & 43 & 1.27 & 227 \\
\hline if & 0.17 & 5280 & 130 & 10 & 47 & OCE & 248 \\
\hline 16 & 0.17 & 5280 & 130 & 12 & 59 & 0.26 & 311 \\
\hline 16 & 0.17 & 5280 & 130 & 15 & 73 & 0.09 & 385 \\
\hline 16 & 0.17 & 52 E & 130 & 12 & 94 & 0.04 & 496 \\
\hline 16 & 0.17 & 5280 & 130 & 21 & 118 & 0.02 & 623 \\
\hline
\end{tabular}

TABLE E-2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 17 & 0.32 & 5280 & 130 & \(c\) & 24 & 24.44 & 126 \\
\hline 17 & 0.32 & 5280 & 130 & E & 43 & 6.02 & 227 \\
\hline 17 & 0.32 & 5280 & 830 & 10 & 47 & 2.03 & 248 \\
\hline 17 & 0.72 & 5280 & 130 & 18 & \(5 ¢\) & 0.84 & 311 \\
\hline 17 & 0.32 & 5280 & 130. & 15 & 73 & 0.28 & 325 \\
\hline 17 & 0.32 & 5280 & 130 & \(1 \varepsilon\) & S4 & 0.12 & 456 \\
\hline 17 & 0.32 & 5280 & : 30 & 21 & 118 & 0.05 & 623 \\
\hline 18 & 1. 13 & 2540 & 125 & 6 & 24 & 318.22 & 60 \\
\hline 18 & 1.83 & 2540 & 125 & \(E\) & 43 & 7e.3s & 109 \\
\hline 18 & 1.83 & 2540 & 125 & 10 & 47 & 26.44 & 119 \\
\hline 18 & 1.E3 & 2540 & 125 & 12 & 59 & 10.88 & 149 \\
\hline 18 & 1.83 & 2540 & 12¢ & 15 & 73 & 3. 67 & 185 \\
\hline 18 & 1.83 & 2540 & 125 & \(1 E\) & 94 & 1.51 & 238 \\
\hline 18 & \(1 . \varepsilon 3\) & 2540 & 12E & 21 & 118 & 0.71 & 299 \\
\hline 15 & 1.54 & 2740 & 125 & \(\epsilon\) & 24 & 245.4E & \(\epsilon 5\) \\
\hline 19 & 1.54 & 2740 & 125 & \(\varepsilon\) & 43 & 61.48 & 117 \\
\hline 19 & 1.54 & 2740 & 125 & 10 & 47 & 20.73 & 128 \\
\hline 15 & 1.54 & 2740. & 125 & 12 & Es & 8. 53 & 161 \\
\hline 19 & 1. 54 & 2740 & 125 & 15 & 73 & 2. 68 & 200 \\
\hline 19 & 1.54 & 2740 & 12 E & 18 & 94 & 1.12 & 257 \\
\hline 19 & 1.54 & 2740 & 125 & 21 & 118 & 0.EE & 323 \\
\hline 20 & 8.06 & 5280 & 130 & 24 & 124 & 11.17 & 654 \\
\hline 20 & 8.06 & 5280 & 130 & 24 & 124 & 12.17 & 654 \\
\hline 20 & 8.06 & 5280 & 130 & 24 & 124 & 11.17 & \(E \leq 4\) \\
\hline 20 & 8.06 & 5280 & 130 & 24 & 124 & 11.17 & 654 \\
\hline 20 & 8.06 & 5280 & 130 & 24 & 124 & 11.17 & ES4 \\
\hline 20 & 8.06 & 5280 & 130 & 29 & 124 & 11.17 & Es 4 \\
\hline 20 & 8.05 & 5280 & 130 & 24 & 124 & 11.17 & 654 \\
\hline \(2 i\) & ¢.80́ & 2640 & 130 & 24 & 224 & 8.1i & 327 \\
\hline 21 & 9.86 & 2640 & 130 & 24 & 124 & E.11 & 327 \\
\hline
\end{tabular}

TABLE E-2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 21 & 9.86 & 2640 & 130 & 24 & 824 & E. 11 & 327 \\
\hline 21 & G.E6 & \(2 ¢ 40\) & 130 & 24 & 124 & E. 11 & 327 \\
\hline 21 & S. \(E \in\) & 2640 & 130 & 24 & 124 & 8.11 & 327 \\
\hline 21 & 9.26 & 2640 & 130 & 24 & 124 & 8.11 & 327 \\
\hline 21 & S. 26 & 2640 & 130 & 24 & 124 & 8.11 & 327 \\
\hline 22 & 5.37 & 105600 & 130 & 15 & 73 & 1039.52 & 7708 \\
\hline 22 & 5.37 & 105600 & 130 & \(1 E\) & 94 & 427.¢5 & s526 \\
\hline 22 & 5.37 & 105600 & 130 & 21 & 112 & 202.00 & \(1246 n\) \\
\hline 22 & 5.37 & 105600 & 130 & 24 & 124 & 105.42 & 13094 \\
\hline 22 & 5.37 & 105600 & 130 & 27 & 1 13 & 55.41 & 14361 \\
\hline 22 & 5.37 & 105600 & 130 & 30 & 178 & 35.56 & 18796 \\
\hline 82 & 5.37 & \(10 \leq 600\) & 130 & 36 & 215 & 14.63 & 22704 \\
\hline 23 & 5.59 & 5280 & 130 & 15 & 73 & 56.01 & \(\boldsymbol{3} \boldsymbol{\varepsilon}\) \\
\hline 23 & 5.59 & 5280 & 130 & \(1 \varepsilon\) & 54 & 23.05 & 496 \\
\hline 23 & 5.5S & 5220 & 130 & 21 & 118 & 10.88 & 623 \\
\hline 23 & 5.59 & 5280 & 130 & 24 & 124 & Sote & E¢4 \\
\hline 23 & 5.59 & 5280 & 130 & 27 & 136 & 3.20 & 718 \\
\hline 23 & 5.59 & 5280 & 130 & 30 & 178 & 1.92 & \$39 \\
\hline 23 & 5.59 & 5280 & 130 & 36 & 215 & 0.75 & 1135 \\
\hline 24 & 0.21 & 5280 & 130 & \(\epsilon\) & 24 & 11.21 & 126 \\
\hline 24 & 0.21 & 5280 & 130 & 8 & 43 & 2.76 & 227 \\
\hline 24 & 0.21 & 5280 & 130 & 10 & 4.7 & 0.53 & 548 \\
\hline 24 & 0.21 & 5280 & 130 & 12 & 59 & 0. \(\boldsymbol{\sim}\) E & 311 \\
\hline 24 & 0.21 & 5280 & 130 & 15 & 73 & 0.12 & 385 \\
\hline 24 & \(0 \cdot 21\) & \(5280^{\circ}\) & 130 & 18 & 94 & \(0.0 \leqslant\) & 496 \\
\hline 24 & 0.21 & 5220 & 130 & 21 & :18 & 0.03 & 623 \\
\hline 25 & 1.07 & 105600 & 130 & 6 & 24 & 4559.07 & 2534 \\
\hline 25 & 1.07 & 105600 & 830 & \(\varepsilon\) & 43 & 1123.11 & \(4 \leqslant 40\) \\
\hline 25 & 8.07 & 105600 & 130 & 10 & 47 & 372.EE & 4563 \\
\hline 25 & 1.07 & 10¢600 & 130 & 12 & 59 & 155.50 & E230 \\
\hline & & & & & & & \\
\hline
\end{tabular}

TABLE E-2 (Concluded)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 28 & 2.07 & 109600 & 130 & 19 & 73 & 52.59 & 7708 \\
\hline 25 & 1.07 & 105600 & 130 & 18 & 94 & 21.64 & \$526 \\
\hline 25 & 2.07 & 105600 & 130 & 21 & 118 & 10.22 & 12460 \\
\hline 26 & 6.67 & 5280 & 130 & 15 & 73 & 82.01 & 385 \\
\hline \(2 ¢\) & 6.e? & 5280 & 130 & \(1 E\) & 94 & 33.75 & 496 \\
\hline 26 & 6.27 & 5280 & 130 & 21 & 118 & 15.53 & 623 \\
\hline 26 & 6. \(¢ 7\) & 5280 & 130 & 24 & 124 & 8.31 & E54 \\
\hline 26 & 6.87 & 5280 & 130 & 27 & 136 & 4.ES & 718 \\
\hline 26 & 6.27 & 52.0 & 120 & 30 & 178 & 2.E0 & 939 \\
\hline 26 & 6.E7 & 5280 & 130 & 36 & 215 & 1.15 & 1135 \\
\hline 27 & 20.59 & 2640 & 130 & 24 & 124 & 31.67 & 327 \\
\hline 27 & 20.Es & 2640 & 130 & 27 & 136 & 87.25 & 359 \\
\hline 27 & 20.5s & 2640 & 130 & 30 & 178 & \[
10.62
\] & 469 \\
\hline 27 & 20.59 & 2640 & 130 & 36 & 215 & 4.40 & 567 \\
\hline 27 & 20.59 & 2640 & 130 & 48 & 250 & 2.08 & 660 \\
\hline 27 & 20. 55 & 2640 & 130 & 42 & 302 & 1.08 & 797 \\
\hline 27 & 20.59 & 264.0 & 130 & 54 & 337 & O.Es & 889 \\
\hline
\end{tabular}

\section*{TABLE E-3}

INCIDENCE MATRIX FOR TIE HYPOTHETICAL RETWORK FOR SPANNING TREE AND TREE-LIKE CONFIGURATIONS

thble e-4

\section*{inctdence matrix for a portion of yorman}

WATER DISTRIBUTION NETKORK
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(c\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(c\) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(0^{\circ}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

TABLE E-5
OUTPUT OF PROGRAMS MERGEP AND MERGES FOR HYPOTHETICAL NETWORK.

