
ENHANCED RECURRENT NETWORK TRAINING

By

AMIR HOSSEIN JAFARI

Bachelor of Science in Electrical Engineering
Azad University

IRAN
2006

Master of Science in Mechatronics
American University of Sharjah

Sharjah, UAE
2011

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 2016

COPYRIGHT ©

By

AMIR HOSSEIN JAFARI

May, 2016

ENHANCED RECURRENT NETWORK TRAINING

Dissertation Approved:

Dr. Martin T. Hagan

Dissertation Advisor

Dr. Carl Latino

Dr. George Scheets

Dr. Anthony Kable

iii

ACKNOWLEDGMENTS

First and foremost, thanks to the God and the Almighty whose His blessings made me

who I am. Only due to His blessings throughout my research I could finish my dissertation.

I can’t express myself how thankful I am to my parents for their support and love

provided by them throughout my life. This work will remain as a great honor of my life

and my heart is filled with nothing but gratefulness to all of you (Leila Moeini and Jafar

Jafari).

I would like to express my gratitude to my advisor, Dr.Martin Hagan for his constant

encouragement and guidance throughout the research. His technical advice and expertise

in the field helped me to cross all the hurdles towards the successful completion of this

dissertation. I would also like to thank him for being patient with me during my dissertation

and write up.

Besides my advisor, I would like to thank the rest of my dissertation committee : Dr.

George Scheets, Dr. Carl Latino, and Dr. Anthony Kable, for their insightful comments

and encouragement.

My debt to my elder brother Dr. Reza Jafari is definitely beyond measure and I will be

forever grateful for his help.

I would like to thank my colleagues at OSU specially, my best friends for their support

and honest friendship.

Acknowledgements reflect the views of the author and are not endorsed by committee

members or Oklahoma State University.

iv

Name: Amir Hossein Jafari

Date of Degree: MAY, 2016

Title of Study: ENHANCED RECURRENT NETWORK TRAINING

Major Field: Electrical Engineering

In this dissertation, we introduce new, more efficient, methods for training recurrent neural
networks (RNNs). These methods are based on a new understanding of the error surfaces
of RNNs that has been developed in recent years. These error surfaces contain spurious
valleys that disrupt the search for global minima. The spurious valleys are caused by in-
stabilities in the networks, which become more pronounced with increased prediction hori-
zons. The new methods described in this dissertation increase the prediction horizons in a
principled way that enables the search algorithms to avoid the spurious valleys.

The work also presents a novelty sampling method for collecting new data wisely. The
clustering method determining when an RNN is extrapolating. The extrapolation occurs
when RNN operates outside the region spanned by the training set, adequate performance
cannot be guaranteed. The new method presented in this dissertation used the clustering
method for extrapolation detection and collecting the novel datas. The training results are
improved with the new data set by retraining the RNN.

The Model Reference control is introduced in this dissertation. The MRC is implemented
on the simulated and experimental magnetic levitation system.

v

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

2 RECURRENT NETWORKS AND SPURIOUS VALLEYS 4

2.1 LAYERED DIGITAL DYNAMIC NETWORKS (LDDNs) 4

2.2 SPURIOUS VALLEYS . 5

3 MODIFIED RECURRENT NETWORK TRAINING 10

3.1 STANDARD TRAINING . 10

3.1.1 STEEPEST DECENT . 10

3.1.2 LEVENBERG-MARQUARDT ALGORITHM 15

3.1.3 DERIVATIVE CALCULATION 18

3.2 MODIFICATIONS (MULTIPLE SEQUENCES) 19

3.2.1 TRAINING SEQUENCE . 20

3.2.2 PREDICTION HORIZON . 21

3.2.3 HORIZON STEP . 22

3.2.4 MODIFICATIONS TO THE LM ALGORITHM 24

3.3 SUMMARY OF MODIFIED TRAINING 24

4 NEW PROCEDURE FOR HORIZON SELECTION 26

4.1 EFFECT OF PREDICTION HORIZON ON TRAINING 26

4.2 TRAINING PROCEDURE . 29

5 DEMONSTRATION OF HORIZON SELECTION 35

vi

5.1 SYSTEM DESCRIPTION (SINGLE ROBOT ARM) 35

5.2 TRAINING DATA . 38

6 NOVELTY DETECTION 48

6.1 SELF ORGANIZING MAP . 48

6.1.1 BASIC COMPETITIVE NETWORK 49

6.1.2 CONCEPT OF NEIGHBORHOOD 53

6.1.3 GRAPHICAL REPRESENTATIONS 55

6.2 APPLICATION OF SOM TO EXTRAPOLATION DETECTION 57

7 MODELING AND CONTROL OF A SIMULATED MAGNETIC LEVITA-

TION SYSTEM 64

7.1 TRAINING NARX NETWORK FOR IDENTIFICATION OF PLANT . . 64

7.1.1 SYSTEM DESCRIPTION . 64

7.1.2 SYSTEM IDENTIFICATION . 65

7.2 SOM FOR NOVELTY SAMPLING . 69

7.2.1 RETRAINING PROCESS . 70

7.2.1.1 FIRST RETRAINING PROCESS 70

7.2.1.2 SECOND RETRAINING PROCESS 71

7.2.1.3 FINAL RESULTS OF THE RETRAINING PROCESS . 72

7.2.2 TEST AND VERIFY THE MODEL 72

7.3 MODEL REFERENCE CONTROL TRAINING 73

7.4 USE SOM TO OBTAIN MORE DATA FOR CONTROLLER 78

8 EXPERIMENTAL RESULTS 80

8.1 DESIGN AND BUILD THE MAGNETIC LEVITATION SYSTEM 80

8.1.1 DESIGN PROCESS . 81

8.1.2 SOFTWARE AND HARDWARE 82

8.1.2.1 ARDUINO AND SIMULINK 83

vii

8.1.2.2 SENSOR AND ACTUATOR 85

8.1.3 SOLIDWORK DESIGN AND 3D PRINTING 87

8.1.4 ASSEMBLY AND TEST . 88

8.2 TRAIN THE NRAX MODEL WITH THE REAL DATA 90

8.3 MODEL REFERENCE CONTROLLER (NEURO CONTROLLER) 93

8.3.1 NEURAL NETWORK FILTER 96

8.4 PID CONTROLLER (CLASSICAL CONTROLLER) 98

8.5 SUMMARY AND COMPARISON OF CONTROLLERS 100

9 CONCLUSIONS AND FUTURE WORK 102

9.1 SUMMARY . 102

9.2 FUTURE WORK . 105

REFERENCES 107

viii

LIST OF TABLES

Table Page

5.1 Simulation Parameters for the Robot Arm 36

5.2 Training data skyline range . 37

5.3 Training time for the full data set . 41

5.4 kurtosis . 43

5.5 Horizon step selection table . 44

6.1 Statistics . 57

6.2 Sensitivity and Specificity . 61

6.3 Confusion table . 62

7.1 Simulation Parameters for the Magnetic Levitation 65

7.2 Training data skyline range for magnetic levitation 66

7.3 Horizon step selection table for magnetic levitation 68

7.4 Sensitivity and specificity first retraining process 71

8.1 Sharp specification . 85

9.1 Trained network accuracy on 100 test sequences 103

ix

LIST OF FIGURES

Figure Page

2.1 Example Dynamic Network [1] . 5

2.2 One-layer linear network [2] . 6

2.3 Movement of roots as order is increased (k = 10,20,30,40) [2] 7

2.4 Error profile for single neuron network [2] 8

2.5 Error profile for a practical network [2] 8

3.1 Minimizing the Performance Index . 11

3.2 Three-Layer-Network [1] . 12

3.3 Simple Dynamic Network [1] . 18

3.4 Parallel and Series-Parallel Architecture [1] 20

3.5 Forming Subsequences . 21

3.6 Timing Diagram . 22

3.7 MSE vs. Prediction Horizon for Nonoverlapping Subsequences 23

4.1 Network response inside a spurious valley. 27

4.2 Network response with large oscillation. 28

4.3 Relationship between MSE and percent oscillation. 29

4.4 MSE versus Prediction Horizon. 30

4.5 Flow Chart of Choosing the Optimum Horizon Steps. 31

4.6 Network response on worst sequence, before and after training. 32

4.7 Performance Index. 33

5.1 Single robot arm driven by DC motor. 36

x

5.2 Sample training sequence. 38

5.3 Histogram of robot arm angles contained in the training set. 39

5.4 NARX recurrent network. [1] . 40

5.5 Open loop training data. 40

5.6 Change of MSE with increasing prediction horizon. 42

5.7 Sorted MSE for all subsequences, using different prediction horizons. . . . 43

5.8 Four different horizon step cases . 45

5.9 Target and accurate network response on test sequence. 46

5.10 Target and oscillatory network response on test sequence. 47

6.1 Competitive Layer [1] . 50

6.2 Graphical Representation of the Kohonen Rule [1] 51

6.3 Graphical Representation of Kohonen rule [1] 52

6.4 Self-Organizing Feature Map [1] . 53

6.5 Neighborhoods [1] . 54

6.6 U-Matrix for Trained SOM [1] . 55

6.7 Hit histogram for 20x20 trained SOM . 56

6.8 Four clusters in the trained SOM network. 58

6.9 Network response and extrapolation detection. 59

6.10 Illustration of false positive extrapolation detection 60

7.1 Magnetic levitation system [1] . 65

7.2 Training data for magnetic levitation . 66

7.3 Histogram of Magnet position contained in the training set. 67

7.4 Target and trained network response on training data set 69

7.5 Only test sequence with oscillatory response 72

7.6 Target and trained network response after retraining for a test sequence . . . 73

7.7 Simulink block diagram of magnetic levitation 74

xi

7.8 Plant Identification . 74

7.9 Model reference adaptive control structure 75

7.10 Model reference control network . 76

7.11 Model reference control training. 77

7.12 Model reference control . 77

7.13 MRC Simulink diagram . 78

8.1 Design Process. 82

8.2 Arduino Mega 2560 [3]. 84

8.3 Arduino Mega Programming [4]. 84

8.4 Sharp Sensor [5]. 85

8.5 Electromagnet and Magnet. 86

8.6 Motor Shiled [6]. 87

8.7 SolidWork Final Design. 88

8.8 Magnetic levitation setup. 89

8.9 Experimental Open loop System . 89

8.10 Filtered magnet position . 91

8.11 Experimental training data for magnetic levitation 91

8.12 Histogram of the experimental magnet positing 92

8.13 Target and trained network response (Cool) 94

8.14 Target and trained network response (Hot) 94

8.15 Target and trained network response for test sequence 95

8.16 Closed loop Simulink block diagram (MRC with linear filter) 96

8.17 Closed loop Simulink block diagram (MRC with NN filter) 97

8.18 Experimental data MRC with NN filter for test reference input 98

8.19 PID control structure . 99

8.20 PID controller Simulink block diagram . 100

8.21 Experimental data PID with linear filter for test reference input 101

xii

9.1 Double pendulum [7] . 105

xiii

CHAPTER 1

INTRODUCTION

Artificial Neural Networks can be categorized into two general classes - static and dy-

namic. Static networks do not have feedback connections and do not have delays. Dynamic

networks have memory, so the output depends on inputs, outputs and states. Dynamic net-

works that have feedback connections are called recurrent neural networks (RNNs). This

research focuses on RNNs.

RNNs are used in many practical applications, such as system identification and control

[8], long term predictions of chemical processes [9], financial analysis of multiple stock

markets [10], filtering and control [11] and phasor detection and adaptive identification

[12].

The difficulties in training recurrent neural networks (RNNs) have been well docu-

mented (see [13, 14]). One of the reasons for these difficulties is the existence of spurious

valleys in the error surfaces of RNNs [2, 15, 16]. These valleys are not related to the true

minimum of the surface, or to the problem the RNN is trying to solve. They are strongly

dependent on the input sequence in the training data. (If the input sequence changes, even

though the system being modeled stays the same, the valleys will move significantly.) Any

batch search algorithm is very likely to be trapped in these spurious valleys.

Alternate training methods have been developed to mitigate the effects of these spurious

valleys [7, 15]. Because the spurious valleys depend so strongly on the input sequence,

one alternate method is to divide the data into multiple subsequences. The subsequences

can be alternated during training, which will move the valleys and prevent the algorithm

from becoming trapped [15]. Recently, [7] demonstrated a modified procedure, in which

1

the error gradient associated with each subsequence is monitored during training. Large

gradient magnitudes indicate that the training algorithm is located within a spurious valley

for those subsequences, and so those subsequences can be removed temporarily from the

training process.

Another technique that was introduced in [7] was to increase the prediction horizon

gradually during the training process. The initial training segment used a one-step-ahead

prediction. This was increased at each training segment, until the prediction horizon during

the final training segment covered the full length of the original sequences. This process

can require long training times, if the prediction horizon is increased too slowly, but will fail

to converge if the prediction horizon is increased too quickly. We are introducing a method

that searches for an optimal horizon step at each training segment [17]. We demonstrate

the process on a practical system identification problem.

Even after a recurrent network has been successfully trained, satisfactory performance

can only be ensured if the network inputs are similar to those in the training set. This is

also true for feedforward networks, but extrapolation is a more urgent problem for recurrent

networks, where, because of feedback connections, responses can become unstable when

network inputs (including feedback signals) fall outside the training set. The process of

detecting network inputs that are outside the training set is called novelty detection [18]. We

are proposing a type of novelty detection that makes use of self organizing maps (SOMs).

We demonstrate that the proposed technique is able to detect incipient network failures and

instabilities well before they occur.

We are also going to use the Self Organizing Map (SOM) to collect additional data

in order to improve the training procedure. In other words, we are collecting data wisely

in the regions where we are extrapolating. It is unlikely that the original data set will

effectively cover the full range of conditions where the network will be used. The RNN is

extrapolating when network inputs fall outside the space spanned by the training data set.

We are going to collect additional training data. Then, we will retrain the RNN network

2

with the new data combined with the initial training data set. This procedure is known as

novelty sampling [19]. This will be done in phases until no novel conditions are detected

after many additional tests.

Also, we will test all of our new procedures on a physical system - a magnetic levitation

system. The experimental data will verify and validate our procedure.

Chapter 2 presents some basic background material on the general types of recurrent

networks that we address in this dissertation and will describe the spurious valleys that

cause training difficulties. Chapter 3 briefly reviews the recurrent training procedures first

introduced in [7], which will form the foundation for the changes presented in this work.

The new procedures for determining the horizon step size are introduced in Chapter 4,

and the new novelty detection method is presented in Chapter 6. The new procedures are

tested through simulation on a practical system identification problem, and the results are

shown in Chapter 5. The modeling and control of a simulated magnetic levitation system

is described in Chapter 7. Experimental results on a real magnetic levitation system are

presented in Chapter 8. Chapter 9 summarizes the work and presents some conclusions

and suggestions for future work.

3

CHAPTER 2

RECURRENT NETWORKS AND SPURIOUS VALLEYS

In this chapter, we briefly introduce Layered Digital Dynamic Networks in section 2.1,

and we review some properties of the spurious valleys of recurrent neural networks (RNN)

in section 2.2.

2.1 LAYERED DIGITAL DYNAMIC NETWORKS (LDDNs)

Neural networks can be categorized into two classes, static and dynamic networks.

Static networks have have no delays and no feedback connections. The output of these net-

works are computed directly from feedforward connections. Dynamic networks can have

feedback connections and contain tapped delay lines. The output of dynamic networks

depend on current inputs, outputs, and states of the network.

A general class of dynamic network, the Layered Digital Dynamic Network (LDDN),

was first introduced in [20]. The net input nm(k) for layer m of an LDDN can be computed

nm(k) = ∑
l∈L f

m

∑
d∈DLm,l

LWm,l(d)al(k−d)

+ ∑
l∈Im

∑
d∈DIm,l

IWm,l(d)pl(k−d)+bm (2.1)

where pl(k) is the lth input to the network at time k, IWm,l is the input weight between

input l and layer m, LWm,l is the layer weight between layer l and layer m, bm is the bias

vector for layer m, DLm,l is the set of all delays in the tapped delay line between layer l and

layer m, Im is the set of indices of input vectors that connect to layer m, and L f
m is the set of

indices of layers that connect directly forward to layer m [1].

4

S
1
x 1

S
2
x 1

S
3
x 1

S
1
x 1

S
2
x 1 S

3
x 1

S
1
x 1 S

2
x 1 S

3
x 1

R x 1
1

S
1
x R S

2
x S

1
S

3
x S

2

S
1

S
2

S
3

n
1
()t

n
2
()t n

3
()t

p
1
()t

a
1
()t

a
2
()t a

3
()t

IW
1,1

LW
1,3

LW
2,3

LW
1,1

LW
2,1

LW
3,2

b
1

b
2

b
31 1 1

R
1

Inputs Layer 1 Layer 2 Layer 3

T
D
L

T
D
L

T
D
L

T
D
L

f
1

f
2

f
3

Input Weight

Layer Weight
m

Figure 2.1: Example Dynamic Network [1]

The output of layer m is

am(k) = fm(nm(k)) (2.2)

for m = 1, 2, · · · , M, where fm is the transfer function at layer m. The set of M paired

equations, 2.1 and 2.2, describes the LDDN. LDDNs can have any number of layers, any

number of neurons in any layer, and arbitrary connections between layers (as long as there

are no zero-delay loops). An example of an RNN represented in LDDN notation is shown

in Figure 2.1.

