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CHAPTER 1

INTRODUCTION

The demand for hardware encryption is growing at a fast pace as the evolution of

technology and digital electronics has matured to allow society to stay connected and

simplify daily life. These modern day conveniences that allow us to shop on-line,

easily perform bank transactions, and surf the web from mobile hotspots also makes

our personal data vulnerable to attack.

Over the last few years the consumer market has shown a stronger interest in

protecting data due to the damaging effects it could have on a companies profits and

reputation. Recently, Comcast decided to encrypt all the channels they are digitally

transmitting, requiring customers to have a special set-top box to decode the incoming

signal [1]. This was done to avoid non TV subscribers from getting these channels

for free. In the gaming industry, Sony Playstation 3 uses encryption to only allow

authorized games to be played only on their console. The security of financial data

is also a major concern where Point of Sale terminals are a vital attack point, such

as the 2013 Target Hack where unencrypted credit and debit card information was

harvested from around 40 million customers [2]. Consequently, the need for efficient

security and encryption is important in today’s society.

Hardware encryption plays a vital role in the military’s transportation, communi-

cation and surveillance needs. Unencrypted navigation and reconnaissance informa-

tion can allow adversaries to intercept and spoof a plane or UAVs GPS coordinates

or view of what it sees [3]. And, it is damaging when government agencies fail to

properly use encryption to protect classified and sensitive data. For example, [4] dis-
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cusses how secret government technology blueprints were stolen by Chinese hackers

and a data breach possibly caused the striking resemblance of China’s J-31 to the

US-F-35. Worse yet, it was announced that hackers infiltrated government systems

to obtain unencrypted personal data and social security information for up to one

million federal employees[5].

Physical implementation is also an important consideration as it impacts security,

speed, area, and power of devices. For systems dealing with national security and

protection of classified data, designers may emphasize speed and security. On the

other hand, the desire for high speed and high throughput can be the goal for net-

working applications that require data transmission of secured information. Portable

electronics such as RFID cards, smartphones and activity trackers might choose to

optimize power and area efficiency due to a finite battery power source and a small

form factor.

Previously, Advanced Encryption Standard (AES) implementations for both Field

Programmable Gate Arrays (FPGAs) and Application Specific Integrated Circuits

(ASICs) have been introduced. Flexibility was described in [10] [11] [12] [20] with

the ability to allow multiple key lengths, and also in [13] where multiple modes of

operation were supported in hardware. Round key generation and pipeline ability

affecting the throughput of a design were analyzed in [20] [21] [23]. On the fly key

generation was analyzed in [20] and compared to round key storage in [21], both of

which were ASIC designs, however, [23] performed the same comparative analysis in

an FPGA. The substitution box (SBOX) used in the SubBytes step proves to have

the biggest impact on area, speed, and power which is why many previous designs

focus on this implementation feature most [14] [15] [16] [17] [18] [19] [22]. In [22],

it was expressed that a high performance implementation is achieved by using 16

copies of this SBOX to perform the byte substitution. In [11] [13] [14] the SBOX is

implemented as a look up table, whereas, in [15] [16] [17] [18] a combinational logic

2



approach is taken, using composite field arithmetic to perform the SBOX substitution.

This thesis will leverage previous work and compare and contrast a wide range

of implementations in a single source. These will be demonstrated in 65 nanometer

technology and the impact of these features have on the trade space will be discussed.

1.1 Research Goals

The main goal of this thesis is to provide an organized collection of different AES

algorithm features like key size, block cipher mode, round key generation and storage,

loop unraveling and pipelining and summarize their impact on the design tradeoffs of

speed, area, power, and throughput for others to use as a quick reference. Another

goal of this thesis is to provide a good explanation of the the AES algorithm and

identify the areas that are critical to optimize. Also, this thesis should provide a

detailed description of the designs discussed as well as the scripts and test benches

used for their evaluation.

1.2 Report Format

Chapter 2 provides an overview of the AES algorithm where the details of each step

of the process is explained as well as the different modes of encryption that are

commonly used when encrypting large blocks of data. An overview of the ASIC

design flow process is also described to show of how the work performed in this thesis

was executed and how it fits into the bigger picture of VLSI design.

In Chapter 3 details of the different design implementations are elaborated and

the methodology for creating, testing and evaluating these designs is presented. The

Computer Aided Design (CAD) tools used to facilitate this process are mentioned

and the test benches used to verify the correctness of the designs are described as

well as how scripts were used to aid in the CAD process.

Chapter 4 contains the results of each design described in Chapter 3. Finally,

3



the conclusion summarizes the results and findings of the work described in the pre-

vious chapters and discusses how this can benefit future AES hardware encryption

designers. In addition, some concluding ideas are given for future work in this area.
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CHAPTER 2

Background

Encryption allows data to be securely stored, authenticated, and transported from

one place to another by encoding it in such a way that it is incomprehensible to

an attacker. The encryption process uses a cipher and secret key to transform the

original message, as shown in Figure 2.1

Figure 2.1: High Level Encryption

There are two types of encryption, asymmetric and symmetric key encryption.

Asymmetric uses a different key, commonly known as a public private pair, to en-

crypt and decrypt data. On the other hand, symmetric key encryption uses the same

key for both encryption and decryption, making the secrecy of the key vital to the
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message security. Symmetric key encryption is commonly used because it is much

faster compared with asymmetric and will be the focused form of encryption for

this thesis. Although there are many different ciphers that can be used for encryp-

tion(AES, DES, Triple DES, Blowfish, Serpent), both the sender and receiver must

agree on and negotiate a key prior to sharing data.

2.1 AES Algorithm Overview

The Advanced Encryption Standard(AES) is a symmetric key algorithm that is con-

sidered stronger than its predecessor Data Encryption Standard (DES) because it

takes 5x1021 years for a brute force attack on an AES128 key as opposed to 400 days

to crack a DES key [8]. The AES was proposed by Vincent Rijmen and Joan Daemen

in 1999 in response to a request by the National Institute of Standards in Technology

(NIST) for new a encryption method and has been chosen as the preferred standard

of encryption [9].

The AES algorithm is structured to perform a series of four steps, SubBytes,

ShiftRows, MixCols, AddRoundKey, each of which mathematically transform an in-

put data block. Although it was proposed by Rijndael that the input data block sizes

could be either 128 bit 192 bit or 256 bit, the AES standard defines a fixed input

data block size of 128 bits [6]. The 128 bit input data block is conceptually arranged

in a 4x4 matrix of bytes with each column of bytes representing a word. This is often

referred to as a state matrix or state array and is shown in Figure 2.2

In [7] each of the data bytes of the state array represent elements in the GF(28)

finite field. The byte, consisting of 8 bits, is represented as a polynomial in this finite

field as:

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0 (2.1)

where the coefficients b7 b6 b5 b4 b3 b2 b1 b0 represent each bit can take on the value 1

6



Figure 2.2: State Array

or 0. For example, hexadecimal ‘53’ is represented by the polynomial x6 +x4 +x+1.

The series of steps is usually referred to as a round and is iterated a specific

number of times depending on the key length. There are three key lengths available,

128, 192, 256 bits. A table of key lengths and the associated number of rounds is

shown in Figure 2.3

Figure 2.3: Number of Rounds for Various Key Lengths

A 128-bit key length allows for 3.4x1038 different key combinations, whereas, a

256-bit key length allows for 1.16x1077 different combinations. These numbers are

important when discussing a brute force attack on encryption and are sometimes

used as justification for using a 256 bit key instead of a 128 bit one. Since the key

length impacts the number of rounds performed, the importance of security compared

to the combined impact of area, speed, and power is often analyzed prior to choosing

a key length. Figure 2.4 shows the full encryption process as a block diagram when

7



a 128 bit key is used.

