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Title of Study: THREE ESSAYS IN APPLIED ECONOMICS ON LABOR SUPPLY 

DECISIONS 

 

Major Field: ECONOMICS 

 

Abstract: The present study contains three applied economic essays which empirically 

investigate regional and educational factors influencing labor supply decisions. The first 

essay uses minimum distance from work PUMA centroid to the US coastlines and 

estimated industry share in 1930 as instrumental variables, and tests the causal impact of 

agglomeration on work intensity of the self-employed. The 2SLS results show that only 

localization has a positive impact on hours worked of the self-employed. Urbanization 

does not affect hours worked. The causality mostly comes from competition within 

industries. 

The second essay uses 1% IPUMS ACS 2013 data to study self-employment 

differential between foreign STEM graduates and non-STEM graduates. The empirical 

results show that the differential is still quite substantial after controlling for several 

covariates. Furthermore, self-employment differentials across broad major groups and 

detailed majors are examined. We try to explain the self-employment differentials 

through the differences in incomes between self-employed and salaried foreign college 

graduates. Our empirical results show that foreign STEM graduates are less likely to be 

self-employed, since they could earn significantly more in salaried jobs, but the income 

advantage disappears when they shift to self-employment. This paper implies that, on one 

hand, policy makers could consider lowering the immigration barrier for graduates in 

non-STEM fields with high self-employment rates, or at least reduce the institutional 

discrimination between STEM and non-STEM graduates. On the other hand, target-based 

subsidies and/or tax benefits could be offered to the startups co-funded by foreign STEM 

graduates and those who are educated in fields with high self-employment rates. 

The third essay uses instrumental variable estimation to examine two-way 

causality between human capital externalities and agglomeration. The empirical results 

show that human capital externality has much more causal impact on agglomeration than 

the reverse. The relationship between human capital externality and urbanization is much 

stronger than that with localization for both directions of causality. Then the relationship 

is used to analyze the causality between human capital spillover and hours worked.
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CHAPTER I 

 

 

HOURS WORKED OF THE SELF-EMPLOYED AND AGGLOMERATION 

 

1 Introduction 

Agglomeration economies refer to economies of scale that are external to the firm. As an 

important production factor, does the labor input (supply) relate to such a spillover 

effect? Rosenthal and Strange (2008) gave this question a positive answer using a 

salaried worker sample. They find that professional employees work more in localized 

areas because of the urban rat race effect. However, a higher level mechanism was 

neglected from their research that employees are organized, managed by the firms 

(employers), which raises two further research questions regarding whether the same 

relationship exists for employers? If employers and employees share the same work 

intensity pattern in clusters, could they be explained by the same mechanism? This paper 

tries to answer these two questions by using the Integrated Public Use Microdata Series 

(IPUMS. Ruggles et al., 2010). 

Very few studies looked at the association between agglomeration and work 

intensity either in labor economics or urban economics. Rosenthal and Strange (2008) 

document the overlooked relationship between agglomeration economies and hours
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worked. They find that this relationship varies by nature of the work and also by age. For 

nonprofessionals, the association between hours worked and the extent of localization is 

negative. They use “work-spreading” to explain this negative relationship. The idea is 

that when the amount of work is limited, increasing the number (density) of workers will 

decrease their work intensity. While for professional employees, the association between 

localization and work intensity is positive. They assert a possible mechanism that under a 

competitive environment, employees tend to work more in order to signal the authorities 

(supervisors or bosses) that they are more hardworking/capable than others, then they 

could have chances to get ahead, which is the so called “urban rat race” effect by 

Rosenthal and Strange. 

However, in an agglomeration context, the endogeneity issue should not be 

ignored. To solve the endogeneity issue, an instrumental variable (IV) estimation strategy 

and the use of panel data are two standard methods (Ciccone and Hall, 1996; Glaeser and 

Maré, 2001; Combes, Duranton, Gobillon, and Roux, 2010). This paper uses an 

instrumental variable estimation strategy to take care of the endogeneity issue for a cross-

sectional sample. 

By answering the two questions in the beginning, this paper contributes to the 

literature in several ways. Firstly, to the first question, this paper shows that the 

relationship between agglomeration and work intensity for the self-employed is similar as 

it for employees, which is consistent with Rosenthal and Strange (2008). Levine and 

Rubinstein (2012) find that the self-employed work more than their salaried counterparts. 

Thus, if the self-employed who are usually tagged as hard working sort into 

agglomeration economies, it could drive the positive association between hours worked 
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and agglomeration. After controlling for a set of exhaustive covariates, amenities, 

industry fixed effects, and MSA fixed effects, the OLS results show that localization is 

positively correlated with work intensity. Furthermore, the Two Stage Least Squares 

(2SLS) results confirm the OLS results. These results provide some evidence that clusters 

could increase regional economic activities, where firms enjoy the positive spillover 

effects. 

Second, to answer the second question, it is impossible to use the same 

mechanism (urban rat race) to explain the seemingly similar relationship for the self-

employed even without considering the endogeneity issue. The reason is simple and 

straightforward. It is because the self-employed are their own bosses. Therefore, the 

urban rat race effect makes no sense in the self-employment context. Instead, as this 

paper will show, the competition within industries and specialization may explain most of 

the positive relationship. 

Third, this paper uses a geographic attribute as one of the instrumental variables 

for the agglomeration measures. Minimum distance from the work PUMA centroid to the 

coastline has several advantages as an instrument. First, it is strongly correlated with the 

agglomeration measure, which excludes the possibility of a weak instrument. Combes et 

al. (2010) use a geology variable instrument for population density, but it turns out to be a 

weak instrument. Weak instruments could lead to more severe bias than OLS. Second, 

minimum distance from the work PUMA centroid to the coastline is less likely to be 

causally correlated with work intensity. Furthermore, our instrument is also valid 

controlling for work PUMAs with harbors and ports present for the concern that the 

instrument affects the dependent variables through ports and harbors. 
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Moreover, estimated industry share in 1930 is used as the second instrumental 

variable for the agglomeration measures. To our knowledge, it is rare to simultaneously 

include urbanization and localization in a single regression since both measures suffer 

from the endogeneity issue. Thanks to the two valid instrumental variables, we are able to 

mitigate the endogeneity for two agglomeration measures concurrently. One interesting 

result is that when localization is solely in the regression, it actually picks up the effect of 

urbanization. Thus, urbanization and localization may suffer from collinearity. To deal 

with this issue, we use a method similar to the location quotient, i.e., including the 

quotient of localization and urbanization instead of the raw localization measure in the 

regressions. 

Fourth, this paper also tests the agglomeration wage effect as a mechanism for the 

positive relationship between work intensity and agglomeration. We innovatively control 

for regression-adjusted wage for employees in the regressions for the self-employed to 

eliminate the mechanism endogeneity. However, controlling for the agglomeration wage 

effect does not alter our results much. According to a simple labor supply model, it is 

probably because the income effect balances the substitution effect, so that the 

agglomeration wage effect does not influence work intensity. This also could be 

explained that after controlling for demographic characteristics and using IV to take care 

of the unobserved characteristics, people are neutral in preference. 

Lastly, this paper uses Geographic Information System (GIS) data to construct a 

series of amenity measures at the work PUMA level. Amenity and productivity shocks 

are capitalized into wage and rent differentials under the spatial equilibrium assumption 

(Roback, 1982). Hours worked as a labor market outcome is highly likely to be 
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influenced by those shocks. Regression-adjusted wages and rents are usually included to 

control for the shocks. However, these controls are potentially endogenous (Rosenthal 

and Strange, 2008; Winters, 2013; Kahn and Lang, 1991). Rosenthal and Strange (2008) 

use a reduced-form specification to control for wages indirectly. Nonetheless, Kahn and 

Lang (1991) do not provide very valid support for the reduced form approach. This paper 

tests the agglomeration wage effect as a possible mechanism for the relationship between 

work intensity and agglomeration. Controlling for regression-adjusted wages may pick up 

the agglomeration wage effect rather than amenity and productivity shocks. Therefore, 

amenities are directly included in our empirical specifications. The development of GIS 

allows us to construct amenity measures at smaller regional scales. 

The next section provides the conceptual framework. Section 3 discusses the 

empirical framework used by this paper, including model concerns and solutions. Section 

4 introduces the data and variable construction. Section 5 provides the empirical results. 

The last section concludes. 

 

2 Conceptual Framework 

The self-employed work for themselves, thus they are their own employers. It is not 

reasonable for them to work more hours in order to signal themselves to get ahead 

(getting promotion, getting higher income, etc.). Therefore, the urban rat race effect is 

less likely to be a convincing driving factor for the self-employed to work more in 

clusters. Instead, there are several possible ways that could lead the self-employed to 

work more in agglomeration economies. We will discuss them in this section. 
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2.1 Urbanization and Localization 

Before we proceed to the possible mechanism, it is important to discuss how we define 

agglomeration economies first. By definition, urbanization economies are agglomeration 

economies across industries, but within an industry for localization economies. In the 

literature, there are no perfect measures for urbanization and localization economies. For 

urbanization, researchers usually use population or employment density as a proxy of 

urbanization economy. For localization, the industry share or industry-specific 

employment density are often used. In this paper, we will use population density as the 

proxy for urbanization, and employment density of a given industry for localization. 

2.2 Competition and Specialization 

Although the urban rat race cannot be applied, rivals still exist for self-employment. The 

benefits of localization bring more firms into the clusters, and hence the competition 

within industries. In order to smooth the benefits (profits), people will naturally increase 

their work intensity when competition increases. The localization variable mentioned 

above is a natural candidate to capture such rivalry. On the other hand, specialization 

leads less competition across industry boundaries, although it enhances productivity and 

wages. Therefore, urbanization is less likely to increase work intensity, while localization 

could make people work more. 

2.3 Sorting and Simultaneity 

Workers who have higher work intensity might sort into work PUMA and/or industries 

based on unobservable characteristics of the individual and/or area. These unobservable 

characteristics could drive the work intensity pattern of the self-employed in 
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agglomeration economies. For instance, people who have a taste for longer hours worked 

may sort into the self-employed for full compensation of their efforts. Also, if 

agglomeration raises productivity, the self-employed, who tend to work longer hours, 

would sort into a denser area for greater compensation. Besides, hardworking self-

employed individuals could also be attracted by large city amenities. 

Moreover, a causal relationship running from hours worked to agglomeration may 

exist as well. Longer hours worked could bring more competition, higher human capital 

level, more mature markets, etc., which cause the formation of agglomeration economies. 

If simultaneity exists, the descriptive relationship between hours worked and 

agglomeration could be biased. 

In order to solve the endogeneity issue, a classic method is using an instrumental 

variable estimation strategy. This paper will rely on two novel instrumental variables to 

take care of the sorting and simultaneity issue. 

2.4 Agglomeration Wage Effect 

A simple labor supply model presents another possible channel. In a world with 

homogenous preferences, a worker chooses leisure/work and a composite good. The 

worker only earns an income from work, and the income rate is exogenous. It is easy to 

know that, if the substitution effect (SE) dominates the income effect (IE), the higher the 

income, the higher the price of leisure. Therefore, less leisure will be consumed, and 

more labor will be supplied. 
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It is worth noticing that if the income effect (IE) dominates the substitution effects 

(SE), the result will flip the sign, which will generate a negative relationship between 

incomes and hours worked. Table 1.1 summarizes all the situations. 

Table 1.1: Hours Worked and Different Effects 

 

A lot of studies substantiate that agglomeration increases productivity and wages 

(Ciccone, 2002; Rosenthal and Strange, 2004; Brülhart and Sbergami, 2009; Combes, 

Duranton, Gobillon, and Roux, 2010). And there might be two channels that 

agglomeration could affect productivity. First, wage level effects imply that productivity 

is affected immediately after entering clusters, and alters the direction of influence after 

leaving clusters. Second, productivity increases because of greater on-the-job skill 

accumulation in agglomeration, which is usually referred to the wage growth effects 

(Winters, 2013). 

Therefore, if the substitution effect dominates, higher income from agglomeration 

will increase work intensity. If the income effect dominates, higher income in 

agglomeration will decrease hours worked. Conversely, if workers earn higher (lower) 

income in clusters, and they work more (less) in clusters, it must be the substitution effect 

that dominates. Similarly, if workers earn higher (lower) income in clusters, but they 

work less (more) in clusters, it is more likely that the income effect dominates. This 

model predicts that salaried workers may behave in similar ways as the self-employed in 

SE dominates IE dominates

Income Increases Hours worked↑ Hours worked↓

Income Decreases Hours worked↓ Hours worked↑
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clusters if all workers have similar preferences, which cannot be explained by the urban 

rat race effect. 

 

3 Empirical Framework 

This paper is trying to establish the causal relationship between agglomeration and hours 

worked of the self-employed. As discussed in Section 2, there are three main channels 

which the causal relationship may run through, i.e., competition within industries, 

agglomeration wage effect, and endogeneity. Firstly, as mentioned above, our 

localization measure could pick up the competition within industries. Second, two 

instrumental variables are employed to take care of the sorting and simultaneity issue, 

and the causal relationship is also established by the instrumental variable estimation 

strategy. Lastly, although it is well documented in the literature, it is still necessary to 

revisit the agglomeration wage effect in our sample, since we will control for the 

agglomeration wage effect in the hours worked test. 

3.1 Competition and Specialization 

The relationship between agglomeration and hours worked will be estimated by Ordinary 

Least Squares (OLS) first. The baseline model is: 

 
log(𝑦𝑖𝑐𝑑) = 𝛼 log(𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐) + 𝛽 log(𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐𝑑)

+ 𝑿𝑖𝑐𝑑𝜸 + 𝜇𝑖𝑐𝑑  
(1) 
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where i indexes individual observations, c denotes work PUMA, and d denotes 

industries.1 The dependent variable is log of hours worked. 𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐 is the 

population density of a work PUMA. 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐𝑑 is measured by the industry-

specific employment density of a work PUMA.2 𝑿𝑖𝑐𝑑 is a standard set of demographic 

characteristics. 

In the early version of this study, urbanization and localization are used 

alternatively in the regression. The results show that localization measure actually 

captures urbanization economy if it is solely included in the regression.3 Therefore, 

collinearity may arise if urbanization and localization are controlled for simultaneously.4 

In order to mitigate the collinearity issue and obtain the net (real) effect of localization, 

the localization measure in Model (1) is replaced by the quotient of localization and 

urbanization. According to the intuition of this term, it is better to call the quotient 

relative localization.5 The first model becomes to: 

 
log(𝑦𝑖𝑐𝑑) = 𝛼 log(𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐) + 𝛽 log (

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐𝑑

𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐
)

+ 𝑿𝑖𝑐𝑑𝜸 + 𝜖𝑖𝑐𝑑 
(2) 

 

                                                      
1 All the empirical steps including all the regressions use personal sampling weights (perwt in IPUMS) to 

ensure the results are nationally representative. 
2  To construction the localization measure, the employment in each industry is calculated for each work 

PUMA. Then using this industry-specific employment divide by the geographic area of the work PUMA. 
3 The results are provided upon request. 
4 This is evident by the sophisticated correlation between urbanization and localization. The partial R squared 

is 0.4894. Thus, the partial correlation is about 0.7, implying highly collinearity may exist. 
5  Notice that although the definitions of localization and relative localization are different, relative 

localization better identifies the localization effect than the original localization measure. Thus, I will use 

“localization” as referring to “relative localization” in the remainder of this paper when discussing the effect 

of log (
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐𝑑

𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐
). 
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The OLS estimates potentially suffer from the omitted variable bias. Positive 

productivity shocks at the work PUMA level may attract more entrepreneurs, while 

concurrently affecting the work intensity. Amenity shocks could also affect 

agglomeration and work intensity. Under the spatial equilibrium assumption, productivity 

and amenity attractiveness are capitalized into wages and rents (Roback, 1982). 

Considerable studies document the potential endogeneity for including wages and rents 

directly (Rosenthal and Strange, 2008; Winters, 2013; Kahn and Lang, 1991). The 

reduced-form approach (Rosenthal and Strange, 2008; Kahn and Lang, 1991) provides 

little evidence of appropriately correcting the bias. Winters (2013) includes regression-

adjusted wages and rents in the specifications to control for the productivity and amenity 

shocks. However, controlling for regression-adjusted wages could also capture the 

agglomeration wage effect. Therefore, amenities are directly included in the model, 

including violent crime, property crime, precipitation, January temperature, July 

temperature, elevation, minimum distance to the nearest river or lake, heating degree 

days, cooling degree days, dew points, direct solar irradiance, and four dummies for 

coastal work PUMAs of Atlantic Ocean, Pacific Ocean, Gulf of Mexico, and Great 

Lakes. All amenities are measured at the work PUMA level. Besides, since workers are 

more likely living outside of the work PUMAs, rents are not necessarily included in the 

specifications. The work MSA fixed effects mentioned below could take care of the 

characteristics of an area, including average rents. 

In our preferred specification, industry and MSA fixed effects are also included as 

well. Considering it is possible that some workers are working in a MSA, but living in 
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another MSA.6 We also include residential MSA fixed effects as a robustness check. The 

identification here comes from those commuters who work in a MSA but live in another 

MSA or non-metropolitan area. The preferred specification is: 

 
log(𝑦𝑖𝑐𝑑𝑚) = 𝛼 log(𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐) + 𝛽 log (

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐𝑑

𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐
)

+ 𝑿𝑖𝑐𝑑𝑚𝜸 + 𝑨𝑐𝜽 + 𝜏𝑑 + 𝜋𝑚 + 𝜀𝑖𝑐𝑑𝑚 
(3) 

 

where m denotes work MSAs. 𝑨𝑐 is a set of amenities. 𝜏𝑑 is industry fixed effect. 𝜋𝑚 is 

work MSA fixed effect. 𝜀𝑖𝑐𝑑𝑚 is a white noise. 

3.2 Sorting and Simultaneity 

Admittedly, the endogeneity issue still could not be eliminated after controlling for a 

large set of observed variables. As discussed in Section 2, it is possible that people who 

like working longer hours may sort into denser or more competitive areas by some 

unobserved characteristics. Another interesting channel is a reverse relationship that more 

hours worked may cause more competition. To take care of sorting and simultaneity, 

instrumental variable estimation is employed. Minimum distance between work PUMA 

centroid and the USA shoreline7 and estimated industry share in 1930 are used as the 

instrument variables in this paper. 

To have a preview of our instruments, we have a preliminary discussion on the 

relevance and exogeneity conditions respectively. The relevance condition requires a 

valid instrumental variable is strongly correlated to the instrumented variable. Looking 

                                                      
6 Most workers live in and work in the same MSA (84.30% self-employed in the sample live and work in the 

same MSA). 
7 It includes the shorelines of Atlantic Ocean, Pacific Ocean, Gulf of Mexico, and Great Lakes. 
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back to the American history, the first group of immigrants arrived in the north eastern 

coast of American continent in 1620. Then they began the history of the US from the 

coast to the inner land. However, because of the hardship in early days and resistance of 

Native Americans, westward expansion was very slow, and population accumulated in 

the eastern coast. Till 19th century, the Gold Rush brought another migration wave from 

coast to coast, settling down in California and Oregon Territory. The discovery of gold 

pulled rapid population growth in the western coastal areas. Figure 1.1 shows the 

historical expansion of the US. 

 

Before the invention of airplanes, the only way for immigrants to arrive in the US 

was crossing the oceans, which naturally caused the higher population in coastal areas 

than the hinterland. Furthermore, the increasing international trade kept the prosperity of 

Figure 0.1: A map of the historical territorial expansion of the United States of America. Source: National Atlas of the 

United States. 
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ports and harbors. More recently, people treat beach areas as a great amenity. All these 

factors make coastal areas much denser, which is still true according to Figure 1.2 

showing the population density for each work PUMA in 2000.8 

 

By now, it is shown the reasonability of the correlation between population 

concentration and distance to coasts. The instrument in this paper is shown in Figure 1.3. 

We calculate the minimum distance from work PUMA centroid to shoreline (in red), 

which are the lengths of those orange lines. Different colors of work PUMAs indicate the 

distance differentials. Darker color indicates further distance to shoreline, lighter color 

                                                      
8 According to our definition, Figure 1.2 indicates the magnitudes of urbanization measure. Unfortunately, 

we could not graphically present localization measure in the figure, since localization is an industry-specific 

measure at sub- work PUMA level.   

Figure 0.2: 2000 Population density at work PUMA level. (The magnitudes are classified by quantiles.) Source: 

Author. 
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indicates closer distance to shoreline. Comparing Figure 1.3 with Figure 1.2, we could 

find a similar pattern. 

 

The second instrument, estimated industry share in 1930, is arguably reliable 

since the historical (long lagged) variables are often used in the literature as instrumental 

variables. For example, a popular instrument for population density is historical 

population density (Ciccone and Hall, 1996; Combes et al., 2010). It is believed that the 

historical variables are relatively exogenous to current economic outcomes. To impute 

industry shares in 1930 at the work PUMA level, the employment by industry in 1930 is 

calculated at county level.9 Then the county level data is converted to work PUMA level 

                                                      
9 The data is from IPUMS 1930 5% sample. IND1950 is available in this sample, which identify industries 

by 1950 basis. Because IND1950 is also available in IPUMS 2000 sample, the consistency is guaranteed. 

Figure 0.3: Minimum distance from work PUMA centroid to coastline. (The magnitudes in miles are classified by 

quantiles.) Source: Author. 
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by using the allocation factor from MABLE/Geocorr2K: Geographic Correspondence 

Engine with Census 2000 Geography available at Missouri Census Data Center, which is 

used as the estimated allocation factor in 1930. Lastly, industry shares are calculated for 

each work PUMA. We expect the second instrument is strongly correlated with the 

relative localization measure. 

 

To have a more formal test, the correlation coefficients between log population 

density and log minimum distance to shoreline, and between log adjusted relative 

localization and log industry share in 1930 are calculated. Figures 1.4 and 1.5 show the 

raw correlation coefficients are -0.6051 and 0.6160 respectively, which are relatively 

strong associations. Besides, the formal first stage weak identification tests in Section 5 

will show that our instruments are less likely suffering from the weak instrument issue. 

Figure 0.4: Raw correlation between log urbanization and log minimum distance to shoreline. Source: Author. 
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The exogeneity condition requires that a valid instrument is not causally related to 

the dependent variable in the second stage. In other words, taking a look at our first 

instrument, minimum distance to shoreline can only affect hours worked through 

agglomeration, and it seems to be the case. However, considering the agglomeration 

wage effect test in the next section, one could argue that minimum distance to shoreline 

affects productivity because it actually measures the minimum distance to ports and 

harbors, which could increase productivity. To show this concern is less important, it 

should be shown that ports and harbors are not correlated with productivity. One possible 

solution is directly controlling for the work PUMAs with ports and harbors. In our 

preferred specification, four dummies for coastal work PUMAs are controlled for, which 

includes the work PUMAs with ports and harbors. Another strategy is excluding all 

Figure 0.5: Raw correlation between log localization and log estimated industry share in 1930. Source: Author. 
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coastal work PUMAs from our sample. Section 5 will show the results as a robustness 

check. 

