
FLUIDPASSWORDS - MITIGATING THE EFFECTS OF

PASSWORD LEAK AT USER LEVEL

By

Akhileshwar Guli

Bachelor of Technology
Information Technology

Jawarharlal Nehru Technological University
Hyderabad, Andhra Pradesh

India
2011

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 2015

COPYRIGHT c©

By

AKHILESHWAR GULI

DECEMBER, 2015

FLUIDPASSWORDS - MITIGATING THE EFFECTS OF

PASSWORD LEAK AT USER LEVEL

Thesis Approved:

Dr. Eric Chan-Tin

Thesis Advisor

Dr. K. M. George

Committee Member

Dr. Nohpill Park

Committee Member

iii

Acknowledgments

This Thesis is dedicated to my parents late Mr. Kasinath Guli, Mrs.Chandrakala

Guli and my family members for supporting me through out my life.I would like to

thank my friends who helped me out with their moral support when I needed the

most. Without their support I would not be able to complete my thesis.

I would also like to thank my advisor, Dr. Eric-Chan Tin, for believing in me,for

your encouragement and support, my committee members, Dr. Nohpill Park, for

helping me develop creative and logical thinking and Dr. K. M. George, for the

support you have shown through out my Masters. Without your guidance, patience

and time, I would not be where I am today. I admire you all, and I hope that you

continue to put your full efforts into teaching and research.

Thank you Michael Farcasin for constant help, advice and support during the

development, for teaching me what you know about Javascript and Add-on develop-

ment. You are a wonderful friend and it was a pleasure working with you.

Lastly, I would also like to thank all of the faculty and members of Computer

Science Department. You all gave the opportunity to strengthen my technical and

communication skills.

Thanks to Dr.-Ing. Roland Bless for creating a bibtex citation of RFC 4086.

iv

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.

Name: AKHILESHWAR GULI

Date of Degree: DECEMBER, 2015

Title of Study: FLUIDPASSWORDS - MITIGATING THE EFFECTS OF PASS-
WORD LEAK AT USER LEVEL

Major Field: COMPUTER SCIENCE

Abstract:

Password leaks have been frequently reported in the recent years, with many big
companies such as Sony, Amazon, LinkedIn, and Walmart falling victim to breaches
involving the release of customer information. Even though passwords are usually
stored securely in a salted hash, the availability of powerful password cracking plat-
forms have still enabled attackers to crack passwords. And with the increase in
on-line infrastructure, attackers have an easier time than ever breaking into business
databases. Therefore, we need better password protection at the user level, and ide-
ally one that does not cost users any additional effort. We know that the adverse
effects of a user’s password being guessed can be mitigated by changing the user’s
password. Therefore, we introduce a simple yet powerful algorithm to reset user
account passwords automatically, while still allowing users to authenticate, without
any additional effort on their part. We implemented our algorithm in a Firefox Add-
on that automatically resets a users password when they log in to their account, and
stores the new password in password manager.

v

Contents
Chapter Page

1 Introduction 1

1.1 Outline of Contributions . 5

1.2 Outline of the Thesis . 6

2 Background of Passwords 7

3 Motivation 8

4 Design & Implementation 10

4.1 General Overview . 10

4.2 Critical Steps . 11

4.3 Implementation . 15

4.4 Experimental Setup . 15

5 Evaluation 16

5.1 Classification . 16

5.1.1 Websites . 16

vi

5.1.2 Improvements & Accuracy . 23

5.2 Limitations . 26

6 Discussion 30

6.1 Usability . 30

6.2 Security . 33

7 Related Work 35

8 Future Work 38

9 Conclusion 40

Bibliography 41

vii

List of Tables
Table Page

4.1 Priority and Patterns . 14

5.2 Alexa Top 100 Websites . 17

5.3 List of websites not considered . 19

5.4 List of websites considered . 20

5.5 CPU & Memory Usage . 22

6.6 Average delay is sign-in when using add-on 32

6.7 Average duration to open and close 10 tabs 32

viii

List of Figures
Figure Page

4.1 Algorithm - High Level . 12

5.1 Login on landing page . 24

5.2 Simple Login page . 25

5.3 Simple Password reset page . 26

5.4 eBay Re-Login page . 27

5.5 Depth-First design . 28

ix

Chapter 1

Introduction

Most web services have authentication systems to prevent attackers from imperson-

ating a legitimate user, and password-based authentication is the most widely-used

of these systems. Although long and complex passwords are hard to guess, there are

no precautionary measures in place to protect accounts in case of a password leak.

Since password leaks can lead to both financial loss and loss of privacy [1] [2], and

because organizations can be slow to detect breaches1 [3], we need a system that

protects passwords in advance of a password leak.

Some of the ways of mitigating the effects of a password leak are:

I. Strong Passwords: A straight forward and simple way is to use strong ran-

dom passwords, in which case attackers may not be able to guess a password

even if they are stolen. Using a third party password generator or using pre-

generated random passwords by few websites would be a better option for using

strong passwords. However, most users do not prefer these methods as they

1Security programs monitor the entire application periodically, for the attack to happen without

being noticed it has to happen within the time window

1

are hard to remember and learn a new one when changed [4].

II. Authentication Methods and Protocols: Since password based authenti-

cation method is inadequate and vulnerable to attacks various other authen-

tication methods involving biometrics had been developed. These type of au-

thentication systems are mostly used at offices or restricted areas, but not for

on-line accounts. Various authentication protocols have been suggested such

as:

• OAuth [5] for OSNs, i.e. providing users with a separate and more secure

page for logging in than they use to browse the site normally, and then

giving those sessions only the privileges those users should be allowed.

One example of the benefits of OAuth is the breach of a Twitter app

called Tweetgif: the information for thousands of Twitter accounts were

leaked, but no Twitter credentials were compromised because Tweetgif

used OAuth. However, there are studies that show that OAuth is intrin-

sically vulnerable to App Impersonation attack [6].