2
1
equivalent efañch list fer a serial mefge
\begin{tabular}{|c|c|c|}
\hline ITEN & SPSG & SFCCST \\
\hline 1 & 980.08 & 268 \\
\hline 2 & 424.10 & 344 \\
\hline 3 & こ03.67 & 360 \\
\hline 4 & 267.60 & \(40 \varepsilon\) \\
\hline 5 & 250. 28 & \(4 \in 4\) \\
\hline \(\epsilon\) & 245.87 & 548 \\
\hline 7 & 244.02 & 644 \\
\hline \(\varepsilon\) & 82.41 & \(\in \in C\) \\
\hline s & 35.30 & 708 \\
\hline 10 & 13.00 & \(7 \in 4\) \\
\hline 11 & E. 32 & 848 \\
\hline 12 & 3.86 & 944 \\
\hline 13 & 2.80 & Ste \\
\hline
\end{tabular}

3
1
equivalent granch list fef a sefial nefge.
- 197 -

\section*{TABLE E-5 (Continucd)}


\section*{TABLE E-5 (Continued)}


\section*{TABLE E-5 (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 12 & & 26.0E & & 842 & \\
\hline & 13 & & 15.97 & & ese & \\
\hline & 14 & & 10.72 & & 944 & \\
\hline & 15 & & 6.32 & & 1000 & \\
\hline & 16 & & 3.62 & & 10ミ® & \\
\hline & 17 & & 3.43 & & 1140 & \\
\hline & 18 & & \(2 \cdot 36\) & & \$236 & \\
\hline 13 & 7 & 5 & & \(\epsilon\) & & \\
\hline \(\downarrow\) & PSQ1 & K & . & FSG2 & 1RLES2 & JCLES 1 \\
\hline 13 & 2.4 & 5 & & 3.6 & 7 & 6 \\
\hline 13 & 2.4 & 5 & & 3.6 & 7 & 6 \\
\hline
\end{tabular}

EQUIVALENT BRANCH LIST FOR A SERIAL NEFGE


TABLE E-5 (Continued)
\begin{tabular}{lll}
14 & 117.59 & 1172 \\
15 & 115.29 & 1228 \\
16 & 115.05 & 1312 \\
17 & 114.03 & 1408 \\
18 & 40.03 & 1424 \\
19 & 17.86 & 1472 \\
20 & 7.59 & 1528 \\
21 & 4.51 & 1612 \\
22 & 2.89 & 1708 \\
23 & 2 & 1732 \\
8 & &
\end{tabular}
equiyalent granch list for a parallel herge


TABLE E-5 (Continued)


EOUIVALENT GRAAGH LIST FOR A EERIAL MEFGE


TABLE E-5 (Continued)
\begin{tabular}{|c|c|c|}
\hline 24 & 260.29 & 2444 \\
\hline 25 & 259.22 & 2540 \\
\hline 26 & 255.86 & 2588 \\
\hline 27 & 233.5 & \(2 E 44\) \\
\hline 28 & 22E. 88 & 2728 \\
\hline 29 & 224.42 & 2824 \\
\hline 30 & 223.36 & 2848 \\
\hline 32 & 185.22 & 2et4 \\
\hline 32 & 173.42 & 2920 \\
\hline 33 & 163.05 & 2Ste \\
\hline 34 & 152.46 & 3056 \\
\hline 35 & 152.93 & 3148 \\
\hline 36 & 152.7e & 3204 \\
\hline 37 & 150.57 & 3228 \\
\hline 38 & 149.70 & 3312 \\
\hline 35 & 149.45 & 3360 \\
\hline 40 & 148.86 & 35:8 \\
\hline 41 & 52.65 & 3584 \\
\hline 42 & 23.83 & 3668 \\
\hline 43 & 13.19 & 3764 \\
\hline 44 & E. 64 & 37EE \\
\hline 45 & 6.47 & \(38=6\) \\
\hline 46 & S. 35 & \(40 \mathrm{C4}\) \\
\hline 9 & 0 & \\
\hline 10 & 1 & \\
\hline equivalent & branch list for & a sefial mefge \\
\hline ITE* & Spso & SPCEST \\
\hline
\end{tabular}

\section*{TABLE E-5 (Continued)}
\begin{tabular}{|c|c|c|}
\hline 1 & 694.46 & 344 \\
\hline 2 & 580.35 & 360 \\
\hline 3 & 546.17 & 408 \\
\hline 4 & 530.33 & \(4 \in 4\) \\
\hline 5 & 52E.59 & 548 \\
\hline \(\underline{6}\) & 523.83 & 644 \\
\hline 7 & 523.05 & cte \\
\hline \(\varepsilon\) & 176.95 & 684 \\
\hline 9 & 73.32 & 732 \\
\hline 10 & 25.27 & 7EE \\
\hline 11 & 10.88 & 872 \\
\hline 12 & 5.57 & \(\boldsymbol{s t e}\) \\
\hline 13 & 3.30 & 9.2 \\
\hline 11 & 0 & \\
\hline 12 & 2 & \\
\hline
\end{tabular}
equivalent efanch list fef a fafallel nerge
\begin{tabular}{|c|c|c|}
\hline ITEM & PSO & feces \\
\hline 1 & 694.46 & 518 \\
\hline 2 & 580.35 & 53 E \\
\hline 3 & E46.17 & ¢fe \\
\hline 4 & \$30.33 & 636 \\
\hline 5 & 525.59 & 750 \\
\hline 6 & 523.83 & ele \\
\hline 7 & 523.09 & 840 \\
\hline 8 & 271.62 & 840 \\
\hline 9 & 176.9s & 856 \\
\hline - & & \\
\hline
\end{tabular}

\section*{TABLE E-5 (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 10 & & 81.62 & & 872 & \\
\hline . & 11 & & 73.32 & & 920 & \\
\hline & 12 & & 37.70 & & ses & \\
\hline & 13 & & 25.27 & & 1024 & \\
\hline & 14 & & 12.72 & & 1080 & \\
\hline & 15 & & 10.88 & & 1164 & \\
\hline & 16 & & 5.57 & & 1260 & \\
\hline & 17 & & E. 23 & & 1344 & \\
\hline & 18 & & 3.30 & & 1368 & \\
\hline 13 & 12 & 5 & & 11 & & \\
\hline 」 & PSO1 & \(K\) & & PSQ2 & IfLESS & JCLES 1 \\
\hline 13 & 3.3 & 5 & & 5.2 & 12 & 11 \\
\hline 13 & 3.3 & 5 & & 5.2 & 12 & 11 \\
\hline
\end{tabular}

EGUIVALEAT ERANGH LISt far a SER IAL MEfGE
\begin{tabular}{|c|c|c|}
\hline ITEM & spso & SpCcst \\
\hline 1 & 759.86 & Boe \\
\hline 2 & 685.75 & \(8 \overline{4} 4\) \\
\hline 3 & 611.57 & B72 \\
\hline 4 & 595.73 & 928 \\
\hline 5 & 590.99 & 1082 \\
\hline 6 & 585. 23 & 1108 \\
\hline 7 & 337.02 & 1132 \\
\hline B & 242.35 & 1148 \\
\hline 9 & 157.02 & 1164 \\
\hline 10 & 138.72 & 1212 \\
\hline 11 & 103.11 & 1268 \\
\hline & - 2 & \\
\hline
\end{tabular}

\section*{TABLE E-5 (Continued)}
\begin{tabular}{|c|c|c|}
\hline 12 & 90.67 & 1316 \\
\hline 13 & 78.12 & 1372 \\
\hline 34 & 75.28 & 14:6 \\
\hline 15 & 70.97 & 1552 \\
\hline 16 & 70.63 & 16:t \\
\hline 17 & 68.70 & 16EC \\
\hline 12 & 30.21 & 1744 \\
\hline 19 & 16.00 & 1840 \\
\hline 20 & 9.93 & 1264 \\
\hline 21 & 7.03 & 1912 \\
\hline 22 & 5.53 & 20 EC \\
\hline 23 & 4.22 & \(222 \epsilon\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ITEN & PSQ & PCCst \\
\hline 1 & 1309.12 & 2008 \\
\hline 2 & 1200.64 & 2008 \\
\hline 3 & 837.01 & 2084 \\
\hline 4 & 759.26 & 2084 \\
\hline s & 734.74 & 2100 \\
\hline 6 & 204.11 & 2148 \\
\hline 7 & 689.92 & 2204 \\
\hline 8 & 685.66 & 2286 \\
\hline 9 & 645.75 & 2304 \\
\hline 10 & 644.66 & 2380 \\
\hline is & 5: 5.57 & 24 ¢6 \\
\hline 12 & 595. 73 & 2484 \\
\hline 13 & 590.99 & 2568 \\
\hline & - 20 & \\
\hline
\end{tabular}