To our knowledge, minimum distance to shoreline is rarely being used to 

instrument for the distribution of population. In the literature, the most related is soil 

quality used as instrument for population density by Combes et al. (2010) in a similar 

context. However, their identification suffers from weak instrument issue, even though 

they have several sub- measures of soil. Furthermore, they believe that Limited 

Information Maximum Likelihood (LIML) is weak instrument robust. However, LIML is 

not robust when we experiment a weak instrument in this paper.10  

3.3 Revisit Agglomeration Wage Effect 

3.3.1 Construct the Wage Measure 

In order to examine the agglomeration wage effect, a reasonable measure of wage should 

be constructed. Regression-adjusted hourly incomes are an appropriate option, which are 

computed as the work PUMA fixed effects from the model: 

 ln(𝐻𝑜𝑢𝑟𝑙𝑦 𝐼𝑛𝑐𝑜𝑚𝑒)𝑖𝑐𝑑 = 𝑿𝑖𝑐𝑑𝜷 + 𝜏𝑑 + 𝜔𝑐 + 𝜀𝑖𝑐𝑑 (4) 

 

where 𝜏𝑑 is industry fixed effects. 𝜔𝑐 denotes the regression-adjusted average log hourly 

income in a work PUMA. In order to obtain a more exogenous wage measure, this 

regression is run for the self-employed and the employed separately. Then we will get 

                                                      
10 Average elevation of work PUMA is experimented as the instrument for agglomeration measures. The first 

stage F statistics indicates it is a weak instrument. Then LIML is used to estimate the model. However, the 

bias is quite substantial. 
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regression-adjusted hourly income 𝜔𝑐
𝑆𝑒𝑙𝑓−𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 for the self-employed, and 𝜔𝑐
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 

for the employed. In the agglomeration wage effect test for the self-employed, 𝜔𝑐
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 

is used as the welfare measure.11 It is because controlling for 𝜔𝑐
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 in the 

regressions could capture the spillover aspect of agglomeration, and could eliminate any 

mechanism endogeneity in the hours worked regressions for the self-employed. 

3.3.2 Agglomeration Wage Effect 

Firstly, Ordinary Least Squares (OLS) is employed to estimate the agglomeration wage 

effect. The regression model is similar as the preferred specification of the hours worked 

test: 

 
𝜔𝑐

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑
= 𝛼 log(𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐) + 𝛽 log (

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐𝑑

𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑐
)

+ 𝑿𝑖𝑐𝑑𝑚𝜷 + 𝑨𝑐𝜸 + 𝜏𝑑 + 𝜋𝑚 + 𝜖𝑖𝑐𝑑𝑚 
(5) 

 

Admittedly, it is impossible to include all related variables. Even though one can 

include all the observable variables, there might be still some unobserved variables. 

Besides, the agglomeration measures may suffer from the measurement error bias. In 

order to take care of these issues and establish the causal relationship running from 

agglomeration to wages, the same instruments are used as in the hours worked test, i.e. 

minimum distance from work PUMA centroid to shoreline and estimated industry share 

in 1930. Minimum distance from work PUMA centroid to shoreline is possibly less valid 

                                                      
11 As a robustness check, 𝜔𝑐

𝑆𝑒𝑙𝑓−𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑
 is also used as the alternative welfare measure. 
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in this context as we discussed above. However, the robustness checks in section 5 will 

guarantee that it is valid in our sample. 

The last important question is if the causal relationship between agglomeration 

and work intensity is driven by the agglomeration wage effect. To test this mechanism, 

the regression-adjusted incomes, 𝜔𝑐
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

, are included in the hours worked test 

regression. 

 

4 Data and Variables 

4.1 Sample and Demographic Controls 

This paper uses 5% IPUMS 2000 sample covering the contiguous 48 states. Only male 

full-time workers aged from 30 to 5912 are included who work for 35 hours or more per 

week. In order to understand the age dimension of the relationship, the sample is 

subdivided into three groups: young group is aged from 30 to 39, middle-aged is between 

ages 40 and 49, and old workers are between 50 and 59. 

For each subsample, they are further divided into two educational groups: high 

school degree or less, and college degree or more. College dropouts are excluded from 

the sample in order to ensure the division is sharp.13 

                                                      
12 People aged 30 - 59 cover about 80% of the whole sample. 
13 College dropout are a very special group of people from the other two groups. They cannot be integrated 

into any other groups due to different behavior patterns. The empirical results show that most estimates for 

college dropouts are trivial, which can be provided upon request. 
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The class of worker (classwkr) variable is used to identify the self-employed. And 

the detailed variable of the class of worker (classwkrd) is used to identify entrepreneurs 

and other business owners as incorporated and unincorporated. The people either working 

in non-MSAs and/or living in non-MSAs are included in the sample by recoding the 

identifier with the work/residential state variables (pwstate2/statefip).14 

All estimated models in this paper control for a standard set of demographic 

attributes, including educational attainment, a dummy of the presence of children, 

dummies of marital status, polynomial of age, dummies of race, years of residency in the 

US, and travel time to work. 

4.2 Agglomeration Measures 

In order to calculate the population density for a work PUMA, population and land area 

data of work PUMA is needed. Unfortunately, the data are only available for residential 

PUMAs.15 Since work PUMA is coded differently from residential PUMA, population 

and land area data of work PUMA is calculated from corresponding residential PUMA by 

matching their codes.16 

Localization measure is constructed within the sample. Employment in each 

industry is calculated for each work PUMA adjusted by personal weight. Then using this 

industry-specific employment divide by the geographic area of the work PUMA to obtain 

localization measure. The variable of IND1950 in the IPUMS is used to identify 

                                                      
14 The sample excluding people work in non-MSA is also tested, the results are omitted due to similarity. 
15 Population and land area data for 2000 work PUMA are extracted from Missouri Census Data Center at 

http://mcdc.missouri.edu/websas/geocorr2k.html 
16  The relationship between residential PUMA and work PUMA is provided by the IPUMS table: 

https://usa.ipums.org/usa/volii/00pwpuma.shtml#5percent 

http://mcdc.missouri.edu/websas/geocorr2k.html
https://usa.ipums.org/usa/volii/00pwpuma.shtml#5percent
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industries, which is a three-digit identifier. 124 three-digit industry categories are used to 

construct the localization measure.17 Then we recode IND1950 to a two-digit identifier 

based on broader groups. 11 two-digit industry categories are included as industry fixed 

effects. 

4.3 Dependent Variables 

Since people may have multiple sources of employment, INCEARN is used as the annual 

income measure, which is the sum of wage income, business income, and farm income in 

the previous year. Then hourly incomes are obtained by dividing the annual incomes by 

the hours worked in the previous year for each observation. 

This paper uses usual hours worked per week in the previous year (uhrswork in 

IPUMS) as the measure of work intensity.18 Kahn and Lang (1991) find that using actual 

hours worked rather than desired hours for the self-employed will not cause bias. This 

bias is caused by the deviation between actual and desired hours, since the self-employed 

are less restricted to choose their hours worked, and they are well compensated for 

working longer hours. 

4.4 Amenities 

Amenities are extracted from different sources and constructed at the work PUMA level, 

including violent crime, property crime, precipitation, January temperature, July 

                                                      
17 All salaried workers are excluded. 
18 I also experiment with annual hours worked. In order to get the annual data, I use hours worked per week 

multiply by weeks worked (wkswork1 in IPUMS). The results are similar. But there are some concerns of 

the annual data. As the description from IPUMS, “For employers, WKSWORK1 covers all weeks that the 

business or farm was in operation, even if the employer was absent.” And thus, this data is not actual hours, 

and there might be large measurement error. 
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temperature, elevation, minimum distance to the nearest river or lake, heating degree 

days, cooling degree days, dew points, direct solar irradiance, and four dummies for 

coastal work PUMAs of Atlantic Ocean, Pacific Ocean, Gulf of Mexico, and Great 

Lakes. 

Crime data comes from the Uniform Crime Reporting Program Data (UCR). This 

paper uses its county-level detailed arrest and offense data in 2000, which covers all 

counties in the US except for Wisconsin, Illinois, DC, and Florida. Violent crime and 

property crime data for Wisconsin, DC, and Florida come from USA Counties Website, 

but the Illinois data is still missing. Crime data for Illinois counties is extracted from 

Illinois County Website. This county-level data is converted to PUMA level by using the 

allocation factor from MABLE/Geocorr2K: Geographic Correspondence Engine with 

Census 2000 Geography available at Missouri Census Data Center. Then the geocodes 

for PUMA are recoded for work PUMA. 

Precipitation and dew points data are obtained from the old version of PRISM.19 

They are 30-arc-second (800 meters) gridded raster data. For precipitation, 30-year (1971 

– 2000) annual average data is used. For dew point, 10-year (1991 – 2000) annual 

average data is constructed. Boundary file for work PUMAs is available at IPUMS 

website.20 Then mean precipitation and dew points data for each work PUMA are 

calculated by GIS software. 

                                                      
19 PRISM Climate Group, Oregon State University, http://oldprism.nacse.org, created 19 Sep 2015. 
20 https://usa.ipums.org/usa/volii/00pwpuma.shtml 

http://oldprism.nacse.org/
https://usa.ipums.org/usa/volii/00pwpuma.shtml
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January temperature and July temperature are extracted from current version of 

PRISM.21 Monthly raster data at 4 kilometer grid cell resolution from 1981 – 2000 is 

used to construct the 20 year average data. Then mean January temperature and July 

temperature for each work PUMA are calculated using the work PUMA shapefile. 

Elevation data are extracted from the Hole-filled Seamless SRTM data V4.1 

distributed by the International Centre for Tropical Agriculture (CIAT). The data source 

is Shuttle Radar Topography Mission (SRTM) of National Aeronautics and Space 

Administration (NASA) available at U.S. Geological Survey (USGS). The original 

SRTM data are available at 1 arc-second and 3 arc-second grid cell resolutions but with 

small voids. The data distributed by CIAT filled the voids using interpolation methods 

with 3 arc-second grid cell resolution (approximately 90 meters). The Global 30 Arc-

Second Elevation (GTOPO30) data are also experimented, the results are similar. 

Considering its lower resolution, results from GTOPO30 will not be presented in this 

paper. Average elevation for each work PUMA is calculated using the shapefile. 

River centerlines and lakes shapefiles with 1:10 million scale are available at 

Natural Earth website.22 The global datasets are merged with North America supplement 

datasets. River centerlines and lakes in the US are clipped from the global merged data by 

work PUMA shapefile. Great Lakes are excluded from the dataset, since they are used to 

construct the coastline. Minimum distance from work PUMA centroid to nearest river or 

lake is calculated by GIS software. 

                                                      
21 PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 20 Sep 2015. 
22 http://www.naturalearthdata.com/downloads/10m-physical-vectors/ 

http://prism.oregonstate.edu/
http://www.naturalearthdata.com/downloads/10m-physical-vectors/
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Solar irradiance, heating degree days, and cooling degree days are retrieved from 

National Renewable Energy Laboratory (NREL) under the U.S. Department of Energy. 

Direct Normal Irradiance (DNI) at 10 kilometer resolution for lower 48 States is used to 

constructed the average data for each work PUMA. Heating degree days and cooling 

degree days are derived by Solar and Wind Energy Resource Assessment (SWERA) from 

NASA Surface meteorology and Solar Energy (SSE) dataset. One-degree cell resolution 

GIS data are available at the NREL website. Then a similar approach is applied to 

construct the work PUMA level data. 

Four dummies for coastal work PUMAs of Atlantic Ocean, Pacific Ocean, Gulf of 

Mexico, and Great Lakes are constructed using the shapefile of 2000 work PUMA. The 

coastline is derived from the shapefile of work PUMA as well to ensure consistency. If a 

work PUMA shares its boundary with any one of the four coastlines, it will be assigned a 

value of one for the corresponding coastal work PUMA dummy. Zeros are assigned to 

those work PUMAs not attached to any of the coastlines. 

Table 1.2 shows the summary statistics for the self-employed in our sample. 

There are 210,910 weighted observations in the sample. 

Table 1.2: Summary Statistics 

 

Variable No. Obs Mean Std. Dev. Min Max

Hourly Income 210,910 26.328 47.574 -285.714 5485.714

Log (Hourly Income) 206,547 2.683 1.168 -7.160 8.610

Hours Worked 210,910 50.076 11.936 35.000 99.000

Log (Hours Worked) 210,910 3.888 0.219 3.555 4.595

Localization 210,910 9.322 55.907 0.000 716.980

Log (Localization) 210,910 -0.727 2.223 -9.757 6.575

Urbanization 210,910 3234.938 10826.370 1.637 66942.260

Log (Urbanization) 210,910 5.933 2.012 0.493 11.112

Minimum Distance to Coastline 210,910 147.952 182.249 0.023 817.575

Log (Minimum Distance to Coastline) 210,910 3.912 1.824 -3.772 6.706
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Imputed Industry Share in 1930 210,910 0.064 0.147 0.000 1.000

Log (Industry Share in 1930) 210,910 -4.206 1.659 -11.259 0.000

High School and Less 210,910 0.535 0.499 0.000 1.000

College and More 210,910 0.465 0.499 0.000 1.000

Age 210,910 44.718 7.874 30.000 59.000

Log (Commute Time) 176,068 2.770 0.982 0.000 5.159

Children Present 210,910 0.569 0.495 0.000 1.000

Marital Status

Married 210,910 0.751 0.432 0.000 1.000

Married, Spouse Absent 210,910 0.012 0.109 0.000 1.000

Separated 210,910 0.017 0.129 0.000 1.000

Divorced 210,910 0.113 0.317 0.000 1.000

Widowed 210,910 0.010 0.101 0.000 1.000

Never Married 210,910 0.096 0.295 0.000 1.000

Race

White 210,910 0.867 0.340 0.000 1.000

African American 210,910 0.039 0.195 0.000 1.000

American Indian or Alaska Native 210,910 0.005 0.069 0.000 1.000

Chinese 210,910 0.012 0.111 0.000 1.000

Japanese 210,910 0.002 0.050 0.000 1.000

Other Asian or Pacific Islander 210,910 0.030 0.171 0.000 1.000

Other Race 210,910 0.028 0.165 0.000 1.000

Two Major Races 210,910 0.016 0.124 0.000 1.000

Three or More Major races 210,910 0.001 0.026 0.000 1.000

Hispanic Origin

Not Hispanic 210,910 0.931 0.253 0.000 1.000

Mexican 210,910 0.037 0.190 0.000 1.000

Puerto Rican 210,910 0.003 0.059 0.000 1.000

Cuban 210,910 0.005 0.071 0.000 1.000

Other 210,910 0.023 0.149 0.000 1.000

Amenity

Log (Violent Crime) 210,587 6.670 1.713 1.946 10.380

Log (Property Crime) 210,673 7.850 1.526 2.639 12.000

Log (Precipitation) 210,910 8.943 0.465 6.677 9.998

Log (Dew Points) 210,910 7.147 0.716 -10.735 7.855

Log (January Temperature) 210,910 2.742 0.640 -13.356 3.540

Log (July Temperature) 210,910 3.175 0.143 2.608 3.499

Log (Heating Degree Days) 210,910 7.536 0.864 3.664 8.616

Log (Cooling Degree Days) 210,910 7.659 0.431 6.157 8.556

Log (Elevation) 210,910 8.407 0.805 -7.953 8.904

Log (Solar Irradiance) 210,910 1.515 0.203 1.129 2.069

Log (Minimum Distance to River and Lake) 210,910 2.159 1.203 -2.052 4.432

Atlantic Work PUMA 210,910 0.157 0.363 0.000 1.000

Great Lake Work PUMA 210,910 0.052 0.223 0.000 1.000

Gulf Work PUMA 210,910 0.051 0.220 0.000 1.000

Pacific Work PUMA 210,910 0.129 0.335 0.000 1.000

Notes: All summary statistics are adjusted by personal weight to ensure the national representative. Education, 

years of residency in the U.S., industry, work PUMA, and work MSA are not included for space conservation.
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5 Empirical Results 

5.1 Hours Worked and Agglomeration 

In order to have a clear idea on the mechanism that agglomeration could affect work 

intensity, this paper uses OLS to test the descriptive correlation first. Then 2SLS will be 

employed to examine the sorting and simultaneity. Lastly, the agglomeration wage effect 

will be included to test whether agglomeration affects work intensity through wage 

differentials. 

Panel A of Table 1.3 reports the OLS estimates of the regression model (3).23 

Surprisingly, nearly all estimates for urbanization are negative. Especially for the lower 

educated group, the estimates are quite significant and substantial. Although we do not 

expect competition across industries, it is somewhat shocking to have a negative 

relationship between urbanization and hours worked. On the other hand, all the estimates 

of relative localization are positive and significant as expected. The positive relationship 

means the self-employed work more hours in more competitive areas, which is also 

documented by Rosenthal and Strange (2008). 

Panel B of Table 1.3 shows the 2SLS results with minimum distance from work 

PUMA centroid to coastline and estimated industry share in 1930 as the instruments. All 

estimates increase in their magnitudes because of the potential measurement errors in the 

two agglomeration measures. The negative association between urbanization and hours  

                                                      
23 The estimates of detailed controls are provided upon request. 
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Table 1.3: Hours Worked and Agglomeration 

 

Age 30 - 39 Age 40 - 49 Age 50 - 59 Age 30 - 39 Age 40 - 49 Age 50 - 59

A. Ordinary Least Squares

Log (Urbanization) -0.0055** -0.0080*** -0.0049* -0.0010 0.0001 -0.0087***

(0.0028) (0.0023) (0.0027) (0.0036) (0.0028) (0.0028)

0.0224*** 0.0118*** 0.0123*** 0.0077*** 0.0075*** 0.0102***

(0.0028) (0.0023) (0.0023) (0.0023) (0.0018) (0.0019)

B. Two Stage Least Squares

Log (Urbanization) -0.0089 -0.0087 -0.0114 0.0024 -0.0179* -0.0191**

(0.0128) (0.0089) (0.0128) (0.0107) (0.0101) (0.0080)

0.0391*** 0.0395*** 0.0593*** 0.0199*** 0.0266*** 0.0281***

(0.0072) (0.0067) (0.0083) (0.0075) (0.0055) (0.0059)

First Stage

Urbanization

-0.2833*** -0.2970*** -0.2668*** -0.5017*** -0.4744*** -0.4563***

(0.0579) (0.0558) (0.0545) (0.0664) (0.0613) (0.0610)

0.0410*** 0.0489*** 0.0411*** 0.0592*** 0.0560*** 0.0472***

(0.0108) (0.0098) (0.0094) (0.0109) (0.0100) (0.0097)

Localization/Urbanization

-0.0270 -0.0136 -0.0400 -0.2213** -0.1928** -0.1615***

(0.0315) (0.0301) (0.0305) (0.0888) (0.0751) (0.0620)

0.2748*** 0.2821*** 0.2701*** 0.3477*** 0.3446*** 0.3322***

(0.0166) (0.0164) (0.0152) (0.0210) (0.0191) (0.0194)

Underidentification 18.823 25.106 23.207 39.280 42.027 41.468

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Weak Identification 13.032 16.312 14.517 42.284 45.662 45.221

{7.03} {7.03} {7.03} {7.03} {7.03} {7.03}

Endogeneity 6.300 24.692 34.647 6.021 12.347 9.956

[0.0429] [0.0000] [0.0000] [0.0493] [0.0021] [0.0069]

Amenities Yes Yes Yes Yes Yes Yes

No

Yes Yes Yes

Notes: The other estimates are suppressed for space conservation. All regressions include individual controls 

listed in Table 1.2. Standard errors in parentheses are robust to heteroskedasticity and clustered by work 

PUMA. P-values in square brackets are provided for underidentification tests and endogeneity tests. Stock-

Yogo weak identification test critical values in braces are provided for weak identification test. * p < 0.1, ** p 

< 0.05, *** p < 0.01.

Agglomeration Wage 

Effect
No No No No No

Yes

Log (Distance to 

Shoreline)

Log (Industry share in 

1930)

Industry and Work MSA 

Fixed Effects
Yes Yes

Log (Industry share in 

1930)

Dependent Variable: Log (Hours Worked)

High school and less College and more

Log (Distance to 

Shoreline)

Log(Localization/Urbani

zation)

Log(Localization/Urbani

zation)
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worked becomes less significant by using instrument variable estimation, which is closer 

to the expectation that the rivalry is trivial across industry. Meanwhile, the estimates for 

relative localization are still significant. Localization causes 3.91% - 5.93% increase in 

hours worked for the less educated self-employed, and 1.99% - 2.81% increase for the 

higher educated group. Therefore, the instrumental variable estimation results imply that 

the positive relationship between localization and hours worked by the self-employed is 

less likely resulted from sorting and simultaneity, but directly comes from competition 

within industries. 

The significant and considerable first stage estimates indicate that minimum 

distance to shoreline is negatively correlated to agglomeration, and historical industry 

share is positively associated with agglomeration. The large first stage Kleibergen-Paap 

Wald F statistics provide solid evidence that our instruments are less likely to suffer from 

the weak instrument issue. 

Now, we further divide our sample into the incorporated self-employed and the 

not incorporated self-employed. The debate on whether entrepreneurship returns still 

exists in the literature, and the main debate is on the choice of proxy of entrepreneurship. 

Borjas and Bronars (1989), Evans and Leighton (1989), and Hamilton (2000) use the 

self-employed as a proxy for entrepreneurs, concluding that entrepreneurship does not 

pay. However, using aggregate self-employed as a proxy for entrepreneurs makes “little 

distinction between Michael Bloomberg and a hot dog vendor” (Glaeser, 2007). 

Entrepreneurs are naturally different from other self-employed individuals. Although 

Faggio and Silva (2014) argues that this difference is not important in urban areas, it is 

important to distinguish them for studies including rural areas. Levine and Rubinstein 
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(2012) separate the self-employed into incorporated and unincorporated to distinguish 

entrepreneurs and other business owners, and find that entrepreneurs earn much more 

than the other types of workers. Thus, this paper will follow the definition of 

entrepreneurs and other self-employed by Levine and Rubinstein (2012) to test if the 

relationship between agglomeration and hours worked is different for the sub-samples. 

However, the 2SLS results for the not incorporated self-employed and the incorporated 

self-employed are very similar to the self-employed as a whole.24 

5.2 Agglomeration Wage Effect 

Before we control for the agglomeration wage effect in the hours worked test to examine 

whether it is a possible mechanism, it is necessary to revisit the agglomeration wage 

effect first, which is well documented by the literature that population geographic 

concentration increases wages and productivity though (Ciccone, 2002; Rosenthal and 

Strange, 2004; Brülhart and Sbergami, 2009; Combes, Duranton, Gobillon, and Roux, 

2010). 

Panel A of Table 1.4 reports the agglomeration wage effect by OLS of Model (5). 

