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Abstract: Many physical, geological and environmental phenomena are spread over large spatio-
temporal scales and require robust sensor network systems to gather data, collaborate and monitor
the area for anomaly detection. In decentralized sensor networks, deployed in monitoring such events,
agents are constrained to monitor localized regions and collaborate with other agents to obtain a
common global model. While such sensor networks yield significant benefits such as endurance and
scalability, they are constrained in amount of on-board resources available such as computational
ability, communication bandwidth and fuel. In this work the problem of decentralized functional
inference over a spatially separated sensor network with limited communication capability is studied.
Gaussian Processes (GPs) have been studied as priors over spatially distributed functions. The key
benefit of GPs is that the number and location of regression kernels, and the numerical values
of associated weights, are simultaneously inferred from the underlying data. While this enables
the model to adapt its structure based on the data, it also makes decentralized inference using
Consensus type algorithms difficult if agents do not know each-other’s kernel selection a-priori, and
traditional sample based inference is communication-inefficient if all of the data is shared between
agents. A new decentralized communication-efficient algorithm for decentralized information fusion
over GPs is presented of which the key contribution is that agents do not have to a-priori know
each-other’s kernel selections. Instead, our algorithm enables agent’s to build a global GP model by
fusing together local compressed GPs. To further prevent unnecessary communication, the presented
algorithm can utilize information theoretic measures on value-of-information to initiate broadcasts
only when agents have sufficient new information. The algorithm is compared with several state of
the art methods on real-world and synthetic datasets, and is shown to lead to efficient estimation
accuracy with decreased communication cost, without having to assume that agents share a common
set of kernels. To further evaluate the real time performance of the presented method, a multi-agent
simulator system is developed as a test bench. Experiments for decentralized multi-agent planning,
which use the described fusion algorithm, are conducted and the respective results are provided.

iv



Acknowledgments

I would like to thank my parents, Dayal Das and Jaya Lakshmi Allamraju, for their constant

support and encouragement in letting me pursue my Masters. Without their full support, I would

have never realized my dream of obtaining an advanced degree.

I would like to thank my sister and brother-in-law, Sushama and Dileep Tata, for their motivation

and support throughout my entire duration of my Masters and constantly boosting my morale when

things didn’t look good. I wouldn’t have got this work completed without their daily pep talk.

My advisor, Dr.Girish Chowdhary, is among some of the most erudite persons I have met. His

infinite patience when teaching me how to properly identify, analyze and approach the problem with

an out-of-the-box thinking approach, is something I am really grateful for. Dr.Girish taught me a

lot on how to research properly, by always providing the best of suggestions to ensure I not simply

do research, but also present them well.

I would like to thank my committee member Dr.Christopher Crick for his support in various

collaboration projects and helping me out whenever we hit roadblocks in our work. His methods of

explaining the idea were always clear and amazing. I would also like to thank my other committee

member Dr.He Bai for his inputs in my research, results and my thesis document.

My friends in the lab, Ben Reish, Ali Abdollahi, Sri Vuppala, Harshal Maske, Alex Suhren,

Allan Axelrod, Talpasai, Milecia Matthews and Dane Johnson. They provided all help they could

from their areas of expertise, which helped me put this thesis together. I had some of the best

times discussing various ideas with you guys, which definitely got me excited with new concepts and

disciplines to explore.

And of course my friends outside the lab, Shyam, Kavya, Emilio, Orlando, Rachana, Sravani

and Lalitha, who always put up with my eccentric behavior and made sure I maintained my sanity.

I will cherish all the good times we had together.

This work was supported in part by AFOSR grant FA9550-15-1-0146 and DOE grant DE-

FE0012173

v

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.



Contents
Chapter Page

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Preliminaries: Gaussian Process Regression . . . . . . . . . . . . . . . . . . . 4

1.2.2 Problem Formulation: Decentralized Information Fusion . . . . . . . . . . . . 5

1.2.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Decentralized Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Communication Efficient Distributed Inference . . . . . . . . . . . . . . . . . 9

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Decentralized functional estimation algorithms 11

2.1 Weighted Average Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Adaptive Value of Information based Distributed Sensing (AVoIDS) . . . . . . . . . 14

2.3 Gaussian Process Decentralized Data Fusion (GPDDF) . . . . . . . . . . . . . . . . 16

3 Gaussian Processes Information Fusion 18

3.1 Description of the GP Fusion (GPF) Algorithm . . . . . . . . . . . . . . . . . . . . . 18

3.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Experimental Validation on Synthetic and Real-World Datasets 26

4.1 Evaluation on Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Evaluation on EDGAR Methane Emissions Data Set . . . . . . . . . . . . . . . . . . 29

vi



4.3 Evaluation on Intel Berkeley Temperature Dataset . . . . . . . . . . . . . . . . . . . 32

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Multi-Agent Game Emulator(MAGE) 36

5.1 Flightgear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 QGroundControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 MAGE Communication Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 System Setup and Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 System layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.2 MAGE System Run-Time Execution . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Experiments with MAGE: Decentralized Inference of Unknown Function . . . . . . . 44

5.5.1 Decentralized Multi-UAS Collaborative Exploration . . . . . . . . . . . . . . 44

5.5.2 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusions and Future Work 47

Bibliography 48

A Acronyms 53

vii



List of Figures
Figure Page

1.1 Sensor Network for decentralized functional inference in spatially separated sensors.

Agents communicate local function estimates fi to estimate the global function f . . 2

3.1 Spatially separated agents sampling an unknown function. The red points indicate

the operating domain of A1 and black points indicate the operating domain of A2 . 25

3.2 1D example demonstrating GP Fusion procedure. The example demonstrates two

agents converging to an accurate representation when sections of the function are

inaccessible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Synthetic air density on 50× 50 gridworld . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Error to centralized estimate with time . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Error to centralized estimate vs final communication cost for the synthetic density

dataset. GPFusion class algorithms lies in the bottom left region showing good accu-

racy along with lower communication costs. . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Distribution of methane(CH4) over North America captured by the Europa’s JRC

satellite. The boxed region shows the region from which data is selected for conducting

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Error to centralized estimate with time on EDGAR dataset. GPFusion class methods

show lowest error in comparison with other estimation methods. . . . . . . . . . . . 31

4.6 Error to centralized estimate vs final communication cost for the EDGAR Methane

dataset. GPFusion class algorithms lies in the bottom left region showing good accu-

racy along with lower communication costs. . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Arrangement of Sensor at Intel Berkeley . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 Temperature variation over 50 sensors used for the purpose of evaluating the algorithms 33

viii



4.9 Error to centralized estimate with time . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.10 Error to centralized estimate vs final communication cost for the Intel Berkeley

dataset. GPFusion class algorithms lies in the bottom left region showing good accu-

racy along with lower communication costs. . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Example of Human-Robot Interactions in a DoD mission. Manned and unmanned

agents operate in a common mission environment and take decisions to maximize a

mission score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Flightgear’s property tree structure, containing references to each vehicle’s runtime

state variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Flightgear Multiplayer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Flightgear Multiplayer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Component-Relation diagram of various components of MAGE . . . . . . . . . . . . 42

5.6 Exploration from the perspective of two UAVs, thirty minutes after scenario start.

The UAVs have collaborated in decentralized fashion to explore different areas of the

scenario space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Flightgear Multiplayer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



Chapter 1

Introduction

This thesis examines the problem of decentralized information fusion in spatially separated sensor

networks with communication constraints. A novel Gaussian Process based model fusion method is

proposed which presents a solution to the problem decentralized estimation by fusing two Gaussian

Processes and reducing the communication cost incurred in the network.

1.1 Motivation

The rapid growth of cheap sensing devices has fueled a trend to use Autonomous Sensor Networks

(ASN) to perform complex missions. For example, in applications such as carbon sequestration,

sensors are required to monitor the variations in carbon dioxide levels over underground CO2 storage

locations and learn the spatio-temporal variations in CO2 over a large area, so that CO2 leaks in

the storage units can be quickly detected. Physics based models alone often do not have sufficient

fidelity to model and predict such large phenomena, necessitating the need to utilize data-driven

modeling and inference. However, the massive scales of such environmental phenomena and the Big

Data they generate pose key barriers in learning and predicting spatio-temporal variations. The use

of a team of spatially distributed agents, each of which can estimate a small section of the function,

and autonomously collaborate to estimate the global phenomena is desired.

In the sensing literature, authors have argued that a decentralized network can improve cover-

age, robustness, and be more adaptive to changes, if it operates in a decentralized manner, over a

single sensor. Decentralized sensor network systems posses several capabilities, such as lack of a-

priori knowledge of global network topology allowing nodes to be constructed in a modular fashion,

flexibility to on-line addition or loss of sensors and scalability to large sensor nodes [10, 16] which

makes them more attractive in comparison to centralized sensor networks, particular in application

1



such as monitoring and surveillance. Figure 1.1 shows a decentralized sensor network with agents

estimating local models of an unknown function and passing them to their neighbors.

Figure 1.1: Sensor Network for decentralized functional inference in spatially separated sensors.

Agents communicate local function estimates fi to estimate the global function f .

A key benefit of a decentralized network is that agents can adapt to their local surroundings.

For example, when learning local CO2 distributions using a Gaussian Process [45], agents are free

to choose the locations of their own kernels to better adapt the model to their environment. The

main challenge in this situation is in ensuring that agents can fuse together the local models they

have learned into a common coherent global model. A naive way to achieve this would be to

transmit all of the data that the agents have used to build their model to neighboring agents.

However, this is communication intensive, and not suitable for resource-constrained platforms, since

transmission of individual data samples consumes significant amount of power. Our work is interested

in techniques which can monitor and detect spatial phenomena over large periods of time with

minimum communication costs.

Designing sensor network for spatial estimation tasks has been previously studied in environ-

mental monitoring applications. In Geo-statistics, spatial processes modeled as random fields are

estimated via simple Kriging interpolation techniques [14,49],alternatively known as Gaussian Pro-

cess Bayesian Non Parametric(GP-BNP) models. However, with decentralized function estimation

using simple Kriging techniques presented in literature, communication between agents is assumed

to be continuous and hence these techniques are not very efficient when network is communication

restricted.