TABIE E-5 (Continued)
\begin{tabular}{|c|c|c|}
\hline 14 & 589.23 & 2664 \\
\hline 15 & 570.38 & 276 \\
\hline 16 & 524.23 & 2776 \\
\hline 17 & 428.16 & 22:4 \\
\hline 18 & 471.44 & 2880 \\
\hline 19 & 466.43 & 29世4 \\
\hline 20 & 464. 58 & 3066 \\
\hline 21 & 363.17 & 3136 \\
\hline 22 & 337.02 & 3160 \\
\hline 23 & 334.10 & 3236 \\
\hline 24 & 303.97 & 3252 \\
\hline 25 & 293.t5 & \(326 E\) \\
\hline 26 & 282.91 & 32E4 \\
\hline 27 & 272.83 & 3332 \\
\hline 28 & 267.5E & 33 Ec \\
\hline 29 & 263.18 & 3436 \\
\hline 30 & 260.48 & 34¢8 \\
\hline 31 & 260.25 & 3576 \\
\hline 32 & 255.22 & 367\% \\
\hline 33 & 255.26 & 3750 \\
\hline 34 & 242.35 & 3736 \\
\hline 35 & 233.56 & 3792 \\
\hline 36 & 226.28 & 3876 \\
\hline 37 & 224.42 & 3972 \\
\hline 38 & 223.36 & 3956 \\
\hline 39 & 185.22 & 4012 \\
\hline 40 & 173.42 & SOEE \\
\hline 42 & 163.05 & 4136 \\
\hline 42 & 158.46 & 4206 \\
\hline 43 & 157.02 & 4216 \\
\hline & - 2 & \\
\hline
\end{tabular}

TABLE E-5 (Concluded)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 44 & 252.93 & & 4312 & \\
\hline & 45 & 152.78 & & 436E & \\
\hline & 46 & 150.57 & & 4352 & \\
\hline & 47 & 149.70 & & 4476 & \\
\hline & 48 & 149.45 & & 4524 & \\
\hline & 49 & 148.86 & & 4652 & \\
\hline & 50 & 138. 72 & & 4746 & \\
\hline & 51 & 103.11 & & \(47 \varepsilon \varepsilon\) & \\
\hline & 52 & 90.67 & & 4844 & \\
\hline & 53 & 78.12 & & 4566 & \\
\hline & 54 & 76.29 & & 4984 & \\
\hline & 55 & 70.97 & & SOEO & \\
\hline & 56 & 70.E3 & & \(51 \in 4\) & \\
\hline & 57 & 68.70 & & 518e & . \\
\hline & 58 & ¢2.Es & & 5244 & \\
\hline & 59 & 30.21 & & 532E & \\
\hline & 60 & 23.83 & & 5412 & \\
\hline & 61 & 16.00 & & S5ce & \\
\hline & 62 & 13.15 & & 5604 & \\
\hline & 63 & 9.93 & . & 5628 & \\
\hline & 64 & E. 64 & & \(56 \leq 2\) & \\
\hline & 65 & 7.03 & & 5700 & \\
\hline & 66 & 6.47 & & E74E & \\
\hline & 67 & 5.53 & & 591E & \\
\hline & 68 & 5.35 & & 6084 & \\
\hline 46 & 13 & 22 & 12. & & \\
\hline \(\checkmark\) & PSO1 & \(\times\) & PSO2 & IRLES 2 & JCLES 1 \\
\hline 46 & 5.3 & 22 & 5.5 & 13 & 12 \\
\hline 46 & 6. 3 & 22 & 5.5 & 13 & 12 \\
\hline & & - & 209 - & & \\
\hline
\end{tabular}

OUTPUT OF PROGRAMS MERGEP AND UERGES FOR A PORTION OF NORMAN WATER DISTRIDUTICN NETHORK
```

2
1
EguIvalENT bfanch list fcF a sefial yefge

| ITEN | SPSQ | SPCCST |
| :---: | :---: | :---: |
| 1 | $32.5 E$ | 777 |
| 2 | 25.33 | 785 |
| 3 | 27.80 | 801 |
| 4 | 27.01 | 85ϵ |
| 5 | 26.31 | 904 |
| 6 | 25.55 | 950 |
| 7 | 13.60 | 1018 |
| 8 | 7.71 | 1045 |
| 9 | 4.67 | 1115 |
| 10 | 1.95 | 1334 |
| 11 | 0.58 | 1550 |
| 12 | 1915 | |

3
1EQUIVALEAT gfanch list fGR a SERIAL mEfGE

TABLE E-6 (Continued)

| ITEM | seso | spcest |
| :---: | :---: | :---: |
| 1 | 59.E6 | 1400 |
| 2 | St. $3 \leq$ | 1408 |
| 3 | 54.82 | 1424 |
| 4 | 54.02 | 1478 |
| 5 | 53.33 | 1527 |
| 6 | 53.07 | 1573 |
| 7 | 52.96 | 1641 |
| E | 40.61 | 1675 |
| 9 | 34.73 | 1736 |
| 10 | 31. 6 E | 1957 |
| 11 | 29.01 | $21 \leq 3$ |
| 12 | 28.02 | 2338 |
| 13 | 27.60 | 2612 |
| 14 | 14.68 | 2645 |
| 15 | - 2.53 | 2707 |
| 16 | 5.34 | 2928 |
| 17 | 2.54 | 3124 |
| 18 | 1.50 | 3305 |
| 19 | 1.06 | 3523 |
| 4 | 0 | |
| 5 | 1 | |

EQUIVALENT EGANCH LIST FOR A SERIAL MEFGE

| ITEM | SFSG | SFCEST |
| :---: | :---: | :---: |
| 1 | 273.87 | 255 |
| 2 | 239.2ϵ | $35:$ |
| | $-211-$ | |

TABLE E-6 (Continued)

| 3 | 231.77 | 374 |
| :---: | :---: | :---: |
| 4 | 229.52 | 437 |
| 5 | 220.48 | 51! |
| 6 | 228.17 | CEz |
| $?$ | 22e.06 | 745 |
| - | 56.2E | 850 |
| 9 | 19,05 | 871 |
| 10 | 7.90 | 934 |
| 11 | 2.73 | 1008 |
| 12 | 1.18 | 1119 |
| 13 | 0.61 | 1246 |
| 6 | 2 | |
| equivalent rranch list for a parallel merge | | |
| | . - | |
| ITEN | FSG | PCSET |
| 1 | 273.87 | $16 \leq 2$ |
| 2 | 239.26 | 1753 |
| 3 | 231.77 | 1774 |
| 4 | 229.52 | . 1837 |
| 5 | 22E.4E | 1911 |
| c | 22. 17 | 2022 |
| 7 | 226.06 | 2145 |
| 8 | 59.56 | 2145 |
| 9 | 56.35 | 2!57 |
| 10 | 56,2e | 2258 |
| 11 | 54.82 | 2274 |
| 12 | 54.03 | 2325 |
| 13 | 53.33 | 2377 |
| - $212-$ | | |

TABIE E-6 (Continued