Figure 2.4: Encryption Process for 128 Bit Key

According to the AES standard [6], the initial block of data or plaintext is trans-

formed using the original key in the AddRoundKey step prior to going through the

designated number of rounds. Next, the SubBytes, ShiftRows, MixColumns, and

AddRoundKey transformations are performed sequentially and then that process is

iterated for one less than the number of rounds required. The last round is shown

outside the iteration loop because it is special and does not include the MixColumns

transformation. The output of the final round is the encrypted data block or cipher-

text.
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2.2 SubBytes Transformation

The SubBytes transformation updates each byte in the state array with a correspond-

ing byte in the Substitution Box (SBOX). The SBOX is the result of performing the

multiplicative inverse followed by the affine transform of an element in the state ar-

ray [7]. The details of this process are often obscured and a Look Up table is often

used, since each 8 bit element will map to the same value after performing these two

operations, as shown Figure 2.5.

Figure 2.5: The SBOX

Unless this table is replicated 16 times, like the high performance implementation

described in [22] suggests, the SubBytes step of the round can take 16 clock cycles.

Normally, this is undesirable, so multiple copies of this table are made so that the

look-up can occur within one clock cycle. Normally this will have a impact on the

area consumption with the severity varying depending on the type of platform used.

Therefore, it is important to understand the process used to generate the SBOX, so

that the decision of whether or not to use a look up table can be made.
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2.2.1 Extended Euclidean Algorithm

One way to find the multiplicative inverse is to use the Extended Euclidean Algorithm

[24]. An example of the algorithm is given to help explain the process and Figure 2.6

presents the process.

Figure 2.6: Extended Euclidean Algorithm Example

The first column in Figure 2.6 labeled i, is a variable to keep track of the iter-

ation, the next three columns keep track of the, remainder, quotient and auxiliary.

Remainder(1) is filled in with the polynomial that defines the finite field, as given in

the AES specification as x8 + x4 + x3 + x + 1 or hex ‘11B’ [6]. The Remainder(2)

is the number whose inverse needs to be determined. In this example, the multi-

plicative inverse of hex ‘53’ is the goal, so ‘53’ is represented in polynomial form.

Quotient(1) and Quotient(2) are left blank because they are not assigned yet. In

addition, auxiliary(1) and Auxiliary(2) are initialized to 0 and 1, respectively. Then,

to calculate the polynomial for Remainder(3) the modulus operation is performed:

Remainder(1) mod Remainder(2). To calculate the polynomial for Quotient(3) the

division operation is performed: Remainder(1)/Remainder(2). To calculate the poly-

nomial for Auxiliary(3) the operation is: Quotient(3)*Auxiliary(2) + Auxiliary(1).

These calculations are shown in Figure 2.7

Normally, performing the Extended Euclidean algorithm is an iterative process

that ends when a remainder of 1 is reached. The auxiliary of the ith iteration where

a remainder of 1 was reached is the inverse of the original number. So, after going
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Figure 2.7: Extended Euclidean Algorithm Calculations

through the process in the example, the multiplicative inverse of hex ‘53’ is hex ‘CA’.

For most implementations, this is difficult to implement in hardware, so another

approach using composite field arithmetic is often used.

2.2.2 Composite Field Arithmetic

In [16] another approach for performing the multiplicative inverse is explored. This

is shown in the block diagram in Figure 2.9

Figure 2.8: Multiplicative Inversion Using Composite Field Arithmetic [16]

Figure 2.9: Legend of Multiplicative Inversion Boxes [16]

For this work, the multiplicative inverse calculation is decomposed in composite
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field arithmetic to use lower order fields like GF(24), GF(22) and GF(2) as opposed

to the more complex GF(28). First, the element to be substituted is translated to

composite field representation via an isomorphic function. The isomorphic function

uses matrix multiplication to combine the element to be substituted with a fixed

matrix. Next, a number of different operations like squaring, multiplication, addition,

and inversion are performed in the lower level fields, as shown in Figure 2.9. Once

this is complete, the result is mapped back to GF(28) field via the inverse isomorphic

function.

Once the multiplicative inverse is completed for each cell in the state matrix, the affine

Figure 2.10: Affine Transform

transform is taken to mangle the bits. The affine transform is defined by the matrix

A, as shown in Figure 2.10 where X is the new value after taking the multiplicative

inverse. Multiplying A and X using matrix multiplication and XORing that result

with B is shown as a series of XOR equations shown in Figure 2.11.

In Figure 2.11, the affine transform of the hex value 0xCA is shown to be 0xED. The

goal of the SBOX is to provide non-linearity in the cipher, reducing the correlation

between the input and output bits [7].

For the decryption process the InvSbox is used. This process works by generating the

InvSbox, done in the opposite manor, where, first, the inverse affine transform of the

input value is taken. This is defined by the matrix in Figure 2.12.
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Figure 2.11: Affine Transform XOR Equations

Figure 2.12: Inverse Affine Transform

Then the multiplicative inverse is done by either using the Extended Euclidean

Algorithm or composite field arithmetic discussed previously. The resulting InvSbox

is shown in Figure 2.13

2.3 ShiftRows Transformation

The ShiftRows transformation shifts the rows of the state array by a certain amount.

Row(0) is left alone, Row(1) is shifted to the left one byte, Row(2) is shifted to the

left two bytes and Row(3) is shifted to the left three bytes. After the shift rows

transformation the byte order of the block is scrambled and shown in Figure 2.14
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Figure 2.13: The Inverse SBOX

Figure 2.14: Shift Rows for Encryption

For decryption, bytes are shifted the opposite direction, to the right instead of to

the left. So Row(0) is left alone, Row(1) is shifted to the right by one byte, Row(2)

is shifted to the right by two bytes and Row(3) is shifted to the right by three bytes.

Figure 2.15: Inverse Shift Rows for Decryption

2.4 Mix Columns Transformation

In the MixColumns transformation the state array is multiplied by a circulant Max-

imum Distance Separable (MDS) matrix. The columns of the circulant matrix are
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shifted to the right circularly. The first columns is left alone, the second is shifted by

one byte, the third column is shifted by two bytes and the fourth column is shifted

by three bytes. The circulant matrix used in the AES algorithm is defined by the

polynomial c(x) = 3x3 + x2 + x + 2 where 2 represents c0, 1 represents c1 and c2,

and 3 represents c3 shown in Figure 2.16. Each column of the state array is then

multiplied by this entire circulant matrix to produce each column of the new state

array after the transformation.

Then, the correct matrix multiplication is performed, as shown in Figure 2.17,

Figure 2.16: Circulant Matrix

Figure 2.17: Circulant Matrix Column Multiplication

where the first row of the circulant matrix is multiplied by the first column of the

state array. The first operation is multiplication by hex 0x2, which in finite field

mathematics is a bit shift to the left of the original value. If the most significant

bit is a 1, the result is XORed with hex 0x1B [7]. In performing multiplication by

0x3 it can be split into the XOR combination of multiplication by 0x2 and 0x1 to

simplify the calculation. This is shown in Figure 2.18. The results of each of these

multiplications are XORed together to obtain the first element of the new column.

This process is iterated to determine each element in the new state array.
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Figure 2.18: Multiplication by 3 in GF(28)

The purpose of the MixColumns step along with the ShiftRows step is to provide

diffusion in the Rijndael cipher [7]. Diffusion in cryptography means the output bits

depend on the input bits, but in a complex way. If one input bit is changed, the output

bits should change completely, in an unpredictable manner [29]. For decryption, the

InvMixColumns step is performed using the Inverse Circulant Matrix shown in Figure

2.19

Figure 2.19: Inverse Circulant Matrix

The multiplication of each element by 0x9 0xB 0xD and 0xE are simplified when

broken up into an XOR combination of simpler multiplications. For example, multi-

plication by 0x0B can be decomposed into multiplication by 0x8, which is a shift left

by 3, XORed with multiplication by 0x2, shift left by 1 and XORed with multiplica-

tion by 0x1, which is just the original element.The MixColumns and InvMixColumns

steps are not performed in the final round of the encryption and decryption process.
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2.5 Key Expansion

The original key is expanded to create a key for each round which is used in the

AddRoundKey step of the encryption process. A 128 bit key is arranged in the

same state array that was previously described for the data. It contains 4 words, or

columns in the state array representation, an additional 40 words are needed for the

10 rounds of the encryption process. To visualize the key expansion process, a key

state array is shown in Figure 2.21 followed by blank round key state arrays. Each

column is labeled to represent the word number, it can be seen that the first 4 words,

W0W1W2W3 represent the original key. This model will be used to explain the key

expansion process using a 128 bit key.

