
 PARALLEL IMPLEMENTATION OF A

FORECASTING ALGORITHM

 By

 SREENIVASA SIVA BHANODHAY NANUGONDA

 Bachelor of Technology in Electronics and

Communication Engineering

 Jawaharlal Nehru Technological University

 Hyderabad, Andhra Pradesh, India

 2009 - 2013

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2015

ii

 PARALLEL IMPLEMENTATION OF A

FORECASTING ALGORITHM

 Thesis Approved:

 Dr. Christopher John Crick

 Thesis Adviser

 Dr. Eric Chan-Tin

 Dr. Nohpill Park

iii

Name: SREENIVASA SIVA BHANODHAY NANUGONDA

Date of Degree: DECEMBER, 2015

Title of Study: PARALLEL IMPLEMENTATION OF A FORECASTING

ALGORITHM

Major Field: COMPUTER SCIENCE

Abstract: This thesis presents the implementation of a time series forecasting method in a

High-Performance Computing (HPC) environment. This time series forecasting method

integrates concordances and genetic programming (GP). The innovation in this work is

the parallelization of a serial program. This is implemented on the OSU Cowboy High-

Performance Computing Cluster (HPCC) using Message Passing Interface (MPI) based

MPJ Express library. The two components which are parallelized in this thesis are

concordance computation of a time series and developing an equation to predict the

values of a time series. This parallelization was achieved by distributing the workload of

the above-mentioned two components among the available processors for the algorithm

to use on HPCC. For being able to parallelize and execute this algorithm on an HPCC, all

the steps in the algorithm was executed without any manual intervention unlike in the

originally proposed method. To make this algorithm run as a batch the genetic

programming part of the algorithm was introduced with a stopping condition which also

decided the accuracy of the prediction. So the implementation in this thesis allows the

user to choose the accuracy of the predictor function by specifying the mean square error

(MSE) limit and using this limit the predictor function development using GP can be

stopped. The time taken by the model implemented in this thesis is inversely proportional

to the MSE specified by the user.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 Motivation ..1

 Fusion Model ...3

 Steps involved in fusion model ..4

 Problems in Fusion model ...5

 Thesis Objective...5

II. REVIEW OF LITERATURE..7

 Parallel Processing ...7

 Multiple programs one processor...7

 Multiple processors ..8

 Parallel processing with message passing systems ..8

 Machine Learning ..9

 Time series prediction ..10

 Genetic Algorithm (GA) ..11

 Genetic Programming (GP) ...12

 Algorithm of GP ..13

 Representation of Program in GP ..14

 Genetic operations ...14

 Parallel Genetic Programming ...17

 Parallel GP Models ..18

 Prediction using Parallel GP ..21

 Kendall Rank Correlation Coefficient or Kendall’s Tau (τ)22

 High Performance Computing Cluster (HPCC) ..23

 Message Passing Interface (MPI) ..25

 MPJ Express...26

 MPI Program Structure ..28

III. IMPLEMENTATION ..29

 Overview ..29

 Design of Implemented Model ..30

 Upgrades to the Fusion Model ...31

v

 Algorithm of Implemented Model ...32

 Finding the Predictor..32

 Developing the Forecasting Function ..33

 Functionality of each part in the system ...33

 Stopping condition for validating the Forecasting Function36

 Load Balancing ..38

Chapter Page

IV. EXPERIMENTATION RESULTS & CONCLUSION ..40

 4.1 Experimentation Results ..40

 4.2 Conclusion ...48

REFERENCES ..50

vi

LIST OF TABLES

Table Page

 1 5 days Prediction for S&P data from January 3rd 1950 to July 31st 201541

 2 15 days Prediction for S&P data from January 3rd 1950 to July 31st 201542

 3 10 days prediction for S&P data from January 3rd 1950 to June 3rd 199943

 4 5 days prediction for NASDAQ data from February 5th 1971 to July 31st 2015 ...44

 5 15 days prediction for NASDAQ data from February 5th 1971 to July 31st 2015.. 46
 6 Time taken for S&P prediction ..47

 7 Time taken for NASDAQ prediction ...48

vii

LIST OF FIGURES

Figure Page

 1 Graphical representation of syntax tree ...14

 2 Population Initialization ...15

 3 Crossover ...16

 4 Mutation ...16

 5 OSU HPCC Cowboy from Advanced Clustering Technologies24

 6 MPJ Express Architecture..27

 7 MPI Program Structure ..28

 8 Implemented Model ...30

 9 Three Parts of the Implemented Model ...33

 10 Central Part Functionality ..35

 11 Operational Part Functionalities ..36

 12 Validation Part Functionalities ..36

 13 Direction comparison of the 5 days Prediction for S&P data from January 3rd

 1950 to July 31st 2015 ...41

 14 Direction comparison of the 15 days Prediction for S&P data from January 3rd

 1950 to July 31st 2015 ...43

15 Direction comparison of the 10 days Prediction for S&P data from January 3rd

 1950 to June 3rd 1999 ...44

16 Direction comparison of the 5 days Prediction for NASDAQ data from February

 5th 1971 to July 31st 2015 ..45

17 Direction comparison of the 15 days Prediction for NASDAQ data from February

 5th 1971 to July 31st 2015 ..46

1

CHAPTER I

INTRODUCTION

1.1 Motivation

A time series is a sequence of numbers recorded at uniform time intervals over a period of time.

Analyzing a time series allows one to understand the behavioral statistic and other characteristics

of the data in time series and then models can be designed to predict future values based on the

previous values in the time series. Among various time series analysis methods, there are some

methods which use only comparisons of values and not their actual size.

The fusion model proposed in [1] is one such kind of forecasting model which predicts the future

values of a time series based on the behavioral pattern of the previous data. To identify a generic

trend, the given input data to this algorithm is analyzed by using those methods which use only

comparisons of values and not their actual size. The methods used by this algorithm identify

generic trends by computing the different measures of concordances such as Kendall's Tau, Gini's

Mean Difference, Spearman's Rho, and a weak interpretation of the Weak concordance. Further, a

polynomial function is developed using genetic programming to map this obtained generic trend

period (which is hereafter referred as a concordant period) with the values of current or latest time

period of the same length as the concordant period. Now this polynomial function is used for

predicting the future values of that time series. More details about this model are discussed in

section 1.2 and its subsections.

2

This model proposed in [1] being a good model for forecasting a time series, it can further be

upgraded by parallelizing the process of developing the prediction or forecasting function using

genetic programming as this takes the most time of the whole process. This model is

parallelizable because the polynomial function for forecasting is developed using the

conventional genetic programming methodology. In the conventional genetic programming, an

initial random population is generated and then for each individual in the population fitness

evaluation and genetic operations are performed. In this process except for the cross-over

operation both fitness evaluation and mutation operation are independent of the other individuals

in the population. Even the cross-over operation can be considered to be independent except that

this operation needs another individual to complete. So if the population is made globally

available even this operation can be executed parallel for all the individuals in the population.

More details about genetic programming are discussed in section 2.2 and its subsections and

details about how to parallelize genetic programming is discussed in section 2.3 and its

subsection. Other than parallelizing the genetic programming part, there are some more features

of this model which can be upgraded and they are discussed in section 1.3.

The parallel model implemented in this thesis improves the performance of the fusion model in

terms of time taken by the algorithm for time series forecasting and also it gives users the

flexibility of choosing the accuracy of the predictor function by allowing them to specify the

mean square error (MSE) limit for the predictor function that is will be developed. The time taken

by this model to forecast depends on this feature of allowing the user to specify MSE prior to the

execution. The time taken by this algorithm is inversely proportional to the MSE specified by the

user.

3

1.2 Fusion Model

The fusion model proposed in [1] by Mahesh S K, Benjamin P, K.M. George and N. Park is a

combination of Concordances and Genetic algorithm to predict the future stock market behavior

and values. In this method, the future trends and values of company’s stocks are predicted by

observing the trends of that company’s historic stock prices. Since the historic prices of the

company can be very huge, they have come up with an approach where they identify a predictor

segment using mathematical concordances to compare with the equivalent recent segment. To

calculate the week Tou, Gini, Kendal’s Tau and Rho concordances, all the possible past segments

e compared to the current segment. The best matching segment is chosen as the predictor. This

resulted in all the lengths and positions for high concordances. Higher the concordances and

longer the matches indicated better matches. A high concordance means that the trend is likely to

continue, so this high concordant period was used to predict the future trend. For better accuracy

in prediction a mathematical equation 𝑔(𝑥) was searched for mapping the past data to future data.

This search for the mathematical equation was done through genetic programming. This mapping

can be represented as,

∀𝑘, 𝑔(𝑝𝑘) ≈ 𝑓𝑘+𝑛

𝑔 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙;

𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑠𝑡 𝑑𝑎𝑡𝑎;

𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑑𝑎𝑡𝑎;

𝑘 𝑖𝑠 𝑎 𝑑𝑎𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑠𝑡 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑓𝑓𝑠𝑒𝑡 𝑖𝑛 𝑑𝑎𝑦𝑠;

They were concentrating on minimizing the mean square error represented by the following

function.

∑(𝑔(𝑝𝑘) − 𝑓𝑘+𝑛)2

𝑙

𝑘=1

𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠;

4

The square makes larger differences matter much more than smaller differences. Ideally the

genetic polynomial function 𝑔(𝑥) will keep getting closer to correct the perfect function after

every generation. However in practice an error amount 𝑒𝑘 is observed. By extrapolating that error

and using the known values from the past, the future values are guessed.