2.2 SPURIOUS VALLEYS

RNNs are typically trained using gradient or Jacobian based optimization algorithms,

such as variants of conjugate gradient, quasi-Newton and Levenberg-Marquardt [21]. The

gradients and Jacobians are computed using dynamic backpropagation algorithms, such

as backpropagation through time, and real-time recurrent learning [20]. Difficulties in

gradient based training occur when spurious valleys appear in the error surface [2, 16].

These valleys have a number of critical properties. First, they are unrelated to the true

minimum of the error surface and are, instead, principally determined by the input sequence.

If a different input sequence is used, the spurious valleys will move to different locations.

5

S

D

p t()
n t() a t()

Figure 2.2: One-layer linear network [2]

Secondly, the valleys are located in regions where the network response is unstable. The

network response is close to zero at the bottom of the valleys, but slight changes in the

network weights will cause the response to increase dramatically. Finally, the widths of the

valleys become very narrow as the prediction horizon increases.

To illustrate these spurious valleys, consider a single-neuron recurrent network with a

linear transfer function, as shown in Figure 2.2. The equation for the output a(k) is as

follows:

a(k) = w1 p(k)+w2a(k−1). (2.3)

By accumulating the output using (2.3), from a zero initial condition, we have

a(k) = w1

[
p(k)+w2 p(k−1)+ ...+wk−1

2 p(1)
]
. (2.4)

The term inside the bracket is a polynomial in w2, with the input sequence as coeffi-

cients. If this polynomial has a root outside the unit circle, then at that root the output is

zero, even though the output would increase rapidly for a small change in w2. The interest-

ing thing is that, when this polynomial has a root outside the unit circle at time step k, that

root remains the same in the next polynomial at time step k+1. This phenomenon is called

the “frozen root” [2]. As a result, the output is zero for all future time steps for the same

w2. Since the output for values of w2 on either side of the root is significantly higher (the

system is unstable), a valley appears at the root.

The frozen root phenomenon is illustrated in Figure 2.3, which shows the movement of

6

−2 −1 0 1 2 3
−2

−1

0

1

2

Real Part

Im
ag

in
ar

y
P

ar
t

−2 −1 0 1 2 3
−2

−1

0

1

2

Real Part

Im
ag

in
ar

y
P

ar
t

−2 −1 0 1 2 3
−2

−1

0

1

2

Real Part

Im
ag

in
ar

y
P

ar
t

−2 −1 0 1 2 3
−2

−1

0

1

2

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 2.3: Movement of roots as order is increased (k = 10,20,30,40) [2]

the roots of a polynomial as the order of the polynomial is increased. Note that when the

order is 10, there is one root at approximately 2.66. This root stays in its place as the order

of the polynomial is increased, while the other roots move toward the unit circle [2].

An example cross-section of an error surface for this network is shown in Figure 2.4.

This figure shows how the surface changes as the prediction horizon increases. You can

see that there is a valley that appears at approximately w2 = −3.8239. (This is because

the polynomial in Equation 2.4 has a root at w2 = −3.8239.) As the prediction horizon

increases, the valley becomes narrower.

As the RNNs become larger, with more layers, neurons, or feedback connections, the

valleys become more numerous. An error profile for a practical network is shown in Figure

2.5. The plot shows a cross section of the error surface (the mean square error (MSE) along

the gradient direction, where α represents the fractional change in the weights). We can

see that there are many valleys in such a small range.We want to escape from this region

7

L
og

 S
um

 S
qu

ar
e

E
rr

or

w2

Figure 2.4: Error profile for single neuron network [2]

0 0.2 0.4 0.6 0.8 1

x 10
−12

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

α

m
se

Figure 2.5: Error profile for a practical network [2]

8

during the training.

9

CHAPTER 3

MODIFIED RECURRENT NETWORK TRAINING

In this chapter our discussion begins with a brief review of performance optimization,

which is the basis for neural network training. First, we describe the steepest descent

algorithm in section 3.1.1. The key component of the steepest descent algorithm is the gra-

dient calculation. In 3.1.2 we will present other optimization algorithms such as Newton’s

method and the Levenberg-Marquardt algorithm, which combines Newton’s method and

steepest descent to produce very efficient optimization. After that we will discuss various

implementations of derivative calculations in section 3.1.3.

After discussing neural network training methods, we will discuss data preparation in

section 3.2.1. We will introduce the idea of multiple training sequences, prediction horizon

and horizon steps. We will also describe how a certain adjustable parameter in the LM

algorithm can be used to detect spurious valleys. Finally, a brief summary of modifications

to the LM training algorithm that can avoid spurious valleys is given in section 3.3.

3.1 STANDARD TRAINING

Before going into the details of the training algorithms, we need to get into some funda-

mental concepts of performance optimization, which is the basis of network training. One

of the most classic performance optimization methods is the steepest descent algorithm.

3.1.1 STEEPEST DECENT

The objective of optimization is to find the value of x which minimizes a performance

index F(x). We start from an arbitrary initial guess x0 and then update our guess over series

10

Figure 3.1: Minimizing the Performance Index

of iterations:

xk+1 = xk +αkpk (3.1)

or

∆xk = (xk+1 −xk) = αkpk (3.2)

where pk is the search direction and αk is the learning rate (scalar and positive). The length

of each step is determined by the learning rate. In order to minimize the performance index,

we would like the function to decrease at each iteration. We will choose the direction pk so

that we will move in a downhill direction, as shown in Figure 3.1.

Consider the first order Taylor series expansion:

F(xk+1) = F(xk +∆xk)≈ F(xk)+gT
k ∆xk (3.3)

where gk is the gradient evaluated at xk.

g =

[
∂F
∂xi

]
(3.4)

11

 Σ

Σ

Σ

 Σ

Σ

Σ

 Σ

Σ

Σ

Figure 3.2: Three-Layer-Network [1]

In order for the function to decrease at each iteration the second term on the right hand

side of Equation 3.3 must be negative. Any search direction that satisfies this condition

is called a “descent direction”. If we use pk = −gk in Equation 3.1, we have the steepest

descent algorithm:

xk+1 = xk −αkgk (3.5)

There are several methods that can be used to choose the learning rates. However, if we

choose a small enough value for the learning rate αk, the steepest descent algorithm always

converges to a local minimum of the performance function.

To use the steepest descent algorithm for training neural networks, we first need to

compute the gradient. We will begin by defining the network structure for a static multilayer

network, and then we will demonstrate how the gradient is computed. The operation of a

12

single neuron is defined by:

n = wp+b (3.6)

a = f (n) (3.7)

where w is the weight, b is the bias, n is the net input, f is the transfer function and a is the

neuron output.

We can stack a finite number of neurons in a first layer and connect that layer to a

second layer and so on, to create a multilayer perceptron (MLP), as shown in Figure 3.2.

We can use MLPs for function approximation and pattern classification. MLPs are static

networks, because they do not have feedback connections or delays.

For training, the network is provided with a set of network inputs and target network

outputs {(p1, t1),(p2, t2), ...,(pQ, tQ)}. The network is trained to minimize the sum square

errors between the actual network outputs and the targets:

F(x) =
Q

∑
q=1

∥eq∥2 =
Q

∑
q=1

∥tq −aq∥2 =
Q

∑
q=1

(tq −aq)
T (tq −aq) =

Q

∑
q=1

Fq(x) (3.8)

where x is the vector of network weights and biases. The elements of the gradient that we

need to compute are

∂Fq

∂wm
i, j

(3.9)

∂Fq

∂bm
i

(3.10)

Because the error has an indirect relationship with the weights and biases in the hidden

layers, we use the chain rule of calculus to calculate these derivatives:

∂Fq

∂wm
i, j

=
∂Fq

∂nm
i
×

∂nm
i

∂wm
i, j

(3.11)

∂Fq

∂bm
i
=

∂Fq

∂nm
i
×

∂nm
i

∂bm
i

(3.12)

13

Since we used the chain rule, it is easier to calculate each derivative, since the second

term in each equation includes the net input to layer m, which is an explicit function of the

weights and biases. The first term is defined as a sensitivity:

sm
i ≡

∂Fq

∂nm
i

(3.13)

The derivatives in (3.9) and (3.10) can be computed as:

∂Fq

∂wm
i, j

= sm
i am−1

j (3.14)

∂Fq

∂bm
i
= sm

i (3.15)

The sm terms need to be calculated using another application of the chain rule. This

is the process that gives us the term backpropagation, because the sensitivity at layer m

is computed from the sensitivity at layer m+ 1. To derive the relationship between the

sensitivities we will use the following Jacobian matrix

∂nm+1

∂nm ≡

∂nm+1
1

∂nm
1

∂nm+1
1

∂nm
2

· · · ∂nm+1
1

∂nm
Sm

∂nm+1
2

∂nm
1

∂nm+1
2

∂nm
2

· · · ∂nm+1
2

∂nm
Sm

...
...

...
∂nm+1

Sm+1
∂nm

1

∂nm+1
Sm+1

∂nm
2

· · ·
∂nm+1

Sm+1
∂nm

Sm

(3.16)

∂nm+1
i

∂nm
j

=
∂ (∑sm

l=1 wm+1
i,l am

l +bm+1
i)

∂nm
j

= wm+1
i, j

∂am
j

∂nm
j

(3.17)

= wm+1
i, j

∂ f n(nm
j)

∂nm
j

= wm+1
i, j ḟ m(nm

j)

The Jacobian matrix can be written in a matrix form:

∂nm+1

∂nm = Wm+1Ḟm
(nm) (3.18)

14

where

Ḟm
(nm) =

ḟ m(nm
1) 0 · · · 0

0 ḟ m(nm
2) · · · 0

...
...

...

0 0 · · · ḟ m(nm
Sm)

(3.19)

Now, with the help of chain rule, the sensitivity calculations can be written in matrix

form:

sm =
∂ F̂
∂nm = (

∂nm+1

∂nm)T ∂ F̂
∂nm+1 = Ḟm

(nm)(Wm+1)T ∂ F̂
∂nm+1 (3.20)

= Ḟm
(nm)(Wm+1)T sm+1

It is clear how the backpropagation algorithm derives its name. The sensitivities are

propagated backward through the network from the last layer to the first layer:

sM → sM−1 → . . .→ s2 → s1 (3.21)

After the sensitivities are computed using the backpropagation process, the gradient can

be computed using (3.14) and (3.15). Then the weights can be updated using the steepest

descent algorithm (3.5). The backpropagation method of computing derivatives, however,

can be used for other optimization methods like Newton’s method or Levenberg-Marquardt,

which we will discuss in section 3.1.2.

3.1.2 LEVENBERG-MARQUARDT ALGORITHM

One of the faster alternatives to steepest descent for training neural networks is the

Levenberg-Marquardt (LM) algorithm. The LM algorithm is a variation of Newton’s

method. Lets start with Newton’s method and show how the LM algorithm can be derived

by modifying Newton’s method. The update equation for the Newton’s method is

xk+1 = xk −A−1
k gk (3.22)

15

where the Hessian matrix Ak ≡ ∇2F(x)|X=Xk and gk is gradient. If we assume that F(x) is

a sum of squared errors:

F(x) =
N

∑
i=1

e2
i (x) = eT (x)e(x) (3.23)

the gradient can be written in matrix form:

∇F(x) = 2JT (x)e(x) (3.24)

where

J(x) =

∂e1(x)
∂x1

∂ e1(x)
∂x2

· · · ∂e1(x)
∂xn

∂e2(x)
∂x1

∂ e2(x)
∂x2

· · · ∂e2(x)
∂xn

...
...

...

∂eN(x)
∂x1

∂ eN(x)
∂x2

· · · ∂eN(x)
∂xn

(3.25)

The Hessian matrix can be written in matrix form:

∇2F(x) = 2JT (x)J(x)+2S(x) (3.26)

where

S(x) =
N

∑
i=1

ei(x)∇2ei(x) (3.27)

If we can assume that S(x) is small, then we can approximate the Hessian matrix as

∇2F(x) = 2JT (x)J(x) (3.28)

By substituting Equation 3.24 and Equation 3.28 into Equation 3.22 we obtain the Gauss-

Newton method:

xk+1 = xk − [JT (xk)J(xk)]
−1JT (xk)e(xk) (3.29)

16

The advantage of Gauss-Newton method is that it does not require calculation of second

derivatives (in ∇2ei(x)). However, in the Gauss-Newton method sometimes the approxi-

mate Hessian matrix H = JT J is not invertible. This can be overcome with the following

modification.

G = H+µI (3.30)

This leads to the Levenberg-Marquardt algorithm [1]:

∆xk =−
[
JT (xk)J(xk)+µkI

]−1 JT (xk)e(xk) (3.31)

The important feature of the LM algorithm is that as µk becomes large it reverts to

steepest descent with a small learning rate, which guarantees that F(x) must decrease if µ

is made large enough. The algorithm starts with a small µk, and if F(x) does not decrease

at any iteration, the algorithm increases µk by factor of 10. If F(x) decreases, µk is reduced

by a factor of 10, because the algorithm converges faster in the Gauss-Newton mode (µk

small).

If µk reaches a large value (e.g., µk = 1010) without reducing the SSE, the training is

generally stopped. This is one criterion for stopping the LM algorithm. This often happens

prematurely in RNN training. As µk reaches a large value, the LM algorithm takes a very

small step in the steepest descent direction. If the SSE is not reduced without making µk

very large, there may exist a very narrow valley. This would be due to the spurious valleys

in the error surface described in the pervious chapter. We will use this characteristic of the

LM algorithm in the next section to detect and avoid the spurious valleys.

In dynamic networks the derivative computation will be more complex and sophisti-

cated. Instead of standard backpropagation, dynamic backpropagation algorithms need to

be used. In the next section we will briefly go over some variations of dynamic derivative

calculations.

17

F

Figure 3.3: Simple Dynamic Network [1]

3.1.3 DERIVATIVE CALCULATION

Dynamic networks can be trained using the same optimization algorithms as static net-

works like steepest descent (which uses the gradient), or Gauss-Newton and Levenberg-

Marquardt (which use the Jacobian). The difference between training the static and dy-

namic networks is the way of computing the gradients and Jacobian. Dynamic networks

contain delays, and they operate on a sequence of inputs. These types of networks can

also have feedback connections. Consider the dynamic network in Figure 3.3. It contains a

static multilayer network, with a feedback connection with a single delay from the output

to the inputs of the network. The vector a(t) is the output of network at time step t.

With dynamic networks, we need to modify the standard backpropagation algorithm.

There are two different ways to approach this problem. One is backpropagation through

time (BPTT), and the other is real time recurrent learning (RTRL). They both use the chain

rule, but they are implemented in different ways.

In the BPTT algorithm, which is shown in (3.32) and (3.33) for the network in Figure

3.3, the network response is computed for all time points, and then the gradient is computed

by starting at the last time point and working backwards in time [22]. This algorithm is

computationally efficient for the gradient calculation, but it is difficult to implement online,

because the algorithm works backward in time from the last time step [1].

18

∂F
∂x

=
Q

∑
t=1

[
∂ ea(t)
∂xT

]T

× ∂F
∂a(t)

(3.32)

∂F
∂a(t)

=
∂ eF

∂a(t)
+

∂ ea(t +1)
∂aT (t)

× ∂F
∂a(t +1)

(3.33)

The gradient in the RTRL algorithm can be calculated at the same time as the network

response. The RTRL algorithm works forward through time as shown in (3.34) and (3.35).

It requires more calculations than BPTT for calculating the gradient, however RTRL is

suitable for on-line implementation. Jacobian calculations for the RTRL algorithm are

generally more efficient than the BPTT algorithm.

∂F
∂x

=
Q

∑
t=1

[
∂a(t)
∂xT

]T

× ∂ eF
∂a(t)

(3.34)

∂a(t)
∂xT =

∂ ea(t)
∂xT +

∂ ea(t)
∂aT (t −1)

× ∂a(t −1)
∂xT (3.35)

Both algorithms calculate the same gradient, and therefore they produce the same fi-

nal results. The BPTT and RTRL representations can also be used to compute Jacobian

matrices which are needed in the Levenberg-Marquardt algorithm [1].

3.2 MODIFICATIONS (MULTIPLE SEQUENCES)

Before getting into the training procedure, there are some concepts and terms that need

to be explained, because they are frequently used in recurrent network training. We are

going to explain the difference between a sequence and a subsequence. The concept of

open loop and closed loop training will be introduced. Also, the effect of increasing the

length of subsequences on the prediction horizon will be discussed. Finally, the concept

behind the horizon step will be clarified.

19

u()t
T

D

L

T

D

L

()y t
^Feed

Forward
Network

(a) Parallel Architecture

u()t

()y t

T

D

L

T

D

L

() ()y t
^Feed

Forward
Network

(b) Series-Parallel Architecture

Figure 3.4: Parallel and Series-Parallel Architecture [1]

3.2.1 TRAINING SEQUENCE

RNNs are very good candidates to represent dynamic systems, because they have mem-

ory. In order to train a RNN to approximate a dynamic system, we need appropriate data.

