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Abstract: Many real world optimization problems have to be solved in the presence of 
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additional computational cost incurred. Multi population approaches are found very effective in 
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multiple swarms to locate a set of optimal solutions and effectively exploits the past information 

and adapts the population to the corresponding new locations using the concept of relocation 

radius. The proposed algorithm uses an adaptive hierarchical clustering mechanism to form 

multiple swarms. The relocation radius is determined based on the change in the functional values 

of the particles due to change in the environment and the average sensitivities of the decision 

variables to the corresponding change in the objective space. The newly adapted population is 

fitter compared to the original population or a randomly initialized population. The algorithm is 

tested on dynamic benchmark functions and compared to some of the state-of-the-art dynamic 

evolutionary algorithms and the results are found to be promising. The algorithm performs better 

than most of the existing algorithms proposed in literature. 
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Overview 

Optimization is considered among the most important problems in mathematics and sciences. 

The importance of optimization and its numerous applications have inspired scientists to 

investigate on different aspects of the problem. There are many real-world applications that 

involve optimization and the goal in all these problems is to either maximize or minimize one or 

more cost functions considering several limitations such as changing conditions, involvement of 

constraints, noise etc [1]. While there are limitations in a problem space it could be solved easily, 

however, increasing limitations leads to a much harder problem which requires a more 

sophisticated complex mechanism. This thesis focuses on problems that are subject to dynamic 

conditions. 

Many real world optimization problems are subject to changing conditions over time. These 

types of problems are termed as the dynamic optimization problems. The changes in the 

conditions include changes in the objective function, the problem instance, and/or constraints, etc. 

Consequently, the optimal solution of the problem under consideration changes reflecting to the 

changes in the conditions. These conditional changes could be reflected on the landscapes as 

changes in the optimal peak heights, shapes or locations, or a combinations of these three [2]. 

Several practical applications can be attributed as dynamic optimization problems. A very 

good example is the dynamic job shop scheduling problem [3]. In this problem, new jobs arrive 

over time after the scheduling has been made. The dynamism of the problem also include cases 
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such as break down of the machines due to wear and tear, changes in the quality of the raw 

materials or cases where the production tolerances are taken into account. Therefore the job 

schedules have to be dynamically adjusted to incorporate all these changes. 

Another example of real-world dynamic optimization problem is the Economic Load 

Dispatch problem [4] in power systems. The basic economic load dispatch consists of optimizing 

the cost of generating power units for a specific period of operation. This cost function depends 

on several aspects of the generators including their maximum power constraints and voltage 

constraints. However, taking the ramp rate limits, prohibited operating zones, valve point loading 

effects and multi-fuel options into consideration, the problem becomes more complex and 

dynamic in nature [7]. Another similar problem is dynamic portfolio optimization which is a 

dynamic optimization problem in modern finance [5]. This problem aims to allocate an optimal 

set of assets that maximize profit while minimizing risk of investment. From these examples, it is 

evident that several such examples of real-life dynamic optimization problems exist which require 

a comprehensive approach to search for the optimal solution. 

1.2 Problem Definition 

1.2.1 Dynamic Optimization Problem 

A dynamic optimization problem (DOP) can be mathematically formulated as: 

Maximize/Minimize 

),,.....,,(),( 21 exxxfeXf D     (1.1) 

where each dimension of the search space is defined between 
maxmin

jjj xxx  for 

j=1,2,3,……D. f  is the objective function to be optimized; ),....,,( 21 DxxxX   is the D-

dimensional decision vector and e represents the environmental state whose variation can have 

either periodic or sporadic nature.  
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This variable could be modeled in different ways. The dynamics of the environment are either 

stochastic or deterministic in nature. It is generally assumed that the environment has a stochastic 

nature and then a deterministic pattern may be found. The dynamic behavior of the environment 

and its characteristics are discussed in more detail in the later chapters of this thesis. 

1.3 Particle Swarm Optimization 

Given the importance of dynamic optimization problems, researchers are continuously 

seeking efficient ways to tackle such problems. Meta-heuristic methods are among these 

techniques. One such technique which has gained popularity in the recent years is the Particle 

Swarm Optimization (PSO).  

The Particle Swarm Optimization was first proposed by Kennedy and Eberhart in 1995 [6]. In 

PSO, a potential solution is considered as a bird (called particle), which flies through a D-

dimensional space and adjusts its position accordingly to find the optimum solution. The first step 

in a typical PSO is to randomly initialize the population of particle or birds in the search space. 

This initial population is evaluated using the objective function and a corresponding fitness value 

is assigned to each particle. The fitness of a particle defines how well the individual satisfies the 

optimality condition. Each particle is represented by its location and its fitness value determines 

the presence of optima at that particular location. After determining the fitness value of every 

particle, each particle follows the previous best position found by the group and the previous best 

position found by itself. The new location and velocity of the particles are determined using the 

following equations  

)()( 22,11

d

i

d

gbest

d

i

d

pbesti

d

i

rd

i xxrcxxrcvv     (1.2) 

rd

i

d

i

rd

i vxx                (1.3) 

where 
rd

ix  and 
d

ix represent the current and previous positions in the d-th dimension of the 

particle i, respectively, 
rd

iv and 
d

iv are the current and previous velocities in the d-th dimension of 
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particle i respectively, 
pbestix ,

and 
gbestx are the best position found by the particle i so far and the 

best position found by the whole swarm so far respectively, ω is the inertia weight which 

determines how much the previous velocity is preserved. The parameters c1 and c2 are the 

cognitive and social parameters respectively which maintain the balance between the exploration 

and exploitation during the performance of the algorithm and r1 and r2 are random numbers 

generated in the interval [0, 1] uniformly. The pseudo-code for a typical PSO is shown below in 

Figure 1.1. 

Figure 1.1 Pseudo-code for a typical Particle Swarm Optimization algorithm. 

Procedure for Particle Swarm Optimization 

Begin 

 N=0; 

 Initialize population; 

 while (not termination_condition) do 

 Begin 

  Evaluate all the particles and determine fitness values; 

  Select the particle with best fitness value as gbest; 

  for each particle 

   If current value is better than previous best 

   update pbest; 

   end If 

   calculate velocity according to eq 1.2; 

   update particle position according to eq 1.3; 

   N=N+1; 

  end 

 end  

end 
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Particle swarm optimization algorithms are widely preferred in the recent years over other 

evolutionary algorithms such as Genetic Algorithms (GAs). The main reasons for this are:  

 PSO involves less number of parameters to adjust and it does not include removal of particles 

from the population. It makes changes to the particles’ locations to arrive at the optimal 

solution. 

 Unlike GAs, PSO does not involve sharing of information through chromosomes. Only the 

location of the global best is shared among the particles through-out.  

 The efficiency of PSO is generally high compared to other evolutionary algorithms. PSO can 

locate significant optimal solution in a few function evaluations. This makes it more cost 

convenient.  

 The PSO has a flexibility to control the balance between global and local exploration of the 

search space. This unique feature enhances the search capability of the algorithm and avoids 

the problem of premature convergence thus making it more robust. 

However, as always, there are drawbacks too, involved with PSO. Because of the stochastic 

nature of the algorithm, PSO does not always guarantee the finding of the optimal solution every 

single time. Also, because of the quicker convergence speed of the algorithm, in certain problem 

situations, the algorithm loses its diversity which impacts the performance of the algorithm 

negatively.   

1.4 Research Goal and Approach 

The goal of this thesis is to study and understand the behavior of dynamic optimization 

problem and its characteristics and design an algorithm that solves the problem with better 

accuracy, faster convergence and easier implementation. The proposed algorithm is a dynamic 

particle swarm optimization algorithm which involves multiple sub-swarms to locate the presence 

of multiple peaks. The algorithm also exploits information from the previous generations to adapt 

to the changes in the environment. The multiple swarms adapt to the new locations and help in 
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tracking the optimal solution. The algorithm is designed to have higher reusability, faster 

convergence, easier implementation, good accuracy and ability to work under severe and high 

frequency changes. The algorithm has been implemented on computer simulation program and 

tested on several benchmark test functions. The results are analyzed and compared to some of the 

state-of-the-art algorithms and found it competitive. 

1.5 Document Organization 

The rest of the document is organized as follows: In Chapter II, the dynamic optimization 

problems are discussed in detail. The chapter provides details about the dynamic optimization 

problem with respect to the aspects of changes that occur and the dynamic behavior of the fitness 

landscapes. The chapter provides a detailed literature survey of the dynamic evolutionary 

algorithms that have proposed so far by researchers for different problem settings and analyses 

their performance. In Chapter III, a dynamic particle swarm algorithm is proposed and analyzed. 