The above-mentioned computations were implemented as a serial process which can be

parallelized to make the process yield results at a much faster rate.

1.2.1 Steps Involved in Fusion Model

1. Historical data was downloaded from yahoo finance at http://finance.yahoo.com/market-

overview/.

2. From the downloaded historical data file, dates and adjacent closing prices were

considered to create a historical dataset. This Historical dataset was flipped to get the

latest data at the end of the data set and then the positions of date and data columns were

swapped. After all these manipulations, the historical dataset was saved into a new

historic file.

3. Using the data in the historic file, the concordances were computed on Matlab tool. Then

another file was created with the computed concordances and their corresponding indexes

of the data in the historic file created above.

4. Along with the above created two files, the number of days to be predicted was given as

arguments to another GUI program which runs GP to generate the predicting equations.

5. This program was started manually and then it keeps generating equations using GP

continuously till it was stopped manually again. After this program was stopped the

predicted information along with the past information used is saved into a new file.

http://finance.yahoo.com/market-overview/
http://finance.yahoo.com/market-overview/
http://finance.yahoo.com/market-overview/

5

1.3 Problems in Fusion model

In the fusion model, the genetic polynomial function is developed using conventional genetic

programming methodology. The run time complexity of conventional genetic programming

makes the design of a standard fusion model algorithm too costly in terms of time.

The concordance computation of segments from the historic data is an independent task in each

iteration and hence even this can be parallelized.

The fusion model is designed to be controlled manually to begin and end the process and hence

there is specific stopping condition to stop the development of forecasting function using genetic

programming. This makes it very uncertain for the end user of this model to decide when to stop

the forecasting function to obtain a reliable function to forecast time series.

Other minor features in this fusion model which can be upgraded are,

- The historic data given as input to the fusion model should first be manipulated according

to the format recognized by the model. This is an additional effort for the end user of this

model.

- In the fusion model, Matlab was used to calculate the concordances of segments from the

historic data, which is also an additional effort for the end user of this model.

1.4 Thesis Objective

The objective of this thesis is to address all the problems mentioned in the previous section. As

mentioned in that section, the runtime complexity of the Fusion model is high and hence using

serial GP is not suitable to analyze huge amounts of data. To overcome this high time

consumption, some of the independent part of the fusion model like finding concordances,

genetic operations in the process of developing forecasting function can be parallelized.

6

This parallel fusion model is implemented on a High-Performance Computing Cluster Cowboy of

Oklahoma State University using Message Passing Interface based MPJ Express library for inter-

processor communication.

7

CHAPTER II

LITERATURE REVIEW

2.1 Parallel Processing

Computing tasks that involve heavy mathematical calculation (highly computationally intensive)

or a large amount of data take a long time to complete using only one computer. If such tasks

involve independent repetitive computations then it is a known fact parallel processing is much

faster than sequential processing. Parallel processing is the processing of program instructions by

dividing them among multiple processors with the objective of running program in less time. The

earliest example of time taking task is executing a computation intensive program and writing its

intermediate result into the external memory tape, so for every IO operation the execution of

computation intensive program is idle. So to minimize the total time taken by the whole process

an intermediate memory can be introduced to save the information which is to be written to the

external memory tape. From then the computer could start an I/O operation and while it was

waiting for the operation to complete, it would continue the execution of computation intensive

program.

2.1.1 Multiple programs one processor

In the later improvements, multiprogramming was introduced in such a way that a single

processor was used to execute multiple programs each for a short time. To the end users, it

8

seemed that all the programs were executing simultaneously but the actual fact was that the

programs were being executed concurrently. Logically this is possible with time slicing i.e.

dividing available period of time among the processes executing. Though this approach saved

considerable amount of time, explicit request for resources would make some processes starve or

sometimes create conditions like deadlocks.

2.1.2 Multiple processors

Eventually solving all problems that arrived in parallel processing, the use of multiple processors

was introduced i.e. two or more processors were used to complete a single task unlike the case of

using a single processor for multiple tasks. In the earliest days of multiprocessor systems, they

had master/slave configurations for executing tasks as it was not then understood on how to

program a machine so they could cooperate in managing the available resources in the system.

One processor that acts as the master processor was programmed to work for the complete task

and the rest of the processors that acted as slave processors performed only those tasks assigned

by the master processor to them. Later even this problem was solved by using symmetric

multiprocessing (SMP) system where each processor was equally capable of managing the

workflow in a system and was also responsible for releasing resources timely. Along with this, it

was also possible to execute some instructions out of order in some programs which required

programmers to deal with increasing complexity in writing programs.

2.1.3 Parallel processing with message passing systems

As the number of processors increased, the time is taken for data accessing increased as it would

take more time for the data to propagate from one part of the system to the other part. With this

9

problem existing adding more and more number of processors would never be beneficial in

solving a time computation intensive task as the time saved by adding more number of processors

was again consumed in data propagation among the processors in the system. So to solve this

problem of long propagation times, message passing techniques were introduced in the form a

separate system. This message passing system helped programs that shared data by sending

messages to each other announcing the change of value to particular operands. Here instead of

blindly broadcasting the new value of an operand to the whole system, the new value was passed

only to those processors which used that operand. That implies that instead of having a common

shared memory a network that supports the transfer of messages between processors can be used.

This methodology allows any number of processor to work together efficiently in one system. So

the system working with this methodology were known as Massively Parallel Processing (MPP)

systems. All those problems using huge amounts of data and which could be broken down into

separate individual operations could be executed on MPP systems making it the most successful

parallel processing system. Examples of such problems as data mining, where there is a need to

perform multiple searches inside a static database and artificial intelligence is another such

problem where there is a need to analyze multiple alternatives of possibility to find a solution.

Architecturally most often MPP systems are structured as clusters where within each cluster the

processors interact as SMP systems. It is only between the clusters that messages are passed

because operands of programs may be accessed via message passing or memory addresses.

Programmatically SMP machines are relatively simple while MPP machines are not. SMP

machines are more suitable for all type of problems which don’t involve huge amounts of data

while for the others MPP is the only suitable system.

10

2.2 Machine learning

As mentioned earlier machine learning techniques are one such kind of highly computationally

intensive task which would definitely need parallel processing systems to perform efficiently.

Machine learning is a subfield of artificial intelligence that evolved from the study of pattern

recognition and computation learning. Machine learning explores the study and development of

algorithms that can learn from data to make predictions in order to construct computer programs

for finding solutions. Such kind of algorithms operates based on the inputs and data to make data-

driven predictions or decisions rather than following strict static programming instructions.

Machine learning is closely related to and most often used for predictive analysis or predictive

modeling. Some of the machine learning approach [31, 32] are decision tree learning, artificial

neural networks, reinforcement learning, representation learning, genetic algorithms, similarity

and metric learning.

Briefing these approaches; Decision tree learning maps observations to possible conclusions from

a decision tree which is used as the predictive model. The artificial neural networks are inspired

from the structural and functional aspects of biological neural networks. Computations are

arranged in the form of an interconnected group of neurons and processing information using

connectionism. Neural networks are usually used to draw complex relationship or patterns

between input and output data. Reinforcement learning as per the definition is concerned with

how an agent is ought to take actions in an environment so as to maximize some notion of long-

term reward. Representation learning helps in transforming an input that makes it useful for other

machine learning techniques while preserving the actual information in the inputs. Similarity and

11

metric learning help find similarity between pairs provides as inputs based on given pairs of

examples which are considered to be similar.

2.3 Time Series Prediction

A time series is a sequence of numerical data points in successive order, usually occurring in

uniform intervals. One of the examples of a time series is daily closing stock prices of an

organization over a period of time. Incorporating future events into the decision-making process

is an important step in forecasting. Time Series Prediction specifically refers to forecasting based

on past data in a chronological sequence. Owing to the various factors involved in forecasting

events based on past data, and the different forecasting methods with increased accuracies and

reduced errors, time series prediction is a challenging task. This study considers an efficient

parallel implementation of a genetic programming solution for time-series forecasting.

The problem of forecasting the stock price is quite challenging since the data changes rapidly and

is unpredictable. In order to forecast the stock price, and for some financial purposes Genetic

Algorithm can be used. Genetic Algorithms (GA) are search algorithms that imitate evolution and

natural selection of genetics. The main function of GAs is to generate a population of individuals.

The individuals are selected based on the fitness function, it determines how likely individuals are

to reproduce. A new population is then evolved by performing the crossover and mutation

operations. This process continues until sufficiently fit individuals are generated.

2.4 Genetic Algorithms

Genetic algorithms (GAs) are adaptive heuristic search algorithms based on evolutionary ideas of

natural selection and genetics. So GA represents an intelligent manipulation of a random search

12

used to solve optimization problems. GA can be used for solving both constrained and

unconstrained optimization problems based on the natural selection process. Although GA

generates random generations they are not just random solutions, instead they are based on the

historical information provided as a reference to direct the search into better probability within

the search space. So at each step, the GA randomly selects individuals from the current

population and used them as parents to produce the children for next generation. Gradually over

successive generations the population evolves into an optimal solution. Genetic Programming

(GP), a branch of Genetic Algorithm (GA), is the origin of computer programs that program

themselves. This means that the output of GP is essentially another computer program.

