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Synthetic diamond films may play an important role in thermal management of processors.  
Diamond may be up to four times as thermally conductive as copper, but the conductivity of 
individual films may vary based on synthesis parameters.  Therefore a straightforward 
nondestructive method is desired to determine thermal characteristics of diamond-coated silicon 
wafers.  Diamond-coated samples were grown via Microwave-Plasma Chemical Vapor 
Deposition, and characterized for film thickness by pre- and post-deposition weighing and film 
quality by Raman spectroscopy.  The thermal conductivity of samples is measured by three 
different methods: thermocouples, infrared camera, and Raman spectroscopy. Each measurement 
setup is first law of heat conduction, in which the temperature gradient across 
a region of material is proportional to the thermal conductivity of the material.  Thermocouples 
were used initially, which allowed for quick feedback on temperature gradients.  However, the 
measurement accuracy was greatly affected by the thermocouple mounting, thus non-contact 
methods of measurement were considered.  Infrared cameras were used to view the temperature 
profile of the entire system, but it was determined that the surface temperatures visible to the 
camera were different than the internal temperatures of the experimental setup.  Finally, Raman 
spectroscopy is used to measure temperature and thermal gradient, due to the temperature 
dependence of the Raman peaks.  It was found that the diamond peak of four different films 
exhibited a thermal shift comparable to published data.  This method will be pursued in future 
research to measure thermal properties of diamond films, including the interfacial thermal 
characteristics.   
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CHAPTER I 

 

INTRODUCTION 
 

1.1 Motivation 

As electronic devices continue to shrink, adequate thermal management becomes more critical.  Smaller 

devices are more susceptible to damage from overheating, and more challenging to draw heat from due to 

smaller surface area.  Overheating reduces efficiency of systems and increases operating costs.  It also 

degrades components, necessitating replacement.  Both labor and downtime costs for repair can be 

substantial.  Effective thermal management allows mechanical and electrical components to last longer 

and be used more efficiently.  This research compares several methods to measure the thermal 

conductivity of diamond-coated silicon samples.  Accurate temperature measurements are important to 

find the temperature gradients of different films, to create the most effective heat-transfer interfaces for 

electronic systems.  s conductivity.  

To find the thermal conductivity of several films, a temperature gradient is established across a film and 

accurately measured.  The thermal properties of the film may be calculated from this temperature drop.  

Other research groups have used methods that use thermocouples, thin metal films on the diamond's 

surface, or lasers to measure the thermal properties of diamond thin-films.  This research will compare 

three methods and make a recommendation for future research.  This research is unique in that it will 

focus on using common and low-cost items for measurement, with the goal of finding an approach that 

low-budget laboratories may use.  
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Barriers to heat conduction are typically physical; grain boundaries  limit the transfer of thermal energy 

devices.  Just like light at opaque surfaces, some energy is transmitted and some reflected.  When two 

rough surfaces are in contact, microscopic air pockets form which lessen heat transfer.  Convection 

through air pockets is orders of magnitude less efficient than conduction.  Thermal grease may be used to 

eliminate air gaps; although it is thermally resistive, it allows for more even heat spreading between 

components.  The goal is to find a material that can act as an interface but is itself a good conductor of 

heat.  A potential material is diamond.  The properties of this material are well-known and highly 

attractive to scientists and engineers.   

For thermal management, a characteristic of great value is high thermal conductivity.  Diamond exhibits 

this better than nearly any material [1].  Additionally, low electrical conductivity makes it especially 

suited for heat sinks on processors or other electronic components, without the need for a separate 

electrically insulating layer [2].  Synthetic diamond can be grown under a wide variety of conditions, with 

multiple methods and ratios of ingredients [3].  Given the expense and difficulty of growing diamond, it is 

important to know the most cost-effective way to grow diamond for thermal applications.  Not only the 

bulk material properties must be considered but also the interface properties, as there is a significant 

temperature drop between diamond and other materials. 

1.2 Objective 

This research intends to measure the thermal resistance of diamond films grown on silicon wafers under 

varying conditions, and parse out the contribution of the growth interface to the overall thermal 

resistance.  For systems in which diamond is deposited on a material with disparate lattice characteristics, 

the thermal resistance of the interface can dominate the overall thermal resistance of the system [4].  By 

applying Fouri

component of a system in terms of its contribution to the overall thermal resistance.  This approach was 

chosen due to its simplicity and the lack of complicated mathematics, and because it is a steady-state 



3 
  

instead of time-dependent equation.  

quick to record the thermal properties of the system. 

1.3 Approach 

For this research, diamond-coated samples were subjected to analysis with multiple methods that allowed 

establishment and measurement of the temperature gradient across the sample. Measurement techniques 

were continually refined to gather more reliable and accurate data.  

The first method used thermocouples for measurement, as they are simple to setup and use.  The second 

method used infrared cameras to record data over the system as a whole instead of at discrete points.  The 

third method used a Raman Spectrometer for greater accuracy in temperature measurements.  The 

specifics of each method and their results will be discussed in later chapters.
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CHAPTER II 

 

REVIEW OF LITERATURE 
 

2.1  Properties of Diamond 

For much of history, diamond use has been confined primarily to jewelry.  Over time as the material's 

noteworthy physical properties were discovered, it became sought by scientists as well as royalty.  

Diamond has been termed a superlative material, with attributes far apart from other materials.  Table 1 

shows some of these properties. 

Table 1 Diamond Properties [1, 4] 

Property Value 
Thermal conductivity at 20C 2*103 W/m K 
Bulk modulus  1.2*1012 N/m2 
Compressibility 8.3*10-13 m2/N 
Hardness  90 GPa 
Optical transparency   
Speed of sound through diamond  17.5 km/s 
Electrical resistivity at room temperature 1013  
Resists corrosive agents  
Radiation-tolerant  
Is bio-compatible  
 

In 1797, the single element that makes up diamond was determined: abundant carbon [4].  For over a 

century, scientists unsuccessfully attempted to create diamond with catalysts.  It was not until the 20th 

century that progress was made, as the thermodynamics and kinetics of diamond were understood better.  
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Once the first repeatable diamond synthesis was discovered in the 1950s, different methods followed 

quickly, with each continually refined and used for specific applications [5].  The next several decades 

saw leaps and bounds in creating this useful, sought-after material, as growth rates were increased from 1 

micron per hour to 10. 

2.2  Processing of Diamond  

Diamond synthesis has progressed through many iterations.  Once it was known that diamond consisted 

of pure carbon, the quest to create favorable conditions for diamond formation began.  Of all carbon 

allotropes, diamond is the most dense [6], and thus high-pressure methods were pursued.  High pressure 

alone was ineffective, but heating the sample under pressure allowed the activation barrier between sp2 

and sp3 phases to be crossed [1].  The sp2 phase refers to the hybrid atomic bond arrangement seen in 

, weaker bond is between 

planes, allowing those planes to slide along each other and separate easily.  At room temperature and 

pressure, this is the thermodynamically stable allotrope; however, the sp3 bonding arrangement (four 

bonds in a tetrahedral arrangement) is kinetically stable once it has been formed.  In 1963, highly 

energetic methods were used to create favorable conditions.  Detonation synthesis used carbon-based 

explosive blends to create nanometer-scale diamond particles [7].  Upon ignition, the pressure and heat 

cause the carbon present to agglomerate in an sp3 structure.  A slower, more controlled method used a 

hydraulic press and furnace to achieve the pressure and temperature necessary.  Diamond seeds were 

placed in a chamber with a carbon source, and the chamber exposed to pressure between two anvils.  The 

chamber is heated in addition, and the entire process became known as High Pressure High Temperature 

or HPHT synthesis.  The results of this method were typically for industrial use, as small diamond 

particles from mining operations or detonation synthesis could be converted to diamond grit or low-purity 

larger stones, and used for cutting and grinding instruments.  The HPHT method is still widely used for 

thermal conductivity, optical transparency, and friction and wear resistance.  Different methods of 
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synthesis were sought more suited to such applications; specifically, methods to grow diamond coatings 

or films.  In the 1960s, it was shown that a radically different method could grow diamond via a chemical 

reaction, and the physical form would be a film rather than a stone [5].  The thermodynamically 

challenging method of converting graphite to diamond based on the carbon phase diagram could be 

bypassed.  Thus, the focus of diamond synthesis moved from High-Pressure, High-Temperature methods 

to Chemical Vapor Deposition.  

Attempting growth of diamond 

most stable allotrope at room temperature and pressure is graphite, and a substantial activation energy gap 

of 728 kJ/mol must be crossed to convert it to diamond [6].  However, it was discovered that diamond 

could be grown chemically from carbon atoms in an activated gas phase.  The primary requirement would 

simply be a template or pattern for carbon to attach to, as well as a method to remove any non-diamond 

growth. 

Individual carbon atoms attached to a tetrahedral bond template resulted in diamond, but this process was 

slow.  Large enough quantities of carbon needed to be in an activated state, and any non-diamond carbon 

quickly removed, to achieve a viable growth rate.  A two-stage process governs the creation of thin-film 

diamond: initial nucleation of diamond grains onto the substrate, and growth of those grains into a 

diamond film [8, 9].  To achieve nucleation, the initial carbon atoms must have an sp3 basis to attach to 

and repeat, which can be provided by diamond or another surface with tetrahedral bond formation.  The 

nucleation is needed to ensure enough initial diamond particles are present that the growth rate exceeds 

the rate at which hydrogen etches the carbon.  While hydrogen etches non-diamond carbon faster, it still 

attacks the diamond formed albeit at a slower rate. Neglecting to seed or prepare the substrate will allow 

any diamond formed to be etched away more quickly than additional diamond grows to replace it. 

Growth conditions are a widely researched aspect of synthetic diamond, but landmark research in 1991 by 

Bachmann et. al greatly simplified the search for gas ratios resulting in successful growth.  By examining 
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deposition conditions for several dozen experiments over many years, it was found that only select ratios 

of carbon, hydrogen, and oxygen resulted in diamond growth [3].  This applies to Microwave-Plasma and 

Plasma Jet Chemical Vapor Deposition techniques, which will be discussed in a later section.  Figure 1 

represents  findings. 

