
DYNAMIC EVOLUTIONARY OPTIMIZATION WITH

PARTICLE SWARM OPTIMIZATION

 By

 SURYAKIRAN CHAVALI K V RAMANA

 Bachelor of Technology in Instrumentation and Control

 National Institute of Technology

 Tiruchchirappalli, Tamil Nadu, India

 2012

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2015

ii

 DYNAMIC EVOLUTIONARY OPTIMIZATION WITH

PARTICLE SWARM OPTIMIZATION

 Thesis Approved:

 Dr. Gary Yen

 Thesis Adviser

 Dr. Carl Latino

 Dr. Subhash Kak

iii

Acknowledgements reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor and academic mentor, Dr.

Gary G. Yen for his continuous support and motivation during my master’s study and research.

The knowledge he shared with me, the kind of trust he had instilled in me, the degree of patience

he embraced when correcting my mistakes, are some things that made me admire him a lot. I am

extremely fortunate to have an advisor like him. Without Dr. Yen, this research work would not

have been completed or written.

I would also like to express my gratitude to Dr. Subhash Kak and Dr. Carl Latino for being

members of my Graduate Committee and I would also like to thank them for attending my

defense amidst their busy schedule. I would also like to extend my sincere thanks to the school of

Electrical and Computer Engineering at Oklahoma State University for giving me the opportunity

to pursue my graduate education.

I am extremely thankful to my roommates and friends Nakul Babu Maddipati, Suresh Babu

Myneni, Gopal Koya and Sri Theja Vuppala for their encouragement and support during my

graduate study.

I would like to acknowledge, with deepest gratitude, the support and immeasurable love of

my family. My parents, Satyanarayana Murti Chavali and Padmavathi Chavali, have supported

me at each and every phase of my career. They gave me freedom to take my own decisions and

gave up many things for me to chase my dreams. I can never be grateful enough to such an

amazing parents. Nothing is happier to me than making them feel proud for my achievements.

iv

Name: SURYAKIRAN CHAVALI K V RAMANA

Date of Degree: DECEMBER, 2015

Title of Study: DYNAMIC EVOLUTIONARY OPTIMIZATION WITH PARTICLE

SWARM OPTIMIZATION

Major Field: ELECTRICAL ENGINEERING

Abstract: Many real world optimization problems have to be solved in the presence of

uncertainties. An optimization algorithm has to perform satisfactorily under the presence of such

dynamic changes in the environment. In addition to it, the algorithm also has to justify for the

additional computational cost incurred. Multi population approaches are found very effective in

tracking and locating dynamic optima. In addition, it is necessary to reuse the information from

the past evolutions as it facilitates a faster and effective convergence after the occurrence of the

change. This thesis proposes a new dynamic particle swarm optimization technique that uses

multiple swarms to locate a set of optimal solutions and effectively exploits the past information

and adapts the population to the corresponding new locations using the concept of relocation

radius. The proposed algorithm uses an adaptive hierarchical clustering mechanism to form

multiple swarms. The relocation radius is determined based on the change in the functional values

of the particles due to change in the environment and the average sensitivities of the decision

variables to the corresponding change in the objective space. The newly adapted population is

fitter compared to the original population or a randomly initialized population. The algorithm is

tested on dynamic benchmark functions and compared to some of the state-of-the-art dynamic

evolutionary algorithms and the results are found to be promising. The algorithm performs better

than most of the existing algorithms proposed in literature.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Overview ..1

 1.2 Problem Definition...2

 1.2.1 Dynamic optimization problem ..2

 1.3 Particle Swarm Optimization ...3

 1.4 Research Goal and Approach...5

 1.5 Document Organization ...6

II. DYNAMIC EVOLUTIONARY OPTIMIZATION ..7

 2.1 Introduction ..7

 2.2 Types of Fitness Landscapes ...10

 2.3 Characteristics of Dynamic Optimization Problems..11

 2.3.1 Severity of Change ..12

 2.3.2 Frequency of Change ..12

 2.3.3 Observability and Detectability ..12

 2.3.4 Dynamic of Change ..13

 2.4 Literature Review...13

 2.4.1 Introducing Diversity ..13

 2.4.2 Maintaining Diversity ...15

 2.4.3 Memory Approaches ...16

 2.4.4 Multi-population Approaches ...18

 2.4.5 Self-Adaptation and Mutation...19

 2.5 Performance Metrics ..20

 2.5.1 Offline Error Variation ...20

 2.5.2 Adaptation Performance ...21

 2.6 Benchmark Problems for Dynamic Optimization Algorithms21

2.7 Summary ..24

III. PROPOSED DYNAMIC PARTICLE SWARM OPTIMIZATION25

 3.1 Creating Multiple Sub-swarms ..25

 3.2 Local Search Strategy ..29

 3.3 Redundancy Control ..30

vi

Chapter Page

3.4 Change Detection ...33

3.5 Introducing Diversity using Variable Relocation Algorithm...........................33

3.6 Summary ..38

IV. EXPERIMENTAL SIMULATION RESULTS AND DISCUSSION41

 4.1 Experimental Setup ..41

 4.2 Experimental Investigation of the Algorithm ..42

 4.3 Comparison with peer algorithms ..48

 4.4 Summary ..50

V. CONCLUSION AND FUTURE RECOMMENDATIONS51

REFERENCES ..55

vii

LIST OF TABLES

Table Page

 4.1 Default Experimental parameter settings for MPB problem42

 4.2 Offline Error Variation of Different parameter configurations44

 4.3 Number of sub-swarms created by Clustering Method45

 4.4 Number of peaks found by algorithm on MPB problem45

 4.5 Offline Error Variation of Algorithms on MPB problem as a function of number

of peaks ...48

 4.6 Adaptation Performance of Algorithms on MPB problem as a function of

number of peaks ..49

4.7 Offline Error Variation on MPB problem with 10 peaks as a function of

Generations between Changes ..50

viii

LIST OF FIGURES

Figure Page

 1.1 Pseudo-code for a typical Particle Swarm Optimization algorithm4

 2.1 Dynamic Changes occurring in the Fitness Landscape ..7

 2.2 Dynamic Fitness Landscape ...11

 3.1 Pseudo-code for performing Clustering algorithm to form Sub-swarms27

 3.2 Pseudo-code for the FindNearestPair Algorithm ...28

 3.3 Pseudo-code for performing local search on a sub-swarm S30

 3.4 Pseudo-code for performing Redundancy Control ...32

 3.5 Variable Relocation algorithm for re-initializing the particles38

 3.6 Flow chart for the proposed Dynamic Particle Swarm Optimization40

 4.1 Particle Locations at different evaluations ..43

 4.2 Offline Error Variation with Different Configurations on MPB problem with

different number of peaks ...46

 4.3 Offline Error of varying β with different number of peaks47

 4.4 Offline Error Variation of Algorithms on MPB problem as a function of number

of peaks ...49

1

CHAPTER I

INTRODUCTION

1.1 Overview

Optimization is considered among the most important problems in mathematics and sciences.

The importance of optimization and its numerous applications have inspired scientists to

investigate on different aspects of the problem. There are many real-world applications that

involve optimization and the goal in all these problems is to either maximize or minimize one or

more cost functions considering several limitations such as changing conditions, involvement of

constraints, noise etc [1]. While there are limitations in a problem space it could be solved easily,

however, increasing limitations leads to a much harder problem which requires a more

sophisticated complex mechanism. This thesis focuses on problems that are subject to dynamic

conditions.

Many real world optimization problems are subject to changing conditions over time. These

types of problems are termed as the dynamic optimization problems. The changes in the

conditions include changes in the objective function, the problem instance, and/or constraints, etc.

Consequently, the optimal solution of the problem under consideration changes reflecting to the

changes in the conditions. These conditional changes could be reflected on the landscapes as

changes in the optimal peak heights, shapes or locations, or a combinations of these three [2].

Several practical applications can be attributed as dynamic optimization problems. A very

good example is the dynamic job shop scheduling problem [3]. In this problem, new jobs arrive

over time after the scheduling has been made. The dynamism of the problem also include cases

2

such as break down of the machines due to wear and tear, changes in the quality of the raw

materials or cases where the production tolerances are taken into account. Therefore the job

schedules have to be dynamically adjusted to incorporate all these changes.

Another example of real-world dynamic optimization problem is the Economic Load

Dispatch problem [4] in power systems. The basic economic load dispatch consists of optimizing

the cost of generating power units for a specific period of operation. This cost function depends

on several aspects of the generators including their maximum power constraints and voltage

constraints. However, taking the ramp rate limits, prohibited operating zones, valve point loading

effects and multi-fuel options into consideration, the problem becomes more complex and

dynamic in nature [7]. Another similar problem is dynamic portfolio optimization which is a

dynamic optimization problem in modern finance [5]. This problem aims to allocate an optimal

set of assets that maximize profit while minimizing risk of investment. From these examples, it is

evident that several such examples of real-life dynamic optimization problems exist which require

a comprehensive approach to search for the optimal solution.

1.2 Problem Definition

1.2.1 Dynamic Optimization Problem

A dynamic optimization problem (DOP) can be mathematically formulated as:

Maximize/Minimize

),,.....,,(),(21 exxxfeXf D (1.1)

where each dimension of the search space is defined between
maxmin

jjj xxx for

j=1,2,3,……D. f is the objective function to be optimized;),....,,(21 DxxxX is the D-

dimensional decision vector and e represents the environmental state whose variation can have

either periodic or sporadic nature.

3

This variable could be modeled in different ways. The dynamics of the environment are either

stochastic or deterministic in nature. It is generally assumed that the environment has a stochastic

nature and then a deterministic pattern may be found. The dynamic behavior of the environment

and its characteristics are discussed in more detail in the later chapters of this thesis.

1.3 Particle Swarm Optimization

Given the importance of dynamic optimization problems, researchers are continuously

seeking efficient ways to tackle such problems. Meta-heuristic methods are among these

techniques. One such technique which has gained popularity in the recent years is the Particle

Swarm Optimization (PSO).

The Particle Swarm Optimization was first proposed by Kennedy and Eberhart in 1995 [6]. In

PSO, a potential solution is considered as a bird (called particle), which flies through a D-

dimensional space and adjusts its position accordingly to find the optimum solution. The first step

in a typical PSO is to randomly initialize the population of particle or birds in the search space.

