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Abstract: 

 

In this dissertation we present and discuss four research questions about the role of water 

in the water-limited cropping systems of the southern Great Plains. i) Why are wheat 

yields near stagnation in the southern Great Plains? Grain yield and growing season 

rainfall for a total of 19 Oklahoma counties were analyzed. Current yields represent 74% 

of the maximum attainable yield but only 30% of water-limited potential yield at state 

level. Wheat yields were often limited by factors other than growing season rainfall 

amount. ii) Is it possible to develop a simple and accurate tool to measure in situ 

vegetation conditions to inform crop models and in-season management decisions? A 

new tool called Canopeo was designed to quantify green canopy cover from digital 

images and videos. The rapid image processing and the accurate values of green canopy 

cover make Canopeo a useful tool with potential to better manage grazing and improve 

soil moisture estimations in winter wheat cropping systems. iii) Can we directly use soil 

moisture observations under grassland to represent the soil moisture condition of nearby 

wheat cropland? Grassland and winter wheat soil moisture dynamics were analyzed for 

78 Oklahoma Mesonet stations. The use of a neural network as an observation operator 

proved to be effective to capture the main soil moisture dynamics under winter wheat 

cropland. This study revealed that there is inscribed information in the soil moisture time 

series under grassland vegetation that allow estimates of soil moisture in nearby cropland. 

iv) Do plants growing in the same soil start to decline the transpiration rate at higher soil 

water contents under higher atmospheric demands? What is the nature of that 

relationship? Corn plants were grown in a controlled-environment chamber under 

atmospheric demands of 4.8 and 8.4 mm d-1 reference evapotranspiration. Relative plant 

transpiration rate (actual rate/potential rate) started to consistently decline at a soil matric 

potential similar to that at the inflection point of the soil water retention curve, regardless 

of the atmospheric demand. A double exponential function proved effective to describe 

the relationship between relative transpiration and soil matric potential for different soil 

and atmospheric demands. 
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CHAPTER I 
 

 

GENERAL INTRODUCTION 

Winter wheat (Triticum aestivum L.) is the most widely cultivated crop worldwide with 

over 200 million hectares harvested every year (FAO, 2015). Wheat is considered the third largest 

crop worldwide from the production stand point with a total of 716 million Mg yr-1 (FAO, 2013), 

only behind corn and paddy rice. The United States of America is the third largest wheat 

producing country and has a total of about 22 million hectares of wheat planted every year 

(USDA-NASS, 2015). The southern Great Plains states of Kansas, Oklahoma, and Texas account 

for about 40% of the total planted area in the US (USDA-NASS, 2015), making winter wheat a 

major player in the economy of the region. Furthermore, in states such as Oklahoma, winter 

wheat represents ~70% of the total cropland area (USDA-NASS, 2015), making it a major player 

in the hydrology of many watersheds of the southern Great Plains. In this region, winter wheat is 

predominantly grown in rainfed environments where frequent soil water stress is among the most 

important limitations to crop production. In order to better understand the dynamics of winter 

wheat systems under water-limited conditions, we investigate in this dissertation four main 

questions from which we expect to gain useful agronomic and hydrologic insights. 

i) From the late 1800s until the 1950s wheat yields across the southern Great Plains were 

constant at about 0.8 Mg ha-1 (USDA-NASS, 2015). The development of semi-dwarf varieties 

that increased the proportion of grain relative to total crop biomass (i.e. harvest index) and 

improved fertilization strategies caused a dramatic rise of wheat yields in the mid-1950s. By the.



2 

 

end of the 1980s, wheat yields in the region were topping a new level near 2.0 Mg ha-1. 

Nonetheless, since the 1980s wheat yields have remained stagnant in the state of Oklahoma and 

near stagnant in the southern Great Plains. Current research shows that yield stagnation is often 

due to a narrow gap between current grain yields and potential yields (Cassman, 1999; Lobell et 

al., 2009; Grassini et al., 2011; Ittersum et al., 2013), but the magnitude and reasons of the yield 

gap for winter wheat in the southern Great Plains remains unknown. Why are wheat yields near 

stagnation in the southern Great Plains? Are current grain yields close to water-limited potential 

yields? Is the limited-growing season rainfall a driving factor for yield stagnation?  

ii) Crop models for prediction of grain yield and root-zone soil moisture use local weather 

observations and soil properties. Despite the high sensitivity of vegetation dynamics to local 

weather and soil conditions, plant simulation routines typically rely on species-specific 

parameters without accounting for local interactions. This is of particular interest in dual purpose 

(i.e. grazing and grain) and wheat systems of the southern Great Plains, where wheat biomass 

dynamics dramatically change with each grazing event. Tools that can measure the crop condition 

can be used to correct simulated crop growth leading to better soil moisture and grain yield 

estimations. In addition, dual purpose wheat systems require careful management of the stocking 

rate, and careful management of the entry and termination of the grazing period for dual purpose 

wheat fields is essential to avoid a penalty in the final grain yield as a consequence of 

overgrazing. Research conducted in the state of Oklahoma shows that final grain yield is closely 

linked to the amount of green canopy cover that is maintained during grazing (Butchee and 

Edwards, 2012). The authors found that maintaining about 50 to 60% green canopy cover is 

necessary before grazing termination in order to maintain 95% of the grain yield compared to 

grain-only systems. Therefore, a tool capable of easily measuring green canopy cover has the 

potential to be used not only to correct crop models but also to aid wheat producers in better dual 

purpose management, but such as tool has not previously existed. Is it possible to develop a 
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simple and accurate tool to measure in situ vegetation conditions at high spatial and temporal 

resolutions? Can these observations feedback to inform crop models and in-season management 

decisions?  

iii) In water-limited environments, soil moisture monitoring is crucial for early detection and 

accurate assessment of agricultural droughts (Mozny et al., 2012; Torres et al., 2013), improved 

hydrological model simulations (Houser et al., 1998), and development of better adapted 

cropping strategies (Peterson et al., 1996; Nielsen et al., 2005). The state of Oklahoma is one of 

the most intensively instrumented regions for weather and soil moisture monitoring in the world 

(Mohanty and Skaggs, 2001; McPherson et al., 2007). Nonetheless, monitoring stations have 

almost exclusively been deployed in grasslands dominated by warm season grasses. Although 

meteorological variables are representative of the surrounding environment, the extrapolation of 

soil moisture observations to adjacent but contrasting land covers can bias landscape estimations 

of soil moisture. The questions arising from this context are: can we directly use soil moisture 

observations under grassland to represent the soil moisture condition of nearby wheat cropland? 