 
Figure 1 Carbon-Hydrogen-Oxygen gas ratio diagram for diamond growth.  
The narrow, darkened region shows the ratios of gases which will result in successful 
polycrystalline diamond deposition.  Below this region no growth occurs, whereas above 
the region carbon deposits in non-diamond form [1] 

 

The diagram greatly narrowed the search for possible diamond-producing process gases; so long as these 

key elements were present, diamond could be grown.  The strict limits of the diamond-producing region 

in 

but some trends are made quite clear, such as the effects of adjusting the percentages of each of these 

components.  It may be seen on the right-hand axis of the chart that oxygen abundance will not allow 

diamond growth, while carbon abundance results in multiple allotropes of the substance depositing.   

Non-diamond carbon then chokes out any diamond deposit as the hydrogen etching rate decreases.   

Within the range of diamond growth, however, exists a compromise: erring towards oxygen abundance 
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allows finer quality diamond to be grown at a reduced rate, while erring towards carbon abundance allows 

diamond to be grown faster, but with a greater percentage of sp2 carbon trapped within its structure.    

It may also be seen from these graphs that oxygen is not necessary for diamond growth; it is included in 

the chart due to being commonly present in deposition process gases, but a carbon-carrier and hydrogen 

are the two critical species to produce diamond.  Methane is often used as the carbon source, diluted in 

hydrogen gas.  Other gases may be added to affect the morphology of the diamond, such as argon.  Higher 

concentrations of argon cause finer-grained diamond growth, at the cost of reduced sp3 content [10]. 

For gas ratios within the growth region, process gas temperature and plasma density determine the growth 

rate to a greater degree than the carbon content does. However, the gas ratios have an even greater effect 

on the purity than on the growth rate.  The diagram applies even for different deposition techniques; 

d supplementary experiments to show the veracity of their diagram, and were 

successful, although the actual gas species responsible for diamond formation remained an open question 

between the CH3* methyl radical and acetylene [11].  Excess atomic hydrogen is vital at each stage of the 

diamond growth [12].  On the surface of a growing sample, hydrogen caps the dangling bond on each 

carbon as it attaches in the sp3 configuration, keeping interfacial carbide layers from forming that could 

provide greater thermal resistance [13].  

Figure 2 shows a commonly accepted CVD diamond deposition cycle.  In this process, some carbon may 

bond  in the weaker sp2 configuration; atomic hydrogen etches away the sp2 bonded carbon, leaving sp3 

bonded carbon ready to accept the next layer of radicals [14]. 
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Figure 2 A potential reaction path for atomic diamond growth.  A hydrogen atom 
abstracts a bonded surface hydrogen, creating an open bond on the diamond surface.  A 
methyl radical attaches to the open bond, then a series of additional hydrogen abstractions 
allow the second carbon to bond to the surface.  [6] 

 

2.3  Methods of Diamond Growth 

The properties of the finished diamond film are partly determined by the growth method chosen.  The 

common element in all methods is a necessity to activate the process gases, breaking the molecules into 

the carbon-containing radicals that will create the diamond [1].  Based on the Bachmann Carbon-

Hydrogen-Oxygen triangle in Figure 1, the precursor gas must be diluted with a large percentage of 

hydrogen, so as to ensure sp3 growth dominates.  The broad array of chemical vapor deposition 

techniques is broken into Hot Filament, Microwave-Plasma, and Plasma Jet.  These techniques differ 

from HPHT and other techniques in that they do not rely on creating thermodynamically stable conditions 

for the diamond, but instead use gas-phase chemistry. 

2.3.1  HFCVD 

Hot Filament Chemical Vapor Deposition uses a thin filament, heated up to 2200ºC, to thermally 

dissociate process gases as they are forced past it.  Atomic hydrogen is produced at the filament from 

hydrogen gas.  Activated carbon-containing radicals then diffuse through that region of the chamber; 
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some bond to the substrate, which is placed millimeters from the filament, as in Figure 3.  The advantages 

of HFCVD are low cost, simplicity, and fairly fast growth rates.  However, the resulting diamond may not 

be pure enough for optical and electronic applications.  The filament material, usually Tungsten, 

gradually breaks down, and contaminates the film on the level of parts per million [15], enough to 

negatively impact transmissivity and conductivity.  The process gases affect the rate of filament 

breakdown, which forces researchers to take into account the level of oxidation or corrosion likely with 

each carbon-containing gas. 

 
Figure 3 Schematic of Hot-Filament Chemical Vapor Deposition reactor.  Process gases 
enter the chamber and are dissociated by the filament (typically tungsten) that may be 
heated to 2200°C.  The dissociated Carbon diffuses in the chamber and deposits on the 
prepared substrate surface. 

 

2.3.2  Plasma-Jet CVD 

A second way to grow diamond is with a plasma jet or acetylene torch.  By using the correct process 

gases, plasma torches can deposit diamond at a high rate on substrates placed within their jet, as in Figure 

4.  This is useful for small-area applications of a square centimeter or less.  Large-area plasma torches 

have been developed, but the temperature fluctuation within the jet is an issue for thermal management of 

the substrate; adequately and evenly cooling a large substrate is challenging.  Additionally, the substrate 
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itself must be carefully chosen due to the sudden increase in temperature at ignition, and sudden decrease 

at extinguishment.  If the substrate does not match the thermal expansion coefficient of the diamond 

closely enough, the thermal shock may cause the film to detach.  While this is a concern for all deposition 

methods, the temperature rapidly increases when the jet ignites and rapidly decreases when it 

extinguishes, due to the substrate being in the center of the jet.   

 

Figure 4 Schematic of Plasma-Jet Chemical Vapor Deposition reactor.  Process gases are 
forced through a nozzle and ignited by electrodes.  The sample is placed within the 
plasma, and the dissociated carbon-containing species bond to the prepared substrate 
surface. 

 

2.3.3  MPCVD 

Microwave Plasma Chemical Vapor Deposition, the method used in this research, is cleaner than HFCVD 

because it uses microwave energy to dissociate the gas molecules.  So long as the chamber walls are kept 

clean, the diamond will have less non-carbon impurities; this advantage is balanced by additional 

equipment and operation cost.  There is also much more precision afforded with this approach, as the 

deposition pressure, temperature, process gases, and plasma power can be fine-tuned according to the 

desired purity, growth rate, and dopant levels [16].  A standing wave of microwave energy ignites plasma 

from the incoming process gases; the high-energy electrons within the plasma ball dissociate the process 

gas molecules, creating the atomic hydrogen and methyl radicals needed for growth.  The setup is shown 

in Figure 5.  However, unlike molecules dissociated with thermal energy in Hot-Filament reactors, 



12 
  

plasma-decomposed species are ionic.  One of the advantages of MWCVD is the existence of these ions.  

Diamond growth can be slow to establish in CVD, but a technique called Bias-Enhanced Nucleation can 

use the ions to speed up nucleation and initial growth.  BEN involves an electric charge applied to the 

substrate, readily attracting the oppositely charged radicals. This allows a much denser nucleation layer to 

form more quickly.  This technique is unique to microwave-plasma deposition, and may make it worth the 

additional cost.   Due to the speed of deposition, it is possible for non-diamond carbon to be overgrown 

by diamond before the hydrogen completely etches it away.  For this reason MWCVD films may exhibit 

additional carbon allotrope and disorder peaks under Raman Spectroscopy as compared to HFCVD films 

[17].   

 
Figure 5 Schematic of Microwave-Plasma Chemical Vapor Deposition reactor.  The 
tuning antenna creates a standing wave that ignites the process gas into plasma.  The 
dissociated carbon-containing species fall onto the substrate below and bond on the 
prepared substrate surface.   

All of these methods require high temperatures, although substantially lower than HPHT methods.  Low-

temperature deposition is a challenging area of research, but potentially rewarding as it would allow 

diamond growth directly on temperature-sensitive electronic devices, saving time and money in assembly.  
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It is more common for diamond to be grown on a substrate, removed from the substrate, then be 

transferred to its destination.   

Growing diamond films requires care in choosing substrates.  They must expand and contract with 

temperature to a comparable degree with diamond, and not change physical properties at deposition 

temperatures.  Silicon is commonly used as it fulfills these requirements, and can easily be etched away 

post-deposition if free-standing film is required.  The top of a substrate must form a carbide layer, 

especially for materials with different thermal expansion coefficients; this allows the diamond layer to 

adhere to the substrate, and its absence in materials such as copper may be exploited to grow free-

standing films [18, 19].  However, the carbide cannot form too readily, as the mechanical properties of the 

substrate must be kept intact; this limits the types of metals that can be coated with diamond.  

Without of surface treatment, growth is extremely time-intensive as most of the carbon will form sp2 

graphite and be etched away by hydrogen or the diamond nucleation is non-uniform.  The growth surface 

must be prepared to accept carbon atoms in the proper lattice structure.  Substrate surfaces can be scored 

by abrasion with diamond grit; this creates scratches with grooves at the correct angle for carbon linking.  

It has also been suggested that this allows nucleation due to microdiamonds embedding themselves into 

the surface.  BEN may be used, or a suspension of nanodiamond particles can be adhered to the surface 

with a dilute polymer.  For an untreated surface, less than 102 diamond particles may form per square 

centimeter during a plasma deposition. The treatment methods mentioned may increase the nucleation 

density  to 1010 /cm2 [20].   

2.4  Microstructure of Diamond Films 

Diamond can be grown in multiple forms, classified by grain size.  Single-crystal diamond can be grown 

through HPHT, and is used for jewelry, cutting tools and scribes, and testing purposes.  Most CVD-grown 

diamond is polycrystalline as surface pretreatments create multiple nucleation sites for faster growth.  