This initial population is evaluated using the objective function and a corresponding fitness value

is assigned to each particle. The fitness of a particle defines how well the individual satisfies the

optimality condition. Each particle is represented by its location and its fitness value determines

the presence of optima at that particular location. After determining the fitness value of every

particle, each particle follows the previous best position found by the group and the previous best

position found by itself. The new location and velocity of the particles are determined using the

following equations

)()(22,11

d

i

d

gbest

d

i

d

pbesti

d

i

rd

i xxrcxxrcvv (1.2)

rd

i

d

i

rd

i vxx (1.3)

where
rd

ix and
d

ix represent the current and previous positions in the d-th dimension of the

particle i, respectively,
rd

iv and
d

iv are the current and previous velocities in the d-th dimension of

4

particle i respectively,
pbestix ,

and
gbestx are the best position found by the particle i so far and the

best position found by the whole swarm so far respectively, ω is the inertia weight which

determines how much the previous velocity is preserved. The parameters c1 and c2 are the

cognitive and social parameters respectively which maintain the balance between the exploration

and exploitation during the performance of the algorithm and r1 and r2 are random numbers

generated in the interval [0, 1] uniformly. The pseudo-code for a typical PSO is shown below in

Figure 1.1.

Figure 1.1 Pseudo-code for a typical Particle Swarm Optimization algorithm.

Procedure for Particle Swarm Optimization

Begin

 N=0;

 Initialize population;

 while (not termination_condition) do

 Begin

 Evaluate all the particles and determine fitness values;

 Select the particle with best fitness value as gbest;

 for each particle

 If current value is better than previous best

 update pbest;

 end If

 calculate velocity according to eq 1.2;

 update particle position according to eq 1.3;

 N=N+1;

 end

 end

end

5

Particle swarm optimization algorithms are widely preferred in the recent years over other

evolutionary algorithms such as Genetic Algorithms (GAs). The main reasons for this are:

 PSO involves less number of parameters to adjust and it does not include removal of particles

from the population. It makes changes to the particles’ locations to arrive at the optimal

solution.

 Unlike GAs, PSO does not involve sharing of information through chromosomes. Only the

location of the global best is shared among the particles through-out.

 The efficiency of PSO is generally high compared to other evolutionary algorithms. PSO can

locate significant optimal solution in a few function evaluations. This makes it more cost

convenient.

 The PSO has a flexibility to control the balance between global and local exploration of the

search space. This unique feature enhances the search capability of the algorithm and avoids

the problem of premature convergence thus making it more robust.

However, as always, there are drawbacks too, involved with PSO. Because of the stochastic

nature of the algorithm, PSO does not always guarantee the finding of the optimal solution every

single time. Also, because of the quicker convergence speed of the algorithm, in certain problem

situations, the algorithm loses its diversity which impacts the performance of the algorithm

negatively.

1.4 Research Goal and Approach

The goal of this thesis is to study and understand the behavior of dynamic optimization

problem and its characteristics and design an algorithm that solves the problem with better

accuracy, faster convergence and easier implementation. The proposed algorithm is a dynamic

particle swarm optimization algorithm which involves multiple sub-swarms to locate the presence

of multiple peaks. The algorithm also exploits information from the previous generations to adapt

to the changes in the environment. The multiple swarms adapt to the new locations and help in

6

tracking the optimal solution. The algorithm is designed to have higher reusability, faster

convergence, easier implementation, good accuracy and ability to work under severe and high

frequency changes. The algorithm has been implemented on computer simulation program and

tested on several benchmark test functions. The results are analyzed and compared to some of the

state-of-the-art algorithms and found it competitive.

1.5 Document Organization

The rest of the document is organized as follows: In Chapter II, the dynamic optimization

problems are discussed in detail. The chapter provides details about the dynamic optimization

problem with respect to the aspects of changes that occur and the dynamic behavior of the fitness

landscapes. The chapter provides a detailed literature survey of the dynamic evolutionary

algorithms that have proposed so far by researchers for different problem settings and analyses

their performance. In Chapter III, a dynamic particle swarm algorithm is proposed and analyzed.

The proposed algorithm uses multiple swarms to identify multiple peaks and also uses

information from the previous iterations to keep track of the particles’ behavior and tracks the

optimal solution. In Chapter IV, the proposed algorithm is tested on several standard benchmark

functions. The data obtained is analyzed and the results are discussed. Chapter V concludes the

document with relevant observations and also recommends scope for future work.

7

CHAPTER II

DYNAMIC EVOLUTIONARY OPTIMIZATION

2.1 Introduction

Many real world optimization problems are subject to changing conditions over time. These

type of problems are termed as the dynamic optimization problems. The changes in the conditions

include changes in the objective function, the problem instance, and/or constraints, etc., (see

Figure 2.1). Consequently, the optimal solution of the problem under consideration changes

reflecting to the changes in the conditions. These conditional changes could be reflected on the

landscapes as changes in the optimal peak heights, shapes or locations or a combinations of these

three [2].

Figure 2.1 Dynamic changes occurring in the fitness landscape

The challenges in solving these dynamic optimization problems arise from the occurrence of

changes in the location, number and properties of the optimal solutions. When a standard

8

evolutionary algorithm converges under a certain problem setting, the diversity and exploration

capacity of algorithm are greatly diminished. As a result, continuing the evolutionary process

from the converged population without any further adaptation scheme to improve diversity or

enhance the scope of exploration creates a higher probability of being unable to find the new

optimal solutions or of being stuck with local optima. Therefore, it is very essential to implement

certain scheme or mechanism in the evolutionary algorithm to account for the dynamism of the

optimization problem.

There are several important aspects of dynamic optimization problems and these include

severity, frequency, observability, detectability, and dynamics of change [3]. While higher

severity of change necessitates the Dynamic Evolutionary Algorithm (DEA), to increase diversity

and exploration, higher frequency of change requires a faster convergence after a change has

occurred. If the severity of change is too high for the DEA, the algorithm may not locate the new

optima or might get stuck in local optima. Similarly, if the frequency of change is faster than the

adaptation speed of the DEA, the algorithm will not reach the optimal solutions before another

change occurs.

In contrast to the above discussions, it is not always easy to detect a change unless it is

observable. Some of the common ways followed by researchers include checking if the fitness of

re-evaluated select individuals has changed significantly [3], checking if there is a significant

change in the best fitness value found so far, etc. In most of the practices, it is also common to

assume that a change is explicitly known to the system and the system has a built-in capacity to

observe and detect changes instantly. In this thesis, it is assumed that change is explicitly known

to the system.

In addition, DOPs may also involve different dynamic changes and these include constant,

linear, circular/revolving, reshaping and random modes [3], [8], [9]. In majority of these cases,

9

the system dynamics is unknown and still the algorithm is expected to work without this

knowledge. In this thesis, a dynamic particle swarm optimization is presented which adapts to the

changes in the environment.

In general, a good DEA should be able to track and locate the optimal solution irrespective of

the severity and frequency of change. It should overcome the loss of diversity and use a

mechanism to enhance its exploration capacity. Coming to a case of a PSO, there is also another

setback in the presence of dynamic environments which is the outdated memory. This means that

there would be loss of information regarding the pbest and gbest. This, though not a serious issue

compared to the diversity loss, is something which cannot be neglected either. Therefore, for a

faster convergence and to re-diversify the population, it needs to use as much past information as

possible to account for the lost memory as well. The extra computational cost incurred in this

process should be justified with its performance improvement.

Some qualities sought in dynamic evolutionary algorithms include reusability, faster

convergence, higher accuracy, faster adaptation, easier implementation, and better performance.

Reusability is the ability of the algorithm to use as much information as possible from the

previous iterations. Reusability enhances the convergence speed of the algorithm and quickly

allows the algorithm to adapt to the new environment. When the severity of the change is high, it

reduces the reusability of the data and requires higher exploration capability for the algorithm.

Similarly, high frequency changes require faster convergence and adaptation. Accuracy is how

close the found optimal solution is to the true optimum. Extra efforts to improve the accuracy

may result in compromising with the convergence speed and therefore it is always important to

maintain a delicate balance between the additional computational cost and the expected

performance improvement. Adaptation, as the term suggests, refers to adapting the population to

the new environment.

10

The algorithm proposed in this thesis achieves all the above qualities. The algorithm uses

multiple swarms to track the behavior of the multiple peaks and uses a relocation principle, which

involves relocation of individuals based on their previous evolutionary data which helps in

maintaining the diversity. Since there is information from the past, the particles converge quickly

to the new optimum. The use of multiple populations also helps in tracking the optima even for

severe or drastic changes. The relocation data used is specific to every particle and thus gives

better adaptation to the population in contrast to the algorithms that use a single adaptation

scheme for every particle. As a result, there is a significant progress in the evolutionary process

giving faster adaptation, better accuracy, and quicker convergence to the algorithm.

The rest of the chapter is organized as follows; Section 2.2 provides a brief summary of the

different types of fitness landscapes. Section 2.3 explains about the various characteristics of the

dynamics involved in the DOPs. Section 2.4 gives a detailed explanation of the various

evolutionary approaches proposed by researchers so far to tackle the DOPs. In Section 2.5, few of

the performance metrics that are used to compare optimization approaches have been discussed in

detail. The various types of benchmark test functions which are used to test the behavior of the

algorithms are discussed in Section 2.6. Finally, the chapter is concluded with a brief summary in

Section 2.7.

2.2 Types of Fitness Landscapes

 Depending on the changes over the landscapes through time, Weicker et al [9] classified

fitness landscapes into different categories. Firstly, stationary or static landscapes where there is

no change or movement in the landscapes. These are most commonly used for EA studies. The

second type of fitness landscapes are the ones that change constantly every period of time. The

dynamic optimization algorithm is expected to estimate the recurrent amount of change and adapt

accordingly after a few iterations. These are relatively easy to implement and pose very small

11

difficulty for the algorithm. The next category of fitness landscapes has periodic changes. Here,

the landscape changes to its original state after a few change cycles. The difficulty lies in

predicting the time period for these periodic changes which is difficult for the algorithm to react.

Generally algorithms are designed to have a small memory element to store a few past locations

of the optimum for a possible re-use in these types of situations. The fourth type of fitness

landscapes is termed as homogeneous landscape where the entire landscape moves coherently as

opposed to various parts behaving heterogeneously. The fifth and last category of fitness

landscapes is called alternating landscapes where the optimum moves from one peak to another.

The changes occurring in the landscape are completely random and stochastic in nature. These

type of problems are the most difficult ones for the algorithm to tackle as there is no consistent

behavior in terms of the occurrence of change. Hence, implementing a proper adaptation scheme

in the algorithm is very much necessary to cope with dynamic nature of the landscape.