All estimates for urbanization are statistically significant and large in magnitudes, 

implying that urbanization is correlated with higher wages. Although the estimates for 

relative localization are still positive, the magnitudes and significance are much lower 

than those for urbanization. Only the estimates for higher educated group are significant 

at the 0.05 level. 

                                                      
24 Results are provided upon request. 
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Table 1.4: Agglomeration Wage Effects 

 

Age 30 - 39 Age 40 - 49 Age 50 - 59 Age 30 - 39 Age 40 - 49 Age 50 - 59

A. Ordinary Least Squares

Log (Urbanization) 0.0306*** 0.0324*** 0.0311*** 0.0307*** 0.0297*** 0.0291***

(0.0036) (0.0036) (0.0037) (0.0046) (0.0043) (0.0041)

Log (Localization/Urbanization)0.0012 0.0009 0.0003 0.0042* 0.0039* 0.0038**

(0.0017) (0.0015) (0.0014) (0.0022) (0.0020) (0.0016)

B. Two Stage Least Squares

Log (Urbanization) 0.0634*** 0.0638*** 0.0738*** 0.0556*** 0.0489*** 0.0448***

(0.0177) (0.0158) (0.0197) (0.0177) (0.0159) (0.0141)

Log (Localization/Urbanization)-0.0004 -0.0014 -0.0051 -0.0013 -0.0006 0.0022

(0.0034) (0.0032) (0.0037) (0.0030) (0.0028) (0.0022)

First Stage

Urbanization

-0.2833*** -0.2970*** -0.2668*** -0.5017*** -0.4744*** -0.4563***

(0.0579) (0.0558) (0.0545) (0.0664) (0.0613) (0.0610)

0.0410*** 0.0489*** 0.0411*** 0.0592*** 0.0560*** 0.0472***

(0.0108) (0.0098) (0.0094) (0.0109) (0.0100) (0.0097)

Localization/Urbanization

-0.0270 -0.0136 -0.0400 -0.2213** -0.1928** -0.1615***

(0.0315) (0.0301) (0.0305) (0.0888) (0.0751) (0.0620)

0.2748*** 0.2821*** 0.2701*** 0.3477*** 0.3446*** 0.3322***

(0.0166) (0.0164) (0.0152) (0.0210) (0.0191) (0.0194)

Underidentification 18.823 25.106 23.207 39.280 42.027 41.468

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Weak Identification 13.032 16.312 14.517 42.284 45.662 45.221

{7.03} {7.03} {7.03} {7.03} {7.03} {7.03}

Endogeneity 11.536 13.114 13.831 5.494 3.166 4.718

[0.0031] [0.0014] [0.0010] [0.0641] [0.2054] [0.0945]

Amenities Yes Yes Yes Yes Yes Yes

Notes: The other estimates are suppressed for space conservation. All regressions include individual controls 

listed in Table 1.2. Standard errors in parentheses are robust to heteroskedasticity and clustered by work 

PUMA. P-values in square brackets are provided for underidentification tests and endogeneity tests. Stock-

Yogo weak identification test critical values in braces are provided for weak identification test. * p < 0.1, ** p 

< 0.05,  *** p < 0.01.

Industry and Work MSA 

Fixed Effects
Yes Yes Yes Yes Yes Yes

Log (Industry share in 

1930)

Log (Distance to 

Shoreline)

Log (Industry share in 

1930)

Dependent Variable: Log (Adjusted Income for Employee)

High school and less College and more

Log (Distance to 

Shoreline)
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Considering the endogeneity issue, Panel B of Table 1.4 presents the 2SLS results 

for the agglomeration wage effect. The first row shows the 2SLS estimates for log 

urbanization measure, which are not qualitatively different from the OLS estimates. 

However, comparing the magnitudes, the effect of agglomeration on wages is understated 

by the OLS. Especially for the lower educated self-employed, the downward bias is 

substantial, implying the measurement errors are influential. Comparing the 2SLS 

estimates with the OLS estimates, agglomeration increases wages by 3.06% - 3.24% for 

different age groups of the lower educated self-employed, but 6.34% - 7.38% increases 

are estimated by 2SLS. The agglomeration wage effects are about 2.91% - 3.07% for the 

highly educated self-employed by OLS, but the estimates increase to 4.48% - 5.56% by 

2SLS. Meanwhile, all the relative localization estimates decrease in magnitudes and 

become insignificant. Most estimates even flip sign. Therefore, the agglomeration wage 

effect comes from urbanization rather than localization, which confirms the literature. 

Note that, since the first stage estimations in Table 1.4 are identical to the first 

stage of hours worked test in Table 1.3, the first stage results are same as those in Table 

1.3. Thus, our instrument does not suffer from weak instrument, and works well in the 

current context. 

5.3 Controlling for Agglomeration Wage Effect 

In order to test whether the agglomeration wage effect plays a role in the effect of 

agglomeration on work intensity, 𝜔𝑐
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 is included in the regressions. Table 1.5 

reports the instrument variable estimation results. 
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Table 1.5: Hours Worked and Agglomeration 

 

Compared with the corresponding results in Table 1.3, there is not much 

quantitative difference. The only change is that the urbanization estimates become strictly 

insignificant. Therefore, only localization increases work intensity of the self-employed 

Age 30 - 39 Age 40 - 49 Age 50 - 59 Age 30 - 39 Age 40 - 49 Age 50 - 59

Two Stage Least Squares

Log (Urbanization) -0.0139 -0.0116 -0.0211 0.0079 -0.0212 -0.0166

(0.0191) (0.0132) (0.0196) (0.0151) (0.0137) (0.0109)

Log (Localization/Urbanization)0.0391*** 0.0395*** 0.0600*** 0.0198*** 0.0266*** 0.0283***

(0.0072) (0.0068) (0.0085) (0.0075) (0.0055) (0.0059)

First Stage

Urbanization

-0.1838*** -0.1922*** -0.1669*** -0.3546*** -0.3491*** -0.3396***

(0.0589) (0.0551) (0.0556) (0.0694) (0.0665) (0.0681)

0.0272*** 0.0338*** 0.0327*** 0.0440*** 0.0422*** 0.0312***

(0.0092) (0.0081) (0.0080) (0.0085) (0.0084) (0.0076)

Localization/Urbanization

-0.0326 -0.0204 -0.0500** -0.1711*** -0.1520*** -0.1241***

(0.0248) (0.0237) (0.0240) (0.0547) (0.0466) (0.0419)

0.2756*** 0.2831*** 0.2709*** 0.3425*** 0.3401*** 0.3271***

(0.0161) (0.0159) (0.0147) (0.0203) (0.0186) (0.0188)

Underidentification 7.347 9.766 7.464 16.307 17.046 15.998

[0.0067] [0.0018] [0.0063] [0.0001] [0.0000] [0.0001]

Weak Identification 4.679 5.908 4.352 13.600 15.248 14.551

{7.03} {7.03} {7.03} {7.03} {7.03} {7.03}

Endogeneity 5.971 24.561 34.034 6.146 12.237 9.886

[0.0505] [0.0000] [0.0000] [0.0463] [0.0022] [0.0071]

Amenities Yes Yes Yes Yes Yes Yes

Log (Distance to 

Shoreline)

Log (Industry share in 

1930)

Agglomeration Wage 

Effect
Yes Yes Yes Yes Yes

Industry and Work MSA 

Fixed Effects
Yes Yes Yes Yes Yes

Notes: The other estimates are suppressed for space conservation. All regressions include individual controls 

listed in Table 1.2. Standard errors in parentheses are robust to heteroskedasticity and clustered by work 

PUMA. P-values in square brackets are provided for underidentification tests and endogeneity tests. Stock-

Yogo weak identification test critical values in braces are provided for weak identification test. ** p < 0.05,  

*** p < 0.01.

Yes

Log (Industry share in 

1930)

Dependent Variable: Log (Hours Worked)

High school and less College and more

Log (Distance to 

Shoreline)

Yes
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mainly through competition within industries. The effect of sorting, simultaneity, and 

agglomeration wage effect are less important. 

Nonetheless, considering the negative correlation between urbanization and hours 

worked, it mostly comes from endogeneity and agglomeration wage effect. After 

correcting these effects, urbanization does not appear to affect work intensity for the self-

employed. 

 

5.4 Robustness Checks 

Before the final conclusions could be made, several robustness checks should be 

performed to reinforce the credibility of our study.  

Firstly, as discussed in Section 3, our instrument is valid if we can show ports and 

harbors are not correlated with productivity. One possible solution is directly controlling 

for the work PUMAs with ports and harbors. Aggressively, in our preferred specification, 

four dummies for coastal work PUMAs are controlled for, which includes all the work 

PUMAs with ports and harbors. However, most estimates on the coastal dummies are 

insignificant.25 Besides, our instruments are not weak instruments according to the weak 

identification statistics with the coastal dummies in these regressions. 

Another strategy is excluding all coastal work PUMAs from our sample. Panel A 

of Table 1.6 reports the instrumental variable estimation results. Either for the 

agglomeration wage effect test or for the hours worked test, the estimates are not  

                                                      
25 Results are provided upon request. 
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Table 1.6: Robustness Checks 

 

qualitatively different from those in the full sample specifications. Therefore, our 

instruments are robust considering one of them might affect productivity through another 

potential channel. 

Age 30 - 39 Age 40 - 49 Age 50 - 59 Age 30 - 39 Age 40 - 49 Age 50 - 59

A. Exclusion of Coastal Work PUMAs

Dependent Variable: Hours Worked

Log (Urbanization) -0.0350 0.0051 0.0586* 0.0119 0.0408* 0.0121

(0.0321) (0.0226) (0.0337) (0.0238) (0.0222) (0.0217)

0.0285*** 0.0381*** 0.0434*** 0.0205* 0.0183** 0.0258***

(0.0106) (0.0098) (0.0125) (0.0113) (0.0078) (0.0085)

Dependent Variable: Adjusted Wages of Employees

Log (Urbanization) 0.1342*** 0.1209*** 0.1355*** 0.0760*** 0.0769*** 0.0908***

(0.0433) (0.0312) (0.0365) (0.0154) (0.0170) (0.0222)

-0.0095 -0.0113 -0.0124 -0.0066 -0.0061 -0.0023

(0.0095) (0.0080) (0.0087) (0.0046) (0.0041) (0.0043)

B. Incomes for Employers

Dependent Variable: Hours Worked

Log (Urbanization) -0.0077 -0.0058 -0.0122 0.0066 -0.0189 -0.0182**

(0.0142) (0.0103) (0.0147) (0.0126) (0.0118) (0.0092)

0.0390*** 0.0391*** 0.0595*** 0.0197*** 0.0266*** 0.0281***

(0.0072) (0.0068) (0.0084) (0.0075) (0.0056) (0.0059)

Dependent Variable: Adjusted Incomes of Employers

Log (Urbanization) 0.0961** 0.1032*** 0.1088*** 0.0906** 0.0833** 0.0737**

(0.0375) (0.0345) (0.0404) (0.0374) (0.0339) (0.0308)

-0.0073 -0.0113 -0.0179** -0.0051 -0.0066 -0.0043

(0.0072) (0.0070) (0.0075) (0.0063) (0.0059) (0.0048)

Notes: This table reports the 2SLS estimates. The other estimates are suppressed for space 

conservation. All regressions include individual controls listed in Table 1.2. Standard errors in 

parentheses are robust to heteroskedasticity and clustered by work PUMA. * p < 0.10, ** p < 0.05, *** 

p < 0.01.

Log(Localization/

Urbanization)

Log(Localization/

Urbanization)

Log(Localization/

Urbanization)

High school and less College and more

Log(Localization/

Urbanization)
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Lastly, we consider the wage measure. There are at least two advantages to use 

adjusted wages of employees in our study. First, since agglomeration is a spillover effect, 

we can capture this by using the wages of people out of the sample. Second, it could 

eliminate any mechanism endogeneity since wages of the employed are not directly 

associated with work intensity of the self-employed. Panel B of Table 1.6 reports the 

results by using 𝜔𝑐
𝑆𝑒𝑙𝑓−𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 instead of 𝜔𝑐
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

. The upper part presents the 2SLS 

estimates for hours worked test with controlling for 𝜔𝑐
𝑆𝑒𝑙𝑓−𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

. The results are similar 

to our main specification. The lower part shows the estimates for agglomeration wage 

effect test by using adjusted income of the self-employed as the dependent variable. The 

estimates are larger than those in Table 1.4, which is reasonable if considering the 

spillover effect of agglomeration. 

 

6 Conclusions 

This paper uses minimum distance from work PUMA centroid to the US coastlines and 

estimated industry share in 1930 as instrumental variables, and tests the causal impact of 

agglomeration on work intensity of the self-employed. The instrument variable 

estimation results show that localization has positive causal impact on work intensity of 

the self-employed. The causality does not exist for urbanization and hours worked 

controlling for agglomeration wage effect. 

The empirical results imply that the positive causality is mostly driven by 

competition within industries relative to sorting and simultaneity. The benefits brought by 

localization attract more firms from the same industry. Increasing competition within 
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industries causes longer hours worked to survive. On the other hand, although 

urbanization enhances productivity, there is no basis for firms from different industries to 

compete. Therefore, urbanization less likely affects hours worked. 

Based on the results that we get in this paper, we can understand the relationship 

between agglomeration and labor supply more comprehensively. Rosenthal and Strange 

(2008) find that localization affects hours worked for all full-time workers. This paper 

focuses on the self-employed sample, and gets a similar result. However, the mechanism 

of the relationship for employees and the self-employed could be different. Rosenthal and 

Strange (2008) look at the urban rat race effect as the mechanism, which is an individual 

competition effect. This paper uses relative localization to capture firm level competition. 

The firm level competition usually happens within industries, which could cause the self-

employed to work more. 

The literature documents several benefits for firms locating in clusters. This paper 

provides additional evidence that clusters could bring regional benefits to local 

communities, since our results suggest that localization could increase the size of 

economic activities. Local governments could create designated zoning areas for 

industries to promote the process of localization, so that the local areas could enjoy the 

benefits with firms as well. 

This paper also examines whether the agglomeration wage effect is a mechanism. 

The empirical results indicate that the agglomeration wage effect comes only from 

urbanization. However, the agglomeration wage effect is not a crucial mechanism that the 

positive causality of agglomeration on hours worked of the self-employed runs through.  
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Our instruments are relatively new. The first stage statistics and the robustness 

checks guarantee our instruments are reliable, which could inspire us to construct similar 

instruments. For example, we could use the minimum distance from land-grant 

universities to PUMA centroids to instrument for human capital stock. 

The future study will focus on theoretical modeling of the relationship between 

agglomeration and labor supply to substantiate the empirical results we have in this 

paper. 
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CHAPTER II 

 

 

SELF-EMPLOYMENT DIFFERENTIALS AMONG FOREIGN-BORN STEM AND 

NON-STEM WORKERS 

 

1 Introduction 

The U.S. is a country built and developed by immigrants. It is valuable to understand how 

immigrants contribute to the economy of this country, then strategic immigration policies 

could be formed to maximize the benefits brought by immigrants. Many studies suggest 

that small businesses and foreign immigrants educated in science, technology, 

engineering, and mathematics (STEM) are the two drivers of economies (Acs and 

Armington 2004; Audretsch and Keilbach 2004; Audretsch et al. 2006; Bruce et al. 2009; 

Hunt and Gauthier-Loisselle 2010; Winters 2014; Peri et al. 2015). However, little about 

the connection of these two is known. Especially, pro-STEM immigration policies could 

be further endorsed if STEM graduates are more likely to be self-employed, but 

adjustments should be considered if they are not. 

This paper uses the 1% Integrated Public Use Microdata Series (IPUMS, Ruggles 

et al., 2010) 2013 American Community Survey (ACS) sample to study the correlation 

between college majors and self-employment decisions for foreign college graduates in
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the U.S. The self-employment differential between aliens educated in STEM and non-

STEM is most of our interest. The differentials across non-STEM majors are also tested 

for further reference. Moreover, income differentials for the employed and self-employed 

across majors are examined to offer some possibilities to understand the differences in 

self-employment decisions. 

Surprisingly, the empirical results show that foreign STEM graduates are 

significantly less likely to be self-employed than their non-STEM counterparts. This 

association remains even when considering broad major groups, and detailed majors. The 

income differential results indicate that STEM graduates could earn significantly more 

than the other majors if they choose not to be self-employed, and their income will 

significantly drop if they move into self-employment. This income pattern offers us a 

potential clue to understand why foreign STEM graduates are less likely to be self-

employed. 

This paper provides substantial contributions to the literature and implications to 

the U.S. immigration policies. Firstly, this is the first paper considering the self-

employment differential across college majors for aliens to our knowledge. Only if the 

facts are known, the direction of immigration reform or policy adjustment could be 

clearer. For example, considerable literature shows that foreign STEM graduates bring 

higher productivity and more innovation (Winters 2014; Peri et al. 2015); thus pro-STEM 

immigration policies could be established based on those studies26. Given that 

entrepreneurial activities enhance economies, if we know how college majors are 

                                                      
26 Foreign STEM graduates have 29-month extension for optional practical training (OPT), while non-STEM 

college graduates only have 12-moth OPT extension at most. 
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correlated with self-employment rates, some new insights could be provided to the 

policymakers, and hence we could obtain more benefits from educated immigrants. 

Second, this paper implies that foreign STEM workers could increase productivity 

and innovation, but which does not mean that they are more likely to be involved in 

entrepreneurial activities. This finding introduces a trade-off of reducing the immigration 

barrier for foreign STEM graduates. On one hand, importing more STEM human 

resources increases productivity and innovation. On the other hand, having more STEM 

immigrants may lower the self-employment rates. Therefore, it suggests policymakers 

should consider both advantages and potential caveats of STEM immigrants. If some 

other majors have higher self-employment rates, policies need lean towards these fields 

to maximize the benefits. An even more complex policy consideration is the combination 

of the advantages from STEM and the majors with high self-employment rates in some 

ways. For example, providing subsidies and/or reducing immigration barriers for those 

startups co-founded by graduates educated in STEM and fields with high self-

employment rates. 

Lastly, income differentials tell us why foreign STEM graduates are less likely to 

be self-employed from one aspect. If foreign STEM workers care more about their 

current benefits, it makes sense that they are less likely to be self-employed since they 

can earn more from employment at present, although self-employment may bring higher 

returns in the future. Besides, there could be a lot of other possibilities making foreign 

STEM less likely to be self-employed, which needs to be examined in the future studies. 
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The next section is the literature review, which provides some conceptual 

background. Section 3 describes our empirical approach and data. Section 4 provides 

empirical results and discussions. Section 5 concludes. 

 

2 Literature Review and Conceptual Background 

Aliens are more likely to be self-employed than their native counterparts in the U.S. 

(Borjas 1986). Figure 2.1 shows the mean self-employment rates for aliens and natives 

adjusted by sampling weights to ensure national representativeness. The sample is 

restricted to workers aged from 25 to 61 residing in the U.S. in 2013. 11.3% aliens are 

self-employed, while 9% for natives. The substantial difference indicates that the self-

employment differential between foreigners and natives does not vanish over time. In 

order to explain this long-lasting difference, plenty of studies have identified 

determinants of being self-employed, including educational attainments, original 

nationalities, demographic characteristics, and utility heterogeneity. These determinants 

will be discussed in the literature review as follows. 

Some researchers believe that education is one of the most important determinants 

for self-employment (Aronson 1991; Fairlie and Meyer 1996; Lofstrom 2004). Self-

employment differentials exist by education level for foreign workers. Figure 2.2 presents 

the differences in mean self-employment rates for foreign and native workers aged from 

25 to 61 by their educational attainments. The dark bars indicate the mean self-

employment rates for foreigners with at least a college degree and without a college 

degree. The light bars show the mean percentages of self-employment for native workers 
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with at least a college degree and without a college degree. Native workers present not 

much difference by the educational categories with similar rates around 9% as in Figure 

2.1. However, self-employment differentials by educational groups are substantial for 

foreign workers compared to natives. The self-employment rate for foreigners without a 

college degree is 11.9%, while only 10.1% of foreigners with at least a college degree are 

self-employed. 

 

Self-employment rates for foreign workers vary across their original nationalities 

through different ways (Fairlie and Meyer, 1996; Lofstrom 2004). Self-employment rates 

are naturally higher in some source countries. Immigrants from these countries may also 

more likely be self-employed in the host countries (Yuengert 1995; Lassmann and Busch 

2015). The positive association mainly comes from the experience and traditions of 

commerce brought from their home countries (Light 1984; Portes and Zhou 1991; Meyer 

1990; Linan and Fernandez-Serrano 2014). However, Fairlie and Meyer (1996) 

empirically find that this correlation is insignificant, and argue that Yuengert (1995) 

Figure 0.1: Self-employment rates by foreign status. Source: Author. 
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overstates the correlation due to econometrics issue. Light (1972, 1979), Sowell (1981), 

and Moore (1983) argue that variations in disadvantages over source countries influence 

self-employment rates, including language barriers, discrimination, etc. Lofstrom (2004) 

finds that the self-employed immigrants have better English ability than their salaried 

counterparts. Besides, discrimination against immigrants from some specific countries in 

the labor market could increase self-employment rates of that national group (Lofstrom 

2004; Constant and Zimmerman 2006; Fairlie 2006). Lofstrom (2004) also argues that 

the education estimates will be biased if countries of origin are not included in the self-

employment decision regression. Therefore, original nationalities and English proficiency 

are always included in our empirical analysis. 

 

Figure 2.3 presents the self-employment rates for foreigners residing in the U.S. 

over their source country groups. Korea, Eastern Europe, and Canada have the highest 

Figure 0.2: Self-employment rates by foreign status and education. Source: Author. 
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rates. Aliens from Philippines have the lowest rates of self-employment, which is very 

close to the previous literature.27 

 

Demographic and socioeconomic attributes are the most used controls included in 

self-employment decision research (Lofstrom 2004; Fairlie and Meyer 1996; 

Blanchflower 2000; Djankov et al. 2005; 2006). Specifically, Devine (1994) finds that 

females are less likely to be self-employed than males, but females increasingly have 

become involved in small businesses over time. Some researchers claim that using ethnic 

and racial variables may bias the estimates and lose information (Lieberson and Waters 

1988; Fairlie and Meyer 1996), which is also a reason why we only include countries of 

origin in our analysis. 

Fields of study in college are overlooked in most self-employment research to our 

knowledge. Existing literature only shows that college major choices are strongly 

                                                      
27 See Fairlie and Meyer (1996) as an example. 

Figure 0.3: Self-employment rates by original country groups. Source: Author. 
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associated with earnings (Arcidiacono 2004; Winters and Xu 2014; Eide et al. 2015). 

However, many studies on self-employment build their theories on earning differentials. 

Kihlstrom and Laffont (1979) construct a general equilibrium model of firm formation. 

They model the self-employment decision by comparing the uncertain profits of 

entrepreneurship with the wage determined in the competitive labor market. Yuengert 

(1995) builds a self-employment choice model on Box-Cox transformations of earnings. 