Alternatively GP can be described as an evolutionary computation (EC) technique that

automatically solves problems without having to tell the computer explicitly how to do it. At the

most abstract level, GP is a systematic, domain-independent method for getting computers to

automatically solve problems starting from a high-level statement of what needs to be done.

GAs can solve all the optimization problems which can be detailed with the chromosome

encoding representation. GAs are uniquely distinguished by having a parallel population-based

search with a stochastic selection of many individual solutions, stochastic crossover and mutation

[2]. Many other search methods in artificial intelligence and evolutionary algorithms have only

some of these features whereas only GAs has all these features combined together. Applications

of GA can be found in various fields such as engineering, biotechnology, economics,

manufacturing, pharmacology, chemistry, biology, mathematics, computer science and medicine.

GA has a statistical function to evaluate the fitness of an individual in generations and hence this

algorithm is used for searching solutions of high complexity which more often involves large

13

non-linear discrete data as input. GA are preferable over many traditional methods as they

consider variables as string codes instead of simple variables which mean the scope of searching

is discretized though GAs function might have been continuous. Another accountable advantage

of GAs is that the searching of the solution is based on the resemblance of string structures which

makes comparisons in searching easy. Some more notable advantages of GA is the use of

probabilistic approach for finding solutions instead of deterministic rules, they work with

program code for solution instead of relying on solution itself, they work with population of

solutions instead of one solution, they use population-based search which will decrease the

amount of work to be done by the user in applying the same algorithm multiple times as that is

already done by the GA on the complete population. This way GA have many advantages over

traditional methods which can be used to increase the probability of finding the optimal solution.

2.5 Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm where individuals in the population are

computer programs. So in each generation GP transforms the population of computer programs

into another program with varied features from the other members in the population [3].

GA have many advantages over traditional methods which can be used to increase the probability

of finding the optimal solution.

2.5.1 Algorithm of GP

1. Randomly create an initial population of mathematical functions from the available

primitives.

Repeat

14

2. Compute each function and ascertain its fitness. Sort the population based on fitness

value.

3. Select one or two functions from the population with a probability based on fitness to

participate in genetic operations.

4. Create new individual functions by applying genetic operations using the above-selected

functions.

Until

5. A function is generated which gives a mean square error less the given value.

6. Return the best-so-far individual i.e. that function which met the above condition.

The two main operations of GP known as genetic operations are,

 Crossover: A new individual is created by combining randomly chosen parts

from previously generated individuals.

 Mutation: A new individual is created by randomly manipulating a previously

generated individual.

2.5.2 Representation of individuals in GP

Programs (individuals) in GP are represented in the form of syntax trees instead of lines of codes.

For example consider a mathematical function or equation 2 + 3 + (X*7) + (Y/5). The equivalent

syntax tree is (+ 2 3 (* X 7) (/ Y 5)). Graphical representation of this syntax tree is

15

Figure-1: Graphical representation of syntax tree [27]

The definition of terminal set and function set to specify a language for the GP to create

programs.

Function set: The function set is usually driven by the nature of the problem domain. Function set

for the syntax tree given in previous page is {+, -, *, /}

Terminal set: The terminal set mostly consists of the program’s external inputs such as variables.

In some implementations, the terminal set may also include functions with no arguments which

yield constants as results. Terminal set for the syntax tree given in the previous page is {integers,

X, Y}

The set of allowed functions and terminals together from the primitive set of a GP system.

2.5.3 Genetic Operations

Initialization of population: a set of the population is randomly generated from the available

primitive set. The member of the population is generated by randomly selecting either a function

or a terminal or both to represent the program. If a function was selected, recursively random

programs should be generated to act as arguments.

16

Figure-2: Population Initialization [27]

Selection: Genetic operations in GP are applied on those individuals that are selected

probabilistically based on their fitness. So, individuals with better fitness are most probably

involved in genetic operations to produce child programs in future generations. The most usual

method of selection used in GP is tournament selection, followed by fitness proportionate

selection though any standard evolutionary algorithm selection mechanism can be used.

Crossover or Recombination: Given two parents/individuals, subtree randomly selects a

crossover point in each parent tree. Then, it creates the offspring by replacing the sub-tree rooted

17

at the crossover point in a copy of the first parent with a copy of the sub-tree rooted at the

crossover point in the second patent as shown below.

Figure-3: Crossover [27]

Mutation: Mutation in GP randomly selects a mutation point in a tree and substitutes the sub-tree

rooted there with a randomly generated sub-tree. Another form of mutation is a point mutation, in

which a random node is selected and the primitive stored there is replaced with a different

random primitive of the same arity taken from the primitive set. If no other primitive with that

arity exist, nothing happens to that node (but other nodes may still be mutated).

18

Sub-tree mutation

Point mutation

Figure-4: Mutation [27]

Fitness measure: This is that value which decides the survival of a population. The search scope

of the GP for the desired individual is the initial primitive set defined by the combination of

terminal set and function set. This includes all the programs that can be constructed by composing

the primitives in all possible ways. From this scope of the region, it is the task of the fitness

measure to find the individual that produces the desired result i.e. the fitness measure is the sole

mechanism that defines a high-level statement of the problem’s requirements to the GP systems.

2.6 Parallel Genetic Programming (PGP)

Genetic programming uses parse trees instead of code syntaxes that represent executable

programs solving problems. These parse trees consist of nodes as in a simple graph with leaf

19

nodes at the bottom. To serve the purpose of generating functions or programs for solving

complex problems the standard GP can go beyond the production of parse trees. However, the

run-time complexity of GP makes the design of a standard algorithm and its implementation too

costly in terms of time. To overcome the high computation cost of conventional GP techniques,

Parallel Genetic Programming (PGP) has been developed. Genetic programming can be

parallelized by introducing multiple communicating populations same as the natural evolution of

spatially distributed populations [12]. Similarly, there are many other methods available to

parallelize genetic programming which will be discussed in next subsection. M. Oussaidene states

in [10] that most complex applications, such as trading model optimization, the evaluation of each

program (individual) is very long and thus the time spent in the selection and reproduction phases

is practically negligible compared with the population evaluation time. Fernandez and other

authors in [11] studied the parameters that affect parallel performance and study their interactions

in common problems to develop a more robust model of how parameters might be set so as to

maximize the performance of parallel GP in many different types of problems. PGP is a

computationally intensive technique which is also highly parallel in nature and so there have been

significant performance improvements over a standard GP in single-processor based approach by

harnessing the parallel computational power of many-core graphic cards (Modern PC graphics

cards contain powerful GPUs including a large number of computing components) which have

hundreds of processing cores [3]. This enables both fitness and individual solutions to be

evaluated in parallel. Despite the increased use of PGP for better results, population size and the

choice of an appropriate PGP model were considered as challenges for the parallel approach [13,

14]. Previously a number of PGP methodologies were studied for optimizing the results,

considering the challenges mentioned earlier. Some of the PGP models are the Master-Slave

20

model, the Coarse-Grain model, and the Fine Grain model [12, 15]. In the Master-Slave model,

the population is stored in the master node and a fraction of the population is assigned to each

available slave processor and the slave evaluates and returns the fitness value [16]. In the Coarse-

Grain model, the population of individuals is divided into several autonomous subpopulations,

called Demes, which exchange individuals at a certain rate, called the migration rate. Fernandez

and Tomassini studied the relationship between the classical model and the island models of the

coarse-grain model of PGP [11]. On the other hand, in the Fine Grain model, the population is

divided into a large number of small subpopulations which are assigned to independent processes.

This method is suitable for machines consisting of multiple processors (massive parallel

architectures).

2.6.1 Parallel Genetic Programming Models

The evaluation of fitness, mutation, type of subpopulations and the selection process decides the

way of parallelizing the genetic algorithm. Nowostawski classified parallel GA/GP into eight

categories namely, Master-Slave parallelization, Static Subpopulations with Migration, Static

Overlapping Subpopulations without Migration, Massively Parallel Genetic Algorithms, Dynamic

demes, Parallel steady-state genetic algorithms, Parallel messy genetic algorithms and Hybrid

methods [19].

The Master-Slave GA uses a single population, but the evaluation of fitness is distributed among

several processors. The selection and crossover consider the entire population. In this GA, the

master runs the genetic algorithm, controls the slaves and distributes the population among the

slaves whereas the slaves take the population from the master, evaluate their fitness and send their

fitness back to the master [17].

21

The static subpopulations with migration parallel GA make use of multiple demes and the

migration operator. These algorithms are also known as coarse-grained GA or multi-deme GA.

This is the most often used model of parallel GA. In this model, the population is divided into

several subpopulations called demes. Multi-deme GA consists of several subpopulations which

exchange individuals occasionally. This exchange of individuals is called migration. Multi-deme

parallel GA is also known as distributed GAs as they are implemented on distributed memory

MIMD computers [18].

The Overlapping Subpopulations without Migration model is similar to the previous one except

for the lack of migration operator. Instead, propagation and exchange are done in individuals

which lie in the so-called overlapping areas.

Massive Parallel Genetic Algorithms have a single population with spatial structures limiting the

interaction between individuals. This model is suited for massively parallel computers, but it can

be implemented on any multiprocessor.