If not, is there information in the soil moisture observations under grassland that can be exploited 

to estimate soil moisture under wheat cropland? Using grassland soil moisture observations to 

represent the soil moisture condition of other land covers nearby will enhance the value and 

broaden the applications large-scale monitoring networks. 

iv) Quantitative responses of plant transpiration to soil drying are imperative to model plant 

growth in environments with frequent soil water stress. Due to the complexity of the soil-plant-

atmosphere continuum, quantitative responses are empirical and have been studied in field 

(Muchow et al., 1986; Bennett et al., 1987; Sadras et al., 1993), greenhouse (Gholipoor et al., 

2010), or growth chamber pot experiments (Ray et al., 2002; Fletcher et al., 2007) documenting 

the relative transpiration rate as a function of soil moisture. To represent the degree of soil 

moisture, multiple variables have been proposed in the literature. Perhaps, the most common 
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concept is that of plant available water, in which soil moisture is considered to be available for 

plant uptake only between an upper (i.e. field capacity) and a lower (i.e. permanent wilting point) 

limit. The empiricism and the difficulties for consistent determination of these limits across field, 

pot, and laboratory settings can lead to researcher bias and may hinder the extrapolation to field 

conditions (Ratliff et al., 1983). In addition, most quantitative responses have been developed for 

low to moderate atmospheric demands (Sadras and Milroy, 1996). Our objective is to study the 

transpiration response at high atmospheric demands typical during the summer periods in the 

southern Great Plains. We also explore alternative stress functions that do not rely on arbitrary 

limits to represent soil water availability.  
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DISSERTATION ORGANIZATION 

This dissertation consists of a total of six chapters. The first and last chapters are a 

general introduction (Chapter I) and conclusion (Chapter VI) that lay out the research 

questions and most important findings. The remaining four chapters address different 

questions and objectives related to the role of water in cropping systems of the southern 

Great Plains.  

Chapter II investigates possible reasons for winter wheat yield stagnation in the region. 

Grain yield and growing season rainfall for a total of 19 Oklahoma counties were 

analyzed to determine the magnitude and possible reasons of winter wheat yield and 

production gaps in the southern Great Plains. 

Chapter III describes a new tool called Canopeo, which was designed to quantify green 

canopy cover from digital images and videos. This chapter describes Canopeo’s working 

principle, its classification accuracy relative to other software products, potential 

applications, and limitations of this tool. 

Chapter IV introduces an innovative way to use soil moisture observations under 

grassland vegetation to estimate soil moisture under adjacent winter wheat fields. This 

chapter describes the advantages and limitations of this method relative to traditional crop 

models. An example to demonstrate the applications of this method are presented using a 

grid cell of the recently launched Soil Moisture Active Passive satellite (SMAP) mission. 

Chapter V studies the transpiration response to soil drying under moderate and high 

atmospheric demands. It also explores the use of the inflection point of the soil water 

retention curve to describe the response of plants to soil water stress without using 

arbitrary upper and lower limits.  
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CHAPTER II 
 

This chapter shows the most recent data analysis. A prior version with minor differences was 

published in Agronomy Journal Vol. 106, p. 1329–1339 (2014) 

 

YIELD GAP AND PRODUCTION GAP OF RAINFED WINTER WHEAT IN THE 

SOUTHERN GREAT PLAINS 

Andres Patrignani, Romulo P. Lollato, Tyson E. Ochsner, Chad B. Godsey, and Jeff. T. Edwards 

ABSTRACT 

Since 1980, average wheat (Triticum aestivum L.) yields have remained nearly stagnant 

in the southern Great Plains (SGP) and stagnant in the state of Oklahoma. Yield stagnation can 

sometimes be attributed to a relatively small gap between current and potential yields, but the 

magnitude of the yield gap for this region has not been well quantified. The objective of this 

study was to determine the wheat yield and production gaps in Oklahoma at state and county 

levels. This involved estimation of attainable yield (Ya) using a frontier yield function and water-

limited potential yield (Yp) using estimated transpiration and transpiration efficiency. Yield gap 

and production gap relative to Ya and Yp were calculated using grain yields and harvested area 

for 19 counties. Current average yield (Yc) was 2.06 Mg ha–1 at the state level, well below the 

maximum recorded yield at the plot level of 6.59 Mg ha–1. The Yp of current wheat varieties is 

far above Yc in Oklahoma, and Yc represents 74% of Ya but only 30% of Yp at state level. For 

growing season rainfall (GSRF) amount <250 mm wheat yields were often water-limited.  
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However, average GSRF was 471 mm, and yield was typically limited by factors other than 

GSRF amount. Production exhibited greater temporal variability than yield, and production gap 

may be a better indicator than yield gap for regions with highest potential to increase production. 

Low yields and yield stagnation in Oklahoma cannot be attributed to a small remaining yield gap 

relative to water-limited potential yields, nor to inadequate GSRF amount.  
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INTRODUCTION 

Hard red winter wheat is the dominant crop in the SGP (Kansas, Oklahoma, and Texas), 

with around 8 million hectares planted every year. In this region, wheat grain yields increased 

from 1955 to 1980 at an average rate of 34.9 kg ha–1 yr–1 (Fig. 1A) (USDA-NASS, 2012). In the 

same period, the state of Oklahoma showed similar wheat yield gains (34.3 kg ha–1 yr–1) (Fig. 

1B). However, from 1980 to 2012, wheat yields have remained nearly stagnant for the SGP (Δ6.6 

kg ha–1 yr–1), and stagnant in the state of Oklahoma (Δ –1.1 kg ha–1 yr–1). Wheat yield stagnation 

is not confined to the SGP, but has also been observed in other parts of the world. In the North 

China Plains, winter wheat yields have stagnated at 5 Mg ha–1 (Wu et al., 2006), and in France, 

wheat yield has not increased since 1996 (Brisson et al., 2010). Evidence also exists for wheat 

yield stagnation in Japan, Tunisia, and Canada (Calderini and Slafer, 1998). Given wheat’s 

significance as a global food grain and the rising global food demand, there is need to identify the 

causes of yield stagnation in several of the world’s wheat-producing regions. This research is a 

first step toward identifying the causes of yield stagnation in Oklahoma, an important wheat 

producing region in the United States, where yields are low and stagnation is pronounced.  