Fairlie and Meyer (1996) finds that self-employment differentials across ethnic/racial 

groups are positively correlated with the earnings differences between the self-employed 

and the salaried. Portes and Zhou (1996) discuss the debate on self-employment returns, 

and argue that the earnings difference between the self-employed and the salaried are 

related to the choice of functional form of the earnings equations. They argue that the 

log-linear form fits the data better, but wastes the information of outliers. 

Therefore, college major fields are likely associated with the self-employment 

decision through earnings. This paper focuses on self-employment of foreign STEM 

graduates, since they are productive and innovative, and usually are reported as high 

income receivers, drawing attention of policymakers (Winters 2014). However, the 

nature of innovation does not mean foreign STEM graduates are more likely to be self-

employed. Figure 2.4 shows the mean self-employment rates for STEM and non-STEM 

graduates separately for foreigners and natives aged from 25 to 61. The native group still 

shows not much difference between the two categories as in the previous comparisons. 

The foreign group provides a surprising result that STEM graduates are substantially less 

self-employed nationwide with a rate of only 8.7%, even less than the native average. 

Foreign non-STEM on the other side presents a significantly high rate of self-
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employment. Thus, the differential in self-employment between STEM and non-STEM 

graduates only exists among immigrants. 

 

Following the existing literature, we try to use potential earnings differentials to 

explain the self-employment decisions of foreign STEM and non-STEM graduates, and 

provide some theoretical thoughts as follows. Considering a static framework, if the 

potential earnings difference between self-employment and employment is quite 

substantial, this opportunity cost may prevent a worker from entering the type of work 

with lower income. Empirical studies have a long-lasting debate on whether self-

employment has higher return. The debate usually depends on the functional form of the 

earnings equations (Portes and Zhou 1996) and the measure of self-employment (Levine 

and Rubinstein 2013). Leaving this debate behind, no matter whether the current incomes 

for the self-employed are higher or lower, high expected returns would be the major 

reason for people still wanting to become self-employed. However, the shape of the 

utility function is neglected by most studies, which could play a role as well. Considering 

Figure 0.4: Self-employment rates by foreign status and STEM status. Source: Author. 
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risk preferences and intertemporal preferences, risk averse people are less likely to be 

self-employed since there exists much uncertainty in the future (Kihlstrom and Laffont 

1979). 

According to some empirical studies on risk preference, females are significantly 

more risk averse than males (Jianakoplos and Bernasek 1998). This is a good explanation 

for why females are less likely to be self-employed than males.28 However, Halek and 

Eisenhauer (2001) find that the self-employed are not significantly different from their 

salaried counterparts facing speculative risks, which implies that risk averse people do 

not sort into employment rather than self-employment, thus the employed and self-

employed averagely have the same attitude to the future income. Therefore, the current 

earnings differential still plays a larger role than the risk preference in the self-

employment decision. 

Institutional constraints are also correlated with self-employment rates, but it 

cannot explain the low rate of foreign STEM graduates. STEM and non-STEM 

immigrants with college degrees are facing the similar immigration policy. Theoretically, 

OPT extension, H-1B, E-B5, L1, and even F1 visas could be used to run a startup in order 

to obtain the permanent residency in the U.S. STEM graduates are even preferentially 

treated since they have a longer OPT extension. For those who want to run their own 

business, it costs less for STEM graduates to be self-employed since they have longer 

time of being legal in the U.S. Thus, STEM graduates should be more likely to be self-

employed, considering the institutional constraints. However, Figure 2.4 tells us that the 

                                                      
28 Fairlie and Meyer (1996) finds that female self-employment rates are usually about 55% of male rates. 
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current immigration policy does not make STEM graduates more entrepreneurial. 

Therefore, to sum up, current earning differentials are more reasonable to explain the 

variations in self-employment rates across college majors. 

 

3 Empirical Framework and Data 

This paper uses the linear probability model (LPM) to fit self-employment differentials 

across different college majors. The main model is: 

 𝑃𝑟(𝑆𝐸𝑖 = 1|𝒎𝑖, 𝑿𝑖) = 𝒎𝑖
′𝜶 + 𝑿𝑖𝜷 (6) 

 

where the subscript i denotes individual observations. 𝒎𝑖 is a vector of dummies for 

college majors, and 𝑿𝑖 is a matrix of individual characteristics. The dependent variable 

𝑆𝐸𝑖 is a dummy variable indicating whether a worker is self-employed or employed. In 

order to have a general to specific view of the self-employment differentials across 

different majors, three setups are assigned for the vector 𝒎𝑖. First, it only includes the 

indicator of STEM college graduates, in order to compare the difference of self-

employment between STEM college graduates and the other major graduates. The second 

setup for 𝒎𝑖 is a vector of dummies for seven major graduate groups, including STEM, 

business, education, health, liberal arts, and social science graduates. The omitted group 

is college graduates in all other fields. Lastly, the largest 44 detailed majors are 

represented by 𝒎𝑖. 
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The coefficients of our interest are 𝜶. For the first setup of 𝒎𝑖, it indicates the 

self-employment differentials between STEM graduates and non-STEM graduates. For 

the second setup of 𝒎𝑖, 𝜶 shows the average differences between different major groups 

and the base group. For the last setup, 𝜶 shows the average differences between detailed 

majors and the base category. Then it is reasonable to use these estimates to rank the 

marginal probability of being self-employed across the detailed majors. 

One major concern of this model is that industries could be correlated with self-

employment rates, and also associated with college majors. Thus, the second 

specification of our model controls for the industry fixed effects. Moreover, considering 

local economic variation, Metropolitan Statistical Area (MSA) fixed effects are also 

included in the model, which is: 

 𝑃𝑟(𝑆𝐸𝑖𝑑𝑐 = 1|𝒎𝑖𝑑𝑐, 𝑿𝑖) = 𝒎𝑖𝑑𝑐
′ 𝜶 + 𝑿𝑖𝑑𝑐𝜷 + 𝜏𝑑 + 𝜋𝑐 (7) 

 

where subscript d indexes industries, and c denotes MSAs and non-MSAs. 𝜏𝑑 is industry 

fixed effects, and 𝜋𝑐 is MSA fixed effects. 

 As discussed in the previous sections, earnings differentials may play a role in 

the self-employment decision for foreign STEM graduates. To have a formal test on the 

income differences across majors, the model below is proposed: 

 
𝑙𝑛(𝑖𝑛𝑐𝑜𝑚𝑒𝑖𝑑𝑐)  

= 𝜃𝑆𝐸𝑖𝑑𝑐 + 𝛿𝑆𝑇𝐸𝑀𝑖𝑑𝑐 + 𝜌𝑆𝐸𝑖𝑑𝑐 × 𝑆𝑇𝐸𝑀𝑖𝑑𝑐 + 𝑿𝑖𝑑𝑐𝜷
+ 𝜏𝑑 + 𝜋𝑐 + 𝜖𝑖𝑑𝑐 

(8) 
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where the dependent variable is the log of total personal earned income in the previous 

year. 𝑆𝑇𝐸𝑀𝑖𝑑𝑐 is a dummy for STEM college graduates. It will be extended to more 

detailed majors to compare the earnings differentials among different majors. 𝜌 is the 

coefficient of the most interest, which captures the average income difference between 

self-employed STEM workers and other workers. If this coefficient is negative, it means 

there is a drop in earnings if STEM graduates choose self-employment, which could 

explain the low self-employment rate for foreign workers with college degree in STEM 

as discussed in the previous section, 

This paper uses the 1% IPUMS (Ruggles et al., 2010) 2013 ACS sample. Our 

sample only includes the foreign-born29 employed and self-employed workers aged from 

25 to 61 with at least college degree. All empirical steps are adjusted by personal 

sampling weights (PERWT in IPUMS) to ensure the results are representative. 

The class of worker (CLASSWKR) variable is employed to define the self-

employed. The detailed version of this variable (CLASSWKRD) is also used to identify 

those who are incorporated self-employed, since it may capture more entrepreneurial 

spirit (Levine and Rubinstein 2013). The workers either in MSA or non-MSA areas are 

included in the sample by recoding the MSA identifier with the state variable. The last 

year earned income (INCEARN) is used as the income measure. 

The STEM graduates are defined mainly based on the STEM list from the U.S. 

Immigration and Customs Enforcement30. However, this list is not identical with our 

                                                      
29 We define foreign-born people using birthplace (BPL) variable from the IPUMS. If BPL > 56, people are 

treated as foreigners, including who are born in the US outlying areas or territories (American Samoa, Guam, 

Puerto Rico, U.S. Virgin Islands). 
30 The list is available at http://www.ice.gov/doclib/sevis/pdf/stem-list.pdf 

http://www.ice.gov/doclib/sevis/pdf/stem-list.pdf
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definition because of the major coding difference with the ACS31. In our STEM 

definition, we just consider the majors in the first degree, which is consistent with our 

definition of the other major groups. ACS also provides the information on people’s 

majors in their second degrees. This would make it possible that we could have 

alternative definitions of STEM. A narrower and a broader version of STEM will be used 

as sensitivity analysis. The narrower version is just considering those with both degrees 

in STEM and non-STEM. The broader version will also treat the observations only with a 

second major in STEM as STEM graduates. 

There are also six broad major groups defined, including business, education, 

health, liberal arts, social science, and other majors. Business group includes non-STEM 

majors with fields of degree in Business. Education group includes non-STEM majors 

with fields of degree in Education Administration and Teaching. Health group includes 

non-STEM majors with fields of degree in Medical, Health Sciences and Services. 

Liberal arts group includes non-STEM majors with fields of degree in Area, Ethnic, and 

Civilization Studies, Communications, Linguistics and Foreign Languages, English 

Language, Literature, and Composition, Liberal Arts and Humanities, Library Science, 

Interdisciplinary and Multi-Disciplinary Studies (General), Philosophy and Religious 

Studies, Theology and Religious Vocations, Fine Arts, History. Social science group 

includes non-STEM majors with fields of degree in Law, Psychology, Criminal Justice 

and Fire Protection, Public Affairs, Policy, and Social Work, Social Sciences. Other 

major group includes non-STEM majors with all fields of degree not mentioned. 

                                                      
31 The list of majors in STEM of our version is provided in the Appendix Table 1. 
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A standard set of demographic characteristics is controlled for in all regressions, 

including a quadratic polynomial of age, dummies for female, married, an interaction of 

female and married, naturalized citizen, children present in household, and three 

dummies for educational attainments. Four dummies for English ability are also included 

since it seems to be naturally correlated to the self-employment decision. Additionally, 13 

dummies of original nationality groups are included as well. They are Canada, Mexico, 

Rest of Americas, Western Europe, Eastern Europe, China, Japan, Korea, Philippines, 

India, Rest of Asia, Africa, and Oceania.32 Observations from regions other than above 

are omitted as a group of other. Four years-in-the-USA intervals are also included. 

Ethnicity and race are excluded from our analysis since they are potentially highly 

correlated to the original nationalities, and for the reasons discussed in the previous 

section. 

In order to control for the industry fixed effects, Ind1990 from IPUMS are used to 

identify industries, which is a three-digit identifier. There are 223 industries in our 

sample. Table 2.1 provides the summary statistics for foreign-born STEM and non-

STEM college graduates. 

                                                      
32 These dummies are created based on the recoded birthplace (BPL) variable. 
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Table 2.1: Summary Statistics for Analytical Sample 

 

Variable Mean Std. Dev. Mean Std. Dev.

A. Outcome Variables

Self-Employed 0.087 0.281 0.111 0.314

Incorporated Self-Employed 0.047 0.211 0.050 0.217

Log Annual Earnings 11.037 1.036 10.581 1.117

B. Individual Control Variables

Age 41.405 9.683 42.105 9.845

Bachelor's Degree 0.461 0.498 0.651 0.477

Master's Degree 0.334 0.472 0.252 0.434

Professional Degree 0.082 0.275 0.062 0.241

Doctoral Degree 0.122 0.328 0.036 0.185

Female 0.313 0.464 0.600 0.490

Married 0.750 0.433 0.667 0.471

Does Not Speak English 0.004 0.065 0.010 0.101

Speaks only English 0.206 0.405 0.274 0.446

Speaks English very well 0.586 0.493 0.508 0.500

Speaks English well 0.170 0.376 0.158 0.364

Speaks English not well 0.033 0.179 0.050 0.218

Canada 0.027 0.163 0.036 0.187

Mexico 0.040 0.196 0.070 0.255

Rest of Americas 0.126 0.332 0.223 0.416

Western Europe 0.078 0.268 0.101 0.301

Eastern Europe 0.082 0.275 0.086 0.280

China 0.123 0.328 0.071 0.257

Japan 0.012 0.110 0.022 0.147

Korea 0.035 0.183 0.047 0.213

Philippines 0.042 0.202 0.091 0.288

India 0.255 0.436 0.091 0.287

Rest of Asia 0.119 0.324 0.090 0.286

Africa 0.055 0.228 0.064 0.246

Oceania 0.005 0.070 0.007 0.083

Other 0.000 0.016 0.001 0.023

Naturalized citizen 0.508 0.500 0.545 0.498

Has Children 0.553 0.497 0.527 0.499

Years in USA 0-5 0.176 0.381 0.127 0.333

Years in USA 6-10 0.146 0.353 0.124 0.329

Years in USA 11-15 0.176 0.381 0.156 0.363

Years in USA 16-20 0.129 0.335 0.121 0.327

Years in USA 20+ 0.373 0.484 0.471 0.499

C. Non-STEM Broad Major Categories

Business Graduate 0.335 0.472

Education Graduate 0.093 0.290

Health Graduate 0.116 0.320

Liberal Arts Graduate 0.212 0.409

Social Science Graduate 0.198 0.399

Other Major Graduate 0.046 0.210

Observations

Non-STEM

Note: Analytical sample includes foreign-born college graduates ages 25-61 who are 

employed or self-employed. All results are adjusted by personal weight.

STEM

30,620 46,681
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Panel A shows the raw means and standard deviations of the outcome variables. 

As shown in Figure 2.1, non-STEM foreign-born graduates are more likely to be self-

employed than their STEM counterparts. The raw difference is about 0.024, which is 

statistically significant. The difference of incorporated self-employed rates between 

STEM and non-STEM is less substantial. Moreover, STEM workers earn significantly 

more than non-STEM workers, but one could not conclude an association between self-

employed rates and annual earnings based on the raw means since the raw mean of 

annual earnings contains the information for both the employed and the self-employed. 

More formal tests will be conducted to study the correlation in the following section. 

Panel B provides the summary statistics for the individual characteristics controls. 

According to the demographic attributes, STEM graduates are younger than their non-

STEM counterparts on average. The educational attainments characterize an unsurprising 

fact that Bachelor’s degrees are concentrated in non-STEM fields, while STEM graduates 

obtain more degrees of higher levels, showing that people in STEM fields are more 

academically oriented. More native English speakers sort into non-STEM fields, but 

STEM English learners generally have better English skills than their non-STEM 

counterparts. This is somewhat unexpected at first glance since a lot of non-STEM fields 

seems to require higher communication skills than STEM fields, but considering the 

intra-field competition, non-native speakers may have more advantages to compete if 

they have better English skills in STEM fields which is less pursued by native speakers. 

China and India are highlighted in the composition of original nationalities for STEM and 

non-STEM fields. These are the only two countries with a higher proportion in STEM 

than in non-STEM fields. Panel C shows the composition of non-STEM broad major 
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categories. All the summary statistics are adjusted by personal sampling weights to 

ensure they are nationally representative. 

 

4 Empirical Results 

4.1 Self-employment Differentials between Foreign STEM and Non-STEM fields 

Models (1) and (2) are estimated by OLS to investigate whether there is a real difference 

of self-employment rates across majors. First, we only consider the difference between 

STEM and non-STEM workers. Table 2.2 presents the self-employment differentials 

between STEM and non-STEM college graduates for three specifications.33 

Columns (1) and (4) show the estimates for our baseline model without any fixed 

effect controls. The dependent variables are dummies for self-employed and incorporated 

self-employed respectively. The estimates are highly significant and large in magnitudes. 

One advantage of LPM is that the estimates could be directly interpreted as the marginal 

effects. Thus, Column (1) indicates that the average probability of being self-employed 

for STEM graduates is less than that for non-STEM graduates by 3.06 percent, ceteris 

paribus. After controlling for individual characteristics, the self-employed differential 

becomes even larger than the raw difference with a value of 2.4 percent. Surprisingly, the 

incorporated self-employment differential becomes highly significant and larger in 

magnitude after controlling for personal attributes. Compared with the raw difference of 

                                                      
33 The estimates of detailed controls are presented in the Appendix Table 2. 
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0.3 percent, Column (4) indicates that STEM graduates are less likely to be incorporated 

self-employed by 1.37 percent than non-STEM graduates, ceteris paribus. 

Table 2.2:  Self-Employment Differentials Between STEM and All Non-STEM College 

Graduates 

 

Industry fixed effects are added to the baseline model, and Columns (2) and (5) of 

Table 2.2 provide the results. The estimated differentials are still highly significant and 

large, but the magnitudes of absolute values decrease by about 50% and 34% for being 

self-employed and incorporated self-employed, respectively. One possibility is because 

of the nature of different industries that some industries naturally have high self-

employed rates, while it is not apt to be self-employed in some other industries.34 

Besides, one cannot rule out that majors, self-employment, and industries are jointly 

determined, which could bias our estimates. Columns (3) and (6) report the estimated 

differentials also controlling for MSA fixed effects. For both self-employment measures, 

the estimates are still nontrivial with just a little drop in the magnitudes. Even though 

similar estimates are obtained from the second and third specifications, we prefer the 

latter with more observable controls.  

                                                      
34 Industry ranking of self-employment rates are presented in Appendix Table 3. 

Outcome:

(1) (2) (3) (4) (5) (6)

STEM Graduate -0.0306*** -0.0160*** -0.0153*** -0.0137*** -0.0091*** -0.0087***

(0.0039) (0.0034) (0.0033) (0.0021) (0.0023) (0.0022)

Industry Fixed Effects No Yes Yes No Yes Yes

MSA Fixed Effects No No Yes No No Yes

Self-Employed Incorporated Self-Employed

Notes: The omitted base group includes college graduates with bachelor's degrees in all non-STEM 

fields. All regressions include individual controls listed in Table 2.1. Standard errors in parentheses are 

robust to heteroskedasticity and clustered by MSA.
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4.2 Self-employment Differentials across Broad Major Groups 

The foreign STEM graduates have substantially lower self-employment rates, who are 

well documented as being innovative and productive. It would raise a question on what 

major groups have higher self-employment rates? Or whether a specific major group has 

an extremely high rate of self-employment, pushing up the average of the non-STEM 

category? Table 2.3 answers the questions by providing the results of self-employment 

differentials for broad major categories. The preferred specification is used, controlling 

for industry fixed effects and MSA fixed effects. All majors are grouped into 7 

categories, including STEM, business, education, health, liberal arts, social science, and 

other major graduates as the omitted reference group. For the probability of being self-

employed, all major groups are less likely to be self-employed than the base group, but 

liberal arts, social science, and health groups do not significantly have less probability of 

being self-employed than the reference group, and they have the highest three self-

employment rates among the non-reference major groups. For the groups with lowest 

self-employment rates, the STEM group is highlighted with the lowest probability of 

being self-employed, following by education and business graduate groups. 

For the probabilities of being incorporated self-employed, the picture does not 

change much, but the order shuffles a little. Following the reference group, from high to 

low probabilities of being incorporated self-employed, they are health, social science, 

business, liberal arts, STEM, and education graduates. On one hand, this might be due to 

the nature of major groups. For example, the health field naturally has more incorporated 

entities to protect the rapidly increasing biomedical patents and new techniques. On the 

other hand, as discussed earlier, incorporated self-employment may measure different 
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aspects from self-employment. Incorporated self-employment may capture more 

entrepreneurial aspects. However, STEM graduates still rank behind four broad major 

groups, namely health, social science, business, and liberal arts. Therefore, controlling for 

exhaustive covariates and using an alternative measure of self-employment, STEM 

graduates are always correlated with low rates of self-employment. 

Table 2.3: Self-Employment Differentials for Broad Major Categories 

 

4.3 Self-employment Differentials for Selected Detailed Majors 

Given the picture that STEM graduates are less likely to be self-employed, it would be 

interesting to look at the variation among detailed majors. In order to have a clearer 

presentation, Table 2.4 ranks the likelihoods of being self-employed and incorporated 

self-employed respectively based on the magnitudes of the estimated coefficients of 

Outcome: Self-Employed Incorporated Self-Employed

STEM Graduate -0.0271*** -0.0154**

(0.0082) (0.0062)

Business Graduate -0.0191** -0.0054

(0.0092) (0.0068)

Education Graduate -0.0256*** -0.0186**

(0.0082) (0.0074)

Health Graduate -0.0108 -0.0026

(0.0070) (0.0063)

Liberal Arts Graduate -0.0029 -0.0106

(0.0083) (0.0068)

Social Science Graduate -0.0071 -0.0050

(0.0075) (0.0063)

Industry Fixed Effects Yes Yes

MSA Fixed Effects Yes Yes

Notes: The omitted base group includes college graduates with bachelor's degrees in all 

other non-listed fields. All regressions include individual controls provided upon request. 

Standard errors in parentheses are robust to heteroskedasticity and clustered by MSA.
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model (2). 45 detailed majors with largest numbers of observations are selected, which 

cover 80.66% of the whole sample. Including the remaining small majors would give 

noisy estimates. To have a consistent reference group, the omitted category is the same as 

it in Table 2.3. However, architecture is one of the majors included in the reference 

category in Table 2.3, but it is also one of the 45 biggest majors. Thus, we drop it from 

the rankings, and leave it in the reference group as we did in Table 2.3 to maintain 

consistency. Eventually, we have 44 largest majors in the rankings. 

The ranking for self-employment presents a similar pattern we get from the 

previous results. The estimates of the beginning and the end in the ranking are significant. 

The majors in the intermediate part of the list are not statistically different. However, 

only looking at the ranks, only three STEM majors enter the top 20, which are Pharmacy, 

Pharmaceutical Sciences, and Administration (6th), Industrial and Manufacturing 

Engineering (19th), and Biology (20th). Most STEM majors stay at the end of the ranking, 

and the differentials are substantial. 