• SAuth [7] which employees authentication synergy among different web

services, in which case user willing to access on service S will also have

to authenticate for their account on service V, where S and V can be any

regular web services that are used daily. For example, if a user wants

to login into Facebook the protocol redirects user to also authenticate

his account on Google. Access to Facebook is allowed only if the user

has successfully authenticated on Google and Facebook. Hence in case of

2

password leaks of one services the attackers cannot access the information

of that service as they will need the password of the second service to

authenticate. Although this ensures good security it would not be effective

if the password for both the services is the same and as it adds an extra

step in the authentication process, it is an additional burden on users as

they have to now remember two passwords.

• Two Factor Authentication (2FA) [8], this is a two-step process similar

to SAuth, with few variations in the second step such as entering a tem-

porary password/confirmation code (provided to user via SMS or email),

using smart cards [9]. Another version of 2FA uses ambient noise to au-

thenticate without users interference [10]. This eliminates the necessity

of users waiting for SMS or email and entering the password, but since

the surrounding noise can be mimicked by attackers users are advised to

make unique sounds like coughing, singing/humming etc. As the authen-

tication requires two keys , although passwords are leaked it is difficult

for attacker to get the second key, hence users are safe even in case of

password leaks. But because of the inconvenience process of waiting for

the one-time password or confirmation code to arrive on SMS or email

and ambient noise can be mimicked or the attacker can be present in the

same location as the user, this method is not commonly used. Banking

application is found to use 2FA despite having such user inconvenience as

security is of primary importance compared to the ease of log-in.

III. Server-side Measures: By deploying techniques that detect password crack-

3

ing, optimize storage by manipulating hash of the password that decreases the

success rate of inversion attack, using customized hardware to store and re-

trieve passwords, organizations take all measures possible to avoid password

leaks.

• Various algorithms and techniques are developed to detect password leak /

password cracking [11] [12]. These are often complex and costly to deploy

and maintain. We have lately observed that despite having such methods

in place attackers are successful in breaching the system .

• Hardware scrambling is another way of avoiding password leaks [13].

Trusted hardware such as Scramble S-Crib [14] is used to scramble pass-

words before they are stored in hash on a server. The hardware holds the

encryption keys that scramble the password and one needs this hardware

to do any password attack. Hence even in case of password leaks attackers

cannot crack the passwords as they are scrambled.

The above mentioned methods do not guarantee the safety of an account in case

of password leak , as strong passwords only require extra time or better mangling

rules to crack they do not prevent attackers form accessing user accounts. OAuth can

be vulnerable to an App Impersonation attack also this method cannot mitigate the

adverse effects if the passwords are leaked from the service providers database. In ref-

erence to the above given example, OAuth would not be effective if the passwords are

leaked from Twitter’s database. SAuth and 2FA are effective to deal with password

leaks situations but they add an additional step in the authentication process, which

4

is grievous to the users. S-Crib are costly to deploy and compromising the trusted

hardware could allow attachers to access password database without even getting

noticed, it does not provide any preventive measure after the passwords leak. There

are no user side precautionary methods that reduce the harmful effects of password

leaks, a simple method to achieve this is by changing a user’s password soon after a

password leak. Even better would be to change frequently users’ passwords, so that

users are protected even when a password leak occurs that they are unaware of.

Many websites and organizations (such as the OKEY password system) follow

the practice of password expiration on an interval, e.g. 1 to 3 months, after which the

users have to change their existing passwords. However, this becomes a problem for

users who have many accounts with unique passwords to remember. Remembering

many different passwords, changing them periodically, and keeping track of them

is infeasible for the average user [15]. As a workaround for this problem, users

use similar or the same passwords for multiple accounts [4]. Alternatively, they

may change their passwords by only a character or two. Both of these options leave

users vulnerable to a password breach, because compromising one account’s password

compromises all their accounts, as well as revealing patterns in their passwords that

make them easier to predict in the future.

1.1 Outline of Contributions

We propose a solution in the form of an algorithm that automates password resets

by leveraging a password manager to store completely random passwords, which

5

are secure with Shannon entropy value of 7-bits per character. We implement the

proposed algorithm in a Firefox add-on, FluidPassword and demonstrate it to be

working successfully on 63% of 41 websites which are considered from the top 100

websites [23]. We also suggest that this percentage can also be increased solving few

difficult problem as mentioned in chapter 5 section 5.2

1.2 Outline of the Thesis

The rest of the document is organized as follows. In chapter 2 we discuss the back-

ground on passwords. In chapter 3 we discuss the motivation behind our work. In

chapter 4 we detail the algorithm design and implementation. In chapter 5, we detail

the results. Chapter 6 about the usability and security aspect of the implementation.

In chapter 8 we discuss future work. Chapter7 discusses related work, and chapter9

gives the conclusion

6

Chapter 2

Background of Passwords

Password-based authentication is one of the most popular forms of authentication.

A few services encrypt passwords for storage, which involves a strong, unique key for

encryption that in most of the cases is stored in the same place as the passwords.

The alternative is to store passwords in a cryptographically-secure hash function,

which is a one-way function with no collisions that an efficient adversary can find.

Moreover, the recommended practice is for passwords to be hashed with a salt, which

is a prefix or postfix added to the password before it is hashed to prevent duplicate

passwords from being stored as the same hash. In this case, the hashed output is

stored along with its salt. The addition of salt is necessary to defeat attackers using

rainbow tables, which are dictionaries of words and their hashes that allow attackers

to significantly speed up their guessing ability.

7

Chapter 3

Motivation

Breaches that leak millions of passwords, e.g. those of LinkedIn [16] [17] [18], eHar-

mony, Facebook, Yahoo [19] [20], Amazon, Walmart [21], and iCloud [22] are be-

coming a daily news event. User accounts are compromised and users’ personal

information is at risk. Many of the leaks are not even confirmed until the attack-

ers publish the passwords on-line. Organizations spend huge amount of money to

prevent such attacks from being successful, but the availability of powerful pass-

word cracking platforms and the increase in complex and sophisticated exploitation

software allow attackers to break into systems.