A round constant is needed to determine each round key and can be coded as a

simple look up table, however, the derivation of this element will be explained briefly.

The round constant is a word whose right most bytes are always zero: RCON[i] =

(RC[i], ‘00’,‘00’,‘00’) The initial round constant for encryption is RC[1] = 01 where

the following ones can be determined by : RC[i]= 02 * RC[i-1], or a simple bit shift

of the previous one. The 10 round constants needed for AES128 are shown in Figure

2.20

Figure 2.20: RCON Table

It is important to note that when calculating the round constant for the 9th round

that the MSB before the shift is a ’1’ and, because of this, the resulting value after the

shift is XORed with hex 0x1B. For decryption, the RCON table is the exact opposite.

That is, the first RCON value is 36, then 1B, then 80, etc. To determine if the first
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word of the round key is different and slightly more complicated than the other three

words. As shown in Figure 2.21, the first word after the original key is labeled Wi,

and the words of the original key are labeled in decrementing order. Then, a series

of steps are performed to find Wi

Figure 2.21: Key Expansion First Column Setup

Figure 2.22: Key Expansion First Column

The first Wi−1 is rotated to the left by 1 byte as shown in step 1 of Figure

2.22. Next, each byte is substituted in step 2 using the S-box look up table, which

was previously explained. Then, that word is XORed with the first word of the

RCON table, shown in step 3. The purpose of the round constant is to destroy

any symmetries that may have been introduced in other steps of the key schedule [7].

Finally, the result of this is XORed with Wi−4 in step4 and becomes Wi. To determine

the remaining columns of the new round key the conceptual picture is updated and

relabeled to place Wi where the new column to be determined, shown in Figure 2.23.

18



Figure 2.23: Key Expansion Other Columns Setup

Figure 2.24: Key Expansion Other Column

When calculating any round key word other than the first one, Wi−1 is XORed

with wi−4, it is i-4 because the key length is four words. This is repeated two more

times to complete the last two words of the first round key. The key expansion is

then performed 9 more times to complete the key schedule, resulting in the original

key plus 10 round keys that are used in the encryption process.

It is important to note that the first word of a new round key happened to be the

same word that required the extra steps to determine. In a more general case, the

special set of steps is done to any word that is a multiple of the original key length.

For AES128, this is W4, W8, W12, W16 ... W40.

For AES192, 12 round keys are needed, that requires a total of 52 round key words

and includes the original key. The process for determining the key schedule is the

same as AES128 except the special set of steps is done on W6, W12, W18...W48.

For AES256, 14 round keys are needed, that requires a total of 60 round key words

and includes the original key. The process for determining the key schedule is the
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same as AES128 except the special set of steps is done on W8, W16, W24...W46.

Another difference when using a 256 bit key is that there is another transformation

that is done on every 8th word starting at W12 and continuing with W20, W28,

W36...W52. Normally, Wi is XORed with Wi−8, i-8 because the key length is 8, but

instead each byte of Wi is first transformed using the SBOX substitution and then

XORed with Wi−8.

The key expansion algorithm assures that there are no weak keys [7], which is

important because a weak key reduces the security of the cipher in a predictable

manner potentially helping attackers of the system.

2.6 AddRoundKey Transformation

In this step of the encryption process, the state array is XORed with a round key

generated from the previously mentioned key expansion process.

Figure 2.25: Add Round Key Step

The purple matrix in Figure 2.25 represents the current state array, the gray

matrix represents the round key, and the resultant matrix is shown in blue. During

this step, each word of the state array and round key matrices are XORed together

to create a word in the resultant matrix.
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2.7 Decryption Process Overview

The decryption process is similar to the the encryption process in that four transfor-

mations are performed iteratively for 9 rounds and a final special round which omits

the MixColumns step. The difference is that the inverse transformations are per-

formed for all but the AddRoundKey step. The flow diagram in Figure 2.26 depicts

the decryption process.

Figure 2.26: Decryption Process

2.8 AES MODES OF OPERATION

Practical applications of AES encryption usually work with data pieces larger than

the simple 128 bits that the algorithm accepts as an input. Because of this, different

modes of operation are used to allow large amounts of data to be encrypted under
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the same key. For a better understanding of these modes the Forward Cipher will be

the name used for the encryption process and the inverse Cipher will be the name

used for the decryption process as described previously in the chapter.

2.8.1 ECB MODE

An Electronic Code Book or ECB mode is the simplest way to encrypt a large message.

In this mode, the message is broken up into 128 bit blocks and the Forward Cipher is

applied to each block, as shown in Figure 2.27. To decrypt, the ciphertext is broken

up into 128 bit blocks and the Inverse Cipher is performed, as shown in Figure 2.28

Figure 2.27: ECB Mode Encryption

Figure 2.28: ECB Mode Decryption

One problem with this mode of operation is that if a message contains a large

number of identical data blocks, they will all be mapped to the same cipher text

blocks. An example of this is shown in Figure 2.29 [25]. That is, when the image
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is encrypted using ECB mode it is not truly masked, because all of the pixels that

were the same color were mapped to the same encrypted value. This is a flaw when

encrypting large messages under the same key. The image on the right in Figure 2.29

shows the same original image encrypted using one of the other modes of encryption,

discussed later in the section [26].

Figure 2.29: Linux Penguin Encrypted with Different Modes [25]

2.8.2 Initialization vector

An initialization vector is used in all other modes of operation to produce unique

ciphertext even if the same data is encrypted multiple times with the same key. The

initialization vector does not need to be kept secret, however, it is important not to

reuse the same vector under the same key [26].

2.8.3 CBC Mode

In cipher block chaining or CBC mode, the initial plaintext block is XORed with an

initialization vector, then the Forward Cipher is applied. Each of the subsequent plain

text blocks are XORed with the previous cipher text and then put into the Forward

Cipher for encryption, as shown in Figure 2.30. For decryption, the cipher text is

run through the Inverse Cipher and then XORed with the same initialization vector
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that was used for encryption. Each subsequent ciphertext is put through the Inverse

Cipher and then XORed with the previous ciphertext, as shown in Figure 2.31.

Figure 2.30: CBC Mode Encryption

Figure 2.31: CBC Mode Decryption

With this mode of operation, encryption requires ciphertext from the block before

that is not available until after the Forward Cipher is applied, therefore, it cannot be

parallelized. The decryption process, however, can be parallelized because it uses the

previous blocks ciphertext which is available at the start of decryption. The message

must be a multiple of 128 bits or it must be padded to be a multiple of 128 bits.

Another drawback with this mode is that a one bit change in the plaintext affects all

subsequent ciphertexts during encryption. A one bit change in the ciphertext causes

a complete corruption of that current blocks plaintext and inverts that same bit in

the following blocks plaintext [26].
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2.8.4 CFB Mode

For Cipher Feedback or CFB mode the initialization vector is encrypted at the start

for both encryption and decryption and the result is XORed with either the plaintext

block or the ciphertext block. For encryption, each of the subsequent blocks use the

previous ciphertext as the input to the Forward Cipher and then the plaintext is

XORed with the result, as shown in Figure 2.32. For decryption, each subsequent

block uses the previous ciphertext as the input to the Forward Cipher and the result

is XORed with the current ciphertext to produce the plaintext, as shown in Figure

2.33.