```
TABLE E-6 (ContInued)
```

| 2 | 273.69 | 2376 |
| :---: | :---: | :---: |
| 3 | 26t. 20 | 2397 |
| 4 | 263.95 | 24 60 |
| 5 | 262.5: | 2534 |
| 6 | 262.60 | 2545 |
| 7 | 93.99 | 2772 |
| 8 | 90.78 | 27 E0 |
| 9 | 90.69 | 28®1 |
| 10 | 89.25 | 2897 |
| 11 | ع8.45 | 295\% |
| 12 | 87.76 | 3000 |
| 13 | 87.50 | 3046 |
| 14 | 87.39 | 3114 |
| 15 | 75.04 | 3145 |
| 16 | 69.16 | 3205 |
| 17 | 66.11 | 3430 |
| 18 | 63.44 | 36 ct |
| 19 | 62.45 | 2911 |
| 20 | 62.03 | 40 es |
| 21 | 53.48 | 4106 |
| 22 | 49. 11 | 4137 |
| 23 | 42.96 | 4201 |
| 24 | 42.33 | 42¢4 |
| 28 | 35.77 | 44E5 |
| 26 | 37.16 | 4555 |
| 27 | 3E.97 | 4755 |
| 28 | 35.93 | 4940 |
| 29 | 35.61 | $50 \leq 1$ |
| 30 | 3E.49 | 5325 |
| 31 | 19.03 | 53E |

TABLE E-6 (Continued)

| 32 | 11.19 | 5420 |
| :--- | :--- | :--- |
| 33 | 7.12 | 5641 |
| 34 | 3.56 | 5837 |
| 35 | 2.24 | 5025 |
| 36 | 1.68 | $625 E$ |
| 8 | 0 | |
| 9 | 2 | |
| EQUIVALENT EFANCH LIST FCF A PAFALLEL NERGE | | |

TABLE E-6 (Continued)

7
0.

5
1.4

7
ε

EQUIVALENT ERANCH LIST FCR A SLE:AL NEFGE
ITEN SPSO SPCEST

1
572.35
405.84

378
378
353.40

475
E12.37
$5 \varepsilon 0$
305.97

601
292.12

682
291.76

6EE
286.06

742

222
8SE
1007
11
12
13
14
15
16

17

18

10

2
1154
1235
12є6
1385
1353
1564
1631
1.2 e

教
equivaleat gfanch list fef a fafallel nerge

ITEM
PSO
PCCST

TABIE E-6 (Continued)

| 1 | E72.35 | $26 \leq 3$ |
| :---: | :---: | :---: |
| 2 | 405.84 | 2653 |
| 3 | 353.40 | 27E4 |
| 4 | 312.37 | |
| 5 | 308.29 | 2855 |
| 6 | 305.97 | 2876 |
| 7 | 292.13 | 2857 |
| 8 | 291.76 | 2960 |
| 9 | 286.0E | $30: 2$ |
| 10 | 285.17 | 3087 |
| 11 | 283.25 | 3171 |
| 12 | 283.20 | 3282 |
| 13 | 282.47 | 3409 |
| 14 | 273.Es | 3510 |
| 15 | 26E. 20 | 3531 |
| 16 | 263.95 | 3594 |
| 17 | 262.91 | 36te |
| 18 | 262.60 | 3775 |
| 19 | 93.99 | 3906 |
| 20 | 90.78 | 3914 |
| 21 | 90.69 | 4015 |
| 22 | 89.25 | 40 ± 1 |
| 23 | 88.4E | 4086 |
| 24 | 87.76 | 4134 |
| 25 | 87.50 | 4180 |
| 26 | $87_{0}^{\circ} 39$ | 4248 |
| 27 | 75.04 | 4275 |
| 28 | 70.08 | 4380 |
| 29 | Es. 16 | 4444 |
| 30 | 66.11 | $4 E E 5$ |
| | - 217 | |

TABLE E-6 (Continued)

TABIE E-6 (Continued)

gQuIvalent branch list fof a sefial mefee

TABLE E-6 (Continued)

| 27 | 115.82 | 5003 |
| :---: | :---: | :---: |
| 28 | 114.91 | $50 ¢ 7$ |
| 29 | 111.et | 52e8 |
| 30 | 109.18 | 54 EA |
| 31 | iv̄.is | 56tc |
| 32 | 107.77 | 5543 |
| 33 | 99.22 | 5964 |
| 34 | S4. 25 | 5¢¢5 |
| 35 | 88.70 | 60¢5 |
| 36 | 86.07 | 62cic |
| 37 | 8E.E1 | 6343 |
| 38 | 82.91 | 6417 |
| 39 | 82.71 | 6615 |
| 40 | 81.te | 6758 |
| 42 | 81.36 | 6905 |
| 42 | 81.24 | 7163 |
| 43 | 69.81 | 7204 |
| 44 | 64.78 | 7235 |
| 45 | 56.93 | 725s |
| 46 | 56.03 | 7362 |
| 47 | 52.87 | 7583 |
| 48 | 49.E5 | 7EE7 |
| 45 | 49.30 | 785 |
| 50 | 47.95 | $80 \geq 8$ |
| 51 | 47.73 | 8145 |
| 52 | 47.42 | 8423 |
| 53 | 25.55 | 8454 |
| 54 | 15.13 | 8518 |
| 55 | 9.73 | 8735 |
| 56 | 4.95 | 8935 |
| | - 22 | |

TABLE E-6 (Continued)


```
TABLE E-6 (Continued)
```

| ITEM | SPSQ | SFCCST |
| :---: | :---: | :---: |
| 1 | 518.79 | 1217 |
| 2 | 240.03 | 1こ1¢ |
| 3 | 171.01 | 1335 |
| 4 | 58.78 | 1440 |
| 5 | 34.47 | $14 \in 1$ |
| ϵ | 27.19 | 1524 |
| 7 | 23.82 | $15 ¢ ¢$ |
| 8 | 22.e1 | 1705 |
| G | 22.43 | 1836 |
| 15 | 2 | |

equivalent efanch list fer a fafallel nerge

| ITEM | Pso | PCCst |
| :---: | :---: | :---: |
| | - | |
| 1 | 618.14 | 4453 |
| 2 | 51.8 .79 | 4493 |
| 3 | 451.5e | 445 |
| 4 | 399.15 | 4594 |
| 5 | 354.04 | 4655 |
| 6 | 351.71 | 4716 |
| 7 | 337.87 | 4737 |
| 8 | 337.50 | 4000 |
| 9 | 331.E1 | 4EES |
| 10 | 330.92 | 4937 |
| 18 | 328.99 | 5011 |
| 12 | 328.94 | 5128 |
| 13 | 32 e .22 | 5245 |

TABLE E-6 (Continued)

| 14 | 319.44 | 53£0 |
| :---: | :---: | :---: |
| 15 | 311.54 | ¢371 |
| 16 | 309.70 | 5434 |
| 17 | 308.66 | 5508 |
| 18 | 309.35 | 5615 |
| 19 | 240.03 | $57=0$ |
| 20 | 171.01 | ¢741 |
| 21 | 139.74 | 586e |
| 22 | 136.52 | 5876 |
| 23 | 136.43 | 5577 |
| 24 | 134.99 | 5953 |
| 25 | 134.20 | 604ε |
| 26 | 132.50 | $60 ¢ 8$ |
| 27 | 133.25 | 6142 |
| 28 | 133.14 | 6216 |
| 25 | 120.75 | 6241 |
| 30 | 115.82 | 634: |
| 31 | 114.51 | 6408 |
| 32 | 111.8t | 6627 |
| 33 | 109.38 | 682 こ |
| 34 | 108.19 | 7008 |
| 35 | 107.77 | 7222 |
| 36 | 99.22 | 7362 |
| 37 | 94.85 | 7334 |
| 38 | 88.70 | 739E |
| 39 | 88.07 | 7461 |
| 40 | 85.51 | 7682 |
| 41 | 82.91 | 7756 |
| 42 | 82.71 | 7952 |
| 43 | 81.68 | 8127 |

TABLE E-6 (Continued)

TABLE E-6 (Continued)

| 1 | 507.25 | 5116 |
| :---: | :---: | :---: |
| 2 | 154.81 | £217 |
| 3 | 409.71 | 5318 |
| 4 | 407.38 | 53: 5 |
| 5 | 393.E4 | 5360 |
| 6 | 393.17 | 54E3 |
| 7 | 387.47 | Satc |
| e | 326.58 | 5560 |
| 9 | 384.66 | $56 ミ 4$ |
| 10 | 384.61 | 5745 |
| 11 | 383.88 | 5872 |
| 12 | 375.10 | 557 |
| 13 | $\geq \in 7.61$ | 59 ¢̧4 |
| 14 | 365.36 | 6057 |
| 15 | 364.32 | E1:1 |
| 16 | 364.01 | 6242 |
| 17 | 295.69 | 6343 |
| 18 | 226.67 | 6364 |
| 15 | 195.40 | 6491 |
| 20 | 192.19 | 645s |
| 21 | 192.10 | 6600 |
| 22 | 190.66 | 6616 |
| 23 | 189.27 | 6671 |
| 24 | 189.17 | 6715 |
| 25 | 188.91 | 67E |
| 26 | 128.80 | 6823 |
| 27 | 176.45 | 6864 |
| 20 | 17:45 | 696\% |
| 29 | 170.57 | 7025 |
| 30 | $\begin{aligned} & 167.52 \\ & -22! \end{aligned}$ | 7250 |

```
TABLE E-6 (Continued)
```

| 31 | 164.85 | 7446 |
| :---: | :---: | :---: |
| 32 | | 76:1 |
| 33 | 163.44 | 790E |
| 34 | 154.29 | 79:t |
| 35 | 150.52 | 7957 |
| 36 | 144.37 | 8021 |
| 37 | 143.74 | $80 \leqslant 4$ |
| 38 | 141.18 | 8305 |
| 39 | 138.57 | 8375 |
| 40 | 138.3E | e57E |
| 41 | 137.34 | 8760 |
| 42 | 137.03 | 8871 |
| 43 | 136.90 | 9145 |
| 44 | 125.48 | 9166 |
| 45 | 120.44 | 9157 |
| 46 | 114.45 | 925E |
| 47 | 112.t0 | 92E |
| 48 | 111.70 | 9425 |
| 49 | 108. 53 | 964t |
| 50 | 105.31 | 9720 |
| 51 | 104.97 | 9916 |
| 52 | 203.65 | 10101 |
| 53 | 103.40 | 10212 |
| 54 | 103.09 | 104EE |
| 55 | 90.14 | 10507 |
| 56 | 82.26 | 10578 |
| 57 | 81.22 | 10601 |
| 58 | 79.48 | 10675 |
| 59 | 78.47 | 107EE |
| 60 | 78.10 | 10913 |
| | - 2 | |