The ranks of STEM majors improve a little bit in incorporated self-employment 

(the average rank of STEM majors in self-employment is 31, and 28.06 in incorporated 

self-employment), but it does not qualitatively change the trend that STEM graduates are 

less likely to sort into incorporated self-employment (the correlation of ranks between 

self-employment and incorporated self-employment is about 0.68). More STEM majors 

enter the top 20 in incorporated self-employment, including Pharmacy, Pharmaceutical 

Sciences, and Administration (2nd), Chemical Engineering (9th), Biology (12th), 

Chemistry (14th), and Biochemical Sciences (15th). However, STEM majors still occupy 

the lower end of the ranking with significant differentials and relatively large magnitudes. 
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Table 2.4: Self-Employment Differentials for Selected Detailed Major Categories 

 

4.4 Annual Earning Differentials between STEM and Non-STEM graduates 

As discussed in Section 2, we try to explain the correlation between major decision and 

self-employment decision through earning differentials. Table 2.5 presents the estimates 

for Model (3).  Similar as in Table 2.2, Table 2.5 contains three specifications. Columns 

Outcome:

Rank Coefficient Std. Error Rank Coefficient Std. Error
Music 1 0.0687*** (0.0183) 7 -0.0031 (0.0150)
Treatment Therapy Professions 2 0.0369** (0.0183) 1 0.0381** (0.0148)
Commercial Art and Graphic Design 3 0.0319** (0.0145) 21 -0.0107 (0.0082)
Fine Arts 4 0.0245 (0.0229) 5 -0.0004 (0.0172)
Journalism 5 0.0123 (0.0169) 37 -0.0204* (0.0117)
Pharmacy, Pharmaceutical Sciences, and Administration 6 0.0074 (0.0153) 2 0.0159 (0.0131)
Psychology 7 0.0028 (0.0090) 13 -0.0069 (0.0080)
Philosophy and Religious Studies 8 -0.0012 (0.0266) 43 -0.0309*** (0.0102)
Multi-disciplinary or General Science 9 -0.0029 (0.0142) 19 -0.0105 (0.0096)
Theology and Religious Vocations 10 -0.0046 (0.0189) 22 -0.0116 (0.0177)
Economics 11 -0.0052 (0.0082) 4 0.0041 (0.0069)
Nursing 12 -0.0067 (0.0075) 8 -0.0038 (0.0063)
Political Science and Government 13 -0.0077 (0.0121) 11 -0.0049 (0.0081)
English Language and Literature 14 -0.0079 (0.0111) 6 -0.0028 (0.0088)
General Business 15 -0.0081 (0.0107) 3 0.0049 (0.0082)
Hospitality Management 16 -0.0085 (0.0197) 17 -0.0085 (0.0156)
French, German, Latin and Other Common Foreign Language Studies 17 -0.0104 (0.0135) 16 -0.0084 (0.0099)
General Education 18 -0.0145 (0.0098) 26 -0.0125 (0.0084)
Industrial and Manufacturing Engineering 19 -0.0166 (0.0150) 27 -0.013 (0.0121)
Biology 20 -0.017* (0.0089) 12 -0.0057 (0.0074)
Business Management and Administration 21 -0.019* (0.0098) 10 -0.0045 (0.0076)
Chemistry 22 -0.0191 (0.0143) 14 -0.0075 (0.0104)
Chemical Engineering 23 -0.0195 (0.0134) 9 -0.004 (0.0090)
Marketing and Marketing Research 24 -0.0196 (0.0175) 20 -0.0106 (0.0149)
Electrical Engineering Technology 25 -0.0198 (0.0168) 31 -0.0176 (0.0127)
Sociology 26 -0.0204 (0.0136) 28 -0.0148 (0.0102)
Finance 27 -0.0206** (0.0102) 24 -0.0121* (0.0072)
Biochemical Sciences 28 -0.0225 (0.0165) 15 -0.0078 (0.0122)
Communications 29 -0.0232 (0.0144) 23 -0.0118 (0.0099)
Criminal Justice and Fire Protection 30 -0.026 (0.0167) 29 -0.015* (0.0082)
Social Work 31 -0.026* (0.0152) 25 -0.0123 (0.0109)
Accounting 32 -0.0264*** (0.0096) 18 -0.0091 (0.0067)
General Engineering 33 -0.0268** (0.0128) 42 -0.0261*** (0.0070)
Elementary Education 34 -0.0318*** (0.0107) 34 -0.0196** (0.0078)
History 35 -0.0333** (0.0146) 36 -0.0198*** (0.0075)
Mechanical Engineering 36 -0.0336*** (0.0095) 38 -0.0204*** (0.0077)
Electrical Engineering 37 -0.0371*** (0.0085) 41 -0.0238*** (0.0077)
Computer and Information Systems 38 -0.0374*** (0.0108) 32 -0.0181** (0.0088)
Mathematics 39 -0.0381*** (0.0126) 30 -0.0164 (0.0103)
Liberal Arts 40 -0.0388*** (0.0115) 35 -0.0197** (0.0099)
Computer Engineering 41 -0.0389*** (0.0126) 33 -0.0189** (0.0090)
Computer Science 42 -0.0409*** (0.0090) 39 -0.0208*** (0.0071)
Physics 43 -0.0573*** (0.0105) 44 -0.0339*** (0.0082)
Civil Engineering 44 -0.0684*** (0.0100) 40 -0.0228** (0.0090)

Industry Fixed Effects Yes Yes

MSA Fixed Effects Yes Yes

Self-Employed Incorporated Self-Employed

Notes: The omitted base group includes college graduates with bachelor's degrees in fields outside of STEM, Business, Education, Health, 

Liberal Arts, and Social Science, i.e., all other fields not listed in Table 2.3; controls for smaller detailed majors in the main categories 

from Table 2.3 are included but not reported. Regressions include individual controls provided upon request. Standard errors in 

parentheses are robust to heteroskedasticity and clustered by MSA. STEM majors are bold.
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(1) and (4) do not include industry and MSA fixed effects. Columns (2) and (5) add 

industry fixed effects, and Columns (3) and (6) includes all fixed effects. The dependent 

variable is log personal annual income. Columns (1) to (3) are self-employment 

specifications, and Columns (4) to (6) are incorporated specifications. 

All level effects are significant for self-employment specifications. The 

interaction effect in Column (1) is significant as well. Being self-employed is correlated 

with 0.26 less log points of annual income for non-STEM graduates, ceteris paribus. 

STEM salaried workers have 0.26 more log points of annual income than non-STEM 

employees, ceteris paribus. However, the interaction of STEM and self-employed is 

negative, showing that incomes for STEM workers will drop further if they become self-

employed. 

Column (2) controls for industry fixed effects, and Column (3) controls for all 

fixed effects. Columns (2) and (3) present similar estimates. We still choose the latter as 

our preferred specification as we did in the previous tables. The interaction estimates 

become insignificant after controlling for the fixed effects, and the magnitudes are cut by 

half. Nonetheless, the level effects of self-employment and STEM remain same sign 

respectively, and similar in magnitudes. Thus, if without the interaction term, the net 

effect on income for STEM graduates of being self-employed is around zero, which 

implies that STEM graduates will earn much less if they choose to be self-employed. 

The incorporated specifications tell the similar story with a little variation. The 

level effects and interaction effects are significant for all incorporated specifications. 

Columns (4), (5) and (6) show that the annual income is significantly higher of being 
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incorporated self-employed for non-STEM graduates, ceteris paribus. However, this 

earnings advantage will significantly decease for STEM graduates. For non-incorporated, 

STEM graduates earn significantly more than their non-STEM counterparts, ceteris 

paribus. Nevertheless, this earning advantage will also substantially drop if STEM 

graduates choose to be incorporated self-employed. 

Table 2.5: Log Annual Earnings Differentials Using STEM and Non-STEM Categories 

 

Therefore, all the results tell us the same story that if STEM graduates sort into 

self-employment, their earnings will significantly drop. This could be a strong reason 

preventing foreign STEM graduates from being self-employed. Although the return of 

self-employment could be very high in the future, people with no preference on 

uncertainty will definitely enjoy higher current benefits. As noted in Section 2, some 

evidence shows that the employed and self-employed workers have similar risk 

preferences, thus self-employment decision depends on current incomes rather than 

expected incomes. 

(1) (2) (3) (4) (5) (6)

SE -0.2648*** -0.1435*** -0.1385***     Incorp 0.0824** 0.1882*** 0.1940***

(0.0388) (0.0295) (0.0291) (0.0365) (0.0323) (0.0307)

STEM 0.2639*** 0.1332*** 0.1341***     STEM 0.2723*** 0.1379*** 0.1387***

(0.0208) (0.0114) (0.0098) (0.0198) (0.0107) (0.0093)

STEM × SE -0.1131** -0.0525 -0.0478     STEM × Incorp -0.1543*** -0.0910** -0.0834**

(0.0449) (0.0438) (0.0437) (0.0420) (0.0357) (0.0357)

Industry Fixed Effects No Yes Yes No Yes Yes

MSA Fixed Effects No No Yes No No Yes

Notes: The omitted group includes all college graduates with bachelor's degrees in non-STEM fields. Regressions 

include individual controls provided upon request. Standard errors in parentheses are robust to heteroskedasticity and 

clustered by MSA. SE denotes self-employment, and Incorp stands for incorporated self-employment.
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Table 2.6: Log Annual Earnings Differentials Using Selected Detailed Major Categories 

 

Level Interaction Level Interaction

Accounting 0.0651* 0.1443 0.0883** 0.0594

(0.0341) (0.1183) (0.0343) (0.1377)

Biochemical Sciences 0.0596 0.2695 0.0764 0.2004

(0.0547) (0.2344) (0.0551) (0.2571)

Biology 0.1074*** 0.1598 0.1285*** -0.0053

(0.0375) (0.1061) (0.0375) (0.1534)

Business Management and Administration 0.0460 -0.0187 0.0534 -0.0362

(0.0326) (0.1244) (0.0336) (0.1439)

Chemical Engineering 0.2797*** -0.3038* 0.2830*** -0.4558**

(0.0432) (0.1598) (0.0408) (0.1954)

Chemistry 0.0910** -0.0968 0.1055*** -0.3087

(0.0354) (0.2445) (0.0356) (0.3571)

Civil Engineering 0.1834*** -0.0800 0.2043*** -0.1740

(0.0317) (0.1234) (0.0340) (0.1683)

Commercial Art and Graphic Design 0.0665 -0.3025 0.0214 -0.2936

(0.0555) (0.1861) (0.0531) (0.2260)

Communications 0.0728* 0.0601 0.0856** -0.0154

(0.0374) (0.1886) (0.0383) (0.1824)

Computer and Information Systems 0.2108*** -0.0546 0.2125*** 0.0931

(0.0403) (0.2151) (0.0448) (0.1809)

Computer Engineering 0.3477*** -0.0909 0.3611*** -0.2971*

(0.0319) (0.1660) (0.0334) (0.1729)

Computer Science 0.2488*** -0.2977* 0.2471*** -0.1092

(0.0371) (0.1667) (0.0356) (0.1668)

Criminal Justice and Fire Protection -0.0457 -0.0616 -0.0278 -0.5941

(0.0475) (0.2711) (0.0449) (0.4287)

Economics 0.0886*** 0.0153 0.0913*** 0.0482

(0.0278) (0.1237) (0.0313) (0.1249)

Electrical Engineering 0.2602*** -0.0331 0.2724*** -0.0750

(0.0315) (0.1094) (0.0322) (0.1493)

Electrical Engineering Technology 0.2720*** 0.1528 0.2836*** 0.1780

(0.0552) (0.2568) (0.0554) (0.2486)

Elementary Education 0.0098 -0.6239 -0.0102 -0.3189

(0.0475) (0.4127) (0.0562) (0.2780)

English Language and Literature -0.0227 -0.0990 -0.0316 -0.0438

(0.0462) (0.1483) (0.0423) (0.1951)

Finance 0.1368*** 0.2258* 0.1592*** 0.1540

(0.0450) (0.1287) (0.0428) (0.1325)

Fine Arts -0.0703 -0.1751 -0.1046* -0.1062

(0.0533) (0.2211) (0.0626) (0.1830)

French, German, Latin and Other Common Foreign Language Studies 0.0685 -0.2104 0.0566 -0.1845

(0.0574) (0.2692) (0.0619) (0.2265)

General Business 0.1252*** 0.1194 0.1387*** 0.0684

(0.0300) (0.1241) (0.0298) (0.1518)

General Education 0.0172 -0.1381 -0.0050 0.3507

(0.0341) (0.1729) (0.0359) (0.2171)

General Engineering 0.1728*** -0.0515 0.1918*** -0.2872**

(0.0353) (0.1392) (0.0370) (0.1333)

History 0.0061 -0.4671* -0.0389 -0.0813

(0.0466) (0.2615) (0.0539) (0.2469)

Self-employed Incorporated
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4.5 Correlations between self-employment differentials and income differentials 

Hospitality Management -0.0217 -0.1767 -0.0072 -0.5716

(0.0682) (0.1829) (0.0671) (0.3532)

Industrial and Manufacturing Engineering 0.2782*** -0.1596 0.2740*** -0.0540

(0.0459) (0.1759) (0.0439) (0.2107)

Journalism 0.0086 -0.2049 -0.0208 0.0076

(0.0716) (0.2144) (0.0675) (0.1807)

Liberal Arts 0.0028 -0.1902 -0.0036 0.0756

(0.0489) (0.3097) (0.0473) (0.2502)

Marketing and Marketing Research 0.0627 -0.0325 0.0636 0.0841

(0.0451) (0.2439) (0.0480) (0.2590)

Mathematics 0.1456*** -0.0554 0.1559*** -0.0389

(0.0441) (0.1778) (0.0449) (0.1804)

Mechanical Engineering 0.2458*** -0.3331** 0.2334*** -0.1317

(0.0367) (0.1379) (0.0405) (0.1996)

Multi-disciplinary or General Science 0.1433*** 0.1098 0.1700*** -0.1355

(0.0446) (0.2143) (0.0469) (0.1920)

Music -0.1673** 0.3099** -0.1229* 0.3364

(0.0759) (0.1427) (0.0631) (0.2636)

Nursing 0.2718*** 0.1417 0.2890*** -0.0593

(0.0443) (0.1511) (0.0446) (0.1660)

Pharmacy, Pharmaceutical Sciences, and Administration 0.2217*** 0.1408 0.2373*** -0.0710

(0.0562) (0.1890) (0.0603) (0.1759)

Philosophy and Religious Studies -0.0943 0.1197 -0.0660 -0.0768

(0.0591) (0.2508) (0.0615) (0.5614)

Physics 0.1799*** -0.3175 0.1826*** -0.0702

(0.0393) (0.2397) (0.0393) (0.2164)

Political Science and Government 0.0119 0.1346 0.0250 0.1230

(0.0453) (0.1383) (0.0438) (0.1614)

Psychology -0.0105 -0.1160 -0.0221 -0.1056

(0.0298) (0.1259) (0.0312) (0.1379)

Social Work -0.0086 0.0024 0.0050 -0.0265

(0.0744) (0.2962) (0.0702) (0.3560)

Sociology 0.0055 -0.2184 -0.0062 0.0133

(0.0510) (0.2505) (0.0487) (0.3050)

Theology and Religious Vocations -0.0814 0.0854 -0.0626 -0.0379

(0.0703) (0.2493) (0.0692) (0.2133)

Treatment Therapy Professions 0.2239*** 0.2553 0.2313*** 0.1803

(0.0565) (0.2081) (0.0603) (0.2079)

Self-Employment -0.1300

(0.0938)

Incorporated Self-Employment 0.1890

(0.1154)

Industry Fixed Effects Yes Yes Yes Yes

MSA Fixed Effects Yes Yes Yes Yes

Notes: The omitted base group includes college graduates with bachelor's degrees in fields outside of STEM, Business, 

Education, Health, Liberal Arts, and Social Science, i.e., all other fields not listed in Table 2.3; controls for smaller 

detailed majors in the main categories from Table 2.3 are included but not reported. Regressions include individual 

controls provided upon request. Standard errors in parentheses are robust to heteroskedasticity and clustered by MSA.
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The previous section provides a partial explanation for why foreign STEM graduates are 

less likely to be self-employed. To have more general and stronger support, we consider 

the correlations between self-employment differentials and income differentials for 

detailed college majors. If our point of view in the previous section is correct, then lower 

self-employment rates will be associated with higher incomes, vice versa. Thus, we need 

to test whether their correlation is negative or not. 

Table 2.6 presents the estimates of log annual earnings differentials for our 44 

selected detailed majors. Each major is interacted with being self-employed and 

incorporated self-employed respectively. The interpretations of the estimates are similar 

with those for Table 2.5. For example, chemical engineering graduates earn 0.28 log 

points more than the reference group if they are employed. However, if they change their 

mind and become their own bosses, their log annual income will drop more than 0.3 log 

points. 

The correlations of the estimates from Table 2.4 and Table 2.6 are calculated. The 

correlation between self-employment differential estimates and log annual income level 

differential estimates is -0.402. This could be interpreted that the higher income for 

employees, the lower self-employment rates, vice versa. The correlation between self-

employment differentials and log annual income interaction estimates is 0.36, which 

means the lower income for self-employed, the lower self-employment rates, vice versa. 

Therefore, these correlations nicely support our point in the last section that foreign 

college graduates are less likely to be self-employed since their earnings drop if they 

choose to be self-employed. Especially for STEM graduates, their very low rates of self-

employment are associated with very high incomes for being employees, and also their 
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low rates of self-employment are associated with significant decrease in incomes for 

being self-employed. 

Correlations are also calculated for incorporated self-employment differentials 

and level effects and interaction effects of income differentials respectively. These 

correlations are much weaker than those for self-employment differentials, 0.020 for 

level differentials, and 0.213 for interaction estimates. Thus, there is not much correlation 

between the incorporated self-employment differentials and incomes of being employed, 

but lower incorporated self-employment rates are also associated with lower income of 

being incorporated self-employed. 

4.6 Sensitivity Analysis 

Table 2.7 presents the results for sensitivity analysis. The first three rows show the results 

for the alternative STEM definitions. The first row provides the replications of Column 

(3) in Table 2.2 and Column (3) in Table 2.5 as reference. In the second row of the 

broader STEM definition, STEM graduates are defined as the first degree is in STEM 

and/or the second degree is in STEM. The estimates do not change much. The third row 

provides the results for the stricter STEM definition, which only includes those who get 

their first and second degree both in STEM fields. The self-employment differential 

becomes smaller and trivial. This is because there are only 1,649 observations satisfying 

the stricter STEM definition. Compared with the preferred definition of 30,620 

observations, and the broader definition of 31,158 observations, the small number of 

observations in stricter STEM specification makes the estimates are noisy. The fourth 
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row shows the results for full time workers who usually work more than 35 hours per 

week. The results still do not change much. 

Table 2.7: Sensitivity Analysis 

 

The fifth row of Table 2.7 restricts the sample to foreigners who stay in the U.S. 

more than 10 years. Considering a quite long time spent in the host country, immigrants 

could be very different from the new comers from every aspect, including language 

Dependent Variable Self-Employed

Coefficients STEM graduates STEM graduates SE SE*STEM

STEM preferred definition -0.0153*** 0.1341*** -0.1385*** -0.0478

(0.0033) (0.0098) (0.0291) (0.0437)

STEM broader definition -0.0141*** 0.1355*** -0.1318*** -0.0648

(0.0034) (0.0102) (0.0291) (0.0432)

STEM stricter definition -0.0091 0.0555* -0.1604*** -0.0536

(0.0067) (0.0310) (0.0244) (0.1030)

Full-time workers -0.0150*** 0.1146*** -0.0779*** -0.0135

(0.0039) (0.0101) (0.0274) (0.0372)

More than 10 years in US -0.0179*** 0.1047*** -0.1395*** -0.0040

(0.0044) (0.0131) (0.0371) (0.0454)

Natives -0.0076*** 0.0828*** -0.1669*** -0.0092

(0.0014) (0.0052) (0.0195) (0.0290)

Naturalized citizens -0.0089* 0.1157*** -0.0947** -0.0179

(0.0051) (0.0160) (0.0414) (0.0440)

Non-citizens -0.0230*** 0.1567*** -0.1753** -0.1475*

(0.0060) (0.0175) (0.0696) (0.0846)

Industry Fixed Effects Yes Yes Yes Yes

MSA Fixed Effects Yes Yes Yes Yes

log (Income)

Notes: The omitted base group includes college graduates with bachelor's degrees in all non-STEM 

fields. All regressions include individual controls provided upon request. Standard errors in 

parentheses are robust to heteroskedasticity and clustered by MSA.
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skills, institutional constraints, relying on current income, etc. However, there is no 

qualitative change in the estimated coefficients. In order to understand this more clearly, 

natives are taken as reference. Those who stay in the U.S. more than 10 years could 

behave more like natives rather than the new comers. Nevertheless, the sixth row 

indicates that this is not the case since the estimates for natives is quite different from 

immigrants, no matter how long they stay in the U.S. This is somewhat opposite to our 

common sense. 

One possible explanation is the citizenship status. Although some immigrants 

who have stayed in this country for considerably long time, they may not have 

citizenship. This institutional constraint could be a major reason that they still behave like 

new immigrants. The estimates for naturalized citizens and non-citizens support this idea. 

According to the estimates, naturalized citizens and natives are very similar, but non-

citizen STEM graduates are much less likely to be self-employed. For the income 

regression, notice that only the interaction term for non-citizens is significantly negative 

at the 10% level, which could partly explain the much lower self-employed coefficient 

non-citizens have. Therefore, according to this exercise, income differentials and self-

employment differentials of foreign college graduates could be jointly determined by 

their citizenship status. 

 

5 Conclusion 

This paper uses 1% IPUMS ACS 2013 data to study the self-employment differential 

between foreign STEM graduates and non-STEM graduates. The empirical results show 
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that the differential is still quite substantial after controlling for demographic and 

socioeconomic characteristics, educational attainments, country groups of origin, 

language ability, industry fixed effects, and MSA fixed effects. Furthermore, self-

employment differentials across broad major groups and detailed majors are examined. 

We find that the majors in Health, Social Science, and Liberal Arts are highlighted with 

relative high self-employment rates, while most majors in STEM fields are with lowest 

rates. 

We try to explain the self-employment differentials through the differences in 

incomes between self-employed and salaried foreign college graduates. If foreign college 

graduates care more about current incomes, the higher incomes of salaried jobs, the lower 

probability of being self-employed. The lower incomes of self-employment, the lower 

self-employment rates. Our empirical results confirm these relationships. Foreign STEM 

graduates are less likely to be self-employed, since they could earn significantly more in 

salaried jobs, but the income advantage disappears when they shift to self-employment. 

The sensitivity analysis provides very interesting results. We find that the old 

immigrants who stay in the U.S. for over 10 years still behave similarly as new comers on 

self-employment decision. This is partly because citizenship matters. The results show 

naturalized citizens and natives are very similar on self-employment decision, but non-

citizens have much lower possibilities to be self-employed. Therefore, income 

differentials is one of the factor explaining the low self-employment rates among foreign 

STEM graduates, and the institutional constraint is another. 
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Considering the descriptive nature of this paper, we could not draw very strong 

conclusions. However, it is important for policymakers to know how immigrants with 

college degrees contribute to small business sector. Foreign STEM graduates are 

productive and innovative, but with very low self-employment rates. Thus, on one hand, 

policy makers could consider lower the immigration barrier for graduates in non-STEM 

fields with high self-employment rates, or at least reduce the institutional discrimination 

between STEM and non-STEM graduates. On the other hand, target based subsidies 

and/or tax benefits could be offered to the startups co-funded by foreign STEM graduates 

and those who are educated in fields with high self-employment rates. 
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CHAPTER III 

 

 

HUMAN CAPITAL EXTERNALITIES, AGGLOMERATION, AND HOURS 

WORKED 

 

1 Introduction 

Firms locate in clusters because they can have net benefits for doing so. Learning from 

others is one of the advantages. However, it is rare in the literature to test the relationship 

between human capital externality and agglomeration directly. This paper uses unique 

instrumental variables to estimate the causality from both directions, namely, from 

human capital spillover to agglomeration, and also from agglomeration economies to 

human capital stock. After the causality is established, it can be used to analyze the 

relationship between human capital externality and hours worked given that the 

relationship between agglomeration and hours worked is known from the literature. 