Figure 2.2 Dynamic Fitness Landscape

2.3 Characteristics of Dynamic Optimization Problems

It has to be understood that whenever a change occurs in the environment, it has to be within

the exploitation limits of the algorithm to perform an adaptation scheme for the population. On

12

the other hand, if a problem changes drastically without any exploitable similarities, it could be

regarded as two independent problems and the algorithm needs to be started from scratch as there

would be no useful historic data. For this reason, we pertain our studies only to the systems where

the dynamic changes in the environment have a significant amount of historic information from

the past environmental state that could be exploited after the occurrence of change.

As discussed earlier, it is very important to first understand the several characteristics of

change and the important aspects of DOPs in further detail before learning about the approaches

and the benchmark test functions. Several such important characteristics and aspects of the DOPs

exist which are worth a mention here. These include severity, frequency, observability,

detectability and dynamics of change [3]. This section sheds light on these aspects in some

details.

2.3.1 Severity of change – Severity of change refers to the amount or magnitude of the change

that has occurred in the landscape. The higher the severity, the lesser is the correlation of the new

landscape with the previous one and therefore, this requires the algorithm to enhance the diversity

and exploration. Sometimes very severe changes may result in the algorithm failure to locate the

optima. Therefore, it is very much essential to have an algorithm that performs well under drastic

changes.

2.3.2 Frequency of change – The frequency of change indicates how quickly the landscape

changes occur. A high frequency requires the algorithm to converge faster and locate the optima

before there is another change in the landscape. Very high frequencies are difficult to tackle

because the landscape changes even before the algorithm converges. Hence, a good algorithm

should have high adaptation frequency and faster convergence.

2.3.3 Observability and Detectability – These two closely related characteristics seem pretty

simple to understand but they are very important aspects to be kept in mind while designing a

13

dynamic evolutionary algorithm. Most of the time it is assumed that any change occurring in the

landscape can be observed and detected which is not true. Several methods have been proposed in

literature to detect these changes (e.g., [10]). Some of the methods detect the changes by re-

evaluating a select population of individuals and checking whether their fitness has changes

significantly or not. It is also a common practice to assume that the occurrence of change is

known to the system and these changes can be detected instantly. This helps the researchers to

focus solely on the design of the algorithm.

2.3.4 Dynamics of change – This represents the way the landscape moves when a change has

occurred. A reshaping dynamics has a landscape that changes it morphology on the occurrence of

change. A sliding or drifting dynamics results in the drifting of the optima in the landscape. A

periodic or oscillatory dynamics causes the optima to change periodically. A random or stochastic

dynamics has the optimum that changes randomly. In all these cases, the type of the dynamics is

not explicitly known to the system and the algorithm is expected to work irrespectively.

 2.4 Literature Review

Several researchers have focused on the DOPs over the last couple of decades and there are

multiple approaches that have been proposed to handle the DOPs. Recently Branke et al [1]

classified the different types of approaches used by researchers so far. These categorizations

provide some interesting insights on the current trend of literature and the proportion of studies

with respect to the approaches in each category. Each category has been explained below with

few examples from the literature along with their advantages and drawbacks. For more detailed

reviews, readers are referred to the references cited in [1] and [2].

2.4.1 Introducing Diversity – The main problem in designing a dynamic evolutionary

algorithm is the issue of diversity loss. From the discussions in the thesis so far, it is pretty

evident that the algorithm loses its diversity after converging at the optimum before the

14

occurrence of a change. Therefore, it is very important to induce diversity into the population

after a change has occurred.

Re-initialization of the population to induce diversity has been the most naïve approach ever.

Many algorithms and variations of the standard evolutionary algorithms are proposed with

different modifications and methodologies of re-initialization [2]. One general idea that comes to

one’s mind when thinking about re-initialization is to randomly re-initialize the population once

again after the occurrence of change. But it has to be noted that this type of re-initialization

causes a loss of historic information from the previous iterations and is therefore generally not

preferred.

In a typical GA, one approach to enhance diversity has been introducing an adaptive mutation

parameter call hyper-mutation, proposed by Cobb [13], in which the mutation rate is a

multiplication of the normal mutation rate and a hyper-mutation factor. This hyper-mutation is

invoked after the occurrence of a change. This concept of inducing diversity after the occurrence

of a change has been implemented in a PSO by Hu and Eberhart in [12], in which a part of the

swarm or whole swarm will be re-diversified using randomization. Daneshyari and Yen [11]

proposed a cultural-based PSO where the framework of knowledge inspired from belief space in

Cultural Algorithms is used to re-diversify the population after a change has occurred.

Woldesenbet and Yen [14] proposed a new method of re-initialization using the concept of

variable relocation where the sensitivity of the individuals for the changes in the environment is

calculated to estimate the specific relocation radius for the particles. Sensitive individuals have

larger relocation radii. In this thesis, the similar concept is applied to a PSO by measuring the

sensitivity of the particles for changes in the environment and calculating the relocation radii for

the particles after a change has occurred.

15

In these types of methods, since there is no computation involved in maintaining the diversity

all through the process, the algorithm can completely focus on the search process alone. In

addition, these methods resembles a type of local search which helps in exploiting the nearby

places of the optimum. However, the drawbacks of this approach include dependency on the

knowledge of the occurrence of change which is really difficult. Also, it is always not very easy

to know the correct values of mutation parameters and once the algorithm converges, only the

knowledge of the optimum is known whereas a lot more could be relevant.

2.4.2 Maintaining diversity – From the above approaches it can be understood that the

maintenance of diversity is a very important part of the dynamic evolutionary algorithm. Apart

from introducing the diversity after the occurrence of change, diversity can also be maintained

through-out the process of the algorithm. The main idea behind this approach is to avoid

premature convergence of the algorithm. Grefenstette [15] proposed a method called Random

Immigrants in which new individuals are added at random locations to the population for every

generation. The addition of new individuals brings more diversity to the total population. But it

has to be kept in mind that this also constantly increases the population size.

In another approach, Yang and Yao [42] proposed Population-based Incremental Learning

(PBIL) approach in which the algorithm uses a probability vector to generate the individuals in

the population. The probability adapts according to the best solution in each generation.

Blackwell et al. [16] proposed a variation of the PSO, called the charged PSO, in which a

repulsion mechanism is applied. Inspired from the concept of atoms in an electric field, the

algorithm prevents particles from getting too close to each other. Bui et al. [17] used a multi-

objective strategy where first objective is the original objective which is to search for the

optimum whereas the second objective is created for maintaining the diversity during the course

of the algorithm.

16

Many approaches have been proposed to maintain the diversity within the algorithm and they

all show that the respective algorithm works great for solving problems because of their

respective diversity maintenance strategies. The idea of maintaining diversity during the run of

the algorithm may be good for solving problems with severe changes and environments with rare

changes. However, if the changes are small, addition of individuals might create too much

diversity and effect the convergence of the algorithm. Also, using such complex strategies to

focus continuously on diversity may slow down the convergence process.

2.4.3 Memory Approaches – In this type of approaches, the algorithm is provided with some

kind of memory that allows it to store optimal solutions and reuse them at a later stage when

required. This could be done implicitly by using some redundant representation or explicitly by

including an external memory component and employing strategies to store, update and retrieve

information from this memory element. Strategies with a memory are very useful in environments

when the environment changes periodically, when there are repeated occurrences of a set of

conditions. In addition, redundant representations might slow down the process of convergence

but they could favor diversity.

Implicit approaches use a built-in form of implicit memory in the algorithm. One such form if

implicit memory is the redundant representation and diploidy is one common approach [19]. A

diploid algorithm is one which contains two alleles at each locus. Usually GAs are haploid for

static optimization problems, but it is believed that using diploid or multi-ploid approaches could

be useful in solving the dynamic optimization problems. Smith and Goldberg [20, 21] employed a

tri-allelic scheme in which an allele could take any one of the three possible values “0”, “1

recessive”, and “1 dominant”.

The explicit memory approaches include an external memory component to store the best

results and these are added back to the population if they are better fit than the current population.

17

Algorithms following this approach need to follow four aspects. First, the algorithm has to decide

on the content of the memory, like what to store and what not to store. In general previous best

solutions or local optima are stored in the memory [22]. In [23], the most diversified solutions, in

terms of standard deviations, are stored. In [11], the set of previous solutions along with the

locations of each individual are saved in the memory.

The next aspect is how to update the memory. In most cases, the best found elements of the

current generation will replace the old values in the memory. The elements that are removed are

the oldest members in the memory or ones with least contribution to the diversity of the

population or individuals with least contribution to fitness or a combination of these. The next

aspect is when to update the memory. Ideally, it should happen after the occurrence of a change.

But practically, detecting or observing a change at the time of its occurrence is very difficult.

Therefore, algorithms generally update their memory after every iteration or after a specific

number of iterations. The final aspect to focus on is how to use the memory. Generally the best

individuals stored in the memory are used to replace the worst individuals in the population. This

replacement happens after every iteration or after a specific number of iterations. It could also be

done after the detection of change if the change could be detected.

These memory based approaches are effective for solving problems that are set up in cyclic

environments. Due to their ability to retrieve previous best solutions from the memory, these

approaches are quite suitable for periodic and cyclic environments. However, these seem to be

effective only if the environment is either cyclic or periodic in nature and the memory becomes

obsolete when the environment changes are not cyclic [3]. Apart from the problems like

convergence and diversity, these approaches also incur problems due to their memory elements.

The redundant approaches might not be effective if the periodicity of the environment is too

large. As pointed out by Branke in [3], these approaches sometimes are not good enough to

maintain the diversity of the algorithm.

18

2.4.4 Multi-population approaches – This type of approach, as the name suggests, involves

more than one population in the algorithm. Generally, the total population is divided into two

groups where one looks for the optima and the other tracks the changes in the environment. In

general there is one main population and one group of sub-populations or “child populations.”

The idea behind using this approach is that the main population tracks the location of the optima

while the child population or sub-population looks out for any changes in the environment.

Oppacher and Wineberg [25] proposed a method which they called the shifting balance genetic

algorithm, which uses one main population to exploit the best optimum and several small

colonies to explore the search space.

Ursem [28] proposed another multi-population approach called the multinational GA in

which the grouping of individuals is done based on “hill-valley detection procedure.” Here, two

points are selected in the search space and a valley is assumed if the fitness at a sample point

between those two points is less than both the end points. The drawback with this approach is that

it involves numerous function evaluations just for the detection of a valley. Another method

proposed in [26] by Branke et al., called the Self-Organizing Scouts (SOS), uses a main large

population to search for the optima and dedicates several small populations to track any changes

in the optimum that has been found so far by the algorithm. A small population is created

whenever the main population finds a new optimum location. In the above approaches the

population sizes of parent and child populations is adjusted depending on the performance of the

algorithm.