```
TABLE E-6 (Continued)
```


TABIE E-6 (Continued

5
0.1

7
0.1

16
17

5
0.1

7
0.1

16
17

EQUIVALEAT EFANCH LIST FOR A SERIAL MEfGE

| 1 TEN | Spsc | SPCCST |
| :---: | :---: | :---: |
| 1 | 342.66 | 312 |
| 2 | 32S.e.1 | 312 |
| 3 | 324.24 | 413 |
| 4 | 320.25 | 434 |
| 5 | 320.09 | 535 |
| ϵ | 315.06 | 5s8 |
| 7 | 318.85 | 615 |
| 8 | 318.51 | $65:$ |
| s | 3.18 .48 | 756 |
| 10 | 318.34 | a¢ 7 |
| 11 | 218.31 | 941 |
| 12 | 318.20 | 10te |
| 13 | 72.45 | 11:7 |
| 14 | 26.50 | 1127 |
| 15 | 10.94 | 1157 |
| 16 | 3.73 | 1153 |
| 17 | 1.57 | 124E |
| 18 | 0.77 | 1307 |

19

1

EQUIVALENT BRANCH LIST FOR A SERIAL wEFGE

TABLE E-6 (Continued

| !TEM | spso | SPCCst |
| :---: | :---: | :---: |
| 1 | 592.13 | 377 |
| 2 | 575.28 | 377 |
| 3 | E73.72 | 478 |
| 4 | 569.73 | 459 |
| 5 | 565.57 | ECC |
| 6 | 56e.53 | $\epsilon \in \mathcal{Z}$ |
| 7 | 558.33 | $6 E 4$ |
| 8 | E67.5E | 758 |
| s | 567.96 | 821 |
| 10 | 567.82 | |
| 11 | 567.7s | 1006 |
| 12 | 567.75 | 1135 |
| 13 | 327.92 | 11E2 |
| 14 | 275.97 | 1192 |
| 15 | . 250.41 | 1225 |
| 16 | 253.20 | 125E |
| 17 | 251.04 | 1311 |
| 18 | 250.24 | 1375 |
| 19 | 62.23 | 1424 |
| 20 | 21.50 | 1435 |
| 21 | 9.30 | 1468 |
| 22 | 3.65 | 1507 |
| 23 | 1.95 | \$564 |
| 24 | 1.33 | 1636 |
| 20 | 0 | |
| 21 | 2 | |

equityalent branch list fef a fafallel pfige

TABLE E-6 (Continued)

TABLE E-6 (Conclnued)

TABLE E-6 (Continued)

| 22 | 0 | |
| :---: | :---: | :---: |
| 23 | 1 | |
| equivalent | EFANCH LISt for | a serial mefge |
| | | - . |
| ITEM | SFSG | SPCEST |
| 1 | 1095.93 | 809? |
| 2 | 483.95 | 10311 |
| 3 | 258.01 | 12845 |
| 4 | 161.43 | 13475 |
| 5 | 115.41 | 14746 |
| ϵ | 91.57 | 19181 |
| 7 | 70.64 | 230 ES |
| 8 | 37.68 | 23200 |
| 5 | 25.51 | 23327 |
| 10 | 20.31 | 2335 |
| - 11 | 17.83 | 23422 |
| 12 | 16.55 | 23642 |
| 13 | 15.42 | 23835 |
| 24 | 0 | - . |
| 25 | 1 | |
| Equiyalent | gRANCH LIST FCR | A SErial merge |
| ITEN | SPSO | SPCCST |
| 1 | 4570.27 | |
| 2 | $\begin{aligned} 4501 \cdot \varepsilon 2 & \\ & =232 \end{aligned}$ | - $27 \in 1$ |

TABLE E-6 (Continued)

| 3 | 4560.00 | 2782 |
| :---: | :---: | :---: |
| 4 | 4555.45 | 2845 |
| 5 | 4559.20 | 2915 |
| 6 | 4559.12 | $30 \leq 0$ |
| 7 | 4559.05 | 3157 |
| 8 | 1123.14 | 5162 |
| 9 | 378.88 | 55Et |
| 10 | 155.93 | 6EE |
| 11 | 52.62 | $83 \geq 1$ |
| 12 | 21.67 | 10545 |
| 13 | 10.24 | 13083 |
| 26 | 2 | |

equivalent efanch list feg a pafallel merge

TABLE E-6 (Continued)

| | 14 | 155:93 | | 20232 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 15 | 115.41 | | 21555 | |
| | 16 | 91.57 | | 26034 | |
| | !? | 70.64 | | 29942 | |
| | 18 | 52.62 | | 31480 | |
| | 15 | 37.6E | | 31531 | |
| | 20 | 25.51 | | 31658 | |
| | 21 | 21.67 | | 33876 | |
| | 22 | 20.31 | | 33907 | |
| | 23 | 17.83 | - | 33971 | |
| | 24 | | | 34152 | |
| | 25 | 15.42 | | 34328 | |
| 13 | 26 | 12 | 25 | | |
| J | PSO 1 | K | PSO2 | IRLES2 | JCLESs |
| 13 | 15.4 | 12 | 21.7 | 26 | 25 |
| 13 | 15.4 | 12 | 21.7 | 26 | 25 |

EQUIVALENT BRANCH LIST FOR A SERIAL MERGE

| ITEN | SPSG | SPCEST |
| :---: | :---: | :---: |
| 1 | 4652.29 | 11138 |
| 2 | 4643.24 | 11295 |
| 3 | 4642.01 | 11260 |
| 4 | 4541.46 | 11323 |
| 5 | $4642.2 i$ | 11357 |
| 6 | 4641.13 | 11508 |
| 7 | 4641.10 | 11635 |

TABLE E-6 (Continued)

| 2 | 4643.84 | 163¢5 |
| :---: | :---: | :---: |
| 3 | 4642.01 | 1637E |
| 4 | 4641.46 | 16495 |
| 5 | 4çimêi | 165:3 |
| 6 | 4641.13 | 16624 |
| 7 | 4641.10 | 16751 |
| 8 | 1177.94 | 18757 |
| 9 | 565.97 | 20975 |
| 10 | 507.25 | 20575 |
| 11 | 460.89 | 21358 |
| 12 | 454.81 | 21455 |
| 13 | 409.71 | 21600 |
| 14 | 407.38 | 216:1 |
| 15 | 393.54 | 21642 |
| 16 | 353.17 | 21705 |
| 17 | 387.47 | 21768 |
| 18 | 386.58 | 2184 |
| 19 | 384.te | 21916 |
| 20 | 384.61 | 22027 |
| 21 | 383.82 | 22154 |
| 22 | 375.10 | 2225 |
| 23 | 367.61 | 22276 |
| 24 | 365.36 | 22335 |
| 25 | 364.32 | 22412 |
| 26 | 364.08 | 22524 |
| 27 | 340.02 | 2505ε |
| 28 | 255.69 | 25159 |
| 29 | 243.44 | 2575: |
| 30 | 237.94 | 27060 |
| 31 | 226.67 | 27081 |
| | - 236 | |

TABLE E-6 (Continued)

| 32 | 197.42 | $2834 E$ |
| :---: | :---: | :---: |
| 33 | 195.40 | 28475 |
| 34 | 192.19 | 284e3 |
| 35 | 192.10 | 285¢4 |
| 36 | 190. Et | 28600 |
| 37 | 189.87 | 2865 |
| 38 | 189.17 | 28703 |
| 39 | 1ec. 91 | 28745 |
| 40 | 188.80 | 28817 |
| 41 | 176.45 | 28.4.8 |
| 42 | 173.52 | 33283 |
| 43 | 171.49 | 33364 |
| 44 | 170.57 | 3344% |
| 45 | 167.52 | 3366s |
| 46 | 164.25 | 33E6 |
| 47 | 183.26 | 34050 |
| 48 | 163.44 | 34324 |
| 49 | 154.85 | 34345 |
| 50 | 152.65 | 382E? |
| 51 | 150.52 | 382E4 |
| 52 | 144. 37 | 38348 |
| 53. | . 143.74 | 38411 |
| 54 | 141.18 | 38632 |
| ¢¢ | 138.57 | 38706 |
| 56 | 138.38 | 38902 |
| 57 | 137.34 | ב90E7 |
| 52 | 137.03 | 3919E |
| 59 | 135:50 | 304? |
| 60 | 134.63 | 40950 |
| 61 | 125.48 | 40971 |
| | - 23 | |

TABLE E-6 (Continued)

| 62 | 120.44 | 91002 |
| :---: | :---: | :---: |
| 63 | 119.70 | 41112 |
| 64 | 114.45 | 41214 |
| 65 | 112. 0 | 41278 |
| 66 | 111.30 | 41341 |
| 67 | 108.53 | 41562 |
| 68 | 107.53 | 416Es |
| 69 | 105.3: | 41763 |
| 70 | 104.97 | 41955 |
| 71 | 103. 6 E | 4417% |
| 72 | 103.65 | 443EE |
| 73 | 103.40 | 44473 |
| 74 | 103.09 | 44747 |
| 75 | 102.33 | 44778 |
| 76 | 99,85 | 44842 |
| 77 | . 98.56 | 4506ミ |
| 78 | 97.44 | 4525s |
| 79 | 90.14 | 45220 |
| 80 | 82.86 | 45343 |
| 81 | 81.22 | 45374 |
| 82 | 79.48 | 45498 |
| 83 | 78.47 | 45559 |
| 84 | 78.14 | 45686 |
| 85 | 51.48 | 45717 |
| 86 | 45. 17 | 45828 |
| 87 | 38.80 | 45892 |
| 88 | 32.23 | 46113 |
| 89 | 31.35 | 46240 |
| 90 | 26.47 | $464: 3$ |
| 91 | 24.34 | $4 \in 6 \leq 1$ |
| | -238 | |

TABLE E-6 (Continued)

| | 92 | 23.74 | | 46652 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 93 | 23.43 | | 46926 | |
| 66 | 27 | 27 | 26 | | |
| J | PSQ1 | K | PSO2 | IRLES2 | JCLES1 |
| 66 | 23.4 | 27 | 23.7 | 27 | 26 |
| 66 | 23.4 | 27 | 23.7 | 27 | 26 |

gquivalent bafanch list for a ser: il mefee