In this thesis a solution is presented to the problem of decentralized functional inference using

2



Gaussian Process(GP) priors over a spatially separated sensor network. Gaussian Processes(GPs)

are Bayesian Nonparametric (BNP) models that have been widely studied as priors for functional

inference [2, 13, 45] . They lead to data-driven models in which functions are modeled using covari-

ance kernel between any two data points to build generative models of smooth spatially correlated

distributions. The key benefit of GPs, and other kernel based models [28, 48], is that the number

and location of regression kernels, and the numerical values of the associated regression weights are

simultaneously inferred from the data. This enables the model to adapt its structure to best reflect

the data, without having to assume a lot of a-priori domain knowledge. In the sense that the number

of parameters of the model are not fixed a-priori, rather adjusts to the data, GPs are termed as

nonparametric models.

However, while this property of GPs makes them very powerful and flexible regression tools, it

also makes the problem of decentralized inference over GPs very hard. The main reason behind this

is that since each agent sees a different set of data, the kernels it chooses are likely to be different

than other agents, and it is not clear as to how the correlation between kernels should be accounted

for when fusing together two different GP models. In particular, Consensus type algorithms are

difficult to implement without having to assume a common set of kernels [8, 11].

Another issue which arises in deploying a team of decentralized autonomous sensor networks for

spatial modeling include coordination between sensors to optimally gather information, cooperation

to obtain unknown information and respond to unanticipated situations or changes in the environ-

ment that are sensed. As the environment changes, the agents on the team must be in agreement as

to what changes took place. A consequence of the above challenges is for the network to maintain

information sharing between agents to perform desired task in an optimal manner. However, when

communication is limited, agents will have incomplete information about the underlying function

and each agent is not guaranteed to have the same estimate of the function which may lead to

suboptimal coordination between agents in the ASN.

1.2 Background

This section provides a background on Gaussian Process inference on function f and lays out the

problem formulation for the decentralized information fusion in autonomous sensor networks.
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1.2.1 Preliminaries: Gaussian Process Regression

Gaussian Processes(GPs) are Bayesian Nonparametric models that have proven to be powerful and

flexible priors for functional regression [45, 48]. A GP is defined as a collection of random variables

such that every finite subset is jointly Gaussian. The joint Gaussian condition means that GPs are

completely characterized by their second order statistics [45]. A GP is a distribution over functions,

that is, a draw from a GP is a function. For the sake of clarity of exposition, we will assume that

f ∈ <; the extension to the multidimensional case are available [3, 25].

f(·) ∼ G P(m(·), k(·, ·)), (1.1)

where m(·) is the mean function, and k(·, ·) is a real-valued, positive definite covariance kernel

function. Under GP regression, the mean is assumed to lie in the class of functions

G =

g(·) ∈ <X
∣∣∣ g(·) =

∞∑
i=1

αik(zi, ·)

 , (1.2)

where X = <n, αi ∈ <, zi ∈X . The space G is a subspace of H , an RKHS, and ‖g‖H <∞ where

‖g(·)‖2H =
∑∞
i=1

∑∞
j=1 αiαjk(zi, zj). This assumption imposes a smoothness prior on the mean and

makes the problem amenable to analysis though the representer theorem [47].

Let Zτ = {z1, . . . , zτ} be a set of state measurements, discretely sampled where {1 . . . τ} are in-

dices for the discrete sample times {t1, . . . , tτ}. The set defines a covariance matrix Kij := k(zi, zj).

The positive definite function k generates a mapping ψ to an RKHS H such that k(zi, zj) =

〈ψ(zi), ψ(zj)〉H . GP regression assumes that the uncertainty in the data and the model follow

Gaussian distributions, while modeling the function estimate using a mean function m̂ and a co-

variance function Σ̂. Since the observations are Gaussian, the likelihood function p(yτ |Zτ , β) is

Gaussian. The initial prior is set to p(β) ∼ N (0,Σw), and Bayes’ rule is used to infer the posterior

distribution p(β|Zτ , yτ ) with each new observation. Since the posterior is Gaussian, the update

generates a revised mean m̂τ and covariance Σ̂τ . If |Zτ | is finite, the solution for the posterior mean

and covariance is also finite [47]. In particular, given a new input zτ+1, the joint distribution of the

data available up to τ and zτ under the prior distribution is yτ

yτ+1

 ∼ N
0,

 K(Zτ , Zτ ) + ω2I kzτ+1

kTzτ+1
k∗τ+1


 , (1.3)
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where kzτ+1
= K(zτ+1, Zτ ) and k∗τ+1 = k(zτ+1, zτ+1). The posterior (sometimes called the predic-

tive) distribution, obtained by conditioning the joint Gaussian prior distribution over the observation

zt+1, is computed by

p(yτ+1|Zτ , yτ , zτ+1) ∼ N (m̂τ+1, Σ̂τ+1), (1.4)

where

m̂τ+1 = βTτ+1kzτ+1
(1.5)

Σ̂τ+1 = k∗τ+1 − kTzτ+1
Cτkzτ+1

(1.6)

are the updated mean and covariance estimates, respectively, and where Cτ := (K(Zτ , Zτ )+ω2I)−1

and βτ+1 := Cτyτ .

Since both Zτ and yτ grow with data, computing the inverse becomes computationally in-

tractable over time. Therefore, to adapt GPs for the online setting, we use the efficient and recur-

sive scheme introduced in [15]. The set Z generates a family of functions FZ ⊂ H whose richness

characterizes the quality of the posterior inference; therefore a natural and simple way to determine

whether to add a new point to the subspace is to check how well it is approximated by the elements

in Z. This is known as the kernel linear independence test [15], and is computed by

γτ+1 =

∥∥∥∥∥∥
τ∑
i=1

αiψ(zi)− ψ(zτ+1)

∥∥∥∥∥∥
2

H

. (1.7)

The scalar γτ+1 is the length of the residual of ψ(zτ+1) projected onto the subspace FZτ . When

γτ+1 is larger than a specified threshold, then a new data point should be added to the data set.

The coefficient vector α minimizing (1.7) is given by ατ = K−1
Zτ
kzτ+1 , meaning that

γτ+1 = k∗τ+1 − kTzτ+1
ατ . (1.8)

This restricted set of selected elements, called the basis vector set, is denoted by BV . When

incorporating a new data point into the GP model, the inverse kernel matrix can be recomputed

with a rank-1 update.

In the next subsection the decentralized information fusion problem, for inference on an unknown

function f , monitored by a sensor network, is presented.

1.2.2 Problem Formulation: Decentralized Information Fusion

Let f be an unknown function, defined on domain X , monitored by N autonomous sensing agents.

Each agent node i ∈ {1, 2, . . . , N}, defines a local GP prior pi(f |X ) = N (0, Σ̄i), over the function

5



and can perform a Bayesian update on the prior with a set of independent sensor observations

ȳi = {y1, y2, . . . , yk} with likelihood P(ȳi|Xi, f); where Xi ⊂ X are the sensing locations monitored

by agent i. The posterior distribution on function f , by sensing agent i, over the domain X is given

by

Pi(f |ȳi,X ,Xi) = N (µi,Σi) (1.9)

where µi = k(X ,Xi)((K(Xi,Xi)+ω2I)−1)ȳi and Σi = k(X ,X )−k(X ,Xi)((K(Xi,Xi)+ω2I)−1)k(Xi,X ).

Given some agent-to-agent communication topology, assume that agent i is aware only of its

connected neighbors and unaware of the entire communication topology. Let N(i) represent the set

the connected neighbors of agent i, and let Zit represent the information set contained in i till time

t i.e Zit represents the local measurements ȳit of agent i plus the information received by i from its

neighbors till time t− 1. The Gaussian Process decentralized information fusion problem is to find

the posterior predictive distribution conditioned as

Pi,N(i)(f) = P
(
f |Zit

⋃
j∈N(i)

Zjt , X
)

(1.10)

If all agents {j; ∀j ∈ N(i) }, communicate measurement samples ȳj , then computing the fused

posterior distribution at agent i for time t would be straight forward since it involves a recursive

Bayesian update of the local GP prior with the comprehensive set of observations at node i. Com-

municating observation samples between agents can however lead to huge communication costs. In

order to overcome this problem, the decentralized information fusion problem (1.10) is reformulated

such that the posterior distribution can be computed without the measurements samples. Assume

agent i updates its GP with the information set from j ∈ N(i);∀j via a FIFO queue. The local GP

estimate (1.9) at time t is redefined as follows

Pi(f |Zit) ∝ P(f |Zit ∩ Z
j
t )P(f |Zi/jt ) (1.11)

The distribution P(f |Zi/jt ) is the posterior over f conditioned on information in i relative to

j and P(f |Zit ∩ Z
j
t ) is the posterior GP conditioned on the information common to both i and j.

The joint fused posterior GP (1.10), between agent i and j, can be recovered using the factorization

(1.11) as

6



Pi,j(f) = P(f |Zit ∪ Z
j
t )

∝ P(f |Zit ∩ Z
j
t )P(f |Zi/jt )P(f |Zj/it )

=
Pi(f |Zit)Pj(f |Z

j
t )

P(f |Zit ∩ Z
j
t )

;∀j ∈ N(i) (1.12)

The posterior distribution in equation (1.12) can be computed since the local GP distribution

for each agent belong to a class of exponential functions i.e Pi(f |Zit) := N (µi,Σi) and Pj(f |Zjt ) :=

N (µj,Σj). However, to compute the joint common posterior P(f |Zit ∩ Z
j
t ), the networks needs to

communicate Zit and Zjt , which still results in large communication costs.

Double counting of information is an important problem in Decentralized Data Fusion algo-

rithms, since duplication of information results in a large communication penalty with little in-

formation propagation as messages which consist redundant information are exchanged between

agents [1]. Methods such as Covariance intersection have been proposed which are shown to be

robust to information duplication [12, 20]. These methods are however not suitable for functional

estimation over large spaces as it is computationally intensive to calculate the inversion of the co-

variance matrix for the entire domain. Other methods such as Consensus [38, 46] and Distributed

inference using graphical models [34,36] can be implemented with some modification to learn an un-

known function at every location in X . These algorithms however will result in high communication

cost which are unsuitable when agents in sensor network are communication constrained. A method

to reduce communication using Censoring is described in [34] for graphical model based inference.

