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Abstract: ‘Super Mario Bros’ is a difficult platforming game that requires the use of 

multiple behavioral modes to complete different gameplay elements such as: collecting 

coins, dodging enemies and getting to the end of the level. Methods for creating 

intelligent game playing agents have previously used human designed behavior policy for 

each gameplay state or by combining gameplay goals into a single task to be learned. 

This thesis assesses the development and method of training machines to promote 

multiple modes of behavior within neural network controllers. These controllers utilize 

the concept of evolution through multi-objective optimization for the test bench platform 

game system ‘MarioAI’. Artificial neural networks were evolved to exhibit complex and 

multimodal behavior using multiple sub objectives of the game; and thus overcome the 

non-linear, noisy, and fractured game environment. Experiments were conducted with the 

purpose of creating multiple Pareto-optimal solutions of quality with differing behavioral 

aspects. These solutions were then discerned by a Decision Maker Neural Network 

Ensemble that had been evolved to pick the best solution according to game level. This 

Decision Maker Ensemble proved to be able to learn on minimal information and provide 

the highest overall game score. The results of this thesis show that it’s possible to train 

agents on sub objectives to teach multiple forms of complex behavior that can then be 

abstractly chosen by an evolved Decision Maker to provide a better outcome than agents 

that were trained specifically towards that single solution. 



v 
 

TABLE OF CONTENTS 

 

Chapter           Page 

 

I. INTRODUCTION .................................................................................................................. 1 

 

 Motivation ........................................................................................................................... 2 

 

II. REVIEW OF LITERATURE ................................................................................................ 3 

  

 Genetic Algorithms .......................................................................................................... 3 

 Artificial Neural Networks .................................................................................................. 8 

 Neuroevolution ................................................................................................................ 11 

 Multiple Objective Pareto Optimality .......................................................................... 14 

 Non-Dominated Sorting Genetic Algorithm II .................................................................. 16 

 Non-Dominated-Sort .................................................................................................. 19 

 Crowding Distance Assignment, Sorting, and Preservation ....................................... 20 

 Binary Tournament Selection ..................................................................................... 22 

 Simulated Binary Crossover ....................................................................................... 22 

 Parameter Based Mutation .......................................................................................... 27 

Mario AI as a Test bench .................................................................................................. 28 

 

 

III. METHODOLOGY ............................................................................................................ 32 

 

 Encoding and NN representation....................................................................................... 32 

 Input representation ........................................................................................................... 34 

 Fitness Criteria Selection ................................................................................................... 42 

 Training to Generalize ....................................................................................................... 45 

 Reducing Variance in Noisy Environment ........................................................................ 47 

Evolving the Network ....................................................................................................... 49 

Parameter tuning dynamic mutation rate ........................................................................... 51 

Decision Maker NN Ensemble .......................................................................................... 53 



vi 
 

 

 

Chapter           Page 

 

IV. FINDINGS ......................................................................................................................... 55 

 

 The Effects of Parameter Tuning on Learning Agents ...................................................... 55 

 Visual Representation of learned Multimodal Behavior ................................................... 67 

 Testing the Neuro Evolved DM Ensemble ........................................................................ 69 

 

V.  CONCLUSION .................................................................................................................. 72 

 

 Evaluation of Findings ...................................................................................................... 72 

 Parameter Selection .................................................................................................... 72 

 Multimodal Behavior Assessment .............................................................................. 73 

  Comparison of Single Objective to Multi-Objective NE ............................................ 73 

  Evaluation of the Neuro Evolved Decision Maker Ensemble .................................... 73 

 Conclusion ......................................................................................................................... 74 

 

REFERENCES ........................................................................................................................ 76 

 



vii 
 

LIST OF TABLES 

 

 

Table           Page 

 

1: Obstacle Input Sensing: .................................................................................................. 36 

2: Enemy Input Sensing ...................................................................................................... 38 

3: Collectible Input Sensing ................................................................................................ 40 

4: Third-Person Inputs: ....................................................................................................... 41 

5: Competition Scores ......................................................................................................... 70 

6: Map of best scoring agents per each level and each type ............................................... 71 

7: Best Performing NSGAII DM (0) Selection Map .......................................................... 71 



viii 
 

LIST OF FIGURES 

 

Figure           Page 

 

1: Flow Chart for GAs ........................................................................................................ 4 

2: 1-point crossover ............................................................................................................. 6 

3: Artificial Neural Network Architectures: ....................................................................... 9 

4: Mapping from decision space to Objective space for multiple objectives .................... 15 

5: NSGAII Flowchart ........................................................................................................ 18 

6 fast-non-dominated-sorting of NSGA-II: ([20] Deb et al. 2002) ................................... 19 

7: Crowding Distance Assignment. .................................................................................. 21 

8: crowding-distance-assignment of NSGA-II.................................................................. 20 

9: Competing conventions: ............................................................................................... 23 

10: Probability Distributions of Binary GAs and Simulated Binary Real coded GAs ..... 24 

11: MarioAI ...................................................................................................................... 29 

12: One-to-One Mapping of real encoded Genotype to Neural Network Phenotypes ...... 33 

13: Mario's Visible Environment ...................................................................................... 34 

14: Obstacle input information ......................................................................................... 37 

15: Enemy input information ............................................................................................ 39 

16: Collectible Input Sensing ............................................................................................ 41 

17: Fitness Criteria Issues ................................................................................................. 43 

18: Level Types ................................................................................................................. 46 

19: Evolving Mario-Flowchart.......................................................................................... 50 

20: Non-optimal parameter selection ................................................................................ 51 

21: Decision Maker Neural Network Inputs ..................................................................... 53 

22: DM Architecture ......................................................................................................... 54 

23: High Convergence, without Exploration .................................................................... 56 

24: Hyper Volume of population stuck in local optima. ................................................... 57 

25: Neuro Evolved population and Hyper Volume with nc = 20 and nm =30 ................... 58 

26: Best Solution Setup ..................................................................................................... 60 

27: Exploration over Exploitation ..................................................................................... 62 

28: Effects of Increasing Population Size on Optimal Parameter Setup ........................... 64 

29: Average Hyper Volume of Optimal Parameters ......................................................... 66 

30: Complex Multi-Modal Behavior ................................................................................. 68 



1 
 

CHAPTER I 

 

 

INTRODUCTION 

Dr. Michio Kaku said, “Consciousness is the process of creating a model of the world using 

multiple feedback loops in various parameters (e.g., in temperature, space, time, and in relation to 

others), in order to accomplish a goal (e.g., finding mates, food, and shelter) [1]. Any of these 

“goals” will require the combination of multiple behaviors and are integral to completing the task. 

Therefore a large aspect of intelligence is the ability to exhibit multiple forms of behavior in 

symphony. Anything that shows this form of consciousness is then to be considered intelligent. It 

can then be said that to design intelligent machines, these machines must be created to produce 

multiple forms of behavior. 

Computational Intelligence (CI) is the study of using ideals of nature to create intelligent systems 

that exhibit multiple forms of behavior in a complex and changing environment. Many complex 

real world CI problems come from trying to discover these behavioral policies: Robotics, Drone 

Control, and even Non Playable Character (NPC) control in video games. In the real world 

however, there are a myriad of possibilities to account for and would be too complex to create a 

system for every possible action a priori. These problems also suffer from the issue of being 

difficult to determine what even is the “correct” and “incorrect” action? This is due to the overall 

reliance on the developer to have a complete understanding of the environment being studied. 

Therefore with the complexity and inherent uncertainty of these problems, it would be better for 

systems to learn multiple forms of behavior, than to develop them explicitly. 
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1.1 Motivation 

CI machines have been used to solve a wide array of problems. Mobile robotics require control 

laws and mechanical design to overcome difficult terrain [2]. Artificial Intelligent design for 

simulated car racing requires differing driving strategies for different track types and obstacles 

[3]. Intelligent opponent design in video games require the need to switch between different play 

styles to account for aggressive or defensive patterns to create interesting variations and difficulty 

game play against humans [4]. These problems all require the ability to switch between tasks and 

thus need to learn and exhibit multimodal behavior. Multimodal behavior describes the ability to 

exhibit multiple, different, even conflicting forms of behavioral modes.  

Modeling these different forms of behavior poses to be a difficult challenge. Many forms of 

standard behavioral design are not always applicable for modeling real systems like the ones 

described above, as it can be unclear as to what behavior is required. Additionally it becomes 

difficult to discern and design when to switch between behaviors. A promising learning approach 

for this issue is through the use of Neuroevolution (NE). This method uses direct interaction with 

the environment to provide feedback in the form of task objectives (i.e., climbing the most stairs, 

or getting the highest game score).  These objectives then drive behavior learned within neural 

networks that have been adapted through evolutionary strategies. Many forms of Neuroevolution 

strategies use only a single main objective making it difficult to learn the multiple modes of 

behavior necessary in creating a robust machine. Therefore this thesis proposes the learning of 

multimodal behavior through the use of Multi-Objective Neuroevolution. By using training 

controllers on multiple conflicting sub-goals instead of the overall goal, multiple complex 

behaviors can be learned even in difficult environments. As a case study, the controllers will be 

designed to create intelligent video game playing controllers for the difficult platforming game 

“Super Mario.”  
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CHAPTER II 

 

 

REVIEW OF LITEREATURE 

The main idea for this thesis is the development of multimodal behavior through multi-objective, 

Pareto-based Neuroevolution. This idea and its foundations are visited in this chapter as well as 

the Mario AI test bench and the difficulties that are inherent to the game. 

 

2.1 Genetic Algorithms 

This section explains the history and relevance of Genetic Algorithms, which are a subset of 

Evolutionary Algorithms (EA), for the use as a searching algorithm. 

Developed by John Holland in 1962, Genetic Algorithms (GAs) are an adaptive and stochastic 

population based searching method based on Darwinian’s theory of Evolution [5-7]. The 

objective of GAs is to search a decision space for a set of decision variables that optimize some 

fitness or performance model in the search space.  

GA methods follow four key elements. First, the genetic pool must have variety. This means in 

order for the population to continue to evolve, there must be some mechanism that drives this 

variation. Second, the child of two parents will contain some of the genetic variations passed 

down between the two. Next, in every generation, more offspring are produced than can survive.
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And finally, only the strongest are permitted to survive. The individuals within the species, the 

phenotype, that go on to reproduce or who reproduce the most, are those with the most beneficial 

genetic variation. This is the idea of “natural selection, and the backbone of GAs. The heuristics 

of the algorithm can be seen in the flowchart below. 

 

 

Figure 1: Flow Chart for GAs 
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The first step is to initialize the population of individuals, where each individual in the population 

represents a point in the search space. This space is determined by the set of variables, the 

genotypes that make up the properties of the individual, the phenotype. These variables will have 

the form of some direct or indirect encoding and are usually represented as a binary string in the 

case for basic GAs. Other forms of variable encoding can be discrete, tree based, real, or any 

other form that allows for distinct properties to be separable and searchable in a collection. More 

will be explained on the types of encoding in later sections. The genotype then must be mapped to 

the phenotype for evaluation.  

Evaluation of the population is based on an optimization schema where the individual that results 

in the best performance in the system are given the highest fitness value. The fitness function 

chosen determines the effectiveness of the overall process. Also, for real problems, this becomes 

the most computationally costly step for the overall process and tweaks and tradeoffs must be 

found for both a robust and time efficient convergences of solutions. 