Dynamic Demes is a new parallelization technique which combines global parallelism with

coarse-grained GA. In this model, there is no migration operator as such, because while the

population is treated during evolution as a single collection of individuals, and information

between individuals is exchanged via dynamic reorganization of the demes during the processing

cycles. This model is scalable and easy to implement.

The Parallel Steady-State Algorithms is completely straightforward to parallelize the genetic

algorithm operators since this kind of GA uses continuous population update schemes. If children

are gradually introduced into a single, continuously-evolving population, the only thing to do is

22

apply selection and replacement schemes in the critical section. The other GA operators,

including fitness evaluation, can be run in parallel.

As stated in [19] the way in which GPs can be parallelized depends on the following elements:

- How fitness is evaluated and mutation is applied.

- If single or multiple subpopulations (demes) are used.

- If multiple populations are used, how individuals are exchanged.

- How selection is applied (globally or locally).

Depending on how each of these elements is implemented all the above mentioned parallel

methods were classified. This thesis parallelizes the fusion model for time series forecasting

based on Genetic Programming. In GP of this model, initially 1024 equations are generated which

is a single initial population. The fitness evaluation, mutation and crossover application should be

done for each equation in order to develop the desired equation. This is done by dividing the total

population into multiple subpopulations (demes). Selection is applied globally by considering all

the equations after performing genetic operations. This model can be viewed as a combination of

Master-Slave parallel model and the Static subpopulations with migration. There is a master-slave

system which controls the distribution of tasks (genetic operations). After these genetic

operations are performed on the individuals, their fitness calculation is also done in parallel in the

slave nodes. After all these operations are completed, all the distributed population are gathered

(migrated back) into the master node for checking the stopping condition. The advantage of this

model is that it avoids the communication between subpopulation which might take more time

instead this model migrates all the developed equations to the master node to be used for

23

generating the next generation. Other than these benefits, the model implemented in this thesis

parallelizes the serial process proposed in the previous Fusion model proposed in [1].

2.7 Prediction using Parallel Genetic Programming

Owing to the challenges in the forecasting financial market many approaches have been

employed such as portfolio optimization, bankruptcy prediction, financial forecasting, fraud

detection, and scheduling. These techniques used recurrent neural networks combined with PGP

for the daily stock trading [20].

M. Oussaidene and B. Chopard presented a scalable parallel implementation of GP on distributed

memory machines [21]. The system described runs multiple master-slave instances interacting

asynchronously. Master-Slave Parallelization is a significant approach which can further be

classified as Asynchronous and Synchronous. Typically, the fitness function is parallelized.

Master stores the population or a fraction of the population is assigned to each available processor

and slave evaluates and returns the fitness value [16]. Synchronous master-slave PGA is

relatively an easier mechanism as the master waits for the slave to return all the fitness values

before proceeding to the next generation. Though it has the same properties as that of a simple

GA, enhanced speed gives it a high edge. However, since the whole process has to wait till the

slowest of the processors completes its fitness evaluations, asynchronous master-slave PGA is

taken as an alternative. Considering only a fraction of individuals in the population whose fitness

has already been evaluated, makes it better and easier to implement [10, 15].

24

Munawar states that the evolving parallel paradigms help researchers working on GA/GP by

making it easy for them to parallelize GA/GP and at the same time this parallelization task have

added a research area for the High-Performance Computing (HPC) community [22]. Though GA

has a high potential for parallelization, it was common practice to implement GAs in a serial

fashion. But this resulted in rising clock speeds which mean a rise in power consumption. Hence,

the multicore strategies helped achieve high performance with low power consumption taking

PGP to the next level. Distributed Computing, allows the use of resources distributed at global

distances. All these changes made parallel and distributed algorithms more vital than before [22].

2.8 Kendall Rank Correlation Coefficient or Kendall’s Tau (τ)

In fields like medical, economy, astronomy etc... historical information is in the form of time

series. With the development of monitoring equipment, these kinds of data will become abundant

and hence there is a need for methods of time series analysis which apply directly on real data by

only comparisons of values and not their actual size.

τ also known as Kendall’s tau coefficient, developed by Maurice Kendall [4] is a statistical

measure used to measure the association between two measured quantities. It is known as a good

measure for determining the similarity of movements of time series. Let X = {x1, x2, …, xn}, Y =

{y1, y2, …, yn}be two sets of size n, where (x1, y1), (x2, y2) (x3, y3)…. (xn, yn) are the set of

observations of the random variables X and Y respectively. A pair of observations (xi, yi) and (xj,

yj) are said to be concordant if (xi - xj) * (yi - yj) > 0. The Kendall’s tau (τ) is defined by Equation

1, where nc is the number of concordant pairs, nd is the number of discordant pairs, and n is the

number of elements in each dataset. The denominator of the equation is the total number of

combinations of different pairs, so the range of the coefficient is the interval [-1, 1].

25

τ =
nc− nd

1

2
n(n−1)

 (1)

Where 𝑛𝑐number of is concordant pairs and 𝑛𝑑 is number of discordant pairs.

An alternate form of Kendall’s Tau is shown below,

τ =
2 [∑ (∑ sign(Xi −Xj)∗sign(Yi−Yj)n

j=i)n−1
i=1]

n(n−1)
 (2)

Series 1: X1, X2, X3…... Xn; Series 2: Y1, Y2, Y3…... Yn;

- If the agreement between the two pairs is perfect (i.e., the two pairs are the same) the

coefficient has value 1.

- If the disagreement between the two pairs is perfect (i.e., one pair is the reverse of the

other) the coefficient has value −1.

- If X and Y are independent, then we would expect the coefficient to between -1 < τ > 1.

2.9 High-Performance Computing Cluster (HPCC)

High-performance computing is a practice of using multiple computing elements to solve a larger

problem in science, engineering or business to achieve higher performance than one could get

using a regular computer. Usually, a high-performance computer today is typically a cluster of

simple computers commonly used by anyone. They all have processors, memory, disk, operating

systems and other peripherals but are more in number. Each computer in a cluster is referred to as

a node by HPC users. For these clusters to work towards solving a common problem, they need to

communicate with each other which is done over networks and there is a variety of

26

interconnecting networks available such as Ethernet, InfiBand etc. So a high-performance

computer is usually built from what are many basic or ordinary computers connected together

with a network and centrally coordinated by some special software. Since this computer is

physically very close together, the cluster is a common term for a high-performance computer.

Oklahoma State University has a High-Performance Computing Cluster COWBOY (figure-5) [5],

which was funded by NSF MRI grant “Acquisition of a High-Performance Compute Cluster for

Multidisciplinary Research”. This cluster Cowboy from Advanced Clustering Technologies

consists of following features:

- 252 standard compute nodes, each with dual Intel Xeon E5-2620 “Sandy Bridge” hex

core 2.0 GHz CPUs and 32 GB of 1333 MHz RAM.

- Two “fat nodes” each with 256 GB RAM and an NVIDIA Tesla C2075 card.

- A 92 TB of globally accessible high-performance disk provided by three shelves of

Panasas ActivStor12, this includes 20 2TB drives and the aggregate speed of the disk is

4.5GB/s read and 4.8GB/s write.

- Interconnect networks are InfiBand for message passing, Gigabit Ethernet for I/O and an

Ethernet management network.

27

2.10 Message Passing Interface (MPI) [26]

As mentioned earlier in section 2.1.3, parallel processing with message passing

F
ig

u
re

-5
:

O
S

U
 H

P
C

C
 C

o
w

b
o
y

 f
ro

m
 A

d
v

a
n

ce
d

 C
lu

st
er

in
g

 T
ec

h
n

o
lo

g
ie

s
[2

8
]

28

systems has emerged as an efficient model of parallel processing systems for parallel

programming. Message Passing Interface (MPI) is a specification for a standard Library for

message passing that was defined by the MPI Forum, a broadly based group of parallel computer

vendors, library writers and application specialists. MPI is a message-passing application

program interface equipped with protocols and semantics that decides its behavior in any

implementation of parallel programming on a message passing system. MPI features both point-

to-point and collective message passing operations. MPI provides abstractions for processes at

two levels. First, processors are named according to the rank of the group in which the

communication is performed. Second, virtual topologies allow for a graph or Cartesian naming of

processes that help relate the application semantics to the message passing semantics in a

convenient, efficient way. Communicators in MPI provide a significant measure of safety useful

for building library-oriented parallel code [6]. MPI is well defined with constructors and

destructors which make its functionality be an opaque object-based program. These objects

include Groups (the fundamental container for a process), Communicators (which contain groups

used as arguments for communication calls), and request objects for asynchronous operations.

MPI also features user-defined and predefined datatypes allowing for heterogeneous

communication and sophisticated description of gather/scatter semantics in send/receive

operations in both point-to-point and collective operations. MPI supports both Single Program

Multiple Data and Multiple Program Multiple Data models of parallel programming. MPI

provides a thread safe application programming interface (API), which will be of use in the

implementation of multithreaded program environments and also support thread safety for

themselves.