This paper contributes to the literature in several aspects. First, the empirical 

results show that human capital externality has much more causal impact on 

agglomeration than the reverse. The relationship between human capital externality and 

urbanization is much stronger than that with localization for both directions of causality. 

Second, human capital externality does not affect hours worked of the self-
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employed, since it is localization not urbanization that has causal impact on hours 

worked, and the relationship between human capital spillover and localization is trivial 

for the self-employed. Human capital externality has impact on hours worked of 

employees, because the relationship between human capital and localization is 

significant. Based on these results, local governments could consider two types of 

policies to increase economic activity. One is how to attract more workers with higher 

educational backgrounds. The other is how to lower the probabilities for such workers 

and local university graduates moving away. Then combining with the policies suggested 

in Chapter I, regional economies could get more benefits from clusters. 

Third, this paper uses three valid instrumental variables. Minimum distance from 

work PUMA centroid to land-grant university is used to instrument for human capital 

stock, which is a significant improvement of the early version of the instrument in the 

literature at a larger scope of geographic level. Following Chapter 1, minimum distance 

from work PUMA centroid to US shoreline and estimated industry share in 1930 are used 

to instrument for agglomeration measures. 

Lastly, the wage rate is used instead of hours worked in the robustness check. The 

results show that the mechanism between human capital externality and agglomeration 

also works for the relationship between human capital externality and wages. 

 

2 Literature Review 

2.1 Agglomeration affects hours worked 
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The relationship between agglomeration and hours worked is overlooked in the literature. 

The few existing studies show that only localization is positively correlated with hours 

worked. Urbanization has nothing to do with work intensity. 

Rosenthal and Strange (2008a) document the positive relationship between 

localization and hours worked of professional workers. They argue that this positive 

relationship mainly goes through the urban rat race. Urban rat race is a mechanism that 

under competitive circumstance, workers tend to work more hours in order to signal their 

supervisors that they are hardworking, which could increase the probability of getting 

ahead. 

Chapter 1 uses instrumental variable estimation to build the causal relationship 

between agglomeration and hours worked for the self-employed. We find that only 

localization increases work intensity of the self-employed, while the agglomeration wage 

effect only comes from urbanization. The mechanism is different from the urban rat race 

for employees. Localization brings more competition within industries, which causes 

longer hours worked. Concurrently, specialization also decreases competition across 

industries, and thus urbanization has no causal impact on hours worked. 

2.2 Human capital externality and Agglomeration 

Human capital externality is an important source of agglomeration, which is a consensus 

in the literature. However, few studies really test the relationship between human capital 

externality and agglomeration. 

Most of the studies focus on indirect association between human capital 

externality and agglomeration, including wages, crimes, and politics. Moretti (2004a) 
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reviews the literature on the social return of human capital, and conclude that human 

capital externality increases productivity, reduces criminal participation, and improves 

voters’ political behavior. Rosenthal and Strange (2004) is also a good survey of the 

empirical literature on knowledge spillover as a micro-foundation of agglomeration. 

Duranton and Puga (2004) study the theoretical micro-foundations of agglomeration. 

Learning is an important mechanism. 

Nonetheless, how human capital externality is empirically correlated with 

agglomeration still remains unknown. This paper uses instrumental variables for both 

human capital and agglomeration to examine their relationship from both directions. That 

is, not only assuming that human capital externality causes the formation of 

agglomeration, but also assuming agglomeration will affect human capital stock. 

Besides, the relationship between human capital externality and work intensity is 

overlooked as well. Most studies focus on wage regressions. Moretti (2004b) uses 

longitudinal and repeated cross-sectional data to estimate the social return to higher 

education. The results show that human capital externality raises wages, and less 

educated workers receive more external benefits. 

Fu (2007) studies the micro-foundations of human capital externality. He finds 

that human capital externality could go through four channels: depth of human capital 

stock, Marshallian labor market externalities, Jacobs labor market externalities, and 

thickness of the local labor market. Actually, the first channel is measured by the share of 

working population who have at least a college degree, which is the mostly used measure 

of human capital. The second channel is related to specialization and peer competition, 
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and thus could be measured by localization as well. The third and fourth channels are 

very related to urbanization. His results show that these four types of mechanism are 

significant at the census block level, and attenuate at different speeds with distance. 

Rosenthal and Strange (2008b) estimate the relationship between agglomeration, 

human capital externality and wages. They find that agglomeration is positively 

associated with wage; the benefits of agglomeration are driven by human capital 

spillovers; and the benefits attenuate with distance. 

The only study related to the relationship between human capital externality and 

hours worked is Winters (2013). He finds that human capital level externality has a 

positive effect on the probability of labor force participation and employment in US 

metropolitan areas. 

According to the literature above, agglomeration affects hours worked, and 

human capital externality is a source of agglomeration. It is interesting to look at the 

relationship between human capital externality and hours worked. It is expected that 

human capital externality may affect hours worked as well, since the effects of human 

capital externality and agglomeration share a lot of common features, including spillover 

effects on wages, productivity, attenuation with distance, etc. However, it is perhaps not 

the case as well. Since only localization could affect hours worked but not urbanization, it 

is necessary to examine the detailed relationship between human capital spillover and 

different types of agglomeration economies. 

Therefore, this paper will examine the causality from human capital spillover to 

hours worked, and more importantly, see why it is the case. The next section will discuss 
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our empirical framework. Section 4 introduces the data and variables. Section 5 presents 

the empirical results. The last section concludes. 

 

3 Empirical Framework 

3.1 Human Capital Externality and Hours Worked 

The empirical analysis starts with looking at the relationship between human capital 

externality and hours worked. The baseline model is: 

 

log(𝐻𝑜𝑢𝑟𝑠 𝑊𝑜𝑟𝑘𝑒𝑑𝑖𝑝𝑗𝑐)

= 𝛼 log(𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑆ℎ𝑎𝑟𝑒𝑝) + 𝑿𝑖𝑝𝑗𝑐𝜷 + 𝑨𝒎𝒆𝒏𝒊𝒕𝒚𝑝𝜸

+ 𝜇𝑗 + 𝜑𝑐 + 𝜀𝑖𝑝𝑗𝑐 

(9) 

 

where i, p, j, c indexes individual observations, work PUMA, industries, and work MSAs, 

respectively.35 𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑆ℎ𝑎𝑟𝑒𝑝 is the share of working aged population who own 

bachelor’s degree and above at work PUMA level. 𝑿𝑖𝑝𝑗𝑐 is a set of demographic controls. 

𝜇𝑗 is industry fixed effect. 𝜑𝑐 is work MSA fixed effect. 𝜀𝑖𝑝𝑗𝑐 is an error term. 

According to the related literature, agglomeration is associated with human 

capital externalities (Moretti, 2004a; Duranton and Puga, 2004; Rosenthal and Strange, 

2004), and also correlated with hours worked (Rosenthal and Strange, 2008; Chapter 1). 

Thus, agglomeration measures are included in the regression as a robustness check. The 

model is: 

                                                      
35 All the empirical steps use personal sampling weights (perwt in IPUMS) to ensure the results are nationally 

representative. 
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log(𝐻𝑜𝑢𝑟𝑠 𝑊𝑜𝑟𝑘𝑒𝑑𝑖𝑝𝑗𝑐)

= 𝛼 log(𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑆ℎ𝑎𝑟𝑒𝑝) + 𝛽 log(𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝)

+ 𝛾 log (
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝𝑗

𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝
) + 𝑿𝑖𝑝𝑗𝑐𝜽 + 𝑨𝒎𝒆𝒏𝒊𝒕𝒚𝑝𝜹

+ 𝜇𝑗 + 𝜑𝑐 + 𝜀𝑖𝑝𝑗𝑐 

(10) 

 

where 𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝 is the population density of a work PUMA. 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝𝑗 is 

measured by the industry-specific employment density of a work PUMA. Specifically, 

the employment in industry j is calculated for work PUMA p. Then 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝𝑗 is the 

quotient of the industry-specific employment and the geographic area of the work PUMA 

p. Following Chapter 1, the localization measure is modified by urbanization to mitigate 

the collinearity issue.36  

In order to take care of the potential endogeneity on human capital, an 

instrumental variable is employed. In the literature, one popular instrument is the 

presence of a land-grant college (Moretti, 2004; Iranzo and Peri, 2009; Winters, 2013). 

However, this instrument has little variation at the work PUMA level, which makes it a 

weak instrument. One feasible compromise is restricting the sample size with the cost of 

losing available information. This paper comes up with a better alternative modifying the 

early version of the instrument. The instrument used in this paper is the minimum 

distance from a work PUMA centroid to a land-grant college, which is less likely to 

suffer from the no variation problem. As documented in the literature, the land-grant 

college is a good instrument for college share because of its fair correlation with human 

                                                      
36 As in Chapter I, I will use “localization” as referring to “relative localization” in the remainder of this paper 

to indicate the effect of the term log (
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝𝑗

𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝
). 
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capital measure, and relative exogeneity since the determination of the locations was a 

century ago and pretty random.37 

3.2 Human Capital Externality and Agglomeration 

Human capital externality is an important source of agglomeration economies. 

Agglomeration affects hours worked (Rosenthal and Strange, 2008; Chapter 1). Thus, it 

is natural to take a look at the role of agglomeration in the relationship between human 

capital externality and hours worked. To our best knowledge, only the one-way 

relationship between human capital spillover and agglomeration is usually studied in the 

literature. In this paper, we also study the reverse causality from agglomeration to human 

capital measure in order to guarantee the completeness of our inference. The baseline 

regression models are estimated by OLS as following: 

 

log(𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝)

= 𝛼 log(𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑆ℎ𝑎𝑟𝑒𝑝) + 𝑿𝑝𝜽 + 𝑨𝒎𝒆𝒏𝒊𝒕𝒚𝑝𝜹

+ 𝜑𝑐 + 𝜀𝑝𝑐 

(11) 

 

log (
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝𝑗

𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝
)

= 𝛼 log(𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑆ℎ𝑎𝑟𝑒𝑝) + 𝑿𝑝𝜽 + 𝑨𝒎𝒆𝒏𝒊𝒕𝒚𝑝𝜹

+ 𝜑𝑐 + 𝜀𝑝𝑐 

(12) 

 

log(𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑆ℎ𝑎𝑟𝑒𝑝)

= 𝛼 log(𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝) + 𝛽 log (
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝𝑗

𝑈𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑝
)

+ 𝑿𝑝𝜽 + 𝑨𝒎𝒆𝒏𝒊𝒕𝒚𝑝𝜹 + 𝜑𝑐 + 𝜀𝑝𝑐 

(13) 

 

                                                      
37 This instrumental variable may also have some limitations. See a discussion in Winters (2013). 
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where 𝑿𝑝 is a set of covariates of a work PUMA. Model (3) and (4) test the relationship 

from human capital externality to agglomeration. Model (5) examines the same 

relationship from the reverse direction. 

However, simultaneity is very likely to bias the estimates. Thus, minimum 

distance from work PUMA centroid to land-grant college is used to instrument for human 

capital externality in Models (3) and (4). Following Chapter 1, minimum distance from 

work PUMA centroid to US shoreline and estimated industry share in 1930 are employed 

to instrument for agglomeration measures in Model (5). After examining the causality 

between human capital externality and agglomeration from both directions, we are able to 

analyze the mechanism of the relationship between human capital externality and hours 

worked. 

3.3 Robustness Check 

To test whether the mechanism is robust to other outcomes, regression-adjusted incomes 

are constructed for each work PUMA by the regression: 

 ln(𝐻𝑜𝑢𝑟𝑙𝑦 𝐼𝑛𝑐𝑜𝑚𝑒)𝑖𝑝𝑗 = 𝑿𝑖𝑝𝑗𝜷 + 𝜇𝑗 + 𝜔𝑝 + 𝜀𝑖𝑐𝑑 (14) 

 

where 𝜔𝑝 is work PUMA fixed effects, which is used as the regression-adjusted average 

log hourly income of a work PUMA. This regression is estimated for the self-employed 

and the employed separately to obtain regression-adjusted hourly income 𝜔𝑐
𝑆𝑒𝑙𝑓−𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 

for the self-employed, and 𝜔𝑐
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 for the employed. Then 𝜔𝑐
𝑆𝑒𝑙𝑓−𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 will be 

used in the employed sample, 𝜔𝑐
𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 will be used in the self-employed sample to 
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ensure the exogeneity and capture the spillover aspect of human capital externality. 

Finally, the causality between human capital externality and incomes will be used to 

verify the prediction of the mechanism. 

 

4 Data and Variables 

4.1 Sample and Sub-samples 

The data is retrieved from the 5% IPUMS 2000 sample covering the lower 48 states. The 

sample is restricted to full-time workers38 aged from 30 to 5939, and divided into two 

educational groups: high school degree or below, and college degree or above. Each 

educational group is subdivided into three age groups: 30 to 39, 40 to 49, and 50 to 59. 

Educational attainment, a dummy of the presence of children, dummies of marital 

status, polynomial of age, dummies of race, years of residency in the US, and commute 

time are included as the demographic controls. 

4.2 Human Capital Measure 

Fu (2007) shows that human capital spillovers go through four channels. One of the 

important channels is the depth of human capital stock in the local labor market, which is 

measured by the share of working aged population who have at least bachelor’s degree.40 

This paper uses this measure as the proxy of human capital externality. 

                                                      
38 Working time is 35 hours or more per week. 
39 People aged 30 - 59 cover about 70% of the full-time workers. 
40 This paper uses college degree share or college share short for the share of working aged population who 

have at least bachelor’s degree. 
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4.3 Land-Grant Universities 

In order to construct the instrument, the land-grant universities should be defined. This 

paper combines the list of land-grant universities in the Appendix of Nevins (1962), and 

also the list of 1862 and 1890 land-grant colleges and universities from National Institute 

of Food and Agriculture (NIFA) of United States Department of Agriculture (USDA). 

Based on the difference between these two lists, this paper identifies 67 land-grant 

universities.41 The coordinates of the official address of the land-grant universities are 

imported into GIS software as the location points of the universities. Then the minimum 

distance from work PUMA centroid to a land-grant university is calculated by the GIS 

software. 

4.4 Agglomeration Measures 

As discussed in Section 2, Marshallian labor market externality, Jacobs labor market 

externality, and the thickness of the local labor market summarized by Fu (2007) are very 

similar with the agglomeration measures. The relative localization measure in Chapter 1 

could capture the Marshallian labor market externality. The urbanization measure in 

Chapter 1 is very close to the concepts of Jacobs labor market externality and the density 

of the local labor market. Therefore, this paper uses the urbanization and relative 

localization measures of Chapter 1.42 

4.5 Dependent Variables 

                                                      
41 The full list is provided in the Appendix. 
42 See Chapter 1 for the details. 
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Usual hours worked per week in the previous year (uhrswork in IPUMS) is used as the 

measure of hours worked. Earned income (INCEARN in IPUMS) is used as the annual 

income measure. Hourly income is the quotient of earned income and hours worked in 

the previous year. 

4.6 Amenities 

Following Chapter 1, amenities are extracted from different sources and constructed at 

the work PUMA level, including violent crime, property crime, precipitation, January 

temperature, July temperature, elevation, minimum distance to the nearest river or lake, 

heating degree days, cooling degree days, dew points, direct solar irradiance, and four 

dummies for coastal work PUMAs of Atlantic Ocean, Pacific Ocean, Gulf of Mexico, 

and Great Lakes.43 Table 3.1 shows the summary statistics. 

Table 3.1: Summary Statistics 

 

                                                      
43 See Chapter 1 for the details. 

Variable No. Obs Mean Std. Dev. Min Max

Hours Worked 1,850,145 45.022 8.857 35.000 99.000

Log (Hours Worked) 1,850,145 3.791 0.172 3.555 4.595

Hourly Income 1,850,145 21.371 34.784 -285.714 8150.000

Log (Hourly Income) 1,844,642 2.746 0.754 -7.160 9.006

College Share 1,850,145 0.273 0.095 0.102 0.595

Log (College Share) 1,850,145 -1.357 0.340 -2.283 -0.519

Localization 1,850,145 137.863 705.882 0.000 8455.254

Log (Localization) 1,850,145 1.799 2.397 -8.987 9.043

Urbanization 1,850,145 3731.385 11513.840 1.637 66942.260

Log (Urbanization) 1,850,145 6.211 1.975 0.493 11.112

Minimum Distance to Land-Grant 1,850,145 97.683 88.850 0.619 383.869

Log (Minimum Distance to Land-Grant) 1,850,145 4.135 1.085 -0.480 5.950

Minimum Distance to Coastline 1,850,145 139.165 174.596 0.023 817.575

Log (Minimum Distance to Coastline) 1,850,145 3.822 1.850 -3.772 6.706

Imputed Industry Share in 1930 1,850,145 0.032 0.087 0.000 1.000

Log (Industry Share in 1930) 1,850,145 -4.561 1.476 -12.368 0.000

High School and Less 1,850,145 0.545 0.498 0.000 1.000
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5 Empirical Results 

College and More 1,850,145 0.455 0.498 0.000 1.000

Age 1,850,145 43.146 8.019 30.000 59.000

Log (Commute Time) 1,792,663 2.960 0.848 0.000 5.159

Children Present 1,850,145 0.546 0.498 0.000 1.000

Female 1,850,145 0.409 0.492 0.000 1.000

Marital Status

Married 1,850,145 0.671 0.470 0.000 1.000

Married, Spouse Absent 1,850,145 0.018 0.133 0.000 1.000

Separated 1,850,145 0.025 0.157 0.000 1.000

Divorced 1,850,145 0.135 0.341 0.000 1.000

Widowed 1,850,145 0.014 0.116 0.000 1.000

Never Married 1,850,145 0.138 0.345 0.000 1.000

Race

White 1,850,145 0.799 0.401 0.000 1.000

African American 1,850,145 0.092 0.289 0.000 1.000

American Indian or Alaska Native 1,850,145 0.006 0.080 0.000 1.000

Chinese 1,850,145 0.013 0.111 0.000 1.000

Japanese 1,850,145 0.003 0.051 0.000 1.000

Other Asian or Pacific Islander 1,850,145 0.027 0.163 0.000 1.000

Other Race 1,850,145 0.042 0.202 0.000 1.000

Two Major Races 1,850,145 0.016 0.126 0.000 1.000

Three or More Major races 1,850,145 0.001 0.028 0.000 1.000

Amenity

Log (Violent Crime) 1,846,529 6.790 1.685 1.946 10.380

Log (Property Crime) 1,847,489 7.947 1.504 2.639 12.000

Log (Precipitation) 1,850,145 8.953 0.458 6.677 9.998

Log (Dew Points) 1,850,145 7.168 0.571 -10.735 7.855

Log (January Temperature) 1,850,145 2.749 0.580 -13.356 3.540

Log (July Temperature) 1,850,145 3.182 0.137 2.608 3.499

Log (Heating Degree Days) 1,850,145 7.557 0.821 3.664 8.616

Log (Cooling Degree Days) 1,850,145 7.665 0.411 6.157 8.556

Log (Elevation) 1,850,145 8.403 0.792 -7.953 8.904

Log (Solar Irradiance) 1,850,145 1.505 0.204 1.129 2.069

Log (Minimum Distance to River and Lake) 1,850,145 2.117 1.205 -2.052 4.432

Atlantic Work PUMA 1,850,145 0.171 0.376 0.000 1.000

Great Lake Work PUMA 1,850,145 0.057 0.232 0.000 1.000

Gulf Work PUMA 1,850,145 0.048 0.213 0.000 1.000

Pacific Work PUMA 1,850,145 0.117 0.322 0.000 1.000

Notes: All summary statistics are adjusted by personal weight to ensure the national representative. 

Education, years of residency in the U.S., industry, work PUMA, and work MSA are not included for space 

conservation.
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This section starts with looking at the relationship between human capital externality and 

hours worked for the employed and the self-employed. Instrumental variable estimation 

then will be used to establish the causality between the two variables. This paper will 

focus on the mechanism between human capital spillovers and agglomeration economies. 

Thus, causality will be analyzed from both directions. 

5.1 Human Capital Externality and Hours Worked 

In order to have a sense of potential bias, OLS is employed to test the correlation between 

human capital externality and hours worked first. Panel A of Table 3.2 reports the OLS 

results of model (1) for the employed. Almost all the estimates are statistically 

significant, but it indicates different patterns for the lower educated group and the higher 

educated group. The higher college degree share is associated with lower hours worked 

for the lower educated group, while higher college degree share is correlated with higher 

hours worked for higher educated employees. 

For the reasons discussed in Section 3, agglomeration measures are added to the 

model. Panel B of Table 3.2 shows the results. However, the inclusion of urbanization 

and relative localization does not change the estimates on college degree share much. 

Therefore, besides, concerning the endogeneity of agglomeration measures, the preferred 

specification only controls for the human capital measure. 

Now, instrumental variable estimation is used to take care of the potential 

endogeneity issue. Panel C of Table 3.2 reports the 2SLS results. Most estimates are 

insignificantly different from zero. The lower part of Panel C reports the first stage 

estimation results. All the first stage estimates are negative and significant, indicating that  
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Table 3.2: Hours Worked and Human Capital Externality for Employees 

 

the further from the land grant universities, the lower the college degree shares. All the 

first stage F-statistics are more than 20, which guarantees that the instrumental variable is 

not a weak instrument. However, the endogeneity tests fail to reject that college share is 

exogenous. Considering the lesser efficiency of 2SLS, OLS estimates are more reliable,  

Age 30 - 39 Age 40 - 49 Age 50 - 59 Age 30 - 39 Age 40 - 49 Age 50 - 59

A. Ordinary Least Squares

-0.0020 -0.0053** -0.0098*** 0.0246*** 0.0171*** 0.0193***

(0.0024) (0.0021) (0.0023) (0.0052) (0.0038) (0.0044)

B. Ordinary Least Squares

-0.0042 -0.0040 -0.0092*** 0.0243*** 0.0230*** 0.0286***

(0.0029) (0.0025) (0.0028) (0.0053) (0.0040) (0.0048)

0.0005 -0.0009* -0.0004 -0.0011 -0.0023*** -0.0027***

(0.0005) (0.0005) (0.0006) (0.0008) (0.0007) (0.0007)

0.0018*** 0.0012*** 0.0004 0.0020** -0.0007 -0.0027***

(0.0004) (0.0003) (0.0004) (0.0008) (0.0007) (0.0006)

C. Two Stage Least Squares

0.0148 -0.0191** -0.0110 0.0169 0.0060 0.0278*

(0.0108) (0.0095) (0.0105) (0.0133) (0.0115) (0.0144)

First Stage

-0.0701*** -0.0719*** -0.0711*** -0.0768*** -0.0769*** -0.0790***

(0.0122) (0.0119) (0.0121) (0.0159) (0.0143) (0.0137)

First Stage F Statistics 32.880 36.352 34.678 23.399 28.741 33.475

2.531 2.325 0.014 0.303 0.931 0.342

[0.1116] [0.1273] [0.9057] [0.5823] [0.3347] [0.5587]

Amenities Yes Yes Yes Yes Yes Yes

Endogeneity

Yes Yes

Notes: The other estimates are suppressed for space conservation. All regressions include 

individual controls listed in Table 3.1. Standard errors in parentheses are robust to 

heteroskedasticity and clustered by work PUMA. * p < 0.1, **p<0.05, *** p < 0.01.