In the state of Oklahoma approximately 2 million hectares are cultivated annually with 

winter wheat, which represents roughly 75% of the state’s total cropland. A majority of the winter 

wheat in this region is produced using conventional tillage under rainfed conditions (Vitale et al., 

2011). Annual rainfall ranges from <400 mm in the Panhandle region (western Oklahoma) to 

>1000 mm in the eastern portion of the state. Growing season rainfall, defined as the total rainfall 

from 1 October to 15 June, ranges from ∼200 mm in the Panhandle region up to ∼800 mm in 

eastern Oklahoma. Growing season reference evapotranspiration is high, ranging from 1050 mm 

in the Panhandle to 740 mm in eastern Oklahoma, and drought is a frequent concern for wheat 

producers in the state (Mariger and Kelsey, 2003). 

The rise of wheat yield in both the SGP and the state of Oklahoma from 1955 to 1980 

may have been a consequence of improved management, such as the adoption of N-based 
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fertilizers; and improved genetics, including semi-dwarf wheat cultivars (Bell et al., 1995; 

Brancourt-Hulmel et al., 2003). The percentage of hectares receiving N-based fertilization 

increased from 60 to 95% from 1964 to 2009 in Oklahoma. Similarly, the average rate of N-based 

fertilization increased from 35 up to ∼65 kg N ha–1 for the same period (USDA Economic 

Research Service Staff, 2013). Yield gain due to genetic improvements in wheat varieties in 

Oklahoma has been estimated at 18.8 kg ha–1 yr–1 from 1919 to 1997 by Khalil et al. (2002) and 

11.03 kg ha–1 yr–1 from 1971 to 2008 by Battenfield et al. (2013). However, Graybosch and 

Peterson (2010) found no statistically significant genetic gains in experimental wheat yields from 

1984 to 2008 in the SGP. There is a clear need to understand why continued efforts to improve 

management and genetics have failed to increase state average yields in Oklahoma since 1980. 

Here we test the hypothesis that wheat yield stagnation in Oklahoma is occurring because current 

wheat yields (Yc) are close to the water-limited potential yields (Yp). 

When actual yields are ∼70% of water-limited potential yields, stagnation is reached and 

further increases in grain yield may be difficult (Cassman, 1999). In a global analysis, current 

winter wheat yields in the SGP were estimated to represent only 25 to 50% of water-limited 

potential yields (Licker et al., 2010). If that result is correct, yields might be expected to increase 

over time, nonetheless, as shown in Fig. 1A and 1B, wheat yields have not increased appreciably 

since the 1980s. Licker et al. (2010) noticed that the yield gaps of winter wheat in the SGP and in 

the eastern Canadian plains were exceptionally large relative to other crops in developed 

countries such as United States and Canada, but the causes of this phenomenon were not 

identified. 

Exclusive reliance on yield gap to compare the remaining potential yield increases across 

regions can potentially lead to misguided conclusions when comparing areas with varying total 

grain production. Calculating the production gap along with the yield gap may be particularly 

important since some regions may show large yield gaps, but small areas cultivated with wheat, 
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which may lead to low production gaps. Calculating the production gap may allow a more 

accurate estimation of the potential increase in wheat production for a given region, serving at the 

same time as an indicator to target research and outreach efforts. Although van Wart et al. (2013) 

suggested a method for yield gap estimation that accounts for 40 to 50% of the harvested area of 

the region being studied, we are not aware of any prior studies which have examined production 

gaps along with yield gaps. 

The causes of winter wheat yield stagnation in Oklahoma, as well as in the rest of the 

southern Great Plains, remain unknown. To better elucidate the reasons for yield stagnation and 

to more precisely quantify the magnitude of the remaining exploitable wheat yield gap in 

Oklahoma, more detailed knowledge of both current yield and water-limited potential yield is 

needed. The objective of this study was to determine the state and county wheat yield and 

production gaps in Oklahoma. 

 

MATERIALS AND METHODS 

Overview 

Water-limited potential yield is here defined as the maximum yield that can be obtained by an 

adapted variety in a specific rainfed environment if no nutritional limitations are present 

(Hochman et al., 2009; Lobell et al., 2009), and attainable yield (Ya) is defined as the maximum 

yield ever achieved in a specific environment (i.e., plot, county, or state) for a given GSRF 

(Connor, 2004; Connor et al., 2011). Water-limited potential yield is a theoretical maximum 

yield, while attainable yield is based on recorded data at a specific spatial level. Current yield, 

defined as the average wheat yield of the last 10 years (Anderson, 2010), is typically below 

water-limited potential yield because the latter requires almost perfect understanding and 

management of agronomic variables (Lobell et al., 2009). The difference between Yp and Yc or 

Ya and Yc is widely known as the yield gap, and is used to describe the remaining potential for 

yield increase of the crop under study in a specific environment. The yield gap calculated relative 
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to either Ya or Yp has been used to detect whether management or genetic potential are limiting 

grain yield in a given environment (Anderson, 2010; Calvino and Sadras, 2002; French and 

Schultz, 1984; Neumann et al., 2010; Sadras and Angus, 2006). 

Water-limited potential yields can be estimated using crop simulation models or by the 

use of a linear approach based on estimated transpiration, transpiration efficiency (TE), GSRF, 

and grain yield data (French and Schultz, 1984). A distinct advantage of the linear approach is the 

use of actual data collected from farms, which easily allows the incorporation of grain yield 

spatial variability into the analysis. Even though the linear approach does not account for within 

season rainfall distribution, which is related to seasonal yield variability (Asseng et al., 2001; van 

Ittersum et al., 2013), reported wheat yields compared well with simulated yields when GSRF 

was below 500 mm (Angus and van Herwaarden, 2001). This method has been widely adopted by 

Australian wheat researchers, producers, and consultants to calculate water-limited potential yield 

and yield gap (Angus and van Herwaarden, 2001) due to its simplicity (Sadras and Angus, 2006). 

Therefore, the linear approach was employed in this study for water-limited potential yield 

estimation. Attainable yields at a given spatial scale, management (i.e., crop rotations), and 

technology level, can be estimated using a frontier yield function (Coelli and Rao, 2005; 

Neumann et al., 2010). Here we adapt this approach to describe the maximum grain yield ever 

achieved for a given amount of input resources, in this case GSRF. 