The proposed algorithm uses multiple swarms to identify multiple peaks and also uses 

information from the previous iterations to keep track of the particles’ behavior and tracks the 

optimal solution. In Chapter IV, the proposed algorithm is tested on several standard benchmark 

functions. The data obtained is analyzed and the results are discussed. Chapter V concludes the 

document with relevant observations and also recommends scope for future work. 



7 

 

CHAPTER II 
 

 

DYNAMIC EVOLUTIONARY OPTIMIZATION 

2.1 Introduction 

Many real world optimization problems are subject to changing conditions over time. These 

type of problems are termed as the dynamic optimization problems. The changes in the conditions 

include changes in the objective function, the problem instance, and/or constraints, etc., (see 

Figure 2.1). Consequently, the optimal solution of the problem under consideration changes 

reflecting to the changes in the conditions. These conditional changes could be reflected on the 

landscapes as changes in the optimal peak heights, shapes or locations or a combinations of these 

three [2].  

 

Figure 2.1 Dynamic changes occurring in the fitness landscape 

The challenges in solving these dynamic optimization problems arise from the occurrence of 

changes in the location, number and properties of the optimal solutions. When a standard 
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evolutionary algorithm converges under a certain problem setting, the diversity and exploration 

capacity of algorithm are greatly diminished. As a result, continuing the evolutionary process 

from the converged population without any further adaptation scheme to improve diversity or 

enhance the scope of exploration creates a higher probability of being unable to find the new 

optimal solutions or of being stuck with local optima. Therefore, it is very essential to implement 

certain scheme or mechanism in the evolutionary algorithm to account for the dynamism of the 

optimization problem.  

There are several important aspects of dynamic optimization problems and these include 

severity, frequency, observability, detectability, and dynamics of change [3]. While higher 

severity of change necessitates the Dynamic Evolutionary Algorithm (DEA), to increase diversity 

and exploration, higher frequency of change requires a faster convergence after a change has 

occurred. If the severity of change is too high for the DEA, the algorithm may not locate the new 

optima or might get stuck in local optima. Similarly, if the frequency of change is faster than the 

adaptation speed of the DEA, the algorithm will not reach the optimal solutions before another 

change occurs. 

In contrast to the above discussions, it is not always easy to detect a change unless it is 

observable. Some of the common ways followed by researchers include checking if the fitness of 

re-evaluated select individuals has changed significantly [3], checking if there is a significant 

change in the best fitness value found so far, etc. In most of the practices, it is also common to 

assume that a change is explicitly known to the system and the system has a built-in capacity to 

observe and detect changes instantly. In this thesis, it is assumed that change is explicitly known 

to the system. 

In addition, DOPs may also involve different dynamic changes and these include constant, 

linear, circular/revolving, reshaping and random modes [3], [8], [9]. In majority of these cases, 
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the system dynamics is unknown and still the algorithm is expected to work without this 

knowledge. In this thesis, a dynamic particle swarm optimization is presented which adapts to the 

changes in the environment. 

In general, a good DEA should be able to track and locate the optimal solution irrespective of 

the severity and frequency of change. It should overcome the loss of diversity and use a 

mechanism to enhance its exploration capacity. Coming to a case of a PSO, there is also another 

setback in the presence of dynamic environments which is the outdated memory. This means that 

there would be loss of information regarding the pbest and gbest. This, though not a serious issue 

compared to the diversity loss, is something which cannot be neglected either. Therefore, for a 

faster convergence and to re-diversify the population, it needs to use as much past information as 

possible to account for the lost memory as well. The extra computational cost incurred in this 

process should be justified with its performance improvement. 

Some qualities sought in dynamic evolutionary algorithms include reusability, faster 

convergence, higher accuracy, faster adaptation, easier implementation, and better performance. 

Reusability is the ability of the algorithm to use as much information as possible from the 

previous iterations. Reusability enhances the convergence speed of the algorithm and quickly 

allows the algorithm to adapt to the new environment. When the severity of the change is high, it 

reduces the reusability of the data and requires higher exploration capability for the algorithm. 

Similarly, high frequency changes require faster convergence and adaptation. Accuracy is how 

close the found optimal solution is to the true optimum. Extra efforts to improve the accuracy 

may result in compromising with the convergence speed and therefore it is always important to 

maintain a delicate balance between the additional computational cost and the expected 

performance improvement. Adaptation, as the term suggests, refers to adapting the population to 

the new environment. 
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The algorithm proposed in this thesis achieves all the above qualities. The algorithm uses 

multiple swarms to track the behavior of the multiple peaks and uses a relocation principle, which 

involves relocation of individuals based on their previous evolutionary data which helps in 

maintaining the diversity. Since there is information from the past, the particles converge quickly 

to the new optimum. The use of multiple populations also helps in tracking the optima even for 

severe or drastic changes. The relocation data used is specific to every particle and thus gives 

better adaptation to the population in contrast to the algorithms that use a single adaptation 

scheme for every particle. As a result, there is a significant progress in the evolutionary process 

giving faster adaptation, better accuracy, and quicker convergence to the algorithm. 

The rest of the chapter is organized as follows; Section 2.2 provides a brief summary of the 

different types of fitness landscapes. Section 2.3 explains about the various characteristics of the 

dynamics involved in the DOPs. Section 2.4 gives a detailed explanation of the various 

evolutionary approaches proposed by researchers so far to tackle the DOPs. In Section 2.5, few of 

the performance metrics that are used to compare optimization approaches have been discussed in 

detail. The various types of benchmark test functions which are used to test the behavior of the 

algorithms are discussed in Section 2.6. Finally, the chapter is concluded with a brief summary in 

Section 2.7. 

2.2 Types of Fitness Landscapes 

 Depending on the changes over the landscapes through time, Weicker et al [9] classified 

fitness landscapes into different categories. Firstly, stationary or static landscapes where there is 

no change or movement in the landscapes. These are most commonly used for EA studies.  The 

second type of fitness landscapes are the ones that change constantly every period of time. The 

dynamic optimization algorithm is expected to estimate the recurrent amount of change and adapt 

accordingly after a few iterations. These are relatively easy to implement and pose very small 
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difficulty for the algorithm. The next category of fitness landscapes has periodic changes. Here, 

the landscape changes to its original state after a few change cycles. The difficulty lies in 

predicting the time period for these periodic changes which is difficult for the algorithm to react. 

Generally algorithms are designed to have a small memory element to store a few past locations 

of the optimum for a possible re-use in these types of situations. The fourth type of fitness 

landscapes is termed as homogeneous landscape where the entire landscape moves coherently as 

opposed to various parts behaving heterogeneously. The fifth and last category of fitness 

landscapes is called alternating landscapes where the optimum moves from one peak to another. 

The changes occurring in the landscape are completely random and stochastic in nature. These 

type of problems are the most difficult ones for the algorithm to tackle as there is no consistent 

behavior in terms of the occurrence of change. Hence, implementing a proper adaptation scheme 

in the algorithm is very much necessary to cope with dynamic nature of the landscape. 

 

Figure 2.2 Dynamic Fitness Landscape 

2.3 Characteristics of Dynamic Optimization Problems 

It has to be understood that whenever a change occurs in the environment, it has to be within 

the exploitation limits of the algorithm to perform an adaptation scheme for the population. On 
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the other hand, if a problem changes drastically without any exploitable similarities, it could be 

regarded as two independent problems and the algorithm needs to be started from scratch as there 

would be no useful historic data. For this reason, we pertain our studies only to the systems where 

the dynamic changes in the environment have a significant amount of historic information from 

the past environmental state that could be exploited after the occurrence of change.  

As discussed earlier, it is very important to first understand the several characteristics of 

change and the important aspects of DOPs in further detail before learning about the approaches 

and the benchmark test functions. Several such important characteristics and aspects of the DOPs 

exist which are worth a mention here. These include severity, frequency, observability, 

detectability and dynamics of change [3]. This section sheds light on these aspects in some 

details.  

2.3.1 Severity of change – Severity of change refers to the amount or magnitude of the change 

that has occurred in the landscape. The higher the severity, the lesser is the correlation of the new 

landscape with the previous one and therefore, this requires the algorithm to enhance the diversity 

and exploration. Sometimes very severe changes may result in the algorithm failure to locate the 

optima. Therefore, it is very much essential to have an algorithm that performs well under drastic 

changes.  

2.3.2 Frequency of change – The frequency of change indicates how quickly the landscape 

changes occur. A high frequency requires the algorithm to converge faster and locate the optima 

before there is another change in the landscape. Very high frequencies are difficult to tackle 

because the landscape changes even before the algorithm converges. Hence, a good algorithm 

should have high adaptation frequency and faster convergence. 