Figure 2.32: CFB Mode Encryption

Figure 2.33: CFB Mode Decryption

One advantage of using CFB mode over the previously mentioned CBC mode is

that both encryption and decryption use the Forward Cipher logic. Another, is that

the message does not need to be padded to a multiple of 128 bits. Similarly to CBC,
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the CFB mode of encryption cannot be parallelized because it uses the previous blocks

ciphertext, which is not available until after the Forward Cipher and XOR operations

are performed. However, the decryption process can be parallelized, because it uses

the previous blocks ciphertext as the input to the Inverse Cipher, which is available

at the start of decryption. Just like the CBC mode, a one bit change in the ciphertext

causes an inverted bit in the current blocks plaintext and a complete corruption in

the following blocks plaintext [26].

2.8.5 OFB Mode

For the Output Feedback or OFB mode the initialization vector is encrypted at the

start and the result is XORed with either the plaintext block or the ciphertext block.

For encryption, each of the subsequent blocks uses the previous Forward Cipher blocks

as the input to the current Forward Cipher. The current Forward Cipher result is

XORed with the plaintext to generate the ciphertext as shown in Figure 2.34. For

decryption, each subsequent block uses the previous Forward Cipher blocks as the

input to the current Forward cipher. The current Forward Cipher result is XORed

with the ciphertext to produce the plaintext as shown in Figure 2.35.

Figure 2.34: OFB Mode Encryption

Similarly to CFB, an advantage to using OFB mode is that both encryption and

decryption only use the Forward Cipher logic. Neither the encryption nor decryption

process can be parallelized, because the next input relies on the previous output from
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Figure 2.35: OFB Mode Decryption

the Forward Cipher. However, since the initialization vector, not the data, is fed into

the forward cipher, it is possible to perform the forward cipher calculation on the

initialization vector up front and then parallelize the XOR calculation with the data.

The general rule of using a unique initialization vector with each message under the

same key applies. Flipping a bit in the ciphertext produces the same flipped bit in

the plaintext. This does not need to be padded to a multiple of 128 bits [26].

2.8.6 CTR Mode

The Counter or CTR mode of operation uses a counting vector for encryption and

decryption as the input to the Forward Cipher instead of an initialization vector. The

counting vector must not repeat for any blocks encrypted under the same key and can

consist of a nonce concatenated with a count value or simply just a count value. For

encryption, the result from the Forward Cipher is XORed with the plaintext, whereas,

for decryption the result is XORed with the ciphertext as shown in Figures 2.36

and 2.37, respectively.

Both encryption and decryption use only the Forward Cipher and the message

does not need to be a multiple of 128 bits, just like CFB and OFB. Since this mode

does not rely on calculations of the previous block of data for encryption or decryption

both can be parallelized. Flipping a bit in the ciphertext produces the same flipped
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Figure 2.36: CTR Mode Encryption

Figure 2.37: CTR Mode Decryption

bit in the plaintext and vice versa [26].

It is a common misconception that counting mode is suseptable to differential

cryptanalysis due to the fact that counting vectors for successive blocks only differ

by a small amount. However, if conclusions can be made about the result of the

cipher because of the knowledge of the input, this would be an inherent flaw with the

Forward Cipher and not a result of the Counter Mode [27].

Figure 2.38: CTR Mode Decryption

28



Figure 2.38 shows a comparison of each of the modes of operation described in

this chapter. All modes are compared based on hardware simplicity, whether both

the forward and inverse cipher are needed, and can the encryption and decryption

process be pipelined or does it depend on the previous blocks cipher results. After

analyzing the table, the counting mode seems to be optimal as it is just as robust

as the others modes while only needing the Forward Cipher logic and also has the

ability to be pipelined.

2.9 ASIC Design Flow

The process of going from design concepts to a finished product is represented in a

simplified design, as shown in Figure 2.39. This is an iterative process and is in some

cases can be hierarchical. The process has four main phases, VHDL Design Entry,

Synthesis, Physical Layout and Fabrication. At the end of each phase, simulation is

performed to verify the design which is important to the process.

Beginning with a design concept the details of the hardware are written using a

Hardware Description Language (HDL). As the hardware is being developed, tests

are written to exercise the features of the hardware and detect correct operation. If

the block does not function as intended it must be altered and/or redesigned. Once

a correct Register Transfer Level (RTL) simulation is working, the design is then

synthesized, where the described logical operations are mapped to actual technology

specific gates. It is important during the design phase that the hardware is written

explicitly to make it easier for the synthesizer to translate the logic correctly. As the

design is being mapped to gates the tool takes into consideration timing, power, and

area and balances these using constraints. After the most optimal design is achieved,

reports are generated summarizing each trade space. If there are any violations in

this report, where the tool was unable to meet the clock speed, further investigation

is needed. In addition, the resulting synthesized netlist must be free of preliminary
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Figure 2.39: ASIC Design Flow

timing violations before it can be simulated.

Once the mapped design meets the constraints, the new netlist generated from

synthesizer is used to run a gate level simulation to ensure the logic was translated

properly. If there are any errors in simulation, the netlist must be analyzed to see

where the translation error occurred and the VHDL or constraint file must be altered

Next a working, mapped design is then entered into a place and route design

tool. Here, a floorplan is created based on the placement requirements defined for the

level of hierarchy; that is, at the top level this will be the footprint of the chip. The

placement of the gates and routing is done using a series of scripts containing specific
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detailed commands that direct the tool throughout the process. During place and

route, the tool optimizes the design for the new characteristics that was not taken

into account during the synthesis phase. For example, if a logic path is spaced out

across the length of the chip, the timing delay that is now introduced by the wire con-

necting them must be taken into account to still meet the clock speed requirements.

This timing analysis along with design optimization is done during this phase and a

resulting report is generated. If there are any path violations at this point, the series

of scripts used may need to be altered to guide the tool further.

Once a violation free design is achieved, a check called a Design Rule Check (DRC)

is done to ensure that all of the design rules defined by the fabrication facility are

met. This includes rules like minimum spacing between wires and minimum wire

width. Once these are all resolved, a new netlist is generated and is used in a timing

annotated simulation to verify that any alterations to the design to help with timing

did not impact its functionality. Finally, a DRC clean and timing accurate design

is extracted using another CAD tool. This creates a GDSII mask file which is then

sent off to the fabrication facility to construct the resulting design, completing the

hardware design process.

2.10 Summary

In this chapter a detailed explanation of AES encryption described each step of the

process, different modes of operation for large blocks of data, and also gave a brief

overview of the VLSI design process. The next section will discuss a number of

implementations considerations used in a tradeoff analysis to determine the best im-

plementation for users motivated in a couple of these areas.
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CHAPTER 3

METHODOLOGY

The starting design for this thesis was chosen due to availability. The design uses a

128 bit key that is expanded upfront and stored in two sets of key registers to allow

for two rounds of logic to be calculated at once. The design implements ECB mode

with the ability to support other modes with software. The design also uses a VHDL

coded look up table for the SBOX substitution.

The desired control design for this experiment is an AES unit with a 256 bit

key using the counting mode operation. Applications for a particular need of robust

security often desire AES256 because it is the least susceptible to brute force attack

when compared to other encryption methods; thus, NSA and government agencies use

AES256 to protect top secret data. For this reason it was chosen as the key size of the

control experiment. The ECB design provides a good starting design due to its ability

to support all the modes, however, it is usually not chosen unless flexibility is a design

requirement. As discussed in Chapter 2, the counting mode of encryption provides

a nice balance between robustness, pipeline ability and area. For these reasons this

specific mode was chosen as the control for the experiment.

To go from the starting design to the desired control design, one feature will be

changed at a time. First, the starting design will be implemented, tested to verify

correctness and then synthesized. Then alterations will be made to accommodate a

256 bit key and the design will be retested and synthesized. Finally, the 256 bit design

is modified to specify the counting mode operation and again tested and synthesized.

From the control design, different features of the design will be varied: the SBOX,
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Key Storage, number of rounds per clock cycle and pipleining, and they will be tested,

synthesized and documented. This will allow for an analysis of how these features

affect the design with regard to area speed and power. A summary of the features

associated with each of the design implementations that will be discussed in this

chapter is shown in Table 3.1.