Depending on the grain size, diamond films are classified as Microcrystalline or Nanocrystalline.  The 
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former have grain sizes on the order of microns, and the latter nanometers.  Small grain sizes may be 

grown by denser initial nucleation and increased nucleation rate [21], or by  increasing CH4 concentration 

up to 10% [22].  Adjusting the deposition parameters for a reduced growth rate close to the nucleation 

rate causes the two processes of nucleation and growth to compete for available energy.  More nucleates 

form, thus more grains of shorter length grow.  For MCD diamond, fast deposition rate allows grains to 

compete with each other, some are buried and others grow longer. Reducing the number of grains makes 

the film harder, as there is less of a chance for sp2 formation along the grains [23].  Longer grains, 

however, cause greater surface roughness as a few larger grains form the surface, which will have 

different orientations.  For certain applications such diamond polishing or cutting wheels this is quite 

helpful. The rough and hard surface  wear down as quickly as other abrasives.  Other applications 

require a smoother surface, such as moving parts in contact or in electronics.   

2.5  Properties of Diamond  

2.5.1  Mechanical Properties 

Diamond exhibits a number of unrivaled attributes due to its strong atomic bonds.  The material is useful 

in different situations based on the dimensions of the diamond.  The exceptional hardness of diamond (10 

on the Mohs scale, 90GPa) is used for wear-resistant coatings or to make cutting and grinding tools with 

long lifetimes, from particles or films up to millimeters in thickness or diameter.  It has an extremely low 

coefficient of thermal expansion and low compressibility, which allows it to keep its shape and 

dimensions even when cutting hard materials.  Thicker diamond may be used for scratch-proof windows 

over sensors, as it is transparent from ultraviolet frequencies to far-infrared.   

2.5.2 Thermal Properties 

Diamond exhibits remarkable thermal characteristics, especially its conductivity.  Due to its very stiff 

lattice, diamond transmits phonons from regions of high thermal energy at astonishing rates to regions of 

low thermal energy.  As heat conduction in diamond is due to acoustic phonons, they travel at the speed 

of sound in the material.  This value for diamond, 17.5 km/s, is nearly three times that of aluminum and 
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five times that of gold.  Because of its extremely stiff lattice and high melting point, diamond exhibits 

thermal conductivity several times that of copper, higher than any natural material [16].  Even 

polycrystalline synthetic diamond may conduct heat  as well as single-crystal, although most thin films 

are only 50-70% as conductive [24].  A low thermal expansion rate means such coatings may be used in 

high-temperature environments without delamination. 

2.6  Diamond films for thermal management 

Thermal management of devices is ever more critical, as electronic components continue to shrink and 

more are placed close together operating at higher and higher speeds.  Components lose conductivity and 

in extreme cases may melt or burn due to overheating.  Additional device processing power generates 

more heat, which limits the number and speed of components.  Effective transfer of heat from electronic 

devices is therefore critical for microelectronics.  When designing thermal management systems for 

electronic components, electrically resistive materials would negate the need for insulating, thermally 

resistive cladding.  Diamond can be semiconductive if doped, but is naturally an insulator because of its 

large bandgap of 5.4 eV.  Its thermal conductivity is due to phonons not electrons, due to its electrically 

insulating properties.   

Phonons, vibrational energy quanta, travel more quickly in stiffer lattice structures; however, impurities 

or defects in a material, or interfaces between materials, negatively impact efficient heat transfer [25, 26].  

An interface acts as a semitransparent mirror, reflecting some phonons while transmitting others.   

A boundary between two materials will always exhibit thermal resistance due to mismatched lattice 

properties or orientation [27, 28].  Grains within a material also negatively impact conductivity, either due 

to non-diamond carbon or heteroepitaxial grains.  Although synthetic films with conductivities 

approaching that of single-crystal diamond have been grown, thin films of <100 microns in thickness are 

only 50-70% as conductive at conditions close to room temperature [29].  If the materials are in imperfect 

physical contact (which is always the case), phonons will be scattered or reflected.  This is even more of 
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an issue for thin films, if they are thinner than the mean free path (MFP) of phonons.  The MFP is the 

average distance a phonon travels before a scattering event [25, 30].  This quantity is temperature-

dependent, and varies from 100 microns at close to 0K, to 100 nanometers at room temperature [31].  If 

the film is sufficiently thicker than the phonon MFP, then the bulk conductivity of the film material is the 

dominant factor [32]. However, in thin films the additional scattering from surface defects and film 

impurities has a greater effect on phonons, disrupting their travel and making it more difficult for them to 

transition to the next material.  This increases the temperature discontinuity at the interface, effectively 

raising the thermal boundary resistance.  For thermal applications, the resistance within the film and that 

across the interface must both be taken into account [25].  Percentile impurity levels can severely lessen 

the thermal conductivity within a film, and imperfect physical contact at an interface can increase the 

temperature gradient between two components up to fifteen times [32].  Scattering within a material may 

be due to a vacancy, interstitial, or isotope. If the phonon wavelength is larger than the physical 

dimensions of the defect it is described as a point defect.   Phonons may scatter elastically when they 

encounter a vacant site in the lattice structure or a grain boundary; this does not affect their energy but 

alters their direction [26].  Different scattering events are more common under different conditions.  At 

very low temperatures (less than 200K), grain boundaries are the greatest contributor to thermal resistance 

[8].  Around 200K, point-defect scattering begins to dominate the thermal resistance.  As the temperature 

increases, phonons are more likely to hit other phonons [33].  However, encounters with other phonons 

are inelastic, altering their vibrational frequency; these interactions are known as Umklapp processes, and 

are the primary influence on thermal resistivity at and above room temperature [34].   

The interface between diamond and other materials should allow for maximum phonon transmittance, but 

there is no perfect method to achieve this.  Smoother films have greater physical contact but smaller 

grains, which scatter phonons to a higher degree; fewer grains have lower internal scattering, but result in 

a rougher surface with reduced physical contact and greater void formation [35]. The film's thickness 
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does affect the thermal resistance, but the boundary affect is independent of the film dimensions for films 

thicker than the phonon mean free path [36].   

To be at their most effective for heat spreaders and other thermal applications, films must have low 

impurity levels and few grain boundaries [37].  The latter is due to two reasons: more grain boundaries 

will scatter phonons, and graphitic carbon has a tendency to form between grains of tetrahedral carbon.  

This is especially common at higher growth rates, as the diamond grains may close off pockets of sp2 

carbon before they are etched away by hydrogen.  Films grown through Chemical Vapor Deposition also 

exhibit anisotropic thermal characteristics, becoming more conductive layer by layer as they thicken [38].  

At the nucleation layer many small grains form from each particle, but grains become fewer and longer as 

they grow away from the nucleation surface.  The longer grains provide an easy conduit for phonons to 

travel along, perpendicular to the surface.  Phonons traveling parallel to the surface, however, must cross 

multiple grain boundaries.  Thus, conductivity across grains for diamond is roughly 90% of conductivity 

along the grain [8].  In some instances, the earlier layers of a film may be ground away to result in a more 

thermally conductive film with larger grains.  Single-crystal diamond films exhibit primarily isotropic 

thermal conductivity as the crystal structure is identical and free of grain boundaries in any direction.  

2.6.1  Heat Spreaders 

One of the uses for diamond films is as interfaces between heat-generating components and heat sinks 

[10].  Diamond has a low heat capacity,  thermal energy from processors and other 

components.  However, due to its high in-plane conductivity, a diamond film on a processor can even out 

hot spots and transmit heat more evenly to a heat sink.  The grain-size differences in MCD and NCD 

films create different thermal properties; MCD has higher in-plane conductivity but lower across-plane, as 

the larger grains create a rougher surface.  NCD has lower in-plane thermal conductivity due to more 

grain boundaries, but conducts heat across-plane more easily due to a smoother surface.  For heat 

spreaders, it is desirable to have a mixture of these qualities, thus layered films have been pursued.  By 
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altering gas ratios during deposition, the grain size at the film surface can be altered [10]; two layers of 

fine-grain NCD separated by a layer of long-grain MCD would be an ideal heat spreader. 

2.6.2  Substrates for Electronic Devices 

Some applications of diamond films invert the order of layers, with diamond underneath the electronic 

devices [39].  This is to take advantage of its electrically insulating as well as its thermally conductive 

properties.   

2.7  Measurement Techniques 

Diamond films are highly thermally conductive, and are typically grown on thermally conductive 

substrates.  Given how readily heat propagates through the material, it may be challenging to accurately 

measure the thermal characteristics.  Even more challenging to measure is the boundary or interface 

between a film sample and its substrate, as this may vary with each sample and must be measured 

indirectly.  However, the contribution to the overall thermal resistance may be substantial, and can 

negatively impact the usefulness of such films for thermal management of small electronic devices [36].  

Multiple techniques are available to measure different thermal properties of diamond films; here, several 

common approaches are described.   

2.7.1  Contact 

These measurement techniques require the temperature sensing device to be in physical contact with the 

film or material.  This typically means less data processing or analysis to derive the conductivity, as there 

is some physical quantity being directly measured.  

2.7.1.1   

Metals change their electrical resistance as a function of temperature, and can be evaporated onto surfaces 

in precise patterns.  These characteristics led to development of metal heaters that also act as 

thermometers.  Once a metal line is deposited on the sample surface, an alternating current is passed 

through it [40].  The frequency of the current  causes the film surface to heat at double the frequency 
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[2].  As the metal temperature increases, its resistance oscillates with the frequency of the surface; thus, 

the resistance oscillation multiplied by the current frequency creates a voltage drop of 3 .  Sensitive 

equipment can detect this quantity, and relate it to the temperature of the film.  This is most effective for 

isolated films or films on lower-conductivity substrates [41].  This technique may be used on diamond 

films, and can be used to find diffusivity or conductivity, related by Equation 1, 

    (1) 

 and cp it heat capacity..  

This method requires equipment to sputter-coat the sample with the metal pattern, as well as a frequency 

generator to ensure the alternating current across the wire is a very clean sine wave.  To measure the 

change in voltage of  requires a lock-in amplifier, differential amplifiers, and a digital-to-analog 

converter.  Thus, while the technique can be used to find both the parallel and perpendicular thermal 

conductivities, the equipment cost required is prohibitive.  