2.3.3 Observability and Detectability – These two closely related characteristics seem pretty 

simple to understand but they are very important aspects to be kept in mind while designing a 
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dynamic evolutionary algorithm. Most of the time it is assumed that any change occurring in the 

landscape can be observed and detected which is not true. Several methods have been proposed in 

literature to detect these changes (e.g., [10]). Some of the methods detect the changes by re-

evaluating a select population of individuals and checking whether their fitness has changes 

significantly or not. It is also a common practice to assume that the occurrence of change is 

known to the system and these changes can be detected instantly. This helps the researchers to 

focus solely on the design of the algorithm. 

2.3.4 Dynamics of change – This represents the way the landscape moves when a change has 

occurred. A reshaping dynamics has a landscape that changes it morphology on the occurrence of 

change. A sliding or drifting dynamics results in the drifting of the optima in the landscape. A 

periodic or oscillatory dynamics causes the optima to change periodically. A random or stochastic 

dynamics has the optimum that changes randomly. In all these cases, the type of the dynamics is 

not explicitly known to the system and the algorithm is expected to work irrespectively. 

 2.4 Literature Review 

Several researchers have focused on the DOPs over the last couple of decades and there are 

multiple approaches that have been proposed to handle the DOPs. Recently Branke et al [1] 

classified the different types of approaches used by researchers so far. These categorizations 

provide some interesting insights on the current trend of literature and the proportion of studies 

with respect to the approaches in each category. Each category has been explained below with 

few examples from the literature along with their advantages and drawbacks. For more detailed 

reviews, readers are referred to the references cited in [1] and [2]. 

2.4.1 Introducing Diversity – The main problem in designing a dynamic evolutionary 

algorithm is the issue of diversity loss. From the discussions in the thesis so far, it is pretty 

evident that the algorithm loses its diversity after converging at the optimum before the 
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occurrence of a change. Therefore, it is very important to induce diversity into the population 

after a change has occurred.  

Re-initialization of the population to induce diversity has been the most naïve approach ever. 

Many algorithms and variations of the standard evolutionary algorithms are proposed with 

different modifications and methodologies of re-initialization [2]. One general idea that comes to 

one’s mind when thinking about re-initialization is to randomly re-initialize the population once 

again after the occurrence of change. But it has to be noted that this type of re-initialization 

causes a loss of historic information from the previous iterations and is therefore generally not 

preferred.  

In a typical GA, one approach to enhance diversity has been introducing an adaptive mutation 

parameter call hyper-mutation, proposed by Cobb [13], in which the mutation rate is a 

multiplication of the normal mutation rate and a hyper-mutation factor. This hyper-mutation is 

invoked after the occurrence of a change. This concept of inducing diversity after the occurrence 

of a change has been implemented in a PSO by Hu and Eberhart in [12], in which a part of the 

swarm or whole swarm will be re-diversified using randomization. Daneshyari and Yen [11] 

proposed a cultural-based PSO where the framework of knowledge inspired from belief space in 

Cultural Algorithms is used to re-diversify the population after a change has occurred.  

Woldesenbet and Yen [14] proposed a new method of re-initialization using the concept of 

variable relocation where the sensitivity of the individuals for the changes in the environment is 

calculated to estimate the specific relocation radius for the particles. Sensitive individuals have 

larger relocation radii. In this thesis, the similar concept is applied to a PSO by measuring the 

sensitivity of the particles for changes in the environment and calculating the relocation radii for 

the particles after a change has occurred. 
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In these types of methods, since there is no computation involved in maintaining the diversity 

all through the process, the algorithm can completely focus on the search process alone. In 

addition, these methods resembles a type of local search which helps in exploiting the nearby 

places of the optimum. However, the drawbacks of this approach include dependency on the 

knowledge of the occurrence of change which is really difficult. Also, it is always not very easy 

to know the correct values of mutation parameters and once the algorithm converges, only the 

knowledge of the optimum is known whereas a lot more could be relevant. 

2.4.2 Maintaining diversity – From the above approaches it can be understood that the 

maintenance of diversity is a very important part of the dynamic evolutionary algorithm. Apart 

from introducing the diversity after the occurrence of change, diversity can also be maintained 

through-out the process of the algorithm. The main idea behind this approach is to avoid 

premature convergence of the algorithm. Grefenstette [15] proposed a method called Random 

Immigrants in which new individuals are added at random locations to the population for every 

generation. The addition of new individuals brings more diversity to the total population. But it 

has to be kept in mind that this also constantly increases the population size.  

In another approach, Yang and Yao [42] proposed Population-based Incremental Learning 

(PBIL) approach in which the algorithm uses a probability vector to generate the individuals in 

the population. The probability adapts according to the best solution in each generation. 

Blackwell et al. [16] proposed a variation of the PSO, called the charged PSO, in which a 

repulsion mechanism is applied. Inspired from the concept of atoms in an electric field, the 

algorithm prevents particles from getting too close to each other. Bui et al. [17] used a multi-

objective strategy where first objective is the original objective which is to search for the 

optimum whereas the second objective is created for maintaining the diversity during the course 

of the algorithm.  
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Many approaches have been proposed to maintain the diversity within the algorithm and they 

all show that the respective algorithm works great for solving problems because of their 

respective diversity maintenance strategies. The idea of maintaining diversity during the run of 

the algorithm may be good for solving problems with severe changes and environments with rare 

changes. However, if the changes are small, addition of individuals might create too much 

diversity and effect the convergence of the algorithm. Also, using such complex strategies to 

focus continuously on diversity may slow down the convergence process. 

2.4.3 Memory Approaches – In this type of approaches, the algorithm is provided with some 

kind of memory that allows it to store optimal solutions and reuse them at a later stage when 

required. This could be done implicitly by using some redundant representation or explicitly by 

including an external memory component and employing strategies to store, update and retrieve 

information from this memory element. Strategies with a memory are very useful in environments 

when the environment changes periodically, when there are repeated occurrences of a set of 

conditions. In addition, redundant representations might slow down the process of convergence 

but they could favor diversity.  

Implicit approaches use a built-in form of implicit memory in the algorithm. One such form if 

implicit memory is the redundant representation and diploidy is one common approach [19]. A 

diploid algorithm is one which contains two alleles at each locus. Usually GAs are haploid for 

static optimization problems, but it is believed that using diploid or multi-ploid approaches could 

be useful in solving the dynamic optimization problems. Smith and Goldberg [20, 21] employed a 

tri-allelic scheme in which an allele could take any one of the three possible values “0”, “1 

recessive”, and “1 dominant”. 

The explicit memory approaches include an external memory component to store the best 

results and these are added back to the population if they are better fit than the current population. 
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Algorithms following this approach need to follow four aspects. First, the algorithm has to decide 

on the content of the memory, like what to store and what not to store. In general previous best 

solutions or local optima are stored in the memory [22]. In [23], the most diversified solutions, in 

terms of standard deviations, are stored. In [11], the set of previous solutions along with the 

locations of each individual are saved in the memory.  

The next aspect is how to update the memory. In most cases, the best found elements of the 

current generation will replace the old values in the memory. The elements that are removed are 

the oldest members in the memory or ones with least contribution to the diversity of the 

population or individuals with least contribution to fitness or a combination of these. The next 

aspect is when to update the memory. Ideally, it should happen after the occurrence of a change. 

But practically, detecting or observing a change at the time of its occurrence is very difficult. 

Therefore, algorithms generally update their memory after every iteration or after a specific 

number of iterations. The final aspect to focus on is how to use the memory. Generally the best 

individuals stored in the memory are used to replace the worst individuals in the population. This 

replacement happens after every iteration or after a specific number of iterations. It could also be 

done after the detection of change if the change could be detected.  

These memory based approaches are effective for solving problems that are set up in cyclic 

environments. Due to their ability to retrieve previous best solutions from the memory, these 

approaches are quite suitable for periodic and cyclic environments. However, these seem to be 

effective only if the environment is either cyclic or periodic in nature and the memory becomes 

obsolete when the environment changes are not cyclic [3]. Apart from the problems like 

convergence and diversity, these approaches also incur problems due to their memory elements. 

The redundant approaches might not be effective if the periodicity of the environment is too 

large. As pointed out by Branke in [3], these approaches sometimes are not good enough to 

maintain the diversity of the algorithm.  
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2.4.4 Multi-population approaches – This type of approach, as the name suggests, involves 

more than one population in the algorithm. Generally, the total population is divided into two 

groups where one looks for the optima and the other tracks the changes in the environment. In 

general there is one main population and one group of sub-populations or “child populations.” 

The idea behind using this approach is that the main population tracks the location of the optima 

while the child population or sub-population looks out for any changes in the environment. 