Industry and Work 

MSA Fixed Effects
Yes Yes Yes Yes

Log (Distance to Land 

Grant University)

Dependent Variable: Log (Hours Worked)

High school and less College and more

Log(Localization/Urb

anization)

Log (College Share)

Log (College Share)

Log (College Share)

Log (Urbanization)
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Table 3.3: Hours Worked and Human Capital Externality for the Self-Employed 

 

indicating that higher human capital externalities make lower educated employees to 

work less, while higher educated employees to work more. 

Table 3.3 replicates Table 3.2 for the self-employed. The difference between these 

two samples is that there is little correlation between human capital externality and hours 

Age 30 - 39 Age 40 - 49 Age 50 - 59 Age 30 - 39 Age 40 - 49 Age 50 - 59

A. Ordinary Least Squares

-0.0154* 0.0001 -0.0132 0.0037 0.0107 0.0020

(0.0083) (0.0068) (0.0085) (0.0105) (0.0078) (0.0078)

B. Ordinary Least Squares

-0.0191* 0.0075 -0.0109 -0.0053 0.0058 0.0002

(0.0103) (0.0079) (0.0098) (0.0116) (0.0096) (0.0099)

-0.0019 -0.0066*** -0.0042** -0.0010 -0.0015 -0.0037*

(0.0020) (0.0016) (0.0019) (0.0024) (0.0020) (0.0022)

0.0131*** 0.0112*** 0.0107*** 0.0073*** 0.0060*** 0.0081***

(0.0017) (0.0015) (0.0015) (0.0015) (0.0013) (0.0013)

C. Two Stage Least Squares

-0.0231 -0.0132 -0.0224 0.0371 0.0079 -0.0313

(0.0396) (0.0315) (0.0436) (0.0470) (0.0377) (0.0391)

First Stage

-0.0734*** -0.0770*** -0.0678*** -0.0809*** -0.0783*** -0.0769***

(0.0123) (0.0121) (0.0116) (0.0149) (0.0134) (0.0137)

First Stage F Statistics 35.318 40.384 34.196 29.330 33.882 31.302

0.040 0.195 0.046 0.510 0.006 0.765

[0.8414] [0.6589] [0.8296] [0.4753] [0.9402] [0.3816]

Amenities Yes Yes Yes Yes Yes Yes

Endogeneity

Yes

Notes: The other estimates are suppressed for space conservation. All regressions include 

individual controls listed in Table 3.1. Standard errors in parentheses are robust to 

heteroskedasticity and clustered by work PUMA. * p < 0.1, **p<0.05, *** p < 0.01.

Industry and Work 

MSA Fixed Effects
Yes Yes Yes Yes Yes

Log (Distance to Land 

Grant University)

Dependent Variable: Log (Hours Worked)

High school and less College and more

Log(Localization/Urb

anization)

Log (College Share)

Log (College Share)

Log (Urbanization)

Log (College Share)
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worked of the self-employed by OLS and instrumental variable estimation. The 

endogeneity tests indicate that the OLS results are more reliable. 

To sum up, according to Table 3.2 and Table 3.3, human capital externalities 

affect hours worked of employees but not the self-employed. In the following sections, 

we want to look at the possible mechanism behind the results. 

5.2 Human Capital Externality and Agglomeration 

According to the literature, human capital externality is an important source of 

agglomeration economies. Under this relationship, however, if agglomeration has causal 

impact on hours worked, why does not human capital externality affect hours worked of 

the self-employed? Why does the impact exist for employees? In order to answer these 

questions, it is necessary to examine the causality between human capital externality and 

agglomeration from both directions. 

First, following the literature, we test human capital spillover as a source of 

agglomeration. To have a sense of endogeneity, OLS and instrumental variable 

estimation will be used in succession. 

Table 3.4 reports the estimated correlation between human capital externality and 

urbanization by OLS for different samples. The first column shows the elasticity between 

human capital externality and urbanization is 1.89, which is pretty substantial. Columns 

(2) and (3) report the estimates by types of employment, indicating that the estimated 

elasticity for the self-employed is a little bit larger than that for employees, but the 

difference is not statistically substantial. 
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Table 3.5 replicates Table 3.4 but for relative localization. The results are similar 

with those in Table 3.4, just less in magnitudes and significance. The elasticity between 

human capital externality and relative localization is about 1 for the full sample. 

Table 3.4: Human Capital Externality and Urbanization 

 

Table 3.5: Human Capital Externality and Localization 

 

(1) (2) (3)

Log (College Share) 1.8950*** 1.9418*** 1.8878***

(0.2320) (0.2167) (0.2336)

Amenities Yes Yes Yes

Yes

Dependent Variable: Log (Urbanization)

Notes: The other estimates are suppressed for space 

conservation. All regressions include individual controls listed 

in Table 3.1. Standard errors in parentheses are robust to 

heteroskedasticity and clustered by work state. * p < 0.1, 

**p<0.05, *** p < 0.01.

Work MSA Fixed 

Effects
Yes Yes

Full Sample
Self-

Employed
Employed

(1) (2) (3)

Log (College Share) 1.0012** 1.0135** 0.9983**

(0.3812) (0.4031) (0.3797)

Amenities Yes Yes Yes

Notes: The other estimates are suppressed for space 

conservation. All regressions include individual controls listed 

in Table 3.1. Standard errors in parentheses are robust to 

heteroskedasticity and clustered by work state. * p < 0.1, 

**p<0.05, *** p < 0.01.

Work MSA Fixed 

Effects
Yes Yes

Full Sample
Self-

Employed
Employed

Yes

Dependent Variable: Log (Localization/Urbanization)
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Table 3.6 provides the estimated elasticity reversely between agglomeration and 

human capital externality with respect to Tables 3.4 and 3.5. Compared with Tables 3.4 

and 3.5, the estimates are less in magnitudes. The estimates on relative localization are 

even smaller than those on urbanization and less significant. For the full sample, the 

elasticity between urbanization and college degree share is 0.12, and 0.01 for relative 

localization and college degree share. 

Therefore, according to the results from Table 3.4 to Table 3.6, the association 

between human capital externality and agglomeration is more likely to start from human 

capital externality, and the association is stronger for urbanization than localization. 

However, a strong conclusion cannot be made by the OLS estimates because of potential 

endogeneity. Thus, instrumental variable estimation is used to analyze causality. 

Table 3.7 reports the instrument variable estimation results for the full sample, the 

self-employed, and employees, assuming the causal relationship is running from human 

capital externality to agglomeration. For the full sample, although the second stage 

estimates are positive and significant, the relationship between human capital spillover 

and urbanization is substantially stronger than that for localization. Since the first stages 

are identical for the urbanization and relative localization regression, the first stage 

estimates are same. As in Table 3.2 and Table 3.3, the estimated coefficient on the 

instrument is negative and highly significant. The first stage F-statistic is 27.794, which is 

large enough to guarantee that the instrument is not weak. 

In order to investigate why the relationship between human capital externalities 

and hours worked is different for the self-employed and employees, Table 3.7 also 
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provides the estimates for these two samples. The estimates for urbanization are similar 

for the two samples, which means the human capital externalities have similar causal 

effects on urbanization for the self-employed and employees. However, human capital 

externalities have little impact on localization for the self-employed compared with 

employees, and this might be the reason why human capital externalities affect hours 

worked of employees rather than the self-employed. Given localization has a positive 

impact on hours worked, nevertheless, since human capital externalities do not contribute 

to the formation of localization economies for the self-employed, the causality could not 

go through this channel. On the other hand, human capital spillovers affect localization 

for employees, and localization has impact on hours worked, thus human capital 

externalities affect hours worked for employees. 

Table 3.8 gives the instrumental variable estimation results of the reverse 

relationship, assuming the causality is from agglomeration to human capital. For the full 

sample, the elasticity between urbanization and college degree share is 0.1940. The 

estimate on relative localization is insignificant different from zero, indicating there is no 

causal impact of localization on human capital stocks. Therefore, in this direction, 

localization does not affect human capital stocks, so that it cannot affect hours worked 

through the variation in human capital externalities. The estimates for the self-employed 

and employees are very similar as the full sample. Relying on the results of Tables 3.7 

and 3.8, it implies that the causality is mostly running from human capital to 

agglomeration, and confirms the statement in the literature that human capital externality 

is a source of agglomeration economy. Yet, urbanization still has some causal impact on 

human capital, although it is much smaller than the reverse relationship. 
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Table 3.6: Agglomeration and Human Capital Externality 

 

Table 3.7: Human Capital Externality and Agglomeration 

 

(1) (2) (3)

Log(Urbanization) 0.1216*** 0.1202*** 0.1218***

(0.0157) (0.0133) (0.0160)

0.0135** 0.0170** 0.0134**

(0.0066) (0.0083) (0.0066)

Amenities Yes Yes Yes

Yes Yes

Dependent Variable: Log (College Share)

Notes: The other estimates are suppressed for space 

conservation. All regressions include individual controls 

listed in Table 3.1. Standard errors in parentheses are robust 

to heteroskedasticity and clustered by work state. * p < 0.1, 

**p<0.05, *** p < 0.01.

Log(Localization/U

rbanization)

Work MSA Fixed 

Effects
Yes

Full Sample
Self-

Employed
Employed

3.2834*** 3.7311*** 3.2263*** 0.5947** 0.2608 0.6233**

(0.7857) (0.7903) (0.7850) (0.2982) (0.3090) (0.3065)

First Stage

-0.0804*** -0.0784*** -0.0806*** -0.0804*** -0.0784*** -0.0806***

(0.0152) (0.0139) (0.0154) (0.0152) (0.0139) (0.0154)

First Stage F Statistics 27.794 31.749 27.448 27.794 31.749 27.448

Amenities Yes Yes Yes Yes Yes Yes

Log (College Share)

Log (Distance to Land 

Grant University)

Work MSA Fixed 

Effects
Yes

Log(Urbanization) Log(Localization/Urbanization)

Full 

Sample

Self-

Employed
Employed

Full 

Sample

Self-

Employed
Employed

Notes: The other estimates are suppressed for space conservation. All regressions include 

individual controls listed in Table 3.1. Standard errors in parentheses are robust to 

heteroskedasticity and clustered by work state. * p < 0.1, **p<0.05, *** p < 0.01.

Yes Yes Yes Yes Yes
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Table 3.8: Agglomeration and Human Capital Externality 

 

5.3 Summary of the Mechanism 

After the causality analysis between human capital and agglomeration from both 

directions, we could sum up the mechanism behind the causality between human capital 

externality and hours worked. 

In order to have a clearer illustration, based on the results from Tables 3.2, 3.3, 

3.7, and 3.8, Figures 3.1 and 3.2 are produced to summarize the mechanism for the self-

Full Sample Self-Employed Employed

Log(Urbanization) 0.1940*** 0.2006*** 0.1931***

(0.0739) (0.0710) (0.0743)

-0.0031 0.0012 -0.0034

(0.0043) (0.0069) (0.0042)

First Stage

Urbanization

-0.4083*** -0.3698*** -0.4123***

(0.0778) (0.0798) (0.0777)

0.0277*** 0.0462*** 0.0266***

(0.0060) (0.0100) (0.0058)

Localization/Urbanization

-0.1518 -0.1195 0.1552

(0.0983) (0.0940) (0.0986)

0.4009*** 0.4470*** 0.3952***

(0.0160) (0.0275) (0.0156)

Amenities Yes Yes Yes

Log(College Share)

Log(Localization/Urbani

zation)

Log (Distance to 

Shoreline)

Log (Industry share in 

1930)

Log (Distance to 

Shoreline)

Log (Industry share in 

1930)

Kleibergen-Paap rk 

Wald F statistic
16.758 12.464 17.257

Work MSA Fixed 

Effects
Yes Yes Yes

Notes: The other estimates are suppressed for space conservation. All regressions 

include individual controls listed in Table 3.1. Standard errors in parentheses are 

robust to heteroskedasticity and clustered by work state. * p < 0.1, **p<0.05, *** p < 

0.01.
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employed and employees, respectively. This section will follow Figures 3.1 and 3.2, and 

go over the mechanism from two directions. The first direction is from human capital 

externality to agglomeration, the other direction is reverse. 

Figure 3.1 shows that human capital externality strongly increases urbanization, 

but it has little impact on localization for the self-employed. According to the literature, 

urbanization has no causal impact on hours worked, localization significantly increases 

hours worked. Therefore, the causality from human capital externality to hours worked 

cannot run through the two channels. Thus, the causality of human capital externality on 

hours worked is insignificant for the self-employed. Figure 3.2, shows that human capital 

affects localization for employees as well. Therefore, the causality of human capital 

spillovers on hours worked of employees could go through the localization channel. 

From the reverse direction, Figures 3.1 and 3.2 show the same thing that 

urbanization increases human capital, while localization does not. However, urbanization 

does not have a causal effect on hours worked, thus human capital should not have a 

causal impact on hours worked either. Meanwhile, localization has no causal impact on 

human capital. Therefore, the causality from localization to hours worked cannot pass 

through human capital externalities, and thus in this direction, human capital externalities 

have no causal impact on hours worked for both the self-employed and employees. 

To sum up, the causality from human capital externality to hours worked of 

employees runs through the channel from human capital externality to localization. The 

relationship does not exist for the self-employed because the channels are blocked in both 

directions. 
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Figure 3.1: Mechanism behind the Relationship between Human Capital Externality and Hours Worked of the Self-

Employed. Source: Author. 

 

Figure 3.2: Mechanism behind the Relationship between Human Capital Externality and Hours Worked of Employees. 

Source: Author. 

5.4 Robustness Check 

A robustness check of the mechanism is examined to ensure the reliability of our 

analysis. Figures 3.3 and 3.4 present the robustness check. Hours worked in Figures 3.1 



96 

 

and 3.2 is changed to regression-adjusted wage at work PUMA level to see if the 

mechanism works as well. 

 

Figure 3.3: Mechanism behind the Relationship between Human Capital Externality and Incomes for the Self-

Employed. Source: Author. 

According to the literature, the agglomeration wage effect only comes from 

urbanization. Localization has no causal impact on wages. Based on the causal analysis 

between human capital and agglomeration from both directions, it can be easily inferred 

that human capital externality should also have causal impacts on wages since the 

channel between human capital and urbanization is unobstructed for both the self-

employed and employees. In order to test whether the inference is valid, Tables 3.9 and 

3.10 show the instrumental variable estimation results of the relationship between human 

capital externality and wages for the employed and the self-employed respectively. As 

discussed in Section 3, in order to have a relative exogenous wage measure, the income 

of the self-employed is used as the dependent variable in the regressions for employees; 

the wage of employees is used in the regression for the self-employed. All estimates are 
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positive and significant, indicating that human capital externality has positive causal 

impact on wages as our prediction. Therefore, the mechanism analysis for the relationship 

between human capital externality and hours worked is valid. 

 

Figure 3.4: Mechanism behind the Relationship between Human Capital Externality and Incomes for Employees. 

Source: Author. 

Table 3.9: Human Capital Externality and Wages for Employee Sample 

 

Age 30 - 39Age 40 - 49Age 50 - 59 Age 30 - 39Age 40 - 49Age 50 - 59

0.3284*** 0.3173*** 0.3137*** 0.2770*** 0.3009*** 0.2934***

(0.0824) (0.0811) (0.0827) (0.1074) (0.0959) (0.0911)

First Stage

-0.0701*** -0.0719*** -0.0711*** -0.0768*** -0.0769*** -0.0790***

(0.0122) (0.0119) (0.0121) (0.0159) (0.0143) (0.0137)

First Stage F Statistics 32.880 36.352 34.678 23.399 28.741 33.475

Amenities Yes Yes Yes Yes Yes Yes

Notes: The other estimates are suppressed for space conservation. All regressions include 

individual controls listed in Table 3.1. Standard errors in parentheses are robust to 

heteroskedasticity and clustered by work PUMA. * p < 0.1, **p<0.05, *** p < 0.01.

Log (Distance to Land 

Grant University)

Industry and Work 

MSA Fixed Effects
Yes Yes

Dependent Variable: Log (Adjusted Income for the Self-Employed)

High school and less College and more

Log (College Share)

Yes Yes Yes Yes
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Table 3.10: Human Capital Externality and Wages for the Self-Employed Sample 

 

 

6 Conclusion 

This paper examines the causal relationship between human capital externality and hours 

worked. The empirical result shows that human capital externality has no causal impact 

on hours worked for the self-employed, but it affects hours worked of employees. This 

difference comes from the relative strength of the relationship between human capital 

externalities and localization for the self-employed and employees. 

The value and the main task of this paper is the study of the mechanism behind 

the different patterns. In the literature, there are many studies on the causality running 

from human capital spillover to agglomeration. This paper also pays attention to the 

reverse causality, and uses the relationship between human capital externality and 

agglomeration from both directions as the mechanism to explain the causality between 

Age 30 - 39Age 40 - 49Age 50 - 59 Age 30 - 39Age 40 - 49Age 50 - 59

0.1927*** 0.2025*** 0.2051*** 0.1695*** 0.1787*** 0.1784***

(0.0334) (0.0329) (0.0381) (0.0326) (0.0340) (0.0335)

First Stage

-0.0734*** -0.0770*** -0.0678*** -0.0809*** -0.0783*** -0.0769***

(0.0123) (0.0121) (0.0116) (0.0149) (0.0134) (0.0137)

First Stage F Statistics 35.318 40.384 34.196 29.330 33.882 31.302

Amenities Yes Yes Yes Yes Yes Yes

Notes: The other estimates are suppressed for space conservation. All regressions include 

individual controls listed in Table 3.1. Standard errors in parentheses are robust to 

heteroskedasticity and clustered by work PUMA. * p < 0.1, **p<0.05, *** p < 0.01.

Log (Distance to Land 

Grant University)

Industry and Work 

MSA Fixed Effects
Yes Yes

Dependent Variable: Log (Adjusted Income for Employee)

High school and less College and more

Log (College Share)

Yes Yes Yes Yes
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human capital spillover and hours worked. The empirical results show that human capital 

and urbanization have much stronger connection than human capital and localization. For 

the self-employed, the relationship between human capital and localization is 

insignificant. However, only localization has a causal impact on hours worked according 

to the literature. Therefore, the causality between human capital externality and hours 

worked of the self-employed is trivial as well. On the other hand, human capital 

externalities affect localization for employees. Thus, human capital spillovers have 

impact on hours worked of employees through localization. The robustness check using 

wages supports our mechanism analysis. 

As suggested in Chapter I, direct promotion of the process of localization could 

also bring benefits to local economies, but this is only for the self-employed. This paper 

provides some evidence that increasing the local education level could accelerate the 

agglomeration of employees within industries, and hence increase the size of regional 

economic activities. Therefore, combining the policies suggested in Chapter I and 

increasing local education level could generate more benefits for regional economies. To 

achieve this goal, on the one hand, local governments should consider how to attract 

people with higher educational backgrounds. On the other hand, policies against brain 

drain are also necessary. 

Although this paper studies the relationship between agglomeration and human 

capital externalities as the mechanism through which human capital externalities affect 

hours worked, it is only an empirical work. The underlying intuitions still remain 

unknown, including why human capital externalities only affect localization for 

employees but not for the self-employed, and how human capital externalities could 
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affect hours worked through other channels, etc. The future work will address these 

questions to have a better understanding of the relationship between human capital 

spillovers and labor market outcomes
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APPENDICES 
 

 

 

1 The List of Majors in STEM Fields 

Appendix Table 1 lists the majors in STEM fields. The detailed criterion of being 

selected as STEM is described in Section 3 of Chapter 2. 

Appendix Table 1: Majors in STEM Fields 

CODE Major 

1103 Animal Sciences 

1104 Food Science 

1105 Plant Science and Agronomy 

1106 Soil Science 

1301 Environmental Science 

1302 Forestry 

2001 Communication Technologies 

2100 Computer and Information Systems 

2101 Computer Programming and Data Processing 

2102 Computer Science 

2105 Information Sciences 

2106 Computer Information Management and Security 

2107 Computer Networking and Telecommunications 

2400 General Engineering 

2401 Aerospace Engineering 

2402 Biological Engineering 

2403 Architectural Engineering 

2404 Biomedical Engineering 

2405 Chemical Engineering 

2406 Civil Engineering 

2407 Computer Engineering 

2408 Electrical Engineering 

2409 Engineering Mechanics, Physics, and Science 

2410 Environmental Engineering 
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2411 Geological and Geophysical Engineering 

2412 Industrial and Manufacturing Engineering 

2413 Materials Engineering and Materials Science 

2414 Mechanical Engineering 

2415 Metallurgical Engineering 

2416 Mining and Mineral Engineering 

2417 Naval Architecture and Marine Engineering 

2418 Nuclear Engineering 

2419 Petroleum Engineering 

2499 Miscellaneous Engineering 

2500 Engineering Technologies 

2501 Engineering and Industrial Management 

2502 Electrical Engineering Technology 

2503 Industrial Production Technologies 

2504 Mechanical Engineering Related Technologies 

2599 Miscellaneous Engineering Technologies 

3600 Biology 

3601 Biochemical Sciences 

3602 Botany 

3603 Molecular Biology 

3604 Ecology 

3605 Genetics 

3606 Microbiology 

3607 Pharmacology 

3608 Physiology 

3609 Zoology 

3611 Neuroscience 

3699 Miscellaneous Biology 

3700 Mathematics 

3701 Applied Mathematics 

3702 Statistics and Decision Science 

3801 Military Technologies 

4002 Nutrition Sciences 

4005 Mathematics and Computer Science 

4006 Cognitive Science and Biopsychology 

5000 Physical Sciences 

5001 Astronomy and Astrophysics 

5002 Atmospheric Sciences and Meteorology 

5003 Chemistry 

5004 Geology and Earth Science 

5005 Geosciences 

5006 Oceanography 

5007 Physics 

5008 Materials Science 

5098 Multi-disciplinary or General Science 
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5102 Nuclear, Industrial Radiology, and Biological Technologies 

5901 Transportation Sciences and Technologies 

6106 Health and Medical Preparatory Programs 

6108 Pharmacy, Pharmaceutical Sciences, and Administration 

6202 Actuarial Science 

6212 Management Information Systems and Statistics 

 

2 The Estimates of Detailed Controls for Table 2.2 

Appendix Table 2 presents the results for individual control variables of Table 2.2. The 

estimated coefficients for fixed effects are omitted for space conservation. 