2.7.1.2  Thermocouple-based Measurements 

Physical thermocouples are the simplest method of measurement, and relatively accurate [42].  These 

consist of two dissimilar conducting wires joined together at a single point.  The temperature of the joint 

is measured in relation to a cold-junction reference within the readout box.  Small thermocouples are 

necessary for work in the semiconductor field, as large ones may act as heat sinks for small components.  

It is possible to create a thermocouple on the device itself for testing circuitry or micro-electronics.  

Sputter or evaporation-deposited heaters and thermocouples are also used to characterize thin films; a 

mask is used to create a pattern of wires, and silver, gold or platinum is used as the conductive material.  

The technique is simple, and thermocouples are inexpensive, but thermocouples may act as a heat sink at 

the spot being measured.  Additionally, slight variations in mounting the device may alter their readings. 

2.7.2  Non-Contact 
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Contact methods entail an additional interface between the sample and the measurement device, whether 

that be a physical thermocouple or a deposited thin-film heater and sensor.  They also may damage the 

sample, particularly deposition techniques where removal of the device may affect the film.  Non-contact 

methods have their drawbacks, primarily being more complicated than the simplest contact-methods, but 

are non-destructive in that they do not alter the structure or properties of the film samples examined.  

Typically non-contact methods measure the thermal diffusivity rather than the conductivity directly, as 

precise measurement of a temperature gradient is challenging without physical contact [43].  Instead, 

thermal diffusivity may be measured due to the time delay of heating and cooling response to a pulsed 

laser.   

2.7.2.1  Photodetector and Laser-Flash Analysis 

For thicker films, a laser and photodetector pairing can be used to measure the diffusivity of a sample, 

which relates to the conductivity through the density and heat capacity of a material.  In one set-up, an 

infrared camera is placed behind a sample, and a Nd:YAG laser and photodetector aimed at the front [44].  

The photodetector activates the infrared camera once it senses the front surface has begun to heat; the 

camera then records the temperature rise as a function of time.  This does require coating the sample with 

black paint, to give a high emissivity; it may also be used for free-standing films.  A similar method, 

known as Laser Flash Analysis, can be used for multi-layer films, but only when the film is less thermally 

conductive than the substrate it is on.  Instead of an infrared camera, a photodetector measures the 

temperature of the top surface as a function of time after a laser pulse to the sample underside.  It is 

challenging to measure very thermally-conductive specimens, and this apparatus can only measure the 

diffusivity perpendicular to the sample plane.  It is accepted that most instruments are too slow for 

diamond samples, however, so this is less commonly used in typical laboratories [45].  

2.7.2.2  Photothermal Methods 

Heating a sample with a laser pulse and measuring the thermal decay of the heated surface with a 

secondary laser takes advantage of the time-delayed cooling of materials.  For Thermoreflectance 
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measurement, the diamond film being measured is coated by gold or another highly heat-conductive and 

reflective material, and the excited surface molecules alter the reflectance of the sample to a small but 

quantifiable level [41].  The thermal conductance is found per unit area, from the heat flux generated by 

the laser, and the film's thickness and heat capacity.  Photoacoustic Spectroscopy is a similar method 

which measures the sound made by gas next to a heated diamond film.  As thermal energy leaves a 

surface by convection, the gas particles next to that surface are energized, creating an acoustic wave. The 

frequency of this sound may be up to 20 kHz.  Optical Beam Deflection takes advantage of the gas 

molecule movement as well; as the atmosphere at the sample surface heats, its index of diffraction 

changes from unity, and causes a laser aimed across the surface to change its angle of deflection in a 

periodic manner as a function of the heating pulse frequency [46].  This method can also measure 

diffusivity in different directions to check for anisotropic properties. Another method, Photothermal 

Displacement Spectroscopy, uses one laser to heat the sample surface and a second to examine the 

the deflection is related to the diffusivity which can then be used to calculate the conductivity [47]. Each 

of these methods requires highly sensitive, highly expensive equipment to measure the miniscule scale 

and extreme speed of the process.     

2.7.2.3  Infrared Thermography 

 The most common non-contact temperature measurement is capturing the energy radiating from an 

object in the infra-red wavelength.  Measuring the thermal energy radiated by an object requires accurate 

knowledge of that material's emissivity [48]. The sensing instrument may be a pyrometer, which reads the 

temperature of a single spot, or a camera which captures temperature data over a wider area.  Thermal or 

infrared cameras are like visible-light cameras in several ways, with focal lengths and shutter speeds.  

However, since they detect light outside the visible spectrum, image processing is unavoidable.  The 

sensors in IR cameras are by necessity digital, and thus have finite resolution.  The data from an infrared 

camera must be processed to create an image. This image will be false-color, as infrared wavelengths are 
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invisible to the human retina.  Temperature values are assigned to a color gradient, but the resolution of 

the image is limited by the device.  Infrared pyrometers also have spot-size limitations, and return a 

reading that is the average of the temperature for the sensing area.   

2.7.2.4  Raman Spectroscopy 

Non-contact methods of diamond characterization were developed in part to assist with in situ monitoring 

of diamond growth; the time necessary to grow useful diamond would be greatly reduced if the film 

quality could be monitored during growth and the conditions adjusted. One measurement technique that 

may be used independent of the sample emissivity is Raman Spectroscopy, which measures the vibrations 

of different atoms and bonds, giving information not just of the elemental makeup but the atomic 

structure as well [49, 50]. Diamond has a well-defined and well-documented Raman spectra, with a sharp 

peak at 1332 cm-1 and a broad peak at 1530 for synthetic diamond with amorphous carbon [51]. 

Temperature affects the Raman spectra in two ways: thermal energy added to the system alters the 

vibrations of individual atoms, increasing the amplitude as heat is added. Additionally, as the material 

expands according to its thermal expansion coefficient, the distances between individual atoms increase 

and the bond characteristics alter [52]. An additional consideration for thin-film samples is strain affects 

between mismatched lattices due to different expansion rates.  The position of peaks in the Raman spectra 

is significantly affected by temperature [48].  Peak position shift is caused by the thermal expansion of the 

unit cell [53].  This expansion causes the vibrational modes of the bonds to alter [33]. Due to this 

temperature-dependent effect, Raman spectroscopy has been successfully used for twenty years to 

measure the temperature of samples during CVD diamond growth [54], and has become widely used to 

characterize the thermal properties of all carbon allotropes [55-58].  
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CHAPTER III 

 

PROPOSED WORK 
 

It would be very useful to have a low-cost, effective method of measuring the heat flow through diamond 

films and particularly between diamond films and substrates.  Unfortunately, more accurate methods 

entail specialized, expensive equipment, along with potentially destructive sample preparation.  

This work proposes to test a variety of methods to measure the thermal resistance of CVD diamond thin-

films on silicon wafers.  Central to all approaches will be the application of the textbook definition of the 

steady-state (time-independent) form of Fourier's first law of heat conduction.   

 Δ

Δ
   (2) 

Equation 2 is illustrated in Figure 6 [59].  The goal is to find a low-cost, straightforward, non-destructive 

method for accurately measuring the temperature drop across a diamond thin-film sample, using 

equipment common to most labs or inexpensive enough for the majority of labs to purchase.   

It will also be necessary to accurately determine the area A across which the heat flux is traveling, the 

distance x, and the heat transfer rate Qx.  The heat flux will be determined by measuring the power added 

to the system by the heater.  From these quantities, it will be possible to measure the thermal conductivity 

of diamond thin film samples of different microstructures.  
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Figure 6 Representation of Fourier's first law of heat conduction (Equation 2).  The heat 
transfer rate Qx in Watts is the thermal energy moving through a system in one 
dimension. This quantity is a function of the thermal conductivity k in Watts per meter-
Kelvin, the cross-sectional area A in square meters, the distance between the points 

Kelvin.  
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CHAPTER IV 

 

EXPERIMENTAL PROCEDURE 
 

4.1 Processing of Diamond Films 

Samples were grown on Silicon wafer substrates.  These were cleaved to 1" square from 4" diameter 

wafers, and sonicated in acetone for five minutes then methanol for an additional five minutes.  The clean 

wafers were spin-coated with a 2% PEI dilute polymer solution, then a 25nm diamond particle suspension 

for seeding with diamond.  After drying in open air they were ready for deposition. 

The samples were placed in the vacuum chamber.   When the chamber is not being used it is backfilled to 

neutral pressure with nitrogen.  This keeps outside air and moisture from leaking in. It is gradually 

pumped down to the 10-3 Torr range with a backing pump.  The process gas lines are kept under vacuum 

between depositions, and so must be purged before each run to ensure process gas purity.  The lines are 

closed, and the chamber may now be pumped to the 10-6 Torr regime, to remove impurities and gas 

molecules that may have adsorbed onto interior surfaces. The turbo-pump is shut off after the desired 

pressure regime is achieved.  The stage is then heated.  Process gases are then introduced, starting with 

Hydrogen.  This low-molecular density gas easily ignites into plasma.  Heavier gases require more power 

to start and maintain a plasma.  The microwave generator is activated and power increased.  The plasma 

typically ignites at 30 Watts in a very diffuse sphere.  Wattage and pressure are increased in unison, and 

the plasma coalesces into a small sphere roughly 2.5 cm in diameter.  Samples over 2.5x2.5 cm2 are 

typically not put into the reactor, as diamond film near the corners of the wafer may not be as thick or of
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Table 2 Processing Conditions 

Sample Ratio of Ar-H-
CH3 (%) 

Deposition 
Time (hrs) 

Stage Temp 
(ºC) 

Pressure (Torr) 

21414 60-39-1 4 850 60 
30414 85-14-1 3 850 90 
81114 0-99-1 5 850 60 

90414 60-39-1 3 850 60 
 

good quality . Table 2 shows the deposition conditions for four samples.  The sample designations are the 

dates each sample was initially grown, although additional diamond was grown on each in later 

depositions.  The gas ratios were chosen to create microcrystalline and nanocrystalline diamond films.  