Next there needs to be a strategy to select and ensure that the best individuals have a better 

chance of being chosen to reproduce and generate offspring. This selection mechanism will drive 

the population to convergence. Care must be taken, however, so as to allow lesser individuals to 

also mate, this will guarantee that the gene pool does not become saturated and stagnant as even 

the less prominent individuals in the population may hold some advantageous genetic 

information. A powerful selection strategy is through tournament selection. Some number k of 

individuals, where k is the tournament size, is randomly selected from the population as 

contestants. If tournament size is equal to one, then the selection strategy becomes random 

selection. Conversely, if tournament size is greater than four, then diversity is lost as about 50% 

of the population is lost in the selection process [8]. Therefore a binary tournament (tournament 

size of 2) is usually chosen. 
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The contestants are then compared via their fitness value, and the individual with the best fitness 

value is deemed the champion and is allowed to mate with another champion of another 

tournament.  

Upon selection of parents, they are then allowed to mate and generate single or multiple 

offspring. These offspring will then have a new variant of their parent’s genotype. This source of 

variation comes from genetic operators that allow for both exploitation and exploration of the 

search space through future generations. Exploration is the method of individuals spanning the 

entire search space in hopes of finding the best solutions, and exploitation is the method of 

searching around these solutions in hopes of finding the overall best. The sharing and mixing of 

information between two parents is the exploitation operator and is called the crossover. This 

allows for the possibility of improving on the selected best individuals. For example, one such 

crossover is 1-point crossover where each parent swaps a randomly selected point in their 

genotype with that of the other parent as shown in Figure 2 below. 

 

Figure 2: 1-point crossover  

 

This then allows for the population to grow in the direction of the global optimum solution. 

However, too much exploitation may cause the population to possibly get trapped in a local 

optimal solution and perform poorly.  
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Every child developed from mating also has a small probabilistic chance of being a mutant. This 

is the exploration mechanism specified for escaping local optima and reaching the entire search 

space. This operator will cause random perturbation through the child’s chromosome. For real 

GAs this can be through Gaussian noise N (0, σ), where 0 is the mean value and σ is the standard 

deviation.  

Thus for each parameter, 𝑥𝑖 that has been selected for mutation will face some Gaussian 

perturbation: 

𝑥𝑖̇ = 𝑥𝑖 + 𝑁(0, 𝜎𝑖)  

If the probability of mutation is too high for GAs, then exploration will become too high and the 

searching algorithm will be reduced to random search without proper convergence.  

This selection and generation of children continue until a new intermediate population of children 

is of size N. The new population is then used to compare and replace unfit older individuals. This 

replacement strategy allows continual injection of new and hopefully improved variations in 

genetic information and lets the population drift in the direction of global optimal solutions. 

After a new population has been formed, a stopping criterion is checked. This is usually in the 

form of maximum generations or a certain threshold of the fitness function is found. If the 

criterion is not met then the process reiterates. Otherwise, when the last generation completes, the 

individual with the best fitness value is presented as the solution when only a single objective is 

concerned. 
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GAs are especially useful within partially observable domains with little knowledge on the 

system, as GAs don’t require predefined sets to train offline or prior analysis of the problem 

domain. GAs can then be paired with neural networks as a surrogate model to solve 

Reinforcement Learning (RL) problems, even when the correct output or policy is unknown. 

Thus, genetic algorithms are a useful method for solving continuous RL problems. 

 

2.2 Artificial Neural Networks 

This section will introduce neural networks as a surrogate model for RL problems, as well as 

some basic history and concepts specific for Neuroevolution.  

Neural Networks (NN) are biologically inspired by their real world counterparts. Neural 

structures are highly interconnected system of parallel electrically excitable cells called neurons 

that possess three main components: The dendrite, the cell body, and the axon. The dendrite acts 

as an input receptor that carry signal to the cell body. The cell body then takes the collective sum 

of all the input signals as a voltage change. If a threshold is met, an action potential signal can 

then be passed as an output through the axon where synaptic connections are activated upon 

arrival with other neurons. Following this neural design, neural networks have the possibility to 

theoretically learn and approximate any function. This makes Artificial Neural Networks (ANN) 

a great candidate for regression, classification and control and prediction problems [9]. 

There are a variety of different NN types that differ in size, connection types, etc., but the 

simplest NN are the feedforward network. These networks have the information as inputs travel 

forward throughout the system to be manipulated as new outputs. In feedforward networks, there 

are no synaptic connection that loops back to provide any time dependent information. 
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Figure 3: Artificial Neural Network Architectures: (a) Fully connected Single Layer 

Perceptron (SLP). (b) Fully connected Multilayer Perceptron (MLP). (c) Recurrent Neural 

Network (RNN) with recurrent hidden layer Neurons  

 

The simplest form of the feedforward network is the perceptron; see Figure 3(a). This is an ANN 

with only an input layer that connects directly with an output layer. This type of simple network 

can only learn to solve linearly separable problems, and therefore is limited to only simple 

classification and control. Therefore, another ANN architecture, called the Multilayer Perceptron 

(MLP), must be explored. This type of perceptron has an input layer, a hidden layer, and an 

output layer; see Figure 3(b). Each layer has as activation called the transfer function, ƒ, which 

computes the weighted sum of the previous layer’s inputs. The transfer function then allows for 

the combined inputs to be squashed into the range. The most common transfer function used for 

Neuroevolution is the log-sigmoid transfer function as it allows the inputs to be squashed to a 

range of 0 to 1 and activation of an output could then be deterministically chosen by some 

threshold.  

 

 

 

(a) SLP                                               (b) MLP                                    (c) RNN            
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Thus the output, α, for each neuron, j, with an input p, in a layer with the Log-Sigmoid transfer 

function ƒ is: 

𝛼𝑗 =  𝑓(𝑛𝑗) 

𝑤ℎ𝑒𝑟𝑒  𝑛𝑗 = (∑𝑤𝑖,𝑗𝑝𝒊 + 𝑏𝑗
𝒊

) 

𝑇ℎ𝑒𝑛 𝛼𝑗 =
1

1 + 𝑒−(𝑛𝑗)
 

Where w is a connection strength between the node 𝑖 and 𝑗 and determines the “steepness” of the 

sigmoid, and b is the bias that is injected into the system that allows for the sigmoid to be shifted. 

For this thesis, however, the bias is not used as it injects additional complexity in the search 

space.   

Using this methodology, a MLP can learn problems that are complex and not linearly separable, 

and in theory, can learn any function with a large enough number of hidden neurons [10]. 

Another form of ANN architecture is the feedback NN called Recurrent Neural Networks (RNN). 

These networks have the ability to form cycles that allows information to propagate back into 

previous layers. Through these cycles, this network can then learn temporal properties of the 

system. This means that a RNN can learn and preserve memory of past events.  

Most classical neural networks train and adapt the weights using a method known as gradient 

descent using backpropagation [9]. The standard method requires a training set, a testing set, and 

a validation set for training and evaluation. This type of training is not helpful when dealing with 

real RL problems. Firstly, collection of good data for each specific stage of this method is 

expensive and the quality of the data is hard to define. Second, even if the data is proven to be 

good, it might not lead to the most optimal solution.   
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Genetic Algorithms, then, provide a strong alternative, or complement, to back-propagation [11]. 

As explained in the previous section, Genetic Algorithms have a distinct ability to genetically 

encode most anything to a phenotype. Therefore instead of other learning methods, GAs can 

easily define several parameters of neural networks as genetic information and evolve the 

network based on a performance criterion which is more flexible than the definition of an energy 

or error function. Gradient descent methods also suffer with entrapment in local minima error 

surface. This problem is addressed with GAs as it is has multiple points samplings on the error 

surface while also searching different parts of the decision space using the genetic operators. The 

fitness function of a GA also does not depend on gradient information and thus does not have to 

be differentiable or even continuous.  

GAs can then be seen as an efficient replacement for when gradient decent methods suffer when 

the error function becomes nondifferentiable and complex, especially when gradient information 

is too costly to attain. GAs then provide a flexible and robust solution to optimize ANN weights 

for large, complex, non-differentiable, and multimodal spaces [12]. Given than many real world 

and RL problems share these aspects, there has been much research in the application of evolving 

ANN weights and parameters [13]. 

 

2.3  Neuroevolution 

Neuroevolution (NE) is the combination of the approximation superiority of ANN with the 

searching power of GAs. With NE, GAs can encode and evolve ANNs to find a set of parameters 

(either the weights and/or the topology) to solve many complex computational problems in both 

the real world and the virtual. However, recurrent networks have been shown to have similar 

results to that of feedforward agents in platform games and are also outside of the scope of this 

thesis. 
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Computation Intelligence research in games has been finding more and more traction, as video 

games provide a new form of real life problems that can be tested through simulation of games 

inexpensively.  

Neuroevolution is a strong competitor for solving many tasks necessary for games. Game 

strategies could be learned through Q-learning or TD learning, modeling efficient non-player 

characters can be used with Support Vector Machines [14]. When in the domain of games, there 

are specific issues that these methods must specifically handle with significant prejudice to 

overcome. Video games have a very large state/action space due to the large variety of objects 

and enemies that require different possible actions to be handled at each time step. It is also very 

important to be able to not have to check each action at each time step to evaluate an action’s 

value like traditional RL. This could become very computationally complex as the number of 

actions to check and the number of agents in the game increase. Another issue is the consistency 

of fast behavioral adaptation and complex behavior learning. Since the evaluation in real world 

applications also pertain to video game simulation, the time necessary to create intelligent agents 

through typical RL techniques might be in the range of hours and days. And lastly the ability of 

creating diverse agents is highly desirable in video games. Many traditional learning methods for 

RL have guarantee of convergence, but risk convergence to reduce all agents to the same 

principles and behaviors.  

Neuroevolution has been shown to be a strong method for solving all of these problems. They 

work well in high-dimensional spaces as they can learn to generalize very well and do not need to 

evaluate each action at each time step. Diversity is maintained in the population of agents through 

the diversity imposing mechanisms specific to GAs. Neuro-evolved agents also can quickly learn 

approximations for simple behaviors and will discover more complex behaviors later, allowing 

for faster learning.  
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Neuroevolution has been shown to have record beating performances in both control systems and 

strategy selection in complex decision domains [15] [16]. It is scalable, robust, allows for 

complexification of neural networks, and allows for open-ended learning through exploration and 

exploitation. It also has brought about new kinds of games such as “Galactic Arms Race” where 

space ships are given the ability to evolve its weapons instead of having pre-built designs [17]. 

For the case of reinforcement learning in video games, Neuroevolution has been used in many 

forms. One such form is in a game called NERO developed by Stanley, Bryant, and 

Miikkulainen, where robotic agents were evolved by each player by rewarding positive game task 

outcomes. These agents were then able to learn how to capture battle points and evolve dedicated 

game policies [18].  

It has been shown that Neuroevolution has multiple applications in games for research, testing, 

and also opening new fields of gameplay possibilities. Each differentiation between NE methods 

is based on the role of the NE agent for a particular game problem. When developing NE agents 

for RL control problems, a large issue is creating intelligent agents to handle multiple forms of 

states/actions. Many methods use a predetermined policy and reward system for each state. This, 

however, limits learned behavior to that of the predetermined policy, and therefore restricts the 

agent from finding the “best” action for each state. These methods also usually train towards a 

single goal and could miss nuances in an environment that requires differing behavior to complete 

conflicting sub goals for optimal performance. The “behavior” of an ANN is generally 

determined by the architecture of the NN and the weights of the connections. Therefore, if 

multimodal behavior is to be learned, the possibilities of multiple objectives to drive weight 

optimization for multimodal decision making must be explored. 
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2.4 Multiple Objective Pareto Optimality  

As it can be seen, Neuro-evolved controllers can be used in a multitude of problems but domains 

might require multimodal behavior due to conflicting objectives. In the case of Hong and Cho, a 

GA was used to evolve agents to play in a game called Robocode [19]. The agents were evolved 

to select a set of pre-defined simple state/action strategies based on the different individual 

behavior of the opponents. However, each agent that was evolved suffered from poor generality. 