Mu et al. [36] have extended the censoring idea to a decentralized setting by adaptively adjusting

a Value-of-Information (VoI) threshold based on the communication cost in the network. However

the possible extensions of this method to perform function inference has never been put in practice.

1.2.3 Notations

The information flow between the set of agents in I = {1, 2, ..., N} in a sensor network can be

mathematically modeled using a graph G = (V , E). Set V = {1, 2, . . . , N} denote vertex set and

E ⊂ V × V denotes the edge set. When agent i can communicate with agent j the vertex pair

(i, j) ∈ E . When (i, j) ∈ E , agent j is called a neighbor of agent i and is denoted by N(i). We

assume that G is strongly connected i.e. there exist a path from i to j in each direction which can

be formed from the elements in E . The Gaussian process generated from information sampled by

agent i is denoted as G Pi and the composite model obtained by fusing model of j into i is denoted

7



as G Pji; j ∈ N(i).

1.3 Related Work

1.3.1 Decentralized Data Fusion

Decentralized data fusion has received significant attention in the estimation and tracking literature

[17,43] and many solutions have been proposed to solve the state estimation problem. We however,

focus on the decentralized information fusion for inference on functions in our work. Current state

of the art techniques for information fusion in decentralized sensor networks have been Channel

Filters [30, 31], Covariance Intersection [22], Consensus [38, 46], and techniques for inference on

Graphical models with censoring based approaches [27, 36]. These methods, however are mostly

focused on inference for finite-dimensional states and need modifications to applied to function

inference. Some recent works in modeling functions have been [11, 29]. These methods however

assumes that each agent in the network have an a-priori fixed common model supports which is

restrictive.

Channel Filters(CF) have been proposed as a solution to the problem of decentralized estimation

and tracking with fusion of information between the nodes of the sensor network [30, 41]. In CF

algorithms an unknown state x, such as target position, is estimated with nodes estimating part

of the true state x. Each sensor node receives information from its neighbors and assimilates this

information before passing it to subsequent nodes. Thus even as the node’s neighbor list grows,the

size of the outgoing message remains constant. This allows the network to scale indefinitely. In many

information fusion methods, a key challenge is to prevent double counting of information [41]. The

CF system maintains a synchronization between the local information at node and the previously

communicated information to the sensor. The main power of CF algorithms is that they eliminate

double counting of information by adhering to a tree structure. However maintaining coordination

on the beliefs leads to huge communication costs due to continuous information exchange.

A second set of algorithms which prevents double counting of information is Covariance Inter-

section (CI). These methods achieve fusion between any two estimates when the correlation between

them is unknown. These methods have been used in SLAM applications [23] and remote sensing for

image fusion [22]. CI filters are designed to work with low dimensional Gaussian distributions and

they do not scale well for high dimensional distributions.
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Decentralized information fusion to model demand in mobility-on-demand systems, using a fleet

of autonomous robotic vehicles, has been studied in [11]. In this work a each agent receives demand

measurements from different sectors and models these measurements with a Gaussian Process. Each

agent is assumed to have a common set of kernels for the GP model. Agents then communicate local

GP summaries, which include information about the model to their neighbors and include neighbor’s

summaries into their models to facilitate greater predictive capability of demand in unobserved

locations. Our work is closely related to the information fusion methodology for inference described

in [11] in the sense that we also focus on fusing compressed GP models instead of transmitting the

data itself. The crucial difference however is that we relax the assumptions of common support

for the GP model and one-one communication topology. This ability makes our algorithm truly

decentralized, as agents do not need to agree on common kernel set a-priori, rather, agents are free

to adapt the model structure to their individual environments.

1.3.2 Communication Efficient Distributed Inference

In Graphical models, agents build local probability models on the parameters of the state. When new

measurements are observed, agents propagate messages about the measurements between each other

to update their probability beliefs utilizing a priori known information about the correlations between

each other’s probability models. Noting that not all agents have valuable information to communi-

cate at all times, the idea of censoring (i.e. stopping from communicating) low information-value

agents has been used in distributed inference algorithms [34–36, 51]. In censoring based methods,

agents use information-theoretic metrics on Value-of-Information (VoI) and agents are censored from

broadcasting their information if they have low Value-of-Information. For example, in the recently

published A-VoIDS algorithms of Mu et al. agents use KL-divergence between prior and posterior

estimates to self-censor low value measurements [36]. The censoring threshold is adapted to avail-

able communication bandwidth to ensure fastest possible convergence in communication restricted

environments and AVoIDS was demonstrated to outperform consensus and random broadcast algo-

rithms for problems involving the estimation of hyperparameters of a commonly observed probability

distribution over a scalar quantity. Theoretically distributed inference using graphical methods, like

AVoIDs, can be extended to functional inference. However, a naive extension may not robust to

rumor propagation i.e, propagation of incorrect estimates to all agents in the network, and double

counting information.
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1.4 Contributions

The contributions of this thesis are as follows. In Chapter 3, a novel algorithm for decentralized

GP inference, which is termed as GP-Fusion (GPF), and is designed to operate under strict com-

munication constraints. GP-Fusion is based on the idea that instead of transmitting the data and

incurring a large communication penalty, agents directly combine local models of other agents into

their own models, which reduces communication cost significantly. Theoretical guarantees on the

error in function estimated at local node and the centralized node show that this error is upper

bounded. In Chapter 4 it is demonstrated empirically, on one synthetic and two real world datasets,

that GP-Fusion has orders of magnitude lower communication cost while still possessing a good

accuracy in estimating the function.

In Chapter 5 a high fidelity simulation framework called MAGE: Multi-Agent Game Emulator

developed at Distributed Autonomous Systems Lab(DAS-Lab), in Oklahoma State University, is

proposed. MAGE brings together FlightGear’s JSBSim flight-physics simulation engine, Simgear

3D visualization engine, and the Qground Ground Control Station interface to create a unique high-

fidelity multi-agent flight simulation environment that enables multiple manned and unmanned aerial

agents to “practice” together over a wide array of mission scenarios. The effectiveness of GP-Fusion

in real mobile sensing platforms is tested on MAGE using an example mission scenario: the spatial

estimation of an unknown risk function due to presence of hostile entities in some regions. A simple

planning algorithm, which uses the output of model inference demonstrates the effectiveness of the

method.
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Chapter 2

Decentralized functional estimation

algorithms

In order to evaluate the decentralized information fusion algorithm presented in this paper, a set of

baseline algorithms are presented for comparison in this section.

2.1 Weighted Average Consensus

The first method proposed is a consensus-based framework for estimating the unknown function f , at

each node, in a decentralized manner. This framework implements a Generalized Kalman Consensus

Filter (GKCF) algorithm [24], which is a state-of-the-art distributed algorithm for estimating an

unknown state by fusing multiple measurements from different sensors. GKCF is an extension of

the Kalman Consensus Filter algorithm to improve performance of estimation in presence of naive

nodes and duplication of information. In GKCF, each sensor’s mean estimate is weighted based on

the information at that node and hence agents will update their parameters toward high information

nodes.

In a decentralized estimation using GKCF, the nodes are assumed to have peer-to-peer com-

munication channels. Thus, when a sensor i gets new measurements from the underlying process,

say ȳi , it shares this measurement information with its network neighbors N(i). This measurement

information is used to update the estimate model parameters at each node receives measurement

of ȳi. By defining the function f as the unknown state, which a set of agents are monitoring, the

GKCF framework can be used to estimate the f at each node, in a decentralized manner.

In implementing the GKCF, the network is assumed to monitor a function whose state dynamics

are modeled as

11



f [t+ 1] = Φf [t] + γ[t] (2.1)

where Φ is the state transition matrix and the process noise γ[t] is modeled as N (0,Q); Each

agent obtains measurements from the function f through observation model

yi = Hif + νi (2.2)

For ease of exposition, the function is considered as time invariant (i.e. f is stationary) and

hence the state transition matrix is set to be unity. The observation matrix Hi is defined to be one

at locations where agents can obtain measurements from f and the noise νi is modeled as a zero

mean Gaussian noise with covariance Ri.

In Weighted Average Consensus each agent starts out with a prior estimate µ−i and its covariance

Σ−i . The inverse of the covariance Σi is also defined as the information matrices as they measure

the confidence of the agents based on their measurements. At each time step, agent i obtains

measurements from the function and computes an information vector and matrices ui and Ui and

broadcasts these parameters, along with its current estimate µ−i and covariance Σ−i to its neighbors.

By defining the weighted state and weight for each agent as vi = Σ−i µ
−
i and Vi = Σ−i , the Weighted

Average Consensus algorithm states that performing updates

vi[k] = vi[k − 1] + ε
∑

j∈N(i)

(vj [k − 1]− vi[k − 1]) (2.3)

Vi[k] = Vi[k − 1] + ε
∑

j∈N(i)

(Vj [k − 1]−Vi[k − 1]) (2.4)

Using (2.3) and (2.4) it can be shown that for all agents i ∈ V , the estimate Σ−1
i [k]µi[k] converge

as k → ∞ [8, 33, 37]. The term ε is a rate parameter and should lie between 0 and 1
∆max

; where

∆max is the maximum degree of the network G. In a decentralized setting, it is sufficient that agents

communicate the weighted state and information matrices to their neighbors alone. The Weighted

Average Consensus algorithm is shown in algorithm 1.
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Algorithm 1 Weighted Average Consensus

1: procedure Define Iterations k, rate parameter ε, Initial Covariance Σ−i (0), Initial

estimate µ−i (0)

2: for each time t = 1, 2, . . . , T do

3: for each agent i ∈ V do

4: Get measurements yi

5: Compute information vector and matrices as

6: ui = HT
i R−1

i yi

7: Ui = HT
i R−1

i Hi

8: Broadcast ui and Ui and receive uj and Uj from neighbors j ∈ N(i)

9: For each neighbor receiving a local information from i, increment communication cost

10: C[t] = C[t] + c̄i;∀j ∈ N(i)

11: Fuse the information vector and matrices with local information

12: bi =
∑
j′∈N(i)∪i u

′
j

13: Bi =
∑
j′∈N(i)∪i U

′
j

14: Initialize consensus variables vi[0] and Vi[0] as

15: vi[0] = Σ−i µ
−
i

16: Vi[0] = Σ−i

17: For k iterations run weighted consensus on Vi[k] and vi[k] using equations (2.3) and

(2.4) and update the prior state and covariance

18: µ−i = Vi[k]−1vi[k]

19: Σi = Vi[k]

20: Compute the GKCF estimates

21: Σ+
i = Σ−i +Bi

22: µ+
i = µ− + Σ+

i

−1
(bi −Biµi)

23: Propagate estimates to next time step

24: Σ−i (t+ 1) = (ΦTΣ+
i (t)Φ +Q)

−1

25: µ−i (t+ 1) = Φµ+
i (t)

26: end for

27: end for

28: end procedure
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2.2 Adaptive Value of Information based Distributed Sens-

ing (AVoIDS)

The second algorithm presented for baseline comparison is a multidimensional extension of the Adap-

tive Value of Information based Distributed Sensing(AVoIDs) algorithm presented in Mu et.al. [36].