Oppacher and Wineberg [25] proposed a method which they called the shifting balance genetic 

algorithm, which uses one main population to exploit the best optimum and several small 

colonies to explore the search space.  

Ursem [28] proposed another multi-population approach called the multinational GA in 

which the grouping of individuals is done based on “hill-valley detection procedure.” Here, two 

points are selected in the search space and a valley is assumed if the fitness at a sample point 

between those two points is less than both the end points. The drawback with this approach is that 

it involves numerous function evaluations just for the detection of a valley. Another method 

proposed in [26] by Branke et al., called the Self-Organizing Scouts (SOS), uses a main large 

population to search for the optima and dedicates several small populations to track any changes 

in the optimum that has been found so far by the algorithm. A small population is created 

whenever the main population finds a new optimum location. In the above approaches the 

population sizes of parent and child populations is adjusted depending on the performance of the 

algorithm.   

One more approach is giving equal importance to both the populations. In this type both the 

populations search for the optimum in the search space and also simultaneously track changes in 

the environment. Kennedy [43] proposed a variation of PSO which uses a k-means algorithm to 

locate the centers of different clusters of the particles in the population. Then these centers are 

used to substitute the pbest or gbest locations. The k-means algorithm is run thrice to stabilize the 
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cluster centers. But the limitation that lies here is choosing the number of clusters. One other 

example is the Speciation PSO (SPSO) [29], proposed by Parrott and Li, where each sub-

population is a hyper-sphere defined by the best fit individual and a specific radius. In this case, 

there is an overlap of particles in the search space which leads to a loss in the diversity. 

Clustering approaches help in having multiple populations while maintaining diversity during the 

evolutionary process of the algorithm. Yang and Li [30] proposed an adaptive approach called the 

Clustering Particle Swarm Optimization (CPSO) where a clustering mechanism is used to 

maintain diversity during the course of the algorithm. 

The multi-population approaches can maintain the diversity though the run of the algorithm. 

They can recall some information from the past generations and the existence of multi-

populations also helps in tracking the presence of multiple optima and also can be effective for 

solving problems with competing peaks or multi-modal problems. However, it is difficult to 

determine the number of sub-populations, the search space for each population, the population 

size etc. In CPSO [30], an adaptation strategy and clustering principle is used to determine the 

number of sub-populations depending on the landscape settings.  

In the recent years, multi-population approaches have gained importance for solving DOPs 

due to their diversity enhancing capability and the ability to track the presence of multiple optima. 

Recently a generic framework for solving DOPs using multiple swarms was proposed by Yang 

and Li [27]. In this thesis, we follow the framework described in [27] to form sub-populations and 

then use a relocation strategy to replace the particles after the occurrence of a change.   

2.4.5 Self-Adaptation and Mutation – The self-adaptation mechanism is an outcome of a 

process which involves learning and predicting based on historic data. When a change occurs, the 

population undergoes a transient state where the values of the operators are changed to enhance 

diversity and performance of the algorithm. In [9], several self-adaptation schemes are compared. 
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Cobb and Grefenstette [31] introduced the idea of hyper-mutation in which mutation probability 

is increased after a change has occurred. Ursem [28] proposed a Multinational Genetic Algorithm 

(MGA) in which five different parameters are encoded in the genomes of the MGA for 

adaptation. Other suggested techniques include life-time learning [32] and adaptive chaotic 

mutation [33]. 

 The assumption in this type of approaches is that the occurring environmental changes are in 

the reach of the algorithm’s adaptation capability. Otherwise, the adapted population would be 

inefficient and might not locate the new optimal solution. 

2.5 Performance Metrics 

There are several performance indexes that have been proposed so far for measuring the 

performance of dynamic evolutionary algorithms. In this thesis, we have used offline error 

performance [34] and adaptation performance [35] for measuring the performance of the 

proposed dynamic evolutionary algorithms.  

2.5.1 Offline error performance – Off-line error performance index [34] is the most common 

performance index used by researchers recently. It is obtained as the average of the error between 

the true optimal point and the best fitness at each evaluation. This can be mathematically 

expressed as: 
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where i is the evaluation counter; T is the total number of evaluations considered; ftrue is the true 

optimum solution after the occurrence of a change; and finally fi
best  is the fitness value of the best 

particle until the current iteration after the occurrence of the change. This form of performance 

evaluation of an algorithm is helpful in evaluating the overall performance of an algorithm and to 
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compare the final outcomes of different algorithms. However, there are certain disadvantages. 

One is that they require that the time of the occurrence of change has to be known and the other is 

that these measures are not normalized and therefore, there arise a possibility of the values 

becoming biased under certain specific circumstances.  

2.5.2 Adaptation performance – Adaptation performance [35] is the average ratio between the 

best fitness value and the true optimum at each iteration. This can be mathematically expressed 

as: 
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where i is the evaluation counter; T is the total number of evaluations considered; ftrue is the new 

true optimum solution which is updated after the occurrence of a change; and fbest is the fitness 

value of the best particle until the current iteration after the occurrence of a change. This gives a 

measure of the adaptation capability of the algorithm. But however, this way of formulating the 

error is not a good indication for measuring the performance when the fitness functional values 

are very small.  

2.6 Benchmark problems for Dynamic Evolutionary Algorithms 

In the past few years, researchers have proposed several benchmark test functions for the 

purpose of testing the performance of the proposed evolutionary algorithms. In general, these test 

functions simulate the behavior of real world optimization problems and provide a simple 

mechanism to control the landscape dynamics.  

A good benchmark function should be flexible, simple and efficient. It should be flexible to 

incorporate all the dynamics of the real world optimization problem with different dynamic 

settings and scales. It should be simple enough to be implemented and analyzed and it should be 
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computationally efficient. And most importantly it should allow conjectures to real-world 

problems or resemble them to as much extent as possible [3]. 

The earliest forms of dynamic optimization test problems use a number of standard static 

optimization problems and switch back and forth between these landscapes through the run of the 

algorithm [31]. Other forms of dynamic functions use a number of peaks that are independent of 

each other and are specified by their height, width and location. Branke [37] proposed a general 

platform for such kind of problems called the Moving Peaks Benchmark (MPB) Problem which 

has been widely used in the literature in the recent years. Within the problem setting of the MPB 

problem, the optima can be varied by changing the location, height and width of the peaks. It can 

be mathematically expressed as: 
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where )(xB


is a time-invariant landscape and P is the function defining the peak shape, where 

each of the M peaks has its own time-varying parameters: height (h), width (w) and location 

)).(( tpi


 The different shapes of the peaks determine the type of the test function. When the peaks 

have a cone shape, it becomes competing cones problem [38] and on the other hand, if the peaks 

have a ‘Gaussian’ shape, then it becomes time-varying Gaussian peaks problem [39].  

The most frequently used test function by researchers is the competing cones problem 

proposed by Morrison and de Jong [38]. It consists of a number of cones each independently 

defined by height, center and width. The cones are non-differentiable at their peaks and give a 

good justification for real world optimization problems. It is expressed mathematically as: 
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where ),....,,( 21 nxxxx 


is a point in the landscape, M is the number of cones that are present in 

the environment, and each cone i is independently described by its height Hi, slope Ri, and its 

center ).,....,( 1 iMii XXX 


 

One more commonly used test function in recent times is the Gaussian peaks problem which 

was proposed by Grefenstette [39]. This is very much similar to the moving cones problem 

explained above except for the shape of the peaks. The peaks have a ‘Gaussian’ shape in contrast 

to the cone shape above. The peaks are non-differentiable at their vertex and this problem 

provides a good benchmark for evaluating dynamic optimization problems. However, this 

becomes quite challenging when the number of peaks is very high. It can be mathematically 

expressed as 
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where )(tAi is the amplitude, )(tCi denotes the center and )(ti represents the width of the n-

dimensional Gaussian peak. 

There are other forms of test functions that are common shift stationary optimization test 

problems using various dynamics of change. One good example of this type is the moving 

parabola problem [40, 41]. The general form of the objective in this problem is given 

mathematically as 
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The amount of shift in the landscape, )(ti , can have different dynamics of change and the 

general types are linear, random and circular dynamics of change. Another interesting function 
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that was used by Branke in [8] is called the Oscillating peaks function. There are l landscapes 

each consisting of m randomly chosen peaks similar to the moving peaks benchmark problem. 