Many methods are being proposed to protect users from the effects of password

leaks, but most of these require implementation on the organization’s side. More-

over, despite the efforts of organizations, individual users have to be cautious too,

by creating strong passwords and resetting their passwords often. We propose a

simple and powerful method to protect users from the adverse effects of password

leaks. The idea is to change users’ passwords frequently, irrespective of the occur-

rence of password leaks, since those can only be identified after they have occurred.

8

Since users have multiple accounts, changing passwords on a frequent basis would

be a tedious task. Although websites give strong password suggestions, studies have

shown that most users do not follow them because they are hard to remember [4].

People also use similar, sometimes the same, passwords for multiple accounts to re-

member them. When they reset a password, they only make minor changes to their

existing password. Thus, over a period we can observe a pattern in the passwords

generated [15]. This makes it easy for an attacker to guess a user’s password when

they have enough information about their old passwords. We propose automating

the process of a password reset without any user involvement. By automating the

process and leveraging the functionality of password managers to save and retrieve

passwords, users would remain secure without needing to remember their passwords,

or remembering to change their passwords.

9

Chapter 4

Design & Implementation

4.1 General Overview

The application code flow is illustrated in figure 4.1. The steps are as follows:

I. Identify a login page

II. Capture the login credentials

III. After a successful login, if password reset URL is available select the URL and

move to step 5. if the reset URL is not available search the current page for

any possible URL′s to the password reset page.

IV. Select the URL with the highest priority. Priority values are assigned to the

URL’s depending upon the probability that the URL will lead to a password

reset page. For example a hyper link which says “password change” would have

high probability, than a hyper link which says “help” or “about us” and hence

the algorithm selects the first URL.

V. Push the current page onto a stack and open the selected URL in a new tab.

10

(a) If the new page is a password reset page, generate a new random password

and submit the password reset request.

(b) If the new page is a login page, enter the captured credentials and return

to step 3.

(c) If the new page is none of the above, search the current page for possible

URL′s, returning to step 4.

VI. Close the extra tabs opened by the program.

4.2 Critical Steps

I. Identifying the Login Page

• Login pages can be identified by searching for a form with a pattern of

text field, password field and a submit button.

II. Capture Login credentials

• Login pages can be identified by searching for a form (login form) with a

pattern of a text field, password field and a submit button.

III. Identifying Successful Login

• Most of the websites usually redirect to the Login page if we fail to login;

therefore a successful login can be identified by checking for the login form

after entering the credentials.

11

Figure 4.1: Algorithm - High Level

12

• We can also identify by searching for error text indicating login failure

like “invalid password”,“incorrect username ” etc.

IV. Selecting a URL

• Each URL is assigned a priority level depending upon the probability

that it would lead to the password reset page. For example a URL with

“password change” pattern in it would have a high probability that it

would lead to a password reset page, a URL with “setting” pattern would

have less probability and URL with patterns such as “help” or “about

us” would have no probability of leading to a password reset page. The

current implementation has 10 priority levels as shown in Table 4.1. These

patterns are selected based on observation of websites mentioned in Table

5.4.

They are the most common links used to navigate for password reset.

For example, on Facebook we navigate from Settings → General → Edit

Password, on Amazon Account → Change Account Settings → Edit Pass-

word for Yahoo, Account info → Account Security → Change Password.

Similarly we have other links such as privacy, preference, my login which

could be used to navigate to change password page in other websites.

Priority levels are assigned to these links depending upon the number of

clicks required to reach to password reset page from that current page

i.e.; lesser the number of clicks required to reach the password reset page,

higher is the priority. As in the above examples for Facebook Settings is

13

Table 4.1: Priority and Patterns

Hyper link pattern Priority level

privacy 0

setting 1

profile 2

account 3

security 4

preference 5

my login 6

edit profile 7

password 8

change password 100

assigned priority value 1, Edit Password is assigned a priority value of 8

(since it has “password” as substring), for Yahoo Account info is assigned

a priority value of 3 and Account Security is assigned a priority value of 4

(since “security” is a substring). If there are more than one link present

on current page which match the given list of patterns, we chose the one

with highest priority. Therefore even though “settings” link is present on

every page of Facebook, when we are on general settings page we choose

“Edit Password” instead of “settings” since its priority is more.

• The URL with highest priority, available on the current page is selected.

Once a URL is selected the current tab is pushed to a STACK and the

14

selected URL is opened in a new tab. We repeat this process until we

land on password reset page.

• If the new tab does not produce any URL, we move back to the previous

tab (pop from) and select for URL with next highest priority.

V. Identifying a Password Reset Page

• Password reset page is of various designs, but the most of them have a

pattern of a username field (which is optional), three password fields and

a submit button. We can identify a password reset page by searching for

a form with this design.

4.3 Implementation

Since web browsers are most common interfaces we use to access our on-line accounts,

we choose to develop a Firefox Add-on as a part of implementation.

4.4 Experimental Setup

• Hardware: Intel(R) Core(TM) i7-4510U processor, 8GB RAM

• Software: 64-bit Windows 8.1 Operating System, FireFox 42.0, Mozilla Fire-

fox Addon-SDK 1.17 and JQuery 1.11.3

15

Chapter 5

Evaluation

5.1 Classification

5.1.1 Websites

The Firefox Add-on developed was tested against the top 100 websites [23]. A de-

tailed list all the websites are given in the tables below. Table 5.2 gives the list

of all the Top 100 websites from Alexa. Table 5.3 lists all the website that were

not considered along with the reasons. Table 5.4 gives the list of all the websites

considered and if the add-on supports these websites or not.