Unlike static networks, where each input/target pair stands on its own, RNN data must

consist of ordered sequences of inputs and target outputs.

The original training data set may consist of multiple sequences. For RNNs, the length

of the sequence determines the prediction horizon - the number of steps ahead that neural

network is predicting. For example, consider the RNN in Figure 3.4(a), which consists of

a static feedforward network with a single feedback connection. Consider the case when

both tapped delay lines (TDLs) each have two delays. If we had a sequence of 10 elements,

the first two elements of the input sequence would be used to fill the input TDL, and the

first two elements of the target outputs would be used to fill the feedback TDL. The third

target output would then be the first target used for the training, and would represent a one

step prediction, because the first two targets are used in the calculation. The fourth target

output would be the second training target and would represent a two step prediction, since

the feedback TDL would contain the one step prediction from pervious time step. This

process would continue until time step eight, when the tenth target output would be the

eighth target used for the training, which would reperesent on eight step ahead prediction.

20

1 2 3 4 5 6 7 8 9 10

1 2

3 4

5 6

7 8

9 10

1

1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9 10

1 2

3 4

5 6

7 8

9 10

1

1 2 3

3 4 5

5 6 7

7 8 9

1 2 3 4 5 6 7 8 9 10

Figure 3.5: Forming Subsequences

To summarize, if we have a sequence of length Q and an RNN with maximum delay

D, then network will be making predictions with prediction horizon from 1 to Q−D steps

ahead.

We know from [2] and [16] that the spurious valleys in the error surface become nar-

rower and more numerous as the prediction horizon increases. For these reasons, we don’t

want to begin training with large prediction horizons. To avoid this, we divided the data

into smaller subsequences.

3.2.2 PREDICTION HORIZON

We begin training with one step ahead prediction. This is best implemented using

the series-parallel architecture shown in Figure 3.4(b). Since we are doing only one step

predictions, the feedback TDL is always filled with the target outputs. We call this open

loop training, because the feedback loop is effectively cut. With open loop training, the

21

Figure 3.6: Timing Diagram

spurious valleys discussed earlier do not occur.

The open loop training proceeds for a specified number of iterations, which completes

the first training segment. At this point the prediction horizon is increased by the first

horizon step, and another training segment is performed. The overall training process is

defined by the schedule of horizon steps. We would like to take large horizon steps in order

to complete training with the full sequence (maximum prediction horizon) as quickly as

possible. However, when the horizon step is too large, we are more likely become trapped

in a spurious valley. Later, we will discuss improved procedures for selecting the horizon

steps.

3.2.3 HORIZON STEP

The prediction horizon is increased by the horizon step at each training segment. This

means that the training sequences must be re-segmented, since the length of the sequence

determines the prediction horizon, as we discussed earlier. There are two approaches to the

segmentation of the original sequences. In one approach the subsequences are nonoverlap-

ping, and in the second approach there is some overlap. This is illustrated in Figure 3.5.

At the top of the figure we see the progression of the subsequences that are obtained if the

22

Figure 3.7: MSE vs. Prediction Horizon for Nonoverlapping Subsequences

horizon step is fixed at one, and the subsequences are selected so that they do not overlap.

At bottom of the figure we see a case of maximum overlap, in which the initial time points

in every sequence remain the same at each training segment. Notice that, if nonoverlap-

ping segmentation is used, after a few training segments the subsequences are unrelated to

the original subsequences. However, in the maximum overlap case the initial part of each

subsequence remains the same. This is also illustrated in Figure 3.6.

The type of segmentation can affect the choice of horizon step at each training segment.

For example, if fully overlapping sequences are used, then as the horizon step is increased,

with fixed weights, the mean square error will increase. However, when non-overlapping

or minimally overlapping sequences are used, the mean square error will not generally

increase monotonically with horizon step. Figure 3.7 illustrates this case. In a later chapter

we will use this concept to select a different horizon step at each training segment.

23

3.2.4 MODIFICATIONS TO THE LM ALGORITHM

The LM algorithm, which we described earlier, is used for network training - with

one modification. As described earlier, when µk reaches a large value the standard LM

algorithm would terminate. However, when training RNNs, large µk can indicate that the

algorithm is trapped in spurious valleys [7]. In addition, the valley is generally only asso-

ciated with one or two of the subsequences. This lead to the following modification of the

LM algorithm . Whenever µk reaches a maximum value, the gradients of MSE for each

subsequence are computed. The subsequence with largest gradient is then removed, and an

iteration of LM is performed. The removed sequence is subsequently returned and training

continues.

3.3 SUMMARY OF MODIFIED TRAINING

The training procedure first introduced in [7] can be summarized as follows:

1. The first training segment uses open-loop training (one-step-ahead predictions). All

training segments involve a fixed number of iterations of the training algorithm.

2. Closed-loop training with increasing prediction horizon: Do k-step-ahead prediction

(k > 2). This includes segmentation of the original long sequences into smaller sub-

sequences.

3. At each iteration of the LM algorithm, if µ reaches µmax, remove the sequence with

largest gradient. If the MSE does not decrease, keep removing the sequence with

next largest gradient until the MSE decreases (the algorithm escapes from the val-

leys). Add the removed sequences back to the training data before proceeding to

next iteration.

4. Increase the prediction horizon k (sequence length). If all sequences are removed,

shorten the prediction horizon and go back to step 2.

24

The prediction horizon was incremented according to a preplanned schedule. The

schedule was conservative, with small horizon steps, since it is difficult to know the op-

timal horizon. Because the schedule was conservative, training times could become quite

long. In the next section, we will describe a modification to [7], in which the horizon step

is adaptively selected for each training segment [23].

25

CHAPTER 4

NEW PROCEDURE FOR HORIZON SELECTION

In this chapter a new procedure for selecting the horizon step will be introduced. Before

going into the details of this new procedure, the effect of prediction horizon on the training

process will be explained in Section 4.1. In the last chapter, we explained that the prediction

horizon is increased by the horizon step at each training segment. This increment of the

prediction horizon has major effects on the training process. Some of these effects, such as

large oscillations in the training subsequences, will be discussed.

In addition, a new procedure for selecting the best horizon step will be discussed in

Section 4.2. The new procedure explains how the best horizon step will be chosen. This

method will become part of the modified training procedures that were discussed in Section

3.3.

4.1 EFFECT OF PREDICTION HORIZON ON TRAINING

Before we describe the procedure for determining the optimum horizon step, we want

to discuss the effect of the prediction horizon on the training process. As shown in [2]

and [16], the spurious valleys appear in regions of the weight space where the network is

unstable (see section 2.2). Even though the network output is very small at the bottom of

the valley, small changes in the weights will result in unstable responses. Fig. 4.1 illustrates

a typical network response when the weights are inside a valley, but not at the bottom. The

network response is small, until it reaches approximately time step 220, when oscillatory

behavior begins. With a prediction horizon of less than 220, the oscillation would not have

occurred. If the oscillatory behavior only takes place over a small region at the end of the

26

0 50 100 150 200 250 300
−150

−100

−50

0

50

100

150
N

et
w

or
k

O
ut

pu
t

Time

Figure 4.1: Network response inside a spurious valley.

sequence, then training can continue successfully.

Recall that in the pervious chapter we discussed two approaches for preparing data for

each training segment. If the fully overlapping (see in Figure 3.6) approach is used, the

MSE will increase monotonically as the horizon step increases. For example, in Figure

4.1, as the horizon step increases beyond 220, the amount of oscillation within the pre-

diction horizon increases. However, if the non-overlapping approach is used, the training

subsequences will have less in common as the horizon step increases, so the error is not

monotonic with respect to horizon step, as in Figure 3.7. The data segmentation approach

is very important and has an effect on the training procedures.

When oscillations occur over a significant percentage of the sequence, it is difficult for

the training to recover a stable response. Usually, these oscillations produce a large MSE

value. This means it would be very difficult for the LM optimization algorithm to minimize

a very large initial MSE value. Figure 4.2 shows one example of a network response with

27

0 50 100 150 200 250 300
−200

−150

−100

−50

0

50

100

150

Time

N
et

w
or

k
O

ut
pu

t

Figure 4.2: Network response with large oscillation.

large oscillations. The large oscillations cover almost 80% of the training sequence. These

large oscillations in Figure 4.2 usually occur in one or two of the subsequences and will

cause a large initial MSE, which makes it very hard for the LM algorithm to minimize the

performance index.

We want to increase the prediction horizon as much as possible at each training seg-

ment, but we do not want to increase it so far that unstable behavior occurs over too large a

percentage of any of the subsequences. In order to judge the percentage of oscillation, we

will compute the MSE. We should mention that the percentage oscillation is calculated by

dividing the length of oscillation by the length of prediction horizon at each horizon step.

We have found that there is a linear relationship between MSE and percentage oscillation.

This is illustrated in Fig. 4.3, which is a typical scatter plot of percentage oscillation ver-

sus MSE for individual subsequences. Each circle in the scatter plot represents the worst

sequence percentage oscillation vs. the MSE for a particular horizon step. In this figure the

28

0 1000 2000 3000 4000 5000 6000 7000
10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 O

sc
illa

tio
n

Mean Square Error

Figure 4.3: Relationship between MSE and percent oscillation.

range of prediction horizon is from 240 to 320. Also, the slope of percentage oscillation

versus the MSE can vary with the problem, but we can set a limit on the MSE that will also

set a limit on the percent oscillation.

At the successful completion of each training segment, there should be no unstable

behavior in any of the subsequences. If the horizon step for the next training segment is

chosen too large, however, oscillations could occur over too long a time interval in the

new subsequences to allow successful training. The objective of our proposed horizon step

selection method is to find the largest horizon step for which the oscillations occur over a

sufficiently small percentage of the sequence.

4.2 TRAINING PROCEDURE

For the algorithm we will discuss in this section, we will need to decide parameters such

as the number of iterations for each training segment and the horizon step at each training

29

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

M
ea

n
Sq

ua
re

 E
rro

r

Prediction Horizon

Figure 4.4: MSE versus Prediction Horizon.

segment. Also we should know which subsequences to use at each iteration and the total

number of training segments. We should note that the training algorithm discussed in this

section is a batch algorithm. This means that at each iteration (defined as an update of the

network weights) of the algorithm, the gradient is computed for the entire training data set.

We use the BPTT algorithm, which was mentioned in the previous chapter.

The method that was introduced in [7] increased the prediction horizon with a small

horizon step at each training segment. We begin the initial training segment with a one-

step-ahead prediction (open loop training). The prediction horizon is increased at each

training segment, until the prediction horizon during the final training segment covers the

full length of the original sequences. This process can require long training times, if the

prediction horizon is increased too slowly, but will fail to converge if the prediction horizon

is increased too quickly. We are introducing a new method that searches for a good horizon

step at each training segment.

30

Increment The Horizon

Step From 1 to maxstep

Find All the Local Minima

Use the Furthest Local Min

Are There Local

Min <0.03?

Take the Minimum Step

Use the Lowest Local Min

Yes

No

Yes Use the Maximum

Horizon Step

Yes

NoNo
If All MSE<0.03Is There a Local

Min?

Figure 4.5: Flow Chart of Choosing the Optimum Horizon Steps.

The new procedure will follow the same steps outlined in the previous section, including

the use of the LM algorithm, but in the final step, where the prediction horizon is increased,

the following procedure will be implemented to determine the horizon step.

Using the weights determined at the completion of the previous training segment, the

MSE will be computed for prediction horizons from 1 to maxstep steps ahead of the predic-

tion horizon used in the previous training segment. (For each increment in the prediction

horizon, the original training sequences will need to be resampled into new subsequences

of appropriate length.)

At this point, the algorithm will find all local minima of the MSE with respect to the

prediction horizon. It will then select the local minimum with the smallest MSE. For exam-

ple, consider Fig. 4.4, which shows MSE versus prediction horizon for a typical problem,

31

0 50 100 150 200 250 300
−200

−100

0

100

200
Before Next Training Segment

R
es

po
ns

e

0 50 100 150 200 250 300
−20

−10

0

10
After Next Training Segment

Prediction Horizon

R
es

po
ns

e

Figure 4.6: Network response on worst sequence, before and after training.

in which the prediction horizon for the previous training segment was 240. The local min-

imum that has the smallest MSE (1.144) occurs at prediction horizon 265, and therefore

265 was chosen for the prediction horizon for the next training segment. This represents an

horizon step of 25.

In order to take larger horizon steps, the algorithm can be slightly modified. If the MSE

is less than a small threshold (we used 0.03) for some local minima beyond the global

minimum, then the furthest of these minima is selected. If no local minima exists, then the

furthest prediction horizon with MSE less than the threshold is selected. The flowchart for

choosing the optimum horizon steps selection is shown in Figure 4.5.

The effect of the training is illustrated in Fig. 4.6. The top axis shows the response

of the network for the prediction horizon of 265 on the worst subsequence, before the

next training segment is complete. This subsequence is largely responsible for the MSE of

1.144 mentioned in the previous paragraph; none of the other subsequences had unstable

32

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

Pe
rfo

rm
an

ce
 In

de
x

Number of Iterations

Figure 4.7: Performance Index.

oscillations for the prediction horizon of 265. We can see that the oscillations only occur

over about 10% of the subsequence, which is acceptable. The lower axis shows the response

for the same subsequence, after the next training segment is complete. As we can see,

the training was able to successfully overcome the oscillatory behavior, because of the

limited initial oscillations. When the initial oscillations occur over much more than 10% of

the subsequence at the beginning of the training segment, the training will have difficulty

producing a good response. (This corresponded to an MSE of approximately 2, which was

the threshold used.) For example, we attempted training the network for the prediction

horizon corresponding to the next local minimum, with an MSE larger than 2, but the

training was not successful; the oscillation occurred over too large a percentage of the

prediction horizon.

This new procedure is very helpful in several ways. The time of training can be reduced,

and the optimum jump in the prediction horizon enables more successful completion of

training segments. In order to have a successful training segment, we need to reduce MSE

33

to a relatively small value.

A typical performance index plot is shown in Figure 4.7 for a practical problem. There

are some jumps in the performance index at the beginning of training, This is due to the

modified training procedure. In the modified training procedure, whenever the LM algo-

rithm is trapped in a spurious valley (µk reaches a maximum value), the gradients of MSE

for each subsequence are computed. The subsequence with largest gradient is then re-

moved, and an iteration of LM is performed. After the iteration is completed, the removed

sequence is subsequently returned and training continues. Although the LM algorithm is

guaranteed to reduce the MSE of the data in the training set, the training set is modified

during training, so the MSE oscillates some during the modified training.

34

CHAPTER 5

DEMONSTRATION OF HORIZON SELECTION

In this chapter, we will begin in Section 5.1 with the description of a practical applica-

tion, the single-link robot arm. In Section 5.2, we will demonstrate the training procedure

introduced in Section 4.2 to identify the robot arm system.

5.1 SYSTEM DESCRIPTION (SINGLE ROBOT ARM)

One of the very useful applications of RNNs is system identification (modeling of dy-

namic systems). The demonstration problem for the new training method presented in

Chapter 4 is the modeling, or system identification, of a single-link robot arm, driven by a

DC motor (see Figure 5.1). The single-link robot arm is an electromechanical system which

includes the motor dynamics (electrical part) and the arm dynamics (mechanical part). The

equations of motion of the arm are given by:

Va = RIa +Lİa +Kbθ̇ (5.1)

Jθ̈ = KtIa −Bθ̇ −mglsin(θ) (5.2)

where Va(t) is the voltage applied to the motor, Ia(t) is the armature current, J is the moment

of inertia of the arm, g is the gravitational constant, Kb is the back emf constant, Kt is the

torque constant, L is the inductance, l is the length of the arm and B is the viscous friction

coefficient. Simulation parameters, including the sampling time ts are given in Table 5.1.

The single-link robot arm is a classical dynamical system for a system identification

problem. In order to make this system a challenging problem, the parameters were chosen

35

Kb Kt g B L R J m l ts

0.055 0.055 9.8 0.0025 08e−3 0.4 18e−4 0.1 0.5 0.001

Table 5.1: Simulation Parameters for the Robot Arm

w
m

Arm

Figure 5.1: Single robot arm driven by DC motor.

in such fashion that the system responds quickly and has a strong nonlinearity.

The single-link robot arm is a third order system. The three states of this system are

chosen to be angular position, angular velocity and current. The downward position of the

arm represents the zero position, and clockwise is the positive direction.

Figure 5.1 shows the arm location in an upward position. This is a critical location for

the pendulum (neighborhood of π), since the response here is very sensitive to the initial

condition. A very small change in the π region will result in a different angular position.

In order to model this system, this sensitivity makes it a very challenging task for an RNN

model. The model needs to be very accurate over all the regions, especially in the upward

position. Therefore, we need a very good training procedure to model this system over the

full dynamic range.

In order to model this system using RNNs, we need to collect data for training purposes.

We use Simulink as a tool to gather data from this dynamic system. In the next section we

will go into the details of training data collection.