Each of these landscapes oscillate according to a cosine function. As a result of this oscillation, 

the optima also oscillates between different points. This is given mathematically as 
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2.7 Summary 

The above sections give an understanding about the dynamic optimization problems and 

show the different approaches that have been proposed so far. The strengths and weaknesses of 

all the approaches are discussed in detail and gives a clear understanding of the problem settings 

and the approaches. The chapter also discusses few benchmark problems that have been used in 

this document along with a couple of performance metrics that are used in this thesis. 
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CHAPTER III 
 

 

PROPOSED DYNAMIC PARTICLE SWARM OPTIMIZATION 

The proposed algorithm adopts the general framework of using multi-swarms with clustering 

[27] to create adaptable multiple sub-swarms and then exploit the previous history of the best 

particles’ location and adapt the current location according to the environmental changes. The 

algorithm uses clustering technique to create sub-swarms to explore the different areas and peaks 

in the search space and after the occurrence of a change, the algorithm measures the particles’ 

sensitivity to the environmental changes and shifts the particle in the decision space by a so-

called relocation radius [14] which is determined based on the estimate of the environmental 

change that has occurred. The algorithm is explained in detail below. 

Let f=f(X,e) be the DOP we would like to optimize, where X represents the D-dimensional 

decision space vector and xd is the dth-dimensional decision variable. For the purpose of this 

document, the optimization problem is assumed to be a minimization problem. It needs to be 

noted that a maximization problem can be converted to a minimization problem by multiplying 

the objective function with -1 (i.e. duality principle).  

3.1 Creating Multiple sub-swarms 

Though there are several multi-population approaches proposed in literature, Clustering 

Particle Swarm Optimization [30] seems to be a competitive one as it alleviates the general 

problems faced by other multi-swarm approaches. The proposed algorithm, inspired from CPSO, 

uses a single linkage hierarchical clustering scheme to form clusters. The distance between two 
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individual particles i and j in the d-dimensional space is given by their Euclidean distance which 

is calculated as 
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Given an initial population pop, the clustering algorithm first creates a list G of clusters 

containing only one particle. Then it uses a specific algorithm called FindNearestPair to find a 

pair of clusters t and s such that they are the closest among all the clusters in G. If the total 

number of particles in both clusters is less than a predefined maximum sub-population size, called 

subSize, both clusters t and s are combined into one cluster. This process is continued until all the 

clusters in G have more than one single particle. The cluster list G thus created is appended to a 

sub-population list plst.  

The distance between two clusters t and s in the list G, is denoted by M(t, s), is defined as the 

closest distance between two individual particles i and j which belong to the two clusters t and s 

respectively. M(t, s) is mathematically calculated according to the Equation 3.2 given below. 
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It can be observed from the above description, that the clustering process adaptively creates 

sub-swarms depending on the distribution of the particles in the fitness landscape. The number of 

sub-swarms and the size of each swarm are automatically determined by the algorithm and the 

parameter subSize. The pseudo-code for the overall clustering process is described in Figure 3.1 

and Figure 3.2. 
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Figure 3.1 Pseudo-code for the Clustering Algorithm to form sub-swarms. 

Procedure: Clustering 

Begin 

 Create a temporary cluster list G of size [pop]; 

 for each individual particle i in pop do 

  G[i] = pop[i]; (each cluster has one particle) 

 end for 

 Calculate the distance between all clusters in G and construct a distance matrix M of 

 size |G|×|G|; 

 while TRUE do 

  if !FindNearestPair then 

   Break; 

  end if 

  t=t+s; (Merge clusters t and s) 

  Delete cluster s from G; 

  Recalculate all distances in M that are affected because of the merging of t 

  and s; 

  if every cluster in G has more than one particle then 

   Break; 

  end if 

 end while 

 Remove pop; 

 plst = plst + G; 

end 
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Figure 3.2 Pseudo-code for FindNearestPair Algorithm 

 

Procedure: FindNearestPair 

Begin 

 found = FALSE; 

 min_dist = 



D

k

kk LU
1

2)( , where Uk and Lk are upper and lower limits of the kth 

 dimension of the search space; 

 for i = 0 to |G| do 

  for j = i + 1 to |G| do 

   if (|G[i]| + |G[j]| > subSize) then 

    Continue; 

   end if 

   if (min_dist > M (G[i] + G[j])) then 

    min_dist = M (G[i], G[j]); 

    t = G[i]; 

    s = G[j]; 

    found = TRUE; 

   end if 

  end for 

 end for 

 Return found; 

end 
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3.2 Local Search Strategy 

Once the sub-swarms are created using the above shown clustering method, local search is 

performed by each sub-swarm in its sub-region of the search space. Each sub-swarms works 

independently and there is no sharing of information among the swarms. This gives the algorithm 

an opportunity to explore different areas of the search space and helps in tracking multiple peaks 

in the landscape. In order for a sub-swarm to locate a local peak, the general particle swarm 

optimization approach (discussed earlier) is implemented.  
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To enhance the speed of the convergence process, the inertia weight ω is varied dynamically 

according to Equation 3.5. This parameter, along with c1 and c2 (cognitive and social parameters, 

respectively), control the balance between exploration and exploitation in a traditional PSO. The 

value of this inertia weight is generally chosen as 0.9. But it makes sense to have a large value 

during the initial iterations to enhance the exploration and then decrease it gradually to favor 

more on exploitation. It is therefore decreased linearly according to the following equation, 
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where min and max are the minimum and maximum limits for the parameter , iter is the 

current count of iterations and total_iter is the total number of iterations of the algorithm.  

The pseudo-code for the local search process is given in Figure 3.3 
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Figure 3.3 Pseudo-code for performing the local search in a sub-swarm S. 

3.3 Redundancy Control 

Redundancy control is to remove the redundant particles in the population. This includes 

particles that are converged, overcrowded particles in a sub-region and particles located in the 

overlapping region of two sub-populations. It is very essential to perform this redundancy check 

because, firstly, these particles do not contribute to the search progress and secondly, it is a waste 

of computational resources to perform unprofitable evaluations on these particles. 

To perform an overlap check between two populations, the concept of search radius is 

introduced. The search radius of a population is defined as average distance of every particle in 

the population to the central particle of the population. It can be mathematically represented as 

Procedure: Local Search in a sub-swarm S 

Begin 

 for each particle i ϵ S do 

  Update the location of particle i according to equation 3.3 and 3.4; 

  if particle i is better than its pbest then 

   Update pbest; 

   if particle i is better than gbest then 

    Update gbest; 

   end if 

  end if 

 end for 

end 
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where scenter is the central position of the sub-population s and |s| is its population size. If any 

particle of a sub-population lies within the search radius of another sub-population then it is said 

that overlapping occurred. If the distance between the best particles of two sub-populations is less 

than their search radius then they are combined or one of them is removed. It is generally 

assumed that one sub-population covers one peak but however, it may not be always true. If a 

sub-population covers more than one peak, other sub-populations within its search area should 

not be removed because there is a possibility of losing those peaks. This has to be taken into 

consideration before combining two overlapping populations. 

Therefore, before combining two populations, t and s, which are within each other’s search 

radius, an overlap ratio, roverlap(t, s) is calculated. The populations are merged only if this overlap 

ratio is larger than a preset threshold value of β. The percentage of particles from s within the 

search radius of t and the percentage of particles from t within the search radius of s is calculated 

and the lowest of these values is chosen as the overlap ratio between the two populations. It has to 

be noted that the radius used in the above calculation is the radius calculated when the sub-

swarms are formed. The reason for this is that it gives a quicker identification of the overlap. 

In order to avoid too many particles searching for a single peak, and overcrowding check 

needs to be performed on each sub-population after the overlapping check. If the number of 

particles in a sub-population is greater than subSize then those extra particles are removed from 

the population to equate the population size to subSize. In addition to this, a converged sub-

population does not yield any result to the search progress. Therefore, it is beneficial to remove 

these individuals from the population. If the radius of a sub-population is smaller than a threshold 

value ε, which is selected as 0.01, then the population can be considered as converged. These 
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individuals are removed from the sub-population list plst. The pseudo-code for the redundancy 

control is given in Figure 3.4. 

Figure 3.4 Pseudo-code for performing Redundancy Control. 

 

 

Procedure: Redundancy Control 

Begin 

 for each pair of sub-populations (t, s) in plst do 

  if roverlap(t, s) > β then 

   Merge t and s into t; 

   Remove s from plst; 

  end if 

 end for 

 for each sub-population t ϵ plst do 

  if |t| > subSize then 

   Remove worst (|t| - subSize) individuals from t; 

  end if 

 end for 

 for each sub-population s ϵ plst do 

  if radius(s) < ε then 

   Remove s from plst; 

  end if 

 end for 

end 

 

 

Update the location of particle i according to equation 3.3 and 3.4; 

  if particle i is better than its pbest then 

   Update pbest; 

   if particle i is better than gbest then 

    Update gbest; 

   end if 
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3.4 Change Detection 

Through-out the literature we have seen that the detection of changes in the environment is a 

very challenging and difficult task. Many dynamic evolutionary algorithms proposed so far either 

re-evaluate the particles for a significant change in their fitness values or explicitly assume the 

knowledge of change detection to be obtained without actually performing any algorithm to 

detect it. In this thesis, the gbest particles of the sub-swarms are re-evaluated every iteration to 

detect changes in the environment.  