Some agents that were good at offensive objectives, could not determine the correct behavior if 

the roles were switched from predatory to prey. Therefore a way of dealing with multiple 

conflicting objectives is necessary. One way to accomplish this is to create a combined fitness as 

a weighted sum of each n fitness objectives: 

𝐹(𝑥) =  𝑤1𝑓1 + 𝑤2𝑓2 + ⋯+ 𝑤𝑛𝑓𝑛, 0 ≤ 𝑤𝑛 ≤ 1, ∑𝑤𝑛

𝑛

 1

= 1 

Where w, are the specified weighted tuning parameters for each respective fitness function. This, 

however, does not guarantee that multimodal behavior will be learned, as even though all 

objectives may be represented, the tuning parameters have to be very specific as to drive the 

population to each specific task. Not only that, but a single combined objective will return a 

single optimal solution from the multi-objective space. A one dimensional objective solution 

cannot find multiple optimal solutions on non-convex surfaces, but rather points that are 

tangential to the surface. Therefore another way of handling multiple objectives is necessary and 

can be found through Pareto optimality. 

Pareto optimality is the concept of comparison of points in a decision space represented by their 

mapped equivalent in the objective space. The comparison between solutions in the objective 

space is through criteria called dominance denoted as ≻.  
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Figure 4: Mapping from decision space to Objective space for multiple objectives 

 

The figure above, Figure 4, is an example of a two dimensional maximization optimization 

problem where each point in the objective space represents a corresponding fitness value in the 

first and second objective. Point a in the objective space is said to dominate all solutions with the 

upwards diagonal shaded area beneath it. Similarly, all points within the downward diagonal 

shaded area are dominated by the point b. Any point in the light shaded cross area are considered 

to be dominated by both a and b. Any points that are not dominated by any other point are 

considered to a member of the “Pareto optimal front” and are depicted as the red points connected 

by the orange dotted line in Figure 4 . These points are considered to be the “best” of the two 

objectives, as no one point is better than another in terms of their fitness. This can be seen as 

point a has a high value in the f2 direction, but has a lesser value in the f1 direction than point b.  

A formal definition of Pareto Dominance can be seen next: 
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Definition: (Pareto Dominance): The minimization of n components 𝑓𝑘  , 𝑘 =  1, … , 𝑛 of a vector 

function f of a vector variable x 

𝒇(𝒙) =  (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑛(𝒙)). 

Vector 𝑢⃑ = 𝑓(𝑥𝑢) = (𝑢1, 𝑢2, … , 𝑢𝑛, ) dominates vector 𝑣 = 𝑓(𝑥𝑣) = (𝑣1, 𝑣2, … , 𝑣𝑛, ), 𝑢⃑⃑⃑   ≻ 𝑣  if: 

∀𝑖 ∈  {1,… , 𝑛}, 𝑢𝑖 ≥ 𝑣𝑖 𝑎𝑛𝑑∃𝑖 ∈ {1,… , 𝑛}|𝑢𝑖 > 𝑣𝑖  

Then a set is Pareto optimal if it contains all the points x that are not dominated by any other 

points y. This set makes up the Pareto front and represents the best solutions found by the 

searching algorithm, where each subsequent front after that is the next best front. A popular and 

powerful searching algorithm that utilizes this optimality is the Non-Dominated Sorting Genetic 

Algorithm II. 

 

2.5 Non-Dominated Sorting Genetic Algorithm II 

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [20] is the successor to the multi-

objective optimization algorithm NSGA [21]. The preceding multi-objective algorithm NSGA 

imposed many helpful aspects for searching the multi-criteria objective space. It allowed for the 

assignment of fitness based on non-dominance and created progression in the direction of the 

Pareto optimal region, one front at a time. It also imposed a sharing hyper parameter σ, that 

allowed for a diverse solution in the parameter or objective space. This however came with 

disadvantages that NSGA-II improves upon. Firstly, NSGA was computationally expensive in the 

sorting stage, where the complexity was of 𝑂(𝑀𝑁3) (where M is the number of objectives and N 

is the population size.) Therefore, NSGA could not efficiently handle large population sizes. 

Next, NSGA did not have any form of built in elitism, where elitism is the preservation of strong 

past solution set so as to not lose the best solution to future generations. Most forms of single 
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objective GAs have a separate elite set for which offspring are compared to which helps drive 

convergence to the global optima. The lack of elitism in NSGA slowed the performance of the 

algorithm as well as resulted in poor performance of solutions. Lastly, the implementation of the 

fixed sharing parameter resulted in the need to highly tune for performance as the algorithm was 

highly sensitive to this parameter 

NSGA-II improves upon all of these problems as it reduces the time complexity of the rank and 

sorting of non-dominated solutions to 𝑂(𝑀𝑁2), which again for real world applications is 

negligible as the time complexity is based on the simulation time but still improves upon the 

overall calculation time. The lack of elitism is handled as NSGA-II contains population storage of 

(µ + λ), where µ is the parent population of size µ, and λ is the offspring population of size λ and 

for this thesis and most NSGA-II problems µ = λ. More on this inherent elitism strategy and 

selection will be explained later. Lastly, the diversity of the population is handled dynamically 

through comparisons crowding distances as opposed to trying to determine the best sharing 

parameter value a priori through rigorous testing.  

When converting from the single objective to the proposed multiple objective optimization 

algorithm, NSGA-II, the heuristics for the GA must change and can be seen in the flowchart on 

the following page.  
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Figure 5: NSGAII Flowchart 
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2.5.1 Non-Dominated-Sort  

 

Figure 6 fast-non-dominated-sorting of NSGA-II: [20]  

 

The approach to identifying the best solutions, when multiple objective are concerned, is through 

the ranking and sorting of individuals by their non-dominance. The formal algorithm proposed by 

([20] Deb et al. 2002) for the “fast-Non-Dominate-Sorting” method can be seen above. Each 

individual, p, in the combined population will be compared to all the other individuals, q, within 

the population P. If p dominates q then q is added to a domination set of solutions dominated by 

p. However if q dominates p, then a domination counter will be incremented. This reiterates until 

each individual q within P is compared against. If the domination counter for p is zero, then that 

individual is a Pareto optimal solution and can be placed within the first front.  
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This continues until every individual is compared to each other throughout the population and all 

the non-dominated solutions are placed within the Pareto front. The individuals are then sorted 

into each subsequent front by searching through the remaining individuals in the set of dominated 

solutions and decrementing their domination counter. When their counter goes to zero, they are 

then placed in the next available front. This continues until there are no more individuals to place 

into a front. Measures can be taken to reduce this sorting so as to only take in N individuals. This 

then allows the individuals to convert from a multidimensional comparison to a single 

dimensional sorted ranking scheme to be used for selection.   

 

2.5.2 Crowding Distance Assignment, Sorting, and Preservation. 

After the population is ranked, each individual is then assigned a crowding distance value. This 

value is used as a niching scheme for the selection process to promote the spread of individuals. 

To dynamically assign this crowding distance, an individual of a specific front in objective space 

calculates their Euclidean distance to that of neighboring individuals within the same front. This 

distance then represents an estimation of the density of individuals surrounding that particular 

individual. The formal algorithm for assigning the crowding distance can be seen below.  

 

Figure 7 crowding-distance-assignment of NSGA-II: [20]  
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Figure 8: Crowding Distance Assignment. Crowding distance is assigned front wise. The 

individual solutions represent the maximum value of f2 and f1 are the boundary points of the front 

and will be set as infinity as there can’t be a more diverse/ spread point that the boundary points. 

All individuals within the boundaries of the front will then be assigned a crowding distance based 

on the sum of Euclidean distances (the orange vectors) between neighboring individuals. It can be 

seen then that point a will have a lower crowding distance than point b as there is both visually a 

higher density of nearest neighbors as mathematically having shorter combined Euclidean 

distances to the nearest neighbors. A higher crowding distance is better 

 

Upon assigning the crowing distance to all the individuals within the population, a new set will be 

created to reduce the combined population of size 2N to that of size N. This new set to fill from 

the lowest front first to the last front until the size exceeds that of N. The last front that was used 

to fill the population will then sorted based on decreasing crowding distance. The individuals will 

incrementally be removed from the bottom until the population is exactly size N. 

This population will then be preserved and will take the place of the older parent population. 

Even though this will replace the older population, since the previous child and parent population 

were combined and sorted, the best individuals will still be preserved; promoting elitism.  
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2.5.3 Binary Tournament Selection 

Once the new parent population has been created, it will then be used for the selection and mating 

of new offspring. This selection process, as described in earlier sections, is known as binary 

tournament selection. Instead of comparing contestant’s fitness value, as was described for single 

objective selection, the selection niching parameters are now the rank and crowding distance 

values. Two individuals are chosen at random and are allowed to compare ranking values. The 

individual with the lowest ranking value is selected as the champion and is permitted to mate. If, 

however, the two contestants share the same front, their individual crowding distances are 

compared. The one with the highest crowding distance is then chosen to preserve the spread of 

the population. Once a mating pool has been created, the generation of offspring commences.   

  

2.5.4 Simulated Binary Crossover 

Simulated Binary Crossover (SBX) has been shown to work very well with real coded GAs [22] 

and is an effective form of crossover for multimodal and multi-objective problems [23]. 

It has been argued that evolving neural networks may not be a simple task [24]. This is because, 

when dealing with multi-objective solutions, the population may contain individuals that produce 

the same behavior but the individuals may consist of entirely different genotypes. This means that 

two individuals could contain two genotypes corresponding to totally different areas of the 

decision space. Crossover could then destroy the working structure of the hidden layer and 

produce poorer fitness through offspring as can be seen in Figure 9.  
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Figure 9 Competing conventions: [24] 

 

It can also be argued, however, that with SBX combined with the inherent preservation of NSGA-

II, the searching algorithm is able to overcome this issue by the means of turning the negative into 

a positive. The preserved elite can act as a vantage point and anchor for the new offspring to 

explore the surrounding local region. That way, individuals can search the region for the 

possibilities of a higher front to jump into. Therefore SBX is a good approach for the crossover of 

ANN weights. 
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Figure 10 Probability Distributions of Binary GAs and Simulated Binary Real coded GAs: 

The left figure is the probability distribution of contracting and expanding crossovers for a pair of 

random binary strings of length 15. The right figure is the representation of the binary distribution 

as a polynomial distribution for real-coded GAs. For SBX, n controls the spread of the probability 

model. When n = 0, the distribution is close to a uniform distribution. When n = 2, the 

distribution is close to the original binary crossover distribution on the left. [25]  

 

SBX was designed with respect to the one-point crossover in binary-coded GAs. To simulate the 

operation of a single-point binary crossover directly to real variables, a probability distribution 

function is used to act similar to the probability distribution in the Binary-coded scheme (See 

Figure 10) and will be explained in the next section.  

When dealing with binary-coded GAs, the offspring may lie inside or outside the region bounded 

by the parents based on the crossover point or the specific strings of binary crossed over. To 

represent this differentiation between child points and adult points, the spread factor β, is to be 

used as the ratio of spread of child points to parent points: 

𝛽 = |
𝑐1 − 𝑐2

𝑝1 − 𝑝2
| 

If the child points lie outside the bounds of the parent points, then absolute difference in child 

points is greater than the parent points. This means the spread factor β > 1 and the crossover is 

considered to be expanding. If the child points lie within the bounds of the parents, the absolute 

difference of the children are less than the parents and the spread factor β < 1. This would then be 

β β 
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a contracting crossover. Lastly if the absolute difference of child and parent points are equal, then 

the crossover is stationary and the spread factor β = 1. 