One more approach is giving equal importance to both the populations. In this type both the

populations search for the optimum in the search space and also simultaneously track changes in

the environment. Kennedy [43] proposed a variation of PSO which uses a k-means algorithm to

locate the centers of different clusters of the particles in the population. Then these centers are

used to substitute the pbest or gbest locations. The k-means algorithm is run thrice to stabilize the

19

cluster centers. But the limitation that lies here is choosing the number of clusters. One other

example is the Speciation PSO (SPSO) [29], proposed by Parrott and Li, where each sub-

population is a hyper-sphere defined by the best fit individual and a specific radius. In this case,

there is an overlap of particles in the search space which leads to a loss in the diversity.

Clustering approaches help in having multiple populations while maintaining diversity during the

evolutionary process of the algorithm. Yang and Li [30] proposed an adaptive approach called the

Clustering Particle Swarm Optimization (CPSO) where a clustering mechanism is used to

maintain diversity during the course of the algorithm.

The multi-population approaches can maintain the diversity though the run of the algorithm.

They can recall some information from the past generations and the existence of multi-

populations also helps in tracking the presence of multiple optima and also can be effective for

solving problems with competing peaks or multi-modal problems. However, it is difficult to

determine the number of sub-populations, the search space for each population, the population

size etc. In CPSO [30], an adaptation strategy and clustering principle is used to determine the

number of sub-populations depending on the landscape settings.

In the recent years, multi-population approaches have gained importance for solving DOPs

due to their diversity enhancing capability and the ability to track the presence of multiple optima.

Recently a generic framework for solving DOPs using multiple swarms was proposed by Yang

and Li [27]. In this thesis, we follow the framework described in [27] to form sub-populations and

then use a relocation strategy to replace the particles after the occurrence of a change.

2.4.5 Self-Adaptation and Mutation – The self-adaptation mechanism is an outcome of a

process which involves learning and predicting based on historic data. When a change occurs, the

population undergoes a transient state where the values of the operators are changed to enhance

diversity and performance of the algorithm. In [9], several self-adaptation schemes are compared.

20

Cobb and Grefenstette [31] introduced the idea of hyper-mutation in which mutation probability

is increased after a change has occurred. Ursem [28] proposed a Multinational Genetic Algorithm

(MGA) in which five different parameters are encoded in the genomes of the MGA for

adaptation. Other suggested techniques include life-time learning [32] and adaptive chaotic

mutation [33].

 The assumption in this type of approaches is that the occurring environmental changes are in

the reach of the algorithm’s adaptation capability. Otherwise, the adapted population would be

inefficient and might not locate the new optimal solution.

2.5 Performance Metrics

There are several performance indexes that have been proposed so far for measuring the

performance of dynamic evolutionary algorithms. In this thesis, we have used offline error

performance [34] and adaptation performance [35] for measuring the performance of the

proposed dynamic evolutionary algorithms.

2.5.1 Offline error performance – Off-line error performance index [34] is the most common

performance index used by researchers recently. It is obtained as the average of the error between

the true optimal point and the best fitness at each evaluation. This can be mathematically

expressed as:

T

i

i

besttrue

avg

offline ff
T

e
1

)(
1

 (2.1)

where i is the evaluation counter; T is the total number of evaluations considered; ftrue is the true

optimum solution after the occurrence of a change; and finally fi
best is the fitness value of the best

particle until the current iteration after the occurrence of the change. This form of performance

evaluation of an algorithm is helpful in evaluating the overall performance of an algorithm and to

21

compare the final outcomes of different algorithms. However, there are certain disadvantages.

One is that they require that the time of the occurrence of change has to be known and the other is

that these measures are not normalized and therefore, there arise a possibility of the values

becoming biased under certain specific circumstances.

2.5.2 Adaptation performance – Adaptation performance [35] is the average ratio between the

best fitness value and the true optimum at each iteration. This can be mathematically expressed

as:

T

i true

best

f

f

T
I

1

1
 (2.2)

where i is the evaluation counter; T is the total number of evaluations considered; ftrue is the new

true optimum solution which is updated after the occurrence of a change; and fbest is the fitness

value of the best particle until the current iteration after the occurrence of a change. This gives a

measure of the adaptation capability of the algorithm. But however, this way of formulating the

error is not a good indication for measuring the performance when the fitness functional values

are very small.

2.6 Benchmark problems for Dynamic Evolutionary Algorithms

In the past few years, researchers have proposed several benchmark test functions for the

purpose of testing the performance of the proposed evolutionary algorithms. In general, these test

functions simulate the behavior of real world optimization problems and provide a simple

mechanism to control the landscape dynamics.

A good benchmark function should be flexible, simple and efficient. It should be flexible to

incorporate all the dynamics of the real world optimization problem with different dynamic

settings and scales. It should be simple enough to be implemented and analyzed and it should be

22

computationally efficient. And most importantly it should allow conjectures to real-world

problems or resemble them to as much extent as possible [3].

The earliest forms of dynamic optimization test problems use a number of standard static

optimization problems and switch back and forth between these landscapes through the run of the

algorithm [31]. Other forms of dynamic functions use a number of peaks that are independent of

each other and are specified by their height, width and location. Branke [37] proposed a general

platform for such kind of problems called the Moving Peaks Benchmark (MPB) Problem which

has been widely used in the literature in the recent years. Within the problem setting of the MPB

problem, the optima can be varied by changing the location, height and width of the peaks. It can

be mathematically expressed as:

)))(),(),(,(max),(max(),(
,...,11

tptwthxPxBtxF iii
M

 (2.3)

where)(xB

is a time-invariant landscape and P is the function defining the peak shape, where

each of the M peaks has its own time-varying parameters: height (h), width (w) and location

)).((tpi

 The different shapes of the peaks determine the type of the test function. When the peaks

have a cone shape, it becomes competing cones problem [38] and on the other hand, if the peaks

have a ‘Gaussian’ shape, then it becomes time-varying Gaussian peaks problem [39].

The most frequently used test function by researchers is the competing cones problem

proposed by Morrison and de Jong [38]. It consists of a number of cones each independently

defined by height, center and width. The cones are non-differentiable at their peaks and give a

good justification for real world optimization problems. It is expressed mathematically as:

n

j

ijjii
Mi

XxRHxf
1

2

,...,1
)(max)(

 (2.4)

23

where),....,,(21 nxxxx

is a point in the landscape, M is the number of cones that are present in

the environment, and each cone i is independently described by its height Hi, slope Ri, and its

center).,....,(1 iMii XXX

One more commonly used test function in recent times is the Gaussian peaks problem which

was proposed by Grefenstette [39]. This is very much similar to the moving cones problem

explained above except for the shape of the peaks. The peaks have a ‘Gaussian’ shape in contrast

to the cone shape above. The peaks are non-differentiable at their vertex and this problem

provides a good benchmark for evaluating dynamic optimization problems. However, this

becomes quite challenging when the number of peaks is very high. It can be mathematically

expressed as

.
)(2

))(,(
exp)(max),(

2

2

,..1

 t

tCXd
tAtXf

i

i
i

Ni
 (2.5)

where)(tAi is the amplitude,)(tCi denotes the center and)(ti represents the width of the n-

dimensional Gaussian peak.

There are other forms of test functions that are common shift stationary optimization test

problems using various dynamics of change. One good example of this type is the moving

parabola problem [40, 41]. The general form of the objective in this problem is given

mathematically as

.))((),(
1

2

n

i

i txMintxf (2.6)

The amount of shift in the landscape,)(ti , can have different dynamics of change and the

general types are linear, random and circular dynamics of change. Another interesting function

24

that was used by Branke in [8] is called the Oscillating peaks function. There are l landscapes

each consisting of m randomly chosen peaks similar to the moving peaks benchmark problem.

Each of these landscapes oscillate according to a cosine function. As a result of this oscillation,

the optima also oscillates between different points. This is given mathematically as

.5.0)
1

2
2

cos(5.0)(

))0(),(()(

l

i

steps

t
tw

ftwMaxtf ii

 (2.7)

2.7 Summary

The above sections give an understanding about the dynamic optimization problems and

show the different approaches that have been proposed so far. The strengths and weaknesses of

all the approaches are discussed in detail and gives a clear understanding of the problem settings

and the approaches. The chapter also discusses few benchmark problems that have been used in

this document along with a couple of performance metrics that are used in this thesis.

25

CHAPTER III

PROPOSED DYNAMIC PARTICLE SWARM OPTIMIZATION

The proposed algorithm adopts the general framework of using multi-swarms with clustering

[27] to create adaptable multiple sub-swarms and then exploit the previous history of the best

particles’ location and adapt the current location according to the environmental changes. The

algorithm uses clustering technique to create sub-swarms to explore the different areas and peaks

in the search space and after the occurrence of a change, the algorithm measures the particles’

sensitivity to the environmental changes and shifts the particle in the decision space by a so-

called relocation radius [14] which is determined based on the estimate of the environmental

change that has occurred. The algorithm is explained in detail below.

Let f=f(X,e) be the DOP we would like to optimize, where X represents the D-dimensional

decision space vector and xd is the dth-dimensional decision variable. For the purpose of this

document, the optimization problem is assumed to be a minimization problem. It needs to be

noted that a maximization problem can be converted to a minimization problem by multiplying

the objective function with -1 (i.e. duality principle).

3.1 Creating Multiple sub-swarms

Though there are several multi-population approaches proposed in literature, Clustering

Particle Swarm Optimization [30] seems to be a competitive one as it alleviates the general

problems faced by other multi-swarm approaches. The proposed algorithm, inspired from CPSO,

uses a single linkage hierarchical clustering scheme to form clusters. The distance between two

26

individual particles i and j in the d-dimensional space is given by their Euclidean distance which

is calculated as

D

d

d

j

d

i xxjid
1

2)(),((3.1)

Given an initial population pop, the clustering algorithm first creates a list G of clusters

containing only one particle. Then it uses a specific algorithm called FindNearestPair to find a

pair of clusters t and s such that they are the closest among all the clusters in G. If the total

number of particles in both clusters is less than a predefined maximum sub-population size, called

subSize, both clusters t and s are combined into one cluster. This process is continued until all the

clusters in G have more than one single particle. The cluster list G thus created is appended to a

sub-population list plst.

The distance between two clusters t and s in the list G, is denoted by M(t, s), is defined as the

closest distance between two individual particles i and j which belong to the two clusters t and s

respectively. M(t, s) is mathematically calculated according to the Equation 3.2 given below.