 

Data Collection 

State level winter wheat grain yield data from 1894 to 2012 were obtained from the 

National Agricultural Statistic Service (USDA-NASS, 2012). County level wheat grain yield data 

from 1919 to 2011 for 19 counties in Oklahoma were collected using the same source. For each 

county, geographic coordinates and elevation of the county seat, 10-yr GSRF, growing season 

mean air temperature, and cumulative thermal units (base temperature = 0°C) in the growing 

season, are presented in Table 1. The 19 counties assessed in this study encompassed 1,261,961 
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ha or 73% of Oklahoma’s winter wheat harvested area during the 2011–2012 growing season 

(Fig. 2). This is important since a minimum of 40 to 50% coverage of the area of interest is 

needed to ensure representative results when estimating regional yield gaps (van Wart et al., 

2013). All available monthly rainfall totals for each selected county were obtained from the 

Oklahoma Climate Survey (OCS, 2013). Missing monthly rainfall values from 1994 to 2011 were 

obtained from the Oklahoma Mesonet, a network of automated weather stations across Oklahoma 

(McPherson et al., 2007). Years previous to 1994 with missing monthly rainfall values were not 

included in the analysis. 

A total of 15 counties from central-western Oklahoma, with a minimum of 40 yr of 

pairwise growing season rainfall amount and wheat grain yield were selected for the estimation of 

attainable yield at different levels of GSRF. Growing season rainfall amount was defined as the 

amount of precipitation from 1 October to 15 June, which corresponds to typical sowing and 

harvesting dates of winter wheat in Oklahoma. Two counties from the Panhandle region (western 

Oklahoma) and two counties from eastern Oklahoma were also selected following the same 

standards to extend the comparison to portions of the state with different precipitation regimes 

(Table 1). 

To identify the predominant agricultural soil series for each county, we found the soil 

series with the greatest areal extent in each county using the Web Soil Survey (USDA-NRCS, 

2013b). Then, we used the official soil series description to corroborate that the main land use of 

the selected soil series was wheat cropland (USDA-NRCS, 2013a). If the land use of the 

previously selected soil series was not wheat cropland, then the second most predominant soil for 

that county was selected and subjected to the same scrutiny. This process continued until we 

found the predominant soil series in which wheat cropland was the main land use. Soils with 

slope >5% were not included in the analysis. Typical land capability class and soil texture 

corresponding to the top horizon were obtained for the selected soil profiles. 
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Yield and Production Gap Determination 

Yield gaps were estimated using three different yield calculations in this study: (i) At the 

county level, current yield was estimated as the average grain yield of the most recent 10 yr of 

available data for each county. At the state level, current yield was calculated as the state-average 

grain yield of the most recent 10 yr. Only 10 yr of data were used in the calculation of current 

yield to avoid temporal effects of advances in technology or possible climate change, which 

would affect yield estimates averaged over a longer period (e.g., 30 yr), while still containing 

adequate data to average out much of the year-to-year variability in grain yield (van Ittersum et 

al., 2013); (ii) At the county level, attainable yield was determined for each county as the 

maximum grain yield ever achieved at the average GSRF of last 10 yr using a frontier yield 

function approach (Fig. 3). The attainable yield for the state of Oklahoma was estimated as the 

maximum yield ever recorded at state level; and (iii) The water-limited potential yield was 

determined by the linear approach using estimated transpiration and TE (Fig. 4) (French and 

Schultz, 1984). 

Frontier yield functions relating grain yield to GSRF have been considered a reliable 

approach for estimating attainable yield across a wide range of environments (van Ittersum et al., 

2013). The frontier yield function for each county was constructed by: (i) plotting all pairwise 

GSRF and wheat yields of a given county; (ii) dividing the GSRF in as many ranges or bins of 

log-spaced width as possible without generating any bins lacking wheat grain yield values. Log-

spaced bins were used to increase the selection of data at low and average GSRF, a range in 

which our data set is rich in information; (iii) selecting the highest grain yield from each bin, and 

(iv) fitting the selected yields using the following logarithmic equation: 

𝑦 = 𝑎 + 𝑏 ln 𝑥 + 𝑐 (ln 𝑥)2,     𝑥 > 0 

where a, b, and c are fitting parameters, y is wheat grain yield, and x is growing season rainfall. 

The 10-yr average GSRF for each county was calculated using climate records and then matched 

with the frontier production function to obtain the attainable yield (see Ya in Fig. 3). A 
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logarithmic frontier yield function, such as the Cobb–Douglas equation, has been successfully 

used for attainable yield estimation by Neumann et al. (2010). The equation we used in this study 

(i.e., Eq. [1]) to determine the frontier yield allows for the estimation of possible yield decrease 

due to excessive growing season rainfall amount, something that has not been reported by prior 

studies using the same approach (Neumann et al., 2010). The yield gap relative to attainable yield 

(YGa) was calculated as the difference between Ya and Yc (Fig. 3). Data was analyzed using 

Matlab R2013a (The Mathworks Inc., 2012). 

The linear approach framework is based on the assumption that when soil water storage 

during the fallow period preceding the wheat crop is low, the GSRF can be used as an estimate of 

the water used by the crop. However, not all water is used by the crop, and losses likely occur. 

Minimum water losses are typically estimated by the x-intercept of the linear regression of yield 

vs. GSRF whereas the slope provides an estimation of the transpiration efficiency (Fig. 4). Then: 

𝑌𝑝 = 𝑇𝐸(𝐺𝑆𝑅𝐹 − 𝐿) 

where TE is transpiration efficiency, GSRF is growing season rainfall, and L is the minimum 

water losses. The term (GSRF-L) represents an estimation of water-limited potential 

transpiration. 