 

(1) (2) (3) (4) (5) (6)

-0.0306*** -0.0160*** -0.0153*** -0.0137*** -0.0091*** -0.0087***

(0.0039) (0.0034) (0.0033) (0.0021) (0.0023) (0.0022)

A. Educational Attainments

Bachelor's Degree

-0.0228*** -0.0019 -0.0010 -0.0108*** -0.0010 -0.0004

(0.0029) (0.0026) (0.0026) (0.0022) (0.0022) (0.0021)

0.0657*** 0.0576*** 0.0580*** 0.0435*** 0.0293*** 0.0299***

(0.0070) (0.0056) (0.0057) (0.0056) (0.0037) (0.0037)

-0.0350*** 0.0153*** 0.0167*** -0.0133*** 0.0079** 0.0090**

(0.0056) (0.0049) (0.0051) (0.0034) (0.0037) (0.0039)

B. Original Nationality

Other

0.1095*** 0.0908*** 0.0789** 0.0492*** 0.0353** 0.0294

(0.0151) (0.0308) (0.0328) (0.0137) (0.0168) (0.0184)

0.0695*** 0.0526* 0.0319 0.0151 0.0043 -0.0036

(0.0181) (0.0317) (0.0332) (0.0188) (0.0195) (0.0215)

0.0714*** 0.0569* 0.0454 0.0223 0.0126 0.0001

(0.0171) (0.0306) (0.0322) (0.0178) (0.0188) (0.0195)

0.0924*** 0.0772** 0.0658** 0.0374** 0.0261 0.0203

(0.0169) (0.0305) (0.0323) (0.0176) (0.0191) (0.0206)

Appendix Table 2: Results for Individual Control Variables for Self-Employment Outcomes

Canada

Mexico

Rest of Americas

STEM

Master's Degree

Professional Degree

Doctoral Degree

Western Europe

Self-Employment Incoporated Self-Eployment

Reference Category

Reference Category
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0.1115*** 0.0787*** 0.0725** 0.0446*** 0.0270 0.0231

(0.0148) (0.0299) (0.0318) (0.0154) (0.0174) (0.0190)

0.0681*** 0.0612* 0.0520 0.0267* 0.0172 0.0145

(0.0154) (0.0315) (0.0338) (0.0146) (0.0178) (0.0199)

0.0861*** 0.0787** 0.0671* 0.0219 0.0133 0.0095

(0.0202) (0.0330) (0.0349) (0.0177) (0.0199) (0.0218)

0.1323*** 0.1117*** 0.1027*** 0.0644*** 0.0466*** 0.0432**

(0.0117) (0.0325) (0.0338) (0.0145) (0.0172) (0.0196)

0.0176 0.0273 0.0131 0.0001 -0.0013 -0.0057

(0.0185) (0.0323) (0.0347) (0.0182) (0.0200) (0.0223)

0.0802*** 0.0654** 0.0599* 0.0407** 0.0256 0.0227

(0.0170) (0.0314) (0.0331) (0.0163) (0.0183) (0.0199)

0.1026*** 0.0805*** 0.0701** 0.0447*** 0.0276* 0.0241

(0.0129) (0.0306) (0.0329) (0.0131) (0.0165) (0.0189)

0.0681*** 0.0584* 0.0532 0.0236 0.0151 0.0132

(0.0196) (0.0316) (0.0334) (0.0182) (0.0189) (0.0205)

0.0801*** 0.0598* 0.0514 0.0305* 0.0184 0.0145

(0.0180) (0.0330) (0.0349) (0.0173) (0.0191) (0.0208)

C. English Speaking

Does Not Speak

-0.0497*** -0.0004 0.0052 -0.0073 0.0057 0.0121

(0.0188) (0.0177) (0.0184) (0.0094) (0.0084) (0.0092)

-0.0402** 0.0058 0.0103 0.0006 0.0122 0.0176*

(0.0195) (0.0189) (0.0192) (0.0089) (0.0087) (0.0096)

-0.0284 0.0052 0.0090 -0.0008 0.0064 0.0109

(0.0182) (0.0183) (0.0183) (0.0083) (0.0085) (0.0093)

-0.0152 -0.0105 -0.0069 -0.0003 -0.0037 -0.0000

(0.0195) (0.0184) (0.0180) (0.0096) (0.0089) (0.0095)

D. Demographic Controls

-0.0043 -0.0091 -0.0158 -0.0035 -0.0059 -0.0104

(0.0453) (0.0414) (0.0419) (0.0334) (0.0318) (0.0322)

0.0001 0.0002 0.0005 -0.0000 0.0001 0.0002

(0.0017) (0.0016) (0.0016) (0.0013) (0.0012) (0.0012)

0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

-0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Age^4

India

Rest of Asia

Africa

Oceania

Speaks Only English

Speaks Very Well

Speaks Well

Not well

Age

Age Square

Age^3

Philippines

Eastern Europe

China

Japan

Korea

Reference Category
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3 Industry Ranking of Self-Employment Rates 

Appendix Table 3 shows the ranking of self-employment and incorporated self-

employment rates for all 223 industries in the sample based on the estimated marginal 

effects. The results come from the preferred specification with both industry fixed effects 

and MSA fixed effects. Agricultural production, corps is the reference category. 

-0.0507*** -0.0378*** -0.0367*** -0.0323*** -0.0231*** -0.0224***

(0.0053) (0.0050) (0.0051) (0.0034) (0.0033) (0.0034)

-0.0043 -0.0002 0.0007 0.0108*** 0.0121*** 0.0126***

(0.0051) (0.0046) (0.0047) (0.0032) (0.0033) (0.0034)

0.0162*** 0.0144*** 0.0135*** 0.0015 -0.0008 -0.0011

(0.0048) (0.0044) (0.0045) (0.0034) (0.0035) (0.0034)

-0.0027 0.0055 0.0046 0.0061*** 0.0082*** 0.0071***

(0.0052) (0.0040) (0.0040) (0.0023) (0.0021) (0.0021)

0.0050* 0.0091** 0.0104*** 0.0049** 0.0061** 0.0067***

(0.0030) (0.0035) (0.0035) (0.0023) (0.0026) (0.0025)

0 - 5 Years in USA

0.0169*** 0.0064 0.0061 0.0058** 0.0021 0.0019

(0.0057) (0.0044) (0.0044) (0.0026) (0.0025) (0.0026)

0.0276*** 0.0176*** 0.0177*** 0.0136*** 0.0099*** 0.0106***

(0.0046) (0.0043) (0.0044) (0.0029) (0.0028) (0.0029)

0.0323*** 0.0233*** 0.0240*** 0.0163*** 0.0117*** 0.0133***

(0.0062) (0.0056) (0.0056) (0.0044) (0.0041) (0.0043)

0.0342*** 0.0282*** 0.0279*** 0.0197*** 0.0169*** 0.0186***

(0.0051) (0.0044) (0.0044) (0.0029) (0.0029) (0.0035)

0.0432 0.0538 0.0788 0.0395 0.0626 0.0913

(0.4432) (0.4035) (0.4087) (0.3308) (0.3139) (0.3197)

Industry FE No Yes Yes No Yes Yes

MSA FE No No Yes No No Yes

6 - 10 Years in USA

11 - 15 Years in USA

16 - 20 Years in USA

21+ Years in USA

Constant

Female

Married

Married × Female

Citizenship

Childen Present

Reference Category
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Code Industry Estimates Rank Estimates Rank

893 Miscellaneous professional and related services  0.3383 1 0.0983 10

821 Offices and clinics of chiropractors 0.3075 2 0.3064 1

551 Farm-product raw materials 0.2674 3 -0.1148 223

402 Taxicab service 0.2258 4 0.0469 26

761 Private households 0.2068 5 -0.0452 120

671 Direct selling establishments 0.2015 6 0.0358 32

772 Beauty shops 0.1519 7 0.0570 21

760 Miscellaneous repair services  0.1487 8 -0.0447 118

32 Fishing, hunting, and trapping  0.1465 9 0.0958 11

822 Offices and clinics of optometrists 0.1432 10 0.1073 8

230 Logging 0.1303 11 -0.0653 168

780 Barber shops 0.1189 12 -0.0081 74

820 Offices and clinics of dentists 0.0897 13 0.1701 3

20 Landscape and horticultural services 0.0796 14 0.0286 40

681 Retail florists 0.0769 15 0.0088 57

791 Miscellaneous personal services  0.0695 16 0.0314 37

712 0.0665 17 0.0700 17

611 Food stores, n.e.c. 0.0660 18 0.1262 5

650 Liquor stores 0.0650 19 0.2066 2

750 Automobile parking and carwashes 0.0631 20 0.0122 54

722 Services to dwellings and other buildings 0.0405 21 0.0244 44

682 Miscellaneous retail stores 0.0396 22 0.0904 13

60 All construction  0.0368 23 0.0567 22

800 Theaters and motion pictures 0.0320 24 0.0714 16

860 Educational services, n.e.c. 0.0312 25 0.0063 60

741 Business services, n.e.c. 0.0177 26 0.0337 35

663 Catalog and mail order houses 0.0135 27 0.0296 39

691 Retail trade, n.s.  0.0115 28 0.0344 34

771 Laundry, cleaning, and garment services 0.0110 29 0.0944 12

660 Jewelry stores 0.0069 30 0.0395 31

752 Electrical repair shops 0.0050 31 0.0417 29

10 Agricultural production, crops 0.0000 32 0.0000 65

812 Offices and clinics of physicians -0.0017 33 0.1165 7

892 Management and public relations services -0.0090 34 0.0534 24

562 Miscellaneous wholesale, nondurable goods -0.0208 35 0.1017 9

531 Scrap and waste materials -0.0215 36 0.1217 6

11 Agricultural production, livestock -0.0216 37 -0.0202 84

410 Trucking service -0.0301 38 0.0352 33

862 Child day care services -0.0333 39 -0.0120 79

142 Yarn, thread, and fabric mills -0.0367 40 0.0842 14

501 Furniture and home furnishings -0.0408 41 0.0760 15

280 Other primary metal industries -0.0457 42 0.1477 4

662 Sewing, needlework, and piece goods stores -0.0480 43 0.0443 27

500 Motor vehicles and equipment -0.0520 44 0.0168 51

751 Automotive repair and related services -0.0525 45 0.0276 42

Appendix Table 3: Results for Industry Indicator Variables

Self-employed Incorporated

Real estate, including real estate-insurance offices 
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721 Advertising -0.0616 46 0.0215 48

601 Grocery stores -0.0618 47 0.0580 20

621 Gasoline service stations -0.0673 48 0.0674 19

841 Legal services -0.0679 49 0.0101 56

542 Apparel, fabrics, and notions -0.0684 50 0.0231 47

610 Retail bakeries -0.0688 51 0.0309 38

890 Accounting, auditing, and bookkeeping services -0.0734 52 0.0106 55

502 Lumber and construction materials -0.0784 53 0.0527 25

620 Auto and home supply stores -0.0811 54 0.0423 28

571 Wholesale trade, n.s.  -0.0829 55 0.0068 59

641 Eating and drinking places -0.0870 56 0.0332 36

582 Retail nurseries and garden stores -0.0926 57 0.0402 30

810 -0.0964 58 -0.0113 78

631 Furniture and home furnishings stores -0.0971 59 0.0129 53

511 Metals and minerals, except petroleum -0.1042 60 0.0544 23

180 Plastics, synthetics, and resins -0.1050 61 -0.0634 155

151 Apparel and accessories, except knit -0.1079 62 -0.0051 69

861 -0.1151 63 0.0235 46

221 Footwear, except rubber and plastic -0.1174 64 0.0687 18

731 Personnel supply services -0.1174 65 -0.0158 81

623 Apparel and accessory stores, except shoe -0.1245 66 0.0053 62

432 Services incidental to transportation -0.1257 67 -0.0092 76

661 Gift, novelty, and souvenir shops -0.1271 68 0.0169 50

633 Radio, TV, and computer stores -0.1299 69 -0.0030 68

261 Pottery and related products -0.1325 70 -0.0736 193

882 -0.1327 71 0.0081 58

391 Miscellaneous manufacturing industries -0.1335 72 0.0000 66

710 -0.1337 73 -0.0004 67

172 -0.1356 74 -0.0087 75

530 Machinery, equipment, and supplies -0.1366 75 0.0210 49

532 Miscellaneous wholesale, durable goods -0.1374 76 0.0243 45

541 Drugs, chemicals, and allied products -0.1451 77 -0.0092 77

651 Sporting goods, bicycles, and hobby stores -0.1463 78 0.0281 41

392 Manufacturing industries, n.s.  -0.1501 79 -0.0057 71

732 Computer and data processing services -0.1517 81 -0.0135 80

12 Veterinary services -0.1517 80 -0.0162 82

840 Health services, n.e.c. -0.1525 82 -0.0216 85

612 Motor vehicle dealers -0.1548 83 -0.0243 91

111 Bakery products -0.1556 84 0.0061 61

152 Miscellaneous fabricated textile products -0.1619 85 0.0246 43

171 Newspaper publishing and printing -0.1637 86 -0.0234 90

652 Book and stationery stores -0.1648 87 -0.0272 96

112 Sugar and confectionery products -0.1657 88 0.0015 64

561 Farm supplies -0.1683 89 0.0137 52

Miscellaneous entertainment and recreation services 

Job training and vocational rehabilitation services

Engineering, architectural, and surveying services

Security, commodity brokerage, and investment 

companies

Printing, publishing, and allied industries, except 

newspapers
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231 Sawmills, planing mills, and millwork -0.1698 90 0.0030 63

550 Groceries and related products -0.1716 91 -0.0293 100

581 Hardware stores -0.1718 92 -0.0051 70

702 Credit agencies, n.e.c. -0.1734 93 -0.0221 87

580 Lumber and building material retailing -0.1775 94 -0.0322 102

510 -0.1783 95 -0.0250 94

512 Electrical goods -0.1786 96 -0.0066 72

871 Social services, n.e.c. -0.1797 97 -0.0450 119

870 Residential care facilities, without nursing -0.1805 98 -0.0220 86

122 Food industries, n.s. -0.1825 99 -0.0067 73

471 Sanitary services -0.1832 100 -0.0245 92

740 Detective and protective services -0.1834 101 -0.0373 108

521 Hardware, plumbing and heating supplies -0.1895 102 -0.0523 133

711 Insurance -0.1909 104 -0.0459 121

282 Fabricated structural metal products -0.1909 103 -0.0540 138

101 Dairy products -0.1934 105 -0.0503 127

140 -0.1946 106 -0.0230 89

390 Toys, amusement, and sporting goods -0.1948 107 -0.0384 111

281 Cutlery, handtools, and general hardware -0.1975 108 -0.0225 88

742 Automotive rental and leasing, without drivers -0.1976 109 -0.0366 106

951 Coast Guard -0.1982 110 -0.0632 154

291 Metal forgings and stampings -0.1985 111 -0.0687 181

242 Furniture and fixtures -0.1991 112 -0.0490 123

110 Grain mill products -0.1998 113 -0.0245 93

300 Miscellaneous fabricated metal products -0.1999 114 -0.0197 83

331 Machinery, except electrical, n.e.c. -0.2005 115 -0.0381 109

440 Radio and television broadcasting and cable -0.2011 116 -0.0370 107

762 Hotels and motels -0.2016 117 -0.0351 103

540 Paper and paper products -0.2037 118 -0.0250 95

640 Music stores -0.2042 119 -0.0774 201

642 Drug stores -0.2072 120 -0.0381 110

630 Shoe stores -0.2076 121 -0.0443 116

560 Alcoholic beverages -0.2100 122 -0.0287 99

781 Funeral service and crematories -0.2102 123 -0.0709 189

372 -0.2106 124 -0.0361 104

120 Beverage industries -0.2107 125 -0.0315 101

872 Museums, art galleries, and zoos -0.2108 126 -0.0503 128

370 -0.2110 127 -0.0275 97

340 Household appliances -0.2114 128 -0.0285 98

100 Meat products -0.2127 129 -0.0565 143

891 Research, development, and testing services -0.2146 130 -0.0496 125

121 Misc. food preparations and kindred products -0.2153 131 -0.0364 105

161 Miscellaneous paper and pulp products -0.2174 132 -0.0443 117

552 Petroleum products -0.2184 133 -0.0472 122

212 Miscellaneous plastics products -0.2187 134 -0.0616 152

Dyeing and finishing textiles, except wool and knit 

goods

Medical, dental, and optical instruments and supplies

Cycles and miscellaneous transportation equipment

Professional and commercial equipment and supplies
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272 Primary aluminum industries -0.2202 135 -0.0396 112

401 Bus service and urban transit -0.2205 136 -0.0409 114

42 Oil and gas extraction -0.2216 137 -0.0576 144

371 Scientific and controlling instruments -0.2239 138 -0.0442 115

622 Miscellaneous vehicle dealers -0.2239 139 -0.0750 198

832 Nursing and personal care facilities -0.2247 141 -0.0517 132

210 Tires and inner tubes -0.2247 140 -0.0648 167

801 Video tape rental -0.2280 142 -0.0514 131

591 Department stores -0.2284 143 -0.0581 145

600 Miscellaneous general merchandise stores -0.2284 144 -0.0594 146

852 Libraries -0.2291 145 -0.0661 173

312 Construction and material handling machines -0.2295 146 -0.0510 130

270 -0.2296 147 -0.0508 129

700 Banking -0.2296 148 -0.0602 149

360 Ship and boat building and repairing -0.2306 149 -0.0530 136

351 Motor vehicles and motor vehicle equipment -0.2307 151 -0.0550 141

182 Soaps and cosmetics -0.2307 150 -0.0554 142

292 Ordnance -0.2319 152 -0.0757 200

332 Machinery, n.s. -0.2321 153 -0.0530 137

670 Vending machine operators -0.2326 155 -0.0547 140

361 Railroad locomotives and equipment -0.2326 154 -0.0647 165

192 Industrial and miscellaneous chemicals -0.2331 156 -0.0526 134

262 Misc. nonmetallic mineral and stone products -0.2357 157 -0.0526 135

420 Water transportation -0.2358 158 -0.0634 156

251 -0.2360 159 -0.0494 124

441 Telephone communications -0.2362 160 -0.0637 157

942 Navy -0.2379 161 -0.0596 147

341 Radio, TV, and communication equipment -0.2380 162 -0.0681 177

342 -0.2383 163 -0.0601 148

271 Iron and steel foundries -0.2388 164 -0.0662 174

842 Elementary and secondary schools -0.2399 165 -0.0641 161

250 Glass and glass products -0.2401 166 -0.0399 113

940 Army -0.2401 167 -0.0644 163

352 Aircraft and parts -0.2408 168 -0.0541 139

421 Air transportation -0.2410 169 -0.0656 171

181 Drugs -0.2411 170 -0.0677 176

222 Leather products, except footwear -0.2421 171 -0.0502 126

850 Colleges and universities -0.2421 172 -0.0647 166

252 Structural clay products -0.2431 173 -0.0640 159

831 Hospitals -0.2449 175 -0.0641 162

41 Coal mining -0.2449 174 -0.0667 175

881 Membership organizations, n.e.c. -0.2453 176 -0.0617 153

211 -0.2457 178 -0.0610 151

162 Paperboard containers and boxes -0.2457 177 -0.0640 160

400 Railroads -0.2459 179 -0.0660 172

Electrical machinery, equipment, and supplies, n.e.c.

Other rubber products, and plastics footwear and belting

Blast furnaces, steelworks, rolling and finishing mills

Cement, concrete, gypsum, and plaster products
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310 Engines and turbines -0.2462 180 -0.0783 204

320 Metalworking machinery -0.2465 181 -0.0639 158

322 Computers and related equipment -0.2467 182 -0.0654 169

950 Marines -0.2493 183 -0.0783 205

941 Air Force -0.2495 184 -0.0645 164

200 Petroleum refining -0.2504 185 -0.0684 179

873 Labor unions -0.2505 186 -0.0606 150

190 Paints, varnishes, and related products -0.2510 187 -0.0694 184

102 -0.2514 188 -0.0684 180

450 Electric light and power -0.2522 189 -0.0696 186

701 Savings institutions, including credit unions -0.2523 190 -0.0689 182

932 National security and international affairs  -0.2534 191 -0.0683 178

311 Farm machinery and equipment -0.2544 192 -0.0861 216

452 Electric and gas, and other combinations -0.2547 193 -0.0704 188

901 General government, n.e.c. -0.2551 194 -0.0692 183

472 Utilities, n.s.  -0.2562 195 -0.0736 194

201 Miscellaneous petroleum and coal products -0.2581 196 -0.0834 211

411 Warehousing and storage -0.2604 197 -0.0720 192

770 Lodging places, except hotels and motels -0.2604 198 -0.0745 196

922 Administration of human resources programs -0.2611 200 -0.0737 195

802 Bowling centers -0.2611 199 -0.1076 222

40 Metal mining -0.2622 201 -0.0778 202

952 Armed Forces, branch not specified -0.2626 202 -0.0798 207

191 Agricultural chemicals -0.2636 203 -0.0694 185

930 -0.2641 204 -0.0754 199

910 Justice, public order, and safety -0.2649 205 -0.0781 203

160 Pulp, paper, and paperboard mills -0.2664 206 -0.0748 197

632 Household appliance stores -0.2687 207 -0.0703 187

672 Fuel dealers -0.2696 208 -0.0710 190

960 Military Reserves or National Guard  -0.2696 209 -0.0871 217

301 Metal industries, n.s. -0.2697 210 -0.0654 170

921 Public finance, taxation, and monetary policy -0.2697 211 -0.0795 206

931 Administration of economic programs -0.2699 212 -0.0813 208

130 Tobacco manufactures -0.2700 213 -0.0909 219

451 Gas and steam supply systems -0.2706 214 -0.0831 210

50 Nonmetallic mining and quarrying, except fuels  -0.2711 215 -0.0920 220

362 Guided missiles, space vehicles, and parts -0.2714 216 -0.0827 209

470 Water supply and irrigation -0.2716 217 -0.0839 212

141 Carpets and rugs -0.2736 218 -0.0716 191

232 Wood buildings and mobile homes -0.2736 219 -0.0951 221

132 Knitting mills -0.2770 220 -0.0860 215

412 U.S. Postal Service -0.2778 221 -0.0857 214

880 Religious organizations -0.2803 222 -0.0839 213

31 Forestry -0.2871 223 -0.0878 218

Canned, frozen, and preserved fruits and vegetables

Administration of environmental quality and housing 

programs
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