),(min),(
,

jidstM
sjti

 (3.2)

It can be observed from the above description, that the clustering process adaptively creates

sub-swarms depending on the distribution of the particles in the fitness landscape. The number of

sub-swarms and the size of each swarm are automatically determined by the algorithm and the

parameter subSize. The pseudo-code for the overall clustering process is described in Figure 3.1

and Figure 3.2.

27

Figure 3.1 Pseudo-code for the Clustering Algorithm to form sub-swarms.

Procedure: Clustering

Begin

 Create a temporary cluster list G of size [pop];

 for each individual particle i in pop do

 G[i] = pop[i]; (each cluster has one particle)

 end for

 Calculate the distance between all clusters in G and construct a distance matrix M of

 size |G|×|G|;

 while TRUE do

 if !FindNearestPair then

 Break;

 end if

 t=t+s; (Merge clusters t and s)

 Delete cluster s from G;

 Recalculate all distances in M that are affected because of the merging of t

 and s;

 if every cluster in G has more than one particle then

 Break;

 end if

 end while

 Remove pop;

 plst = plst + G;

end

28

Figure 3.2 Pseudo-code for FindNearestPair Algorithm

Procedure: FindNearestPair

Begin

 found = FALSE;

 min_dist =

D

k

kk LU
1

2)(, where Uk and Lk are upper and lower limits of the kth

 dimension of the search space;

 for i = 0 to |G| do

 for j = i + 1 to |G| do

 if (|G[i]| + |G[j]| > subSize) then

 Continue;

 end if

 if (min_dist > M (G[i] + G[j])) then

 min_dist = M (G[i], G[j]);

 t = G[i];

 s = G[j];

 found = TRUE;

 end if

 end for

 end for

 Return found;

end

29

3.2 Local Search Strategy

Once the sub-swarms are created using the above shown clustering method, local search is

performed by each sub-swarm in its sub-region of the search space. Each sub-swarms works

independently and there is no sharing of information among the swarms. This gives the algorithm

an opportunity to explore different areas of the search space and helps in tracking multiple peaks

in the landscape. In order for a sub-swarm to locate a local peak, the general particle swarm

optimization approach (discussed earlier) is implemented.

)()(22,11

d

i

d

gbest

d

i

d

pbesti

d

i

rd

i xxrcxxrcvv (3.3)

rd

i

d

i

rd

i vxx (3.4)

To enhance the speed of the convergence process, the inertia weight ω is varied dynamically

according to Equation 3.5. This parameter, along with c1 and c2 (cognitive and social parameters,

respectively), control the balance between exploration and exploitation in a traditional PSO. The

value of this inertia weight is generally chosen as 0.9. But it makes sense to have a large value

during the initial iterations to enhance the exploration and then decrease it gradually to favor

more on exploitation. It is therefore decreased linearly according to the following equation,

,
_

)(minmax

max
itertotal

iter

 (3.5)

where min and max are the minimum and maximum limits for the parameter , iter is the

current count of iterations and total_iter is the total number of iterations of the algorithm.

The pseudo-code for the local search process is given in Figure 3.3

30

Figure 3.3 Pseudo-code for performing the local search in a sub-swarm S.

3.3 Redundancy Control

Redundancy control is to remove the redundant particles in the population. This includes

particles that are converged, overcrowded particles in a sub-region and particles located in the

overlapping region of two sub-populations. It is very essential to perform this redundancy check

because, firstly, these particles do not contribute to the search progress and secondly, it is a waste

of computational resources to perform unprofitable evaluations on these particles.

To perform an overlap check between two populations, the concept of search radius is

introduced. The search radius of a population is defined as average distance of every particle in

the population to the central particle of the population. It can be mathematically represented as

Procedure: Local Search in a sub-swarm S

Begin

 for each particle i ϵ S do

 Update the location of particle i according to equation 3.3 and 3.4;

 if particle i is better than its pbest then

 Update pbest;

 if particle i is better than gbest then

 Update gbest;

 end if

 end if

 end for

end

31

,),(
1

)(

si

centersid
s

sradius (3.6)

where scenter is the central position of the sub-population s and |s| is its population size. If any

particle of a sub-population lies within the search radius of another sub-population then it is said

that overlapping occurred. If the distance between the best particles of two sub-populations is less

than their search radius then they are combined or one of them is removed. It is generally

assumed that one sub-population covers one peak but however, it may not be always true. If a

sub-population covers more than one peak, other sub-populations within its search area should

not be removed because there is a possibility of losing those peaks. This has to be taken into

consideration before combining two overlapping populations.

Therefore, before combining two populations, t and s, which are within each other’s search

radius, an overlap ratio, roverlap(t, s) is calculated. The populations are merged only if this overlap

ratio is larger than a preset threshold value of β. The percentage of particles from s within the

search radius of t and the percentage of particles from t within the search radius of s is calculated

and the lowest of these values is chosen as the overlap ratio between the two populations. It has to

be noted that the radius used in the above calculation is the radius calculated when the sub-

swarms are formed. The reason for this is that it gives a quicker identification of the overlap.

In order to avoid too many particles searching for a single peak, and overcrowding check

needs to be performed on each sub-population after the overlapping check. If the number of

particles in a sub-population is greater than subSize then those extra particles are removed from

the population to equate the population size to subSize. In addition to this, a converged sub-

population does not yield any result to the search progress. Therefore, it is beneficial to remove

these individuals from the population. If the radius of a sub-population is smaller than a threshold

value ε, which is selected as 0.01, then the population can be considered as converged. These

32

individuals are removed from the sub-population list plst. The pseudo-code for the redundancy

control is given in Figure 3.4.

Figure 3.4 Pseudo-code for performing Redundancy Control.

Procedure: Redundancy Control

Begin

 for each pair of sub-populations (t, s) in plst do

 if roverlap(t, s) > β then

 Merge t and s into t;

 Remove s from plst;

 end if

 end for

 for each sub-population t ϵ plst do

 if |t| > subSize then

 Remove worst (|t| - subSize) individuals from t;

 end if

 end for

 for each sub-population s ϵ plst do

 if radius(s) < ε then

 Remove s from plst;

 end if

 end for

end

Update the location of particle i according to equation 3.3 and 3.4;

 if particle i is better than its pbest then

 Update pbest;

 if particle i is better than gbest then

 Update gbest;

 end if

33

3.4 Change Detection

Through-out the literature we have seen that the detection of changes in the environment is a

very challenging and difficult task. Many dynamic evolutionary algorithms proposed so far either

re-evaluate the particles for a significant change in their fitness values or explicitly assume the

knowledge of change detection to be obtained without actually performing any algorithm to

detect it. In this thesis, the gbest particles of the sub-swarms are re-evaluated every iteration to

detect changes in the environment.

3.5 Introducing Diversity using Variable Relocation Algorithm

The importance of diversity in the algorithm is evident from the previous discussions.

Therefore, to induce diversity into the algorithm after the occurrence of change, the proposed

dynamic evolutionary algorithm relocates the particles to new locations. To re-locate the

particles, their sensitivity to the changes in the environment is estimated based on their

evolutionary progress through the run of the algorithm and corresponding relocation radius for

these particles is determined. The particles are then relocated using this relocation radius [14].

Let
d

ix denote the evolutionary progress of a particle i in the dth dimension of the decision

variable. It is measured as the difference between the dth dimension decision variable
d

ix of the

particle and the weighted sum of its previous location,
d

previx , and its personal best,
d

pbestix , . This

is mathematically represented as

).(,,

d

pbesti

d

previ

d

i

d

i xxxx (3.7)

When the weighted parameter]1,0[is zero, the evolutionary progress
d

ix is equal to the

velocity parameter
rd

iv from Equation 3.3. When ,1
d

ix is nothing but
rd

iv minus the pbest

34

term from Equation 3.3. To have a balanced involvement of the pbest in the evolutionary

progress, the value of in the above equation is chosen as 0.5.

 The evolutionary fitness progress, if of a particle i is the difference between its fitness,

,if in its current location and its previous location, ., previf

previii fff , (3.8)

The average evolutionary progress
d

ix in the dth dimension decision variable of a particle

can be obtained cumulatively as a weighted sum of the particle’s
d

ix and
d

ix calculated so far.

The similar method is applied for calculating the average evolutionary fitness progress. The

parameter iter denotes the number of iterations either from the start of the process or after a

change is detected, whichever is latest. On the other hand, λ represents the weight given to the

previous evolutionary progress relative to the current one. Using λ=1, the weighted average is

nothing but a simple mean of all the evolutionary progress and taking its value as 0 gives no

weightage to the previous data. The value of λ is chosen such as to diminish the weightage of the

past values over time, meaning the latest data gets more importance and it gets diminished as time

progresses. Therefore, the value of λ=0.5 is chosen to have an intuitively good balance between

decay and persistence of the effect of the past values.

1

iter

xiterx
x

d

i

d

id

i

 (3.9)

1

iter

fiterf
f ii

i

 (3.10)

The average evolutionary progress in the decision space of a particle can be obtained as

35

 .
1

2

D

d

d

ii xX (3.11)

The average sensitivity of the decision space to change in the objective space is defined as the

ratio of the average evolutionary fitness progress to the average evolutionary progress in decision

space. This can be mathematically obtained as shown below.

i

i
xi

X

f
S

, (3.12)

The average sensitivity of the dth dimension of the decision space to change in the objective

space can be obtained as

.

1

2
,,

D

d

d

i

id

i

i

d

i
xi

d

xi

x

f
x

X

x
Ss (3.13)

In DOPs, the evolutionary fitness progress if can arise from changes in the decision space

of an individual particle or changes in the environmental parameters. This fitness progress can be

assumed to be a linear sum of the fitness changes occurring due to the evolutionary progress and

environmental changes. This can be formulated approximately as

 ,,

1

, eSxsf ei

D

d

d

i

d

xii

 (3.14)

where
d

xis , is the average sensitivity of the fitness to change in the dth dimension of the decision

space. eiS , is the average sensitivity of the particle’s fitness to change in the environment;
d

ix

and e are the corresponding changes in the dth dimension decision variable and the

environmental parameter, respectively. Under normal process, during the absence of change, the

36

environmental parameter is constant, i.e., e =0. This implies that the change in the fitness values

is because of the changes in the decision space. Then Equation 3.14 reduces to

 .,

1

, ixi

D

d

d

i

d

xii XSxsf

 (3.15)

However, when there is a change in the environmental parameters, e is different from zero.