Increased Argon content causes smaller diamond grains and therefore a smoother film, at the cost of more 

non-diamond carbon deposited [10]. 

The stage was heated to 850ºC for each deposition, and the pressure initially brought to 60 Torr.  These 

consistent starting conditions meant differences in thermal conductivity would therefore be due primarily 

to gas ratios.  The increased pressure for sample 30414 was necessary to maintain a plasma in the high-Ar 

concentration. 

After adjusting the power and pressure as desired, additional process gases are introduced.  Methane is the 

carbon-carrier for these experiments, while Argon is used to adjust the ratios of hydrogen and methane as 

desired.  If Argon is being used, it is added before methane.  Since the flow rate of Methane will always 

be 1-5% of the overall flow rate, it is added last.  At this point, diamond deposition has begun. 

After several hours (depending on the thickness desired), the deposition is halted.  The chamber is re-

pressurized slowly with nitrogen, and the sample was removed.  Post deposition characterization is 

necessary to confirm diamond growth: weighing, and comparing to pre-deposition weight, allows 

calculation of the film thickness by multiplying the weight change by accepted density of diamond, 3.51 
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g/cm3, times the deposition area of 6.45 cm2.  Raman spectroscopy is then used to ensure the deposited 

film is diamond (as opposed to graphitic carbon), and that no impurities were present in the chamber. 

The sample is then ready for thermal characterization, the main focus of this research.  The approach went 

through multiple iterations, with the primary goal to get reliable and trustworthy measurements that could 

of equivalent thermal resistance allow the most important quantities and dimensions to be accounted for 

easily.   

4.2 Setup for Measurement  

The core concept of the research apparatus was to physically recreate Fourier's law, specifically the one-

dimensional form [59]:  

 

Equation 3 describes the rate of thermal energy transfer for conduction, in the form of a heat flux x in 

Watts per square meter.  This is a function of the heat rate Qx and the area A perpendicular to the path. 

In cases where the temperature is not time-dependent, the system is defined as being in a steady-state. 

Thus, the rate equation for heat flux will be a constant, with the temperature linearly dependent on 

position along the single axis. For a steady- x W/m2 may be substituted with Qx W/A m2 

and Equation 3 re-arranged into Equation 2.  When arranged as in Equation 2, the heat rate equation bears 

movement of electrical charge between regions of high and low electrical potential; under direct current, 

the circuit is in a steady-state, and the electrical current is the same through each component.  Thus, 

steady-state heat-transfer problems can be examined by creating a thermal circuit.  Figure 7 shows a 

simple resistive electrical circuit, next to an instance of thermal energy transfer.  Thermal energy adheres 

to certain laws, and the transport of this energy is analogous to current flow.  A temperature drop 

(3) 
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corresponds to electrical potential drop, and electrical and thermal resistance can be compared directly, 

ductivity of a material and k  the thermal conductivity .  Equation 4 shows this 

similarity. 

 

 
Figure 7 Comparison of Electrical and Thermal systems.  Voltage and Temperature 
gradients are analogous, and heat transfer rate is comparable to current flow. 

 

This is of course a simplification of real systems.  Not all the thermal energy will travel one-

dimensionally through an object.  There will be some lateral heat spreading, and energy lost through 

convection or radiation from the surface.  Additionally, interfaces in a thermal system have a much 

greater effect than in electrical systems.  Thermal resistance across an interface or boundary is the 

reciprocal of the conductance [30, 60], and is defined in Equation 5 as:  

 

This quantity is the temperature drop T across an interface for a certain heat flux q, and is determined by 

the bulk properties and surface properties of the materials in contact as well as the interface itself.  This 

resistance is present for every boundary, including grain boundaries within a bulk material. 

(4) 

(5) 
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4.3 Measurement Techniques of Thermal Properties  

4.3.1 Contact  

The first measurement technique used two k-type thermocouples, placed on the top of the sample next to 

the edge of the heater, and on the copper block next to the edge of the sample.  The placement of 

thermocouples was based on an assumption made for the experiment: specifically, that heat would travel 

through the sample one-dimensionally.  By matching the heater and sample dimensions as in Figure 8, it 

was thought that no lateral heat spreading could occur, and a series of parallel thermoclines (planes of 

identical temperature) would form between the top and bottom surfaces of the sample.  

 
Figure 8 Sample mounting for first iteration 

The temperature drop across the sample was measured by thermocouples placed in the same plane as the 

top and bottom of the thermal gradient across the sample.  While it would have been ideal to place the 

thermocouples directly between the layers, their size made this strategy untenable.  Physical contact must 

be maximized for efficient heat conduction, otherwise air gaps would need to be taken into account.  

Placing a thermocouple under the sample would have caused the sample to tilt.  For a heat sink, a water-

cooled brass heat sink was attached to a Fisher Scientific Isotemp 1006S recirculating water chiller.  To 

ensure the chiller maintained a set temperature, a copper tube attached to the lab cold water supply was 
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immersed in the chiller's small reservoir.  A flexible kapton heater was clamped onto the sample by five 

nylon screws in an x-pattern, to keep maximum surface contact. This combination of heater on one side 

and chiller on the other established the temperature gradient.  Nylon was used both to protect the heater 

from mechanical damage and to minimize conductive loss from the heater to the screws.  Later a piece of 

glass comparable to the heater dimensions was placed between the heater and screws, as even with five 

contact points the heater still deformed as it warmed up.  An HP 6234a dual-ouput power supply was used 

to power the heater (maximum output 25V at 0.2A), a Tektronix TDS 1002B oscilloscope to measure the 

voltage output of the HP, an ammeter to measure the current, and two Omega DP24-T-GN thermocouple 

meters (accurate to +/- 1°C) to read the thermocouple temperatures. 

 
Figure 9 Initial setup, showing (A) oscilloscope for voltage measurement, (B) power 
supply for heater, (C) ammeter for current measurement, (D) cardboard housing for 
sample chamber, (E) (F) thermocouple readout boxes for temperature measurement 

 

A cardboard housing was placed around the stage as shown in Figure 9, to minimize convective heat loss.  

Initially samples were simply clamped under the heater with the screws, and the thermocouples were also 

kept in place using rubber sheathing on the thermocouples and feeding them through a rubber gasket, to 
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create friction.  The temperature readings from these runs varied greatly; it was observed that the 

thermocouples were not always in direct contact with the sample and chiller surfaces by the end of the 

experiment.   

Springs were used in an attempt to ensure firm, even pressure on the thermocouples, but readings 

continued to vary.  This may have been due to the thermocouples in use being large enough for the heavy 

wires to act as heat sinks, which would lower the local temperature of the area being read by the 

thermocouple.  Thus, smaller thermocouples were ordered and mounted differently.  Small beads of 

thermally conductive Pelco silver paint were placed over the thermocouple bead once it was in physical 

contact with the surface.  Once dried, the paint would keep the thermocouple in physical contact, while 

also increasing the effective area of the bead.   

Even with physical clamping, the silicon substrates did not always sit completely flush with the surface of 

the copper block.  Increasing the pressure from the nylon screws would only crack the sample, and so 

silver paint was also employed to attach the substrate to the cooler.  While this would add another 

thermally resistive layer between the two, it was determined that the paint allowed for more even and 

repeatable thermal transfer.  Additionally in the Thermal Equivalent Circuit analysis, a layer of silver 

paint is relatively easily accounted for as another resistor in series.  

Figure 10 shows the temperature taken with and without the samples adhered to the chiller with silver 

paint.  The steeper slope of 28.05 °C/W denotes a higher thermal resistance between the silicon and the 

stage, caused by lack of conduction between the silicon wafer and the chiller.  As silicon itself is highly 

thermally conductive, it was expected that reducing the boundary resistance would decrease the overall 

thermal resistance between the thermocouples.  The negatively-sloped line (-6.17 °C/W) is believed due 

to thermocouple attachment problems, which were still affecting the measurements at this point in the 

research; however, as it was closer to the expected flat line, it was decided that silver paint would reduce 
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the thermal resistance between the sample and the heat sink.  The other encouraging piece of information 

was the error bars reduced in size once silver paint was used, indicating more even thermal transfer. 

 
Figure 10 Temperature Drop measured across a silicon wafer with and without silver 
paint adhering it to the heat sink.  The slope constitutes the thermal resistance between 
two thermocouples. The smaller error bars for the Ag interface show more even heat 
transfer. 

Silver paint was allowed to dry overnight for the sample, and 1-2 hours for the beads on the 

thermocouples.  While the thermocouple readout boxes did not return identical values for the 

thermocouples, this was deemed acceptable as the quantity of interest was the change in the temperature 

difference as the heat was increased.  However, the temperature range was deemed too narrow for 

noticeable differences.  Both the power supply and heater in use had severe limitations; the power supply 

could only deliver fifty milliwatts to the heater, leading to extremely narrow power ranges and 

temperatures.  Replacements were sought for each.   

A Keithley 228A digital power supply allowing for more precise power levels to the heater (100 mV and 

1 mA resolution), and was also capable of higher power output (100 V at 1 A), was used.  A new heater 

was purchased from Birk Manufacturing.  The BK-3546-53.0-L12-00 is kapton-encased and measures 
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1x1 cm2 .  It was desired that the new heater be capable of higher power levels, and 

have a smaller area to increase the watt density, confining the same amount of heat to a smaller area.  This 

would effectively increase the temperature of the sample, without an attendant increase of power input.  

The 2.5x2.5 cm2 samples were cleaved to 1x1 cm2 to maintain homogeny between heater and sample 

dimensions.  The new heater was capable of a maximum temperature of 200°C, well beyond the 

boundaries of room-temperature experimentation.  A BK-3546-53.0-L12-04 heater was also ordered, 

which is aluminum-backed.  This was to test if a stiffer heater with a metal surface would conduct heat to 

the sample better than kapton only. 