The idea then for binary GAs is that for each contracting case with a spread factor β, there is also 

an expanding case with spread factor 1/β. The relationship of the probability distribution with β 

for contracting cases in binary GAs is:  

𝐶(𝛽) =
𝜎

1 − 𝛽
 

where σ is some constant term [25]. (This portion of the distribution is in the range of {0 ≤ β < 1} 

and can be seen on the left figure of Figure 10). Since the overall probability for contracting cases 

are equal to the expanding cases, a relationship was found:  

𝐸(𝛽) =
1

𝛽2
𝐶(

1

𝛽
) 

Therefore, given that the sum of both crossover probabilities is equal to overall probability, and 

the overall probability of either crossover types are equal, then each case must have an equal 

probability of 0.5. Knowing this, the contracting probability distribution can be substituted into 

the above equation to obtain the probability distribution for the expanding crossover:   

𝐸(𝛽) =
𝜎

𝛽(𝛽 − 1)
 

(This portion of the distribution is in the range of {β > 1} and can be seen on the left figure of 

Figure 10) Thus a polynomial distribution was proposed for each real case for representing binary 

the distribution functions: 

{

𝑐(𝛽) = 0.5(𝑛𝑐 + 1)𝛽𝑛𝑐 , 𝛽 ≤ 1 ∶ 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔

    𝑐(𝛽) = 0.5(𝑛𝑐 + 1)
1

𝛽𝑛𝑐+2
, 𝛽 > 1 ∶ 𝐸𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔
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The nonnegative real number, nc, is the distribution index used to differentiate the polynomial 

model as can be seen in right hand side of Figure 10. For small values of this index, points far 

away from the parents would be chosen for the children. Oppositely, for larger values the children 

would become restricted by the distribution range and only points close to the parents will be 

chosen. Finding a proper distribution index value is then very important as it has a high impact on 

convergence speed. 

For multi-variable problems in binary coded GAs, a crossover point is found to determine the 

split and swap of parents. This split can also be performed as well for real-coded GAs, however it 

creates a positional bias as the probability of transmission of genetic material will be highly 

dependent on the position within the chromosome [26]. Therefore, to simplify and create a 

uniform probability of crossing over any variable, the probability of a variable being crossed over 

is 0.5.  

Once a variable has been chosen for crossover, a new random spread factor 𝛽̅, must be calculated 

for the real SBX crossover operator. Since there is equal probability of both contracting and 

expanding cases a uniform random number between 0 and 1 will be selected (denoted as u). This 

value u will then be used to calculate 𝛽̅ by equating the area under the curve equal to u. This was 

found to be: 

𝛽̅ =  

{
 

 2𝑢
(

1
𝑛𝑐+1

)
            ∶ 𝑖𝑓 𝑢 ≤ 0.5

1

2(1 − 𝑢)

(
1

𝑛𝑐+1
)

∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Now that a representation of the spread factor has been determined the offspring solution c1 and c2 

can be calculated: 

𝑐1 = 0.5 [ (𝑝1 + 𝑝2) − 𝛽̅|𝑝2 − 𝑝1|]                     𝑐2 = 0.5 [ (𝑝1 + 𝑝2) + 𝛽̅|𝑝2 − 𝑝1|] 
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The children that are created are then symmetric about the parents p1 and p2 to avoid bias towards 

any one parent as well as retaining the average value of both parents like in binary coded GAs. 

 

 2.5.5 Parameter Based Mutation 

If the crossover operator is not applied after reproduction, a small amount of offspring with 

probability pm will be allowed to mutate. The mutation used for real and continuous values is 

known as parameter based mutation [27]. Parameter based mutation uses a polynomial 

probability distribution to create an offspring solution around the vicinity of a parent solution. 

This approach is extremely similar to that of the SBX operator. To calculate the new mutated 

parameter a uniform random number between 0 and 1 is created. This is used to calculate the 

perturbation factor 𝛿: 

𝛿 = {
[2𝑢

(
1

𝑛𝑚+1
)
] − 1           ∶ 𝑖𝑓 𝑢 < 0.5

1 − [2(1 − 𝑢)]
(

1
𝑛𝑚+1

)
 ∶ 𝑖𝑓 𝑢 ≥ 0.5

 

This perturbation factor is specific to the mutation distribution index nm, as large nm create 

mutation closer to the parent and small nm creates a new child far from the parent. This factor is 

then used to calculate the mutate value as: 

𝑐 = 𝑝 +  𝛿 

All of the offspring that are created by the SBX operator or the parameter based mutation 

operator are added to a new child population. Once the population is of size N, the selection 

process is over and the offspring are allowed to be evaluated. Each generation allows for new and 

better controllers as the population moves towards the Pareto optimal front. This process 

reiterates until a stopping criterion has been met. 
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2.7 Mario AI as a Test bench 

This section will explain the importance of using platform games like Mario AI to test intelligent 

controllers in a highly complex environment.  

Mario AI is a tool developed by Juilian Togelius and Sergey Karakovkiy to be used as a new way 

to test complex learning algorithms and policies. This tool has since been used in competition at 

the Mario AI Championship for multiple NE methods [28]. A content creation track was 

implemented that allowed a group to develop a procedural level generator that replicates styles of 

a human level designers [29]. A study by Ortega et al used the Mario AI framework to let a 

Neuro-evolved controller learn and eventually mimic the behavior of human players [30]. A game 

play track was also created to promote contestants to create intelligent agents to solve the difficult 

task of learning how to play multiple levels of Mario. One interesting study implemented a game 

play agent that used RL to develop a Neuro-evolved controller using a single combined weighted 

fitness [31]. 

Video games have a smooth learning curve in the form of level difficulty, thus making them 

useful for continual learning. Super Mario AI is a continuous, high dimensional state-space, 

partially observable environment. It contains many different level types with different enemies 

and thus has high dimensional observations. But what is most useful is the goal of the game 

requires execution of multiple different behaviors to complete the game [32]. 
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Figure 11 MarioAI: The MariAI test bench provides an overlay that displays the current level 

information, Mario score, and the controller’s name and its action at each time step. 

 

Super Mario Bros’ gameplay consists of a game character (Mario) starting on the far left of a 

level where he must traverse obstacles to make it to the end of the level at the far right. This is a 

simplification of the problem as the character can move through this 2-D world by jumping over 

pitfalls, collecting coins, avoiding a multitude of enemies like turtles and angry bullets, shooting 

fire from his hands, eating power-ups, and the list goes on. Getting to the end of the level is the 

main goal but the overall score is a combination of sub goals: collecting coins, collecting power 

ups, maximizing distance in level, killing enemies, reducing the amount of times Mario gets hit, 

and maximizing time remaining in a level.  

Mario has three stages of power-ups in which he starts the game at the highest stage. In the 

highest stage, Mario has the power to shoot fireballs which can kill almost any enemy within the 

game. This power is linked to the run button, so the agent must learn to differentiate between 

shooting and running. If Mario gets hit while in this “Fire Flower” stage, he is reduced to regular 
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Mario. In this form he still retains his size, but he no longer has the ability to shoot. This means 

that the agent has to differentiate between stages so that it knows it can no longer kill enemies by 

shooting/running at them and must find a new way to destroy or avoid them. The last stage, and 

Mario’s last chance, is small Mario. In this form Mario has lost his height and now looks like a 

baby. This is both a negative and a positive, as even though Mario has only one hit left his hitbox 

has been reduced to fit his model size. Therefore he can pass through more difficult areas with 

deft, cunning, and luck to bypass obstacles.  

The enemies that are injected into a level are generated with special behaviors, properties, and 

types based on the level type and difficulty. An enemy type that performed one way at a simpler 

level, could gain wings and jump at more difficult levels. As the difficulty of the game increases, 

so do the amount and variety of obstacles within the level that Mario must overcome.  

The generation itself can become noisy with the level seeding property of the generator. A single 

level at a specific difficulty can become completely different when generated on different seed 

values. Thus an agent that performs well on one particular difficulty and level type must be able 

to generalize or it won’t be able to handle the change. By randomly selecting seeds for each level, 

the agent would train on a different generated model than the one before. This makes it near 

impossible to create a deterministic model of the gameplay space, and is why NNs are typically 

used as a surrogate model to approximate the data, as opposed to trying to learn and adapt 

through every possible level. When a human plays Mario, they have no trouble understanding this 

overwhelming amount of information and use it to learn different complex actions for winning, 

but to a learning agent this becomes an extremely complex problem to solve as it requires a 

switching of learned behaviors quickly and efficiently. This means then, that the Mario AI 

domain is fractured. 
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A fractured domain is one where tasks change wildly and infrequently when entering different 

state spaces. For many standard problems in RL and control, state space is smooth and has low 

variety in action over time. But for video games like “Super Mario Bros”, different tasks within 

the game could switch and vary after every time step.  

One example of a game with fractured task space is “Keepaway Soccer” [33]. In this game, Kohl 

showed that the strategies necessary to win within his Markov decision process (MDP) modeled 

task space were fractured and difficult for a Neuro-evolved controller to learn without 

complexification of NN architecture and learning methods. This proved especially difficult for 

NNs that evolved network topologies.  

Another example of a fractured space is that of Mrs. Pacman, where the tasks for dealing with 

threatening ghosts and ghosts that can be eaten made it difficult to split tasks [34]. Schrum was 

able to overcome the behavior split by using multi-objective optimization to drive state/action 

partially observable Markov decision process (POMDP) selections.  

Therefore, an interesting method for solving the fractured Mario AI problem is to use multi-

objective optimization to develop multi-modal behavior to overcome the fractured task selection. 

Since the state space for Mario AI is so large and the resulting action space (where the controller 

can output: down, left, right, jump, and shoot at each time step) yields 2
5
 = 32 total possible 

actions, it would be too ineffective to create a MDP modeled controller. Therefore a direct action 

selection controller is used instead. The quantitative measure of fracture is hard to define in a 

non-Markovian Domain where state/action and reward are predefined. Therefore any mention of 

fracture within MarioAI is through qualitative measurements. 

It can then be seen that Mario AI is a powerful, robust and diverse benchmarking tool. For the 

case of this study, the gameplay track will be used to develop an intelligent, multimodal, game 

solving agent.  
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CHAPTER III 

 

 

METHODOLOGY 

 

3.1 Encoding and NN representation 

For real world optimization problems there are many ways that a GA can be encoded. Varying 

encoding schemes can affect significantly the convergence time for solutions as well as the 

quality of solutions. A good form of encoding with evolved neural networks is direct encoding, as 

shown through extensive analysis of genetic operators and real-coded chromosomes [35]. Braun 

and Weisbrod also state that the use of indirect encoding requires a “detailed understanding of 

both the neural network and genetic algorithms inlayed mechanisms. [36]” This means indirect 

encoding relies on the developer to create a quality mapping schema from the GAs genotype to a 

phenotype that can be efficient in evolving the neural network. Therefore in this study, direct 

encoding was chosen to represent the genotype.  

The neural weights can be conceived of a finite-dimensional parameter space directly within the 

genotype. Usually the formulations of this parameter space for GAs are through binary encoding. 