In this study, minimum water losses for each county were estimated by the x-intercept of 

the frontier yield function. Transpiration efficiency was determined for central-western Oklahoma 

and the Panhandle region under the assumption that counties within the same region have the 

same TE. The reason behind grouping counties within the same region was to ensure that enough 

pairwise data points were used to obtain a robust TE estimation. Also, we added pairwise yield 

and GSRF data from wheat variety trials within each region to further improve TE estimates. The 

TE was determined by dividing GSRF up to 400 mm (value at which yields do not appear to be 

limited by water) into as many possible evenly-spaced bins without generating empty bins, and 

then selecting the maximum wheat yield in each bin to make the linear fit. Similar approaches 
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have been reported using the 95th percentile instead of the maximum value (Cade and Noon, 

2003; Grassini et al., 2009). Since our study covers 73% of Oklahoma’s wheat cropland, the 

water-limited potential yields at county level were weighted by the last 10-yr average harvested 

area of each county to estimate state level water-limited potential yield. The linear approach was 

only used in counties with GSRF from 0 to 500 mm as suggested by previous investigators 

(French and Schultz, 1984; Sadras and Angus, 2006). In counties with GSRF >500 mm, water-

limited potential yield was set equal to 8.0 Mg ha–1, which is the maximum yield value we found 

reported for the southern Great Plains under irrigated conditions (Musick et al., 1994). The 

estimation of water-limited potential yield by the linear approach using GSRF more than 500 mm 

leads to unrealistic water-limited potential yields for this region. Yield gaps respective to water-

limited potential yield (YGp) were calculated by subtracting Yc from Yp for each county. 

Current production for each county was estimated as the average production of the most 

recent 10 yr with available data (USDA-NASS, 2012). Attainable production was calculated as 

the product of the attainable yield and the average harvested area of the most recent 10 yr with 

available data. In the same way, potential production was calculated as the product between 

potential yield and harvested area. Wheat production gap relative to attainable production (PGa) 

was calculated by subtracting current from attainable production for each county. Production gap 

respective to water-limited production (PGp) was calculated by subtracting current from potential 

production for each county. 

 

RESULTS AND DISCUSSION 

Site Characteristics 

As expected, GSRF increased from west to east, with average GSRF values ranging from 

233 mm yr–1 in the Panhandle region to 835 mm yr–1 in counties located in eastern Oklahoma 

(Table 1). For the 15 counties in central-western Oklahoma, the 10-yr average GSRF ranged from 

357 mm in Kiowa county to 595 mm in Kay county, with most of the counties in the range of 410 
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to 515 mm. Counties located in the Southwest region of the state, such as Tillman and Jackson, 

averaged higher mean growing season temperatures, resulting in >3500 °C-day total cumulative 

thermal units. Counties in North-Central Oklahoma, such as Kay, Alfalfa, and Woods, had lower 

mean growing season temperatures, and therefore cumulative thermal units in the growing season 

rarely surpassed 3200 °C-day. Although soil types vary considerably across and within counties, 

the predominant soil classifications of Oklahoma’s agricultural land were Argiustolls and 

Paleustolls (Table 2). Surface soil texture was predominantly silt loam (11 out of 19 counties), 

but ranged from fine sandy loam to silty clay loam. A total of 15 counties have predominant 

agricultural soils with moderate to severe limitations to crop production (land capabilities classes 

II and III), and the most recurring limitation in this study was soil erosion (11 out of 19). Only 

soils with <5% slope were considered in this assessment. Soil erosion might be an even greater 

concern if soils with steeper slopes, which are sometimes used for crop production, were 

considered in the analysis. 

 

State Level Yield and Production Gaps 

State level current yield was 2.06 Mg ha–1 (Fig. 5), a value similar to the average current 

yield weighed by the harvested area of the 19 counties reported in Table 3, 2.0 Mg ha–1. On the 

other hand, attainable yield at state level was 2.5 Mg ha–1 and water-limited potential yield was 

7.3 Mg ha–1 (Table 3). The difference between Yc and Ya at state level was 0.5 Mg ha–1, and 

assuming the value of 7.3 Mg ha–1 as an approximation to water-limited potential yield at state 

level, the difference between Yc and Yp was ∼5.3 Mg ha–1 with current yield representing 80% 

of attainable yield and 27% of water-limited potential yield (Fig. 5). Similarly, Licker et al. 

(2010) estimated that current yield was 25 to 50% of water-limited potential yield for wheat in the 

southern Great Plains. Neumann et al. (2010) reported that current yield was 64% of attainable 

yield for winter wheat at global scale, indicating a larger yield gap than we observed for 

Oklahoma. Clearly, there is a large difference between water-limited potential and attainable 
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yield in this region, and considering water-limited potential yield could lead to unrealistic 

conclusions about remaining potential for grain yield increases, at least in the short term. 

However, it is evident that attainable yield changes over time and the yield gap relative to 

attainable yield may only be valid for short periods of time when wheat varieties, management, 

and technology remain almost constant. For the long term, yield gap relative to water-limited 

potential yield may be a more reliable indicator for remaining yield increase potential for this 

region. 

Average wheat yield at state level has not changed in last 30 yr (Fig. 1B). Similarly, 

wheat yields have stabilized in other regions of the world in the last 10 to 15 yr (Calderini and 

Slafer, 1998). While genetic yield potential may be increasing (Battenfield et al., 2013), these 

genetic gains are not reflected in state level yield trends. Lack of adoption of improved varieties 

does not seem to be an adequate explanation, as improved varieties were planted on 47% of 

Oklahoma’s wheat land areas in 2013 (USDA-NASS, 2013). With approximately 75% of 

Oklahoma’s cropland planted to wheat each year, lack of crop rotation is likely one factor 

contributing to the large yield gap. Wheat yields in winter wheat–winter canola (Brassica napus 

L.) rotation were 10 to 22% higher than yields under continuous wheat in a recent study (Bushong 

et al., 2012). 

Another factor that has been widely suggested as a limitation for grain yield and a key 

factor in strategic management toward closing the yield gap is poor soil quality (Anderson, 2010; 

Cassman, 1999). The land capability class is one indicator of soil quality for agricultural 

purposes. Notably, 11 out of the 19 counties considered in this study have predominant soil series 

with erosion limitations (land capability classes IIe and IIIe, Table 2). In addition, conventional 

tillage is the most common tillage practice in Oklahoma (Vitale et al., 2011), and one which can 

lead to high erosion rates (Berg et al., 1988). Therefore, past and present topsoil erosion in 

Oklahoma’s cropland is likely contributing to yield stagnation by, for instance, decreasing soil 

fertility and available water holding capacity. Another factor that may contribute to the yield 
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stagnation in Oklahoma is the fact that producers may not pursue water-limited potential yields 

but actually may seek the yield that maximizes profitability or minimizes risk. This issue is 

especially relevant in regions such as the SGP where climate is highly variable and uncertain 

(Lobell et al., 2009). 