Table 3.1: Summary of Implementations and Features

Design Key Mode Rounds/clk SBOX Key Gen Pipelined

AES128 128 ECB 2 LUT Stored No

AES256 256 ECB 2 LUT Stored No

AES256 CTR 256 CTR 2 LUT Stored No

AES128 CTR logicsbox 256 CTR 2 Logic Stored No

AES256 CTR OTF 256 CTR 2 LUT OTF No

AES256 CTR 4r 256 CTR 4 LUT Stored No

AES256 CTR pipelined 256 CTR 2 LUT Stored Yes

The next sections will describe these implementations in more detail.

3.1 AES-128

3.1.1 Design

The starting design uses a single 128 bit key that is loaded in and stored in a flip flop

based register. A top level block diagram for this design can be seen in Figure 3.1.

The top level input signals are critical to the operation of the lower level AES128 Core

Logic units’ functionality and are coordinated via a simple finite state machine. The

cloud of logic represents both combinatorial and sequential logic used to register the

incoming signals and manage a counter to keep track of the AES core logic behavior.
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An expanded view of the state finite machine is shown in Figure 3.2.

Figure 3.1: AES Top

Figure 3.2: AES State Machine

The finite state machine is initialized to the INIT state upon reset and immediately

goes into the Expand Keys state, because the loaded keys signal is initialized to 0.

Once expanded, the state machine moves to the IDLE state where it remains there
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until a start signal is received and the mode bit is set to either a 1, for encryption, or

0 for decryption. Upon completion of either the encrypt or decrypt function, the done

signal is asserted returning the state machine back to the IDLE state. The AES128

Core Logic block diagram is shown in Figure 3.3.

Figure 3.3: AES128 Core Logic

As in the top level block, signals pertaining to the data, key and control enter the

block and some logic determines how the signals are propagated to either the Key

expander, encrypt block, decrypt block and key registers. Since there is no desire to

have both the encryption and decryption units working at the same time, the data

input for the unit not being used is masked off so that they are not toggling at same

time, this will save on power. The key expander unit performs the key expansion

process discussed in Chapter 2 and is also shown in the Figure 3.4

All 10 rounds of the key are calculated and stored along with the original key

into two sets of register banks, an odd and an even, both of which have a read and

write port. Having access to both the odd and even key at once allows the ability

to perform two rounds per clock cycle. The round logic in the encrypt and decrypt
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Figure 3.4: Key Expansion Unit for 128b Key

blocks are unraveled to facilitate this. The encrypt and decrypt block data flows are

shown in Figures 3.5 and 3.6, respectively.

The SBOX substitution was implemented using a VHDL coded look up table, a

direct mapping of the inputs and outputs of the table shown in Figure 2.5. In coding

the SBOX like this, as opposed to a more defined look up table structure, allows the

synthesizer to optimize the logic as best as it can. Also, the SBOX block shown in

both the encrypt and decrypt data flow pictures is actually a collection of 16 copies

of the SBOX stamped out to allow for each byte lookup to be done in parallel, as

shown in Figure 3.7.

While this suggested approach requires more area to accommodate the SBOX

copies [22], it is done so that this step can be completed in one cycle, as opposed

to 16 cycles using a single SBOX table. Because two rounds are done at a time for

both the encrypt and decrypt block and the SBOX is also used in the key expander,
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Figure 3.5: Encrypt Data Flow

Figure 3.6: Decrypt Data Flow

the area increase is even greater than in [22]. This implementation performs basic

ECB mode encryption where additional modes of operation can be supported with

external logic or software.
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Figure 3.7: SBOX Replication

3.1.2 Simulation and Verification

A hardware test bench was written in VHDL to verify the design of this unit. The

hardware test bench uses file IO to read in a text file of NIST test vectors and then

simulates the units behavior using Mentor GraphicsR© ModelSimTM. The file contains

128 different plaintext options to be encrypted with the same key, all 0’s, and the

corresponding ciphertexts. These vectors were obtained from the suite of AES Known

Answer Test Vectors in [28] sample vectors shown in Appendix A.

The test bench first clears the important control signals and while holding the

block in reset. After toggling the reset signal the test bench waits a sufficient amount

of time so that the keys can be expanded and stored in the registers banks. This is

referred to as the initialization time and is used as a metric for evaluating the design

implementations. This value is measured in clock cycles from the time the unit comes

out of reset until the time that the loaded keys signal is high. Next, the test bench

reads a line of the file, which contains the plaintext, and sets this to the data in signal

and simultaneously puts a ’1’ on the mode and start bit. After waiting more than
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7 clock cycles, the next line of the file is read in and set to a variable ciphertext so

that it can be compared to the data out signal. If the two vectors are not equal, an

error signal is triggered. To potentially detect multiple errors, the error signal is set

to ’0’ after a few clock cycles. This process is repeated 127 more times to test all

of the different plaintext values. A count value keeps track of how many plaintexts

have been tested, when the last vector is tested a done signal is flagged to indicate

the completion of the test bench.

Latency and throughput are two other metrics that are used to evaluate these

implementations. Latency is defined as the time before the first encryption is available

on the output; like initialization time, it is also measured in cycles. This is measured

from when the first data in vector is dropped off to when the first data out is valid.

Throughput is the rate at which data can be encrypted, number of bits per second,

this refers to peak throughput assuming a full pipeline, if applicable. This is measured

in bits per second and is calculated by dividing the number of bits that are being

processed at a time by the product of the number of cycles the process takes and the

clock rate, as shown the Equation 3.1.

In ModelSimTMthe critical signals are brought into the wave file after the test is run

to detect if the design could properly encrypt the set of test vectors.

Throughput =
num bits

num cycles ∗ clk freq
(3.1)

3.1.3 Synthesis

Synthesis was done using SynopsysR© Design CompilerTM. A set of Tcl scripts contain-

ing the vital commands and constraints are used to facilitate the synthesis process,

for this thesis, two scripts are used. The first, is an ACS setup file which defines

the design library that will be used and also creates a link to the technology specific

files that contain critical timing and area information about the standard cells. The

39



other script is used to automate the commands for pulling in the VHDL design design

files, defining timing constraints, elaborating the design and reporting the necessary

information about timing area and power. The area taken from the synthesis area

report and is measured in square microns (um). The synthesizer uses the library files

for the standard cells, which contain sizing and timing information, to aid in this

calculation. This area is broken out into area of registers and area of combinational

logic. The speed of the design is calculated by inverting the clock period to get the

clock frequency, as shown in Equation 3.2.

Frequency =
1

clock per
(3.2)

The timing report from the synthesis tool is used to determine if the constrained

clock period was met. This report is broken into three types of paths, input to register,

register to register and register to output. The critical path is calculated using the

timing information for the cells along with the input, output and uncertainty timing

constraints to determine the timing for each path [30].

clock per ≥ input delay + uncertainty + critical path + setup time (3.3)

clock per ≥ uncertainty + critical path + setup time + clk to q (3.4)

clock per ≥ output delay + uncertainty + critical path + clk to q (3.5)

After providing a clock speed timing constraint along with clock uncertainty and

input and output constraints, the timing report will indicate whether the equations

for input to register, register to register, and output to register, defined in Equa-

tions 3.3, 3.4, 3.5, respectively, were met and if the design could function at the

assigned clock rate.
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A rough power estimate of the design is also reported from the synthesizer tool

which is a sum of the cell leakage power and dynamic power and is indicated in

mW. The dynamic power is broken up into cell internal power and net switching

power. The library files for the standard cells indicate the internal and leakage power

consumption of each cell, and the net switching power is based on a user defined, or

defaulted, switching activity value.

The clock period was set to 2.5ns to meet the desired operating frequency of 400

MHz. The input and output constraints were defined to be 20 percent of the clock

period, or 0.5ns, and the uncertainty was estimated to be 50ps. The tool optimizes

the logic accordingly to meet these timing constraints. With that said, the SynopsysR©

Design CompilerTMtool then optimizes for area once the timing constraints are met,

so the fastest design isn’t always achieved unless the clock period is dialed down until

failure. The reports are used to analyze the resulting netlist, to get an estimated

standard cell size area or estimated power, and to see whether or not the design

meets timing. After synthesis, the design is retested to insure the translation did not

change the behavior or misinterpret the intended behavior of the circuitry.