Top 100 websites

Google.com Instagram.com Google.es Indeeed

Facebook.com Msn.com Googleadservices.com Cnn.com

Youtube.com Microsoft.com Netflix.com Amazon.in

Baidu.com Aliexpress.com Amazon.de Go.com

16

Yahoo.com Amazon.co.jp Stackoverflow.com Google.co.id

Amazon.com Google.co.uk 360.cn Xinhuanet.com

Wikipedia.org Reddit.com Craigslist.org Blogger.com

Qq.com Ask.com Tianya.cn Google.com.au

Twitter.com Google.fr Diply.com nytimes

Google.co.in Google.com.br Ok.ru Bbc.co.uk

Taobao.com Tmall.com Google.ca People.com.cn

Live.com Onclickads.net Alibaba.com Cntv.cn

Sina.com.cn Pinterest.com Google.com.mx Pixnet.net

Linkedin.com Wordpress.com Pornhub.com Gmw.cn

Yahoo.co.jp Paypal.com Google.com.hk Ebay.de

Weibo.com Mail.ru Naver.com Google.pl

Ebay.com Tumblr.com Amazon.co.uk Googleusercontent.com

Google.co.jp Imgur.com Ups Dailymotion.com

Yandex.ru Sohu.com Xhamster.com Google.co.kr

Blogspot.com Xvideos.com Rakuten.co.jp Wikia.com

Vk.com Google.ru flickr.com Chinadaily.com.cn

Hao123.com Imdb.com Kat.cr Dropbox.com

T.co Apple.com github.com Livedoor.jp

Bing.com Google.it Soso.com Ebay.co.uk

Google.de Fc2.com Nicovideo.jp Dailymail.co.uk

Table 5.2: Alexa Top 100 Websites

17

Table 5.3 gives the reasons for the list of websites which are not considered. The

add-on can work on websites which are in English, since the hyper link patterns

are matched against text patterns in English and hence cannot support websites

in foreign languages. For example, it supports Amazon.com but not Amazon.co.jp.

The add-on does not support websites which ask for security questions for password

reset, it is difficult to automate such actions. On ethical grounds torrent and adult

website are also not considered. Websites with no logins (news websites) or websites

which serve as landing pages to other sites are not supported since they do not have

any login.

Websites NOT considered (count: 71)

Reason List of websites with rank

No Login(2) Ask.com(33), Cnn.com(76)

Torrent (1) Kat.cr(71)

Adult(3) Xvideos.com(45), Pornhub.com(63), Xhamster.com(68)

Landing page

for other sites(2)
Go.com(78), Onclickads.net(37)

Security

Question(7)

Live.com(12), Bing.com(24), Msn.com(27), Microsoft.com(28),

Aliexpress.com(29), Apple.com(48), Alibaba.com(61)

Duplicate (12)

Youtube.com(3), Google.co.in(10), Blogspot.com(20),

Google.co.uk(31), Googleadservices.com(51), Google.ca(60),

Blogger.com(81), Google.com.au(83), Googleusercontent.com(92),

Amazon.co.uk(66), Amazon.in(77), Ebay.co.uk(99)

18

Foreign

website(44)

Baidu.com(4), Qq.com(8), Taobao.com(11), Sina.com.cn(13),

Yahoo.com.jp(15), Weibo.com(16), Google.co.jp(18),

Yandex.ru(19), Hao123.com(22), T.co(23), Google.de(25),

Amazon.co.jp(30), Google.fr(34), Google.com.br(35),

Tmall.com(36), Mail.ru(41), Sohu.com(44), Google.ru(46),

Google.it(49), Google.es(50), Amazon.de(53), 360.cn(55),

Tianya.cn(57), Diply.com(58), Ok.ru(59), Google.com.mx(62),

Google.com.hk(64), Naver.com(65), Rakuten.co.jp(69),

Soso.com(73), Nicovideo.jp(74), Google.co.id(79),

Xinhuanet.com(80), Bbc.co.uk(84), Pople.com.cn(85),

Cntv.cn(86), Pixnet.net(87), Gmw.cn(88), Ebay.de(89),

Google.pl(91), Google.co.kr(94), Chinadaily.com.cn(96),

Livdoor.jp(98), Dailymail.co.uk(100)

Table 5.3: List of websites not considered

Table 5.4 lists the websites which are considered and provides the limitation for

the websites for which it does not work. The limitations because of which the add-on

does not support few websites is it fails to access the “Change Password” button on

Google website, does not recognize reset in buttons and fails for websites where it

cannot update the text box value.

19

Websites considered (count: 29)

Limitations(6)

Unable to access

”Change

Password”

button

Google.com(1)

Reset Link in

Button

Tumblr.com(42), Dailymotion.com(93),

Dropbox.com(97)

textBox.value

doesn’t work
Wordpress.com(39), Netflix.com(52)

Working(23)

Facebook.com(2), Yahoo.com(5),

Amazon.com(6), Wikipedia.org(7),

Twitter.com(9), Linkedin.com(14), Ebay.com(17),

Vk.com(21), Instagram.com(26), Reddit.com(32),

Pinterest.com(38), Paypal.com(40),

Imgur.com(43), Imbd.com(47),

Stackoverflow.com(54), Craigslist.org(56),

Ups.com(67), Flickr.com(70), Github.com(72),

Indeed.com(75), Fc2.com(82), Nytimes.com(90),

Wikia.com(95)

Table 5.4: List of websites considered

Table 5.5 gives the CPU usage in percentage and Memory usage in MB during

20

the process of password reset, with and without the add-on.

With Add-on Without Add-on Overhead

Websites CPU% Memory(MB) CPU% Memory(MB) CPU% Memory(MB)

Facebook 11.11 117.95 10.37 108.56 0.74 9.9

Yahoo 10.72 156.3 10.19 140.32 0.53 15.98

Amazon 12.56 197.76 11.74 160.52 0.82 37.11

Wikipedia 9.51 130.41 9.20 125.65 0.31 4.76

Twitter 10.92 162.87 10.81 143.51 0.11 19.36

LinkedIn 8.61 125.62 8.23 122.18 0.38 3.44

eBay 17.80 219.86 13.76 201.65 4.04 18.21

Vk.com 11.58 180.18 11.42 160.35 0.16 19.83

Instagram 15.64 156.3 13.19 140.32 2.45 15.98

Reddit 13.52 150.3 10.72 133.32 2.8 16.98

Pinterest 15.21 114.3 9.46 111.20 5.75 3.1

Paypal 11.43 235.27 10.54 200.32 0.89 34.95

Tumblr 12.61 152.40 12.03 141.03 0.58 11.37

Imgur 13.71 112.53 10.90 86.52 2.81 26.01

Fc2 10.63 113.51 10.09 110.3 0.54 3.21

Stackoverflow 13.92 125.52 11.57 98.51 2.35 27.01

Craigslist 9.34 120.47 8.68 115.8 0.66 4.67

Ups 14.61 130.12 13.18 119.37 1.43 10.75

Flickr 10.51 162.3 9.43 153.4 1.08 8.9

21

Github 12.86 184.81 10.96 176.31 1.9 8.5

Indeed 11.89 96.53 10.34 92.04 1.55 4.49

Amazon.in 13.5 214.50 11.57 140.32 1.93 74.18

Nytimes 16.55 156.61 15.81 143.12 0.74 13.49

Wikia 12.75 96.3 11.63 91.32 1.12 4.98

Table 5.5: CPU & Memory Usage

The first two columns describe the CPU usage in percentage and Memory usage

in MB by Firefox web browser during the process of password reset by the add-on

for respective website. The third and fourth columns describe the CPU and memory

usage by Firefox web browser while manually resetting the password for each web site.