 

County Level Yield Gaps 

Wheat grain yield at county level across all 19 counties in this study ranged from 0.23 to 

3.57 Mg ha–1 in the period from 1919 to 2011. Rainfall during the growing season ranged from 56 

to 1119 mm. Plotting pairwise GSRF and wheat yields for those counties with <500 mm GSRF 

allowed us to create a frontier yield function that can be compared with the linear approach 

proposed by French and Schultz (1984) to estimate water-limited potential yield. In the frontier 

yield function approach, points below the curve denotes that yield was limited by environmental 

factors (e.g., high air temperatures and unfavorable rainfall distribution), or management 

practices (e.g., inadequate fertilization, early or late sowing). The ascending part of the frontier 

yield function near the minimum GSRF value has a similar slope (which is equivalent to TE) as 

the linear approach (Fig. 6). Previous studies have shown TE ranging from 16.7 kg ha–1 mm–1 in 

the southern Great Plains to 22.3 kg ha–1 mm–1 in the China Loess Plateau and southeastern 

Australia (Sadras and Angus, 2006; Zhang et al., 2013). In this study TE was 23 kg ha–1 mm–1 in 

central-western Oklahoma and 17 kg ha–1 mm–1 in the Panhandle, values that are close to the 

maximum reported TE in China and southeastern Australia, and higher than the value of 16.7 kg 

mm–1 previously reported for the SGP (Sadras and Angus, 2006). For the eastern region of 

Oklahoma a linear approach was not used to estimate water-limited potential yield since growing 

season rainfall is typically more than 500 mm, a range for which the linear approach has not yet 

been compared to actual data. 

When the difference between GSRF and minimum water losses was lower than 100 to 

150 mm, grain yields were water limited (Fig. 6). Minimum water losses in the Panhandle region 
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were as low as 38 mm and in central-western Oklahoma were around 140 mm, both values fall 

within the range found by French and Schultz (1984) for southeastern Australia of 30 to 170 mm. 

Also, a decreasing trend in grain yields was observed when GSRF was >700 mm. We have two 

hypotheses for this yield reduction at high GSRF. First, grain yield reduction at increasing GSRF 

may be a consequence of not having enough records in the GSRF range from 700 to 1200 mm to 

accurately define the frontier yield function (i.e., N > 700 = 144 out of N = 1053). Second, grain 

yield may be reduced at high GSRF amounts as the result of higher disease pressure, and possibly 

water logging, lodging, and leaching of N fertilizers. Passioura and Angus (2010) suggested that 

for rainfall amounts >500 mm, radiation rather than water is the main limiting factor for wheat 

production in southeastern Australia. However, we did not find obvious differences in total 

growing season radiation between years with high and low GSRF (data not shown). 

The GSRF amount is typically in the range of 400 to 500 (median equal to 451 mm and 

average equal to 473 mm) in the central-western region of Oklahoma, a range in which wheat 

grain yields were shown to be not greatly limited by GSRF amount. However, rainfall distribution 

within the growing season (particularly short water stress periods) still remains to be addressed, 

especially considering that small individual rainfall events result in large losses of water by direct 

evaporation from the soil, canopy interception, and residue cover interception (Sadras, 2003). 

Analysis of daily GSRF data from 1994 to 2011 for central-western counties in Oklahoma 

involving 25 weather stations and 36,932 daily precipitation values, resulted in a 75th percentile 

of 11.4 mm, and ∼73% of daily rainfall totals were smaller than 10 mm on days with measurable 

rainfall. Therefore, evaporation from soil, canopy, and residue, may account for a significant 

amount of water loss in this region. Management practices that increase infiltration and reduce 

water losses from light rainfall events may result in increased grain yields (Li et al., 2001). Also, 

management practices that reduce bare soil evaporation, such as residue mulching, can result in 

greater water use efficiency and yields in such regions (Deng et al., 2006). Given the high 

proportion of small rainfall events in this part of the SGP and the implementation of successful 
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management strategies to mitigate evaporation in other parts of the world, there is a need to 

determine the extent to which improved management practices could increase current yields in 

this region by reducing evaporative losses. 

Increased yield gap relative to water-limited potential yield was observed with increased 

GSRF amount (Fig. 7). A GSRF of 476 mm resulted in YGp of almost 6.1 Mg ha–1 in Blaine 

County, while GSRF amount of 184 mm resulted in YGp of 0.9 Mg ha–1 in Cimarron county. For 

these 15 counties in Oklahoma the slope of the linear regression of YGp vs GSRF was 20 kg ha–1 

mm–1 with minimum water losses of 125 mm during the growing season as indicated by the x-

intercept of the regression. These results are in agreement with a study conducted by Anderson 

(2010) for different shires in southeastern Australia, which resulted in yield gap relative to water-

limited potential yield slope of 11 kg ha–1 mm–1, with minimum growing season water loss of 

approximately 110 mm. 

To compare Yc, Ya, and Yp, with current wheat varieties’ genetic potential, wheat 

variety trials from 2005 to 2012 were analyzed to find the maximum yield at plot level across the 

state. A yield of 6.59 Mg ha–1 was recorded at Balko, OK, in 2007 and a yield of 5.99 Mg ha–1 

was recorded at Lahoma, OK, in 2003 under rainfed conditions (Edwards et al., 2007; Raun et al., 

2011). We also examined recent wheat variety trial reports from surrounding states, selecting the 

highest yielding hard red winter wheat variety either under irrigated or rainfed conditions. Results 

in Table 4 shows a maximum yield of 7.69 Mg ha–1 in the state of New Mexico under irrigated 

conditions, and a regional average maximum variety trial yield of 7.14 Mg ha–1 including 

irrigated and rainfed conditions. These maximum yields are consistent with yields reported by 

Musick et al. (1994) in Bushland, TX, where irrigated wheat yielded between 6 and 8 Mg ha–1. 

Evidently, genetic potential yield per se is not a limitation to grain yield in Oklahoma as current 

wheat varieties have much higher yield potential than average or maximum recorded yields for 

any county in the state. This finding agrees with results found in southeastern Australia where 
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environment accounted for a greater proportion of grain yield variation than management 

practices or cultivars (Anderson, 2010; Anderson et al., 2005). 