3.2 AES 256BIT KEY

For AES256, the top level was altered to accommodate an input key of 256 bits.

According to Figure 2.3, AES256 performs 14 rounds which requires a change to the

round counter logic. These changes to the top level block diagram are highlighted in

yellow in Figure 3.8. The state machine from Figure 3.2 remains unchanged. Since

14 total rounds are performed, this requires 7 iterations through the odd/even data

path, as opposed to 5 iterations with the 128bit key. Also, the size of the register key

banks are increased from 5 and 6 to 7 and 8 to accommodate the extra round keys.

These changes are shown in yellow in Figure 3.9.

The key difference between this design and the starting one is the key expansion
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Figure 3.8: AES-256 Top

Figure 3.9: AES-256 Core Logic

block. The key expansion process different for AES256 than it was for the AES128

and is shown in Figure 3.10.

3.2.1 Simulation and Verification

For simulation, there are only slight changes to the test bench from the starting test

bench. A longer key is inserted into the test bench and the time to wait to expand the

key and to wait for the encryption to complete is increased to accommodate the larger

key and extra rounds. The same synthesis script from the AES128 implementation
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Figure 3.10: Key Expansion Unit for 256 bit

was used for this implementation.

3.3 AES256 Counting Mode

The counting mode encryption implementation is an addition to the AES256 design.

Recall, the CTR mode encryption encrypts the initialization vector and not the data,

therefore, the Forward Cipher logic is utilized for both the encryption and decryption

process. The top level of the AES 256 counting mode block is shown in Figure 3.11.

The changes from the AES256 design are highlighted in yellow. The finite state

machine is simplified without the decrypt logic and is shown in Figure 3.12. The new

AES256 Counting mode core level logic is shown in Figure 3.13.
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Figure 3.11: AES 256 Top Specified for Counter Mode

Figure 3.12: AES 256 State Machine Specified for Counter Mode

3.3.1 Simulation and Verification

The test bench used for simulation and verification remains the same as the one

discussed before for AES256, because there were no CTR mode specific test vectors

provided in the Known Answer Test test suite. Since the data out is a result of an

XOR of the plaintext with the output of the Forward cipher, the data in vectors
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Figure 3.13: AES 256 Core Specified for Counter Mode

used in the previous simulations were fed in to the initialization vector port and the

data in vector was set to all 0s so that the data out would result in the same expected

ciphertext values. Again, the same synthesis script from the AES256 implementation

was used for this implementation.

3.4 Logical SBOX

Since the biggest area impact of an AES unit is typically related to its SBOX, it is im-

portant to explore the SBOX implementation. Utilizing 16 copies of the SBOX allows

the entire look up for all 16 bytes to be done in a single cycle. Previously, this was

coded in VHDL as a lookup table, however, this implementation explores computing

the multiplicative inverse and affine transform to perform the byte substitution, as

proposed in [15], [16], and [17].

In Chapter 2, Figure 2.9 shows the high level functions required to perform the

multiplicative inverse using composite field arithmetic. Each of the blocks are imple-

mented as a separate entity and the system is then build up from those sub blocks.
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There are no changes made to the top level aes block diagram, or state machine,

they are the same as shown in Figures 3.11 and 3.12, respectively. In Figure 3.14,

the changes to the encrypt data flow are shown in yellow. The odd and even la-

beled SBOXes are replaced with this hierarchical multiplicative inverse and the affine

transform instead of a VHDL coded look up table.

Figure 3.14: Encrypt Data Flow for Logical SBOX Implementation

3.4.1 Simulation and Verification

The same test bench used for the control AES256 Counting Mode implementation

was used to simulate and verify this logical SBOX implementation. In addition, the

same synthesis script for the control, AES256 Counter Mode implementation, was
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used for this implementation. Due to initial results of synthesis not meeting timing,

a synthesis directive (ungroup -all -flatten) was used to flatten the design.

3.5 On the Fly Key Expansion

Storing the expanded key in odd and even key bank registers for immediate acces-

sibility during round calculation is convenient and was originally performed for this

convenience at the expense of area. In [20], the key can be expanded on the fly and

each round key is available as it is needed. The control design was altered to remove

the expand key port as well as both register banks in order to explore this method.

The top level of the AES256 Counting Mode Block with on the fly Key Expansion is

shown in Figure 3.15. The finite state machine is simplified without the state used to

expand the keys and is shown in Figure 3.16.Since the key expansion is happening on

the fly, the key expansion block is removed from the core logic block. This is shown

in Figure 3.17.

Figure 3.15: AES 256 Top with On the Fly key Expansion

The key expansion logic is is now computing the round key alongside the encrypt

data flow logic.This requires two sets of the 16 SBOX’s tables for the algorithm, like

the previous designs, but also two sets of the four SBOX’s required for the special

first columns in the key expansion process.

47



Figure 3.16: AES 256 State Machine with On the Fly key Expansion

Figure 3.17: AES 256 with On the Fly key Expansion

The same test bench used for AES256 counting mode implementation was used to

simulate and verify this on the fly key expansion implementation. The same synthesis

script from AES256 counting mode implementation was used for this implementation.
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3.6 Four Rounds Per Clock

3.6.1 Design

The control design performed two rounds per clock cycle, and required one clock

cycle to load the data and 7 additional clocks for the 14 rounds of the algorithm.

By combining four rounds in one clock cycle, a single 128bit AES operation can be

completed in 5 total cycles. The AES top level block diagram for this implementation

is shown in Figure 3.18

Figure 3.18: AES 256 CTR with 4 Rounds/clock Top

The finite state machine itself remains unchanged, however, the counter that man-

ages the state machine is updated. Previously, 7 iterations through the two round

logic was needed, now, only four iterations are required with the four round logic.

The core logic block is also updated to contain four separate register banks for each

of the four stages of round logic. This along with other changes to the AES256 core

logic from the control design are highlighted in yellow in Figure 3.19. The data flow

of this design is changed to unravel more round logic and can be seen in Figure 3.20.

The same test bench used from the control design implementation was used to

test this implementation. The test bench could have been altered to pick up the data

earlier and compare it against the results before moving on to the next one, however,

since this serves the purpose of verifying the design not exercising it at peak speed,
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Figure 3.19: AES 256 CTR with 4 Rounds/clock Core Logic

the test bench from the AES256 counting mode implementation was left unaltered

and used. The same synthesis script from control AES256 Counter mode design was

used, however, the clock constraint was loosened to 3ns to fit the larger critical path

of the unraveled four rounds.

3.7 Pipelined

3.7.1 Design

In the pipelined implementation, the control design of AES25 counting mode is altered

to contain 14 copies of the round logic and an expanded key memory to allow access

to all 14 round keys at once. The original one read one write port register bank

was modified to use a one write 14 read port register bank. There is a register

stage in between each round so that another initialization vector can immediately be

inserted.The data in signal was also registered to keep the right data in value with
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Figure 3.20: AES 256 CTR with 4 Rounds/clock Data Flow

the corresponding initialization value. A data valid signal was also added to indicate

whether the data out was valid.These top level block diagram for the pipelined design

is shown in Figure 3.21. The changes to the core logic can be shown in yellow in

Figure 3.22.

There is an initial delay of 14 clock cycles before the first result is seen on the

data out port, but each data out after that is seen on every clock cycle. A data valid

signal was added to the design to indicate when the data out signal has valid data.

A figure depicting the data flow of this implementation is shown in Figure 3.23.

The test bench for this implementation is split into two separate operations, one

51



Figure 3.21: AES 256 Pipelined Top

Figure 3.22: AES 256 Pipelined Core Logic

to feed the test vectors into the the AES unit and another to collect the data on the

output and compare it against the known ciphertext values. This was done to test

the pipeline structure fully and see that once the pipeline was filled, data could be

received every clock cycle. If the data out of the AES unit did not match the expected

ciphertext from the file, an error signal was flagged.