29

2.11 MPJ Express [24, 25]

Java is one of the few mainstream programming languages and is multi-threaded by design, it

makes an attractive language for programming SMP and multicore clusters, provided a thread-

safe communication library is available. MPJ Express is a thread-safe Java messaging library, a

quality implementation of MPI-like bindings for Java compatible with Java threads [7, 8]. As the

current trend of parallel programming is based on Symmetric Multi-processor (SMP) [section

2.1.2] and multicore clusters a thread-safe HPC library is very important. MPJ Express is a

thread-safe communication library alternative to traditional approaches like hybrid MPI,

OpenMP, shared memory devices code in the MPI libraries. Other significant advantages of this

library are that,

- It provides execution of parallel programs in two configurations [9] with the same code

for both the configurations,

 Multicore Configuration: This configuration allows users to write and

execute parallel java applications on their desktops or laptops i.e

typically hardware which contains shared memory and multicore

processors. In simple words, the MPJ Express initiates a single thread to

represent an MPI process, using efficient inter-thread communication

mechanism. This allows the users to first develop the code on their

personal laptop/desktops with help

30

 Cluster Configuration: This configuration allows users to execute their

parallel java applications using on distributed memory platforms

including clusters or network of computers.

- It provides a debugger for inspecting the execution of a parallel program.

The latest version of MPJ Express available today is version 1.4 which features the following

thread-safe communication devices:

o niodev based on Java NIO used to execute programs on clusters using Ethernet.

o mxdev based on the Mytrinet eXpress(MX) library used to execute programs on

cluster connected by Mytrinet express interconnects.

o hybdev used to execute programs on clusters of multicore computers.

o native used to execute programs on top of native MPI Library such as MPICH,

OpenMP or MS-MPI.

31

Figure-6: MPJ Express Architecture [29]

2.12 MPI Program Structure

32

Figure-7: MPI Program Structure [30]

33

CHAPTER III

IMPLEMENTATION

3.1 Overview

This thesis implements parallelization of Fusion Model proposed in [1]. The forecasting method

implemented in this research views the forecast as a function

𝑓: 𝑋 → 𝑌

Where X and Y are sequences or segments of time series. The method involves three parts,

1. Identification of Y

2. Identification of X

3. Construction of f

Y is usually the most recent segment of the series of length n. To determine X (the predictor), we

use Kendal’s τ. Finally, to build f, we use genetic programming. This research implements a

program in high-performance computing cluster (HPCC).

34

3.2 Design of implemented model

The implemented model in this thesis consists of three major parts, they are

- Central: This part of the model controls begin and end of the whole process.

- Operational: This part of the model executes the assigned tasks by the central part.

- Validation: This part of the model validates each generation of the genetic programming.

These three parts of the model communicate with each other using Message Passing Interface.

This model is designed in such a way that the last node of the allocated nodes acts as Validation

part, the penultimate node acts as Central part and rest of the allocated nodes act as Operational

part of the model.

Figure-8: Implemented Model

35

3.3 Upgrades to the Fusion Model

In this thesis, there have been made few upgrades to the Fusion Model along with the

parallelization of Fusion Model. Following are the list of upgrades made to the Fusion Model,

- This thesis implements batch processing of the fusion model i.e. the execution of all tasks

in the previous model without manual intervention.

- In this thesis, the historic file downloaded from the Yahoo finance can be given to this

model directly without any external manipulation.

- This thesis provides the flexibility to users by allowing them to specify the following

information in every run,

o The size of segments to be created in the process of concordance computation.

o The length of difference to create segments in the process of concordance

computation.

o Prediction length i.e. number of days from the latest date to predict values.

o Sum of mean square difference: This value is used as a stopping condition

explained below.

- The fusion model previous proposed does not have a stopping condition for the GP.

o In this thesis, a stopping condition is added to GP by calculating the sum of mean

square error (MSE).

o In every generation of GP, the equation with the best fitness is chosen to compute

the sum of mean square error and this value is compared with the MSE specified

by the user. If obtained is less than or equal to the MSE specified by the user then

the GP stops.

- In the previous model, if the process of concordance computation and predictor equation

generation is divided into tasks then we can observe that there are many tasks

independent of another task.

36

o In this thesis, all the independent task are parallelized. The task assignment

depends on a number of processors available.

3.4 Algorithm of Implementation

1. Get historical stock price data of a company.

2. Divide this history stock data into chunks and search for a pattern in the past that

look similar to the present pattern using concordance measures.

3. Find Y the most recent segment of the series of the specified length n.

4. Find X the highest concordant past pattern among all the patterns found.

5. Develop a forecasting function f using the genetic algorithm for prediction of future

data using the lastly found highest concordant past pattern.

3.5 Finding the Predictor

Since this work depends on a huge set of historic prices, a part of historic prices are considered to

compare with the present data for prediction. , Concordances are calculated for all possible small

sets of data and the set of past data with highest concordant value is chosen for prediction

purpose. Kendall’s Tau () is used to calculate the above said concordances. As mentioned above

Kendall’s Tau is a statistical measure that can be used to determine the relation between two sets

of quantitative data. In this model, to achieve this the huge set of historic data is divided into

maximum possible chunks based on available processors for calculating the concordances for any

two sets and all these concordances and their respective data indexes are stored in order to

consider them for future purposes.

37

3.6 Developing the forecasting function

As this parallelization is implemented on a distributed computing environment, the GP can store

the intermediate data in distributed memories and these data can be passed on among the nodes of

this model using MPI. The parallel GP implementation has three parts namely central, operational

and validation. This system is as showed in the following figure,

Figure-9: Three Parts of the Implemented Model

3.6.1 Functionality of each part in the implemented model

The central part controls the start and stop of the GP by communicating with the operational part

for intermediate operations and also with the validation part for checking the stopping condition

of the GP, the operational part performs the genetic operations by receiving population from the

central part. The validation part receives the set of populations from the central part after a certain

number of GP iterations to evaluate the fitness and returns the status of GP to either continue or

stop the process. When a stop signal is sent, then a resulting fit equation is also sent to the central

node for outputting the prediction of time series form that fit equation. In this parallel GP system,

each part of the system is internally an individual node (central and validation parts) or a set of

nodes (operational part) independent from other parts of the system. The functionality of each

part is described below,

38

Central Part

 Concordance Computation

 The central part of the system divides the historic data into segments.

The latest segment is considered as Y.

 Rest of the segments are broadcasted to operational part for concordance

computation. After the computation, the computed concordances are sent

to the validation node.

 Genetic Programming to find function

 The central part controls the start and stop of the GP by communicating

with the operational and validation parts

Operational Part

 Concordance Computation

 Kendall’s τ is calculated for each segment simultaneously.

 Genetic Programming to find function

 Genetic operations are performed on individuals distributed by the

central part.

Validation Part

 Concordance Computation

 From all the computed concordances, the segment with the highest

concordance is considered as X.

39

 Genetic Programming to find function

 The stopping condition for GP is checked here. If any equation meets the

stopping condition, then future prices are predicted and saved into a CSV

file. The GP is terminated at this point.

Figure-10: Central Part Functionalities

Legend: CN – Central Nodes | ON – Operational Nodes | VN – Validation Nodes

Concordance

Computation

Genetic

Programming

Divide_Historic_Data_Into_Segments ();

Broadcast_Segments_To_ON_To_Compute_Concordances ();

[ON-Operations]

Gather_Computed_Concordances_From_ON ();

Choose_The_Segment_With_Highest_Concordance_As_Predictor ();

while (true) {

if (Initial_iteration) {

 Generate_Random_Initial_Population ();

 Set_fitness ();

} else {

 Broadcast_Population_to_ON ();

 [ON-Operations]

 Gather_Population_After_Genetic_Operations_From_ON ();

 }

 if (VN){

 break;

 }

}

40

Figure-11: Operational Part Functionalities

Legend: CN – Central Nodes | ON – Operational Nodes | VN – Validation Nodes

Concordance

Computation

Genetic

Programming

Receive_Broadcast_Segments_From_CN ();

Compute_Concordances_For_Segments ();

Accumulate_Computed_Concordances_For_Gather_In_CN ();

 Receive_Broadcast_Population_From_CN ();

Perform_Crossover ();

Perform_Mutation ();

Accumulate_Population_Elements_After_Gentic_Operations ();

Figure-12: Validation Part Functionalities

Legend: CN – Central Nodes | ON – Operational Nodes | VN – Validation Nodes |

MSE – Mean Square Error

Genetic

Programming

Compute_MSE_For_Each_Individual ();

Find_The_Individual_With_Least_MSE ();

if (Compare_Found_Least_MSE_With_User_Given_MSE ()) {

 Predic_Forecast ();

return true;

}

3.6.2 Stopping condition for validating the Forecasting Function

The validation part of the implemented model checks if the generated functions satisfy the

stopping condition in order to stop the further generation of GP. So this section explains what

this stopping condition is and how is it verified and what would happen if this condition is

ignored and continued further.

41

The forecasting method implemented in this thesis views the forecast as a function,

𝑓: 𝑋 → 𝑌

Where f is the forecasting function that is being developed using genetic programming, X is

the concordant period and Y is the predicted period of data. So using this function the future

values are extrapolated based on the values after the concordant period. The Mean Square

Error (MSE) [33] can be used to assess the quality of the predictor function or the forecasting

function. As the value of MSE decreases that implies that the accuracy of the forecasting

function might increase. The mean square error of a predictor measures the average of the

square of the errors where the error is the difference between the actual and the predicted

values. Therefore, the MSE can be calculated as follows,

MSE =
1

𝑛
∑(𝑓(𝑋) − Ŷ)

2
𝑛

𝑖=1

Where n is the length of X and Ŷ is the actual data in the base period. In this implementation,

a best individual is selected from the population based on fitness in every generation. MSE

for this individual is calculated and compared with the MSE limit (value) specified by the

user at the start of the algorithm. If this obtained MSE is less than MSE limit specified by the

user, then the GP is stopped from developing further generations and the best individual

selected will be considered as the forecasting function or the predictor function. Therefore,

this MSE limit specified by the user is the stopping condition of the implemented algorithm.