Binary encoding is fairly straightforward but requires a significant amount of bits to represent any 

real world decimal number to a useful degree of accuracy. Combine that with the large parameter 

space of a neural network, and the storage complexity of the system grows rather large. Instead of 

binary, real floating point numbers can be used to encode the system.
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Figure 12 One-to-One Mapping of real encoded Genotype to Neural Network Phenotypes: 

The One-to-One mapping of real numbers as parameters to the ANNs is simplistic and effective. 

 

Work with real encoding in GAs has been found very effective in continuous domains [37].  

Since all problems of weight manipulation in this study are defined in the real space, the use of 

real-coded GAs with the SBX searching operator is more suitable than Binary GAs. Using real 

numbers allows for simple one-to-one mapping from genotype to the phenotype as can be seen in 

Figure 12. Since the choice of encoding drastically affects the search space of solutions, it is a 

pivotal aspect of the design of an NE system 
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3.2 Input representation  

 

Figure 13 Mario's Visible Environment: Mario’s visible 22x22 environment with Mario 

residing at point 11:11. Bitmap key data is held within the grid space for each rendered object. 

For example, the enemy at grid space 15:16 is returning the value: 80. 

 

Mario’s visual representation of the world is through a 22x22 grid of squares with Mario in the 

center at block 11:11. Each square contains the raw data bitmap keys of the level environment at 

every time step. This influx of data is supposed to provide Mario with the same amount of 

information as that of a human observer playing the game. This means, however, that the total 

observable space that Mario can account for is 484 blocks of input data. This high-dimensional 

space is extremely difficult to analyze and is known as the curse of dimensionality. For creating a 

controller for MarioAI, training on a direct input space of 484 shows to be impossible. This is 

true even if the raw data types are normalized between [0-1] for easier search-ability and the 

controller is allowed to play for more than 300 generations (an average total run of: 300,000 

levels played).   
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There are many approaches for reducing the input space. One possibility is to just reduce the 

visual input around Mario. Attempts of this method using a reduced visual size of 9, 25, and 46 

blocks of visibility resulted in a Mario controller that could handle lower levels with minimal 

input variety [30]. As the level difficulty increased the addition of more enemies, enemy types 

and difficult obstacles like gaps were added. The controller could not efficiently differentiate and 

account for the new variables with such a limited field of view. As the field of view was 

increased, so did the learning curve as the input space dimension became large. The best input 

state size for that experiment was found to be between 14 -21 total inputs before any learning 

ability started to be hindered.  

Another method is through the use of angle and positional inputs. These are effective inputs for 

3D environments like in the video game Quake [38], or the car racing simulator developed by 

Togelius and Lucas [39]. These state spaces are represented in a spherical plane, yet MarioAI is a 

2D grid with x and y block coordinates.  This is an important distinction as the type of input 

representation can both reduce the fracture problem and bias the GA’s search toward finding 

useful multimodal behavior.  To put it plainly, solving a problem in a grid space becomes much 

more difficult if the state space is represented as polar coordinates as opposed to Cartesian.  

Other forms of input representation use a user defined pathfinding state/action representation. 

This usually is of the form of some hierarchical determined algorithm to provide both direction 

and policy. It is arguable, then, that the driving mechanism for multimodal behavior is 

predetermined. This type of bias towards learned behavior is not applicable to this thesis. 

Therefore, a mixed input representation of feature selection and straight line sensing is proposed. 

Within the MarioAI domain, there are three main sections of the level environment that Mario 

must account for: Obstacles, Enemies, and Collectables. Information about these items must be 

available to Mario in a way that is descriptive without being overly large and complex. A form of 
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feature abstraction is then used to describe the world for each of these sections. It is also 

important to mention that each of these sections make up the overall input visualization of the 

Mario agent. However, to show each individual environmental abstraction in detail, each section 

is split to better inform the reader on how each environment feature is determined and selected. 

The main necessity for Mario to win is to have a basic understanding of passable terrain and 

hindering obstacles. For this, seven types of inputs are proposed and can be seen in Table 1.  

Input Name Details 

Obstacle Above Distance 
Returns the relative distance of any obstacle three blocks above 

Mario. Returns 1 otherwise. 

Obstacle Below Distance 
Returns the relative distance of any obstacle three blocks below 

Mario. Returns 1 otherwise. 

Obstacle in Front Distance 
Returns the relative distance of the closest obstacle five blocks 

ahead in line of Mario. Returns 1 otherwise. 

Obstacle in Front Size 
Returns the size in blocks of any obstacles in front of Mario. 

Returns 0 otherwise. 

Gap Distance in Front 
Returns the relative distance of the closest gap to Mario. Returns 

1 otherwise. 

Find Edge of Gap 
Returns the relative distance of any edge in front of Mario. 

Returns 1 otherwise. 

Table 1 Obstacle Input Sensing: 

 

These inputs are designed to pick out specific environment devices that cause Mario issues in 

completing the game. Obstacle detection above and below Mario is used to provide both floor and 

sky information to Mario. This is by providing feedback between three grid values above and 

three grid values below Mario. A relative distance value scaled to [0, 1] is returned if certain 

terrain patters are found. This will give Mario an understanding of if he is on a flat surface or in 

the air, as well as visuals for terrain that can be jumped up into like hills. The line sensing input in 

front of Mario returns the relative distance of the closest impassible obstacle five grid spaces in 

front of him.  
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Figure 14 Obstacle input information: Input abstraction selection determines impassable 

obstacles relative position by looking three blocks above Mario, three blocks below Mario, and 

line sensing obstacles directly in front of Mario. For handling gaps, the bottom of the screen is 

monitored to search for a lack of terrain to the right of Mario. To handle the stairs problem as in 

this figure, an edge detecting sensor (depicted as the red dashed squares) is used to look ahead 

and determined if there is any place safe to land. Gap and objects in front of Mario also have a 

height value returned to tell Mario how far to jump. 

 

The most difficult danger that can befall Mario is the gap. The gap can quickly end a good run as 

it instantly kills Mario and ends the level regardless of Mario’s current health. Not only is this 

difficult to learn to overcome, it is also difficult for the agent to learn that it needs to be 

overcome. Some Mario agents might grow to fear the gap and choose never to jump but just stand 

at the edge until the time runs out. Therefore, not only does gap distance need to be addressed, 

but also the size of the gap. This way there is some information about when and how far Mario 

must stay airborne to bypass the pitfall. Lastly, the input for specifically dealing with edge 

problems was created for the problem of stairs as shown in Figure 14. These white blocks create a 

dilemma for Mario that he can’t usually overcome with normal obstacle detection alone. 
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Typically Mario will see an obstacle like this and jump right over it only to lead to another simple 

block obstacle.  

He will then crawl all the way to the top, realize there is a gap, and attempt to clear it. Without 

understanding where the landing edge is, Mario will undershoot the jump and hit the opposite 

descending staircase on the other side. Therefore, a primitive “landing” edge detecting input is 

necessary to handle the complicated stair problem.  

The next sets of inputs are dedicated to handling the different enemies within the environment 

and can be seen in Table 2 below.  

Input Name Details 

First Enemy Position 
Returns the x and y coordinates of the closest enemy to Mario. 

Returns 1 otherwise. 

Second Enemy Position 
Returns the x and y coordinates of the second closest enemy to 

Mario. Returns 1 otherwise. 

First Spike Enemy 

Position  

Returns the x and y coordinates of the first closest spiked enemy 

to Mario. Returns 1 otherwise. 

Second Spike Enemy 

Position 

Returns the x and y coordinates of the second closest spiked 

enemy to Mario. Returns 1 otherwise 

Table 2 Enemy Input Sensing 

 

These inputs are designed to both reduce the total input space and give concise positional 

direction information about the on screen enemies. One issue Mario faces is the possibility of 

attack from multiple directions. Instead of using relative position detection like that of obstacle 

detection, a type of feature selection is used. The proposed method for finding this information 

within the state space is by searching through the visible environment for the bitmap key data 

specific to enemies. There are many enemy types within the MarioAI environment but to reduce 

the state space complexity, all enemies were split into two categories: those that can be killed by 

jumping on top of them, and those that cannot. 



39 
 

 

Figure 15 Enemy input information: Input feature extraction for enemies search the visible grid 

and returns the enemy’s x and y coordinates. Enemies that Mario can jump on are represented by 

the yellow square (the Bullet and the Goomba) and enemies that Mario cannot jump on are 

represented by the blue square (the Spiny Shell) 

 

This distinction will afford Mario enough understanding of the environment to overcome most 

issues without imposing too much bias from the designer. There are a total of four inputs for each 

category of enemy corresponding to the closest enemy’s position and the second closest enemy’s 

position. This representation gives Mario both direct positional awareness, in the form of 

Cartesian coordinates, and indirect relative position, in in the form of closest and second closest 

enemy. This method of feature selection reduces the need for omnidirectional or quadrant based 

enemy detection and can be observed in Figure 15. 
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The last section necessary of attention is the collectables. These assorted items throughout the 

game can both aide in the completion of the level through power-ups, and add to the overall high-

score through coins. For the original MarioAI competition, the coins were deemed not necessary 

as a form of measurement and relied only on level completion as the determining metric.  

For this thesis however, the coin bitmap information was added back in. The inputs for handling 

feature space extraction for collectibles are below in  

Input Name Details 

First Collectable Position 
Returns the x and y coordinates of the closest collectable to 

Mario. Returns 1 otherwise. 

Second Collectable 

Position 

Returns the x and y coordinates of the closest collectable to 

Mario. Returns 1 otherwise. 

Closest Block Position  
Returns the relative distance of the closest breakable or hidden 

block to Mario. Returns 1 otherwise. 

Table 3 Collectible Input Sensing 

 

The collectable sensing feature extraction uses the same method that was described earlier for that 

of the enemy detection. The collectable categories are split into two types: pick-ups and blocks. 

The pick-up category accounts for coins and power-ups whereas the block category is specific to 

the breakable and hidden blocks that Mario can open to see if any more collectibles are inside. 

The pick-up category has four inputs dedicated to the (x, y) pair of the first and second closest 

coin or power-up, allocating both direct and indirect positional awareness to Mario.  The block 

input requires only one (x, y) pair as it is not as detrimental to Mario’s overall success. This 

selection visualization can be seen in Figure 16 on the following page. 
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Figure 16: Collectible Input Sensing: Coin and power-up feature extraction is represented as 

the orange box (Coin and Flower). The dashed line shows the Euclidean distance to closest and 

second closest collectible. The green box (Brick Block) returns only the closest brick block or 

hidden block to Mario.  

 

The three categories described will provide the visual feedback of the state space to Mario. By 

using methods of abstraction and feature selection, the input space has been reduced to 20 inputs 

from a total of 484. Four more third-person inputs were created to overcome certain limitations 

that were not provided by the environment.   

Input Name Details 

Can Mario Jump 
Returns a 1 if Mario is on the ground and the jump button is not 

pressed. 0 Otherwise 

Mario Size Returns the current health of Mario  

Coins left in the Level  Returns the remaining percentage of coins left in the level 

Input Bias 1 

Table 4 Third-Person Inputs: “Can Mario Jump” is dedicated to a particular issue where Mario 

cannot determine without some feedback the need to release and re-press the jump button to 

perform the task. Mario size gives Mario updates on how many times Mario has been hit. The 

Coins Left input is created to add slight bias towards collecting more coins. And a dummy input 

bias of 1 was added for the activation threshold. 
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With the current input setup determined, the resulting output policy is that of a direct action 

policy. Mario can perform any combination actions: up, down, left, right, run/shoot, and jump. By 

removing the up command as it proves to be unnecessary this provides a total of 5 output 

commands. These commands can either be 0 or 1 and the state is determined by a threshold 

operator in the output layer. The logistic sigmoid activation function will frame the output value 

on the range of 0-1; therefore a command activation threshold is set uniformly at 0.5. Values 

above or equal to 0.5 result in that activation being sent to the Mario controller.      