This algorithm is a state-of-the-art method for estimating an unknown state of interest by minimiz-

ing the amount of communication required in the decentralized sensor network. In AVoIDs, each

agent starts off with the same global prior P(f |µ,Σ) on f . At each time t, agents obtain a set of

measurements which are stored in a local buffer Si[t] instead of relaying to neighbors immediately.

To broadcast, a measure on the value of the measurements, termed Value of Information(VoI), is cal-

culated between the prior and the posterior based on the buffered measurements i.e. P(f |µ,Σ,Si[t]).

A metric to calculate the VoI(Vi[t]) is the KL-Divergence between the prior and posterior

Vi[t] = DKL(P(f |µ,Σ) || P(f |µ,Σ,Si[t])) (2.5)

If the VoI for a particular agent exceeds a threshold V ∗, then the agent broadcasts its local

buffer Si[t] to its neighbors and resets its buffer, or else it censors itself from the network. All agents

relay messages received to their neighbors and update their prior with the relayed buffers. Given

that at each time t all agents might not be informative and hence the communication between the

agents is reduced resulting in a low communication cost.

A problem with a static VoI threshold V ∗ is a bounded error in estimate resulting from low

communication frequency as t→∞. To eliminate this, a dynamic V ∗ is defined which has a higher

values in the initial stages of communication since most agents are informative and decreases in later

stages of time as agents develop better understanding of the underlying function and start censoring

themselves from the network. It is shown in [36] that an adaptive V ∗ results in a continuous reduction

in error in estimation. The AVoIDs algorithm is shown in algorithm 2 The communication cost in

the network is defined as follows: Let indicator function 1V oI denote if agent i is informative at time

t, then a communication cost function C[t] is defined as

C[t] =
∑
i∈V

N1V oI (2.6)

Where N is the cardinality of the V . The adaptive VoI based information sensing algorithm is

described in algorithm 2.
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Algorithm 2 Adaptive Value of Information for Distributed Sensing(AVoIDs) [36]

1: procedure Initialize hyperparameters µi[0], Σi[0], Define c∗, γ1, γ2

2: for each time t = 1, 2, . . . , T do

3: for each agent i ∈ V do

4: µi[t] = µi[t− 1]

5: Σi[t] = Σi[t− 1]

6: Take measurements yi and store in local buffer Si

7: Calculate the Value of Information Vi[t] using equation (2.5)

8: if Vi[t] ≥ V ∗ then

9: Broadcast the buffer Si and update prior distribution p(f | µi[t],Σi[t])

10: Reset buffer Si = 0

11: end if

12: Relay each received messages to neighbors

13: for each broadcast message Sj do

14: Update the posterior with Sj

15: p(f | µi,Σi,Sj)

16: For each neighbor receiving message from i, increment communication cost

17: C[t] = C[t] + c̄i;∀j ∈ N(i)

18: end for

19: Adaptively change V ∗

20: if C[t] < c∗ then

21: Too little communication

22: V ∗[t+ 1] = γ1V
∗[t]; (0 < γ1 < 1)

23: else

24: Too much communication

25: V ∗[t+ 1] = γ2V
∗[t]; (γ2 > 1)

26: end if

27: end for

28: end for

29: end procedure
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2.3 Gaussian Process Decentralized Data Fusion (GPDDF)

A third comparison method presented is the Gaussian Process Decentralized Data Fusion(GPDDF)

algorithm proposed by Chen et.al. [11]. In GPDDF, each agent constructs a local summary based

on measurements yAk available from its locations Ak ∈ X and communicates this summary model

to its neighbors. The agent then updates the received summaries into its local summary to generate

a global consistent summary, which is used to realize predictions over all locations in the domain X .

The local and global summaries are realized based on a set of common support set U ⊂ V defined

a-priori for all agents. Hence given the support set U , a set of observed locations Ak with their

corresponding measurements yAk , the local summaries for agent i;∀i ∈ V , (ýkU , Σ́
k
UU ) are defined as

ýkU = ΣUAkΣ−1
AkAk|U (yAk − µAk) (2.7)

Σ́kUU = ΣUAkΣ−1
AkAk|UΣAkU

The local summaries in equation (2.7) of each agent are exchanged with every other agent in

the network i.e. ∀i ∈ V , N(i) = V \ i and each agent j ∈ N(i) assimilates every local summary into

a global summary (ỹU , Σ̃UU ) as

ỹU =

N∑
i=1

ýkU (2.8)

Σ̃UU = ΣUU +

N∑
i=1

Σ́kUU (2.9)

The global summaries are used to predict function value in locations where no measurements are

available. To improve the predictive capability the predictive mean and covariance are augmented

using local observations

µks = µs + (γksU Σ̃−1
UU ỹU − ΣsUΣ−1

UU ý
k
U ) (2.10)

σkss′ = σss′ − (γksUΣ−1
UUΣUs′ − ΣsUΣ−1

UU Σ́kUs′ −

γksU Σ̃UUγ
k
Us′)− Σ́kss′

where γksU is defined as

γksU = ΣsU + ΣsUΣ−1
UU Σ́kUU − Σ́ksU (2.11)
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GPDDF has been demonstrated empirically in modeling Mobility-on-Demand systems [11] and

it has been shown to be more time-efficient and scalable with size of data in comparison with

modeling full-GP. However in terms of communication it performs badly as at each time step agents

are required to communicate entire information vectors and matrices containing the local summaries.

The summary information increases in size with the number of support vectors used and hence in

huge spaces with large numbers of agents operating, GPDDF is highly communication-inefficient.

The GPDDF algorithm is described in algorithm 3

Algorithm 3 Gaussian Process Decentralized Data Fusion (GPDDF) [11]

1: procedure a-priori support set U , Network Structure G

2: for each time t = 1, 2, . . . , T do

3: for each agent i ∈ V do

4: Construct local summaries using equation (2.7)

5: Exchange local summaries with neighbors j ∈ N(i) and obtain their summaries

6: For each neighbor receiving a local summary from i, increment communication cost

7: C[t] = C[t] + c̄i;∀j ∈ N(i)

8: Construct global summaries from relayed local summaries using equation (2.8)

9: Predict function over X

10: end for

11: end for

12: end procedure
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Chapter 3

Gaussian Processes Information Fusion

In order to perform inference on the unknown function in a communication efficient manner while

accounting for rumor propagation and duplication of information, and without having to make the

common support assumption [11], we propose a novel algorithm labeled GPFusion. In GPFusion,

sparse generative GP models are constructed from the measurement samples using an online spar-

sification technique [15] and these sparse GPs are broadcast by the agent to its neighbors. These

sparse GP models can be considered as a compressed representations of the sampled measurements

and therefore a significant reduction in communication can be achieved by transmitting these sparse

GPs instead of the entire set of sampled measurements. Furthermore, not all agents have sufficiently

changed local GP models at all times to contribute to the network. Therefore, in order to further

improve communication efficiency, a censoring strategy inspired from [36] is used, which prevents

agents from broadcasting models to their neighbors in the network, when their VoI does not exceed

an adaptively adjusted VoI threshold.

In GPs the predictive covariance is good measure of confidence in an agent’s prediction at

any location in X [2, 26]. In the next subsection we describe how the problem of duplication of

information and rumor propagation is tackled through an informed sampling strategy based on GP

predictive covariance.

3.1 Description of the GP Fusion (GPF) Algorithm

In Gaussian Process Fusion (GPF) all agents maintain a local GP prior over the unknown function

f . The support for GPs of each agent are not a-priori assigned, but rather are inferred from the data.

Each agent i ∈ V samples a set of measurements ȳi = {yi1, yi2, . . . , yi,p} at its location xi ∈ X . The

measurements follow a likelihood function Pi(ȳi | f) and each agent i constructs a Gaussian Process
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model G Pi on f over domain X . We abuse notation here and denote the coefficients of the mean

and kernel functions for the sparse GP of agent i as βi and Ci respectively, and coefficients of the

composite GP due to fusion of model i into j as βij and Cij . The predictive mean and covariance

at any locations x∗ ∈ X are then given by (3.1) and (3.2).

mi = βTi kx∗ (3.1)

Σi = k∗ − kTx∗Cikx∗ (3.2)

Here βi = βi(ȳ
i) and Ci = Ci(ȳ

i) are functions of measurements ȳi sampled by agent i(Refer

to [15] for further details) and kx∗ = k(x∗,BV i); where BV i is the basis vector set of agent i’s GP

model.

To improve communication efficiency each agent i ∈ V transmits its learned parameters βi,

Ci and BV i, so that the GP model can be reconstructed at its neighbors j ∈ N(i);∀j, instead

of communicating measurement set ȳi. We leverage the property that GPs are generative models

of data, that is samples from a GP recreate the dataset that they learned on its distribution.