So, based on the MSE limit specified by the user, following two output factors are dependent,

 Accuracy: As the MSE limit (value) decreases the accuracy of the predictor

increases.

42

 Execution Time: As the MSE limit (value) decreases the time taken for developing

the desired predictor function increases.

What if this stopping condition was ignored and the GP kept developing a better function?

 So, if this stopping condition was ignored and the GP further developed a better function

then the accuracy of the predictor function developed would be much better but the time

taken for this would be more. Although the GP continued to develop a better function, this

algorithm has to stop at some point to produce a forecast of the time series and hence this

stopping condition has been introduced. So the best way to obtain a better result is to specify

a lowest possible MSE limit while monitoring the time taken by the GP to reach the MSE

limit.

3.7 Load Balancing

How are the available resources (processors) divided into the three parts of the parallel

implementation?

Let n be the total number of processors available with zero-based indexing. Then the n-1th

processor acts as the validation part and the n-2th processor acts as the Central part. Then the

remaining processors between [0, 𝑛 − 2) work for the operational part which divides the total

number of tasks as follows.

Suppose there are tasks with indexes 1, 2… m; where m is the maximum number of tasks, then

each processor with index p is allocated tasks with indexes start_index and end_index inclusive.

𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 = ⌊
𝑚 ∗ 𝑝

(𝑛 − 2) + 1
⌋ ; 𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥 = ⌊

𝑚 ∗ (𝑝 + 2)

(𝑛 − 2)
⌋ ;

 𝑤ℎ𝑒𝑟𝑒 p = current processor id

43

The above-mentioned load balancing criteria has been inspired from the example in [23 | page

79].

For example, let n = 9 and the indexes of tasks be [512, 648].

Then index of validation_node = 8 & central_node = 7. The operational nodes have indexes [0,

7).

On node: 0 | Start_index: 512 | End_index: 530 | Total tasks on this node: 19

On node: 1 | Start_index: 531 | End_index: 550 | Total tasks on this node: 20

On node: 2 | Start_index: 551 | End_index: 569 | Total tasks on this node: 19

On node: 3 | Start_index: 570 | End_index: 589 | Total tasks on this node: 20

On node: 4 | Start_index: 590 | End_index: 608 | Total tasks on this node: 19

On node: 5 | Start_index: 609 | End_index: 628 | Total tasks on this node: 20

On node: 6 | Start_index: 629 | End_index: 648 | Total tasks on this node: 20

44

CHAPTER IV

EXPERIMENTATION RESULTS & CONCLUSION

4.1 Experimentation Results

In short, the implemented model in this thesis predicts the forecast of a time series by developing

an equation that takes the values for a concordant period as input. The output of this equation is

the predicted forecast of the time series i.e. the output values are extrapolated from the values in

the concordant period. Hence the quality of forecast depends on the concordant period chosen,

therefore the best forecast can be obtained when the best concordant period is chosen.

The implemented model in this thesis was evaluated using stock market data for S&P, NASDAQ

and NYSE COMPOSITE (DJ). The data set (base period & concordant period) used in this

implementation from the above said companies stock market data is of 200 days in length. In the

experiments, the prediction was performed for 5 days past the latest day in the historic data. The

prediction comparison tables shown below shows the comparison of predicted values with the

actual values in the concordant period that was chosen (the prediction has been obtained by

extrapolation of these values). Here the direction of actual values is compared to the direction of

predicted values. That is if the actual stock value increases or decreases compared to its previous

day value and also if the predicted value also increases or decreases accordingly then the

direction is referred to be same else different. If the obtained direction is same then the developed

equation is valid.

45

The results shown below are for the parallel model implemented in this thesis. The table shown

below compares the 5 day predicted values with the corresponding concordant values of S&P

historic stock data from January 3rd 1950 to July 31st 2015.

Date Actual value Predicted value Direction

August 3rd, 2015 103.589996 2115.795445 -

August 4th, 2015 104.110001 2119.107448 same

August 5th, 2015 103.540001 2115.476975 same

August 6th, 2015 103.830002 2117.324188 same

August 7th, 2015 103.980003 2118.279546 same

Table-1: 5 days Prediction for S&P data from January 3rd 1950 to July 31st 2015

Figure-13: Direction comparison of the 5 days Prediction for S&P data from January 3rd 1950 to July 31st 2015

Figure 13 shows the 5 days prediction for S&P stocks i.e. from 3rd August 2015 to 7th August

2015. The red graph line represents the base period, the green graph line represents the

concordant period extended to 5 more days past the concordant period for comparison with the

predicted values. The blue graph line represents the forecast extrapolated based on the values

from the extended concordant period. Observing the green graph line and the blue graph line, it is

98

99

100

101

102

103

104

105

2060

2070

2080

2090

2100

2110

2120

2130

2140

7
/1

0
/2

0
1

5

7
/1

1
/2

0
1

5

7
/1

2
/2

0
1

5

7
/1

3
/2

0
1

5

7
/1

4
/2

0
1

5

7
/1

5
/2

0
1

5

7
/1

6
/2

0
1

5

7
/1

7
/2

0
1

5

7
/1

8
/2

0
1

5

7
/1

9
/2

0
1

5

7
/2

0
/2

0
1

5

7
/2

1
/2

0
1

5

7
/2

2
/2

0
1

5

7
/2

3
/2

0
1

5

7
/2

4
/2

0
1

5

7
/2

5
/2

0
1

5

7
/2

6
/2

0
1

5

7
/2

7
/2

0
1

5

7
/2

8
/2

0
1

5

7
/2

9
/2

0
1

5

7
/3

0
/2

0
1

5

7
/3

1
/2

0
1

5

8
/1

/2
0
1

5

8
/2

/2
0

1
5

8
/3

/2
0

1
5

8
/4

/2
0

1
5

8
/5

/2
0

1
5

8
/6

/2
0

1
5

8
/7

/2
0

1
5

Concordant Period

C
o

n
co

rd
an

t
v
al

u
es

P
re

d
ic

te
d

 v
al

u
es

Base Period

Direction comparision of the 5 days Prediction for S&P data from January 3rd 1950 to July

31st 2015

5 days past base Base Period Concordant Period

46

understandable that the forecast is in the same direction as in the concordant period. This implies

that the desired equation for prediction has been successfully developed.

The table shown below compares the predicted values with the concordant values of S&P historic

stock data for next 15 days after base period.

Date Actual value Predicted value Direction

August 3rd, 2015 103.589996 2115.796789 -

August 4th, 2015 104.110001 2119.108265 Same

August 5th, 2015 103.540001 2115.478376 Same

August 6th, 2015 103.830002 2117.325273 Same

August 7th, 2015 103.980003 2118.280482 Same

August 10th, 2015 104.980003 2124.647021 Same

August 11th, 2015 105.900002 2130.501959 Same

August 12th, 2015 105.669998 2129.038401 Same

August 13th, 2015 105.949997 2130.820068 Same

August 14th, 2015 105.199997 2126.047276 Same

August 17th, 2015 104.68 2122.737311 Same

August 18th, 2015 104.290001 2120.254372 Same

August 19th, 2015 103.720001 2116.624747 Same

August 20th, 2015 103.82 2117.261578 Same

August 21st, 2015 103.93 2117.962068 Same

Table-2: 15 days Prediction for S&P data from January 3rd 1950 to July 31st 2015

By observing the graph shown in figure-14, it is understandable that the direction of prediction

and the concordance period is same all over. This implies that the implemented parallel

forecasting model works well for prediction more number of days.

47

Figure-14: Direction comparison of the 15 days Prediction for S&P data from January 3rd 1950 to July 31st 2015

Another experiment was conducted with different range of S&P stock history i.e. from 3rd

January 1950 to 3rd June 1999. The table shown below compares the predicted values with the

concordant values of S&P historic stock data for next 10 days after base period. It is again

observed from the graph shown in figure-15 that the predicted values are in the same direction as

the concordant period.