2ABLE E-6. (Continued)

| 19 | 416.28 | 223E4 |
| :---: | :---: | :---: |
| 20 | 415.55 | 22481 |
| 21 | 406.73 | 225E: |
| 22 | E99.2E | 22603 |
| 23 | 397.04 | 22666 |
| 24 | 396.00 | 22740 |
| 25 | 395.6E | 22851 |
| 26 | 371.70 | 25385 |
| 27 | 327.36 | 254Et |
| 28 | 275.12 | 26120 |
| 29 | 269.62 | 273¢7 |
| 30 | 25e. 34 | 27408 |
| 31 | 229.10 | 28675 |
| 32 | 227.08 | 28802 |
| 33 | 223. E6 | 28810 |
| 34 | 223.77 | 28911 |
| 35 | 222.33 | 28927 |
| 36 | 221.54 | 28982 |
| 37 | 220.84 | 290こ0 |
| 38 | 220.51 | ESO $7 t$ |
| 39 | 220.47 | 29144 |
| 40 | 20e.13 | 29175 |
| 41 | 205.2E | 33610 |
| 42 | 203.16 | 33711 |
| 43 | 202.24 | 3378 |
| 44 | 199.20 | 339¢6 |
| 45 | 196.52 | 34192 |
| 46 | 195.53 | 34377 |
| 47 | 195.11 | 34651 |
| 48 | 186.56 | 34672 |
| | - 240 | |

TABLE E-6 (Continued)

| 49 | 184.33 | 385E0 |
| :---: | :---: | :---: |
| 50 | 182.19 | 38611 |
| 51 | 176.04 | 38675 |
| 52 | 17¢.41 | 3e73E |
| ¢3 | 172.85 | 38955 |
| 54 | 170.25 | 390: |
| 55 | 170.0 | 39225 |
| 56 | 169.02 | 39414 |
| 57 | 168.70 | 355Es |
| 58 | 162.58 | 39755 |
| 59 | 166.30 | 41277 |
| 60 | 257.15 | 41258 |
| 61 | 152.11 | 41325 |
| 62 | 151.37 | 41440 |
| 63 | 14E. 12 | 41541 |
| 64 | 244.27 | 4160: |
| 65 | 143.37 | 416te |
| 66 | 140.21 | 4188¢ |
| 67 | 139.20 | 42016 |
| 68 | 326.ss | 42056 |
| 69 | 136.64 | 42226 |
| 70 | 135.35 | 44504 |
| 71 | 13E. 32 | 446 Es |
| 72 | 135.07 | 44800 |
| 73 | 134.76 | 45074 |
| 74 | 134.00 | 4516 |
| 75 | 131.52 | 45185 |
| 76 | 130.24 | 45350 |
| 77 | 129.11 | 45598 |
| 78 | 121.91 -2 | 45607 |

TABLE E-6 (Continued)

| 79 | 114.53 | 45670 |
| :---: | :---: | :---: |
| 80. | 112.es | 45701 |
| 81 | 111.16 | 45775 |
| 62 | 110.15 | 4EqEt |
| 83 | 109.77 | 46013 |
| 84 | 83.16 | 46044 |
| 85 | 80.85 | 4615 |
| 86 | 70.48 | 46215 |
| 87 | 63.91 | 46446 |
| 88 | 63.03 | 46567 |
| 89 | 58.14 | 467E: |
| 90 | 56.01 | 46948 |
| 51 | 55.41 | 46975 |
| 92 | 55.10 | 472 E3 |
| 93 | 41.27 | 472 EE |
| 94 | 34.11 | 4735 |
| 95 | 27.22 | 47453 |
| 96 | 25.50 | 475\%¢ |
| 97 | 24.51 | 4775 |
| 98 | 24.04 | 47215 |

equivalent branch list for a parallel merge

| ITEN | FSG | PCCST |
| :---: | :---: | :---: |
| 1 | 4683.96 | 17955 |
| 2 | 4675.51 | 18040 |
| 3 | 4873.66 | 18061 |
| 4 | 4673.19 | 18164 |
| 5 | 4672.89 | 1815ε |
| | -242 | |

TABLE E-6 (Continued)

| ε | 4672.80 | 18309 |
| :---: | :---: | :---: |
| 7 | 4672.77 | 184: 6 |
| 8 | 4570.27 | 18436 |
| 9 | 4561.82 | 18436 |
| 10 | 4560.00 | 12557 |
| 11 | 4559.45 | 1855E |
| 12 | 4559.20 | 186 5 |
| 13 | 4559.12 | 12722 |
| 14 | 4559.09 | 18743 |
| 15 | 8209.62 | 20745 |
| 16 | 1123.14 | 208E |
| 17 | 538.92 | 23041 |
| 18 | 492.57 | 23464 |
| 19 | 426.48 | 23565 |
| 20 | 441.38 | 2366ϵ |
| 21 | 439.05 | $236 E 7$ |
| 22 | 425.21 | 2370 E |
| 23 | 424.84 | 23771 |
| 24 | 419014 | 23 e 34 |
| 2E | 418.25 | 2390 ¢ |
| 26 | 416.33 | 239Ez |
| 27 | 416.28 | 24093 |
| 28 | 3:5:55 | 24220 |
| 29 | 406.78 | 24.321 |
| 30 | 399.28 | 24342 |
| 31 | 397.04 | 24405 |
| 32 | 396.00 | 24475 |
| 33 | 395.68 | 24550 |
| 34 | 378.عE | 24653 |
| 35 | 271.70 | 27187 |
| | | |

TABLE E-6 (Continued)

TABLE E-6 (Continued)

| 66 | 168.70 | 41327 |
| :---: | :---: | :---: |
| 67 | 16e.5e | 41601 |
| 68 | 166.30 | 43075 |
| 69 | 257.35 | 43100 |
| 70 | :55.83 | 4321i |
| 71 | 152.11 | 43242 |
| 72 | 151.27 | 43353 |
| 73 | 146.12 | $434 \leq 4$ |
| 74 | 144.67 | 43518 |
| 75 | 143.37 | 43581 |
| 76 | 140.21 | 43802 |
| 77 | 139.20 | 435.25 |
| 72 | 136.59 | 44003 |
| 79 | 136.64 | 44:5s |
| 80 | 135.3s | 46417 |
| 81 | 135.32 | 46602 |
| 82 | 135.07 | 46713 |
| 83 | 134.76 | 469E7 |
| 84 | 134.00 | 470:6 |
| 85 | 131.52 | 470E2 |
| 86 | 130.24 | 47303 |
| 87 | 129.11 | 4745s |
| 88 | 121.81 | 47520 |
| 89 | 114.53 | 47523 |
| 90 | 112.89 | 47614 |
| 91 | 111.16 | |
| 92 | 110.15 | 4775s |
| 93 | 109.77 | 47926 |
| 94 | . 83.16 | 479£7 |
| 95 | 8u.as | $480 \leq$ ¢ |
| | - 29 | |

TABLE E-6 (Concluded)

| | 96 | | 70.48 | | $481 こ ゙$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 97 | | 63.51 | | 48353 | |
| | 98 | | 63.03 | | $484 \varepsilon 0$ | |
| | 99 | | 58.14 | | 4EETE | |
| | 100 | | 56.01 | | 48861 | |
| | 101 | | 55.41 | | $4885{ }^{\circ}$ | |
| | 102 | | 55.10 | | $4516 E$ | |
| | 103 | | 52.62 | | 49240 | |
| | 104 | | 41.27 | | 49272 | |
| | 105 | | 34.11 | | 453 ¢ 2 | |
| | 106 | | 27.82 | | 49480 | |
| | 107 | | 25.50 | | 4957 \% | |
| - | 102 | | 24.51 | | 49710 | |
| | 109 | | 24.04 | | 49802 | |
| 11 | 28 | 98 | | 27 | | |
| J | PSQ 1 | K | | Psoz | IRLES2 | JCLES: |
| 11 | 52. ϵ | 98 | | 24.0 | 28 | 27 |
| 11 | S2. $\frac{1}{}$ | 98 | | 24.0 | - 28 | 27 |

[^0]```
CsJOB TIME=(0.Z5)
C
C ag* This is fgCGfanhe stsal. it fogmulateg tre tegminal equatigns of
c ithe system anc solyes the resllting system equaticns.
C
 integer c,o,co,cltset
 CCMMON G(20,21),01(20.1).XX(20),N,LLI
 DIMENSICA KUTSET(25,20),E(35),FLCN(10),00(15,20),C(15,20),CUTSET(2
 10,18),GK(30,15),DELTAH(30,1),HLCSS(30.1),DEAL(30.1),0L(30.15),EMAN
 20(100),A(i00)
 GEAD I:N:NE:ND,NG
 l FORMAT(415)
 NP=N-1
 MG=NP+1
 JG=AE-AC
 \muP=NF
 NC:=ND+1
 NP1=JG-\lambdaF
C
C ** read in cutsets ano complte entries cf matrix g
C
 DC g_ I=1,NF
 READ 100ミ,(KUTSET(I,J),J=1,MG)
 1003 FCFMAT(2X,11,4X,1314)
 93 continue
 SFLOH=O.
 OC 4:00 K7=1,NC
 READ S10,FLCM(K7)
 910 FCSNAT (FE.J)
 PRINT SIOG,FLC\(K7)
 910S FCFMAT (///EX,FE.3/)
 SFLCy=SFLCK+FLCW(K7)
 4:00 CONTINUE
 p&INT 91SO.SFLDY
 S190 FCEMAT (5X,///7H SFLCK=.F6.3///)
 00 92E 1=1,NP1
 READ 4321.(CUTSET(I,J).J=1,MP)
 4321 FCRMAT(1G14)
 92s centinue
 SGHA=0.
 PRINT 1S16
 1916 FCFMAT {EX,'NOCE':5X,ODENAND:.///J.
 DC GS I=1.NC
 REAO 19gl.oNANC(I)
 1991 FCSMAT(5X.F5.3)
 A(1)=OMARO(1)
 SUYA=SUMA+DKAND(1)
 9s centinte
 DO 5SO I =1,NO
 E(13)=A(13)/SUMA
 s50 ccatiaue
 E(1)=0.0
 E(2)=0.0
 E(a)=0.0
 FR:NT :3?G
 1376 FCFMAT (=1',/////10X,0CUTPUR DEHANO FACTORS',//////)
 PRINT 3OCI.(I.E(1).I=1,NO)
```



```
 DC G1! 1=ND1.JG
 READ INOI,C.CIA,L
```