Re-evaluating the particles at the same locations results in no fitness value changes due to the

evolutionary progress, then all the changes in the decision variables becomes zero i.e.,
d

ix = 0.

Then Equation 3.14 can be re-written as

.,

12 eSfff ei

ee

i (3.16)

where
12 ee ff represents the difference between the fitness values of the particle in the new

and old environments respectively.

The proposed algorithm estimates the required offsets in the decision variables that will

match the changes caused due to the environment. This is done through the concept of relocation

radius, which is the anticipated uncertainty in the decision space of an individual. The relocation

radius is used to relocate the particles in the decision space with intent to enhance their fitness

values. It is expressed as

,

,,min

,

12

,

12

,

12

12

,

12

ee

xi

ee

xi

ee

best

ee

xi

ee

i

ff
S

ff

S

ff

ff
S

ff

R (3.17)

where
2e

bestf is the best fitness under the new environment.

The relocation offsets in each dimension of the decision space can then be obtained as

37

.
,

,

i

d

i
i

xi

d

xiid

i
X

x
R

S

sR
r

 (3.18)

If ,minmax

ddd

i xxr then
d

ir is trimmed to

),()(minmax

ddd

i

d

i xxrsignr (3.19)

where
dxmax

and
dxmin are the maximum and minimum limits of the dth dimension decision

variables respectively, and)(rsign returns the sign of r.

If
d

ir is less than a predetermined parameter,
drmin which is the minimum allowable

relocation offset in the dth dimension decision variable, then

.min

dd

i rr (3.20)

After validation of
d

ir , the relocation algorithm will generate a number of new particles as

.d

i

d

i

d

new rpxx (3.21)

where p is a random number between 0 and 1. If the value of
d

newx lies outside the limits then it is

reassigned back into the objective space. The particles are relocated and passed into the new

environment. This new initial population will be better adapted to the change because of the

exploitation of the previous evolutionary data.

After this re-initialization of the particles in the new environment, more particles are

randomly added to the population to account for the particles that are removed by the redundancy

algorithm. With the new population thus created, the clustering process is again started to create

sub-swarms. The pseudo-code for Variable relocation algorithm is given below in Figure 3.5.

38

Figure 3.5 Variable Relocation Algorithm for re-initializing the particles

3.6 Summary

Many experimental studies have shown that tracking and locating multiple optima for a

dynamic optimization problem rather than a single optimum is an effective idea [29], [30], [36],

[44], [45]. It is very difficult for an algorithm to accurately locate an optimum in a static

environment. And it is even more difficult to locate the optimum solution when the environment

is dynamic in nature. Hence, it is more effective to track and locate a set of several good optima

in a specific environment, which greatly enhances the chance of finding the global optimum by

the assumption that one local optima in an environmental setting has more significant chance of

being the global optimum when the change occurs.

But using multiple swarms or populations raises questions like how many populations and

what should be the size of each sub-population. To address this concern, the proposed algorithm

uses an adaptive clustering mechanism to form sub-swarms based on the setting of the landscape.

The expected computational complexity in having multiple swarms is reduced by using

Procedure: Variable Relocation Algorithm

Begin

 Obtain average sensitivities of the decision variables to changes in the environment

 using Equations 3.7 thru 3.12;

 Update the archive;

 Re-evaluate the particles in their current locations and determine their fitness value

 changes due to the changes in the environment;

 Obtain the relocation vectors for the particles using Equation 3.17;

 Reset the Δf and Δx values for all the particles;

end

39

redundancy control algorithm which removes particles that are no longer helpful for the search

process.

Another challenge faced by dynamic evolutionary algorithms is the loss of diversity after the

convergence of the algorithm. To counter this problem, a variable relocation algorithm has been

added to the algorithm to relocate the particles using as much information from the previous

computation as possible. If the dynamics of the change occurred is homogeneous, then the

relocation radius of all individuals will have the same value. If the dynamics of the change is

heterogeneous and deterministic, the relocation radius will vary individually and the relocation

radius will have a deterministic nature. Further, if the changes are random, the proposed

relocation scheme will account for the changes in the fitness landscape by taking average

sensitivity values over the evolutionary run, which allows in treating the changes stochastically.

Furthermore, because of the effective reuse of the previous data, the algorithm provides a faster

convergence.

It has been discussed in the literature that there are several aspects of changes that occur in

the problem setting of a DOP. Though there are innumerous algorithms proposed by researchers,

most of them are suitable only for a particular type of dynamic environments. In addition, it is

seldom possible for an algorithm to detect changes occurring in the environment. Therefore, the

necessity of designing a dynamic evolutionary algorithm that does not require to detect changes is

very high. However, from the above analysis it can be said that the proposed algorithm could be

used in environments with different aspects of changes like mild changes, severe changes, cyclic

changes, rapid changes, etc. It is easy to implement and does not involve heavy complex

strategies. The flow chart for the proposed algorithm is given below.

40

Figure 3.6 Flowchart for the proposed Dynamic Particle Swarm Optimization

41

CHAPTER IV

EXPERIMENTAL SIMULATION RESULTS AND DISCUSSION

4.1 Experimental Setup

Two sets of experiments were conducted on the Moving Peaks Benchmark Problem [37]. The

objective of the first set of experiments is to investigate the working mechanism of the clustering

algorithm and analyze the sensitivity of key parameters used in the algorithm. The second set of

experiments were conducted to investigate the performance of the algorithm in comparison with

some of the algorithms proposed in literature. The results of the other peer algorithms for the

comparative analysis used in this thesis are taken directly from the respective papers in which the

algorithms were originally published.

The proposed algorithm is compared against several published algorithms. To completely

understand the potential of the proposed algorithm, it has been compared to some of the

algorithms that use multiple swarms approach and other optimization algorithms that use the

variable relocation mechanism. The multiple swarm approaches that are used for the comparative

analysis are mCPSO [36], mQSO [36], SPSO [29], CPSO [30] and CESO [24]. To analyze the

performance of the proposed algorithm from the perspective of adaptation, it is compared with

RVDEA variants proposed in [14]. The performance measure used was the Offline Error

Variation for comparing the algorithms. For comparing the relocation algorithm, one more

metric, the adaptation performance is used to understand the performance of the algorithm from

adaptation perspective.

42

4.2 Experimental Investigation of the Algorithm

In this section, experiments are carried out to understand the working mechanism of the

algorithm. Table 4.1 shows the experimental default settings for the Moving Peaks Benchmark

problem used in the experimental simulations of this thesis. The settings are the same as in all the

involved algorithms. In Table 4.1, the term “change frequency (U)” means that the environment

changes foe every U iterations, S denotes the range of allele values, and I denotes the initial

height for all peaks. The height and width of the peaks are shifted randomly in the range H = [30,

70] and W = [1, 12]. The initial population of the swarm was 100 particles and the inertia weight

is varied from ωmax = 0.6 to ωmin = 0.3. The cognitive and social parameters are fixed at 1.7. The

value of Roverlap was set to 0.7 for the MPB problem. To understand the process of clustering, the

algorithms is first run on the MPB problem with number of peaks = 10 and subSize (N) = 4.

TABLE 4.1

DEFAULT EXPERIMENTAL PARAMETER SETTINGS FOR MPB PROBLEM

Number of Peaks 10

Change frequency U Every 5000 evaluations

Dimensions 5

Height severity 7.0

Width severity 1.0

Peak Shape Cone

Limits of each dimension [0,100]

H [30,70]

W [1,12]

Peak shift length 1.0

43

 Figure 4.1 gives an imaginative understanding of how the particles are formed into clusters

and how each sub-population converges at a different peak. It has to be noted that the number of

particles is decreasing from iteration to iteration as the redundancy control algorithm comes into

picture. The dark black squares are the locations of the best solutions of each individual peaks

and the cross marks indicate the positions of the particles in the landscape.

Figure 4.1 Particle locations at different evaluations: a) no. of particles: 100; sub-swarms:28

b) no. of particles: 82; sub-swarms: 23 c) no. of particles: 68; sub-swarms: 19 d) no. of

particles: 36; sub-swarms: 10.

From the Figure 4.1 (a), it can be seen that at the start of the process or just after the

occurrence of a change, the particles are scattered in the search space. Since the maximum

population size for a sub-swarm is chosen as 4, there are approximately 25 sub-swarms that have

been formed. In Figure 4.1 (b), the clusters formed are merged since there are just 10 peaks in the

landscape. The particles converge to the corresponding local optimum locations and it is seen in

Figure 4.1 (c) that the number of particles is reduced because of the overlapping check and

44

convergence check performed by the redundancy algorithm. It can be observed that, as the

evaluations progress, the number of particles is decreasing. Finally, the number of sub-swarms is

settled to 10 and the particles are converged to their respective local optimal locations in Figure

4.1 (d). The final particle locations are stored and relocation algorithm is performed.

To understand the effect of number of particles (M) and the effect of the user defined subSize

(N) parameter, the algorithm is run on MPB problem for 50 times by varying N as {2, 3, 5, 10, 12,

15} and M as {10, 30, 50, 70, 100, 150, 200}. The problem settings are as mentioned in Table

4.1. The offline error variation results are given in Table 4.2. The number of sub-swarms that

have been created by the algorithm has been tabulated in Table 4.3. The number of peaks found

by the algorithm is tabulated in Table 4.4. If a peak is within the radius of a sub-swarm then it is

considered to be found by the algorithm.

TABLE 4.2

OFFLINE ERROR VARIATION OF DIFFERENT PARAMETER

CONFIGURATIONS

 M=10 M=30 M=50 M=70 M=100 M=150 M=200

N=2 3.25 1.2 1.25 1.42 2.58 3.84 5.21

N=3 6.21 2.95 2.04 1.11 1.2 1.67 3.36

N=5 6.05 2.59 2.11 1.65 1.74 1.49 2.59

N=10 8.25 4.25 3.65 2.8 2.04 1.88 1.94

N=12 7.46 4.53 3.58 2.98 2.65 1.83 1.98

N=15 8.65 5.73 3.87 3.25 2.94 2.82 2.13

45

TABLE 4.3

NUMBER OF SUB-SWARMS CREATED BY THE CLUSTERING METHOD

 M=10 M=30 M=50 M=70 M=100 M=150 M=200

N=2 5 15 25 35 50 75 100

N=3 4 10.2 17.6 25.2 35.4 32.3 43.4

N=5 2.45 6.56 10.8 15.8 21.5 24.46 33.65

N=10 2.14 3.62 5.89 8.32 11.4 16.64 21.98

N=12 1.48 3.45 5.67 8.61 9.76 14.35 18.47

N=15 1.46 2.51 4.57 5.52 7.59 11.36 15.25

TABLE 4.4

NUMBER OF PEAKS FOUND BY THE ALGORITHM

 M=10 M=30 M=50 M=70 M=100 M=150 M=200

N=2 3.67 5.92 6.82 7.27 7.52 7.9 8

N=3 3.13 5.18 6.39 7.15 7.71 8.33 8.72

N=5 2.47 4.18 5.1 5.78 6.45 7.28 8.07

N=10 1.75 3.09 3.78 4.45 4.95 5.75 6.32

N=12 1.66 2.97 3.75 4.12 4.85 5.65 6.25

N=15 1.76 2.55 3.42 3.75 4.29 5.07 5.57

46

From the Table 4.2, it can be seen that the different configurations of the algorithm

significantly affect the performance of the algorithm. When the subSize N, is fixed and M is

increased to a very large value or a very small value, the performance of the algorithm

deteriorates and vice-versa. It can be seen from Table 4.3 that too large or too small values of N

cause either very few or too many sub-swarms to be created. From this it can be understood that

the performance of the algorithm greatly depends on the value of the parameter subSize.