However, it was found that the recirculating chiller was responsible for part of the error, due to variations 

of the building's water supply temperature.  To rectify this, it was necessary to add a Peltier cooler to the 

platform.  Attaching the unit to the copper block allowed for more precise cooling, and lowered the stage 

temperature further than was possible before.  The recirculating chiller was still necessary as a Peltier 

requires a heat sink.  A combination of more powerful heater, more effective chiller, and more versatile 

power source allowed for more precise experimentation.  To properly measure the experiment, it was then 

necessary to purchase a Data Acquisition device (DAQ), as the two readout boxes were not precise 

enough, and still allowed human error as the readings had to be written down while fluctuating.  The 

purchase of a Keithley 2700 Multimeter / Switch System with a Model  7702 multiplex card allowed use 

of more thermocouples, and a KUSB-488B USB cable allowed automatic data gathering at the rate of ten 

points per second; thus, slight variations could be quantified and accounted for.   

An ongoing challenge while improving the measurement setup was the mounting and recovery of 

samples.  Leaving the silver paint to dry overnight created a strong bond between the sample and the 

copper block; while acetone dissolved the paint, it evaporated before penetrating underneath the silicon.  

Any attempt to pry the substrate off resulted in shattered samples; enough patience and acetone would 

eventually cause the sample to yield, but this was no longer the case once the Peltier cooler was mounted. 

Its ceramic surface was rough and porous, and large amounts of acetone were required to dissolve all the 
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silver paint under the sample.  Soaking the cooler in acetone was ruled out, due to unknown effects on the 

device integrity.  Thus, a removable, thermally conductive stage was needed to mount on the Peltier 

cooler.  It was decided to use a piece of brass, cut to the same dimensions as the Peltier.  The brass was 

attached to the Peltier with silver paint and the silicon sample mounted on it; the metal was stiff enough 

that it could be pried off the Peltier with the silicon intact.  This pairing could then be soaked in acetone 

long enough for the sample to release. 

It was found that there was still unreliable data after each adjustment to the apparatus.  Small differences 

in the location of the points being measured and thermocouple mounting at those points caused different 

temperatures to be recorded.  Since only discrete points were being measured, getting accurate 

measurements of the entire system would be much too time-intensive.  It was decided to pursue non-

contact measurement techniques to remove variability in sample mounting and temperature measurement. 

4.3.2 Non-Contact  

4.3.2.1 Infrared  

This seemed like a straightforward measurement technique, and could provide much greater detail 

regarding the heat flow through the system.  An ICI 9640 P-Series USB thermal camera was rented to test 

the usefulness of this approach.  Pictures were taken at several power levels.  The goal for this was simple 

comparative analysis; finding the thermoclines within the sample was of great interest, and variation 

between a piece of silicon and of diamond-coated silicon should theoretically show additional thermal 

resistance, due to the growth interface.  Additionally, by examining the entire set of strata, known values 

of the properties of silicon and brass could be used to confirm the accuracy of the system and instrument.  

The instruments, lenses, and software used were powerful and seemingly precise, but therein lay the 

drawback of this method.  To display invisible spectra as visible colors, image processing is unavoidable.  

The most worrisome possibility was for the software to extrapolate between real values, to enhance the 

resolution.  It was desired that the images retain all of the raw data, but accurately show the limits of the 

pixel pitch.   
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Pixel pitch relates the minimum size of resolvable features to the distance from the camera lens, 

essentially showing the actual area of the object that is captured by each photosensor.  As with any 

analog-to-digital conversion, the "thermal pixel" is the average of the temperature in the given area on the 

sensor.  The software could add pixels by averaging the temperature between two.  This was not desired 

and therefore not used, as the actual values were desired.  The images captured were of uncoated silicon 

wafers and of sample 21414.  The heater and chiller were set up identically to the contact-based 

measurement setup, and the camera positioned from the side to view all the layers at once, shown in 

Figure 11.  

 
Figure 11 Sample mounting for thermal camera measurement
view covers everything from the nylon screw to the water-cooled block.  Only one region 
at a time may be focused on, however.  For the measurements it is focused on the glass, 
sample and brass plate, the edges of which were lined up. 

4.3.2.2 Raman Spectroscopy  

It was decided to use the Raman Spectroscopy method to test the thermal conductivity of diamond; 

specifically, to compare the change in peak position and FWHM to temperature. This experiment was 

pursued based on the principles of Raman spectroscopy, of measuring the alteration of a lase
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when it is reflected off matter. Different materials and bonds absorb and reflect energy in repeatable, 

distinct ways, allowing elemental makeup to be determined. However, thermal energy excites atoms 

causing vibrations that stretch and compress bonds, and it was posited that the alteration could be 

substantial enough for detection. If this were the case, no physical temperature measurement would be 

needed, as the Raman peak would represent the temperature of the sample. Furthermore, this would allow 

direct comparisons between samples, in the changes of their thermal properties as a function of growth 

conditions. It has been shown in other research that the diamond peak is subject to shift with temperature 

[61]. This shift is accompanied by a change in the FWHM of the peak [62]. As temperature increases, the 

peak moves to a lower position and the FWHM broadens [63]. This relationship is linear, and each 

 relationship with temperature is linear over short (100K) temperature ranges. The diamond 

peak shift is -0.0166 cm-1/K [56], while the increase in width was close to 4 cm-1 over a 1000K increase, a 

cupation 

number of phonons [56]

diamond lattice. Experiments should show a change in both quantities. Heating was limited to less than 

100°C, so as not to damage any components of the microscope or laser.  A thermoelectric cooler 

(powered in reverse to allow heating) was used for temperature adjustment instead of a thin-film heater, 

as it was large and sturdy enough to provide a stage for mounting samples. However, since a TEC 

other to experience a constant offset. Thus, the cooling side of the TEC would need to be attached to a 

heat sink that would keep the temperature constant. This was accomplished by using conductive silver 

paint to cement the TEC to an metal bracket with a 90-degree bend. The longer part of the bracket then 

became a fin which extended through a slot in the adjustable Raman stage; a small fan was then 

positioned to blow along it for the first few experiments, cooling it but keeping it at a constant 

temperature (verified by a thermocouple); this was eventually dispensed with, however, to allow a greater 

temperature gradient.  The apparatus is shown in Figure 12. 
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Figure 12 Sample Mounting for Raman Spectroscopy Temperature Measurement.  The 
upper surface of the Peltier is heated, thus the lower surface is cooled when current is 
passed through the unit.  The L-shaped bracket acts as a heat-stabilizing fin. One 
thermocouple is attached to the brass mounting plate, and the Raman laser is focused on 
the sample surface.  

Local heating from the laser itself must be considered [64]; the power density, especially when focused 

through a 50x objective, was potentially great enough to heat the sample at the measurement point higher 

than the average temperature of the sample, causing the shift as a function of temperature to be misread. 

Some research groups have heated the sample up to 770K using the raman laser itself [64].  However, 

lower laser power could also result in noisier signal, and so a larger aperture was used to ensure that the 

laser signal was adequately captured and measured. At the lower laser settings, 140- W of power was 

dir m aperture was used for observation. The collection time was 

increased from 4 seconds to 20 seconds to reduce signal noise.  Later experiments were run with a 

collection time of 10 seconds as the signal noise was still acceptable. Initial runs were performed on a 

single-crystal diamond, which is typically used as a calibration standard for the Raman system. The 

diamond was placed, and the thermocouple glued down 1-2 cm away for each experiment. Due to the 

very short focal length of both lenses, this was the closest possible mounting distance. An MDX 500 

power supply was used for the TEC, and the Keithley 2800A DAQ used to measure the temperature.  
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Single-crystal diamond and silicon wafer measurements were taken at room temperature.  Three to five 

readings were taken for each set to provide a basis for statistical analysis.  Thin-film diamond samples 

were measured at room temperature and three power levels to the thermoelectric heater.  One 

thermocouple was attached to the surface of thin-film samples for measurement of temperature. 
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CHAPTER V 

 

RESULTS AND DISCUSSION 
 

5.1 Processing of Diamond Films  

Initial characterization of the diamond samples was necessary to ensure the proper material was present.  

Raman spectroscopy was used to verify the diamond content and film purity.  Five spots on the surface of 

the sample were examined to ensure the film was of regular quality.  Figure 13 shows one spectra from 

each sample compared to a spectra of Single-Crystal Diamond. 

 
Figure 13 Raman Spectra (Dashed Line) of Single-Crystal Diamond vs Raman Spectra 
for four Diamond Thin-Film samples.  Note silicon peak at 520 cm-1
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To determine the film thickness, the wafer with diamond seeding was weighed beforehand on a Mettler 

Toledo XS 205 balance; five measurements were taken.  Post-deposition another set of five weight 

measurements were taken, and using the density of diamond (3.51 g/cm3) and the sample dimensions 

(6.45 cm2) the average film thickness was determined.   

Table 3 Film Characteristics 

Sample Ratio of Ar-
H-CH4 (%) 

Deposition 
Time (hrs) 

Stage Temp 
(C) 

Pressure 
(Torr) 

Film 
Thickness 

( ) 

Growth 
Rate ( /hr) 

21414 60-39-1 4 850 60 0.72 0.18 
30414 85-14-1 3 850 90 0.895 0.298 
81114 0-99-1 5 850 60 1.54 0.308 
90414 60-39-1 3 850 60 0.61 0.203 

 

5.2 Thermal properties 

5.2.1 Contact  

This experiment showed the unsuitability of thermocouples to measure temperature drops.  Five 

thermocouples were attached as in Figure 14, and the temperature drop between each numbered 

thermocouple and the reference thermocouple recorded.  One thermocouple represented in Figure 14B by 

a triangle was attached to a piece of diamond-coated silicon, and three other thermocouples (a circle, 

diamond and square) attached to pieces of bare silicon. In theory this should have resulted in identical 

temperature measurements, so long as the heater underside was isothermal and the glass heated evenly.   

 
Figure 14 (A) Experiment to test reliability of thermocouples for measuring temperature 
gradients.  (B) Arrangement of thermocouples on setup. 
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Figure 15: Temperature drops between each thermocouple in Figure 14B and the 
reference thermocouple.   