## APPENDIX F (Continued)

51

```
1001 FDFNAT\IE,EX,F4.2.5X.161
 91\ E(I)=0.279*C*DIA**2.E3/L**0.54
 OC 97 i=t.NP
 READ 1007.{OD(I, J!.J={,NP)
 1007 FOFMAT&2X.IL,4X,12I41
 97 CCNTINUE
 PRINT 5000.(I,E(I),I=NDI,JG)
```



```
C
C EUILC DIACONAL ELEMENT OF MATRIX G FRCM ARRAYE
c
 DO 40 I=I.NP
 DO 20 Lz! |NP
 20G(I.L)=0.
 NI=KLTSET(I,L)+1
 OC 23 J=2,N1
 M=KUTSET(I.J)
 MM=-M
 FF(M)21.592:22
 2& Gif,I)=G(I,I)+E(MM)
 GC.TC 23
 22G(I,I)=G(I,I)+E(N)
 23 CONT INUE
C
C *** BUILD CFF-DIMGCNAL ELENENTS CF MATRIX. UPPER CIAGCNAL ONLY.
C
 JJ=1+1
 00 41 J=JJ,NP
 IF(JJ.GT.NPJGOTO40
 N2=KLTSET(J.1)+1
 KSk=0
 OC 42 K=2.M1
 IF(JJ.GT-NP) GC TC 40
 CO 43 L=2.N2
 {F(JJ.GT:AP) GC TO 40
 IF(KLTSET(I *K)-KUTSET(J.L);30.32.30
 30 if(KUTSET(I,K)+KUTSET(J.L))43.32.43
 32 KFRCDI=KLTSET&&,K)*KUTSET(J,L)
 IF(KSW) \3.34, 3コ
 33 IF(KFFCDI*KFFCC)992,992.35
 34 KSM=1
 KFFCC=KPFCC1
 35 M=KUTSET(I,K)
 IF(M)36,37.37
 36 M=-M
 37 &F(KPFOD) {e,35,39
 3eG(I,J)=G(I,J)-E(M)
 GO TC 43
 3¢ G(Ig\\=GEIOd&+E\N:
 4 3 \text { CONTINUE}
 4 2 ~ C C A I I N U E ~
 41 CONTINUE
 40 ceATINUE
C
C *** FILL IN LOmER TRIANGLE OF MA
C
 DC 44 I=1,AF
 NI=I+I
 IF(NI,GT-NP) NI=NP
 0044 J=A1, \lambda.P
```

```
 44G(d,If=-C(I,J)
 PRINT 13C7
 1367 FO&MAT ("1".//////10X."OUTPUT G_MATRIX*.//////8
 PRINT 2001,({G(I, j).J=1,9),I=1,9)
 2001 FORMAT (///1X.9(GF9.4/1//|X))
 OC }1980\quadl=2,A
 G(I.I)=0.0
 1980 CCNTINUE
 i=:
 1985 RSUM=0.0
 I=l+1
 IF (i.GTnNP: GC TC !960
 RESSI=1-1
 DC 1S58 j=1,ILESS!
 RSLM=G(I,J)+RSUM
 G(I,I)=RSUM
 G(I; d)=0.0
 195% CONTINLE
 GC TC 1925
 1960 PRINT 2001,((G(L.d) 0.\2%09).I=1.5)
C
C*** SCLVE EGLATICNS FCR ESTIMATED DFAW-OFFS AT NOCAL PGINTSO
C
 N=NP
 NG=NP+1
 0070 1=1.NP
 DC 70 J=1,MP
 D(E, J)=0
 70 CONTINUE
 DO 4602 i=1.NP
 DO 4602 J=i, 3
 D\I.J)=[C(I,J)
 4602 CENTINLE
 DO 2E [=1.NP
 G(I.NG)=0.0
 KE=O(ID2)
 IF(KG.EQ.O) CO TO 5&OE
 SS92 NS=0{1,1)+1
 DO 91E J=3.NE
 M|=D(I.J)
 M%1=-#&
 IF(BI.GT.O) CO TO S14
 SI3 G(I,NG)=C(I,NG)+(-I.O#FLCW(HNI-JGI)
 GO T0 512
 9I4 G(I,NC)=((I, NG)+(1.0&FLCW(N:I-JG))
 s12 CCNTINUE
 5206 CCHTINUE
 28 CCNTINUE
 OO 2EOOG I=L,NP
 0E{1.1)=CMAND(I)
 O:(1.1)=-10.164
 2500 CONTINUE
 N=NP
 CALL GAUSS
 DO 9500 l=1.NP
 9500 CCNTINUE
 PRINT 3ITE
 3176 FORMAT ('I'.//////10X, 'QUIPLT BRANCH FFESSURES*.//////
 PRINT 1776
 1776 FCRMAT (IEX.'CELTAH':Sx.0HEAD LCSS(FT|'.///)
```

```
APPENDIX F (Continued)
```