Date Actual value Predicted value Direction

June 4th, 1999 70.040001 1349.329352 -

June 7th, 1999 69.410004 1334.217167 Same

June 8th, 1999 69.07 1326.061249 Same

June 9th, 1999 69.370003 1333.257634 Same

June 10th, 1999 68.860001 1321.023854 Same

June 11th, 1999 69.459999 1335.416432 Same

June 14th, 1999 69.940002 1346.930605 Same

June 15th, 1999 70.220001 1353.647139 Same

June 16th, 1999 69.739998 1342.132967 Same

June 17th, 1999 70.040001 1349.329352 Same

Table-3: 10 days prediction for S&P data from January 3rd 1950 to June 3rd 1999

98
99
100
101
102
103
104
105
106
107

2040
2060
2080
2100
2120
2140

6
/1

8
/2

0
1
5

6
/2

0
/2

0
1

5

6
/2

2
/2

0
1
5

6
/2

4
/2

0
1
5

6
/2

6
/2

0
1

5

6
/2

8
/2

0
1
5

6
/3

0
/2

0
1
5

7
/2

/2
0
1
5

7
/4

/2
0
1
5

7
/6

/2
0
1
5

7
/8

/2
0
1
5

7
/1

0
/2

0
1
5

7
/1

2
/2

0
1
5

7
/1

4
/2

0
1
5

7
/1

6
/2

0
1
5

7
/1

8
/2

0
1
5

7
/2

0
/2

0
1
5

7
/2

2
/2

0
1
5

7
/2

4
/2

0
1
5

7
/2

6
/2

0
1
5

7
/2

8
/2

0
1
5

7
/3

0
/2

0
1
5

8
/1

/2
0
1
5

8
/3

/2
0
1

5

8
/5

/2
0
1
5

8
/7

/2
0
1
5

8
/9

/2
0
1
5

8
/1

1
/2

0
1
5

8
/1

3
/2

0
1
5

8
/1

5
/2

0
1
5

8
/1

7
/2

0
1
5

8
/1

9
/2

0
1
5

8
/2

1
/2

0
1
5

Concordant Period

C
o

n
co

rd
an

t
v
al

u
es

P
re

d
ic

te
d

 v
al

u
es

Base Period

Direction comparision of the 15 days Prediction for S&P data from January 3rd 1950 to July

31st 2015

15 days past base Base Period Concordant Period

48

Figure-15: Direction comparison of the 10 days Prediction for S&P data from January 3rd 1950 to June 3rd 1999

A similar experiment was performed on the NASDAQ historic stock data. The table shown below

compares the predicted values with the concordant values of NASDAQ historic stock data from

February 5th, 1971 to July 31st, 2015.

Date Actual value Predicted value Direction

August 3rd, 2015 4165.609863 5194.377099 -

August 4th, 2015 4156.189941 5189.23252 Same

August 5th, 2015 4174.669922 5199.314773 Same

August 6th, 2015 4113.299805 5165.668646 Same

August 7th, 2015 4183.02002 5203.856546 Same

Table-4: 5 days prediction for NASDAQ data from February 5th 1971 to July 31st 2015

 1
9
6
3
-0

5
-2

4

 1
9
6
3
-0

5
-2

7

 1
9
6
3
-0

5
-2

8

 1
9
6
3
-0

5
-2

9

 1
9
6
3
-0

5
-3

1

 1
9
6
3
-0

6
-0

3

 1
9
6
3
-0

6
-0

4

 1
9
6
3
-0

6
-0

5

 1
9
6
3
-0

6
-0

6

 1
9
6
3
-0

6
-0

7

 1
9
6
3
-0

6
-1

0

 1
9
6
3
-0

6
-1

1

 1
9
6
3
-0

6
-1

2

 1
9
6
3
-0

6
-1

3

 1
9
6
3
-0

6
-1

4

 1
9
6
3
-0

6
-1

7

 1
9
6
3
-0

6
-1

8

 1
9
6
3
-0

6
-1

9

 1
9
6
3
-0

6
-2

0

 1
9
6
3
-0

6
-2

1

 1
9
6
3
-0

6
-2

4

 1
9
6

3
-0

6
-2

5

 1
9
6
3
-0

6
-2

6

 1
9
6
3
-0

6
-2

7

 1
9
6
3
-0

6
-2

8

 1
9
6
3
-0

7
-0

1

 1
9
6
3
-0

7
-0

2

 1
9
6
3
-0

7
-0

3

 1
9
6
3
-0

7
-0

5

 1
9
6
3
-0

7
-0

8

 1
9
6
3
-0

7
-0

9

68
68.5
69
69.5
70
70.5
71

1270
1290
1310
1330
1350
1370

Concordant Period

C
o

n
co

rd
an

t
v
al

u
es

P
re

d
ic

te
d

 v
al

u
es

Base Period

Direction comparision of the 10 days Prediction for S&P data from January 3rd 1950

to June 3rd 1999

Prediction Base Period Concordant Period

49

Figure-16: Direction comparison of the 5 days Prediction for NASDAQ data from February 5th 1971 to July 31st 2015

Figure 16 shows the 5 day prediction for NASDAQ stocks i.e. from 3rd August 2015 to 7th August

2015. The red graph line represents the base period, the green graph line represents the

concordant period extended to 5 more days past the concordant period. The blue graph line

represents the forecast extrapolated based on the values from the extended concordant period.

Observing the green graph line and the blue graph line, it is understandable that the forecast is in

the same direction as in the concordant period. Again this implies that the desired equation for

prediction has been developed.

The table shown below compares the predicted values with the concordant values of NASDAQ

historic stock data for next 15 days after base period. It is observed from its corresponding graph

in figure-17 that the direction of prediction and the concordance period is same all over.

Date Actual value Predicted value Direction

August 3rd, 2015 4165.609863 5208.259059 -

August 4th, 2015 4156.189941 5202.057049 Same

August 5th, 2015 4174.669922 5214.224137 Same

August 6th, 2015 4113.299805 5173.818487 Same

3990

4040

4090

4140

4190

4240

4900
4950
5000
5050
5100
5150
5200
5250

Concordant period

C
o

n
co

rd
an

t
p

er
io

d
 v

al
u

es

B
as

e
&

 F
o

re
ca

st
 v

al
u

es

Base Period

Direction comparison of the 5 days Prediction for NASDAQ data from February 5th 1971 to

July 31st 2015

5 days past Base Concordance

50

August 7th, 2015 4183.02002 5219.721783 same

August 10th, 2015 4214.879883 5240.698091 same

August 11th, 2015 4218.689941 5243.206606 same

August 12th, 2015 4197.580078 5229.308022 same

August 13th, 2015 4225.759766 5247.861329 same

August 14th, 2015 4243 5259.212177 same

August 17th, 2015 4218.879883 5243.331663 same

August 18th, 2015 4128.169922 5183.608867 same

August 19th, 2015 4083.610107 5154.271 same

August 20th, 2015 4097.959961 5163.718842 same

August 21st, 2015 4051.429932 5133.083801 same

Table-5: 15 days prediction for NASDAQ data from February 5th 1971 to July 31st 2015

Figure-17: Direction comparison of the 15 days Prediction for NASDAQ data from February 5th 1971 to July 31st 2015

The major purpose of the model implemented in this thesis is to decrease the time taken for this

model to forecast the data. This has been done by parallelizing the model proposed in [1]. The

parallelization implemented has been tested on a different set of a number of processors to check

the behavior of time taken by the algorithm. Since Genetic algorithm which is one of the major

3950
4000
4050
4100
4150
4200
4250
4300

4900
4950
5000
5050
5100
5150
5200
5250

6
/1

8
/2

0
1

5

6
/2

0
/2

0
1

5

6
/2

2
/2

0
1

5

6
/2

4
/2

0
1

5

6
/2

6
/2

0
1

5

6
/2

8
/2

0
1

5

6
/3

0
/2

0
1

5

7
/2

/2
0

1
5

7
/4

/2
0

1
5

7
/6

/2
0

1
5

7
/8

/2
0

1
5

7
/1

0
/2

0
1

5

7
/1

2
/2

0
1

5

7
/1

4
/2

0
1

5

7
/1

6
/2

0
1

5

7
/1

8
/2

0
1

5

7
/2

0
/2

0
1

5

7
/2

2
/2

0
1

5

7
/2

4
/2

0
1

5

7
/2

6
/2

0
1

5

7
/2

8
/2

0
1

5

7
/3

0
/2

0
1

5

8
/1

/2
0

1
5

8
/3

/2
0

1
5

8
/5

/2
0

1
5

8
/7

/2
0

1
5

8
/9

/2
0

1
5

8
/1

1
/2

0
1

5

8
/1

3
/2

0
1

5

8
/1

5
/2

0
1

5

8
/1

7
/2

0
1

5

8
/1

9
/2

0
1

5

8
/2

1
/2

0
1

5

Concordant period

C
o

n
co

rd
an

t
v
al

u
es

P
re

d
ic

te
d

 v
al

u
es

Base period

Direction comparison of the 15 days Prediction for NASDAQ data from February 5th 1971 to

July 31st 2015

15 days past base Base period Concordant period

51

component of this forecasting algorithm is based on generating generations randomly, the

algorithm was executed seven times and then the average of the total time taken in all executions

is considered for comparison. The same experiment has been conducted on different number

processors i.e. 12, 18, 24, 30 & 36 processors.

The parallel model implemented in this model has a stopping condition introduced to control the

start and stop of the genetic programming which is used to develop the forecasting function. The

table shown below shows the time taken for this model to run using S&P historic data on a

different number of processors. Observing the values in the table below it is understandable that

the time taken for prediction is decreasing as the number of processors used for the execution

increases.

of processors Total time is taken

in milliseconds

Average time in

milliseconds

12 150,997,413 21,571,059.000

18 82,515,770 11,787,967.140

24 71,521,543 10,217,363.290

30 65,231,350 9,318,764.286

36 60,276,523 8,610,931.857

Table-5: Times taken for S&P prediction in parallel implementation

When this experiment was conducted with same data on the serial implementation of this model,

the time taken by this implementation is 36,949,380.400 milliseconds which is 15,378,321.400

milliseconds more than the time taken by the parallel implementation using 12 processors.