Therefore, agent’s neighbors can recreate the data distribution, over the domain X , by sampling

the transmitted model at every point x ∈ X . Let ỹij represent the data of agent i recreated at

its neighbor j ∈ N(i). These measurements, which we label as artificial measurements, follow a

likelihood function P(ỹij | mi,Σi) and agent j can update its current model with these samples to

obtain a composite model representing information from both agents. However, naively trusting

the recreated measurements can lead to rumor propagation, especially if the neighboring agent has

not seen sufficient data to enable its GP to make a confident prediction. To address this issue, we

introduce an informed sampling strategy in which agent j samples the GP model of i at locations

where agent i has confidence above a certain threshold σ1, and agent j has confidence below another

threshold σ2. The advantage of such a definition is, the algorithm limits uncertain estimates of agent

i from passing into model of j along with restricting measurements at intersecting regions of both

agents from being double counted. The thresholds (σ1, σ2) determine the weight of information

passed from i into j and proper selection of these values are important for the correctness of the

algorithm. For example, setting σ1 higher would allow more mistakes to propagate in the network

whereas setting it low would prevent necessary information contained in i from passing into j.

To calculate the posterior fused mean, the local measurements at j, ȳj and the artificial mea-

surements ỹij are combined into ˆ̄yj = [ȳj ỹij ] and agent j’s GP model G Pj is updated. Leveraging
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a result from [21], we show in Theorem 1 that since samples ỹij are picked from locations in X where

G Pi has high confidence, the samples lie within an small neighborhood of f with high probability.

The GPFusion update on agent j results in a Gaussian Process with a mean and covariance functions

linearly spanned by an updated set of basis vectors BV ij and the updated coefficients βij and Cij .

The posterior mean and variance of the composite GP is given as :

m̂ij = βTijkx? (3.3)

Σij = k∗ − kTx∗Cijkx∗ (3.4)

The updated coefficients are functions of ˆ̄yj i.e. βij = βij(ˆ̄yj) and Cij = Cij(ˆ̄yj). An illustrative

example of GPFusion is described in the next subsection.

Repeatedly transmitting the models with no new information from the incoming data still results

in unnecessary communication which will increase the communication cost. At each time step the

cost of transmitting model for each agent is Ci[t] ≤ |BV i|2+2|BV i| and the total cost C[t] = NCi[t];

N is the cardinality of the vertices set. To prevent this, agents determine the VoI contained in

their model with respect to previous transmission and avoid broadcasting when the VoI is below a

threshold. The VoI threshold is adaptively changed according to the communication cost. For sparse

online Gaussian processes N = |BV | is the cardinality of the basis vector set of the GP model G Pi

for agent i at time t. Given two N dimensional multivariate normal distributions N0(µ0,Σ0) and

N1(µ1,Σ1) the KL divergence (D(N0‖N1)) between two multivariate Gaussians is given as

D(N0‖N1) =

1

2
{tr(Σ−1

1 Σ0) + (µ1 − µ0)ᵀΣ−1
1 (µ1 − µ0)−K + ln

|Σ1|
|Σ0|
} (3.5)

The KL divergence between two Gaussian Processes can be approximated using (3.5) with the

predictive mean and variance for all points in X, since Gaussian processes are infinite dimensional

extensions of multivariate normal distributions [26].

It is desirable to regulate the cost C[t] around a reference value determined by the available

communication bandwidth. If C[t] < c̄, the available communication bandwidth is under utilized, so

the algorithm decreases V ∗[t] to encourage communication by setting V ∗[t + 1] = βV ∗[t + 1]; 0 <

β < 1. If C[t] ≥ c̄, the communication cost is higher than desired, so the algorithm increases V ∗

to limit communication by setting V ∗[t + 1] = αV ∗[t]; α > 1. The complete GPF algorithm is

described in Algorithm 4.
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Algorithm 4 Gaussian Process Fusion with Adaptive Value of Information for Distributed

Sensing(GP-AVoIDs)

1: procedure gp parameters, Network G, c∗, σ1, σ2

2: for each time t = 1, 2, . . . , T do

3: for each agent i ∈ V do

4: Take measurements yi = (y1, y2, . . . , yp) and update GP parameters according to (3.1)

and (3.2)

5: mi = βTi kx∗

6: Σi = k∗ − kTx∗Cikx∗

7: Calculate Value of information between prior and posterior models using 3.5

8: if Vi[t] ≥ V ∗ then

9: Transmit model parameters of G Pi to neighbors j ∈ N(i)

10: Increment communication cost

11: C[t] = C[t] + c̄i[t];

12: end if

13: Get models from neighbor j and integrate into current model

14: Sample G Pj at locations where Σ(f)j ≤ σ1 and Σ(f)i ≥ σ2 to obtain ỹij1s

15: Update G Pj with artificial measurements ˆ̄yj = [ȳj ỹij ] and obtain updated model

16: m̂ij = βTijkx?

17: Σij = k∗ − kTx∗Cijkx∗

18: Adaptively change V ∗

19: if C[t] < c∗ then

20: Too little communication

21: V ∗[t+ 1] = γ1V
∗[t]; (0 < γ1 < 1)

22: else

23: Too much communication

24: V ∗[t+ 1] = γ2V
∗[t]; (γ2 > 1)

25: end if

26: end for

27: end for

28: end procedure
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In the following theorem 1 its shown that the error in estimation between two GPs, one modeled

with true measurements and other modeled with artificial measurements is bounded in error.

Theorem 1. Consider a network of N autonomous agents which are inferring the underlying func-

tion f using algorithm 4. Suppose, for a given ε and δ, each agent generates artificial samples at

locations x s.t. σ(x) < 2ω2a2

A2nβ2∆2log( 2
δ )

, then the error in estimation is bounded in probability.

Proof. Consider an agent i in network G estimating the unknown function f using 4. At time t

assume agent i receives a model from j and generates artificial samples ˆ̄yi = [y1, y2, . . . , ŷα, . . . , yn]

which are used to update the posterior distribution. If agent i uses the true samples ȳ = [y1, y2, . . . , yα, . . . , yn]

to update the posterior, then the error between the two estimates can be calculated as

e(t) =

√∑
∀x∈X

∣∣∣f(x, t)− f̂(x, t)
∣∣∣2 (3.6)

Taking expectation over the error will result in

E[e(t)] ≤
√∑
∀x∈X

∣∣µi(x, t)− µ̂i(x, t)∣∣2 (3.7)

Using the GP regression equations defined in equation (1.5), the right hand side of equation

(3.7) can be written as

E[e(t)] ≤
√∑
∀x∈X

∣∣kTCȳi − kTC ˆ̄yi
∣∣2

=

√∑
∀x∈X

∣∣kTC[ȳi − ˆ̄yi]
∣∣2 (3.8)

Using the Cauchy-Schwartz inequality on the above equation we obtain the following inequality

E[e(t)] ≤
√∑
∀x∈X

∥∥kTC∥∥
2

∥∥[ȳi − ˆ̄yi]
∥∥

2
(3.9)

In equation (3.9) the difference
∥∥[ȳi − ˆ̄yi]

∥∥
2

is independent of x and hence can be defined outside

the summation, reducing the expectation to

E[e(t)] ≤

[√∑
∀x∈X

∥∥kTC∥∥
2

][√∥∥ȳi − ˆ̄yi
∥∥

2

]
(3.10)
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By applying Markov’s inequality on the random variable e(t) we obtain the bound as

P(e > a) ≤ E[e]

a

=⇒ P(e > a) ≤

[√ ∑
∀x∈X

∥∥kTC∥∥
2

][√∥∥ȳi − ˆ̄yi
∥∥

2

]
a

=⇒ P(e > a) ≤
A

[√∣∣∣∥∥ȳi − ˆ̄yi
∥∥

2

∣∣∣]
a

(3.11)

where A =

[√ ∑
∀x∈X

∥∥kTC∥∥
2

]
Since the artificial samples are obtained from a model generated by the true samples ȳi, it can

be claimed that ˆ̄yi ∼ P(ȳi | X ).

From the corollary of the McDiarmid’s Theorem discussed in [21], the mistake in the posterior

prediction made at location x ∈ X is bounded in probability if the variance σ(x) at location x

has a variance below a specific threshold i.e P(
∣∣f(x)− µ(x)

∣∣ ≤ ε) ≥ δ if σ(x) < 2ω2ε2

∆2log( 2
δ )

; where

∆ = ymax − ymin.

In order to ensure that error is bounded, the difference A
[√∥∥ȳi − ˆ̄yi

∥∥
2

]
is smaller than a and

this can be ensured by selecting locations x, which selects ˆ̄yi ensuring
∥∥ȳi − ˆ̄yi

∥∥
2

is small. If ε is the

deviation in artificial estimate from the true sample then
∥∥ȳi − ˆ̄yi

∥∥
2

=
√
nε. The equation (3.11)

reduces as

P(e > a) ≤ A
√
nε
a (3.12)

The probability holds if ε is selected such that

ε ≤ a

A
√
nβ

(3.13)

where β is chosen to be a large value, such that the probability has a tight upper bounded. Then

the variance is selected at points where

σ(x) <
2ω2ε2

∆2log( 2
δ )
<

2ω2a2

A2nβ2∆2log( 2
δ )

(3.14)

Selecting points at x below the variance ensures that error in network due to communicating models

is bounded.