The last two columns give the over head of usage caused by the add-on. Although

the values of add-on usage are slightly more for most of the cases, the difference

negligible. The values clearly show that the load on CPU and Memory usage, using

add-on is almost same as in the case of resetting password manually. The average

overhead on CPU is 1.48% and the average memory overhead is about 16.54 MB.

Also, the add-on makes a note of the password reset URL and hence can directly open

the password reset page instead of going through the whole search process again. For

example in the case of eBay, the algorithm searched about 10 pages before it lands

on the password reset page. After successful completion of the process, the add-on

makes a note of the password reset URL and hence when we run the same process

again instead of searching through all the 10 pages it directly open the password

22

reset URL and, therefore, the load on CPU is much less when compared to manual

password reset, since it is not possible manually to move to password reset page with

one click on any website.

5.1.2 Improvements & Accuracy

In this section, we discuss the various improvements we made as we went through

different versions, making the add-on support websites with different designs. De-

pending upon the basic flow from a login page to a password reset page, websites

can be broadly classified into three categories.

Simple Websites

These websites have a simple design where the landing page / home page has a basic

login form with a user name, a password and a submit button. The design of password

reset page is also simple with an optional username, three password fields and a

submit button. Figure 5.1 and 5.2 show the design for simple login pages. Facebook

has a login page on its landing page, whereas Yahoo redirects to a new page with

simple login design. Figure 5.3 shows a basic password reset page from Linkedin. The

control flow in this website is straight forward right from identifying the login page

to submitting the password reset form. For example: craigslist.com, facebook.com,

reddit.com...etc, about 30.7% of websites supported (i.e; websites listed in table 5.4)

fall under this category. The Initial implementation similar to the high-level design

explained in figure 4.1 (without the stack implementation) successfully worked with

these websites. We later had to modify the code for identifying they login page since

23

Figure 5.1: Login on landing page

few websites redirect or display the login page by clicking the “login” button.‘

Websites with re-login

Websites that ask for a user to login again before they can change their password

fall under this category. Websites like amazon, eBay etc. asks the user to enter their

login credentials before they can move to the password reset page. About 19.3%

of supported websites listed in table 5.4, fall under this category. To support these

websites and additional check for login page was added. Once a selected URL was

opened in new tab we check for a login page. If TRUE, login form was submitted

using the captured credentials and after successful login it would redirect to password

reset page.

Complex Websites

Priorities are assigned to URL’s based on the probability that the URL would lead

to password reset page and, therefore, it’s not always certain that we would find the

password reset page. The basic algorithm design would stop when the web page was

not a password reset page, and the search process would not find any new links to

move forward. Specifically in case of e-commerce sites such as amazon and eBay, as

the web pages have a large number of hyper links. About 50% of supported websites

24

Figure 5.2: Simple Login page

25

Figure 5.3: Simple Password reset page

(i.e; websites listed in table 5.4) fall under this category. Therefore to handle such

scenarios a depth-first approach was implemented to move back to the previous

tab and select the URL with next priority, in case the highest priority URL does

not lead to any other link. Theoretically this design would exhaustively search all

URL’s available on the web pages until it finds a password reset page. However,

the implementation places a threshold on the number of pages that can be opened,

which is 20 i.e. if the code cannot find the password reset page in 20 searches, it

terminates. Figure 5.5 gives the depth first design flow explained above.

5.2 Limitations

The current implementation does not support any Google website (Google.co.in,

Youtube.com, Google.co.uk, Blogspot.com, Google.ca, Googleadservices.com, Blog-

ger.com, Google.com.au, Googleusercontent.com), the only hurdle here is not being

26

Figure 5.4: eBay Re-Login page

27

(1) Selecting URL-3 (highest priority level) and opening in new tab. (2) A New page with

URL-3 has 3 URL’s with URL-5 at the highest priority level. Therefore open URL-5 in a

new tab. (3) Since the new tab has no new URL, we move back to the previous page. (4)

Select the next highest priority URL (URL-7) and open in new tab. (5) Select the highest

priority URL, and the process continues.

Figure 5.5: Depth-First design

28

able to access the “Change Password” button to submit the password reset form.

This is difficult because this page does not have any forms rather everything are

embedded in nested div’s (including the button), by carefully scanning through div’s

on the page and identifying the innermost div which forms the button and clicking

it could be a solution. We can clearly see that solving this problem would increase

the supported websites from 81% to about 87%1. Similarly allowing the add-on to

check for reset links in buttons instead of just text hyper links, would allow it to

support more websites (Dropbox.com, Dailymotion.com, Tumblr.com) and increase

the percentage to 92%. This can be achieved by scanning all the input elements on

page with type = “button” and elements with tag <button>... </button>. The

hindrance with wordpress and netflix is that we cannot simulate typing, a simple

assigning of value to the text box (using textBox.value) does not work in this case.

A solution to this could help add-on support more websites.

The add-on does not support websites that send a confirmation code or reset

link to user’s email/phone or ask for security questions that the user have selected

during account creation. For example Bing, Msn, Alibaba, Aliexpress, etc. Many

of the banking websites ask for Captcha as a necessary field for in login, add-on

does not support such websites. As these actions require user intermission, it is hard

to automate, since retrieving these details without users knowledge is a challenging

task.