36

Training data

Name
Min

height

Max

height

Min

width

Max

width

Max

total

height

Min

total

height

First order TF

Data Train1 -6 6 0.004 0.01 12 -12 YES

Data Train2 -6 6 0.004 0.01 12 -12 NO

Data Train3 -6 6 0.004 0.02 12 -12 YES

Data Train4 -6 6 0.004 0.02 12 -12 NO

Data Train5 -6 6 0.004 0.03 12 -12 YES

Data Train6 -6 6 0.004 0.03 12 -12 NO

Data Train7 -12 12 0.004 0.01 12 -12 YES

Data Train8 -12 12 0.004 0.01 12 -12 NO

Data Train9 -12 12 0.004 0.02 12 -12 YES

Data Train10 -12 12 0.004 0.02 12 -12 NO

Data Train11 -12 12 0.004 0.03 12 -12 YES

Data Train12 -12 12 0.004 0.03 12 -12 NO

Data Train13 -24 24 0.004 0.01 12 -12 YES

Data Train14 -24 24 0.004 0.01 12 -12 NO

Data Train15 -24 24 0.004 0.02 12 -12 YES

Data Train16 -24 24 0.004 0.02 12 -12 NO

Data Train17 -24 24 0.004 0.03 12 -12 YES

Data Train18 -24 24 0.004 0.03 12 -12 NO

Data Train19 -24 24 0.004 0.03 12 -12 YES

Data Train20 -6 6 0.004 0.01 12 -12 NO

Table 5.2: Training data skyline range

37

0 200 400 600 800 1000
−20

−10

0

10

20
Input

0 200 400 600 800 1000
−10

−5

0

5

10
Output

Figure 5.2: Sample training sequence.

5.2 TRAINING DATA

To obtain the training data, we need to apply random input voltages (in the Simulink

model) to represent all possible input sequences to the motor drive. This input sequence

consists of a series of pulses of random heights and widths, known as a skyline function

[24]. An example of one sequence of the training data is shown in Figure 5.2.

We need to modify the standard skyline function so that the angular position does not

move outside the relevant range. For example, in Figure 5.2 the output (angular position)

stays in the range 3π to -3π . The heights and widths of pulses are randomly selected in

the standard skyline function. However, in the modified skyline function, we consider the

angular position as an external parameter, and when it is out of our specified location, we

will choose random heights and widths in such way that the angular position will remain

within our specified active region. Table 5.2 shows the height and width of random pulses

for 20 training sequences. We tried 10, 20 and 30 millisecond pulse widths with different

38

−15 −10 −5 0 5 10 15
0

1000

2000

3000

4000

5000

6000

7000

8000

Robot Arm Angle

Figure 5.3: Histogram of robot arm angles contained in the training set.

heights.

A total of 20 such sequences were generated to produce the entire training data set, in

order to cover the full range of required network operation. Fig. 5.3 shows a histogram of

robot arm angles in the training set (in radians), which demonstrates the coverage of the

modeling. The robot arm dynamic system is to be modeled as the angle varies in the range

from −3π to 3π and as the motor voltage varies from −12 to +12.

For dynamic modeling and system identification, the NARX network (Nonlinear Auto

Regressive model with exogenous input) shown in Figure 5.4 is popular. The NARX net-

work is a, RNN that has feedback connections around a multilayer network. This has a

parallel architecture, as shown in Figure 3.4(a). The NARX model is based on the linear

ARX mode, which is commonly used in time-series modeling. The defining equation for

the NARX model is:

39

S
1
x1 S

2
x1

S
1
x1

S
2
x1

S
1
x1 S

2
x1

R x1
1

S
1
xR S

2
xS

1

S
1

S
2

n
1
()t

n
2
()t

p
1
()t = ()u t a

1
()t a

2
() = ()t ty

IW
1,1

LW
1,

LW
2,1

b
1

b
21 1

R
1

Inputs Layer 1 Layer 2

T
D
L

T
D
L

f
1

f
2

^

Figure 5.4: NARX recurrent network. [1]

0 2000 4000 6000 8000 10000
−20

−10

0

10

Network ouput
Targets

0 2000 4000 6000 8000 10000
−20

−10

0

10

20
Input sequence

Figure 5.5: Open loop training data.

40

Parallel computing (Using 4 core CPU) Standard computing (Using 1 core CPU)

Method Hours Days Method Hours Days

Standard

Training Over

All Time

684 28

Standard

Training Over

All Time

1368 56

Modified

Training Over

All Time

170 7

Modified

Training Over

All Time

340 14

Table 5.3: Training time for the full data set

y(t) = f (y(t −1),y(t −2), ...,y(t −ny),u(t −2), ...,u(t −nu)) (5.3)

The current value of the output signal y(t) is predicted based on previous values of the

output signal and previous values of the input (exogenous) signal. The NARX network

models the function f by using a feedforward neural network. The NARX network can be

used for modeling of nonlinear dynamic systems. In addition, the implementation of this

network allows us to use multidimensional inputs and outputs.

We used the NARX network shown in Fig. 5.4 to model the robot arm system. We used

4 input delays and 4 feedback delays (so the training begins with the fifth data point) and

25 hidden neurons.

Fig. 5.6 compares the new training method, described in Section 4.2, in which an hori-

zon step is selected at each training segment, with a standard method, in which a horizon

step of one is used at each training segment. For prediction horizons up to 200, both meth-

ods produce similar MSE. However, the new method requires many fewer computations

to achieve the same result, because many intermediate horizon steps are skipped (see Ta-

ble 5.5). (Each circle in the figure represents an horizon step.) For prediction horizons

greater than 200, the single step method is very erratic, with the MSE eventually becoming

much larger for the single step method. Notice that for the new method, the MSE does

not increase significantly after the prediction horizon is larger than 500. We increased the

41

0 1000 2000 3000 4000 5000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Prediction Horizon

M
ea

n
Sq

ua
re

 E
rro

r

One step at a time
Optimal step

Figure 5.6: Change of MSE with increasing prediction horizon.

prediction horizon up to the full sequence length of 10,000, and the trend continued.

Table 5.3 shows the total training time for standard and modified training procedures.

The comparison shows that standard training is impractical. It requires much more compu-

tation, and it does a poor job in minimizing the MSE. The modified training algorithm,

which adaptively selects the horizon step, is more time efficient and produces a much

smaller MSE.

Table 5.5 shows the detailed horizon step selection for the single-link robot arm. In

some training segments, very small horizon steps are taken. This indicates that the algo-

rithm chose the lowest local minimum. However, in some other training segments the

furthest local minimum is selected, and the horizon step is bigger. This algorithm was

described in Figure 4.5.

One advantage of the horizon selection method is that the total number of times the

algorithm stops due to spurious valleys (indicated by µ becoming larger than µmax) is

42

0 200 400 600 800
10

−5

10
0

10
5

Sorted Sequence Number

open loop
265 step

0 50 100 150 200
10

−5

10
0

10
5

10
10

Sorted Sequence Number

open loop
1240 step

0 50 100
10

−5

10
0

10
5

10
10

Sorted Sequence Number

open loop
1825 step

0 5 10 15 20
10

0

10
5

10
10

Sorted Sequence Number

open loop
9997 step

Figure 5.7: Sorted MSE for all subsequences, using different prediction horizons.

kurtosis

265 step 1240 step 1825 9997

21.9488 8.6697 6.7662 2.1798

Table 5.4: kurtosis

greatly reduced when compared to the standard method. For example, in the single-link

robot arm system, we reached µmax in just two training segments (training segment number

4 and 16), out of the 77 training segments needed for the prediction horizon to reach the

full length of the original sequence. This compares with 9505 times that µmax was reached

using the standard method.

Figure 5.7 provides some insight into the effect of training the network for multi-step-

ahead predictions. The plots show the MSE sorted from lowest to highest for each train-

ing subsequence. Each plot corresponds to a multi-step prediction, trained for a different

prediction horizon, compared to the open loop training (trained for single-step prediction).

43

Training

Segment

Pervious

Prediction

Horizon

Horizon Step
of Times Mu

max reached

Training

Segment

Pervious

Prediction

Horizon

Horizon Step
of Times Mu

max reached

1 openloop 80 0 41 3327 198 0

2 80 80 0 42 3525 199 0

3 160 80 0 43 3724 216 0

4 240 25 156 44 3940 216 0

5 265 77 0 45 4156 229 0

6 342 78 0 46 4385 234 0

7 420 78 0 47 4619 134 0

8 498 78 0 48 4753 246 0

9 576 2 0 49 4999 137 0

10 578 40 0 50 5136 8 0

11 618 2 0 51 5144 280 0

12 620 2 0 52 5424 85 0

13 622 55 0 53 5509 7 0

14 677 91 0 54 5516 300 0

15 768 65 1578 55 5816 315 0

16 833 97 0 56 6131 38 0

17 930 43 0 57 6169 2 0

18 973 40 0 58 6171 340 0

19 1013 116 0 59 6511 34 0

20 1129 37 0 60 6545 9 0

21 1166 74 0 61 6554 2 0

22 1240 76 0 62 6556 380 0

23 1316 36 0 63 6936 48 0

24 1352 69 0 64 6984 380 0

25 1421 39 0 65 7364 57 0

26 1460 93 0 66 7421 7 0

27 1553 134 0 67 7428 10 0

28 1687 138 0 68 7438 3 0

29 1825 22 0 69 7441 400 0

30 1847 15 0 70 7841 411 0

31 1862 130 0 71 8252 401 0

32 1992 58 0 72 8653 42 0

33 2050 159 0 73 8695 2 0

34 2209 119 0 74 8697 460 0

35 2328 156 0 75 9157 325 0

36 2484 159 0 76 9482 377 0

37 2643 179 0 77 9859 138 0

38 2822 168 0

39 2990 141 0

40 3131 196 0

Table 5.5: Horizon step selection table

44

Horizon step
620 640 660 680 700 720 740 760 780 800

M
SE

0

2

4

6

8

10

12

14

(a) Training segment 11

Horizon step
1240 1260 1280 1300 1320 1340 1360 1380 1400

M
SE

0

5

10

15

20

25

30

35

40

45

50

(b) Training segment 23

Horizon step
4800 5000 5200 5400 5600 5800 6000

M
SE

0

20

40

60

80

100

120

140

(c) Training segment 49

Horizon step
7450 7500 7550 7600 7650 7700 7750 7800 7850 7900 7950 8000

M
SE

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

(d) Training segment 70

Figure 5.8: Four different horizon step cases

(Note that the number of subsequences decreases as the prediction horizon increases.) Even

for modest prediction horizons, the largest errors are significantly reduced, when compared

with the single-step training. For the largest prediction horizons, errors are reduced for all

cases.

Table 5.4 shows the kurtosis for 4 intermediate horizon steps. A higher kurtosis indi-

cates that the data distribution has bigger tails (more large and small values), and a lower

kurtosis indicates a smaller tails. In this case the lower kurtosis means that training for

multi step ahead predictions reduces the largest MSE errors.

Figure 5.8 shows four different examples of selecting the best horizon step. We need

to take a shorter steps in some training segments (see Figure 5.8(a)). However, in some

training segments, we can take a larger step (see Figure 5.8(b)). Figure 5.8(c) shows that

if we did not have a new method of choosing the horizon step we would be trapped in

45

0 2000 4000 6000 8000 10000
−10

−5

0

5

10

15

Time (sec)

O
ut

pu
t

0 2000 4000 6000 8000 10000
−0.6

−0.4

−0.2

0

0.2

0.4

Time (sec)

Er
ro

r

Figure 5.9: Target and accurate network response on test sequence.

some locations which would be impossible for the LM algorithm to escape. Figure 5.8(d)

shows a case where all of the horizon steps have very small MSE, therefore we can take the

maximum step.

After training was completed for the maximum prediction horizon, the network re-

sponse closely followed the target response for all 20 of the original training sequences.

In order to validate the network, it was tested on 20 additional sequences of 10,000 time

points, which were not used for training. For 13 of these test sequences, the network re-

sponse was very accurate. A typical response is shown in Fig. 5.9. However, in the other

7 test sequences, there was some oscillation in the response. A typical oscillatory response

is shown in Fig. 5.10.

This type of oscillatory response is characteristic of RNNs. The feedback connections

allow for the possibility of instabilities. However, when the network has been accurately

trained over the relevant input space, it should be possible to avoid these issues. Our hypoth-

46

0 2000 4000 6000 8000 10000
−200

−150

−100

−50

0

50

100

150

200

Time (sec)

O
ut

pu
t

Figure 5.10: Target and oscillatory network response on test sequence.

esis was that the instabilities occur when the network inputs fall outside the space spanned

by the training data set. In this case, the network would be extrapolating, and reasonable

performance could not be guaranteed. In the next section, we will introduce a method

to determine when the network is extrapolating. The objective will be to detect pending

oscillatory behavior in a trained network, well before the oscillation occurs.

47

CHAPTER 6

NOVELTY DETECTION

In this chapter, we will begin in Section 6.1 with the description of a clustering method,

the Self Organizing Map (SOM). We will introduce the structure of the SOM and its train-

ing procedure. In Section 6.2, the SOM will be used in RNN applications in order to predict

oscillatory behaviour in the network response.

6.1 SELF ORGANIZING MAP

When training recurrent networks, it will not be possible to guarantee reasonable net-

work performance if the network inputs move outside the range of the data on which the

network is trained. It is important to be able to detect when this extrapolation is occurring.

For example, if the RNN is part of a feedback control system, [24], we would want to

disable the RNN when extrapolation occurs, and replace with a conventional controller.

Detecting extrapolation is a form of novelty detection. We want to know when the inputs

to the network fall outside the range of the training data. In this section we propose a type

of novelty detection for RNNs. A number of approaches to novelty detection are reviewed

in [18]. The approach proposed here is a type of clustering method, in which the inputs

from the training set are characterized by a small set of prototype vectors. The minimum

distance of a new input to the nearest prototype is used to quantify novelty. For example,

if the distance from the new input to the nearest prototype is larger than the maximum

distance of that prototype to the cluster of training inputs that are assigned to it, then the

new input could be considered novel. (One might also use other similar types of threshold

distances to indicate novelty.)

48

The clustering method we are using here for novelty detection is the Self-Organizing

Map (SOM) [25], which is a network for identifying clusters in a data set. This is a topology

preserving network, in that neurons within the network have neighbor relationships that

are preserved by the training process. The idea will be to train the SOM on combination

vectors that represent the inputs to the network, augmented with the target network output.

For example, consider the NARX network in Figure 5.4. The tapped delay lines connected

to weights IW1,1 and LW1,2 represent the inputs to the static portion of the network. For

our example, each of these tapped delay lines has four elements. If we then combine these

eight elements with the target network output, we have a nine-element vector. The SOM is

then trained on all nine-element vectors in the training set.

6.1.1 BASIC COMPETITIVE NETWORK

The feed forward neural network in which the neurons of the output layer compete with

each other to determine a winner is called a competitive network. The winner indicates

which prototype pattern is most representative of the input pattern. The competition is

implemented by set of connections between the neurons in the output layer. In this section,

we are going to illustrate how this competition can be performed and what are the basic

training procedures.

Figure 6.1 shows the structure of a competitive network. The prototype vectors are

stored in the rows of W. The net input n calculates the negative distance between the input

vector p and each prototype iw. To simplify the competition layer, we will define a transfer

function that does competition with the other neurons to calculate the winning neuron [1].

The output of the competitive network is computed as:

a = compet (n) (6.1)

The transfer function works by finding the index i∗ of the neuron with the largest net

input, and setting its output to 1 (with ties going to the neuron with the lowest index). All

other outputs are set to 0.

49

Competitive Layer

a compet n
1 1

= ()

C S
1
x 1S

1
x 1R x 1

S
1
x R

S
1

n
1

p a
1

R

Inputs

n
1 1

i i
= -|| - ||w p

W
1

-||dist||

Figure 6.1: Competitive Layer [1]

ai =

1 , i = i∗

0 , i ̸= i∗
(6.2)

where ni∗ ≥ ni, ∀i, and i∗ ≤ i, ∀ni = ni∗

We can design a competitive network by setting the rows of W to the desired prototype

vectors. However, we would like to have a learning rule that could be used to train the

weights in a competitive network, without knowing the prototype vectors [1]. One such

learning rule is:

iw = iw+αai(q)(p(q)− iw(q−1)) (6.3)

For the competitive network, a is only nonzero for the winning neuron(i = i∗). Therefore,

we can simplify our learning rule to the Kohonen rule [1]:

i∗w = i∗w+α(p(q)− i∗w(q−1))

= (1−α)i∗w(q−1)+αp(q) (6.4)

and

iw(q) = iw(q−1) i ̸= i∗ (6.5)

50

-

Figure 6.2: Graphical Representation of the Kohonen Rule [1]

Thus, the row of the weight matrix that is closest to the input vector moves toward the

input vector. It moves along a line between the old row of the weight matrix and the input

vector, as shown in Figure 6.2.

Let’s make a simple example, Figure 6.3, to demonstrate how a competitive layer learns

to classify vectors. Our competitive network will have three neurons, and therefore it can

classify vectors into three classes. Initial weights are randomly chosen and normalized [1].