 

3.3 Fitness Criteria Selection 

Previous trials evolving MarioAI agents were modeled on the work of Lars and Thomas [29]. A 

single weighted objective GA was used to train intelligent controllers to complete multiple levels. 

This controller was able to learn basic behaviors necessary to win but could not learn any 

complex behaviors, like differentiation between when to be greedy and collect coins and when to 

be safe. The evolved agent learned that if it ran as fast as it could and dodge the main obstacles 

like gaps and walls, it could win and win on at least two different levels. This agent suffered 

though from many pitfalls that single objective solutions face in a multi-objective optimization 

problem. Lack of understanding of the driving force behind specific behavior led to constant 

tuning and approximations of the fitness function’s weighting parameters. This problem is only 

magnified by the fact that a human designer will try and impose a higher reward for objectives 

they believe to be the best. When in actuality, the Mario AI problem does not have a quantitative 

“best action” per state scheme. This led to agents with decent performance for one task, and 

detrimental performance in another. This style of fitness selection also resulted in poor 

convergence as the highest scoring agent using this method from Lars and Thomas took over 24 

hours to calculate and over 1,050,000 different levels even without any level type variation. 
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This thesis proposes a multi-objective approach to circumvent the issues of fitness parameter 

tuning and lack of multimodal behavior. To reduce the complexity of the problem, the controllers 

will only be trained on two objectives. Selecting these two objectives however is not a trivial task.  

As it has been said before, the main goal for Mario is to reach the end of the level. Therefore it 

makes sense to have one objective be to maximize the distance that Mario travels. Lack of this 

criterion as one of the objectives results in a controller that will never learn to explore and 

complete a level. So with the main form of direction as one goal, the second should be selected to 

both supplement a high game score as well as conflict with the first objective to develop 

multimodal behaviors.  

One idea is to maximize Mario’s health, ideally creating agents that both clear the level and do so 

while minimizing the amount of times Mario gets hit. While this is good form of conflict, it also 

results in the creation of agents that can be too scared to move (Figure 17 left). Mario will learn 

that the best way to maximize his health is to stay at the beginning and hide. This behavior will be 

continually rewarded and spread throughout the gene pool to create a population of scared 

Mario’s.  

  
Figure 17 Fitness Criteria Issues: The agent on the left learned on an additional objective to 

maximize Mario’s health resulting in “Scaredy Mario.” The agent on the right was trained to 

minimize speed. A certain amount of agents determined that the fastest way to beat a level is to 

end the game by jumping headlong into a gap.   
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So maximizing health might be better suited as an addition to the niching selection scheme that an 

objective unto itself.  

Another constructive behavior a human player might exhibit to get the highest game score is to 

beat the level as fast as possible. This is a good example of human developers 

anthropomorphizing their trained agents. A complicated task such as “beating the game fast” is an 

abstract idea that is easy to understand for a human, but could mean something completely 

different to an intelligent agent. At the risk of morbidity, Mario agents trained to beat the game as 

fast as possible can learn to become suicidal by finding the closest gap and jumping right in. This  

immediately stops the simulation and minimizing the time Mario was in the level (Figure 17 

right) Obviously additional high level design could be imposed to only select agents that went a 

certain distance, or a certain amount of time spent on a level, but this requires time spent on 

determining how far or how long Mario should go. If speed was of upmost importance, the best 

way to minimize time on a level could be done indirectly. If the levels used training set were 

given half the time of the testing set, Mario would have no choice but to go as fast as possible. 

For this thesis the proposed second objective will be that of coin collection. The task of collecting 

coins provides learned behavior that is beneficial to the overall score without creating unforeseen 

learning issues. It also creates a visible distinction between learned behaviors within Mario as he 

determines when to attempt to collect coins and when not to. 
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3.4 Training to Generalize 

It has been found in previous work that a simple neuro-evolved controller can easily learn to beat 

individual levels of MarioAI. When trained on a single training level the population will 

eventually converge to an agent that has determined the best found way of completing that level. 

This means however, that the agent had become deterministic to that one level and lacks any real 

general knowledge of the state space.  Many reinforcement learning problems have issues of 

generalization due to the lack of available training data. This is not the case for MarioAI, as a new 

version of any level and type can be generated by changing the level’s “seed” value allowing for 

an extensive catalogue of training data.  

In addition to game level’s seed is the level’s type. MarioAI has the capability of generating three 

different world types: Overground, Underground, and Castle. These types have a specific 

generative algorithm that allows for differing terrain and setup. The Overground level has the 

possibility of creating hills that can contain either treasures or enemies at the peaks. The 

Underground level has long ditches that can be full of coins but might be covered in blocks, so 

once Mario falls in he either has to run to the end of the ditch or try and break out. 
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Figure 18 Level Types: The three levels used in this study represent the control (top left) the 

Bonus level (top right) and the Marathon level. These separate levels are used to specify and 

visualize the distinct multi-modal qualities of the learned Mario agents. 

 

Lastly the Castle level can be the most difficult, as it has low ceilings with many stair problems 

show previously in Figure 14 and in the bottom of Figure 18.  

These three level types (Figure 18) have very distinct setups and are used to promote 

generalization of certain aspects of the game. To further promote these aspects, the levels in this 

thesis have been altered farther. The Overground level is the control level with no modifications 

to the level score or setup. It contains at most 100 coins and requires passing 320 blocks worth of 

distance to the right to find the exit. The Underground level, which will be known as the “Bonus” 

level, has been modified to contain a maximum of 150 coins as well as the coins counting for 

double the overall score. It is the same length as the Overground level but has a higher probability 



47 
 

of generating coins. This level type is meant to both promote the learning behavior of coin 

collection as well as visualization of that task. The Castle level, which will be referred to as the 

“Marathon” level, has been extended from a maximum width of 320 blocks to 640 blocks. It also 

has the maximum coin reduced to 50 thereby doubling the length and halving the coin value of 

that of the Overground level. The new Marathon level is used to establish nimble and consistent 

movement behavior within trained Mario agents as well as visualization of said behaviors.  

The last approach of generalization through training is actually the order of levels that are fed to 

the controller to play on. If the controllers are allowed to play on one level at a time, 

generalization is lost after each level increment. A controller that trains up to level 3 will have 

difficulty not only completing that level, but even the simpler previously learned levels. 

Therefore to better invoke generalization within the learning agents, each individual must be 

allowed to train on multiple level difficulties per population evaluation. This has some tradeoffs 

as the designer must determine how many levels that should be to get a complete representation 

of the state space without becoming too complex and computationally inefficient. For this study it 

was found that training from level 0 to level 3 to be the best range. 

 

3.5 Reducing Variance in Noisy Environment 

With the addition of these different level types and the generation variance induced by different 

level seeds, the training data has substantial noise. Handling of this noise is necessary as without 

noise reduction in the training set or the evaluation, poor scoring individuals would have some 

probability of getting a better score just based on luck. To overcome this issue, simple but effect 

measures were used to reduce noise in the objective evaluation stage. 
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Static resampling is a common and valid method of noise reduction. Jin and Branke found that by 

re-evaluating each individual a fixed number of times, a new averaged objective value can be 

calculated [40]. The reduction of noise in the averaged objectives is then proportional to the 

standard deviation of the objective by a factor of √𝑛 , where n is the fixed sampling rate. This 

comes at a price though, as computational efficiency is increased by a factor of the sample size.   

Reduction of noise can also be handled through the increase of population size. The assumption is 

that for large populations there is a higher possibility of similar solutions. Therefor any noise 

within the search space is compensated for as the frequency of random outliers due to noise is 

effectively negated from a larger population moving into favorable search space regions with 

higher frequency.  

Lastly a normalization of objectives both contains noise variation to a bound as well as provides a 

standard to which agents can be measured equally.  

For this study, the best trade-off for minimizing the effect of evaluation noise while also 

maximizing computation efficiency was to be around n = [15-20], population size = 50, and an 

averaged objective evaluation normalized to the percentage of completion of the relative 

objectives. That is, the new objective calculation is: 

𝑓(𝑐𝑜𝑖𝑛𝑠) =
∑ (

𝑐𝑜𝑖𝑛𝑠𝐺𝑎𝑖𝑛𝑒𝑑
𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑖𝑛𝑠

)𝑛
𝑖=1

𝑛
∗ 100 

𝑓(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) =
∑ (

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑎𝑠𝑠𝑒𝑑
𝑇𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

)𝑛
𝑖=1

𝑛
∗ 100 

Where n is the fixed resampling rate and the fitness is multiplied to scale from [0-100] %. 
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3.6 Evolving the Network 

This section is to explain how the culmination of ideas explained so far translates to a working 

multimodal neuro-evolved agent. The flowchart of this process can be seen on the following page 

in Figure 19. 

The algorithm begins by initializing the total number of controllers, the stopping criteria, the 

fixed re-sampling rate, and the neural architecture (PopulationSize, TotalGenerations, 

SamplingRate, and LayerSize[] respectively. The Neural Network architecture is a fully 

connected feedforward network where the number of layers and nodes in each layers is specified 

as an array {25, 10, 5}. (Three total layers: 25 inputs neurons, 10 hidden neurons, and 5 outputs 

neurons). The activation function used for each layer is the log-sigmoidal function. Next the 

populations of neural nets are initialized with a uniform distribution of random weights which is 

standard of GAs, as opposed to the standard Gaussian distribution of zero mean and standard 

deviation 1/√𝑛𝑖𝑛𝑖𝑡 weight initialization for gradient descent methods. 

After the ANNs have been created, they are mapped to an instance of NSGA-II where the 

phenotypes are the individual ANNs and the genotypes are the weights parameters of each 

individual. The crossover and mutation probability as well as the distribution index for the 

reproduction operators are set within this class.  

After initialization, the controllers are allowed to train until the stopping criterion of 

TotalGenerations is reached. Then for every individual in the population, allow them to evaluate 

on a randomly seeded level of random level type and set difficulty. This individual will train until 

a total SamplingRate is achieved and an averaged set of objective scores are calculated and saved. 

Once every individual has been evaluated, the ranking, sorting, and repopulation are performed. 

This process continues until the stopping criterion is reached and a set of multi-modal Pareto-

optimal Mario controllers are created. 
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Figure 19 Evolving Mario-Flowchart 
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Figure 20 Non-optimal parameter selection: This graph displays the lack of a population set 

with too high a distribution index for crossover and mutation. Each individual ANN is 

represented within the objective space as a dot. It can be seen that training on this setup results in 

lack of traversal of the objective space. For aid in visualization, the x and y axis has been 

confined to 25 out of 100%.  

 

3.7 Parameter tuning and dynamic mutation rate  

The process of evolving multi-modal Mario controllers is efficient, but to create the “best” 

Pareto-optimal solutions requires fine tuning to optimize the exploration and exploitation of the 

search space.  

The tunable parameters specific to exploitation and exploration is that of the crossover and 

mutation operations. To traverse the search space and discover beneficial regions requires a 

healthy mix of convergence and diversity. Too much crossover could result in being stuck in a 

local optima, and too much mutation would result in overall poor convergence to any solution and 

can be seen in Figure 20.  