The same synthesis script from the AES256 Counter mode implementation was

used however, the clock period timing constraint was reduced because the register to

register path is much shorter than it was for the control design. The input and output

constraints were also tightened to the same percentage of the clock period that was
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Figure 3.23: AES 256 Pipelined Data Flow

used for the control design.
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3.8 Summary

In this chapter the details of the seven different AES implementations were described.

The methodology for verifying the design correctness and also the procedure for col-

lecting the report data pertaining to each implementation was explained. The next

section the results of these implementations will be discussed.
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CHAPTER 4

RESULTS

In this chapter, the results of each design implementation that was discussed in the

methodology section are addressed. The designs are evaluated according to the met-

rics discussed in the previous chapter and a summary of each designs’ resulting infor-

mation will be given at the end of each section. The last section of this chapter will

contain a table summarizing the results of all the designs and discuss the tradespace.

4.1 AES128

The AES128 implementation was described in VHDL and tested in ModelSimTMusing

the test bench structure described in the methodology section. The testbench ran

through all 128 vectors and passed. The initialization time was seen in the simulation

to be 12 cycles and the latency was 6 cycles. The area of the design was 143,085um,

registers took up 21,379um/143,085um, or 15 percent. With an input constraint of

0.5ns, output constraint of 0.5ns, and a clock uncertainty of 0.05ns the design was able

to meet timing with a 2.5ns clock. Therefore, the speed of this design was calcuated

to be 1/2.5ns or 400MHz. The throughput was calculated to be 8.5Gb/s, 128 bits

every 6 cycles at a clockperiod of 2.5ns 128/(6*2.5ns). The power was reported as

5.54mw cell internal power, 4.26mW net switching power, and 60uW of cell leakage

power for a total of 9.87mW.
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Table 4.1: AES128 Results

Area Speed Power Init Latency Throughput

[um] [MHz] [mW] [cycles] [cycles] [Gb/s]

AES128 143,085 400 9.87 12 6 8.5

4.2 AES256

The AES256 implementation was described in VHDL and tested in ModelSim using

the test bench structure described in the methodology section. The testbench ran

through all 128 vectors and passed. The initialization time was seen in the simulation

to be 16 cycles and the latency was 8 cycles. The area of the design was 158,950um,

registers took up 29,049um/158,950um, or 18 percent. With an input constraint of

0.5ns, output constraint of 0.5ns, and a clock uncertainty of 0.05ns the design was able

to meet timing with a 2.5ns clock. Therefore the speed of this design was calcuated to

be 400MHz. The throughput was calculated to be 6.4Gb/s, 128bits every 8 cycles at

a clockperiod of 2.5ns 128/(8*2.5ns). The power was reported as 6.45mw cell internal

power, 4.43mW net switching power, and 66uW of cell leakage power for a total of

10.95mW.

Table 4.2: AES256 Results

Area Speed Power Init Latency Throughput

[um] [MHz] [mW] [cycles] [cycles] [Gb/s]

AES256 158,950 400 10.95 16 8 6.4

4.3 AES256 Counting Mode

The AES256 counting mode implementation was described in VHDL and tested in

ModelSim using the test bench structure described in the methodology section. The
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testbench ran through all 128 vectors and passed. The initialization time was seen in

the simulation to be 16 cycles and the latency was 8 cycles. The area of the design

was 94,622um, registers took up 27,816um/94,622um, or 29 percent. With an input

constraint of 0.5ns, output constraint of 0.5ns, and a clock uncertainty of 0.05ns the

design was able to meet timing with a 2.5ns clock. Therefore the speed of this design

was calcuated to be 400MHz. The throughput was calculated to be 6.4Gb/s, 128bits

every 8 cycles at a clockperiod of 2.5ns 128/(8*2.5ns). The power was reported as

5.45mw cell internal power, 3.53mW net switching power, and 34uW of cell leakage

power for a total of 9.01mW.

Table 4.3: AES256 Counting Mode Results

Area Speed Power Init Latency Throughput

[um] [MHz] [mW] [cycles] [cycles] [Gb/s]

AES256 CTR 94,622 400 9.01 16 8 6.4

4.4 AES256 Counting Mode Logical SBOX

The AES256 Counting Mode implementation with a logical SBOX was described

in VHDL and tested in ModelSim using the test bench structure described in the

methodology section. The testbench ran through all 128 vectors and passed. The

initialization time was seen in the simulation to be 16 cycles and the latency was 8

cycles. With an input constraint of 0.5ns, output constraint of 0.5ns, and a clock

uncertainty of 0.05ns the design was not able to meet timing with a 2.5ns clock, it

violated by 0.19ns which means it could only run at a period of 2.61ns. Therefore

the speed of this design was calcuated to be 1/2.61ns or 380MHz. A large difference

between the logical and look up table SBOX implementation is the large amount

of hierarchy in the logical approach, as described in the background section. The
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synthesizer does not optimize across hierarchical boundaries very well; because of

this a synthesis option was used to flatten the design (ungroup -all -flatten).

After this flatten option was inserted, the area of the design was 118,109um,

registers took up 27,507um/118,109um, or 23 percent. With an input constraint of

0.5ns, output constraint of 0.5ns, and a clock uncertainty of 0.05ns the design was able

to meet timing with a 2.5ns clock. Therefore the speed of this design was calcuated to

be 400MHz. The throughput was calcuated to be 6.4Gb/s, 128bits every 8 cycles at

a clockperiod of 2.5ns 128/(8*2.5ns). The power was reported as 7.88mw cell internal

power, 4.37mW net switching power, and 84uW of cell leakage power for a total of

12.33mW.

Table 4.4: AES256 Counting Mode Logical SBOX Results

Area Speed Power Init Latency Throughput

[um] [MHz] [mW] [cycles] [cycles] [Gb/s]

AES256 CTR logicsbox 118,109 400 12.33 16 8 6.4

4.5 AES256 Counting Mode On the Fly Key Expansion

The AES256 counting mode on the fly key expansion implementation was described

in VHDL and tested in ModelSim using the test bench structure described in the

methodology section. The testbench ran through all 128 vectors and passed. The

initialization time was seen in the simulation to be 0 cycles and the latency was 8

cycles. The area of the design was 64,309um, registers took up 8,054um/64,309um

or 12.5 percent. With an input constraint of 0.5ns, output constraint of 0.5ns, and

a clock uncertainty of 0.05ns the design was able to meet timing with a 2.5ns clock.

Therefore the speed of this design was calcuated to be 400MHz. The throughput
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was calculated to be 6.4Gb/s, 128bits every 8 cycles at a clock period of 2.5ns or

128/(8*2.5ns). The power was reported as 8.24mW cell internal power, 6.86mW net

switching power, and 21uW of cell leakage power for a total of 15.12mW.

Table 4.5: AES 256 Counting Mode On the Fly Key Expansion Results

Area Speed Power Init Latency Throughput

[um] [MHz] [mW] [cycles] [cycles] [Gb/s]

AES256 CTR OTF 64,309 400 15.12 0 8 6.4

4.6 AES256 Counting Mode 4 Rounds per Clock

The AES256 counting mode 4 Rounds per Clock implementation was described in

VHDL and tested in ModelSim using the test bench structure described in the

methodology section. The testbench ran through all 128 vectors and passed. The

initialization time was seen in the simulation to be 8 cycles and the latency was 5 cy-

cles. The area of the design was 223,743um, registers took up 29,066um/223,743um,

or 13 percent. With an input constraint of 0.5ns, output constraint of 0.5ns, and a

clock uncertainty of 0.05ns the design was unable to meet timing with a 2.5ns clock.