1Total no. of websites supported 23 + 3 (2 duplicates of amazon and 1 of ebay) = 26 out of

considered, 32 (29+3) i.e; 81%. If we include Google websites, we increase the number to 35 out of

41, i.e; about 85%

29

Chapter 6

Discussion

6.1 Usability

The add-on is very simple to use just plug it into your firefox web browser just like

any other add-on. One of the most important steps in setting up the add-on is to

store, in your password manager, the login credentials for a site you want to use the

add-on with. Since the add-on leverages the functionality of the Firefox password

manager, it works only on websites that have user credentials stored. For example,

if user A stores Facebook credentials in the password manager, but not his Linkedin

credentials, then the add-on would only work with his or her Facebook account, not

Linkedin. The add-on works similarly in the case of multiple users. For example,

suppose we have two users, A and B, where A stores his or her Facebook password in

the password manager and B doesn’t. Then the add-on would change A’s password

every time he or she logs into Facebook, but would never change B’s password.

Each time the add-on resets a user’s password, it updates the password manager

with the most current password. Therefore, users do not have to remember their

30

passwords. If required, they can retrieve their current password from the password

manager. In case of any errors or exceptions the algorithm stops execution and does

not reset the password.

However, the add-on does add some delay to the login process. This is because

the add-on’s listeners take sometime to attach to the web page elements, and they

must wait until the web page loads all its content. Table 6.6 shows the increased

duration of login process1 for eBay.com with the add-on as opposed to without add-

on. The sign-in process to eBay usually takes about 5 to 8 seconds (an average of

6 seconds), where users have to navigate to login page and click login button (we

do not consider filling the login credentials as the password manager would auto-fill

the fields). This same process would take about 12 to 15 seconds when using add-on

since it takes about 2 to 4 seconds for the listeners to attach after the web page is

loaded. This is because in case website designs similar to ebay, pinterest etc; where

we have to click on “sign-in” or “login” to move to login page, the listeners are

attached twice, first to the “sign-in” or “login” buttons or hyper links and next to

the submit button on login page which require 2 to 4 second each, therefore a total

of 4 to 8 seconds is added, which increases the duration of login process to about

15 seconds. In case of website like Facebook, listeners are attached only once and

hence the delay is less (just 2-4 seconds). In other words its safe to wait for 12 to

15 seconds before we hit “Login” button for the add-on to work successfully every

time. When the add-on’s listeners fail to attach, or the user submits the form before

1Time from entering the website URL in browser to entring the login credentials and clicking

“Login”.

31

Table 6.6: Average delay is sign-in when using add-on

Website Without Add-on With Add-on

eBay.com 6 sec (avg) 15 sec (avg)

Table 6.7: Average duration to open and close 10 tabs

Add-on (on eBay)

13 sec (avg)

the listeners are attached, the add-on does not continue executing and fails to reset

the user’s password. In case of any error or exception the browser would not crash,

it will work just as if the add-on was not installed. In Table 6.7 we see that it takes

about 7 to 9 second to open ten random tabs and close them one by one, and it takes

about 12 to 15 seconds for the add-on to scan through web pages until it finds the

password reset page with eBay2.

Once the add-on has successfully reset the password, it stores the URL of the

password reset page in a separate file named “purls.txt”, this is a file where the

website host link and the password reset link are stored in the form of a key value pair.

After that, whenever it encounters the same website, it uses the link in “purls.txt”

to go directly to password reset page. This results in a password reset even faster

than if a user resets their password manually.

2We chose eBay because it takes the highest number of web pages for add-on to scan until it

reaches password-reset page, which is 10.

32

6.2 Security

Passwords are generated from the 95 printable ASCII characters minus space, be-

cause we found the space character did not work on many websites. In other words,

the set of 94 characters [0-9A-Za-z`˜!@#$%ˆ&∗() +− =[]\ {}—;’:”,./<>?].

The add-on uses Stanford Javascript Crypto Library (sjcl.js) as a secure pseudo-

random number generator to generate secure, random 12-character passwords. We

chose to create 12-character passwords so the add-on would work with sites that

require a maximum password length of 12 characters.

Since passwords are chosen probabilistically, we can define the security of the

passwords with Shannon entropy. Low entropy would imply the password distribu-

tion is fairly predictable. For example, the entropy of the English alphabet is between

0.6 to 1.3 bits per character. Formula 6.1 shows that we need a minimum 6.55 bits

per character to encode the passwords in binary form. Since we cannot use only

part of a bit, we require a minimum 7 bits per character, meaning a 12-character

password requires 84 bits to encode.

33

H(X) = −
∑
i

P(xi)logbP(xi)

= −
∑

i=1,...,94

1

94
log2

(
1

94

)
= −94

94
log2

(
1

94

)
= log2(94)

= 6.55458885168...

(6.1)

RFC 4086 recommends 56 bits for higher-than-moderate-security passwords in

20153 [24]. Our algorithm far exceeds that, but it falls short of the recommended 88

bits for a very-high security password4. We could improve the security by adding non-

ASCII characters or lengthening the password. However, using non-ASCII characters

would make retyping passwords difficult for those users who wished to do so, and

lengthening the passwords would cause some websites to reject them for being too

long. Therefore, we chose to use the current algorithm at this time.

3They recommend 49 bits, then later recommend adding 2/3 of a bit per year due to Moore’s

law, giving us 56 in 2015.
475 bits (for a password in 1995) +20 ∗ 2/3

34

Chapter 7

Related Work

Password survey: Several surveys conducted on variety of user domains such as

professional users [25], academic students [4] [26], common public [27] to assess their

attitude and awareness towards password security and related threats. An in-depth

study of users approach towards password composition, reuse and management prac-

tices reveal that the knowledge of password security and effects of weak passwords

play a crucial role [26], and common public generally tend to use less complex as little

characters as possible [28] or use related/similar pattern passwords [25]. While few

others employ other techniques such as maintaining diaries, protected files to keep

track of the moderately complex passwords across different websites, which could be

devastatingly harmful if the protected files are compromised.