52 
 

To reduce the amount of total parameters needing to be tuned, an ad hoc method of dynamic 

mutation rate was used to regulate the probability of mutation and the mutation distribution index 

like as described in [22]. The idea behind this method was to promote exploration early and 

exploitation later. Therefore the new values for the mutation distribution index nm and the 

probability of mutation pm are as follows: 

𝑛𝑚(𝑡) = 𝑛𝑚 + 𝑡 

𝑝𝑚(𝑡) =
1

𝑤
+

𝑡

𝑡𝑚𝑎𝑥
(1 −

1

𝑤
) 

Where w, is the total number of weight variables in the system, and t and tmax are the current 

generation and total generations respectively.   

It can then be seen that at the first generation the average probability of mutation is that of only 

one weight variable (𝑝𝑚(1) =
1

𝑤
) and the last generation would be (𝑝𝑚(𝑡𝑚𝑎𝑥) = 1). The 

distribution index nm increases linearly as generations increase. It can then be observed that early 

generations would result in mutation of only a few variables but each variable is mutated with 

high perturbance. As the generations approach the maximum generation value, more weight 

variables will be selected to mutate but each mutation will be of less perturbance. This then 

results in the promotion of high exploration early on and then high exploitation as generations 

approach maximum generations.   

Additional effects of parameter tuning will be discussed further within the “Findings” chapter. 
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3.7 Decision Maker NN Ensemble 

When working with multi-objective optimization problems, a solutions set that forms on the 

Pareto-front is found. If the size of the solution is greater than one, some decision should be made 

as to which individual is to be selected. This deciding process is usually through some third-party 

that understands extensively the system that the objectives were evolved to. This method is not 

applicable within this problem as it is costly and would counteract the value of creating multiple 

Mario agents with differing behaviors. Therefore a Decision Maker (DM) neural network 

ensemble is proposed.  

The neural networks within this study so far have been trained as a function approximator of the 

MarioAI state space problem. As well as function approximators, neural networks are also 

efficient pattern classifiers. Therefore it is interesting to determine if strong pattern recognition 

could be learned through the same neuro-evolutionary method as that of the Mario Agents.  

The DM will take three inputs and result in an output selection of one Mario game playing agent 

out of the total Pareto solutions within the Pareto front. These three inputs were chosen as they 

are the only pertinent visible variables of the environment that Mario can understand without 

delving into the level code to reveal the environment a priori. The three inputs can be seen in the 

table below:  

Input Name Details 

Level Difficulty Returns the current evaluated level’s difficulty  

Level Coins  Returns the total coins in the level based on the level type. 

Level End Returns the total distance of the level based on the level type. 

Figure 21 Decision Maker Neural Network Inputs 
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This neural network will then train using the same method of static sampling and evaluation using 

the games actual scoring criteria as a single objective fitness function. The neural network 

architecture of the decision maker is a fully connected feed forward network where the hidden 

layer uses a hyperbolic tangent activation function (TanH) for smoother learning, and the output 

layer uses a logistic sigmoid (LogSig) activation function to squash the outputs to a range of 0-1. 

The outputs of the DM are a preference neuron of each trained intelligent agent within the Pareto-

optimal set. The selection of which trained agent is to play a level is through a winner takes all 

policy as the output with the highest activation value represents the chosen Pareto-optimal agent. 

The architecture representation can be seen in Figure 22 

 

Figure 22 DM Architecture: This figure shows the process for deciding the trained Pareto-

Optimal Solution to play a certain level of MarioAI. The output selection is based on the winner 

takes all strategy of highest preference value wins. This can be seen by the blue neuron with value 

of 0.88 being chosen as it has the highest value. The numerical values above the neuron represent 

the preference value for that specific trained network. The NE Mario Agent 0 is then decided as 

to be the “best” agent to play the level to maximize the overall game score. The DM weights are 

updated through Neuroevolution where the objective is to select the agent to maximize the overall 

game score for the specified level.
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CHAPTER IV 

 

 

FINDINGS 

 

In this chapter the creation and selection of multi-modal agents will be observed.  The main 

topics for which are: creating quality solutions through parameter tuning, visual representation of 

multiple modes of behavior, and DM selection efficiency for overall game scoring. 

 

4.1 The Effects of Parameter Tuning on Learning Agents: 

In this section, system parameters and hyper parameters will be modified to observe the effects on 

the convergence to a solution as well as multi-modal solution quality. The measuring metric for 

convergence estimation in this section will be the Hyper Volume indicator. This metric is used to 

quantify how close the solutions are to that of the true Pareto-front by calculating the volume of 

the hypercube between the solutions to that of an estimated reference point. The reference point 

used for the maximization of coins and distance will be the zero vector, thus the larger the 

distance from the reference point, the higher the hyper volume.  For noisy and fractured problems 

like MarioAI, a maximum hyper volume of 1 might never be found, but the higher the better.  

It was explained in the previous chapter that too large a distribution of mutated individuals 

combined with too confined a distribution of children results in lack of traversal in the search 

space (Figure 20.)
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Figure 23 High Convergence, without Exploration. This figure depicts the issue of local 

optima entrapment.  

 

Therefore it must be observed the effects of these distribution index’s on the trained population. 

Each experiment, unless specified otherwise, was trained with a sampling rate of 15, a population 

size of 50, with a static crossover rate of 0.75 and a deterministically dynamic mutation rate as 

described in the previous chapter.  

In the experiment above (Figure 23), nc was set to 30, and nm set to 10. By doing so, the 

population was able to find the correct form of direction as the population begins to align with the 

diagonal of the objective space. It can be seen though that the convergence pressure is too strong. 

The population gets stuck in local optima. Ideally, a high mutation parameter could be used to 

search locally to find a better solution.  
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Figure 24 Hyper Volume of population stuck in local optima: This figure shows entrapment 

of local optima where the population gets stuck. At around generation 27 the newer generations 

fail to find better solutions until generation 100. At this point population has saturated around the 

local optima. 

 

In this case however, perturbation of weights through mutation, due to the large distribution and 

no bounded weight values, creates offspring that perform worse than the parents and no 

exploration occurs. This can be further observed by the learned population’s hyper volume Figure 

24.  

By reducing nc and increasing nm it can be seen that the population discovers better fitness values 

through a less restricted search. The population still suffers from diversity issues as individuals 

still cluster around local maxima, but the population is able to move farther along in the 

maximum distance and coin collection objective directions.  

The point of entrapment around generation 50 with a maximum Hyper Volume of 0.15 and can 

be seen in Figure 25. 
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Figure 25 Neuro Evolved population and Hyper Volume with nc = 20 and nm =30 
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Based on the pattern seen so far, effects of the distribution parameters need to be lessened still. 

Since the previous experiments have shown issues with local maxima entrapment, nc can then be 

set to nc = 10 to lessen convergence pressure. Separately nm can then be set to nm = 100. This 

method will reduce perturbation within the mutated children so as to provide a mutated child 

distribution closer to the parents. This will account for the erratic weight distribution creating 

individuals that always get culled and thus result in higher selection pressure to local optima.  

As it can be seen on the following page in Figure 26, this setup of parameters results in the best 

solution thus far. The population has multiple Pareto solutions that could contain varying 

behavioral modes. For example, the individual that bounds the Pareto-front from the left could 

provide better level traversal techniques at the tradeoff of maximizing coin collection. This setup 

also results in efficient convergence. It can be seen within the hyper volume plot that a hyper 

volume of around 0.15 is reached after only 10 generations.  
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Figure 26 Best Solution Setup: These graphs show the optimal found setup for the MarioAI 

Neuro Evolved Networks. 
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This parameter setup has been found to provide the most optimal so far but additional testing is 

needed to validate this claim. By lowering the crossover distribution index further to that of nc = 2 

(Similar distribution function of binary crossover), exploration will be valued over exploitation as 

more children will be created with weights outside of the bounds of the parent’s weighted values.  

Looking at Figure 27 on the following page, it can be seen that the consequence of decreasing nc 

to 2 also decreases the convergence rate within the Hyper volume. What took the previous 

population with nc = 10 only 10 generations to reach a hyper volume of around 0.15, it takes this 

population almost 60 generations. Additionally it can be seen that agents producing higher values 

of distance completion but pressure of exploitation in the direction of the coin collection objective 

is low. Therefore, it can be said that the previous setup of nc = 10, nm = 100 to be the optimal 

parameters for the creation of quality multimodal solutions.  
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Figure 27 Exploration over Exploitation: These graphs display the effect of reducing the 

convergence pressure of the exploitation mechanism nc. 
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It is interesting to determine if population size has any additional benefits to convergence speed 

and multimodal Pareto solution creation.  

The findings of this experiment show that increasing the population size would result in a slightly 

better solution set. Additionally given that the hyper volume in Figure 28 is still marginally 

increasing after 100 generations, the total generations was set to 200 to determine if better 

performance could be found. This tradeoff is not computationally inefficient however as it is 

increased by a factor P of the population size.  
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Figure 28 Effects of Increasing Population Size on Optimal Parameter Setup  
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Lastly, the optimal parameters are tested for statistical significance. In Figure 29 are the results of 

evolving different neural networks over five different runs. The parameters trained on are in the 

table below (Layer Size {Input Neurons, Hidden Neurons, Output Neurons}): 

Population Size = 100 Generations = 200 

Sample Size = 15 Layer Size = {25, 20, 5} 

Crossover Probability = 0.70 nc = 10 

Mutation Probability = Dynamic nm = 0.1 

   

Observing the average hyper volume in Figure 29, it can be seen that even though the standard 

deviation of convergence at the beginning is large and radical, the convergence rate is consistent 

as the standard deviation begins to reduce after 60 generations. The large variance between each 

training session is due to the high variance in the objective values. This can be further reduced 

through a higher sampling rate, but due to the computational complexity, the rate was kept at 15. 

The resulting multi-modal Pareto solutions created can then be considered as both quality and 

consistent solutions. 
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Figure 29 Average Hyper Volume of Optimal Parameters: This graph shows the average of 

hyper volume over five different runs where the line plot is the average hyper volume and the 

error bars represent the standard deviation. The rate of convergence varies greatly from 

generation 20 to generation 40. However as populations approach 100 generations almost all 

converges to the same hyper volume.  
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4.2 Visual Representation of learned Multimodal Behavior 

Trying to quantify learned behavior without any predefined policy is a complex task. Solution 

quality can be graphically observed and estimated by the hyper volume indicator, but there is no 

better method in MarioAI that physical visualization. In this section the MarioAI environment 

will be used to find interesting forms of learned multi-modal behavior. The Neuro evolved 

solution used for this experiment is the one shown in Figure 28 since the Pareto-optimal solutions 

share similar distance passing fitness values, but widely varying coin collecting fitness values. 

Meaning each individual could have some interesting behaviors when attempting to complete a 

level. 

The multi-modal Mario agents are given the order of which they appear on the Pareto-optimal 

front from left to right. This means that a Mario agent having the ending value of 0 depicts the 

individual that has maximized distance travel but has the tradeoff of collecting the least amount 

of coins during training. The solution set in question has 6 Pareto-optimal solutions, resulting in 

an ending value range 0 to 5. 

Take first the complex behavior involved in different aspects of coin collecting. Sometime Mario 

is given simple states where the coins are laid directly in front of him, and sometimes Mario is 

faced with a highly fractured state like the one captured in the top left image of Figure 30. In this 

captured frame, agent number 4 jumps up a hill and is confronted by an enemy blocking his coin. 

He responds by leaping up to kill the enemy and simultaneously grabbing the coin that the enemy 

was blocking. 

Next, a frame of agent 1 is caught showing complex learned behavior in the top right image of 

Figure 30 that was never explicitly handled through any input/output methodology.  
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Figure 30 Complex Multi-Modal Behavior: Going from top left, clock-wise: Agent 4, Agent 1, 

and Agent 0 showing off complex maneuvers for overcoming complex aspects of the game.  