The widely varying temperatures in Figure 15 showed that even slight mounting variations, and slight 

inconsistencies of the heater, could produce results that widely varied from expected values.  This showed 

that either the heating was not even (one of the working assumptions), or the differences in how each 

thermocouple was mounted affected the temperature reading to a high degree.  Even heating and lateral 

heat spreading are critical to this method, so that all points in the same plane parallel to the heater may be 

assumed isothermal.  Thus, taking a temperature measurement in the same plane as the area of interest 

should give the temperature of that area.  This is best understood by referring to the Thermal Equivalent 

Circuit model in Figure 16 of Figure 14A.   
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Figure 16 Thermal Equivalent Circuit for Figure 14, showing each layer.  The heater acts 
as the voltage source, and heats the pieces of glass on either side holding it in place.  The 
upper glass loses heat to the surroundings, which act as a heat sink or ground.  The 
bottom glass piece is attached to the samples, one of which is considered as two resistors 
in series due to its diamond film.  These are all adhered to a brass plate, which is the final 
thermal resistor above the water-cooled heat sink, which is also ground.  

The system is composed of multiple elements, each with their own thermal resistances and dimensions.  

However, by comparison with electrical resistance, even complicated arrangements can be analyzed with 

relative simplicity. For conduction, each layer is represented as a thermal resistor in a series.  Elements of 

thermal resistance can also be considered parallel.  Each layer acts as a resistor, but layers that touch the 

same surfaces should experience identical temperature drops as resistors in parallel experience identical 

voltage drops.   

Theoretically, the heater should heat evenly, and the Peltier cooler chill evenly, so the heat flux through 

any point on the setup should be the same.  While it would be ideal to measure the temperature at a point 

between heater and sample, and again between sample and chiller, this was infeasible for two reasons.  

The physical dimensions of the thermocouple were enough to interrupt the physical contact between each 

element, reducing the heat conduction of the system.  Also, there would be no way to ensure the measured 

quantity was the temperature of the sample surface, instead of the heater or chiller surface.   



43 
  

Figure 16 shows that the temperature drop measured via thermocouple is unreliable, as it alters based on 

the points being measured and how each thermocouple is mounted.  It was decided that physical contact 

methods were inherently too inaccurate and too limited for the samples being tested, due to the widely 

varying temperature drops.  Human error would be present in establishing the temperature gradient and in 

mounting the measurement devices.  The amount of silver paint, the position of the thermocouples, and 

mechanical pressure on the heater, were all critical factors that could change the temperature reading on 

the level of degrees.   

5.2.2 Non-Contact  

5.2.2.1 Infrared  

Once the thermal pictures were captured with the ICI 9640 via its USB attachment to the lab computer, 

analysis of the thermographs began.  Since each picture contained thousands of data points, only specific 

areas of interest were examined, beginning with the interfaces between layers.  This was more difficult 

than anticipated, due to uncertainty as to where precisely the interface was located.  In false-color images, 

features that would be obvious in photographs can become indistinct or even disappear dependent on 

temperature.  Some thermal cameras actually overlay temperature data onto a visible-spectrum 

photograph, but these are typically lower-end devices for home inspection or plant monitoring, and are 

fairly coarse.   

however, sharp temperature drops could be matched with material interfaces.  Temperature values within 

the bulk of each layer were fairly simple to sort out; this would show the thermal energy flow through 

different materials to confirm one-dimensional heat flow, and the thermal properties of each layer.  

Typically, one pixel covered 20-50 microns, meaning 6-10 pixels across each layer.  This was determined 

by counting the pixels across the known thicknesses of the Silicon wafer and Brass plate, as in Figure 17. 
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Figure 17 Side view of sample mounting for infrared camera.  The edge of sample 21414 
is lined up with the edge of the brass plate, to allow the camera to focus on both.  The 
side of the setup facing the camera is sprayed with Arrid to provide a constant emissivity 
for each layer.  The glass piece is somewhat in focus, while the screw is out of focus as it 
is half a centimeter behind the edge of the glass.   

While not ideal for delineating precise thermal gradients, this was enough of a distance to make a 

reasonable estimate of the temperature drop across a layer.  This was not as helpful as was hoped.  The 

temperatures and temperature drops were inconsistent at different portions across the sample width.  

Figure 18 shows the temperature differences at nine points spaced half a millimeter apart along the top 

edge of sample 21414 and the bottom edge of the brass plate it was mounted on.  The first data point, and 

the last two, are all at locations where the top of the sample was exposed to air, and thus a lower 

temperature gradient is expected.  However, the remaining points show changes in temperature from 11.2 

to 17.4°C.  It is difficult to precisely find the interfaces of each layer in the false-color image, but the 

closest point possible was chosen. 
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Figure 18 Temperature drop from top of Diamond Sample to bottom of Brass Plate at 
nine equidistant points across the width of sample 21414 shown in Figure 17. 

The discrepancies in temperature drop could be due either to uneven heating or uneven temperature 

reading; the latter could arise from low emissivity of silicon and brass.  Surfaces with low emissivity will 

not radiate as much thermal energy; thus, non-contact forms of temperature measurement will not read the 

true surface temperature of objects unless a correction is made.  Typically, this is corrected by using a 

high emissivity coating.  According to representatives from ICI, the spray deodorant Arrid Extra-Dry is a 

good coating, with an emissivity of roughly 0.95, as well as costing very little.  This was sprayed multiple 

times across one side of the setup to make a white powdery coating.  One side was left uncoated for 

comparison.  However, even after coating with Arrid, Figure 18 shows the inconsistency of the 

temperature drops.    

After pictures from the side were captured, a picture from above the setup was also captured.  This 

showed the top surface of the glass, as well as giving a roughly perpendicular view of the silicon and 

brass surfaces.  The edge of the silicon next to the brass could be examined in more detail.  However, this 

image revealed a flaw in this characterization approach.  The top surface of the glass registered average 
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temperature 40ºC greater than that of the edge, as shown in Figure 19, calling into question the central 

assumption of using the side view.   

 
Figure 19 Difference between internal and edge temperature of infrared camera setup.   

The temperature of the glass near its center was not equal to the temperature at the edge, therefore the 

temperature drop across layers at the edge were not representative of temperatures within the system.  

There was no way to measure the internal temperatures of the system, as thermocouples were too large to 

fit between the layers.  Thus, this method was deemed unusable due to lack of sufficient information 

regarding internal conditions.   

5.2.2.2 Raman Spectroscopy  

PeakFit 4.12 was used to examine the data for Silicon, Single-Crystal Diamond, and Diamond Thin 

Films, and to convert the discrete data points into a continuous curve.  Raman peaks may exhibit 
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distortion due to impurities or instrument error. These distortions negatively impact accurate reading of a 

between mathematical and physical spectra. The goal is to find the signature peak of the material and 

account for instrumentation, defects, impurities, or other experimental factors, using additional smaller 

peaks that sum to the peaks in the raw data. Extreme care must be taken to fit appropriate functions in 

relevant locations; enough peaks can exhibit near-perfect correlation but obscure the actual physical data 

[65].  

5.2.2.2.1  Single Crystal Silicon  

It was important to first establish the accuracy of the system; this was done by repeated measurements of 

silicon wafers, as this single-crystal material exhibits a sharp peak at 525 cm-1. The measurements showed 

the system has a consistent offset and low standard deviation within a set of room-temperature 

measurements.  A Lorentzian curve fits the main peak, and a Gaussian accounts for the background as in 

Figure 20.  The instrumental drift of the silicon peak over several months is shown in Figure 21. 

 
Figure 20 Fitted peak for Silicon wafer, composed of a Gaussian peak at 516.29 cm-1 and 
a Lorentzian peak at 521.98 cm-1.  The upper window shows the Raman spectroscopy 
data points, and the curve fitted to those data points.  The r2 value or correlation factor 
between the fitted curve and the actual data is 0.9959, or 99.59%.  The lower window 
shows the component curves used. 
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Figure 21 Average Silicon peak positions and standard deviations for room-temperature 
readings 

 

5.2.2.2.2  Single Crystal Diamond  

Standard spectra of common materials are generated by research groups and universities, and published 

online or in guides. Based on known diamond spectra, one peak was fitted for each single-crystal 

experiment, which was necessary for calibration and to measure device accuracy. Single-crystal diamond 

that is fairly pure exhibits a single peak at 1332.5 cm-1; instrumentation effects may shift or distort the 

peak.  

A 1mm-thick Sumitomo standard diamond provided a clean Raman signal, to test the accuracy of the 

Almega. Sets of five measurements were taken to provide adequate data to calculate statistical deviation; 

both single-crystal diamond and silicon wafer samples were measured.  While diamond generates a 

Lorentzian peak at 1332.5 cm-1, the instrument itself may add a Gaussian profile to that curve [66, 67]. A 

Gaussian broadening of the peak may also arise from defects or impurities, and thus can be taken as a 

measure of the diamond's quality [68]. The data show the peak may shift up to 0.25 cm-1 for a given set of 
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data; the average peak position changes between sets, but this was expected as the internal components 

re-align each time the apparatus is turned on, creating instrumental drift. Raman spectra standards 

typically include the shape of the peak, but in general signals from vibrational spectroscopy take on a 

shape best described by a Lorentzian function. Components of the Raman system, such as the diffraction 

grating, can add a Gaussian distortion to the peak. It may be more straightforward to use a single Voigt 

peak, which is a convolution of Gaussian and Lorentzian functions.  This is shown in Figure 22. The 

peaks should be placed in the region of interest manually, but the PeakFit software tweaks the parameters 

iteratively to achieve the best correlation. The balance between good correlation and physical reality must 

be kept in mind.    

 
Figure 22 Fitted Voigt Peak at 1333.1 cm-1for Single-Crystal Diamond.  The upper 
window shows the Raman spectroscopy data points, and the curve fitted to those data 
points.  The r2 value, or correlation factor between the fitted curve and the actual data, is 
0.9858 or 98.58%.  The lower window shows the component curves used. 