Although stringent password generation rules [25] [29], pre-generated/passphrases

suggestions [30] are employed to make sure strong passwords are used, studies show

that majority of the users do not adopt these practices [4] as they are difficult to

memorize. Expiration of passwords after a certain period, instead of reducing pre-

dictability of passwords actually increases it when users keep creating similar pass-

35

words [4] [31]. Also, users tend to create similar passwords across websites which

could result in a domino effect [32] and studies show that cross-site password guess-

ing algorithms [31] are developed to take advantage of a known password from one

website and easily guess the user’s passwords on other websites.

Password Reuse: Increase in the e-commerce application has led to the in-

crease in the number of accounts an individual user holds, implying an increase in

the number of passwords to maintain in which case users tend to use same or similar

passwords on all websites. In such as situation the password is no stronger than

the weak system using that password. Since if that system is hacked, hackers can

potentially infiltrate other websites [32]. Single sing-on and OPass [5] are few alter-

natives that encourage password reuse. Single sing-on uses a trusted web service for

authentication on all applications and OPass adds an additional one time key, sent

the user’s cell phone along with the password.

Other Alternatives: Various other authentication protocols have been sug-

gested such as S-Auth [7], O-Auth [6], and 2FA (2 Factor Authentication) [9] [8].

S-Auth employs authentication synergy where it upon requesting access to a service

it redirects to another trusted service and only when the user successfully authen-

ticates on both services, access is provided. O-Auth allows a third party service to

access the credential-restricted resource without the knowledge of the owner’s creden-

tials. In 2FA, users requesting for access are provided with a one-time password or

a security pin number through SMS on their registered phone or email. This is used

along with the actual password of the account in order to successfully authenticate.

There have other improvements in 2FA to eliminate the user interference and allow

36

the users phone and laptop to identify each other and grant access [10]. Apart from

the authentication protocols, hardware solutions [13] on the server side have also

been suggested which require a trusted hardware to scramble the passwords before

they are stored in database. This additional hardware is required every time we have

to work with passwords i.e. every time a user tries to login.

In this paper, we propose a simple and easy solution of using Fluidpassword add-

on in comparison with the above. It requires no change in the authentication process

nor does it require any hardware implementation on the server side. Also, this is the

only solution so far suggested which deals with password leaks from individual users

side.

37

Chapter 8

Future Work

Websites are designed in various ways. Successful execution of the critical steps,

as explained in section 4.2 are important for the algorithm to work. Capturing

Login credentials is difficult for few websites where the web page have dynamic

forms, forms nested in iframes, etc. (example: zillow.com, etsy.com, buzzfeed.com).

Identifying a successful login becomes difficult when we have hidden or dummy login-

forms (example: godaddy.com has a dummy login form on the user’s profile page)

or when it is difficult to identify a login page (example: aliexpress.com, alibaba.com,

flipkart.com).

Traversing through URL’s is the next crucial task to reach password reset page.

Current implementation looks for text hyper links on the page to assign priority, and

this method fails when the URL’s are embedded as hyperlinks in images or if the

links are setup in a button and it needs to be clicked. In addition to this identifying

a password reset page is also important, it is tough when the page is not designed in

a regular pattern i.e. Optional username, three password fields and a submit button

(example: wordpress.com, themeforest.net)

38

Improvements can be done to the scripts, written for above mentioned tasks such

that the algorithm would be able to handle different web designs and also decrease

the initial login delay. Websites that ask for security questions when requested for

password reset can also be handled if we can setup the add-on to store a set of

questions with answers and modify the code to check for the questions and them

answer accordingly from the stored information. In addition, a mobile version of

this add-on can be developed, and FireFox Sync can be utilized to synchronize the

Firefox browser on the personal computer and mobile device.

39

Chapter 9

Conclusion

We have developed Fluidpassword Firefox add-on as an implementation of our al-

gorithm which automates password reset. Users only need to install this add-on on

their Firefox browser and the password would be reset1 each time they successfully

login into their accounts. Additionally passwords are reset much faster from the

second attempt when compared to resetting them manually, as the add-on keeps a

note of the reset URL when it successfully resets password for the first time and

hence move the password reset page directly. Since users don’t need to remember

the passwords, the algorithm generates strong random passwords, whose entropy is

currently (84bits) is more than the suggested (56bits) according to RFC 4086. This

also mitigates password reuse problems since there is no user involvement. Users can

be safe from the adverse effects of password leaks as the passwords change frequently.

While there are many more improvements that can be done as mentioned in

Chapter 8, this is by far the only precautionary solution suggested from individual’s

side to deal with password leaks.

1Only for the websites whose credentials are stored on password manager

40

Bibliography

[1] E. Grosse, “Gmail account security in Iran,” 2011. [Online; accessed 8-

September-2011].

[2] M. Honan, “How Apple and Amazon securiy flawss led to my epic hacking.”

http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/, 2012.

[Online; accessed 6-August-2012].

[3] V. J. Yodaiken, “Systems and methods for detecting a security breach in a

computer system,” Sept. 8 2009. US Patent 7,587,763.

[4] M. Farcasin and E. Chan-tin, “Why we hate it: two surveys on pre-generated

and expiring passwords in an academic setting,” Security and Communication

Networks, 2015.

[5] F. Yang and S. Manoharan, “A security analysis of the oauth protocol,” in Com-

munications, Computers and Signal Processing (PACRIM), 2013 IEEE Pacific

Rim Conference on, pp. 271–276, IEEE, 2013.

[6] P. Hu, R. Yang, Y. Li, and W. C. Lau, “Application impersonation: problems

of oauth and api design in online social networks,” in Proceedings of the second

edition of the ACM conference on Online social networks, pp. 271–278, ACM,

2014.

41

[7] G. Kontaxis, E. Athanasopoulos, G. Portokalidis, and A. D. Keromytis, “Sauth:

Protecting user accounts from password database leaks,” in Proceedings of

the 2013 ACM SIGSAC conference on Computer & communications security,

pp. 187–198, ACM, 2013.

[8] B. Selvarajan, “Simple two-factor authentication,” May 10 2007. US Patent

App. 11/267,148.