Comparing the values in Tables 4.2 and 4.4, it can be noted that the higher the value of the M,

more peaks are found by the algorithm, which could be translated as more close to the actual

number of peaks in the landscape.

To further understand the behavior of the algorithm and the effects of its parameters, the

number of peaks in the MPB problem is varied along with the values of M and N. The offline

error variation for a given value of subSize is plotted for each value of M. The number of peaks is

varied as {10, 30, 50, and 100}. The plots obtained are given below in Figure 4.2.

Figure 4.2 Offline error with different configurations on MPB problem with different

number of peaks.

47

It can be observed in Figure 4.2 that when the population size M is fixed, the offline error

decreases as N increases until a turning point. The error further increases after crossing the

turning point and it also needs to be noted that this turning point is different for different

configurations. Therefore, the algorithm has to adjust the value of subSize accordingly to adapt to

the environment when M is fixed. From the above discussions, it is evident that the parameter

subSize affects the performance of the algorithm to a greater extent and therefore has to be chosen

wisely.

One more parameter that is user defined is the overlapping ratio, β. This value determines

whether or not to merge two sub-swarms when they overlap each other. The higher the value of β,

the longer it takes for the algorithm to merge two overlapping populations. This value is varied

for different configurations on the MPB problem with different number of peaks. The value of M

is chosen as 200 and N is chosen as 7. The other settings are the default settings mentioned in

Table 4.1. The offline error results obtained for varying number of peaks for varying β is plotted

in Figure 4.3.

Figure 4.3 Offline errors of varying β with different number of peaks

From the above figure, it can be seen that the performance of the algorithm is not much

affected by the different values of β. The results validate that the value of β is not crucial to the

performance of the algorithm. However, intuitively it is recommended to choose the value of β

equal to 0.1.

48

4.3 Comparison with peer algorithms

The performance of the algorithm is compared with several state-of-the-art algorithms. All

the tests are performed on the MPB problem with the settings as mentioned in Table 4.1. The

results of the peer algorithms given below are taken directly from the respective papers in which

they are originally published. The following Table 4.5 gives the offline error of the algorithms as

a function of varying peaks.

TABLE 4.5

OFFLINE ERROR VARIATION OF THE ALGORITHMS ON MPB PROBLEM AS

A FUNCTION OF NUMBER OF PEAKS

Peaks mCPSO mQSO SPSO CPSO CESO

RVDEA

mem

RVDEA

clusters

Proposed

Algorithm

1 4.93 5.07 2.64 0.14 1.04 1.23 1.02 0.755

10 2.08 1.8 2.51 1.056 1.38 4.88 3.54 0.785

20 2.64 2.42 3.21 1.59 1.72 5.68 3.87 0.796

30 2.63 2.48 3.64 1.58 1.24 5.86 3.92 0.736

40 2.67 2.55 3.85 1.51 1.3 5.65 3.49 0.725

50 2.65 2.5 3.86 1.54 1.45 5.21 3.78 0.775

100 2.49 2.36 4.01 1.41 1.28 4.98 3.37 0.714

200 2.44 2.26 3.82 1.24 N/A 4.92 3.54 0.714

49

Figure 4.4 Offline Error Variation of various Algorithms on MPB Problem as function

of number of peaks

TABLE 4.6

ADAPTATION PERFORMANCE OF THE ALGORITHM ON MPB PROBLEM AS A

FUNCTION OF NUMBER OF PEAKS

Peaks
RVDEA
mem

RVDEA
Cluster

Proposed
Algorithm

1 0.9822 0.9852 0.9876

5 0.9329 0.9612 0.9758

10 0.9293 0.9487 0.9549

25 0.9309 0.9436 0.9439

50 0.9245 0.9452 0.9746

100 0.9278 0.9516 0.9683

Figure 4.4 gives the graphical representation of Table 4.5. It can be seen that the offline error

values for the proposed algorithm are much less, as desired, compared to the values of the other

algorithms. From Table 4.6, it can be noted that the adaptation performance also shows that the

algorithm functions better than its peer competitors. The algorithm is also tested as a function of

50

generations between the occurrences of changes on MPB problem with 10 peaks. The results are

given below.

TABLE 4.7

OFFLINE ERROR VARIATION ON MPB PROBLEM WITH 10 PEAKS AS A

FUNCITON OF GENERATIONS BETWEEN CHANGES

Gen No.
RVDEA
mem

RVDEA
Cluster

Proposed
Algorithm

1 15.82 12.91 10.97

5 8.89 7.67 7.58

10 7.21 6.048 5.91

25 5.35 4.28 4.13

50 4.88 3.54 3.26

100 4.12 3.14 3.09

4.4 Summary

The results in the above sections show that the proposed algorithm is capable of solving

dynamic optimization problems. The algorithm is easy to implement and does not involve high

computational cost. The algorithm uses an adaptive mechanism to form clusters and then exploits

the evolutionary progress of particles to relocate them in the new environment. This blend of two

established ideas has given the algorithm an edge over the peer algorithms. It is to be noted that

the algorithm performs much better than most of the other algorithms it is compared with.

51

CHAPTER V

CONCLUSION AND FUTURE RECOMMENDATIONS

Many real world optimization problems are faced with changing environments and changing

conditions. These changing conditions result in changes in the optimum solution. It is therefore

required that an optimization algorithm has to adapt to these changes accordingly to track and

locate the changing optimum.

Dynamic optimization problems are the problems in which the fitness landscape undergoes

changes during the process of optimization. Several researchers have proposed various

approaches to address the challenges and resolve the difficulties involved in solving the dynamic

optimization problems. In this thesis we have seen the different challenges involved in a dynamic

optimization problem, we have studied about the changes that occur in the environment and the

effects of these changes on the optimization problem and the fitness landscape. There was also a

brief study about the benchmark test functions and the performance indexes that are being used

by the researchers to test the performance of the proposed algorithm. The thesis also sheds light

on several dynamic evolutionary algorithm approaches proposed by researchers so far. The

approaches have been studied from the unique perspective of their methodology, performance

measure and the computational ease with which they could be implemented. The strengths and

weaknesses of these approaches were discussed. From this analysis it can be concluded that

changes in the environment occur in various aspects and it is very difficult to detect these changes

or know exactly what is going to change and when it is going to change.

52

The two main problems faced by any optimization problem are convergence and diversity.

The diversity problem is magnified in the case of a dynamic optimization problem as the

algorithm loses its diversity after convergence but because of the environmental changes, it is a

challenge to maintain this diversity. It is observed that several attempts have been made by

researchers to maintain diversity or introduce diversity. It is also observed that most of the

approaches that have been proposed are successful in a particular problem setting or can handle

only specific type of changes.

It can be understood from all the above discussions that dynamic optimization problems

require an efficient and effective algorithm to solve them. Meta-heuristic methods are among the

efficient techniques to address the dynamic optimization problems. One such technique which has

gained popularity in the recent years is the Particle Swarm Optimization (PSO). Particle swarm

optimization algorithms are widely preferred in the recent years over other evolutionary

algorithms such as Genetic Algorithms (GAs). PSO involves less number of parameters to adjust

and it does not include removal of particles from the population; instead it makes changes to the

particles’ locations to arrive at the optimal solution. Unlike GAs, PSO does not involve sharing of

information through chromosomes; only the location of the global best is shared among the

particles through-out. The efficiency of PSO is generally high compared to other evolutionary

algorithms. PSO can locate significant optimal solution in a few function evaluations. This makes

it more cost convenient. In addition, the PSO has a flexibility to control the balance between

global and local exploration of the search space. This unique feature enhances the search

capability of the algorithm and avoids the problem of premature convergence, thus making it

more robust. However, a normal PSO algorithm is not sufficient to address the dynamic

optimization problems.

In this thesis, a dynamic particle swarm optimization algorithm is proposed which uses

multiple swarms to track and locate a set of good optima. The proposed algorithm uses a

53

clustering mechanism to adaptively distribute the particles into sub-populations and locate the set

of optima. With the clustering technique used in the algorithm, proper number of sub-swarms are

automatically formed. The size of each sub-swarm is also automatically determined. The sub-

swarms then perform local search in respective sub regions to track and locate the optimal

solutions. To enhance the speed of the convergence process and for better accuracy, the inertia

parameter of the traditional PSO is varied dynamically. To address the dynamic changes in the

environment, the algorithm uses a variable relocation algorithm to relocate the already converged

or converging particles according to the changes in the landscape. The relocation is done based on

the changes in the function values of the individuals due to the changes in the environment and

the average sensitivities of the decision variables to the corresponding changes in the objective

space. The relocation radius is calculated individually and the particles are relocated to their new

location. This restores the diversity to the algorithm and since there is a bit of uncertainty

involved in calculating the relocation radius, enhances exploration. Because the adaptation has

been carried out on particles from previous iterations, an effective reuse of the past evolutionary

data is done. The relocation vectors are specific to each individual particle and hence provide a

better adaptation than a normal random re-initialization.

The proposed algorithm has been tested on dynamic benchmark problems and has shown

better results compared to existing state-of-the-art approaches. The clustering mechanism

drastically enhances the performance of PSO in tracking and locating multiple optima. It is also

observed that the relocation mechanism used in the algorithm provides a better adaptation and

effective reuse of the past evolutionary data. The redundancy control helps in removing the

insignificant particles out of the population which saves computational time and cost. This

algorithm is suitable for any type of dynamic environments such as severe changes, small

changes, high frequency changes etc. It can be easily implemented as there are no complex

techniques involved. Furthermore, the mechanisms used in the algorithm require minimal

54

computational resources and therefore, the performance improvement is higher than the

additional computational cost incurred. The algorithm can further be enhanced by incorporating a

method for detecting the occurrence of change. For future work, a change detecting mechanism

can be developed and can be added to the algorithm to enhance its overall performance.