3.5 Introducing Diversity using Variable Relocation Algorithm 

The importance of diversity in the algorithm is evident from the previous discussions. 

Therefore, to induce diversity into the algorithm after the occurrence of change, the proposed 

dynamic evolutionary algorithm relocates the particles to new locations. To re-locate the 

particles, their sensitivity to the changes in the environment is estimated based on their 

evolutionary progress through the run of the algorithm and corresponding relocation radius for 

these particles is determined. The particles are then relocated using this relocation radius [14].  

Let 
d

ix  denote the evolutionary progress of a particle i in the dth dimension of the decision 

variable. It is measured as the difference between the dth dimension decision variable 
d

ix  of the 

particle and the weighted sum of its previous location, 
d

previx ,  and its personal best, 
d

pbestix , . This 

is mathematically represented as  
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When the weighted parameter ]1,0[ is zero, the evolutionary progress 
d

ix  is equal to the 

velocity parameter 
rd

iv  from Equation 3.3. When ,1  
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term from Equation 3.3. To have a balanced involvement of the pbest in the evolutionary 

progress, the value of   in the above equation is chosen as 0.5.  

  The evolutionary fitness progress, if  of a particle i is the difference between its fitness,

,if  in its current location and its previous location, ., previf   

previii fff ,            (3.8) 

The average evolutionary progress 
d

ix  in the dth dimension decision variable of a particle 

can be obtained cumulatively as a weighted sum of the particle’s 
d

ix  and 
d

ix calculated so far. 

The similar method is applied for calculating the average evolutionary fitness progress. The 

parameter iter denotes the number of iterations either from the start of the process or after a 

change is detected, whichever is latest.  On the other hand, λ represents the weight given to the 

previous evolutionary progress relative to the current one. Using λ=1, the weighted average is 

nothing but a simple mean of all the evolutionary progress and taking its value as 0 gives no 

weightage to the previous data. The value of λ is chosen such as to diminish the weightage of the 

past values over time, meaning the latest data gets more importance and it gets diminished as time 

progresses. Therefore, the value of λ=0.5 is chosen to have an intuitively good balance between 

decay and persistence of the effect of the past values.  
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The average evolutionary progress in the decision space of a particle can be obtained as 
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The average sensitivity of the decision space to change in the objective space is defined as the 

ratio of the average evolutionary fitness progress to the average evolutionary progress in decision 

space. This can be mathematically obtained as shown below. 
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The average sensitivity of the dth dimension of the decision space to change in the objective 

space can be obtained as 
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In DOPs, the evolutionary fitness progress if  can arise from changes in the decision space 

of an individual particle or changes in the environmental parameters. This fitness progress can be 

assumed to be a linear sum of the fitness changes occurring due to the evolutionary progress and 

environmental changes. This can be formulated approximately as 
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where 
d

xis ,  is the average sensitivity of the fitness to change in the dth dimension of the decision 

space. eiS ,  is the average sensitivity of the particle’s fitness to change in the environment; 
d

ix  

and e  are the corresponding changes in the dth dimension decision variable and the 

environmental parameter, respectively. Under normal process, during the absence of change, the 
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environmental parameter is constant, i.e., e =0. This implies that the change in the fitness values 

is because of the changes in the decision space. Then Equation 3.14 reduces to  
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However, when there is a change in the environmental parameters, e  is different from zero. 

Re-evaluating the particles at the same locations results in no fitness value changes due to the 

evolutionary progress, then all the changes in the decision variables becomes zero i.e., 
d

ix  = 0. 

Then Equation 3.14 can be re-written as 
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where 
12 ee ff   represents the difference between the fitness values of the particle in the new 

and old environments respectively. 

The proposed algorithm estimates the required offsets in the decision variables that will 

match the changes caused due to the environment. This is done through the concept of relocation 

radius, which is the anticipated uncertainty in the decision space of an individual. The relocation 

radius is used to relocate the particles in the decision space with intent to enhance their fitness 

values. It is expressed as 

,

,,min

,

12

,

12

,

12

12

,

12
























 











ee

xi

ee

xi

ee

best

ee

xi

ee

i

ff
S

ff

S

ff

ff
S

ff

R      (3.17) 

where 
2e

bestf  is the best fitness under the new environment. 

The relocation offsets in each dimension of the decision space can then be obtained as  
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If ,minmax

ddd

i xxr  then 
d

ir is trimmed to  

),()( minmax

ddd

i

d

i xxrsignr          (3.19) 

where 
dxmax

and 
dxmin are the maximum and minimum limits of the dth dimension decision 

variables respectively, and )(rsign  returns the sign of r. 

If 
d

ir is less than a predetermined parameter,
drmin  which is the minimum allowable 

relocation offset in the dth dimension decision variable, then 

.min

dd

i rr       (3.20) 

After validation of
d

ir , the relocation algorithm will generate a number of new particles as  

.d

i

d

i

d

new rpxx              (3.21) 

where p is a random number between 0 and 1. If the value of 
d

newx lies outside the limits then it is 

reassigned back into the objective space. The particles are relocated and passed into the new 

environment. This new initial population will be better adapted to the change because of the 

exploitation of the previous evolutionary data.  

After this re-initialization of the particles in the new environment, more particles are 

randomly added to the population to account for the particles that are removed by the redundancy 

algorithm. With the new population thus created, the clustering process is again started to create 

sub-swarms. The pseudo-code for Variable relocation algorithm is given below in Figure 3.5.  
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Figure 3.5 Variable Relocation Algorithm for re-initializing the particles 

3.6 Summary 

Many experimental studies have shown that tracking and locating multiple optima for a 

dynamic optimization problem rather than a single optimum is an effective idea [29], [30], [36], 

[44], [45]. It is very difficult for an algorithm to accurately locate an optimum in a static 

environment. And it is even more difficult to locate the optimum solution when the environment 

is dynamic in nature. Hence, it is more effective to track and locate a set of several good optima 

in a specific environment, which greatly enhances the chance of finding the global optimum by 

the assumption that one local optima in an environmental setting has more significant chance of 

being the global optimum when the change occurs.  

But using multiple swarms or populations raises questions like how many populations and 

what should be the size of each sub-population. To address this concern, the proposed algorithm 

uses an adaptive clustering mechanism to form sub-swarms based on the setting of the landscape. 

The expected computational complexity in having multiple swarms is reduced by using 

Procedure: Variable Relocation Algorithm 

Begin 

 Obtain average sensitivities of the decision variables to changes in the environment 

 using Equations 3.7 thru 3.12; 

 Update the archive; 

 Re-evaluate the particles in their current locations and determine their fitness value 

 changes due to the changes in the environment; 

 Obtain the relocation vectors for the particles using Equation 3.17; 

 Reset the Δf and Δx values for all the particles; 

end 
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redundancy control algorithm which removes particles that are no longer helpful for the search 

process.   

Another challenge faced by dynamic evolutionary algorithms is the loss of diversity after the 

convergence of the algorithm. To counter this problem, a variable relocation algorithm has been 

added to the algorithm to relocate the particles using as much information from the previous 

computation as possible. If the dynamics of the change occurred is homogeneous, then the 

relocation radius of all individuals will have the same value. If the dynamics of the change is 

heterogeneous and deterministic, the relocation radius will vary individually and the relocation 

radius will have a deterministic nature. Further, if the changes are random, the proposed 

relocation scheme will account for the changes in the fitness landscape by taking average 

sensitivity values over the evolutionary run, which allows in treating the changes stochastically. 

Furthermore, because of the effective reuse of the previous data, the algorithm provides a faster 

convergence.  

It has been discussed in the literature that there are several aspects of changes that occur in 

the problem setting of a DOP. Though there are innumerous algorithms proposed by researchers, 

most of them are suitable only for a particular type of dynamic environments. In addition, it is 

seldom possible for an algorithm to detect changes occurring in the environment. Therefore, the 

necessity of designing a dynamic evolutionary algorithm that does not require to detect changes is 

very high. However, from the above analysis it can be said that the proposed algorithm could be 

used in environments with different aspects of changes like mild changes, severe changes, cyclic 

changes, rapid changes, etc. It is easy to implement and does not involve heavy complex 

strategies. The flow chart for the proposed algorithm is given below. 
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Figure 3.6 Flowchart for the proposed Dynamic Particle Swarm Optimization
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CHAPTER IV 
 

 

EXPERIMENTAL SIMULATION RESULTS AND DISCUSSION 

4.1 Experimental Setup 

Two sets of experiments were conducted on the Moving Peaks Benchmark Problem [37]. The 

objective of the first set of experiments is to investigate the working mechanism of the clustering 

algorithm and analyze the sensitivity of key parameters used in the algorithm. The second set of 

experiments were conducted to investigate the performance of the algorithm in comparison with 

some of the algorithms proposed in literature. The results of the other peer algorithms for the 

comparative analysis used in this thesis are taken directly from the respective papers in which the 

algorithms were originally published. 