1w =

 0.7071

−0.7071

2

w =

 0.7071

0.7071

3

w =

 −1.0000

0.0000

 (6.6)

where W is

W =

1wT

2wT

3wT

 (6.7)

The data vectors are shown in Figure 6.3(a), with the weight vectors displayed as arrows

shown in Figure 6.3(b). Lets present the vector p2 to the network [1].

a = compet(−

∥1w−p2∥

∥2w−p2∥

∥3w−p2∥1

) = compet

−1.7634

−0.5796

−1.5467

=

0

1

0

 (6.8)

51

(a) Sample Input Vectors (b) Initial Weights

(c) Moves toward the closet input (d) Final Weights

Figure 6.3: Graphical Representation of Kohonen rule [1]

The second neuron’s weight vector was closest to p2, so it won the competition (i∗ = 2) and

output a 1. We now apply the Kohonen learning rule to the winning neuron with a learning

rate of α = 0.5.

2wnew = 2wold +α(p2 − 2wold) (6.9)

=

 0.7071

0.7071

+0.5

 01961

0.9806

−

 0.7071

0.7071

=

 0.4516

0.8438

 (6.10)

The Kohonen rule moves 2w closer to p2, as can be seen in Figure 6.3(c). If we continue

choosing input vectors at random and presenting them to the network, then at each iteration

the weight vector closest to the input vector will move toward that vector. Eventually, each

weight vector will point at a different cluster of input vectors. Each weight vector becomes

a prototype for a different cluster [1], as shown in Figure 6.3(d).

52

Figure 6.4: Self-Organizing Feature Map [1]

6.1.2 CONCEPT OF NEIGHBORHOOD

In the previous section we did not mention how neurons are physically organized within

a layer. This ordering of the neurons forms the topology of the network. In biological

neural networks, neurons are typically arranged in two-dimensional layers, in which they

are densely interconnected. Figure 6.4 shows a layer of twenty-five neurons arranged in a

two dimensional grid. It turns out that this approximation of biological competitive layers

not only reinforces the winning neuron itself but also those neurons close to it. The main

advantage of a two-dimensional topology is that it allows visualization of high-dimensional

spaces [1].

In order to use the biological competitive systems, Kohonen designed his SOM network.

In his SOM design, the winning neuron i∗ is found using the same procedure as the com-

petitive layer. However, the weight vectors for all neurons within a certain neighborhood

of the winning neuron are updated using the Kohonen rule [1].

iw(q) = iw(q−1)+α(p(q)− iw(q−1))

= (1−α)iw(q−1)+αp(q) i ∈ Ni∗(d) (6.11)

53

Figure 6.5: Neighborhoods [1]

where the neighborhood Ni∗(d) contains the indices for all of the neurons that lie within a

radius d of the winning neuron i∗:

Ni(d) = { j,di j ≤ d} (6.12)

When a vector p is presented, the weights of the winning neuron and its neighbors will

move toward p. The result is that, after many presentations, neighboring neurons will have

learned vectors similar to each other.

To demonstrate the concept of a neighborhood, consider the two diagrams shown in

Figure 6.5. The left diagram in the figure illustrates a two-dimensional neighborhood of

radius d = 1 around neuron 13. The right diagram shows a neighborhood of radius d = 2.

The definition of these neighborhoods would be [1]:

N13(1) = {8,12,13,14,18} (6.13)

N13(2) = {3,7,8,9,11,12,13,14,15,17,18,19,23} (6.14)

We should mention that the neurons in an SOM do not have to be arranged in a two-

dimensional pattern. It is possible to use a one-dimensional arrangement, or even three

54

Figure 6.6: U-Matrix for Trained SOM [1]

or more dimensions. For a one-dimensional SOM, a neuron will only have two neighbors

within a radius of 1 (or a single neighbor if the neuron is at the end of the line). It is

also possible to define distance in different ways. For instance, Kohonen has suggested

rectangular and hexagonal neighborhoods for efficient implementation. The performance

of the network is not sensitive to the exact shape of the neighborhoods [1].

6.1.3 GRAPHICAL REPRESENTATIONS

After the network has been trained, we will investigate the results to see if the network

response is valid. One tool for analyzing the SOM is the unified distance matrix, or u-

matrix. This visualization tool shows the distances between neighboring neurons in the

feature map. The u-matrix has a cell for each neuron in the feature map and an additional

cell between each pair of neurons. The cells between neurons are color-coded with the

distance between the corresponding weight vectors. The cells that represent the neurons

are coded with the mean of the surrounding values. Figure 6.6 shows the u-matrix for our

55

53 42 32 18 55 19 14 10 37 31 37 32 7 15 23 37 21 47 85 88

66 48 56 44 33 33 62 40 68 41 63 33 34 44 44 32 48 20 143 175

66 46 47 20 27 20 64 17 44 21 59 42 36 24 29 19 47 50 78 115

73 56 49 51 63 35 58 71 26 69 23 65 60 60 63 53 56 24 55 111

78 70 71 33 65 56 31 61 100 81 42 27 9 10 10 27 19 62 32 92

79 51 50 79 54 85 28 14 14 57 67 79 57 63 60 41 70 16 83 80

92 42 21 64 22 30 75 62 34 50 73 17 4 23 79 9 19 16 74 107

58 57 80 81 50 28 30 44 41 68 59 51 28 65 43 66 36 41 43 106

65 56 36 48 15 69 66 93 72 60 101 45 85 17 80 59 10 33 51 101

87 15 51 48 67 23 41 89 23 24 21 33 42 78 27 31 50 54 46 75

56 30 38 69 56 52 61 70 73 86 39 108 74 74 16 12 18 30 21 87

78 30 37 22 57 60 10 25 20 25 21 22 26 50 18 29 29 51 58 77

95 68 49 58 53 54 26 14 71 83 30 17 14 28 79 67 77 83 43 102

115 44 10 18 50 70 60 45 65 59 18 12 22 52 57 50 32 58 72 86

121 113 19 18 7 22 83 58 25 39 105 51 55 51 27 60 80 14 64 105

92 111 34 55 22 64 59 9 6 61 37 67 17 38 66 24 13 58 102 107

144 95 13 49 37 57 24 34 6 60 15 87 92 24 15 41 28 19 65 75

84 59 56 20 9 42 44 27 31 58 34 16 44 66 19 35 42 18 35 106

134 121 73 69 69 58 42 41 23 51 35 25 33 42 67 41 31 41 27 92

101 91 38 60 36 26 35 36 51 30 14 13 26 26 17 40 79 74 86 98

Figure 6.7: Hit histogram for 20x20 trained SOM

trained SOM [1]. The light-colored cells in Figure 6.6, represent large distances between

neurons. We can see that there is a string of light colored cells on the left side of the feature

map. This indicates that the clusters associated with the neurons on the left side of the map

are significantly different than those in the middle and right sides of the map.

To get more insight into how the SOM has clustered the data, we can produce a hit

histogram. For this graph, we count how many times each neuron was the winning neuron

for the entire data set. Such a graph is displayed in Figure 6.7. In each cell you can see a

hexagram. The sizes of the hexagrams indicate how many times the corresponding neuron

was the winning neuron.

56

Quntization

Error

Topographic

Error

Average

Quntization

Error

Average

Topographic

Error

Network 1 1.2767 0.1940 1.1827 0.1915

Network 2 1.0482 0.1567

Network 3 0.9535 0.1464

Network 4 1.4489 0.2657

Network 5 1.1850 0.1978

Network 6 1.0457 0.1638

Network 7 1.4282 0.2525

Network 8 1.1817 0.1821

Network 9 1.0581 0.1535

Network 10 1.2014 0.2031

Table 6.1: Statistics

6.2 APPLICATION OF SOM TO EXTRAPOLATION DETECTION

We trained an SOM network on data from the single-link robot system that was de-

scribed in Chapter 5. Consider the NARX in Figure 5.4. The tapped delay lines connected

to weights IW1,1 and LW1,2 represent the inputs to the static portion of the network. For

our example, each of these tapped delay lines has four elements. If we combine these eight

elements with targets network output, we have a nine element vector. The SOM is then

trained on all nine elements vectors in the training set. The data set was very large, there-

fore, we needed to segment the data into 10 sections and train a different SOM on each

section.

In order to cluster this large data set, we experimented with several different SOM sizes,

such as 10x10, 15x15 and 20x20, and we looked at each individual cluster center after the

training. It is important that all members of each cluster be close to the cluster centers.

There are several ways to measure SOM performance, such as the hit histogram and

statistics such as topographic error and quantization error.

The hit histogram of Fig. 6.7 is a representation of the trained 20x20 SOM. Each

57

2 4 6 8

−10

−5

0

5

10

Cluster Center 13

2 4 6 8

−10

−5

0

5

10

Cluster Center 93

2 4 6 8

−10

−5

0

5

10

Cluster Center 165

2 4 6 8

−10

−5

0

5

10

Cluster Center 361

Figure 6.8: Four clusters in the trained SOM network.

hexagon represents a neuron (cluster center), and the sizes of the hexagons indicate the

number of training set input vectors associated with each cluster center of the 20x20 SOM.

The larger the hexagon, the more inputs are associated with that cluster. We can see that

the inputs are well-distributed throughout the network.

Fig. 6.8 illustrates four of the 400 clusters associated with one of the trained SOMs.

(The numbering of the clusters starts with 1 in the lower left of Fig. 6.7, and continuing

row-by-row to the top right of that figure.) Each subfigure shows a cluster center as a bold

line with circles and the inputs that are associated with that cluster as the thinner lines.

Quantization error is the average distance between each input vector and the closest

prototype vector. It measures the map resolution. Another measure of SOM performance

is topographic error. This is the proportion of all input vectors for which the closest pro-

totype vector and the next closest prototype vector are not neighbors in the feature map

topology. Topographic error measures the preservation of the topology. In a well trained

58

2500 2550 2600 2650 2700 2750 2800
−200

−100

0

100

200

Time

O
ut

pu
t/T

ar
ge

t

2500 2550 2600 2650 2700 2750 2800
0

0.2

0.4

0.6

0.8

1
Extrapolation Indication

Tme

Figure 6.9: Network response and extrapolation detection.

SOM, prototypes that are neighbors in the topology should also be neighbors in the input

space [1].

For our trained SOM, the final quantization error was 1.1827, and the final topographic

error was 0.1916. This means that for less than 20% of all input vectors, the winning neuron

and the next closest neuron were not adjacent to each other (see Table 6.1 for the errors of

each SOM).

For each cluster, we have calculated the maximum distance between the cluster center

and the most distant member of that cluster in the training set. We then use those maximum

distances to determine when the RNN is extrapolating. While the RNN is operating, at each

time step we create an input vector to the SOM. (When the target output is not available, the

last element of the SOM input vector is replaced with the RNN output.) The distance of this

SOM input to the nearest cluster center is compared with the maximum distance associated

with that cluster. If the current input distance is larger than the maximum distance, there

59

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ou
tpu

t\Ta
rge

t
-10

-5

0

5

10

Time
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.5

1
Extrapolation Indication

(a) False positive extrapolation detection

1 2 3 4 5 6 7 8 9

-10

-5

0

5

10

Cluster Center 341

(b) Cluster Members

Figure 6.10: Illustration of false positive extrapolation detection

is potential extrapolation under way. Fig. 6.9 demonstrates the process. The top subfigure

shows the network response for a new test sequence, along with the target output. The

bottom subfigure shows the extrapolation indication. The extrapolation flag goes high many

time steps before oscillation begins in the network output.

In some cases in the test data, we have an extrapolation indication when no oscillation

occurs. Figure 6.10 shows one of these cases. We need to investigate these false positive

cases, therefore we need to find the closest cluster center to which this input vector belongs.

Figure 6.10(b) shows the prototype vector as a thick blue line and the false positive input

vector as a thick red line.

In order to reduce the number of false positives, we can indicate extrapolation only

60

Indication

Width
Sensitivity Specificity

Average Steps

After

Indication

Before

Oscillation

False Positive

Rate

1 1 0.2359 63.54 0.7640

2 1 0.5384 66.13 0.4615

3 0.9259 0.6986 58.60 0.3013

4 0.9393 0.9402 49.12 0.0596

5 0.9393 0.9552 47.22 0.0447

6 0.9393 0.9552 45.70 0.0447

7 0.9393 0.9552 43.25 0.0447

8 0.9411 0.9696 44.37 0.0303

9 0.9411 0.9696 41.09 0.0303

10 0.9428 0.9845 39.09 0.0154

Table 6.2: Sensitivity and Specificity

when the distance of the SOM input to the nearest cluster center is larger than the maximum

cluster distance for a specified number of consecutive time steps, which we will call the

indication width. To select a reasonable indication width, we generated 100 test sequences.

For each indication width we counted the number of time steps before the oscillation

occurred for all 100 sequences. Also, we counted the number of false positives, where

there is no oscillation within 100 time steps of the oscillation (defined as the latent time).

Table 6.2 shows the average number of time steps before oscillation for indication widths

ranging from 1 to 10 for all of the 100 test sequences.

Sensitivity and specificity are also statistical measure of performance of classification

methods. Sensitivity (true positive rate) measures the proportion of actual positives which

are correctly identified (e.g., the percentage of oscillatory sequences which are correctly

identified). Specificity (true negative rate) measures the proportion of negatives which are

correctly identified (e.g., the percentage of good sequences which are correctly identified).

61

True True

bad good bad good

In
di

ca
te

d
bad 11 68

In
di

ca
te

d

bad 22 36

good 0 21 good 0 42

Indication width 1 Indication width 2

True True

bad good bad good

In
di

ca
te

d

bad 25 22

In
di

ca
te

d

bad 31 4

good 2 51 good 2 63

Indication width 3 Indication width 4

True True

bad good bad good

In
di

ca
te

d

bad 31 3

In
di

ca
te

d

bad 31 3

good 2 64 good 2 64

Indication width 5 Indication width 6

True True

bad good bad good

In
di

ca
te

d

bad 31 3

In
di

ca
te

d

bad 32 2

good 2 64 good 2 64

Indication width 7 Indication width 8

True True

bad good bad good

In
di

ca
te

d

bad 32 2

In
di

ca
te

d

bad 33 1

good 2 64 good 2 64

Indication width 9 Indication width 10

Table 6.3: Confusion table

62

Table 6.2 shows the sensitivity and specificity for different indication widths. The ideal

predictor is 100 percent sensitive and 100 percent specific.

The confusion matrix is a table that provides insight into classification performance.

Each column of the matrix represents the actual class, and each row represents the predicted

class. Table 6.3 show confusion matrices as the indication width varied from 1 to 10.

Based on the results shown in Table 6.2 and 6.3, it appears that an indication width

of about 5 provides the best combination of sensitivity and specificity, although slightly

larger indication widths do not change the performance significantly. Since increasing the

indication width reduces the lead time in predicting the oscillation, we would like to use

the minimum indication width that produces reasonable accuracy.

63

CHAPTER 7

MODELING AND CONTROL OF A SIMULATED MAGNETIC LEVITATION

SYSTEM

In this chapter, we will begin in Section 7.1 with a description of training a recurrent

neural network, using the modified training algorithm from the pervious chapter, to model

a simulated magnetic levitation system. The Self Organizing Map (SOM) is used to col-

lect additional data to improve the training procedure (collecting data wisely in the regions

where we are extrapolating) in Section 7.2 . We will test and verify the final trained RNN

model after phases of retraining in Section 7.2.2. Next we will introduce the Model Refer-

ence Control (MRC) algorithm in conjunction with the plant model in Section 7.3. Finally,

we will test and verify the MRC model on the simulated magnetic levitation system.

7.1 TRAINING NARX NETWORK FOR IDENTIFICATION OF PLANT

In this section, we will consider the basic magnetic levitation system. Magnetic levita-

tion has been used in several industrial applications, such as transportation systems.

7.1.1 SYSTEM DESCRIPTION

In our simulated magnetic levitation system system, we will suspend a magnet above

an electromagnet. A magnetic levitation train works in a similar manner. The purpose

and goal of this magnetic levitation system is to control the position of a magnet above an

electromagnet.

Figure 7.1 shows the magnetic levitation system, which consists of a magnet suspended

above an electromagnet, where the magnet is constrained so that it can only move in the

64

β α g M i(t) SamplingInterval

12 15 9.8(m
s2) 3(Kg) −1 to 4(A) 0.010

Table 7.1: Simulation Parameters for the Magnetic Levitation

+

-

N

S

y t

i(t)

Figure 7.1: Magnetic levitation system [1]

vertical direction. The equation of motion of the magnet is

d2y(t)
dt2 =−g+

α
M

× i2(t)sgn[i(t)]
y(t)

− β
M

× dy(t)
dt

(7.1)

where y(t) is the distance of the magnet above the electromagnet, i(t) is the current in

the electromagnet, M is the mass of the magnet, g is the gravitational constant, β is a

viscous friction coefficient and α is a field strength constant. Table 7.1 shows the simulation

parameters.

7.1.2 SYSTEM IDENTIFICATION

In order to model this system using RNNs, first we need to collect a set of training

data. We used Simulink as a tool to gather data from this dynamic system, and we applied

random inputs consisting of a series of pulses of random widths and heights, known as a

skyline function, as we discussed in Section 5.2. An example is shown in Figure 7.2.