 

Agent 1 learned that if after he lands on top a turtle he can run and grab the shell and use it as a 

form of protection. He uses this turtle shell shield to bypass an enemy that can’t be killed through 

normal means.  

Lastly agent 0 is found completing the difficult stair problem with ease as he leaps from the top of 

the ascending stairs on the left and lands perfectly on the top of the descending stairs (Figure 30 

bottom image). Additionally, agent 0 is showing similar behavior as that of agent 1. This gives 

visualization of shared learned behavior through crossover. 
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4.3 Testing the Neuro Evolved DM Ensemble 

Given the creation of strong multi-modal agents through multi-objective optimization and 

parameter tuning, it has been shown that a Pareto-optimal solution set is created with differing 

complex behaviors. Selecting the best individual with the optimal set of skills is imperative to 

maximizing overall game score. In this section the experiment for testing the neuro evolved DM 

will be observed.  

The DM was allowed to train on a random data set from seed 21 and upward. Seeds 0 – 20 were 

saved for later as the testing set. The test run was composed to allow candidates to perform and 

score on each level type for every difficulty 0 to 3. Each contestant’s specific level score was 

averaged over a number of trials where each trial was of a generated level of a different seed.  

The GA parameters for training the DM are listed below in the table (Output Layer for Layer Size 

is total number of agents to select from the Pareto front): 

Population Size = 100 Generations = 100 

Sampling Rate = 8 Layer Size = {3, 10, 6} 

Elite Size = 20 Crossover Rate = 0.90 

Mutation Rate = 0.10 

  

Four DM (0 – 3) were created for the sake of statistical significance. These DMs are each their 

own neural network ensembles for selecting which individual agent gets to play the level for 

maximum overall game score. Additionally, a comparable GA from previous studies was trained 

using a modified version of the overall game score as a single objective highly tuned weighted 

fitness function. This was to provide a baseline score and comparison of single objective to multi-

objective solutions. The GA was trained with a population of 100 and over 400 generations on the 

same training data as the NSGAII trained NN. Each individual agent was allowed to play to 
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verify the agent with the highest overall game score as well as to determine if the DM scored 

better than individuals alone. Lastly, agents were chosen at random to play one level in a run. 

Random selection was evaluated over 10 runs to get a statistically significant average score. This 

was to compare and see if a DM could score better than a random selection of individuals.  

The equation for overall game score is based on multiple weighted criteria: 

Game 𝑆𝑐𝑜𝑟𝑒 = {(𝑑 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑂𝑓𝐿𝑒𝑣𝑒𝑙𝑃𝑎𝑠𝑠𝑒𝑑) + 𝑤𝑖𝑛𝑆𝑡𝑎𝑡𝑢𝑠 ∗ 𝑤 + 𝑀𝑎𝑟𝑖𝑜𝐻𝑒𝑎𝑙𝑡ℎ ∗ ℎ +

(𝑐 ∗ 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑖𝑛𝑠) + 𝑘𝑖𝑙𝑙𝑠𝑇𝑜𝑡𝑎𝑙 ∗ 𝑘 + 𝑡𝑖𝑚𝑒𝐿𝑒𝑓𝑡 ∗ 𝑡} 

Where all weights (d, w, h, c, k, t) are fixed except the value of d and c. If the level type is the 

bonus stage then the distance weight, d, is halved and the coin weight c is doubled.  

 The scores for all the runs can be seen in the table below: 

 Total Coins Total Distance Competition Score 

GA NN 1344 12136 65104.0 

NSGAII NN (0) 2151 13077 70865.2 

NSGAII NN (1) 1940 12626 67815.2 

NSGAII NN (2) 1943 13562 70992.2 

NSGAII NN (3) 1205 13139 66850.0 

NSGAII NN (4) 2162 11899 65620.2 

NSGAII  NN (5) 1633 13031 68373.4 

NSGAII NN(Random) 1840 12946 68326.0 

NSGAII DM (0) 2035 13568 72128.2 

NSGAII DM (1) 1871 13127 70572.0 

NSGAII DM (2) 2111 13399 71795.0 

NSGAII DM (3) 1949 12667 68251.0 

Table 5 Competition Scores of 20 seed run through four incrementing levels of each level 

type: Best Scores are bolded. Best individual scores are underlined. NSGAII NN (4) had the best 

individual run as well as the best overall total Coins collected. 

 

It can be seen that all NSGAII agents scored better than the highly tuned GA agent. The best 

overall agent is NSGAII NN (2) as it was able to maximize the distance traveled which held the 

most weight to the overall game score. The second best individual was NSGAII NN (0) as he 

collected the second most amounts of total coins and a good balance of total distance.  
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NSGAII NN (4) was able to collect the most amount of coins throughout the run but resulted in 

the second worst competitive score. This shows that agents that are the best at one objective will 

not always result in the best overall score. Lastly all of the individual NSGAII trained agents 

outperformed the single objective GA agent. 

For comparison of decision makers, all scored higher than the GA, and all but NSGAII DM (3) 

scored better than the average randomly selected agents. Agents 0 and 1 scored better individual 

scores than NSGAII DM (3) and NSGAII DM (1). The best possible overall run for the individual 

agents in the Pareto-solution set and the best performing NSGAII DM (0) can be seen below: 

 Overground Level Bonus Level Marathon Level 

Difficulty (0) 1 1 1 

Difficulty (1) 4 3 3 

Difficulty (2) 3 5 4 

Difficulty (3) 4 3 4 

Table 6 Map of best scoring agents per each level and each type:  

 

 Overground Level Bonus Level Marathon Level 

Difficulty (0) 1 4 1 

Difficulty (1) 4 4 1 

Difficulty (2) 3 4 3 

Difficulty (3) 3 4 3 

Table 7 Best Performing NSGAII DM (0) Selection Map 

 

The maximum score can be calculated as to be 77104 and the difference then from the best DM 

and the maximum score is 4,975.8. This is a substantial difference but due to the limited amount 

of visible information as inputs and training in a noisy environment it is understandable outcome. 

What is interesting however is the selection error of the DM. The DM was only able to correctly 

select 4 out of 12 of the best agents for the specified level (Table 7). What is most surprising 

however is that many incorrect selections are ∓ 1 agents away from absolute best solution. This 

provides information that the DM has learned to generalize selection of agents for the testing 

levels.   
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CHAPTER V 

 

 

CONCLUSION 

 

In this thesis, the multi-objective Neuro-evolutionary method for evolving multimodal behavior 

was presented. This chapter will assess the findings and conclude the results. 

 

5.1 Evaluation of Findings 

This section is dedicated to the results of the experiments tested as well as the understandings of 

the outcomes. 

5.1.1 Parameter Selection 

It became very apparent how profitable tuning the parameters dedicated to searching the objective 

space was. If convergence pressure is too high due to a high value of the crossover distribution 

index nc, then the controllers suffer from high probability of entrapment within a local optima. 

This entrapment forces creation of a population of locally saturated Mario agents that would share 

common forms of behavior, negating the benefits of multi-objective evolution. Mutually, if 

perturbance of weight parameters is too high, then the resulting offspring will have a high 

probability of being worse than the parent solutions. Thus the mutation operator becomes a null 

factor and leaves the resulting Mario agents to search using crossover alone. Therefore a well-

balanced parameter setting is necessary for optimal learning of multi-modal behavior.
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5.1.2 Multimodal Behavior Assessment 

Training using multi-objective NE created a Pareto front of solutions, each depicting some form 

of differing behavior. These complex behaviors were used to overcome difficult tasks within the 

environment. This ranged from scaling to the tops of hills to collect coins, to using shells as a 

shield from enemies. Yet these agents were not perfect. Many agents still suffered from falling 

into gaps, running into enemies, and getting stuck on walls. Some also displayed very behaviors. 

Many agents that would maximize distance would revert into just running as fast as possible 

while continuously jumping. This makes sense however, as the most of the state changes and 

difficult tasks happened on the lower half of the environment (Jump over gaps, Dodge enemies). 

Another interesting behavior was the every Mario agent that was trained, never learned to go left. 

All the agents would run to the right while attempting to collect coins and dodge obstacles along 

the path. This could be explained through the driving nature of the main objective to reach the 

end of the level and any distance backtracked would result in a negative of the fitness value. 

 

5.1.3 Comparison of Single Objective to Multi-Objective NE 

It was observed within this study, the quality as well as efficiency in Mario agents developed 

through multi-objective criteria as compared to the extensive hand tuning necessary to creation of 

single weighted objective trained agents. Not only was a higher amount of generations necessary 

to provide comparable results, but also the time dedicated to assessing which objective within the 

combined single objective fitness function provided the most positive feedback to the system. 

Therefore, it can be stated that for systems that require the need to exhibit multiple modes of 

behavior in a fractured and noisy environment, then the use of multi-objectives is not only more 

robust, but also less complex to the designer. 
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5.1.4 Evaluation of the Neuro Evolved Decision Maker Ensemble 

After quality Pareto-optimal solutions were created, a method for deciding which agent to use 

within the Pareto front was proposed. This method not only showed the effectiveness of learning 

on minimal information of a noisy environment, but that a basic decision maker can be created 

using methods of Neuroevolution. The best DM provided not only better results than the single 

objective trained NN, but also showed to be better than any one individual and a random selection 

of individuals for each level.  Therefore using a DM ensemble proves to be an appropriate 

solution for overall goal optimization using multi-objective trained agents. 

Given that the Mario agents are each trained on sub objectives of the overall game objective it 

can then be postulated that any ensemble of multimodal agents trained on sub objectives of a 

system could then be selected for optimal performance of the overall system. This idea can be 

assessed further in future work in other environments and deeper layers of NN ensembles could 

create different levels of abstraction and behavioral complexity. 

 

5.2 Conclusion 

This thesis explored the effectiveness of multiple objective genetic algorithms to create intelligent 

multimodal controllers for a modified version of the platform game Super Mario Bros called 

MarioAI. MarioAI was used as the testbed to provide a system that required the use of multiple 

behaviors to overcome the fractured environment states through differing gameplay tasks (i.e. 

collect coins, don’t get hit by an enemy). Furthermore, MarioAI provided additional problem 

complexity in the form of environmental noise through level seeds. The differing levels seeds 

provided the need to create a controller that could generalize to the state space and not become 

deterministic to individual levels.  
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This method of combining NSGA-II and neuro evolved ANNs provided a means to create 

controllers that could support the aspects necessary to overcome the difficulty of the MarioAI test 

bench. Results showed that it’s possible to train agents on sub objectives (maximizing coin 

collection and maximizing distance traveled), of the overall game objective to create a set of 

Pareto-optimal solutions with multi-modal behavior. As well as exhibiting multiple forms of 

complex behavior, robust agents were created that could learn to generalize over many varying 

levels and types, and could outperform a competing single objective neuro-evolved MarioAI 

controller. The creation of quality agents was not trivial however, as the tuning of objective space 

searching parameters was needed to provide the most optimal and diverse Pareto-solution set of 

MarioAI agents.  

Lastly, a DM ensemble was proposed as a means of selecting which agent from the Pareto-front 

was allowed to play a specific level. It was found that a DM could learn through NE on minimal 

inputs to provide better average overall scores than any individual agent or collection of randomly 

selected agents. This then means that a multi-objective NE system could train on precise sub 

objectives of a system and then allow the neuro evolved DM to abstractly select these multimodal 

NNs to provide the best possible solution. The results also show that while this is an interesting 

claim it is not fail proof as not all DM learn a better scoring solution. Therefore more research 

could be spent on creating better DM structure and design.     
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