Therefore the clock period was increased to 3ns and the input and output constrants

were adjusted to 0.6ns. The design was able to meet timing at this clock rate so the

speed of this design was calcuated to be 333MHz. The throughput was calculated

to be 8.5Gb/s, 128bits every 5 cycles at a clock period of 3ns or 128/(5*3ns). The

power was reported as 9.69mW cell internal power, 7.3mW net switching power, and

149uW of cell leakage power for a total of 17.13mW.
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Table 4.6: AES256 Counting Mode 4 Rounds per Clock Results

Area Speed Power Init Latency Throughput

[um] [MHz] [mW] [cycles] [cycles] [Gb/s]

AES256 CTR 4r 223,743 333 17.13 8 5 8.5

4.7 AES256 Pipelined Counting Mode

The AES256 pipelined counting mode implementation was described in VHDL and

tested in ModelSim using the test bench structure described in the methodology

section. The testbench ran through all 128 vectors and passed. The initialization time

was seen in the simulation to be 9 cycles and the latency was 14 cycles. The area of the

design was 471,002um, registers took up 43,131um/471,002um, or 9 percent. With

an input constraint of 0.16ns, output constraint of 0.16ns, and a clock uncertainty of

0.05ns the design was able to meet timing with a 0.82ns clock. Therefore the speed

of this design was calcuated to be 1.22GHz. The throughput was calculated to be

156Gb/s, 128bits every cycle at a clock period of 0.82ns or 128/(1*0.82ns). This

assumes a full pipeline so that the encrypted data out is seen every cycle. The power

was reported as 163.57mW cell internal power, 134.30mW net switching power, and

271uW of cell leakage power for a total of 298.1mW.

Table 4.7: AES256 Pipelined Counting Mode Results

Area Speed Power Init Latency Throughput

[um] [MHz] [mW] [cycles] [cycles] [Gb/s]

AES256 CTR pipelined 471,002 1220 298.1 9 14 156
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4.8 Summary

A summary of the resulting speed area power and throughput for each implementa-

tion is shown in Table 4.8. The results show that the AES256CTROTF design was

the smallest of all the implementations at 64,302um which was 32 percent smaller

than the control design at 94,622um. The largest design was the pipelined implemen-

tation which was 470,808um or 398 percent larger. The 4round per clock cycle design

is approximately double the size of the control, which was expected since twice the

logic was unraveled in the 4 round implemntation. Surprisingly, the logicsbox im-

plementation was larger than the control which was unexpected due to the research

presented in [15] and [16], which suggested a smaller area for the combinational SBOX

approach.

Table 4.8: Summary of AES Implentation Comparison of Speed Area Power

Area Speed Power Init Latency Throughput

[um] [MHz] [mW] [cycles] [cycles] [Gb/s]

AES128 143,085 400 9.87 12 6 8.5

AES256 158,950 400 10.95 16 8 6.4

AES256 CTR 94,622 400 9.01 16 8 6.4

AES256 CTR logicsbox 118,109 400 12.33 16 8 6.4

AES256 CTR OTF 63,420 400 17.28 0 8 6.4

AES256 CTR 4r 223,743 333 17.13 8 5 8.5

AES256 CTR pipelined 471,002 1220 298.1 9 14 156

The fastest design in terms of throughput and speed is the pipelined implemen-

tation which was able to run at 1.22GHz and can provide a throughput of 156Gb/s.

The high data rate comes at a price of a 14 clock cycle inital latency. Next the 4
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round per clock cycle design was able to achieve a 8.5Gb/s which was a higher rate

than the control through of 6.4Gb/s while running at 333MHz which was slower than

the control clock speed of 400MHz. This of course is due to the reduced number of

clock cycles that it takes to complete an AES operation when compared with the

control design. The on the fly key expansion implementation which runs at the same

clock rate and has the same throughput as the control design however there is no

initialization time required to expand the key.

The control design burned the least amount of power out of all the design imple-

mentations. It is no surprise that the pipelined implementation which was the largest

and fastest also burned the most power at 298.1mw, this is significantly more than

the control design power of 9.01mw. The on the fly key expansion implementation

burned 17.28mW, which was more power than the control design that used stored

round keys. This makes sense because more gates are toggling to expand the key each

time it is used.
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CHAPTER 5

CONCLUSIONS

The aim of this thesis has been to understand the AES algorithm and possible end

applications in order to explore the impacts that optimizing different features has on

the overall system performance parameters. Multiple resources in this research field

have identified features of interest and discussed their impact on one or two of the

design trade spaces, however, a single comparative analysis was lacking.

After providing a thorough background on the algorithm, different modes of op-

eration a brief overview of the VLSI design flow process, this thesis has explored six

different AES features; key size, mode specificity, round key storage, round unrav-

eling, SBOX implementation, and pipelining. Using computer aided design tools,

designs were created according to the AES specification, verified using NIST test vec-

tors, and the appropriate data was collected to further investigate the speed area and

power implications.The detailed explanation of the design and methodology allows

fellow designers to replicate and further the research discussed in this thesis. The

summarized view of the resulting design metrics allow readers to quickly analyze how

each of the six features impacts speed power and area on the 65nm process.

After reviewing the results designers may lean toward inserting some features in

their AES hardware implementation while avoiding others. Networking applications

concerned with high data transmission rates may look at Table 4.8 and choose to

adopt the AES256 CTR pipelined design approach for the high speed and through-

put capability, if they don’t mind area overhead or paying initial latency. Portable

electronics concerned with battery life like wearable monitors and cell phones are op-
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timizing for power, in this case the control design, AES256 CTR, would be of interest

due to its low power operation. Other portable electronics that are emphasize small

form factor or designs where a large number of AES units are needed will be con-

cerned with the compactness of the implementation. Here the AES256 CTR OTF

design would be appealing since it resulted in the smallest area. Military systems

dealing with national security and protection of classified data will want to focus

on the designs described in this thesis that utilize a 256bit key and counting mode

specificity. This is suggested to maximize protection against brute force attacks and

mitigate the image encryption vulnerabilities of the basic ECB mode. Perhaps sys-

tems concerned with response time would desire encryption encryption operations

quickly under different keys, this may require a combination of approaches to achieve

both a low latency and initialization time. By combining AES256 CTR OTF with

AES256 CTR 4r a new design could result in a 0 cycle initialization time and a low

cycle latency.

Many results followed the initial intuition. For example the AES256 CTR 4r was

approximately twice as big and burned twice the power compared to the control design

AES256 CTR, this is because twice the logic was unraveled. The AES256 OTF design

is smaller and has half the number of register elements than the control because the

all the expanded keys are not stored in registers. The AES256 CTR pipelined design

would be much faster than the control once the pipeline is full and the area would be

much larger makes sense because all 14 rounds of logic are expanded. However, the

results of logical SBOX design did not align with the initial expectations. In [15] [16]

this combinatorial approach to the SBOX suggested smaller area than typical ROM

based design. When analyzing the difference between the control design and this

one, it was surprising to learn that the area was bigger. The reasoning for difference

in results could be that [16] was using an FPGA where ROM structure is different.

Another reason could be that the coding style of the design in this thesis did not
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build a traditional ROM based Look up table and instead the hard coded table of

values was compressed and the synthesizer did a better job optimizing logic.

Encryption is vital to the electronics community where sensitive data is constantly

being transmitted and stored. Careful focus must be placed on efficiently performing

this task to meet the demanding system requirements. This thesis has provided

a hardware encryption designer a reference for evaluating design feature effects on

system performance parameters to assist them in their task.

5.1 Future Work

This thesis provides a good comparative analysis of these implementation features,

however, the analysis is done post synthesis. It may be valuable to continue these de-

signs through the physical layout and complete place and route to get a more accurate

view of how these features affect area speed and power when things like long wires

and buffers are inserted. The speed of large designs like the AES256 CTR pipelined

may decrease as routing challenges are introduced.

This work investigated a combinatorial logic SBOX approach by implementing

the multiplicative inverse using composite field arithmetic according to the designs

described in [15][16][17]. Future work could investigate utilizing other techniques to

implement multipliers lower GF fields like the Mastrovito multiplier.
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APPENDIX A

KAT Vectors from NIST

Figure A.1: Sample of 128 KAT Vectors
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