The proposed algorithm is compared against several published algorithms. To completely 

understand the potential of the proposed algorithm, it has been compared to some of the 

algorithms that use multiple swarms approach and other optimization algorithms that use the 

variable relocation mechanism. The multiple swarm approaches that are used for the comparative 

analysis are mCPSO [36], mQSO [36], SPSO [29], CPSO [30] and CESO [24]. To analyze the 

performance of the proposed algorithm from the perspective of adaptation, it is compared with 

RVDEA variants proposed in [14]. The performance measure used was the Offline Error 

Variation for comparing the algorithms. For comparing the relocation algorithm, one more 

metric, the adaptation performance is used to understand the performance of the algorithm from 

adaptation perspective.    
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4.2 Experimental Investigation of the Algorithm 

In this section, experiments are carried out to understand the working mechanism of the 

algorithm. Table 4.1 shows the experimental default settings for the Moving Peaks Benchmark 

problem used in the experimental simulations of this thesis. The settings are the same as in all the 

involved algorithms. In Table 4.1, the term “change frequency (U)” means that the environment 

changes foe every U iterations, S denotes the range of allele values, and I denotes the initial 

height for all peaks. The height and width of the peaks are shifted randomly in the range H = [30, 

70] and W = [1, 12]. The initial population of the swarm was 100 particles and the inertia weight 

is varied from   ωmax = 0.6 to ωmin = 0.3. The cognitive and social parameters are fixed at 1.7. The 

value of Roverlap was set to 0.7 for the MPB problem. To understand the process of clustering, the 

algorithms is first run on the MPB problem with number of peaks = 10 and subSize (N) = 4.  

TABLE 4.1 

DEFAULT EXPERIMENTAL PARAMETER SETTINGS FOR MPB PROBLEM 

Number of Peaks 10 

Change frequency U Every 5000 evaluations 

Dimensions 5 

Height severity 7.0 

Width severity 1.0 

Peak Shape Cone 

Limits of each dimension [0,100] 

H [30,70] 

W [1,12] 

Peak shift length 1.0 
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 Figure 4.1 gives an imaginative understanding of how the particles are formed into clusters 

and how each sub-population converges at a different peak. It has to be noted that the number of 

particles is decreasing from iteration to iteration as the redundancy control algorithm comes into 

picture. The dark black squares are the locations of the best solutions of each individual peaks 

and the cross marks indicate the positions of the particles in the landscape. 

 

Figure 4.1 Particle locations at different evaluations: a) no. of particles: 100; sub-swarms:28 

b) no. of particles: 82; sub-swarms: 23 c) no. of particles: 68; sub-swarms: 19 d) no. of 

particles: 36; sub-swarms: 10. 

 

From the Figure 4.1 (a), it can be seen that at the start of the process or just after the 

occurrence of a change, the particles are scattered in the search space. Since the maximum 

population size for a sub-swarm is chosen as 4, there are approximately 25 sub-swarms that have 

been formed. In Figure 4.1 (b), the clusters formed are merged since there are just 10 peaks in the 

landscape. The particles converge to the corresponding local optimum locations and it is seen in 

Figure 4.1 (c) that the number of particles is reduced because of the overlapping check and 
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convergence check performed by the redundancy algorithm. It can be observed that, as the 

evaluations progress, the number of particles is decreasing. Finally, the number of sub-swarms is 

settled to 10 and the particles are converged to their respective local optimal locations in Figure 

4.1 (d). The final particle locations are stored and relocation algorithm is performed.  

To understand the effect of number of particles (M) and the effect of the user defined subSize 

(N) parameter, the algorithm is run on MPB problem for 50 times by varying N as {2, 3, 5, 10, 12, 

15} and M as {10, 30, 50, 70, 100, 150, 200}. The problem settings are as mentioned in Table 

4.1. The offline error variation results are given in Table 4.2. The number of sub-swarms that 

have been created by the algorithm has been tabulated in Table 4.3. The number of peaks found 

by the algorithm is tabulated in Table 4.4. If a peak is within the radius of a sub-swarm then it is 

considered to be found by the algorithm. 

 

TABLE 4.2 

OFFLINE ERROR VARIATION OF DIFFERENT PARAMETER 

CONFIGURATIONS 

 M=10 M=30 M=50 M=70 M=100 M=150 M=200 

N=2 3.25 1.2 1.25 1.42 2.58 3.84 5.21 

N=3 6.21 2.95 2.04 1.11 1.2 1.67 3.36 

N=5 6.05 2.59 2.11 1.65 1.74 1.49 2.59 

N=10 8.25 4.25 3.65 2.8 2.04 1.88 1.94 

N=12 7.46 4.53 3.58 2.98 2.65 1.83 1.98 

N=15 8.65 5.73 3.87 3.25 2.94 2.82 2.13 
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TABLE 4.3 

NUMBER OF SUB-SWARMS CREATED BY THE CLUSTERING METHOD 

 M=10 M=30 M=50 M=70 M=100 M=150 M=200 

N=2 5 15 25 35 50 75 100 

N=3 4 10.2 17.6 25.2 35.4 32.3 43.4 

N=5 2.45 6.56 10.8 15.8 21.5 24.46 33.65 

N=10 2.14 3.62 5.89 8.32 11.4 16.64 21.98 

N=12 1.48 3.45 5.67 8.61 9.76 14.35 18.47 

N=15 1.46 2.51 4.57 5.52 7.59 11.36 15.25 

 

 

TABLE 4.4 

NUMBER OF PEAKS FOUND BY THE ALGORITHM 

 M=10 M=30 M=50 M=70 M=100 M=150 M=200 

N=2 3.67 5.92 6.82 7.27 7.52 7.9 8 

N=3 3.13 5.18 6.39 7.15 7.71 8.33 8.72 

N=5 2.47 4.18 5.1 5.78 6.45 7.28 8.07 

N=10 1.75 3.09 3.78 4.45 4.95 5.75 6.32 

N=12 1.66 2.97 3.75 4.12 4.85 5.65 6.25 

N=15 1.76 2.55 3.42 3.75 4.29 5.07 5.57 
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From the Table 4.2, it can be seen that the different configurations of the algorithm 

significantly affect the performance of the algorithm. When the subSize N, is fixed and M is 

increased to a very large value or a very small value, the performance of the algorithm 

deteriorates and vice-versa. It can be seen from Table 4.3 that too large or too small values of N 

cause either very few or too many sub-swarms to be created. From this it can be understood that 

the performance of the algorithm greatly depends on the value of the parameter subSize. 

Comparing the values in Tables 4.2 and 4.4, it can be noted that the higher the value of the M, 

more peaks are found by the algorithm, which could be translated as more close to the actual 

number of peaks in the landscape. 

To further understand the behavior of the algorithm and the effects of its parameters, the 

number of peaks in the MPB problem is varied along with the values of M and N. The offline 

error variation for a given value of subSize is plotted for each value of M. The number of peaks is 

varied as {10, 30, 50, and 100}. The plots obtained are given below in Figure 4.2. 

Figure 4.2 Offline error with different configurations on MPB problem with different 

number of peaks. 
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It can be observed in Figure 4.2 that when the population size M is fixed, the offline error 

decreases as N increases until a turning point. The error further increases after crossing the 

turning point and it also needs to be noted that this turning point is different for different 

configurations. Therefore, the algorithm has to adjust the value of subSize accordingly to adapt to 

the environment when M is fixed. From the above discussions, it is evident that the parameter 

subSize affects the performance of the algorithm to a greater extent and therefore has to be chosen 

wisely.  

One more parameter that is user defined is the overlapping ratio, β. This value determines 

whether or not to merge two sub-swarms when they overlap each other. The higher the value of β, 

the longer it takes for the algorithm to merge two overlapping populations. This value is varied 

for different configurations on the MPB problem with different number of peaks. The value of M 

is chosen as 200 and N is chosen as 7. The other settings are the default settings mentioned in 

Table 4.1. The offline error results obtained for varying number of peaks for varying β is plotted 

in Figure 4.3. 