We use a NARX network, shown in Figure 5.4, to model this system. The network we

65

0 10 20 30 40 50 60 70 80 90 100

C
ur

re
nt

 (A
m

p)

-2

0

2

4
Input

Time(s)
0 10 20 30 40 50 60 70 80 90 100

M
ag

ne
t P

os
tio

n
(c

m
)

0

2

4

6
Output

Figure 7.2: Training data for magnetic levitation

Training data

Name Min height Max height Min width Max width

Data Train1-20 -1 4 0.1 1

Table 7.2: Training data skyline range for magnetic levitation

used had 3 input and output delays (the prediction begins with the fourth data point) and

also initially had 15 hidden neurons.

A total of 20 sequences were generated to produce the entire training data set, in order

to cover the full range of required network operation. Figure 7.3 shows a histogram of

magnet position in the training set (in centimeters), which demonstrates the coverage of the

modeling. The magnetic levitation system is to be modeled as the magnet position varies

in the range from 0 to 6 centimetres and as the current varies from −1 to 4 amp. Table 7.2

shows the height and width of random pulses for 20 training sequences.

The first step of the modified training algorithm in Section 3.3 is open-loop (one step

66

Histogram of Magnet Position
0 1 2 3 4 5 6 7

0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 7.3: Histogram of Magnet position contained in the training set.

ahead prediction) training. In this phase, as we discussed in Section 3.2.1, there are two in-

puts to the series-parallel architecture shown in Figure 3.4(b) which are the input sequence

and the target sequence.

After performing the open loop training, we do multiple step ahead prediction for the

NARX network (close the feedback connections). The horizon step is chosen automatically

by the new procedure discussed in Section 4.2.

Table 7.3 shows the detailed horizon step selection for the magnetic levitation system.

The algorithm adaptively chose the next horizon step as we discussed in Section 4.2. We

reached µmax in just 14 training segments, as shown in Table 7.3, out of the 67 training

segments needed for the prediction horizon to reach the full length of the original sequence.

After training was completed for the maximum prediction horizon, the network re-

sponse closely followed the target response for all 20 of the original training sequences.

Figure 7.4 shows the results of the 9998 step ahead prediction. We hardly see any differ-

67

Training

Segment

Pervious

Prediction

Horizon

Horizon Step
of Times Mu

max reached

Training

Segment

Pervious

Prediction

Horizon

Horizon Step
of Times Mu

max reached

1 openloop 1 0 41 4394 100 2

2 2 1 0 42 4494 203 0

3 3 1 0 43 4697 241 4

4 4 1 0 44 4938 151 1

5 5 1 0 45 5089 250 1

6 6 98 0 46 5339 221 0

7 104 98 0 47 5560 39 0

8 202 97 0 48 5599 14 0

9 299 95 0 49 5613 12 0

10 394 94 0 50 5625 250 0

11 488 137 1 51 5875 101 0

12 625 147 27 52 5976 250 0

13 772 144 3 53 6226 240 0

14 916 146 0 54 6466 300 0

15 1062 148 0 55 6766 300 0

16 1210 144 0 56 7066 258 0

17 1354 145 0 57 7324 300 0

18 1499 148 0 58 7624 114 0

19 1647 17 0 59 7738 300 0

20 1664 146 0 60 8038 198 0

21 1810 146 5 61 8236 300 0

22 1956 149 0 62 8536 247 0

23 2105 91 1 63 8783 50 0

24 2196 1 0 64 8833 334 4

25 2197 1 0 65 9167 193 0

26 2198 195 0 66 9360 294 0

27 2393 196 2 67 9654 344 0

28 2589 197 0

29 2786 122 0

30 2908 2 0

31 2910 29 0

32 2939 197 7

33 3136 193 1

34 3329 198 3

35 3527 196 0

36 3723 194 0

37 3917 197 0

38 4114 194 0

39 4308 84 0

40 4392 2 0

Table 7.3: Horizon step selection table for magnetic levitation

68

Number of Steps
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ag

ne
t P

os
iti

on

0

1

2

3

4

5

6

Trained Network Response
Target

Figure 7.4: Target and trained network response on training data set

ence between the actual position of the magnet and the position predicted by the NARX

network, and the mean square error is quite small (The MSE value is 2.5724×10−4).

In order to validate the NARX network, we generated 100 additional test sequences of

10,000 time points, which were not used for training. In some of the cases the network is

extrapolating, and the network response is inaccurate. As we discussed in Chapter 6, we

use the SOM to detect the extrapolation. Then, we add the extrapolating test sequences to

the training data, in order to expand the region where the network provides an accurate fit.

In Section 7.2, we will go into the details of data collection and show more statistics in this

regard.

7.2 SOM FOR NOVELTY SAMPLING

It is unlikely that the original data set will effectively cover the full range of conditions

where the network will be used. As we discussed in Chapter 6, the RNN is extrapolating

69

when network inputs fall outside the space spanned by the training data set. We are going

to collect additional training data wisely using the SOM. Then, we will retrain the NARX

network with the new data combined with the initial training data set. This procedure is

known as novelty sampling. This will be done in phases until no novel conditions are

detected after many additional tests.

7.2.1 RETRAINING PROCESS

For the magnetic levitation system, we performed two phases of novelty sampling and

retraining. The novelty sampling provides more information in the regions where network

performance is not reasonable, and after the retraining the network we expect an enhanced

network response.

7.2.1.1 FIRST RETRAINING PROCESS

In the first retraining process, we trained the SOM over the 20 training sequences. We

used the same procedure discussed in Section 6.2. We trained a 20x20 SOM with a 7

element input vector.

Table 7.4 shows the statistics of the SOM for 100 generated test sequences. The false

positive rate drops from 69 percent to 24 percent when the indication width is 3, so we

chose an indication width of 3 for collecting the new sequences. We add sequences which

have indication widths of 3 and more to the original training data set. The new training data

set will grow in phases until there are no significant errors on new tests sets. Even after a

network has been implemented, the SOM can continue to monitor performance, and the

network can be retrained when a significant number of sequences have been added to the

training set.

In this part of retraining we collected 39 additional sequences, therefore, the first re-

training will use 59 sequences. The new data set is increased by almost 3 times.

We were able to reach the full horizon and complete the training process. The first

70

Indication Width Sensitivity Specificity
Average Steps After

Indication Before Oscillation
False Positive Rate

1 1 0.0106 18.0 0.9894

2 0.75 0.3095 0.1818 06905

3 0.8077 0.7568 -0.80 0.2432

4 0.8077 0.7703 -1.80 0.2297

5 0.8077 0.7703 -2.80 0.2297

6 0.8077 0.7973 -3.80 0.2027

7 0.8077 0.8108 -4.80 0.1892

8 0.8077 0.8243 -5.80 0.1757

9 0.8077 0.8514 -6.80 0.1486

10 0.8077 0.8649 -7.80 0.1351

Table 7.4: Sensitivity and specificity first retraining process

phase of retraining is completed and it is time to check the new network with some test

sequences. In this part of process, we should be able to see an improvement on the test

results. (We expect the number of oscillatory responses to decrease.)

7.2.1.2 SECOND RETRAINING PROCESS

This phase of retraining has 59 training sequences. We generated 100 more test se-

quences. The network response at this stage for the 100 test sequences was outstanding for

all the sequences except 1. Figure 7.5 shows this test sequence, which has an oscillatory

response.

An indication width of 2 was used for the new data set, and 8 new sequences were

collected and added to our training data set for a total of 67 sequences. We performed

modified training on this new data set. We begin with one step ahead prediction and then

multi step ahead prediction to reach the full horizon. The training algorithm reached the

full horizon step with very small MSE. The second stage of retraining is completed.

71

4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200
-100

0

100

200

4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200
0

0.5

1
Indicating novel data

Figure 7.5: Only test sequence with oscillatory response

7.2.1.3 FINAL RESULTS OF THE RETRAINING PROCESS

In this part of the retraining process, we trained an SOM on the 67 training data se-

quences; in addition, another 100 test sequences were generated. We calculated all the

statistics to collect more data if the SOM detected any extrapolation. The network response

at this stage was perfect, and no extrapolation or oscillation was detected. The results shows

that the retraining process was successful and enhanced the network performance. Finally,

we found a stable network for all test sequences. This stable network makes it easier to

train the controller.

7.2.2 TEST AND VERIFY THE MODEL

In summary, the novelty sampling method combined with the modified training algo-

rithm results in a very stable and trustable model for the magnetic levitation system. Figure

7.6 shows the final results for the test sequence. As shown in the figure, it is very hard to

72

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ag

ne
t P

os
iti

on

0

2

4

6
Trained Network Response
Target

Number of Steps
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
ef

er
en

ce
 V

ol
ta

ge

-2

0

2

4

Figure 7.6: Target and trained network response after retraining for a test sequence

distinguish between the network response and target.

We created Simulink blocks of an actual plant and a NARX model. The Simulink

model gives us a flexibility in simulating the plant model in real time in conjunction with

the trained NARX network. This approach is visual and gives us a better understanding

of the overall system. Figure 7.7 shows the Simulink block diagram of the system. We

will see, in Section 7.3 and Chapter 8, the advantages of having Simulink blocks check the

controller and program the microcontroller.

7.3 MODEL REFERENCE CONTROL TRAINING

The first step in neural network control is modeling of system dynamics (system identi-

fication) as shown in Figure 7.8. A popular network for nonlinear system identification is

the NARX network. After we train a neural network to represent the plant, we are going to

use the model reference adaptive control architecture to control the plant output. The MRC

73

 Magnetic Levitation Open Loop

Figure 7.7: Simulink block diagram of magnetic levitation

Plant

Neural Network

Model

Learning

Algorithm

Error

Figure 7.8: Plant Identification

74

NN

Controller

Command

Input

Plant

NN

Plant Model

Reference

Model

Control

Input

Model

Error

Control

Error

Plant

Output

Figure 7.9: Model reference adaptive control structure

architecture was first introduced in [26], and it consists of two parts:

The first part is a plant model, as shown in Figure 7.9. The plant model is identified

using the NARX network. The second part is an NN controller, and the controller network

is trained so that the plant output follows the reference model output.

Based on the work of the pervious section, we have a very stable and accurate model

of the magnetic levitation system. This model has been tested and verified using a wide

variety of test sequences, and has demonstrated very accurate predictions. Therefore, the

plant identification part of the MRC is completed and we are ready to train the controller

network.

The complete architecture of the MRC network is shown in Figure 7.10. The model

reference control is a 4 layer dynamic network consist of two major parts: the first two lay-

ers make up the controller, and the third and fourth layers make up the plant model (trained

NARX network). There exist three sets of controller inputs: delayed reference inputs, de-

layed controller outputs (plant inputs), and delayed plant outputs. The reference input is

delayed by 2, and the controller outputs and plant outputs are delayed by 3. The number

of delays increases the order of the plant. We use 10 hidden neurons for the controller, and

the trained NARX plant model has 20 hidden neurons.

The next step is to train the controller network. In the open-loop training process,

75

T

D

L

IW
1,1

f
1

b
1

+

LW
2,1

b
2

+ f
2

LW
3,2

b
3

+ f
3

LW
4,3

b
4

+ f
4

1
1

LW
1,2

T

D

L

1

T

D

L

IW
3,4

T

D

L

LW
1,4

T

D

L

Figure 7.10: Model reference control network

we replace the plant feedback terms with the targets (output of the reference model.) This

means that we cut two feedback connections from the fourth layer (plant outputs) to the first

layer and also to the third layer. The controller network (first and second layer) feedback

connection remains. Since the third and fourth layer are the trained NARX network (plant

model), their weights and biases are fixed during the controller training process. We also

set the weights of the controller output layer to zero, in order to give the plant zero initial

input (preventing the instability of the closed loop system in the first iteration).

After the open loop training is completed, we perform multi step ahead prediction (train

the closed loop network). Figure 7.11 shows the result of controller training. We can see

that the plant output is very close to the reference model output.

Now we can test the MRC by applying a test input (skyline function) to the trained

MRC network. Figure 7.12 shows that the plant model output follows the reference model

input. The reference model is a critically damped second order system.

The trained MRC and the actual plant with the NARX model are all converted to the

Simulink block diagrams shown in Figure 7.13. Simulink is s great tool for simulating

control applications. It is easy to visualize the main control structure and to access all the

system’s states. Note that in each run of magnetic levitation system a new random test

76

0 20 40 60 80 100 120 140 160 180 200

M
ag

ne
t P

os
iti

on
 (c

m
)

2

3

4

5

Ref Model Output
Plant Output

Time(s)
0 20 40 60 80 100 120 140 160 180 200

R
ef

er
en

ce
 In

pu
t

0.5

1

1.5

2

Figure 7.11: Model reference control training.

Time(s)
0 20 40 60 80 100 120 140 160 180 200

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Ref Input
Plant Output

Figure 7.12: Model reference control

77

 Magnetic Levitation Close Loop (MRC)

Reference Model

Actual Plant ModelReference Signal (Skyline Signal)

Model Reference Control (MRC) --Second Re-Training

Figure 7.13: MRC Simulink diagram

sequence will be generated.

As shown in Figure 7.13, the control action from the MRC is controlling the simulated

plant. In this way we are simulating the real control problem. In other words, in real life

the simulated plant is replaced by the physical system, and we need to drive the physical

system with the controller.

The modified training algorithm, in conjunction with the novelty sampling method,

pays off in controller network training. The very accurate and stable NARX plant model

helped improve the controller training procedure. We did not see any oscillation in the

MRC response.

7.4 USE SOM TO OBTAIN MORE DATA FOR CONTROLLER

In this section we collect more data for the MRC training using novelty sampling. Train-

ing an SOM on MRC is more complicated than on the NARX network. We have 3 tapped

78

delay lines shown in Figure 7.10. The tapped delay lines connected to weights IW1,1 and

LW1,4 represent the inputs to the static portion of the network. The tapped delay lines con-

nected to weights LW1,2 represent the output of the controller. This tapped delay line data

needs to be filled with the output of the controller. We need to simulate the controller to

obtain these data.

The SOM for MRC has a 10 element input vector, three tapped delay lines for each

feedback connection plus the target. We trained the SOM on the 20 sequences of training

data set, and we generated 100 test sequences. After looking at the statistics, we decided to

choose the indication width of 3 or more. We retrained the MRC with 120 sequences, and

the MRC response improved.

SOM clustering is very sensitive in MRC training. Sometimes extrapolation is detected

when the cluster centers are very well clustered and the input distance is slightly greater

than the max distance.

In summary, although we did not see any oscillatory behaviour, the SOM did detect

some extrapolation. We added more sequences, and it improved the MRC responses.

79

CHAPTER 8

EXPERIMENTAL RESULTS

In this chapter, we design the MRC architecture for the magnetic levitation system in

Section 8.1. We describe the magnetic levitation design process in Section 8.1.1. The main

component in this design process is the core processing unit with its software packages,

which is described in Section 8.1.2.1. We explain the building process (using 3D printing

technology) in Section 8.1.3. Next, we describe the magnetic levitation setup, collect ex-

perimental data from the setup and apply the modified training algorithm in Section 8.2.

Then, we train the MRC network and implement it on the physical system in Section 8.3.

The classical PID controller structure is also explained in Section 8.4. Finally, we compare

the classical PID controller and the neural network controller in Section 8.5.

8.1 DESIGN AND BUILD THE MAGNETIC LEVITATION SYSTEM

In this section, we illustrate the design process for building the magnetic levitation

system which is shown in Figure 7.1. In most practical control system applications, there

exists 3 basic components: an embedded system that plays the role of the main processing

unit (e.g., microprocessors, microcontrollers, or microcomputers), the physical system to

be controlled and finally actuators and sensors which provide the input and output to the

system. In the next sections we provide details of our design process and each of these

basic components.

80

8.1.1 DESIGN PROCESS

Our goal in this design process is to build a magnetic levitation system. First, we need

to consider couple of factors in this process which may be helpful later on. We did all of our

simulation and training of the RNNs in the Matlab environment. The testing and verifying

of the MRC controller is done in the Simulink. Our strategy is to use Matlab and Simulink,

instead of C coding, during our design process.

In most control system projects, we need to have a data acquisition card or other tools

that can collect data from the system (e.g Labview, dSpace or microcontrollers). The data

acquisition cards are usually very expensive and not portable, we need to find a better

solution in order to have a such a tool to collect data. We used a microcontroller to do this

task: it is a very economical choice compared to other options. Also, they are portable

and very compact. We used an Arduino microcontroller to collect data for the magnetic

levitation system. We will explain the specifications of the Arduino microcontroller in

Section 8.1.2.

Any microcontroller needs to be programmed to perform a specific task. For example, if

we need to output a 5 volt DC signal from the microcontroller, we need to write a program

to output the 5 volt signal to one of the board ports. Usually, any microcontroller uses

specific software for downloading the programs. The Arduino also has its own software

called Arduino IDE. However, the Arduino can also be programmed through the Simulink

software. This makes it easier to implement algorithms (as opposed to C coding). In other

words, programming the Arduino using Simulink gives us the opportunity to do visual

programming and not much standard coding is involved. The standard way of programming

the Arduino requires more experience than the Simulink approach, despite the fact that both

approaches will produce the same results.