23



3.2 An Illustrative Example

We demonstrate the idea behind GPFusion with a simple example in which two agents learn a sine

function in domain [-1,1], when agents are constrained spatially in sampling the function. The agents,

A1 and A2 are spatially separated and constrained to sample f in local neighborhoods D1 6= D and

D2 6= D. Figure 3.1 depicts the setup, where the sensing region of A1 D1 is shown with the red

points, and the sensing region of A2 D2 is shown with the black points. Note that the sensing

domains of the two agents intersect. Figure 3.2a shows the GP estimate of the unknown function

by A1 in D. In the figure, the green band shows the agent’s predictive variance; higher predictive

variance means that the agent has little confidence in its predictions and vice-versa. As shown in

the Figure 3.2a, A1 has high confidence in the region D1 (as indicated by its low predictive variance)

since it has measurements from this region and has a low confidence in D \D1 (indicated by high

predictive variance) since it has no measurements in that region. When A1 receives A2’s model, A1

samples the model in domain D2 where the variance of A2 is below threshold σ1 and where A1’s own

variance is above σ2 as explained in algorithm 4. The points sampled by A1 are shown by the blue

points in figure 3.2a. Given sufficient budget, both agents obtain a good estimate of the unknown

function without sampling f over the entire domain as indicated by Figures 3.2c and 3.2d, as each

agent incorporates the information from the artificial measurements derived from their neighbors

models.
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Figure 3.1: Spatially separated agents sampling an unknown function. The red points indicate the

operating domain of A1 and black points indicate the operating domain of A2

(a) Agent 1 picking samples from estimate of

Agent 2

(b) Agent 2 picking samples from estimate of

Agent 1

(c) Agent 1 estimate after fusion update (d) Agent 2 estimate after fusion update

Figure 3.2: 1D example demonstrating GP Fusion procedure. The example demonstrates two agents

converging to an accurate representation when sections of the function are inaccessible
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Chapter 4

Experimental Validation on Synthetic

and Real-World Datasets

To test the communication efficiency of the GPFusion class algorithms in comparison with our

presented baseline methods (Weighted Average Consensus, AVoIDs, and GPDDF, see section 2 for

details), data from two real world datasets and one synthetic dataset is collected, and passed through

a MATLAB simulation of the sensor network. The MATLAB simulations were run on an Intel i7

Processor with 16 GB DDR3 ram.

Comparisons in error to a centralized estimate(which is assumed to capture the true function),

with final communication cost are studied for all algorithms discussed in the paper, and the results

indicate improvement in both estimation and communication efficiency with GPFusion methods.

4.1 Evaluation on Synthetic Dataset

A dataset indicating air density in a room was synthesized on a 50 × 50 grid world domain and

sensors were placed at random locations to sample the density values from the air density function

shown in figure 4.1.

The agent locations are selected randomly and the network is connected in a ring topology, which

is a network type where agents are connected to exactly two nodes forming a continuous pathway.

In ring topology data travels along the network with every node handling the data satisfying the

conditions of strong connectivity. The sensor agents receive measurements ȳi from the function

corrupted with a small amount of Gaussian noise ν i.e ȳi ∼ p(D | f), where p(D | f) = N (f, ν). The

simulation is run for a total of 100 seconds where the model parameter of the underlying function

is constant.
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Figure 4.1: Synthetic air density on 50× 50 gridworld
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Figure 4.2: Error to centralized estimate with time

Figure 4.2 shows the error for each method described, as a function of time. As the plots

indicate, Weighted Average Consensus(WAC) starts with a high error but exponentially converges

to a steady value as all agents update model parameters and reach an average value. AVoIDs has a

similar error performance to WAC since the underlying model fusion is a Bayesian filtering algorithm
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which updates the parameter vector. The error in the function estimated using GPDDF algorithm

maintains a nearly constant value as time progresses once agents converge to the parameter values.

But since the algorithm maintain a fixed basis vector set, agents cannot place a kernel at a location

where high information can be obtained. This is the advantage with GPFusion class algorithms

which start with higher errors, but as time passes they show exponential reduction in error till a

steady error value is reached. Since the GPFusion methods rely on online sparse Gaussian Processes

which select kernel locations using the kernel independence test (refer to section 1.2 or [15] for

details), the support vectors will adaptively change based on the incoming measurements.
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Figure 4.3: Error to centralized estimate vs final communication cost for the synthetic density

dataset. GPFusion class algorithms lies in the bottom left region showing good accuracy along with

lower communication costs.

Figure 4.3 shows cost and error performance on error-cost coordinates. The x-axis represents

the cost coordinates, which represent the final cost incurred by the algorithm at the end of the

simulation and the y-axis shows mean error of all agents to the centralized estimate. The centralized

estimate is modeled by passed all sampled data to a central location where a full GP is trained on

the measurements. It is desirable for a communication efficient algorithm to lie in the bottom left

corner of the plot with low cost and error.

Weighted Average Consensus lies towards the right corner with high cost and error which indi-

cates that it performs poorly in both cost and error. The data points are generated by using a total
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of 40, 45 and 50 agents in the network. This is inherent in consensus type algorithms since agents

update their model parameters to move closer to their neighbors and any error in model estimation

by an agent is passed to all agents in the network.

GPDDF is also controlled by changing the number of agents in the network. Better estimation

is shown by increasing the number of agents in the network. The plots show that final cost and error

lies in the lower right corner, which indicates good accuracy in estimation, but a high communication

cost.

AVoIDs, GPFusion and GPFusion-AVoIDs are simulated with a total of 50 agents in the network.

The control parameters for the cost and error are the thresholds c∗ for AVoIDs and σ1, σ2 and, c∗

for GPFusion and GPFusion-AVoIDs.

GPFusion with threshold values of (σ1, σ2) = (0.001, 0.5) has higher error to centralized estimate

since the lower variance threshold of σ2 doesn’t allow propagation of higher number of samples

from neighbors models. The error however reduces by properly tuning the values of σ1 and σ2.

The communication cost remains a low constant value, since the overall number of budget vectors

exchanged during the duration is upper bounded. GPFusion-AVoIDs has the lowest communication

cost in comparison to other methods as it has the advantages of GPFusion where information is

propagated with a small set of basis and weights and the cost based censoring of the agents on

the value of information. The general trend is GPFusion-AVoIDs performs well in terms of both

accuracy of estimation and communication cost.

4.2 Evaluation on EDGAR Methane Emissions Data Set

The first set of real world data tests were performed on methane emissions data obtained from Europa

Joint Research Center’s (JRC) Emission Database for Global Atmospheric Research (EDGAR). The

EDGAR project [39] is a compilation of global emission data of green house gases covering a period

of 38 years. The data is high resolution spatially detailed obtained from a satellite on a 0.10 × 0.10

grid. The data was compiled for individual countries based of emissions factors that are regional

specific or international. A sampled subset of the total time series during the period of 2006-2008

over the region of Southeastern Oklahoma was selected. The emissions rate for methane are slow

enough to assume rate of change in temporal distributions are constant with time over this period.

Figure 4.4 shows one time frame of the methane distribution over the earth surface as an example.

The spatial area was gridded into a 50× 50 grid world area and emissions data is defined over
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Figure 4.4: Distribution of methane(CH4) over North America captured by the Europa’s JRC

satellite. The boxed region shows the region from which data is selected for conducting experiments.

this gridded locations. The network is connected in ring structure to ensure strong connectivity

and agent positions are selected to maximize coverage of the region. The results from this dataset

indicate the GPFusion class algorithms perform well even when the underlying parameters are slowly

instead of assuming to be constant.

Figure 4.5 shows the error for each method on the EDGAR dataset with time. Weighted Average

Consensus has the lowest accuracy with an error value of 0.3 units of emissions when a total of 50

agents are operating in the network. With the same number of agents GPDDF has a slightly better

error estimate of 0.26 units of emissions. For AVoIDs with a cost threshold of c∗ = 200, the error is

better than GPDDF as a lower cost threshold causes agents to have higher communication frequency

every so often leading to better estimation of the model parameters. GPFusion class algorithms have

the lowest error in estimation. In GPFusion, the agents exponentially reduce their error to a steady

value after approximately 25 time steps. In GPFusion-AVoIDs, the error reduced steadily over time

and the error moves closer to the error of GPFusion. In both method the error is lower bounded

based on the coverage agents have over the domain.

30



Time
0 10 20 30 40 50 60 70 80 90 100

E
rr

or
 to

 c
en

tr
al

iz
ed

 e
st

im
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Weighted Average Consensus
AVoIDs(c*=200)
GPDDF
GPFusion(( <

1
,<

2
) =(0.005,0.6)

GPFusionAVoIDs(( <
1
,<

2
,c*)=(0.001,0.6,400) )

Figure 4.5: Error to centralized estimate with time on EDGAR dataset. GPFusion class methods

show lowest error in comparison with other estimation methods.
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Figure 4.6: Error to centralized estimate vs final communication cost for the EDGAR Methane

dataset. GPFusion class algorithms lies in the bottom left region showing good accuracy along with

lower communication costs.
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Figure 4.6 shows cost and error performance on cost-error coordinates. Weighted Average Con-

sensus lies towards the right corner with high cost and error. GPDDF is also simulated by changing

the number of agents in the network. Better estimation is shown by increasing the number of agents

in the network. The plots show that final cost and error lies in the lower right corner, which indi-

cates low error but high communication costs. Both GPFusion and GPFusion-AVoIDs lie in lower

left corner with a lower error and communication cost indicating that even with slow changes in

parameter GPFusion class algorithms have better performance.

4.3 Evaluation on Intel Berkeley Temperature Dataset

The Intel Berkeley dataset contains temperature, humidity, light flux and voltage data collected from

54 sensors arranged at Intel Berkeley research labs from Feb 28th 2004 to April 1st 2004. Mica2dot

sensors with weatherboards were deployed at various locations over the lab and collected the above

data once every 31 seconds. The arrangement of the sensors in the lab is shown in Figure 4.7.

Figure 4.7: Arrangement of Sensor at Intel Berkeley

The algorithms were evaluated on the temperature dataset. The temperature dataset was shown

to have small drifts during the day over small time intervals i.e. within range of 5◦C and for the

purpose of evaluating our algorithm, the change is parameter can be assumed to be small. Therefore

the algorithm is evaluated by selecting data at a frequency of 20 minutes in a period of 28 hours

during March 6 and 7 2004. The temperature variation for each agent for the selected time period

is shown in figure 4.8.

To construct the centralized function from the data measurements a 45× 35 grid world domain
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Figure 4.8: Temperature variation over 50 sensors used for the purpose of evaluating the algorithms
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Figure 4.9: Error to centralized estimate with time

was simulated to approximate the lab environment and data was passed into the sensor network.