Another issue especially important in some environments of the SGP is the use of winter 

wheat for both forage (i.e., dual purpose) and grain (i.e., grain-only). A 12-yr study at the plot 

level in Marshall, OK, showed that dual purpose wheat yields were on average 14% lower than 

wheat yields under grain-only management (Edwards et al., 2011). These results were obtained 

when wheat yields under grain-only management were ≤5.0 Mg ha–1, a level representative of 

most of the wheat cropland across the SGP. The effects of grazing in higher-yielding 

environments remain unknown (Edwards et al., 2011). 

 

County Level Production Gaps 

Although the determination of the yield gap is a crucial step in determining the regional 

potential to increase food production, examining the production gap provides a different and 

complementary perspective. The production gap highlights the fact that counties with a large 

yield gap relative to attainable yield, may not have a large potential to increase wheat production 

as a result of a small area cultivated with wheat, assuming that major changes in wheat acreage 

are not expected or desired. For example, Sequoyah county in eastern Oklahoma had a relatively 

large yield gap, YGa of 0.5 Mg ha–1, but an almost negligible production gap, PGa of 1 Gg (Fig. 

8). On the other hand, in Garfield county YGa was around 0.6 Mg ha–1, but resulted in a PGa of 

approximately 91 Gg, which is due to a relatively large area cultivated with wheat. By accounting 

for differences in harvested areas, the production gap may be a better indicator than yield gap for 

identifying regions with potential to increase grain production. Accounting for a representative 

area as specified in van Wart et al. (2013) is important for reliable estimations of the yield gap in 

a given region, but the sole use of the yield gap may not provide sufficient information about the 

potential production increase of that region in a larger context (i.e., nationwide, worldwide). We 

are not aware of any prior studies which have examined production gaps.  
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By examining production data, we found that wheat production in Oklahoma has greater 

temporal variability than grain yield. The 5-yr coefficient of variation (CV) of statewide grain 

production was greater than the 5-yr CV for grain yield during most of the period analyzed (Fig. 

9). This phenomenon is caused by the yearly variation in harvested area (Singh and Byerlee, 

1990). In adverse growing seasons, harvested area declines along with a lower average grain 

yield, therefore production (the product of the two) declines relatively more than does yield. The 

fraction of all planted area which is harvested declines in adverse growing seasons, and the areas 

which are harvested are likely the better croplands in the region. As a result, the average grain 

yield at the county or state level does not decline as markedly as it would if all the area was 

harvested, since average yields are computed only using harvested area. For these reasons, grain 

yield does not vary year-to-year as much as production. Likely, the primary cause of variation in 

both production and grain yield in the SGP is weather. Since grain production fluctuates more 

than grain yield, there is a need to study the influence of weather on regional wheat production to 

better understand and forecast the role of the SGP region in global food security and economics 

(Lobell et al., 2008; Wichelns, 2001). 

 

CONCLUSION 

In the SGP states of Oklahoma, Texas, and Kansas, state average hard red winter wheat 

yields have not surpassed the barrier of 3.0 Mg ha–1. Despite some reports of ongoing 

experimental yield gains due to genetic improvements, the state average yield in Oklahoma has 

been stagnant for more than 30 yr. Current winter wheat varieties reached experimental yields as 

high as 6.59 Mg ha–1 in Oklahoma under rainfed conditions, and a maximum of 7.69 Mg ha–1 

under irrigated conditions in the SGP, while current state yield is only ∼2.0 Mg ha–1. Thus, winter 

wheat yields at the state level are not limited by genetic potential, per se. 

In Oklahoma, when growing season rainfall amount was <250 mm, grain yield was often 

water-limited, but in the more common range of 400 to 600 mm, yields were rarely limited by 
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growing season rainfall amount. Additionally, in years with growing season rainfall amount >700 

mm grain yields appeared to decrease with increasing rainfall. State average yield gap relative to 

attainable yield and water-limited potential yield was 0.5 and 5.3 Mg ha–1, respectively. Current 

grain yield at the state level in Oklahoma represents 80% of attainable yield but only 27% of 

water-limited potential yield. Current state level production is 81% of attainable production, and 

28% of water-limited production of the state. Therefore, we reject the hypothesis that wheat 

yields in Oklahoma are stagnant due to a narrow yield gap relative to water-limited potential 

yields, and we suggest that poor soil quality, reflected by the land capability class, may be an 

important yield limiting factor in this region. The state level production gap relative to attainable 

yield and water-limited potential yield was 588 and 6719 Gg, respectively. We found that the 

production gap may be a better indicator than yield gap to elucidate counties within the state with 

greater potential to increase wheat production. Four out of the top five counties with highest 

production gap were located in North-Central Oklahoma, where research and outreach efforts 

should perhaps be focused if the goal is to increase statewide wheat production. 
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Table 1. Location and description of key weather variables for 19 counties in the state of Oklahoma. Location of each site is specified by latitude, 

longitude, and elevation of the county seat. Weather variables are 10-yr average rainfall during the winter wheat growing season, average growing 

period temperature, and average cumulative thermal units during the growing season. 

        10-yr Average  
Season Rainfall 

Minimum 
Water Losses 

Growing season 
mean Temperature 

Cumulative Season 
Thermal Units County Latitude Longitude Elevation 

  N W m mm mm ⁰C Cd 

Kiowa 35.02   ͦ  99.09   ͦ 473 357 120 11 3619 

Garfield 36.39   ͦ  98.09   ͦ 380 369 134 9 3215 

Jackson 34.66   ͦ  99.31   ͦ 426 385 134 11 3674 

Tillman 34.23   ͦ  98.69   ͦ 345 428 137 12 3750 

Woods 36.8   ͦ  98.67   ͦ 411 432 44 9 3149 

Major 36.27   ͦ  98.48   ͦ 397 449 183 10 3401 

Washita 35.38   ͦ  98.98   ͦ 473 450 152 10 3387 

Caddo 35.1   ͦ  98.44   ͦ 382 467 121 10 3343 

Alfalfa 36.53   ͦ  98.28   ͦ 411 475 91 9 3158 

Blaine 35.85   ͦ  98.42   ͦ 472 476 154 10 3336 

Custer 35.54   ͦ  98.69   ͦ 504 480 152 10 3418 

Canadian 35.54   ͦ  97.96   ͦ 414 482 194 10 3321 

Grant 36.8   ͦ  97.74   ͦ 333 505 96 9 3183 

Payne 36.14   ͦ  97.07   ͦ 273 586 220 10 3419 

Kay 36.8   ͦ  97.3   ͦ 309 595 186 9 3162 

 Western counties               

Cimarron 36.73   ͦ  102.5   ͦ 1270 184 38 9 2907 

Beaver 36.82   ͦ  100.5   ͦ 751 282 105 8 2932 

 Eastern counties               

Sequoyah 35.46   ͦ  94.81   ͦ 162 816 334 11 3514 

Leflore 34.97   ͦ  94.72   ͦ 148 853 344 12 3735 
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Table 2. Predominant agricultural soil series, classification of predominant soil series, typical 

land capability class, and typical surface soil textures (0 to 20 cm) for 19 counties across the state 

of Oklahoma.  