The next phase in the design process is to design and build a magnetic levitation system.

There are several ways to build such a system, like machining (using a CNC machine),

welding, and 3D printing. Recently, 3D printing technology has become very popular.

81

Magnetic Levitation

System

3D Printing

Software

Arduino

Simulink

Hardware

Actuator

Sensor

Communication & Programming Input & Output

Figure 8.1: Design Process.

Some of the reasons for this are

• It is economical.

• It is easy to design and build in small space.

• A variety of 3D printers are available.

We used 3D printing technology for our magnetic levitation structure. Our design was

done with SolidWorks software. We will explain the mechanical design in Section 8.1.3.

Finally, we need to add sensors and actuators to complete our system. We used an

electromagnet as an actuator (to drive the magnet in the vertical direction) and an IR

distance sensor to measure the magnet position. The design process is shown in Figure 8.1.

8.1.2 SOFTWARE AND HARDWARE

In the following sections, we will describe the software and hardware integration of the

magnetic levitation system.

82

8.1.2.1 ARDUINO AND SIMULINK

The Arduino Mega 2560 is a microcontroller board that uses the ATmega chip. It has

54 digital input and output pins,of which 14 are used as PWM output. There are also 16

analog inputs. This board has 4 UARTs (RS232 communication protocol), and uses a 16

MHz crystal oscillator. The Arduino Mega 2560 has a USB connection and a power jack

with a reset button. This board contains all the necessary components that are needed for

our purpose. It can connect to a computer with a USB cable and it can be powered by a

power jack or a battery [4].

The Arduino Mega 2560 uses the ATmega1280 chip which has 128 KB of flash memory

for storing code [4]. This amount of memory is enough for our purposes.

The Arduino Mega 2560 uses several methods of communication, such as serial, wire-

less and bluetooth. One of its 4 UARTs is the main serial communication port (pins 0

and 1), as shown in Figure 8.2. After connecting the Arduino Mega 2560 to a computer,

the software program creates a virtual com port on the computer side. When the board

is downloading the program the RX and TX LEDs turn on (indicating that the board is

downloading the program). The pin outs are shown in Figure 8.2.

In our design we used Simulink for programming the Arduino Mega 2560. Therefore,

we need to download the driver for the Arduino Mega and its software(see [4]), and then

we need to configure Simulink in the configuration parameters toolbar (see [27]). Simulink

uses the same main serial communications to program the Arduino, and to deploy the

model into the board. After Simulink configuration is done, we can compile, build and

deploy any Simulink model into the Arduino board. For example, if we need to read data

from an analog sensor, we bring the analog input data block from the Arduino repository

library. Then, we will press the build button on the Simulink toolbar in order to download

and deploy it into the board (Simulink automatically generates the code for that block and

will put it into Arduino board). In this way the board is programmed to read analog input

from a chosen pin. In the next section, we will show the components needed to build the

83

Figure 8.2: Arduino Mega 2560 [3].

Arduino Mega 2560

Programming

Arduino IDE Software Matlab \ Simulink

Figure 8.3: Arduino Mega Programming [4].

84

Figure 8.4: Sharp Sensor [5].

MaximumRange MinimumRange Sampling Out puttype Supplycurrent

15cm 2cm 60Hz AnalogVoltage 12mA

Table 8.1: Sharp specification

magnetic levitation system.

8.1.2.2 SENSOR AND ACTUATOR

In this section, we introduce four main components of the magnetic levitation system.

Distance Sensor: We used the Sharp IR analog distance sensor (GP2Y0A51SK0F)

that operates in the shortest-range shown in Figure 8.4. This sensor has higher resolution

at shorter ranges. This sensor features a detection range from 2 cm to 15 cm. It is very easy

to use because the distance is indicated by analog voltage [5], and the Arduino has analog

inputs. The Sharp distance sensor uses IR technology, and it is more economical that the

sonar or laser range finders.

The Sharp sensor interface with the microcontroller is straight forward. The analog

output will be connected to the analog input of the Arduino. This IR sensor has the charac-

teristics shown in Table 8.1

Electromagnet: An electromagnet uses a magnetic field produced by an electric cur-

85

(a) Electromagnet [28] (b) Magnet [29]

Figure 8.5: Electromagnet and Magnet.

rent. There is no magnetic filed when the current is turned off. An electromagnet consists

of many wires wrapped closely together around a core to create a magnetic field. The

magnetic core is usually made of iron, to increase the strength of the field.

We can control the magnetic filed by changing the amount of electric current in the

windings. An electromagnet needs a consistent supply of current to maintain its magnetic

field.

Circular Electromagnets are used in manually operated or automated applications such

as motors, MRI devices, speakers and etc. It is energized with a D.C. power source, and

the outer side (or pole) produces a north or south magnetic field that surrounds the center,

as shown in Figure 8.5(a).

Motor Shield: The Arduino Motor shield shown in Figure 8.6 is a dual full-bridge

driver (which uses the L298P chip) designed to drive inductive loads, such as solenoids,

permanent magnet DC motors and stepping motors. This motor shield is plug compatible

with the Arduino Mega and can drive an electromagnet.

This motor shield uses an external power supply, and it can provide up to 2 Amps of

current. The L298P chip can drive a 7-12 Volt electromagnet. Also, we use the Pulse

Width Modulation (PWM) signal to control the voltage. The Arduino supports a PWM

86

Figure 8.6: Motor Shiled [6].

signal block with duty cycle resolution of 0-255. Zero produces zero voltage, and 255

corresponds to 100% duty cycle, or maximum average voltage.

Permanent Magnet: The permanent magnet that will be levitated by the electromagnet

is a neodymium block magnet. It is 1′′ × 1
4
′′ × 1′′ (see in Figure 8.5(b)). The poles are

located on the top and bottom side of the magnet, not the large flat side.

8.1.3 SOLIDWORK DESIGN AND 3D PRINTING

SolidWorks is a solid modeling computer-aided design program for mechanical engi-

neers to draw and visualize objects in 3D space. We used this software to design each part

of the magnetic levitation system. Then, we assembled the parts to have the final design.

Figure 8.7 shows the final design of the magnetic levitation system.

The next step is to build the design. We used 3D printing technology due to its ease

and availability. In 3D printing, layers of plastic material are formed to create any object.

We used the ROBO 3D R1 printer to build the magnetic levitation system. This 3D printer

has 100 Micron Maximum Resolution and uses 1.75mm ABS, PLA plastic and Flexible

87

Figure 8.7: SolidWork Final Design.

Filament.

8.1.4 ASSEMBLY AND TEST

We need to put the sensor, electromagnet, Arduino and motor shield in place and con-

nect all the wires. We need to connect the Motor Shield to the electromagnet and connect

the IR sensor to the analog input pin. The external power source is used in this case (maxi-

mum 12 Volt). Figure 8.8 shows the setup with all the connections and its components.

After assembling the experimental setup, we need to connect the board to a computer

with a USB connector. Simulink is configured to program the Arduino to read the sensor

data and drive the electromagnet. This part of the system integration is very important in

order to obtain the right sensor data in the right sampling interval.

Figure 8.9 shows the major sections of the open loop Simulink model. The Skyline

Function block produces the random input voltages with random widths, and we convert

88

Figure 8.8: Magnetic levitation setup.

Random Input Voltage Real Time Plot

Sharp IR Sensor (Magnet Position)

Figure 8.9: Experimental Open loop System .

89

these random voltages into digital values between 0-255. These values are sent to the

PWM block (pin 10), and it will produce the equivalent voltage value. The Sharp IR sensor

block is connected to the analog input (analog pin 8) and reads the magnet distances (we

used a look up table block to convert the voltage value in to a distance). The Serial Sent

signal Port 0 block is the communication block which transfers data to and from the board.

Finally, after we put these blocks together, we press the build button in the Simulink toolbar,

and it generates the code and downloads it to the board. Now we can read the real time

input/output data through the main serial communication port zero.

In the next section, we obtain the experimental data from the magnetic levitation system

and use them to train the NARX network. The training process remains the same as Chapter

7, and we will show the capability and power of the NN apprach in this regard.

8.2 TRAIN THE NRAX MODEL WITH THE REAL DATA

In order to model the magnetic levitation experimental system using RNNs, first we

need to collect a set of training data. In this case, the input data is the voltage (produced

by the skyline function) which goes into the motor shield and the target data is the magnet

position which comes from the Sharp IR distance sensor.

Note that the IR senor is on the top of the experimental setup and the electromagnet

is placed under the magnet. Therefore, for ease of looking at figures, we converted the

magnet positions in such way that the bottom is 0 cm and the top is the close to 5cm. In

other words, when we apply a positive voltage the magnet goes up and when there is no

voltage the magnet drops due to gravity. Also, since this IR has some noise in its readings,

we applied a 1-D median filter to remove the noise spikes. The 1-D median filter is very

useful in our case. An example of one filtered sequence is shown in Figure 8.10.

Figure 8.11 shows a sample of an experimental training data set. We used voltage from

9 to 12 volt in order to keep the magnet levitated. In other words, the magnet will not move

and sit on the base when the voltage is less than 9 volt.

90

Time(s)
0 0.5 1 1.5 2 2.5 3

M
ag

ne
t P

os
tio

n
(c

m
)

2.8

3

3.2

3.4

3.6

3.8

4
Magnet Postion and Filtered Magnet Position

Magnet Position
Filtered Magnet Position

Figure 8.10: Filtered magnet position

0 1 2 3 4 5 6 7 8 9 10

V
ol

at
ge

 (V
)

9

10

11

12
Input

Time(s)
0 1 2 3 4 5 6 7 8 9 10

M
ag

ne
t P

os
tio

n
(c

m
)

1

2

3

4
Output

Figure 8.11: Experimental training data for magnetic levitation

91

Histogram of Experimental Magnet Position
0.5 1 1.5 2 2.5 3 3.5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Figure 8.12: Histogram of the experimental magnet positing

A total of 20 such sequences were obtained from the experimental setup to make the

entire training data set. Figure 8.12 shows a histogram of magnet position in the training

set (in centimeters), which demonstrates the coverage of the modeling (we will use this

histogram information in the MRC). The magnetic levitation system is to be modeled as

the magnet position varies in the range from 0 to 5 centimetres and as the voltage varies

from 9 to 12 volt.

We use a NARX network, shown in Figure 5.4, to model this system. The network we

used had 4 input and output delays (the prediction begins with the fifth data point) and also

initially had 10 hidden neurons.

We performed the first step of the modified training algorithm which is open-loop (one

step ahead prediction) training. In this phase, as we discussed in Section 3.2.1, there are

two inputs to the series-parallel architecture shown in Figure 3.4(b) which are the input

sequence and the target sequence.

92

After performing the open loop training, we do multiple step ahead prediction for the

NARX network (closing the feedback connections). The horizon step is chosen automati-

cally by the new procedure discussed in Section 4.2.

After training was completed for the maximum prediction horizon, the network re-

sponse followed the target response for all 20 of the original training sequences. However,

the response in the beginning of the sequences is slightly off compared to the end of the

sequences, and that is due to heat. We ran the experimental setup for 200 seconds with a

sampling time of 0.020 seconds in order to get the training data. Usually, the electromagnet

is hot when the data is collected. After some time, we have to let the system cool down for a

while before collecting more data. For data that was collected when the system was hot, the

network response is very close to the actual magnet position. Figure 8.13 and 8.14 show the

results of the 9997 step ahead prediction for one training sequence when the electromagnet

is cool at the beginning of the sequence and when it is hot at the end of sequence.

Now it is time to test and verify the model. We used 5 more test sequences and checked

the results. The network response is very close to targets. Figure 8.15 shows an example of

a test sequence. No oscillatory responses were detected and we did not find any large errors

on the test results. Therefore, we continued to go a further step into controller training.

8.3 MODEL REFERENCE CONTROLLER (NEURO CONTROLLER)

The first step in MRC training is system identification of the plant. We used the trained

NARX network in the pervious section to represent the plant. Then, we begin to train the

controller.

We used the same MRC architecture shown in Figure 7.10. The model reference control

consists of a 4 layer dynamic network with two major parts: plant model and controller. The

reference input is delayed by 3, and the controller outputs and plant outputs are delayed by

4. The number of delays increases the order of the plant. We use 10 hidden neurons for the

controller, and the trained NARX plant model has 10 hidden neurons.

93

Number of Steps
20 40 60 80 100 120 140 160 180 200

M
ag

ne
t P

os
iti

on

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Trained Network Response
Target

Figure 8.13: Target and trained network response (Cool)

Number of Steps
9000 9020 9040 9060 9080 9100 9120 9140 9160 9180 9200

M
ag

ne
t P

os
iti

on

0.5

1

1.5

2

2.5

3

3.5

Trained Network Response
Target

Figure 8.14: Target and trained network response (Hot)

94

Number of Steps
9000 9050 9100 9150 9200 9250 9300 9350 9400 9450 9500

M
ag

ne
t P

os
iti

on

0.5

1

1.5

2

2.5

3

3.5

Trained Network Response
Target

Figure 8.15: Target and trained network response for test sequence

We did open-loop training first. We replaced the plant feedback terms with the targets

and cut two feedback connections from the fourth layer to the first layer and also to the

third layer. The other feedback connections remain the same as before. Since the third and

fourth layers are the plant model, their weights and biases are fixed during training. We

also set the weights of the controller output layer to zero, in order to prevent the instability

of the closed loop system in the first iteration.

After the open loop training is completed, we perform multi step ahead prediction and

train the closed loop network. We created a Simulink block of the MRC, and we put it

into the Arduino to test the MRC controller on the real system. The closed loop Simulink

diagram is shown in Figure 8.16 and 8.17.

Figure 8.16 shows the closed loop system with a linear filter for the magnet position

reading. Since there is noise in the sensor reading, we used the linear filter in order to

reduce the noise in the magnet position measurements. There are four sections in this

95

Reference Input

MRC Controller
Sharp IR Sensor (Magnet Position)

Real Time Plot

Figure 8.16: Closed loop Simulink block diagram (MRC with linear filter)

figure: reference input voltage (skyline function); sharp IR sensor, with the conversion and

the linear filter; MRC controller, which consists of the MRC controller and the magnetic

levitation setup inputs (PWM block and direction); and finally the real time plot, which

shows the real time sensor reading and input voltage injected to the magnetic levitation

system.

8.3.1 NEURAL NETWORK FILTER

Figure 8.17 shows the closed loop system with an NN filter. Since we have an accurate

model of the plant (which we can use to predict magnet position) and noisy sensor readings,

we combined these two in order to enhance the position estimate. The NN filter works in

the following manner. If the absolute value of the difference between the raw magnet

position measurement and the NN magnet position estimate is less than a threshold, we

use Equation 8.1. Otherwise, we use the NN magnet position estimate as the filter value.

In other words, if the difference is small we smooth the signal and get the average (with

α = 0.5), else there would be a spike in reading and we used the NN estimate.

96

Reference Input

Sharp IR Sensor (Magnet Position)

Real Time Plot

MRC Controller

NN Filtering NN Plant Model

Figure 8.17: Closed loop Simulink block diagram (MRC with NN filter)

MagPosFilt = (α ∗MagPos)+(1−α)∗MagPosNN (8.1)

Where MagPos is the raw magnet position, MagPosNN is the NN magnet position estimate

and α is the weighting constant.

We observed that this method of filtering improved the sensor reading and it is very

unique since we used the NN plant model. This is one of the advantages we can get from

the NN approach.

Figure 8.18 shows the test results of the MRC controller from the experimental setup

for 50 seconds. The magnet accurately follows the reference input (the NN filter is used to

enhance the results).

97

Time (secs)
0 5 10 15 20 25 30 35 40 45 50

M
ag

ne
t P

os
tio

n
(c

m
)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Closed loop MRC with NN Filter

Reference
Actual Magnet Poistion

Figure 8.18: Experimental data MRC with NN filter for test reference input

8.4 PID CONTROLLER (CLASSICAL CONTROLLER)

In order to verify the performance of the neuro controller, we need to compare it with

other types of controllers. The most popular classical controller is the proportional, integral

and derivative (PID) control structure.

The system represented in the Figure 8.19 is the magnetic levitation system controlled

by a PID controller. The Kp,Ki and Kd values are PID gains, the set point is the reference

signal, the output y is magnet position and u is the control action. The Control action is a

weighted summation of the proportional, integral, and derivative actions. A mathematical

description of the PID controller is:

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd

d
dt

e(t) (8.2)

PID controllers are used in variety of practical industrial processes. They are widely

98

Process

=

+
-

Figure 8.19: PID control structure

accepted in industrial applications due to their ease of implementation. The key to imple-

ment the PID controller is to find gain values. There are couple of techniques to decide the

gain values that meet the specifications.

All these techniques require a linear mathematical model of the process. In our case

we need to model the magnetic levitation system mathematically. We used the NN plant

model and linearized it around the nominal point to obtain the linear model. This is another

advantage of NN plant modeling. Since we have the linear model, we used the Matlab PID

tuning toolbox in order to find the gain value for the PID controller. We used this toolbox

in order to get a critically damped second order system response, as in the reference model

for the MRC system.