Figure 4.9 plots the error to centralized estimate as function of time. WAC is observed to

have a very poor error estimation as underlying function is time varying and every time agents

update their models, the underlying function has changed. GPDDF has better error estimation
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Figure 4.10: Error to centralized estimate vs final communication cost for the Intel Berkeley dataset.

GPFusion class algorithms lies in the bottom left region showing good accuracy along with lower

communication costs.

than WAC and maintains a steady error though the entire time period. As seen earlier for AVoIDs

the error exponentially reduces lower than GPDDF. GPFusion class algorithms have the lowest

error in estimation. In GPFusion, the agents exponentially reduce their error to a steady value. In

GPFusion-AVoIDs, the error reduced steadily over time and the error moves closer to the error of

GPFusion. In both method the error is lower bounded based on the coverage agents have over the

domain.

In Figure 4.10 the plots show the relationship between cost and error. The final mean error for

GPDDF is 8◦C and communication cost is 2 × 107. AVoIDs has a max error of 11◦C for a cost of

4 × 105 bits and a lower error of 6◦C with a cost of 8.6 × 106 bits. The communication cost for

GPFusion lies in a range of 4×105 and 5 × 105 and the minimum error to centralized estimate is

1.98◦C. Communication costs for GPFusion-AVoIDs lie inside the range 1.02× 105 and 2× 105 with

a minimum error of 1.97◦C.
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4.4 Conclusion

This chapter presented solution to the distributed inference problem for a spatially separated sen-

sor network with constrained communication capabilities. GPFusion algorithm presents a novel

way of combing two Gaussian Processes which is exploited to result in a significant reduction in

communication cost with little need for a priori domain knowledge. In particular, it is shown to

be better than other decentralized inference algorithms without having to assume that all agents

share an a-priori agreed covariance structure. The approach discussed enables every agent to adapt

the structure of its model to best suite its environment, while agents learn a global model through

communication efficient local model fusion. The algorithm was validated one synthetic and two real

world datasets where it was shown to lead to comparable performance with state-of-the-art methods,

without having to assume a common set of kernels.
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Chapter 5

Multi-Agent Game Emulator(MAGE)

This chapter discusses a multi-agent simulation framework to perform algorithmic research and

proof-of-concept implementation before making use of delicate, expensive, and time-consuming real-

world robotics systems.

Simulated environments have been vital in most robotics research. The need for a multi-agent

UAS simulation environment is immediate considering the growing interest in collaborative auton-

omy. Planning under uncertainty for teams of unmanned aerial and ground systems is a widely

studied topic in the field of artificial intelligence. In Dec-POMDP based multi-agent planning algo-

rithms surveyed in [5], agents search for optimal policies over a number of scenarios using multiple

models to learn a joint value function [4,7]. The practical implementation of most of these methods

has been hindered by the lack of high-fidelity multiagent simulators that can enforce realistic flight-

relevant constraints. Additionally, the field of Human-Robot Interaction (HRI) and co-robotics deals

with the design of effective tools for enabling humans and robots to solve complex tasks together,

and has gathered wide research attention. Various methods studied include tele-autonomous control

of robots [50], transfer learning between humans and robots [6,18], and shared control methods [19].

However, searching for optimal policies in the presence of human-robot interaction in complex mis-

sion scenarios (see for example the elements of a DoD mission scenario in Figure 5.1) is a difficult

task, partially because good models of human behavior in high stress situations are not always

available.

In this chapter we provide a detailed description of the individual open source components from

which the MAGE simulation environment is developed.
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Figure 5.1: Example of Human-Robot Interactions in a DoD mission. Manned and unmanned agents

operate in a common mission environment and take decisions to maximize a mission score

5.1 Flightgear

Flightgear [42] is an open-source flight simulator framework that has been used in research, academics

and even in pilot training. Flightgear aims to be portable across many different operating systems

and offers a very flexible framework for developing extensions. The file formats are open and easily

accessible. Standard 3D model formats are supported, and much of the simulator configuration

is controlled through XML-formatted ASCII files which simplifies adding extensions to Flightgear

without any major modifications to the source code. Flightgear also offers an internal scripting

language called Nasal which supports reading and writing internal Flightgear properties, accessing

internal data via extension functions which manipulate the source code.

The extension capabilities of Flightgear are made available via the “property tree”, of the sim-

ulation infrastructure developed by SimGear [40]. The property tree, partly shown in Figure 5.2,

is an interface to the runtime state variables of each vehicle in the simulation, allowing them to

be obtained and manipulated during runtime. For example, the current longitude of the vehi-

cle or the current aileron position can be accessed from the property tree in variables such as

/position/longitude-deg and /controls/flight/aileron respectively. Thus many parameters

such as FDM states, control, AI models, environment parameters, multiplayer participants and

network states can be accessed and modified through extensions to Flightgear.
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Figure 5.2: Flightgear’s property tree structure, containing references to each vehicle’s runtime state

variables

(a) Multiplayer map tracks all vehicles operating on

the multiplayer servers

(b) Multiple aircraft interacting in a common scenario

in Flightgear’s multiplayer environment. Aircrafts can

be initialized either on a single machine or multiple

machines

Figure 5.3: Flightgear Multiplayer System

Flightgear also supports multiple concurrent I/O connections. This permits an external program

to read and write information from and to Flightgear, providing a mechanism to allow either an

external controller or a human operator to control the vehicle inside the program. Flightgear allows

this through two protocol definitions called the FGNetFDM protocol and generic protocol. Both
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protocols send and receive data from an external program using UDP packets over standard socket

communication. The generic protocol allows defining custom packets with specified fields through a

standard XML configuration file. A generic communication protocol can be easily defined for both

input and output and allows for data exchange with the external program via sockets, files or First

In, First out (FIFO) process queues. In the current simulator design we interface with Flightgear’s

property tree using a generic protocol over the network. The properties pulled and manipulated

from the property tree are the standard state variables of position, velocity, acceleration and PWM

control. When a human operator is controlling the vehicles the MAGE simulator launch system

allows the user to switch the control to a keyboard or a joystick. Further details on the simulator

launch system are provided in section 5.4.

Another attractive feature of Flightgear is its multiplayer capabilities [9]. The multiplayer

feature allows vehicles to interact with each other, making it possible to perform collaborative

airborne operations such as flying in formation, airport traffic management, or engaging in dog-fight-

like maneuvers. Multiple Flightgear instances can be launched on different workstations and can

interact using a LAN (Local Area Network) or the Internet in peer-to-peer connection or through a

public host. The Flightgear Multiplayer server is a standalone network server that allows interactions

between various Flightgear instances connected on an network. Figure 5.3a shows the multiplay map,

which is a tracking system for vehicles operating on Flightgear’s multiplayer servers. The system

tracks vehicles launched from multiple Flightgear instances, connected to a public server over the

Internet. The Multiplayer server is built upon the Multiplayer protocol which defines the message

format for information exchange between Flightgear instances in the network. Each message packet

consists of a header and block of data which are encoded in XDR encoding format. The encoded

messages are sent via the UDP protocol. The header is a 32-byte message and contains the message

ID, message length, reply address, reply port and player callsign fields. The multiplayer system can

be launched either on a private or a public domain.

5.2 QGroundControl

QGroundControl is an open source aerial vehicle ground control unit whose capabilities include

2D and 3D maps with drag-and-drop waypoint capabilities and real-time plotting of sensor and

telemetry data. Figure 5.4 shows the GUI interface for QGroundControl. Figure 5.4a shows the

waypoints followed by two aircraft on a 2D map visualization. Figure 5.4b shows the monitoring
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(a) Waypoints on 2D Earth Visualization (b) Telemetry Data Display

Figure 5.4: Flightgear Multiplayer System

windows for one of the aircraft during its flight. It is a modular application whose architecture is

optimized for future extensions and open-source contributions. QGroundControl’s main interface is

MAVlink, a binary serial stream protocol which QGroundControl can receive over UDP.

QGroundControl is an object oriented C++/Qt application that allows representation and visu-

alization of aerial vehicles. The capabilities can be extended to include ground vehicles by adding

new custom physical links and protocols conforming with designated unit conventions. QGround-

Control complies with ISO-defined Open System Interconnections (OSI). This means that the data,

data manipulation, and user interface are separated.

QGroundControl works primarily with the MAVLink protocol [32] which offers two-way datalink

between QGround Control and the UAV by packing data into C structures that can store data very

efficiently. Once the packet is formed, it can be sent from the UAV to QGroundControl as a byte

sequence that contains the UAV’s position, attitude, etc. When used to interact with physical robots,

the link is maintained with radio transmitters. However, QGroundControl supports a variety of data

protocols/connections/sockets (UDP, TCP, serial), and MAGE takes advantage of that functionality

within a computer network to monitor simulated UAVs.

Because our experimental scenario was conducted locally, and all Flightgear instances and

QGroundControl software ran within the same network, it was possible to monitor all simulated

UAV locations using a single instance of QGroundControl. In our case, we used the UDP protocol

to transfer MAVLink messages between Flightgear and QGroundControl. Each individual instance

of Flightgear generates messages for its UAV. Those messages are sent to a specific predetermined

IP/port within the network. QGroundControl listens on that IP/port, receives data packets that
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are generated by each instance of Flightgear, decodes them and displays a position of a UAV in

real-time as a pictogram on a 2D horizontal situation map.

Since every Flightgear instance generates messages with a unique ID, QGroundControl can re-

ceive and monitor messages from up to 255 UAVs in real time, maintaining their respective positions,

attitudes, airspeed, and height. This approach allows for quick and easy assessment of what the

group of simulated UAVs is doing in each point in time.

5.3 MAGE Communication Network

The MAGE communication network architecture is developed within Flightgear’s Multiplayer sys-

tem and the Nasal environment. As previously indicated, Flightgear’s internal capabilities can be

extended through Nasal, a scripting language written for the purpose of handling Flightgear’s in-

ternal properties. Nasal stands for ‘Not another scripting language’ and its scripting concepts are

similar to JAVA and Python. It however uses a tracing garbage collection management system to

automatically determine memory allocation to maximize efficiency. Adjusting Flightgear’s many in-

ternal properties, such as adding new flight parameters or creating new definitions, can be achieved

by scripting them in Nasal and loading them into the system when Flightgear is launched.