[9] G. Yang, D. S. Wong, H. Wang, and X. Deng, “Two-factor mutual authenti-

cation based on smart cards and passwords,” Journal of Computer and System

Sciences, vol. 74, no. 7, pp. 1160–1172, 2008.

[10] N. Karapanos, C. Marforio, C. Soriente, and S. Capkun, “Sound-proof:

Usable two-factor authentication based on ambient sound,” arXiv preprint

arXiv:1503.03790, 2015.

[11] N. Chakraborty and S. Mondal, “A new storage optimized honeyword generation

approach for enhancing security and usability,” CoRR, vol. abs/1509.06094,

2015.

[12] H. Mohammed, C. N. Gutierrez, M. J. Atallah, and E. H. Spafford, “Ersatz-

passwords: Ending password cracking and detecting password leakage,”

[13] S. crib, “Scramble SCrib - No More Password Leaks.” http://www.newswire.

com/scramble-scrib-no-more-password/251627, 2013. [Online; accessed 28-

Nov-2013].

42

[14] D. Cvrcek, “Hardware Scrambling No More Password

Leaks.” https://www.lightbluetouchpaper.org/2014/03/07/

hardware-scrambling-no-more-password-leaks/, 2014. [Online; accessed

7-March-2012].

[15] B. Ur, F. Noma, J. Bees, S. M. Segreti, R. Shay, L. Bauer, N. Christin, and L. F.

Cranor, “i added !at the end to make it secure: Observing password creation in

the lab,” in Proc. SOUPS, 2015.

[16] Wikipedia, “2012 linkedin hack — wikipedia, the free encyclopedia,” 2015. [On-

line; accessed 14-November-2015].

[17] M. JIMENEZ, “Over Six Million Encrypted LinkedIn Passwords Leaked On-

line.” http://www.prweb.com/releases/prweb2012/6/prweb9582548.htm,

2012. [Online; accessed 07-June-2012].

[18] S. M. Kelly, “LinkedIn Confirms, Apologizes for Stolen Password Breach.” http:

//mashable.com/2012/06/06/linkedin-passwords-hacked-confirmation/

#DnD4MWqOTuq3, 2012. [Online; accessed 06-June-2012].

[19] H. A. POPKIN, “2 million stolen passwords for Facebook, Twitter, Google,

Yahoo and others leaked online.” http://www.nbcnews.com/technology/

2-million-stolen-passwords-facebook-twitter-google-yahoo-others-leaked-2d11691630,

2013. [Online; accessed 04-December-2013].

[20] C. Hubbell, “Huge Yahoo Password Leak 453,441

Passwords Exposed.” https://geeks.online/

43

huge-yahoo-password-leak-453441-passwords-exposed/, 2012. [On-

line; accessed 12-June-2012].

[21] M. Kumar, “Hackers leak 13,000 Passwords of Amazon, Wal-

mart and Brazzers Users.” http://thehackernews.com/2014/12/

password-hacking-data-breach.html, 2014. [Online; accessed 27-December-

2014].

[22] L. Razavi, “The iCloud leak: weak security isn’t only a problem for Ap-

ple’s backup service.” http://www.newstatesman.com/sci-tech/2014/09/

icloud-leak-weak-security-isnt-only-problem-apples-backup-service,

2014. [Online; accessed 02-September-2014].

[23] “Top 100 websites.” http://www.alexa.com/topsites, 2015. [Online; accessed

Feb, 2015].

[24] D. E. 3rd, J. Schiller, and S. Crocker, “Randomness Requirements for Security.”

RFC 4086 (Best Current Practice), June 2005.

[25] A. Adams and M. A. Sasse, “Users are not the enemy,” Communications of the

ACM, vol. 42, no. 12, pp. 40–46, 1999.

[26] G. B. Duggan, H. Johnson, and B. Grawemeyer, “Rational security: Mod-

elling everyday password use,” International journal of human-computer studies,

vol. 70, no. 6, pp. 415–431, 2012.

44

[27] K. Bryant and J. Campbell, “User behaviours associated with password security

and management,” Australasian Journal of Information Systems, vol. 14, no. 1,

2006.

[28] A. M. De Alvaré, “How crackers crack passwords or what passwords to avoid,”

tech. rep., Lawrence Livermore National Lab., CA (USA), 1988.

[29] P. G. Inglesant and M. A. Sasse, “The true cost of unusable password policies:

password use in the wild,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pp. 383–392, ACM, 2010.

[30] R. Shay, P. G. Kelley, S. Komanduri, M. L. Mazurek, B. Ur, T. Vidas, L. Bauer,

N. Christin, and L. F. Cranor, “Correct horse battery staple: Exploring the us-

ability of system-assigned passphrases,” in Proceedings of the eighth symposium

on usable privacy and security, p. 7, ACM, 2012.

[31] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled web of

password reuse,” 2014.

[32] B. Ives, K. R. Walsh, and H. Schneider, “The domino effect of password reuse,”

Communications of the ACM, vol. 47, no. 4, pp. 75–78, 2004.

45

VITA

Akhileshwar Guli

Candidate for the Degree of

MASTER OF SCIENCE

Thesis: FLUIDPASSWORDS - MITIGATING THE EFFECTS OF PASSWORD
LEAK AT USER LEVEL

Major Field: Computer Science

Biographical:

Education:
Completed the requirements for the Master’s of Science degree with a
major in Computer Science at Oklahoma State University in December,
2015. He holds a Bachelor of Science in Information Technology from
Jawaharlal Nehru Technological University, Hyderabad from 2011.

Experience:

Software Engineer Worked with Birlasoft INDIA Ptv. Ltd for 2 years from
2011 to 2013 as Oracle EBS Developer.

Graduate Assistant Computer Science Department, Oklahoma State Univer-
sity, Stillwater, OK: iMac Lab, Spring 2014.

Teacher’s Assistant Computer Science Department, Oklahoma State Univer-
sity, Stillwater, OK: Discrete Math and Computer Systems-I, Fall 2015.

Research Assistant Networks Lab, Oklahoma State University, Stillwater, OK:
Spring 2015.