Figure 8.20 shows the Simulink block diagram of the PID controller for the magnetic

levitation system. It has four sections, three sections remain same as before, but we added

the PID controller and used the tuned gains which we got from the toolbox.

This is the one of the best ways of tuning the PID controller, since we are using the

NN nonlinear model of the plant and Matlab toolbox tuning. In other words, we are trying

to get the best results we can from the PID controller in order to compare it with MRC

controller. Figure 8.21 shows the magnet response with the PID controller. We can see that

99

Reference Input

PID Controller Sharp IR Sensor (Magnet Position)

Real Time Plot

Figure 8.20: PID controller Simulink block diagram

the tracking of the PID controller is not as good as the NN MRC controller, as shown in

Figure 8.18

8.5 SUMMARY AND COMPARISON OF CONTROLLERS

In order to compare the PID controller with MRC, we calculated the mean square error

between the reference signal and the magnet position. The MSE of the NN MRC is 0.0061,

and the MSE of the PID controller is 0.0170. These experimental results show the power

and flexibility of the NN approach.

Note that the NN plant model was used in three ways. First, it was used to train the

MRC controller. Second, we used it to filter the noisy sensor (most real life applications

have noise) in a very effective way. Third, the NN plant model is used to find the linear

model. This can be an interesting feature for industrial applications.

As we mentioned before, there are several advantages to the NN approach:

• The NN plant model can be used as a filter to enhance the measurements.

• The NN plant model can be used to find a linearized model (which can be used to

100

Time (secs)
0 5 10 15 20 25 30 35 40 45 50

M
ag

ne
t P

os
tio

n
(c

m
)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Closed loop PID with Linear Filter

Reference
Actual Magnet Poistion

Figure 8.21: Experimental data PID with linear filter for test reference input

tune a PID or other linear controller).

• The NN MRC controller is more flexible than linear controllers.

101

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 SUMMARY

We introduced some basic neural network concepts in Chapter 2, and we categorized

them into two general classes: static and dynamic networks. Dynamic networks have

tapped delay lines, which give the networks memory. The output of dynamic networks

depend on current inputs, outputs, and states of the network. Dynamic networks with feed-

back are recurrent Neural Networks (RNNs).

Training RNNs is difficult, because of the existence of spurious valleys in the error

surface. In Chapter 2, we briefly introduced the spurious valleys and their characteristics.

These valleys are spurious, because they are unrelated to the true minimum of the error

surface. They only depend on the network inputs. We introduced a first order recurrent

network in Chapter 2, in order to show the properties of these valleys. The spurious val-

leys in the error surface of RNNs make training very difficult, especially using the batch,

gradient-based methods.

With the knowledge of the spurious valleys, in Chapter 3 we described a recently in-

troduced procedure for training a general class of RNNs. The standard training procedure

uses the Levenberg-Marquardt batch algorithm. However, standard training is not usually

successful on RNNs, therefore modifications were required. Briefly, the modified training

procedure starts with short prediction horizons and increments the prediction horizon by

some intermediate horizon steps. When the procedure detects spurious valleys, it removes

the sequences which cause the valley.

One difficulty with the modified training procedure is the selection of the horizon steps.

102

± 6 Voltage range ± 12 Voltage range ± 24 Voltage range

Fail 35 Fail 41 Fail 51

Fits 65 Fits 59 Fits 49

Table 9.1: Trained network accuracy on 100 test sequences

If they are chosen too small, training times will become impractical, but large horizon steps

can result in steep spurious valleys, which make training very difficult.

In Chapter 4, we introduced a new procedure for horizon step selection. The new proce-

dure follows the same steps as the modified training described in Chapter 3, including the

use of the LM algorithm, but in the final step, where the prediction horizon is increased, the

following procedure is used to determine the horizon step. Using the weights determined at

the completion of the previous training segment, the MSE is computed for prediction hori-

zons from 1 to maxstep steps ahead of the prediction horizon. At this point, the algorithm

will find all local minima of the MSE with respect to the prediction horizon. It will then

select the local minimum with the smallest MSE. This gives us the best horizon step.

We have tested the new procedure using the modified training for one physical system

in Chapter 5. In this test, we developed an accurate NARX model for a single-link robot

arm system. We selected the system parameters in such way that the system responds

quickly and with a strong nonlinearity. To verify the model, we generated new test data

which network had not seen. We tested the model for 100 new test sequences.

Table 9.1 shows the number of times that the trained network had oscillatory behaviour,

failing to accurately reproduce the correct system response. For example, when the input

voltage was limited to the range ±6 volts, the network had oscillatory responses 35% of

time, and 65% of time it precisely fit the true system response.

We believe that the oscillatory behaviour of the network response occurs when the

network input is outside the range of the training data set. It would not be possible to

guarantee reasonable network performance if the network inputs move outside the range

of the data on which the network is trained. It is important to be able to detect when

103

this extrapolation is occurring. For example, if the RNN is part of a feedback control

system, [24], we would want to disable the RNN when extrapolation occurs, and replace it

with a conventional controller.

In Chapter 6, we developed a clustering network to detect when inputs move outside the

range of the data on which the network is trained. This extrapolation detection is a form of

novelty detection. This new technique is a type of clustering, in which the inputs from the

training set are characterized by a small set of prototype vectors. The minimum distance

of a new input to the nearest prototype is used to quantify novelty. For example, if the

distance from the new input to the nearest prototype is larger than the maximum distance

of that prototype to the cluster of training inputs that are assigned to it, then the new input

could be considered novel.

We performed the novelty detection on the single-robot arm system, and in Chapter

6 we extensively tested this new method. We need to obtain smaller quantization and

topographic errors. Therefore, either we need to add more cluster centers or improve the

SOM training. The SOM clustering method is used to collect more data in Chapter 7.

In this Chapter 7, we trained a recurrent neural network, using the modified training

algorithm, to model a simulated magnetic levitation system. The Self Organizing Map

(SOM) was used to collect additional data to improve the training (collecting data wisely in

the regions where we were extrapolating). The RNN is extrapolating when network inputs

fall outside the space spanned by the training data set. The SOM detected extrapolation and

guided the collection of additional training data. Then, the NARX network was retrained

with the new data combined with the initial training data set. This procedure is known

as novelty sampling. This is done in phases until no novel conditions are detected after

many additional tests. We tested and verified the final trained RNN model after phases of

retraining.

Next, we trained the Model Reference Control (MRC) algorithm in conjunction with

the plant model. Finally, we tested and verified the MRC model on the simulated magnetic

104

q1

q2

lc1

lc2

Link 1

Link 2
m1, m2: link masses

l1, l2: link lengths

I1, I2: link moments of inertia

lc1, lc2: centers of mass

Figure 9.1: Double pendulum [7]

levitation system.

Chapter 8 describes the design and construction of an experimental magnetic levitation

system. We verified that the new RNN training procedures and the SOM novelty sampling

technique could be successfully used to train an NN MRC system in practice. We also

designed and demonstrated the use of the neural network plant model as a filter to reduce

measurement error. Finally, we compared the performance of the NN MRC with the in-

dustry standard PID controller. The NN MRC demonstrated significantly improved mean

square error.

9.2 FUTURE WORK

The experimental magnetic levitation system demonstrated how parameters can change

through time. In the future we would like to make our control algorithm adaptive. We may

use the SOM to remove or add some sequences, since the system parameters are changing

through time.

In the future, we want to test the MRC architecture on other complex dynamic sys-

105

tems like the double pendulum shown in Figure 9.1. We can build and design the double

pendulum using the 3D printer technology.

Also, in the experimental section of this work, we can use micro computers that are

more powerful than Arduino, such as the raspberry pi. This will make it possible to imple-

ment larger neural networks, which would be required for larger industrial applications.

106

REFERENCES

[1] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design. Boston, MA:

PWS, 1996.

[2] J. Horn, O. D. Jesus, and M. T. Hagan, “Spurious valleys in the error surface of

recurrent networks - analysis and avoidance,” IEEE Trans. Neural Netw., vol. 20, no. 4,

pp. 686–700, Apr. 2009.

[3] Fritzing, figures of arduino mega. [Online]. Available: http://www.nemsim.com/

ece395blimp/fritzing/parts/svg/core/breadboard/

[4] Arduino official website. [Online]. Available: https://www.arduino.cc/en/Main/

ArduinoBoardMega

[5] Sharp gp2y0a51sk0f analog distance sensor 2-15cm. [Online]. Available: https:

//www.pololu.com/product/2450

[6] 2a motor shield for arduino. [Online]. Available: http://www.dfrobot.com/index.php?

route=product/product&product id=69#.VrfbetsrKUl

[7] M. Phan and M. T. Hagan, “A procedure for training recurrent networks,” in Proc. Int.

Joint Conf. Neural Netw., Aug. 2013, pp. 1–8.

[8] M. T. Hagan and H. B. Demuth, “Neural networks for control,” in American Control

Conference, 1999. Proceedings of the 1999, vol. 3. IEEE, 1999, pp. 1642–1656.

[9] H. T. Su, T. J. McAvoy, and P. Werbos, “Long-term predictions of chemical processes

using recurrent neural networks: A parallel training approach,” Industrial & engineer-

ing chemistry research, vol. 31, no. 5, pp. 1338–1352, 1992.

107

http://www.nemsim.com/ece395blimp/fritzing/parts/svg/core/breadboard/
http://www.nemsim.com/ece395blimp/fritzing/parts/svg/core/breadboard/
https://www.arduino.cc/en/Main/ArduinoBoardMega
https://www.arduino.cc/en/Main/ArduinoBoardMega
https://www.pololu.com/product/2450
https://www.pololu.com/product/2450
http://www.dfrobot.com/index.php?route=product/product&product_id=69#.VrfbetsrKUl
http://www.dfrobot.com/index.php?route=product/product&product_id=69#.VrfbetsrKUl

[10] J. Roman and A. Jameel, “Backpropagation and recurrent neural networks in financial

analysis of multiple stock market returns,” in System Sciences, 1996., Proceedings of

the Twenty-Ninth Hawaii International Conference on,, vol. 2. IEEE, 1996, pp. 454–

460.

[11] M. T. Hagan, O. D. Jess, and R. Schultz, “Chapter 12 training recurrent networks for

filtering and control.”

[12] I. Kamwa, R. Grondin, V. Sood, C. Gagnon, J. Mereb et al., “Recurrent neural net-

works for phasor detection and adaptive identification in power system control and

protection,” Instrumentation and Measurement, IEEE Transactions on, vol. 45, no. 2,

pp. 657–664, 1996.

[13] A. F. Atiya and A. G. Parlos, “New results on recurrent network training: Unifying the

algorithms and accelerating convergence,” IEEE Trans. Neural Netw., vol. 11, no. 3,

pp. 697–709, May 2000.

[14] M. Gori, B. Hammer, P. Hitzler, and G. Palm, “Perspectives and challenges for recur-

rent neural network training,” Logic Journal of the IGPL, vol. 18, no. 5, pp. 617–619,

2010.

[15] O. D. Jesus, J. Horn, and M. T. Hagan, “Analysis of recurrent network training and

suggestions for improvements,” in Proc. Int. Joint Conf. Neural Netw., Jul. 2001, pp.

2632–2637.

[16] M. Phan and M. T. Hagan, “Error surface of recurrent networks,” IEEE Trans. Neural

Netw. and Learn. Sys., vol. 24, no. 11, pp. 1709 – 1721, Oct. 2013.

[17] A. H. Jafari and M. T. Hagan, “Enhanced recurrent network training,” in Neural Net-

works (IJCNN), 2015 International Joint Conference on. IEEE, 2015, pp. 1–8.

108

[18] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty

detection,” Signal Processing, vol. 99, pp. 215–249, June 2014.

[19] L. Raff, M. Malshe, M. Hagan, D. Doughan, M. Rockley, and R. Komanduri, “Ab

initio potential-energy surfaces for complex, multichannel systems using modified

novelty sampling and feedforward neural networks,” The Journal of chemical physics,

vol. 122, no. 8, p. 084104, 2005.

[20] O. D. Jesus and M. T. Hagan, “Backpropagation algorithms for a broad class of dy-

namic networks,” IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 14–27, 2007.

[21] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt

algorithm,” Neural Networks, IEEE Transactions on, vol. 5, no. 6, pp. 989–993, 1994.

[22] P. J. Werbos, “Backpropagation through time: What it is and how to do it,” Proceed-

ings of the IEEE, vol. 78, no. 10, p. 15501560, Oct. 1990.

[23] M. Phan, “Recurrent neural networks: Error surface analysis and improved training,”

Ph.D. dissertation, Oklahoma State University, July 2014.

[24] M. T. Hagan, H. B. Demuth, and O. De Jesus, “An introduction to the use of neural

networks in control systems,” International Journal of Robust and Nonlinear Control,

vol. 5, no. 6, pp. 989–993, Nov. 2002.

[25] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, p.

14641480, Sep. 1990.

[26] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems

using neural networks,” IEEE Trans. Neural Netw., vol. 1, no. 1, pp. 4–27, Mar. 1990.

[27] Mathwork, setup and configuration. [Online]. Available: http://www.mathworks.

com/help/supportpkg/arduino/setup-and-configuration.html

109

http://www.mathworks.com/help/supportpkg/arduino/setup-and-configuration.html
http://www.mathworks.com/help/supportpkg/arduino/setup-and-configuration.html

[28] Round electromagnet. [Online]. Available: http://catalog.apwcompany.com/category/

electromagnets

[29] Magnet, k & j magnetics. [Online]. Available: http://www.kjmagnetics.com/

proddetail.asp?prod=BX04X0

[30] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully

recurrent neural networks,” Neural Computation, vol. 1, p. 270280, 1989.

110

http://catalog.apwcompany.com/category/electromagnets
http://catalog.apwcompany.com/category/electromagnets
http://www.kjmagnetics.com/proddetail.asp?prod=BX04X0
http://www.kjmagnetics.com/proddetail.asp?prod=BX04X0

VITA

Amir Hossein Jafari

Candidate for the Degree of

Doctor of Philosophy

Dissertation: ENHANCED RECURRENT NETWORK TRAINING

Major Field: Electrical and Computer Engineering

Biographical:

Personal Data: Tehran, Iran, September, 1983

Education:
Received the B.S. degree from Iran, 2006, Electrical Engineering
Received the M.S. degree from Sharjah, UAE, 2011, Mechatronics
Completed the requirements for the degree of Doctor of Philosophy with a major
in Electrical and Computer Engineering Oklahoma State University in May, 2016.

	INTRODUCTION
	RECURRENT NETWORKS AND SPURIOUS VALLEYS
	LAYERED DIGITAL DYNAMIC NETWORKS (LDDNs)
	SPURIOUS VALLEYS

	MODIFIED RECURRENT NETWORK TRAINING
	STANDARD TRAINING
	STEEPEST DECENT
	LEVENBERG-MARQUARDT ALGORITHM
	DERIVATIVE CALCULATION

	MODIFICATIONS (MULTIPLE SEQUENCES)
	TRAINING SEQUENCE
	PREDICTION HORIZON
	HORIZON STEP
	MODIFICATIONS TO THE LM ALGORITHM

	SUMMARY OF MODIFIED TRAINING

	NEW PROCEDURE FOR HORIZON SELECTION
	EFFECT OF PREDICTION HORIZON ON TRAINING
	TRAINING PROCEDURE

	DEMONSTRATION OF HORIZON SELECTION
	SYSTEM DESCRIPTION (SINGLE ROBOT ARM)
	TRAINING DATA

	NOVELTY DETECTION
	SELF ORGANIZING MAP
	BASIC COMPETITIVE NETWORK
	CONCEPT OF NEIGHBORHOOD
	GRAPHICAL REPRESENTATIONS

	APPLICATION OF SOM TO EXTRAPOLATION DETECTION

	MODELING AND CONTROL OF A SIMULATED MAGNETIC LEVITATION SYSTEM
	TRAINING NARX NETWORK FOR IDENTIFICATION OF PLANT
	SYSTEM DESCRIPTION
	SYSTEM IDENTIFICATION

	SOM FOR NOVELTY SAMPLING
	RETRAINING PROCESS
	FIRST RETRAINING PROCESS
	SECOND RETRAINING PROCESS
	FINAL RESULTS OF THE RETRAINING PROCESS

	TEST AND VERIFY THE MODEL

	MODEL REFERENCE CONTROL TRAINING
	USE SOM TO OBTAIN MORE DATA FOR CONTROLLER

	EXPERIMENTAL RESULTS
	DESIGN AND BUILD THE MAGNETIC LEVITATION SYSTEM
	DESIGN PROCESS
	SOFTWARE AND HARDWARE
	ARDUINO AND SIMULINK
	SENSOR AND ACTUATOR

	SOLIDWORK DESIGN AND 3D PRINTING
	ASSEMBLY AND TEST

	TRAIN THE NRAX MODEL WITH THE REAL DATA
	MODEL REFERENCE CONTROLLER (NEURO CONTROLLER)
	NEURAL NETWORK FILTER

	PID CONTROLLER (CLASSICAL CONTROLLER)
	SUMMARY AND COMPARISON OF CONTROLLERS

	CONCLUSIONS AND FUTURE WORK
	SUMMARY
	FUTURE WORK

	REFERENCES