The difference in peak position is attributed to instrumental drift; examination in Figure 23 of single-

crystal diamond peaks stretching back several years shows variation of central diamond peak between 

1331.97 cm-1 and 1335.78 cm-1 from 2011 to 2015.  The standard deviations for each set of data are 

consistent with those for Silicon measurements, thus the system is accurate to 0.25 cm-1. 
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Figure 23 Average Single-Crystal Diamond peak positions and standard deviations for 
room-temperature readings 

diamond peak for a single crystal. If the laser was penetrating through the diamond completely, then the 

substrate could be responsible for altering the spectra, both at room temperature and while being heated. 

The single-crystal standard was placed on a silicon piece; at room temperature and under heating, no 

silicon peak was evident.  This shows the laser did not penetrate the Single-Crystal Diamond, thus heating 

effects from the Silicon would not have altered the diamond peak position or width. 

5.2.2.2.3  Diamond-Coated Silicon  

Unlike Single-Crystal Diamond, CVD diamond may exhibit many peaks dependent on impurities, growth 

and processing conditions, and physical and thermal stresses. Peak fitting for diamond films is less 

straightforward, as often the signal is noisier and the peak intensity will be greatly reduced. The 

polycrystalline film may have non-diamond carbon that creates disorder, and Raman signal of the 

substrate will leak through dependent on the film thickness. With so many considerations that affect the 

peak positio  much an art as a science [65]  
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From the CVD data, the diamond thin films exhibit much less pristine signal, with Disordered carbon (a 

broad, low peak anywhere from 1310 to 1450 cm-1) and Graphitic carbon (a broad peak centered between 

1520 and 1610 cm-1) bands in evidence. Furthermore, the Silicon peak resulting from the substrate is in 

some cases stronger than the diamond peak, and is always better defined. In such cases, more data 

processing must be done but carefully for the reasons outlined above. It may be beneficial to consider the 

diamond peak in isolation, by sectioning the spectra the program will consider. This should not be done if 

it is believed that peaks beyond the section chosen are wide enough to affect the peak in question. 

However, a section from 1250 to 1400 cm-1 was deemed wide enough to include the most typical CVD 

peaks, a Lorentzian function to describe the diamond and a Gaussian function to account for disorder or 

impurities [69].  This sect

marked slope. It was decided to subtract a baseline, normalizing selected data points to a linear horizontal 

axis. Since the tails already exhibited linear behavior, applying a baseline subtraction was straightforward. 

Peaks used for fitting were one Voigt profile at the main peak, and a Gauss profile low and off-center to 

account for the background, as in Figure 24.  

 
Figure 24 Fitted peak for Diamond-Coated Silicon wafer, composed of a Gaussian peak 
at 1332.9 cm-1 and a Voigt peak at 1332.4 cm-1.  The upper window shows the Raman 
spectroscopy data points, and the curve fitted to those data points.  The r2 value, or 
correlation factor between the fitted curve and the actual data, is 0.9924 or 99.24%.  The 
lower window shows the component curves used. 



52 
  

The results are tabulated in Table 4 and visualized in Figure 25.  The correlation values for each peak are 

included, to relate the degree to which the mathematical curve used for the position value describes the 

measured peak data.  

Table 4 Effect of temperature on diamond peak of thin-film samples. 

Sample Peaks Correlation Temperature Sample Peaks Correlation Temperature 
21414 1332.45 0.9926 22.4 30414 1332.68 0.989 21.6 

 1332.11 0.9922 32.2  1332.51 0.9874 32.6 
 1332.19 0.9941 39.6  1332.3 0.9874 42.2 
 1331.8 0.9932 51.8  1332.48 0.9892 53.4 

81114 1332.48 0.9907 22 90414 1333.02 0.9784 22.6 
 1332.38 0.9877 32.44  1332.81 0.9781 32.6 
 1332.25 0.9911 42.1  1332.7 0.9778 42.1 
 1332.09 0.9905 53  1332.29 0.9794 53 

 

 
Figure 25 Thermal response of the diamond peak for diamond thin-film samples.  Sample 
30414 has two slopes due to the final data point exhibiting unexpected behavior.  The 
first value of -0.008 cm-1/K is the best-fit slope for all four data points, while the second 
value of -0.018 cm-1/K is the slope for the first three data points only. 

Multiple samples were tested, and while each exhibited unique slopes, the values were consistent with 

published data [35, 36, 56].  As the system is only accurate to 0.25 cm-1, temperature differences of 10C 
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minimum were necessary for reliable readings.  Of note is sample 30414; the highest-temperature peak 

reading did not follow the trend but seems to have regressed.  This is possibly due to variations in film 

thickness at different measurement spots, or local heating and cooling effects.  The silicon peaks for each 

spectra were also examined in Table 5 and Figure 26, as it was expected they would shift position as well 

[70, 71]. 

Table 5 Effect of temperature on silicon peak of thin-film samples. 

Sample Peaks Correlation Temperature Sample Peaks Correlation Temperature 
21414 521.87 0.9958 22.4 30414 521.9 0.9938 21.6 

 521.43 0.996 32.2  521.52 0.9856 32.6 
 521.1 0.9964 39.6  521.49 0.9895 42.2 
 520.71 0.9959 51.8  521.25 0.9925 53.4 

81114 521.82 0.9966 22 90414 522.1 0.9959 22.6 
 521.92 0.9962 32.44  521.96 0.9956 32.6 
 521.44 0.9962 42.1  521.73 0.996 42.1 
 521.31 0.9963 53  521.21 0.9903 53 

 
Figure 26 Thermal response of the silicon peak for several diamond thin-film samples 

These values were different for each sample, likely due to differences in the interface and film 

characteristics.  For example, variations in film thickness could cause the silicon signal to be altered 
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slightly based on measurement location.  This could be pursued further by comparing the temperature 

response for Silicon and Diamond peaks of different samples. Given that each film exhibits a unique 

Raman response to temperature increase, and that there is consistency between runs, Raman spectroscopy 

is the most promising approach for determining the temperature of a sample with minimal human error.  
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CHAPTER VI 

 

CONCLUSIONS 
 

Several methods were attempted to measure the thermal characteristics of diamond thin-films grown on 

silicon wafers.  The conclusions drawn were:   

1. Seemingly simpler methods are prone to human error in experimental setup and inaccuracy in 

data gathering.  The contact-based methods, using thermocouples and heaters, revealed the 

challenges of applying Fourier's law to model real systems.  It must be assumed that no heat 

escapes the system except by flowing through it, and that the energy passing through the system 

and the resultant temperature gradient can be measured accurately.  Even so, useful knowledge 

was gained from this approach.  Thermocouples allowed quick feedback on adjustments made to 

the system, as it was obvious when a change made temperature measurements more accurate or 

consistent between data sets.  Using silver paint as both an adhesive and thermal interface, and 

mounting samples on a removable plate, were both strategies employed for later experimental 

setups.  It was decided the human error in setting up and measuring the system was too great, 

however, in that mounting samples and thermocouples involved many possible inaccuracies.     

2. The first non-contact method, infrared thermography, exhibited a further limitation, namely 

expecting heat to flow evenly in real systems as it does in ideal scenarios.  The temperature 

profiles at the edge of the system were inconsistent, and didn't correspond to the temperature 

within the system.  Coatings were used to account for the emissivity differences of each material; 
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but it was shown that applying the coatings added error similar to that of mounting 

thermocouples.  The other limitations were the physical dimensions of the setup and the focal 

lengths of the lenses, as well as the cost of the system and the resolution of the device.   

3. Raman spectroscopy is able to measure thermal characteristics in a repeatable and accurate 

manner, as there is little possible variation in setup and less in data gathering.  Using a single 

thermocouple reduces the possible error. Using the Raman system meant taking advantage of 

equipment already owned, and of a well-documented method of measuring temperature.  It was 

necessary to determine the accuracy of the system, but once this was done the samples could be 

characterized.  The advantage for Raman was the minimization of human error, as the 

measurement itself was taken independently of human input. As this technique is dependent on 

average bond length between atoms, it is thought to give the most accurate representation of the 

actual temperature, as there are no interfacial or emissive resistances present.  Nevertheless there 

are drawbacks.  Deriving the interfacial effects still presents a challenge, as the Raman laser 

penetrates the film.  Local heating from the laser may also play a role in altering the signal; 

describing this effect will be pursued in future research.  Based on the data shown in the previous 

section, Raman spectroscopy may be used to determine the temperature of individual thin films.  

It may also be used to determine the temperature of the silicon underneath, as both peaks shift but 

dissimilarly.  There is a good degree of consistency among different Raman measurements: both 

Silicon and Single-Crystal Diamond peaks typically exhibited variance of  0.25 cm-1, thermal 

response slopes for Diamond Films were close to published values, and Silicon and diamond 

show distinct thermal responses. 

Attempting to re-create textbook scenarios reveals the inherent assumptions made in ideal systems.  In 

certain systems, such as optical or electrical, the inefficiencies of real components may have a negligible 

impact on measurement.  However, thermal systems exhibit stark differences between the page and the 

bench.  This may be due to challenges posed by the films and measurement techniques.  Fourier's law 
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assumes accurate measurement and being able to account for all heat flow; both are difficult to do in 

reality.  However, pursuit of the perfect is the only way to reach scientific breakthroughs.  While the 

research has shifted its initial focus, each measurement technique came closer to achieving the goal of 

quantifying the thermal properties of diamond-coated silicon films.   
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CHAPTER VII 

 

FUTURE WORK 
 

Several more questions remain, which will be pursued under PhD work.  Pursuing the thermal boundary 

resistance between diamond and Silicon is of primary interest.  This is tied with seeking low-temperature 

deposition to grow diamond directly on electronic devices; if low-temperature deposition can be 

harnessed, and the conditions optimized for low thermal boundary resistance, it will be possible to create 

electronics that run at higher speeds and power.  To accomplish those goals, the principles of this thesis 

must be applied to a range of samples and the growth conditions linked to the thermal boundary resistance 

of different films.   
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