55

REFERENCES

[1] T. T. Nguyen, S Yang, and J Branke, “Evolutionary dynamic optimization: a survey of the

state of the art.” Swarm and Evolutionary Computation, 6 (2012): 1-24.

[2] Y. G. Woldesenbet, Uncertainty and Constraint Handling in Evolutionary Algorithms,

Master’s Thesis, Oklahoma State University, Stillwater, OK, 2007.

[3] J. Branke, “Evolutionary Optimization in Dynamic Environments,” Norwell, MA: Kluwer

Publishing, 2001.

[4] B. K. Panigrahi, V. Ravikumar Pandi, and S Das, “Adaptive particle swarm optimization

approach for static and dynamic economic load dispatch,” in Energy conversion and

management 49(6), (2008): 1407-1415.

[5] R. Merton, “Continuous-Time Finance,” Basil Blackwell, Oxford, UK, 1990.

[6] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of the IEEE

International Conference on Neural Networks, 1995.

[7] C. E. Lin, and G. L. Viviani, “Hierarchical economic dispatch for piecewise quadratic cost

functions,” in IEEE Transactions on Power Apparatus and Systems 6, (1984): 1170-1175.

[8] S. Yang, “Constructing dynamic test environments for genetic algorithms based on

problem difficulty,” in Proceedings of IEEE Congress on Evolutionary Computation,

(2004), 1262-1269.

[9] K. Weicker and N. Weicker, “Dynamic rotation and partial visibility,” in Proceedings of

IEEE Congress on Evolutionary Computation, La Jolla, CA, (2000): 1125-1131.

56

[10] H. Mujtaba, G. Kendall, A. R. Baig, E. Ozcan, “Detecting change and dealing with

uncertainty in imperfect evolutionary environments,” in Information Sciences 302 (2015):

33-49.

[11] M. Daneshyari, and G. Yen, “Cultural-based multi-objective particle swarm

optimization,” in IEEE Transactions on Cybernetics, 41(2), (2011): 553-567.

[12] X. Hu, and R. C. Eberhart, “Adaptive particle swarm optimization: detection and response

to dynamic systems,” in Proceedings of IEEE Congress on Evolutionary Computation,

(2002):1666-1670.

[13] H. G. Cobb, “An investigation into the use of hypermutation as an adaptive operator in

genetic algorithms having continuous, time-dependent nonstationary environments,”

Technical Report, Naval Research Laboratory, Washington DC, USA, (1990).

[14] Y. Woldesenbet, and G. Yen, “Dynamic evolutionary algorithm with variable

relocation,” in IEEE Transactions on Evolutionary Computation, 13 (3) (2009): 500-513.

[15] J. J. Grefenstette, “Genetic algorithms for changing environments,” in Proceedings of

International Conference on Parallel Problem Solving from Nature, Amsterdam, The

Netherlands: Elsevier, (1992): 137-144.

[16] T. M. Blackwell, and P. J. Bentley, “Dynamic Search With Charged Swarms,” in Genetic

and Evolutoinary Computation Conference, Morgan Kaufmann, (2002): 19-26.

[17] L. Bui, H. Abbass, and J. Branke, “Multiobjective optimization for dynamic

environments,” in Proceedings of the IEEE Congress on Evolutionary Computation,

(2005): 2349-2356.

[18] T. T. Nguyen, “Continuous dynamic optimization using evolutionary algorithms,” Ph. D.

Thesis, University of Birmingham, UK, 2011.

[19] J. Lewis, E. Hart, and G. Ritchie, “A comparison of dominance mechanisms and simple

mutation on non-stationary problems,” in International Conference on Parallel Problem

Solving from Nature, Springer Berlin Heidelberg, (1998): 139-148.

57

[20] R. E. Smith, “Diploid genetic algorithms for search in time varying environments,”

in Annual Southeast Regional Conference of the ACM, (1987): 175-179.

[21] D. E. Goldberg, and R. E. Smith, “Non-stationary function optimization using genetic

algorithms with dominance and diploidy,” in Proceedings of 2nd International Conference

on Genetic Algorithms, Lawrence Erlbaum Associates, (1987): 59-68.

[22] C. N. Bendtsen, and T. Krink, “Dynamic memory model for non-stationary optimization,”

in Proceedings of the IEEE Congress on Evolutionary Computation, (2002): 145-150.

[23] E. L. Yu, and P. N. Suganthan, “Evolutionary programming with ensemble of explicit

memories for dynamic optimization,” in Proceedings of the IEEE Congress on

Evolutionary Computation, IEEE, (2009): 431-438.

[24] R. I. Lung, and D. Dumitrescu, “A collaborative model for tracking optima in dynamic

environments,” in Proceedings of the IEEE Congress on Evolutionary Computation, IEEE,

(2007): 564-567.

[25] F. Oppacher, and M. Wineberg, “The shifting balance genetic algorithm: Improving the GA

in a dynamic environment,” in Proceedings of the genetic and evolutionary computation

conference, Vol. 1, (1999): 504-510.

[26] J. Branke, T. Kaubler, C. Schmidt, and H. Schmeck, “A multi-population approach to

dynamic optimization problems,” in Adaptive Computing in Design and Manufacturing

2000, Berlin, Germany: Springer-Verlag, (2000): 299-307.

[27] C. Li, and S. Yang, “A general framework of multipopulation methods with clustering in

undetectable dynamic environments,” in IEEE Transactions on Evolutionary

Computation, 16(4) (2012): 556-577.

[28] R. K. Ursem, “Multinational GAs: Multimodal Optimization Techniques in Dynamic

Environments,” in Genetic and Evolutionary Computation Conference, Morgan Kaufmann,

(2000): 19-26.

58

[29] X. Li, J. Branke, and T. Blackwell, “Particle swarm with speciation and adaptation in a

dynamic environment,” in Proceedings of the 8th annual conference on Genetic and

Evolutionary Computation Conference, ACM, (2006): 51-58.

[30] S. Yang and C. Li, “A clustering particle swarm optimizer for locating and tracking

multiple optima in dynamic environments,” in IEEE Transactions on Evolutionary

Computation, 14(6) (2010): 959-974.

[31] H. G. Cobb, and J. J. Grefenstette, “Genetic algorithms for tracking changing

environments,” in Proceedings of 5th International Conference on Genetic Algorithms,

(1993): 523-530.

[32] T. Sasaki, and M. Tokoro, “Adaptation under changing environments with various rates of

inheritance of acquired characters,” in Proceedings of Artificial Life and Robotics, Springer

Berlin Heidelberg, (1999): 34-41.

[33] T. Nanayakkara, K. Watanabe, and K. Izumi, “Evolving in dynamic environments through

adaptive chaotic mutation,” in Proceedings of 3rd International Symposium on Artificial

Life and Robotics, (1999): 520-523.

[34] K. De Jong, “Analysis of the behavior of a class of genetic adaptive systems,” Ph.D.

Thesis, University of Michigan, Ann Arbor, 1975.

[35] N. Mori, H. Kita, and Y. Nishikawa, “Adaptation to a changing environment by means of

the feedback thermodynamical genetic algorithm,” in Proceedings of International

Conference on Parallel Problem Solving from Nature—PPSN V, Berlin, Germany,

Springer-Verlag, (1998): 149-158.

[36] T. Blackwell, and J. Branke, “Multiswarms, exclusion, and anti-convergence in dynamic

environments,” in IEEE Transactions on Evolutionary Computation, 10(4) (2006): 459-

472.

59

[37] J. Branke, “Memory enhanced evolutionary algorithms for changing optimization

problems,” in Proceedings of IEEE Congress on Evolutionary Computation, Washington,

DC, USA, (1999): 1875-1882.

[38] R. W. Morrison, and K. De Jong, “A test problem generator for non-stationary

environments,” in Proceedings of Congress on Evolutionary Computation, Washington,

DC, USA, IEEE, (1999): 2047-2053.

[39] J. J. Grefenstette, “Evolvability in dynamic fitness landscapes: A genetic algorithm

approach,” in Proceedings of Congress on Evolutionary Computation, Washington, DC,

USA, IEEE, (1999): 2031-2038.

[40] P. J. Angeline, “Tracking extrema in dynamic environments,” in Proceedings of 6th

International Conference on Evolutionary Programming, Springer Berlin Heidelberg,

(1997): 335-345.

[41] T. Back, “On the behavior of evolutionary algorithms in dynamic environments,” in

Proceedings of IEEE Congress on Evolutionary Computation, Anchorage, AK, IEEE,

(1998): 446-451.

[42] S. Yang, and X. Yao, “Experimental study on population-based incremental learning

algorithms for dynamic optimization problems,” in Soft Computing – A Fusion of

Foundations, Methodologies and Applications 9(11) (2005): 815-834.

[43] J. Kennedy, “Stereotyping: improving particle swarm performance with cluster analysis

stereotyping: improving particle swarm performance with cluster analysis,” in Proceedings

of the IEEE Congress on Evolutionary Computation, IEEE, (2000): 1507-1512.

[44] L. Liu, and S. R. Ranjithan, “An adaptive optimization technique for dynamic

environments,” in Engineering Applications of Artificial Intelligence 23(5)(2010): 772-779.

[45] D. Parrott, and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm

model using speciation,” in IEEE Transactions on Evolutionary Computation, 10(4)

(2006): 440-458.

VITA

Suryakiran Chavali K V Ramana

Candidate for the Degree of

Master of Science

Thesis: DYNAMIC PARTICLE SWARM OPTIMIZATION

Major Field: Control Systems

Biographical:

Personal Data:

Born in Visakhapatnam, India on April 26, 1990.

Current Address: 127 N Duck Street, Apt E14, Stillwater, OK.

Education:

Completed the requirements for the Master of Science in Control Systems at

Oklahoma State University, Stillwater, Oklahoma in December, 2015.

Completed the requirements for the Bachelor of Science/Arts in Instrumentation

and Control Engineering at National Institute of Technology, Tiruchhcirrappalli,

Tamil Nadu, India in 2012.

Experience:

Graduate Teaching Assistant, Oklahoma State University, Stillwater, OK.

Innovation Analyst, Aditya Birla Minacs, Bangalore, India.

Graduate Engineer Trainee, Michelin India Tires Pvt. Ltd., Chennai, India.