The communication links within MAGE work upon properties which are transmitted by default

over the multiplay system when Flightgear is launched. A Nasal file called Mage.nas creates a

network definition for vehicles in Flightgear. This file is responsible for establishing whether a vehicle

connected to the multiplayer server is a part of the game system. When the Flightgear simulator is

launched with the file in the Nasal directory, a new property node is created in the internal property

tree called ‘mage’. This node contains two child nodes: current vehicle state information, which

contains the state information of the vehicle being controlled, and network vehicle information,

which contains details of all other vehicles. The network vehicle information node is a read-only

node, i.e. an external system interfacing with the property tree can read this information but cannot

manipulate it in any way. The current vehicle contains the state information, instrumentation

information and its position in the network topology. Vehicles entering the game system must have

the string ‘MAGE’ appended to the beginning of their callsign to connect to the game system. When

a vehicle connects to the system, the state information of the vehicle can be viewed by other vehicles

through the players node under the mage node. The network information system can be written

from scratch in Nasal to create a network topology between the unmanned vehicles and the manned
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Figure 5.5: Component-Relation diagram of various components of MAGE

vehicles.
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5.4 System Setup and Execution

In this section we describe in detail the MAGE system architecture. As previously discussed, the

system components are modularized and interact with each other using a UDP socket protocol. The

system can be launched either on one or on multiple computers connected to a network. The system

consists of three layers: physical layer, network layer, and control layer that communicate with each

other using UDP sockets. The architecture is shown in Figure 5.5.

5.4.1 System layers

The base layer is the physical layer which simulates the dynamic model and updates the state

information of the vehicle. This layer is derived directly from Flightgear’s simulator structure and,

once launched, opens up Flightgear’s internal property tree which exposes the vehicle’s parameters.

The state parameters: position, attitude, velocities and accelerations are output using a generic

communication protocol on a system generated port.

The next layer is the network layer, which is initialized by Mage.nas when Flightgear is launched.

The network layer interacts with the physical layer’s state information and constructs message

packets regarding the state information and then transmits them based on the underlying network

protocol. This layer ensures linkage between other network layers of other workstations running the

MAGE game system.

The third and final layer is the control layer, which encompasses the control and decision making

subcomponents. This layer is a switch-layer, that is the information in this layer can either come

from an autonomous system or a human operator. The control layer works by extracting information

from the network layer and the physical layer. Thus the data coming into the control layer consists

of current vehicle state and neighboring vehicles’ messages. In case a human player is operating a

vehicle, the control layer offers functionality to connect the system to a human-operated controller.

Autonomous control and decision making systems interface with the control layer via UDP and

hence the controller can be written in any language with a networking interface capability.

5.4.2 MAGE System Run-Time Execution

The MAGE system is currently being executed from the command line by entering individual pa-

rameters with limited options. The system can be initialized to launch a team of unmanned vehicles

or a human player operating a single vehicle. The MAGE system will generate a network port num-
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ber which will open UDP socket connections between Flightgear, the controller and the multiplay

server. Future work will include a GUI for the launch system. The parameters that need to be set

for launching the MAGE game system are:

• Control type i.e. Human or computer

• Total number of autonomous vehicles being launched from the workstation

• Initial position of vehicles

• IP address of local machine

• Flightgear Multiplay server host address

• Flightgear Multiplay server port

Based on the processing capability of a workstation, the MAGE launch system can initialize

more than one vehicle on each workstation. The initial position of the vehicles is input as 2D array

of size 3 × n. Each array contains the Latitude, Longitude and Altitude and n defines the total

number of vehicles being launched from a workstation.

The QGroundControl user interface is also launched separately. The current launch system

already has capability to ensure that MAVlink communication is established between Flightgear

and QGroundControl to visualize the vehicle telemetry information on QGroundControl.

5.5 Experiments with MAGE: Decentralized Inference of Un-

known Function

5.5.1 Decentralized Multi-UAS Collaborative Exploration

In this section we present the results from an experiment scenario tested on the MAGE simulator.

This exemplary scenario consists of a group of networked UAVs collaboratively exploring an unknown

area while avoiding high risk regions. High risk regions include hostile sites on the ground (such as

SAM sites) or enemy aerial vehicle patrol locations. The risk is characterized as function f(φ, θ) of

latitude(φ) and longitude(θ) induced by distribution of enemy assets, and is assumed to be modeled

using a Gaussian Process [44]. Enemy assets posing risk are detected using a simple radar emulator

defined in Mage.nas. The operation of the radar emulator is based on Euclidean distance between
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the UAV and hostile entities operating in the MAGE environment as per rules of operation defined

in section 5.4. The UAVs are limited in the amount of fuel they can carry on-board and are hence

constrained to operate within small ranges and restricted to sampling f in some small subsets of the

domain X .

5.5.2 Experimental Setup and Results

The MAGE simulation environment utilized here is a group of 3 processing workstations connected

together on a Local Area Network and each containing libraries for launching the MAGE game

system. The workstations use Intel Core i7-4790S processors, 16 GB DDR3 RAM and 250 GB

internal storage. The workstations are labeled S0, S1, and S2. Station S0 is connected to a visual

display to monitor the telemetry data on QGroundControl. We denote station S0 as the master

station as it allows for monitoring the system and S1 and S2 are denoted as slave workstations. The

MAGE system is launched on stations S1 and S2 via a Secure Shell (SSH) on the master terminal

through a wrapper function containing information for each server’s parameters for launching the

system. The input to this wrapper function is the total number of autonomous vehicles running on

a particular workstation.

In this experiment a total of four instances are launched: two on S0 and one instance on S1 and

S2 respectively. The network topology defined for this system is a fully connected network where

each vehicle has a connection to every other vehicle in the system. The network topology for the

current simulation has a constraint based on the distance between the vehicles. The entire duration

of this experiment is set for 1 hour with respect to the master’s clock. The master terminates the

connections after the period of one hour is over.

During the initial stages of the simulation the UAVs explore randomly and pass the learned

model over the communication network to their neighbors. Once a UAV obtains a neighbor’s model

and fuses it together with its own model, it starts exploring regions that other agents have not visited

and are not likely to visit. This is achieved by exploring based on the uncertainty in the Gaussian

Process model. Each UAV places a waypoint in an area where the uncertainty in the model it has

fused together is highest. This leads to a joint decentralized exploration policy. The effect of the

policy is seen in Figure 5.6 where it can be seen that each UAV is heading in different directions

so that together they can uncover a larger amount of space over time. The total area uncovered at

the end of the simulation is shown in Figure 5.7a and figure indicates that UAVs jointly maximized

their exploration.
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Figure 5.6: Exploration from the perspective of two UAVs, thirty minutes after scenario start. The

UAVs have collaborated in decentralized fashion to explore different areas of the scenario space.

(a) Total area uncovered through decentralized infer-

ence by four UAVs at the end of simulation

(b) Figure shows four UAVs exploring terrain, from

the perspective of UAV1. The other three UAVs are

investigating areas which UAV1 has neither visited nor

incorporated into its map.

Figure 5.7: Flightgear Multiplayer System
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Chapter 6

Conclusions and Future Work

The first part of this thesis introduces a novel algorithm, GP-Fusion for communication efficient

decentralized inference using a spatially separated network. The algorithm was empirically demon-

strated to have improved communication performance, in comparison with existing state-of-the-art

decentralized inference methods. GPFusion and its variation GPFusion-AVoIDs are compared on

one synthetic and two real world datasets and are shown is have orders of magnitude improvement

in communication while having error performance similar to the current decentralized estimation

methods, without having to assume a common set of kernels.

In the second part of this thesis a high-fidelity, multi-agent flight-simulator corroboration of

collaborative autonomy algorithms for multi-agent UAS missions is presented. The key distinction

of MAGE is its ability to realistically simulate flight-relevant effects, and enable realistic multi-agent

interactions where a different computer or human can control each agent. MAGE is developed from

existing open source software and is modularized for efficient extensions for many possible multiagent

scenarios. A communication network was developed by manipulating the internal properties of

the Flightgear flight simulator, allowing the efficient definition of a graphical network topology for

passing information between agents and humans.

One potential direction for extending GP-Fusion lies in designing methods which can track the

temporal evolution of the underlying process. A set of methods which deal with non-staionary

kernels are being discussed in literature and hence potentially it will be interesting to study how

fusion can be achieved with time varying kernels.
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[15] Lehel Csatö and Manfred Opper. Sparse on-line gaussian processes. Neural computation,

14(3):641–668, 2002.

[16] H. F. Durrant-Whyte, S. Majumder, M. de Battista, and S. Scheding. A Bayesian algorithm

for simultaneous localisation and map building. In R. Jarvis and A. Zelinsky, editors, Robotics

Research: The Tenth International Symposium, Victoria, Australia, 2001.

[17] Hugh Durrant-Whyte, Mike Stevens, and E Nettleton. Data fusion in decentralised sensing

networks. In 4th International Conference on Information Fusion, pages 302–307, 2001.

[18] Staffan Ekvall and Danica Kragic. Robot learning from demonstration: a task-level planning

approach. International Journal of Advanced Robotic Systems, 5(3):223–234, 2008.

[19] Antonio Franchi, Cristian Secchi, Markus Ryll, Heinrich H Bülthoff, and Paolo Robuffo Gior-

dano. Shared control: Balancing autonomy and human assistance with a group of quadrotor

uavs. Robotics & Automation Magazine, IEEE, 19(3):57–68, 2012.
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APPENDIX A

Acronyms
Acronym Expanded Version
MEMS MicroElectro Mechanical System
ASN Autonomous Sensor Networks
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
GPF Gaussian Processes Fusion
GP Gaussian Processes
BNP Bayesian Non-Parametric
DDF Decentralized Data Fusion
GKCF Generalized Kalman Consensus Filter
CI Covariance Intersection
CF Channel Filters
VoI Value of Information
KLD Kulbeck-Leibler Divergence
AVoIDs Adaptive Value of Information Distributed Sensing
RKHS Reproducing Kernel Hilbert Spaces
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