52

Similarly, the time taken while performing the same experiment on the NASDAQ historic stock

data is shown in the table below. Observing this data again makes it understandable that the time

taken for prediction is decreasing as the number of processors used for the execution increases.

of processors Total time is taken

in milliseconds

Average time in

milliseconds

12 12,781,906 1,825,986.571

18 9,775,378 1,396,482.571

24 9,273,270 1,324,752.857

30 6,570,147 938,592.429

36 4,003,944 571,992

Table-6: Times taken for NASDAQ prediction

When this experiment was conducted with same data on the serial implementation of this model,

the time taken by this implementation is 3,997,762.800 milliseconds which is 2,171,776.229

milliseconds more than the time taken by the parallel implementation using 12 processors.

4.2 Conclusion

The parallel implementation of forecasting algorithm with added features like allowing the user to

choose the parameters like stopping condition value and also making the whole process a batch

process makes it easier for the end user to work with this algorithm. Observing the

experimentation results we can understand that, parallelization of the forecasting algorithm

reduces the amount of time taken for completing the task of this forecasting algorithm.

Since the fusion model proposed earlier in [1] is controlled manually i.e. the user manually

started the algorithm and manually stopped the algorithm and hence there was no specific

53

stopping condition for genetic programming. This makes the previous model open bounded and

also it is not possible for the user to determine the accuracy of the forecasting function developed.

In the model implemented in this thesis, the user is allowed to specify a mean square error (MSE)

limit which is used to check (explained in section 3.6.2) the quality of the forecasting condition

developed. This makes the user be more sure about how accurate is the prediction. Based on the

MSE limit specified by the user, following two factors are dependent,

- Accuracy: As the MSE (value) limit decreases the accuracy of the predictor (forecasting

function) increases.

- Execution Time: As the MSE (value) limit decreases the time taken for developing the

desired predictor (forecasting function) increases.

Since the time taken by the model implemented in this thesis cannot be compared with the

previous model, the time taken was compared by executing the implemented model on a different

number of processors. This comparison shows that the time taken by the implemented model

decreases as the number processors used for execution increases. As a future work, this

implemented model can be improved by introducing more concordance computation methods to

find a much better concordant segment of the time series for prediction.

54

REFERENCES

[1] Mahesh S. Khadha, Benjamin Popp, K.M. George, N Park: “A New approach for time series

forecasting based on genetic algorithm”, CAINE 2010

[2] Mujahid Tabassum and Kuruvilla Mathew, "A Genetic Algorithm Analysis towards

Optimization solutions", International Journal of Digital Information and Wireless

Communications (IJDIWC) 4(1): 124-142, The Society of Digital Information and Wireless

Communications, 2014 (ISSN: 2225-658X)

[3] William B. Langdon, Riccardo Poli, Nicholas F. McPhee, & John R. Koza, “Genetic

Programming: An Introduction and Tutorial, with a Survey of Techniques and Applications”,

Studies in Computational Intelligence (SCI) 115, 927–1028 (2008).

[4] Kendall, M., A New Measure of Rank Correlation,”Biometrika”, Vol. 30, pp. 81-89, 1938

[5] Oklahoma State University High-Performance Computing Center: http://hpc.it.okstate.edu/

[6] William Gropp, Ewing Lusk, Nathan Doss, Anthony Skjellum, "A high-performance, portable

implementation of the MPI message passing interface standard", Parallel Computing 22 (1996)

789-828

[7] Mark Baker, Bryan Carpenter, Aamir Shaf, "MPJ Express: Towards Thread Safe Java HPC",

Cluster Computing, 2006 IEEE International Conference on 25-28 Sept. 2006

[8] Aamir Shafi, Jawad Manzoor, Kamran Hameed, "Multicore-enabling the MPJ express

messaging library", PPPJ '10 Proceedings of the 8th International Conference on the Principles

and Practice of Programming in Java, Pages 49-58

[9] MPJ Express User Guide, http://mpj-express.org/docs/guides/linuxguide.pdf

[10] M. Oussaidene, B. Chopard, O. V. Pictet, M. Tomassini: “Parallel Genetic Programming: an

application to Trading Models Evolution”, “Parallel Computing, 23:1183-1198, 1997”

[11] Fernandez F., Tomassini M., Punch III, W. F., Sanchez J. M., “Experimental Study of

multipopulation parallel genetic programming”, “EuroGP 2000, LNCS 1802, pp. 283-293, 2000”

http://hpc.it.okstate.edu/
http://mpj-express.org/docs/guides/linuxguide.pdf

55

[12] F. Fernandez, M. Tomassini, L. Vanneschi, L. Bucher: “A Distributed Computing

Environment for Genetic Programming Using MPI”, “EuroPVM/MPI 2000, LNCS 1908, pp.

322-329, 2000”

[13] S. Baluja, “The evolution of genetic algorithms: Towards massive parallelism”, “in

Proceedings of the Tenth International Conference on Machine Learning, San Mateo, CA, 1993,

pp. 1-8, Morgan Kaufmann”.

[14] T. Starkweather, D. Whitley, and K. Mathias, “Optimization using distributed genetic

algorithms”, “Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer

Science, pp. 176-185, Heidelberg, 1991”

[15] Jing-Jun Zhang, Wen-Juan Liu, Guang Yuan Liu: “Parallel Genetic Algorithm Based on the

MPI Environment”, “TELKOMNIKA, Vol. 10, No. 7, November 2012, pp. 1708-1715 e-ISSN:

2087-278X”

[16] Janko Strabburg, C. Gonzalez-Martel, V. Alexandrov: “Parallel genetic algorithms for stock

market trading rules”, “International Conference on Computational Science”, ICCS 2012

[17] E. Cantu-Paz, “A Survey of Parallel Genetic Algorithms”, “Technical Report, IlliGAL

97003, University of Illinois at Urbana-Champaign, 1997”

[18] P. Adamidis, “Review of parallel genetic algorithms bibliography”, “Technical Report

version 1, Aristotle University of Thessaloniki, Thessaloniki, Greece, 1994”

[19] M. Nowostawski, R. Poli: “Parallel Genetic Algorithm Taxonomy”, “Knowledge-Based

Intelligent Information Engineering Systems, 1999. Third International Conference”

[20] Y. K. Kwon, B. R. Moon, “Daily Stock Prediction Using Neuro-genetic Hybrids”, GECCO

2003, LNCS 2724, pages 2203-2214, 2003

[21] M. Oussaidene, B. Chopard, O. V. Pictet, M. Tomassini: “Parallel Genetic Programming: an

application to Trading Models Induction”, “Genetic Programming 1996, pages 357-362. The MIT

Press, Cambridge MA, 1996. Proceedings of the First Annual Conference, July 28-31, 1996,

Stanford University”

[22] A. Munawar, M. Wasib, M. Munetomo, and K. Akama, “A Survey: Genetic Algorithms and

the Fast Evolving World of Parallel Computing”, “in the proceedings of IEEE conference, 2008”

[23] George Em Karniadakis, Robert M. Kirby II, “Parallel Scientific Computing in C++ and

MPI”, “published in 2003”

[24] MPJ Express: http://mpj-express.org/

[25] MPJ Express: http://mpjexpress.blogspot.com/

[26] Message Passing Interface Forum: http://www.mpi-forum.org

[27] Genetic Programming Image: http://dave-reed.com/csc550.S03/Presentations/GP.ppt

http://www.mpi-forum.org/
http://dave-reed.com/csc550.S03/Presentations/GP.ppt

56

[28] Computing cluster image: https://en.wikipedia.org/wiki/Computer_cluster; this image was

used to recreate and represent the OSU Cowboy High Performance Computing Cluster [5]

graphically.

[29] MPJ Express architecture: http://mpj-express.org/software/mpj-design-newest.png

[30] MPI Program structure: https://computing.llnl.gov/tutorials/mpi/

[31] Walter Daelemans, “Machine Learning Approaches”, Syntactic Wordclass Tagging Volume

9 of the series Text, Speech and Language Technology pp 285-304

[32] Christopher Bishop, “Pattern Recognition & Machine Learning”, ISBN: 978-0-387-31073-2

[33] David M. Allen, “Mean Square Error of Prediction as a Criterion for Selecting Variable”,

Technometrics, Vol. 13, No. 3 August 1971, pp. 469-475

https://en.wikipedia.org/wiki/Computer_cluster
http://mpj-express.org/software/mpj-design-newest.png
https://computing.llnl.gov/tutorials/mpi/

VITA

SREENIVASA SIVA BHANODHAY NANUGONDA

Candidate for the Degree of

Master of Science

Thesis: PARALLEL IMPLEMENTATION OF A FORECASTING ALGORITHM

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in December, 2015.

Completed the requirements for the Bachelor of Technology in Electronics &

Communication Engineering at Jawaharlal Nehru Technological University,

Hyderabad, India in 2013.

Experience:

 Lead developer & Technologist | Legal Market Stack, Cary – NC | May 2014 – Aug 2014

 Worked closely with the CEO. Advisor & decision maker for the technologies and
methodologies used in the project.

 Created and managed AWS-EC2 instances to setup development & production
servers of the company.

 Worked from scratch in design, development, testing and launching a
cloud-based practice management solution for the legal community. This
included SCRUM calls and regular strategy management sessions for business
development and planning.

 Wrote automation scripts that run on the server side to automatically
deploy a completely new, full-featured professional website customized with
client’s requirements; this automatic deploy process also includes client’s
Customer Relationship Management tool and email account on the
company’s CRM-server & email-server respectively. Automatic
acknowledgment emails sent.