 

Figure 4.3 Offline errors of varying β with different number of peaks 

From the above figure, it can be seen that the performance of the algorithm is not much 

affected by the different values of β. The results validate that the value of β is not crucial to the 

performance of the algorithm. However, intuitively it is recommended to choose the value of β 

equal to 0.1.  
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4.3 Comparison with peer algorithms 

The performance of the algorithm is compared with several state-of-the-art algorithms. All 

the tests are performed on the MPB problem with the settings as mentioned in Table 4.1. The 

results of the peer algorithms given below are taken directly from the respective papers in which 

they are originally published. The following Table 4.5 gives the offline error of the algorithms as 

a function of varying peaks.  

TABLE 4.5 

OFFLINE ERROR VARIATION OF THE ALGORITHMS ON MPB PROBLEM AS 

A FUNCTION OF NUMBER OF PEAKS 

Peaks mCPSO mQSO SPSO CPSO CESO 

RVDEA 

mem 

RVDEA 

clusters 

Proposed 

Algorithm 

1 4.93 5.07 2.64 0.14 1.04 1.23 1.02 0.755 

10 2.08 1.8 2.51 1.056 1.38 4.88 3.54 0.785 

20 2.64 2.42 3.21 1.59 1.72 5.68 3.87 0.796 

30 2.63 2.48 3.64 1.58 1.24 5.86 3.92 0.736 

40 2.67 2.55 3.85 1.51 1.3 5.65 3.49 0.725 

50 2.65 2.5 3.86 1.54 1.45 5.21 3.78 0.775 

100 2.49 2.36 4.01 1.41 1.28 4.98 3.37 0.714 

200 2.44 2.26 3.82 1.24 N/A 4.92 3.54 0.714 
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Figure 4.4 Offline Error Variation of various Algorithms on MPB Problem as function 

of number of peaks 

TABLE 4.6 

ADAPTATION PERFORMANCE OF THE ALGORITHM ON MPB PROBLEM AS A 

FUNCTION OF NUMBER OF PEAKS 

Peaks 
RVDEA 
mem 

RVDEA 
Cluster 

Proposed 
Algorithm 

1 0.9822 0.9852 0.9876 

5 0.9329 0.9612 0.9758 

10 0.9293 0.9487 0.9549 

25 0.9309 0.9436 0.9439 

50 0.9245 0.9452 0.9746 

100 0.9278 0.9516 0.9683 

 

Figure 4.4 gives the graphical representation of Table 4.5. It can be seen that the offline error 

values for the proposed algorithm are much less, as desired, compared to the values of the other 

algorithms. From Table 4.6, it can be noted that the adaptation performance also shows that the 

algorithm functions better than its peer competitors. The algorithm is also tested as a function of 
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generations between the occurrences of changes on MPB problem with 10 peaks. The results are 

given below.  

TABLE 4.7 

OFFLINE ERROR VARIATION ON MPB PROBLEM WITH 10 PEAKS AS A 

FUNCITON OF GENERATIONS BETWEEN CHANGES  

Gen No. 
RVDEA 
mem 

RVDEA 
Cluster 

Proposed 
Algorithm 

1 15.82 12.91 10.97 

5 8.89 7.67 7.58 

10 7.21 6.048 5.91 

25 5.35 4.28 4.13 

50 4.88 3.54 3.26 

100 4.12 3.14 3.09 

 

4.4 Summary 

The results in the above sections show that the proposed algorithm is capable of solving 

dynamic optimization problems. The algorithm is easy to implement and does not involve high 

computational cost. The algorithm uses an adaptive mechanism to form clusters and then exploits 

the evolutionary progress of particles to relocate them in the new environment. This blend of two 

established ideas has given the algorithm an edge over the peer algorithms. It is to be noted that 

the algorithm performs much better than most of the other algorithms it is compared with.  
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CHAPTER V 
 

 

CONCLUSION AND FUTURE RECOMMENDATIONS 

Many real world optimization problems are faced with changing environments and changing 

conditions. These changing conditions result in changes in the optimum solution. It is therefore 

required that an optimization algorithm has to adapt to these changes accordingly to track and 

locate the changing optimum.  

Dynamic optimization problems are the problems in which the fitness landscape undergoes 

changes during the process of optimization. Several researchers have proposed various 

approaches to address the challenges and resolve the difficulties involved in solving the dynamic 

optimization problems. In this thesis we have seen the different challenges involved in a dynamic 

optimization problem, we have studied about the changes that occur in the environment and the 

effects of these changes on the optimization problem and the fitness landscape. There was also a 

brief study about the benchmark test functions and the performance indexes that are being used 

by the researchers to test the performance of the proposed algorithm. The thesis also sheds light 

on several dynamic evolutionary algorithm approaches proposed by researchers so far. The 

approaches have been studied from the unique perspective of their methodology, performance 

measure and the computational ease with which they could be implemented. The strengths and 

weaknesses of these approaches were discussed. From this analysis it can be concluded that 

changes in the environment occur in various aspects and it is very difficult to detect these changes 

or know exactly what is going to change and when it is going to change. 
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The two main problems faced by any optimization problem are convergence and diversity. 

The diversity problem is magnified in the case of a dynamic optimization problem as the 

algorithm loses its diversity after convergence but because of the environmental changes, it is a 

challenge to maintain this diversity. It is observed that several attempts have been made by 

researchers to maintain diversity or introduce diversity. It is also observed that most of the 

approaches that have been proposed are successful in a particular problem setting or can handle 

only specific type of changes. 

It can be understood from all the above discussions that dynamic optimization problems 

require an efficient and effective algorithm to solve them. Meta-heuristic methods are among the 

efficient techniques to address the dynamic optimization problems. One such technique which has 

gained popularity in the recent years is the Particle Swarm Optimization (PSO). Particle swarm 

optimization algorithms are widely preferred in the recent years over other evolutionary 

algorithms such as Genetic Algorithms (GAs). PSO involves less number of parameters to adjust 

and it does not include removal of particles from the population; instead it makes changes to the 

particles’ locations to arrive at the optimal solution. Unlike GAs, PSO does not involve sharing of 

information through chromosomes; only the location of the global best is shared among the 

particles through-out. The efficiency of PSO is generally high compared to other evolutionary 

algorithms. PSO can locate significant optimal solution in a few function evaluations. This makes 

it more cost convenient. In addition, the PSO has a flexibility to control the balance between 

global and local exploration of the search space. This unique feature enhances the search 

capability of the algorithm and avoids the problem of premature convergence, thus making it 

more robust. However, a normal PSO algorithm is not sufficient to address the dynamic 

optimization problems. 

In this thesis, a dynamic particle swarm optimization algorithm is proposed which uses 

multiple swarms to track and locate a set of good optima. The proposed algorithm uses a 
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clustering mechanism to adaptively distribute the particles into sub-populations and locate the set 

of optima. With the clustering technique used in the algorithm, proper number of sub-swarms are 

automatically formed. The size of each sub-swarm is also automatically determined. The sub-

swarms then perform local search in respective sub regions to track and locate the optimal 

solutions. To enhance the speed of the convergence process and for better accuracy, the inertia 

parameter of the traditional PSO is varied dynamically. To address the dynamic changes in the 

environment, the algorithm uses a variable relocation algorithm to relocate the already converged 

or converging particles according to the changes in the landscape. The relocation is done based on 

the changes in the function values of the individuals due to the changes in the environment and 

the average sensitivities of the decision variables to the corresponding changes in the objective 

space. The relocation radius is calculated individually and the particles are relocated to their new 

location. This restores the diversity to the algorithm and since there is a bit of uncertainty 

involved in calculating the relocation radius, enhances exploration. Because the adaptation has 

been carried out on particles from previous iterations, an effective reuse of the past evolutionary 

data is done. The relocation vectors are specific to each individual particle and hence provide a 

better adaptation than a normal random re-initialization. 

The proposed algorithm has been tested on dynamic benchmark problems and has shown 

better results compared to existing state-of-the-art approaches. The clustering mechanism 

drastically enhances the performance of PSO in tracking and locating multiple optima. It is also 

observed that the relocation mechanism used in the algorithm provides a better adaptation and 

effective reuse of the past evolutionary data. The redundancy control helps in removing the 

insignificant particles out of the population which saves computational time and cost. This 

algorithm is suitable for any type of dynamic environments such as severe changes, small 

changes, high frequency changes etc. It can be easily implemented as there are no complex 

techniques involved. Furthermore, the mechanisms used in the algorithm require minimal 
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computational resources and therefore, the performance improvement is higher than the 

additional computational cost incurred. The algorithm can further be enhanced by incorporating a 

method for detecting the occurrence of change. For future work, a change detecting mechanism 

can be developed and can be added to the algorithm to enhance its overall performance.  
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