$002600 \quad i Y=1, N P$
DELTAH(IY, 1$)=X X(I Y)$
DELTAK (IY:I)=AES(CELTAH(IY,1i)
HLCSS(TY.1)=0ELTAM(IY,1)**1.85

1876 FCFMAT (5X,12,F13.3.10X.F8.3/)
260O CCNTINUE
CO I: $1 \mathrm{KF=I}$.NP
DO 111 1F=1.JG
$O L(I P, x P)=0$.
111 Centinue
DO 4EOZ $I=1$, NPI
OC $4 \in 03 \mathrm{~J}=1 . \mathrm{NP}$
OL(It J) $=\operatorname{CUTSET}(1$, d)
4EOI CONTINLE
RUN二O.
CCRS1=1.0000
$.8606 \mathrm{SLM}=0$.
$A F=0$.
OC 60 I $=1, A D$
If (E(I).EQ.O) GO TO G4S
DELTAF(1,1)=CNANC(1)/E(1)
$G(1, N G)=C E L T A H(I, 1) \neq E(I) \neq C C N \leq 1$
IF(G(I.NG))98.949.98
98 AP=AF+1.
949 CONTINUE
G(1. AC) $=0.0$
SLM=SLM+G(I,NG)
PRINT 2000.I.G(I.NG)
2000 FCFMAT(10X.'CEMANC AT NCOE © [2.' LS *.FIO.3/1
60 CCNTINUE
IF(SUH.LT.O.00) SUN=-SUM
FOIFF=SLN-SFLOM
CO $58 I=1 . N P I$
' 5 LHB=0.
DO ES J=1: AF

$K=I+A P$
HLCSS $(K, 1)=A B S(S L M B)$
DELTAF (K, 1)=HLCSS(K,1)**0.54
5e CCNTINVE
00 606 $\mathrm{I}=1$.NP:
$K=I+A F$
GK(K,I) $=0 E L \operatorname{TAH}(K, 1)$ \#E(K)
606 CCNTINUE
PRINT 1414

PRINT 6700

$0068 \quad I=1.10$
PRINT 68C0, I,G(I,NG),I,HLCSS(I,1)
6800 FOKMAT $(5 X, 2 H Y(, I \Omega, I X, 2 H)=, F 10.3,15 X, 2 H X(, 1$. $1 \times, 2 H)=, F 16.1 / 1$
68 CCNTINUE
DO GOE I= I, API
$K=【+N P$
PRINT $6800, K, G K(K, 1), K, H L C S S(K, 1)$
608 CCNTINUE
$c$
C EFFGR RCLTIAES

## APPENDIX E (Continued)



```
 1/S ZERO.1//)
9002 FCFMATILEM EFRCR CA CAFCS,13.3IH OF CUTSET. SIGNS DO NOT AGREE./1/
 DO EOO I=1,NO
 If (E(1).EG.O) GO TO EOO
 G(I,NG:=CELTAH(I,I)/CCCNSIFE(ID)
 600 CONTINUE
 RLA=FUN+3=
 PRINT T70S,CGNSI,RUN
7705 FCRMAT (EX,GHCONS!=,FG.7,EX,1GHTHE AECVE IS RLK,F4.0)
 ERACR=0.0005
 1F (FC&FF-ERRCR) SSS.S51.SS1
 991 CCAS!=SFLOW/SUN
 FRINT SOOL,I.J
 IF (RUN.CT.1.0) GO TO 2010
 GC TC }860
 s9s CONS1=SFLOw/SUM
 IF (RUN.CT.1.0) GO TO 20,0
 GO TG }860
 992 PRINT 9002,1,J
 2010 CALL EXIT
 STCP
 ENE
c
c *** galssian elinimatica
C
 slercltine gauss
 CCNMON A(20,21),8(20), X(20),N.ILL
 ILL=0
c
C *** The CASE N Eguals ONE
c
 IF(N-1)4.1,4
 1 JF(A(1,1))E.E.2
 2 X(1)=E(1)/A(1,1)
 RETURN
 3 JLL=1
 RETLRN
c
C ### the gemegal case, finding the pivot
C
 4 NLESS!=N"1
 DC :3 f=1,NLESS!
 RIG=AES(A(1,I))
 L=I
 LFLUS!=1+1
 DO 6 J=IPLUSI,N
 IF(AES(A(J,I))-BIG)\sigma.G.5
 5 BIG=AES(A(J.I))
 L=J
 6 centinue
c
C *** INTERCHANGE IF NECESSARY
C
 IF(BIG)E.7.e
 7 ILL=1
 GEIURN
 & {f(L-1)S,1],g
 9 OC 10 J=1.N
```

262
263 264 265
$c$
C \#\#* RECUCE CCEFFICIENTS TC ZEFGC
$C$
11 DC $13 \mathrm{~J}=1$ PLUS $1, \mathrm{~N}$
QLCT=A(J,I)/A(I,I)
DO $12 \mathrm{~K}=[\mathrm{PLUS} 1, \mathrm{~N}$
$12 A(J, K)=A(J, K)-$ GUCT $* A(I, K)$
13 B(J)=日(J)-GLCT*E(I)
$c$
C *** THE BACK SUBSIITLTICN step
C
IF(A(N.N))15.14.15
14 ILL=1 fetufa
$15 X(N)=E(N) / A(N, A)$
$1=\mathrm{N}-1$
I FLUS $1=1+1$
$1 \in \operatorname{SUM}=0$.
IPLUS $=1+1$
DC $17 \mathrm{~J}=\{F L C \subseteq 1, N$
$17 S L M=£(M+A(1 ; J) * X(J)$ X(I)=(E(I)-SUN)/A\{I,I) $1=1-1$
IF(1)18,18,1E
18 RETUFA
END
\$EXEC

TABLE F-1
OLIPET OF PROGRAM SYSAL


## TABIE F-1 (Continued)

DELTAF
heal loss (ft)

1
$-0.000$
3.374

1. $\varepsilon \in 4$

2,222
2.712
4.225
3.786
4.225
4. $\boldsymbol{E E G}$
demand at acde 1 IS
0.000

DEMAND AT NCDE 2 IS $C .000$
DEMANO AT ACCE $3: 151.152$
DEFAAC AT ACDE A IS 0.000
DENAND AT NODE 5 IS 1.lEz
denand at ncoe e is 1.440
cenanc at ncoe 7 is 1.440
GENAND AT NCDE $815 \quad 1.440$
DENAND AT AEDE G IS 3.540

LINK FLCOS《H.G.D.)

Y	$11=$	0.000
Y	$23=$	0.000
Y 1	3 )=	1.152
Y	$41=$	0.000
Ys	$53=$	1.152
76	$61=$	1.440
Y	$71=$	1.440
Y	$\varepsilon)=$	1.440
Y 1	9 )=	3.540
Y:	$101=$	4.952
Y 8	11 1=	2.755
Y 1	12 3=	5.222
Y 1	$12 \mathrm{~J}=$	2.175
Y 1	$141=$	1.603
Y 1	$153=$	2.179
Y 1	( \% $^{\prime}=$	1.803
Y 1	$171=$	3.041
$Y($	$12=$	1.603
Y 1	$18:=$	$1=7 \in 7$
Y(	2C) $=$	1.603
Y	21 1=	1.767

HEAD LCSS(FT)

| $x(1)=$ | 6.0 |
| :--- | :--- | :--- |
| $x(2)=$ | 5.5 |
| $x(3)=$ | 4.2 |
| $x(4)=$ | 6.4 |
| $x(5)=$ | 14.4 |

$x(7)=11.7$
$x(8)=14.4$
$x(s)=\quad 17.2$
$x(103=\quad 5.5$
$x(11)=\quad \pm .2$
$x(12)=4.4$
$x\{1 \Xi\}=\quad \in \cdot 3$
$x(14)=\quad 14.4$
$x\{15)=\quad 6 \cdot 3$
$x(16)=14.4$
$x(171=11.7$
$x(1 \varepsilon)=14.4$
$x(15)=17.2$
$x(201=14.4$
$x(21)=17.2$

## APPENDIX G

STORAGE RESIDEMCY ATD CPU TME FOR VARIOUS PROGRAYS RAX OS IBM COSPUEER YODEL $370 / 158$

ITEA	PROGRAM	IUSBER OF SODES	STORAGE RESIDESCY	CPU TTVE(SECS)
1.	SYSFM	10	34.38	5.36
2.	SYSEM	93	156.1R	28.91
3.	SYSAL	10	4.2 K	1.33
4.	OPTIMIZE	9	4.2 X	1.33
5.	OPTITIZE	9	5.4K	1.69**
6.	OPTMILE	9	6.4 K	$2.00 \div * *$
7.	OPTIMIZE	13	5.0x	1.59*
8.	OPTIMIZE	13	6.8 K	2.13*
9.	OPTIMIZE	13	8.7X	2.74***
10.	OPTMILE	20	6.7 K	2.11*
11.	OPTIMIZE	20	10.0 E	3.22 $\%$
12.	OPTMIIZE	20	14.32	
13.	OPTIMIZE	28	8.9X	2.81*
. 14.	OPTIMIZE	28	14.9K	$4.68 \div \%$
15.	OPTIMIZE	28	23.4k	$7.34 * * *$
* 3-Diameter selections.	3 - Diameter selections.			
** 5 - Diameter selections.				
*** 7 - Dianeter selections.				
Program OPTIMIZE refers to PROGRAM MERGEP and SUBROUTINE MERGES.				

APPENDIX H
DATA FOR HYPOTHETICAL NETWORK



[^0]:    CPI TIME $=.7 .34 \mathrm{secs}$