County 

Predominant 

agricultural soil series  

Predominant soil 

classification 

Land capability 

class† Soil texture 

Garfield Kirkland Paleustoll IIe  Silt loam 

Woods Pond Creek Argiustolls I Silt loam 

Kiowa Hollister Haplusterts IIs Silty clay loam 

Jackson Hollister Haplusterts IIs Silty clay loam 

Major Tillman Paleustolls IIe Clay loam 

Tillman Tipton Argiustolls I Loam 

Washita St. Paul Argiustolls IIe Silt loam 

Custer St. Paul Argiustolls IIe Silt loam 

Alfalfa Pond Creek Argiustolls I Silt loam 

Blaine Lovedale Argiustolls IIe Fine sandy loam 

Caddo Pond Creek Argiustolls IIe Silt loam 

Grant Kirkland Paleustolls IIIe Silt loam 

Canadian Norge Paleustolls  IIe Silt loam 

Payne Renfrow Paleustolls  IIIe Silt loam 

Kay Kirkland Paleustolls IIIe Silt loam 

     Western counties       

Cimarron Sherm Paleustolls IIc Clay loam 

Beaver Dalhart Haplustalfs IIIc  Fine sandy loam 

     Eastern counties       

Sequoyah Coushatta Eutrudepts I Silt loam 

Leflore Sallisaw Paleudalfs IIe Loam 
†  Class I: Soils have few limitations for cultivation. 

   Class II: Soils have limitations that require moderate conservation practices. 

   Class III:  Soils have severe limitations that require special conservation practices. 

   e: Soil erosion is the dominant limitation 

   s: Soil limitations within the root zone such as low water holding capacity, shallow soil, or rocks. 

   c: Climatic limitation such as low or high temperature and low soil moisture. 

   Source: USDA-NRCS Agriculture handbook No. 20. 1961. 
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Table 3. Current winter wheat yield (Yc), attainable yield (Ya), and water-limited potential yield (Yp), yield and production gap relative to Ya (YGa 

and PGa), yield and production gap relative to Yp (YGp and PGp), as well as current production (Pc), attainable production (Pa), water-limited 

potential production (Pp), and harvested area (HA) for 19 counties in the state of Oklahoma. 

County Yc
a Ya

b Yp
c YGa YGp Pc Pa Pp PGa PGp HA 

    Mg         Gg       1000 ha 

Kiowa 1.9 2.0 6.0 0.1 4.1 164 174 522 10 358 88 

Garfield 2.1 2.8 6.3 0.6 4.1 303 393 884 91 582 141 

Jackson 2.0 2.6 6.6 0.5 4.6 118 148 383 30 265 58 

Tillman 1.8 2.3 7.6 0.5 5.8 95 121 399 26 304 52 

Woods 2.1 2.8 7.7 0.6 5.6 175 225 632 51 458 82 

Major 1.9 2.4 8.0 0.5 6.1 124 156 522 32 398 65 

Washita 1.9 2.3 8.0 0.4 6.1 153 183 633 31 480 79 

Caddo 2.0 2.6 8.0 0.6 6.0 119 156 476 38 358 60 

Alfalfa 2.3 2.6 8.0 0.3 5.7 231 263 800 32 569 100 

Blaine 1.9 2.3 8.0 0.5 6.1 141 176 604 35 463 76 

Custer 2.0 2.6 8.0 0.5 6.0 166 208 648 42 482 81 

Canadian 2.1 2.4 8.0 0.3 5.9 143 164 556 21 413 70 

Grant 2.1 2.6 8.0 0.4 5.9 293 354 1109 61 816 139 

Payne 1.8 2.5 8.0 0.7 6.2 20 27 87 7 67 11 

Kay 2.0 2.7 8.0 0.6 6.0 186 244 734 58 548 92 

  Western counties                       

Cimarron 2.0 2.0 2.9 0.1 0.9 67 69 96 2 29 34 

Beaver 1.8 2.3 4.6 0.5 2.8 73 95 186 22 112 41 

  Eastern counties                       

Sequoyah 2.6 3.1 8.0 0.5 5.4 3 4 11 1 7 1 

Leflore 2.4 2.5 8.0 0.1 5.6 5 5 16 0 11 2 

State 2.0 2.5 7.3 0.5 5.3 2579 3167 9298 588 6719 1269 
 † Current yield was calculated as the average of the last ten years for each county with data obtained from NASS. 
‡ Attainable yield was calculated using the frontier yield function.     
§ Potential yield was calculated using the French and Schultz (1984) linear approach. Counties with growing season rainfall >500 mm were set to 8 Mg ha-1 

¶  For Yc, Ya, Yp, YGa, and YGp  state values are the weighted average of each column. For Pc, Pa, Pp, PGa, PGp, and HA, state values are the sum of each column.
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Table 4. State, location, and date for the maximum recorded winter wheat yields found in variety 

trial networks in the Southern Great Plains under irrigated (I) and rainfed (R) conditions. 

State Location Cultivar Year Yield 

      Mg ha-1 

Texas (I)† McGregor Duster 2008/09 6.38 

New Mexico (I)† Clovis Winterhawk 2011/12 7.69 

Arkansas (I)‡ Rohwer AGS2038 2010/11 7.58 

Kansas (I)§ Colby WB-Cedar 2011/12 7.46 

Oklahoma (R)¶ Balko Danby 2006/07 6.59 

Average    7.14 
† Managed by Texas A&M. Soil and Crop Sciences. Small Grains division. 
‡ Managed by University of Arkansas. Division of Agriculture. Small Grains division. 
§ Managed by Kansas State University. Extension Agronomy. 
¶ Managed by Oklahoma State University. Plant and Soil Sciences. Small Grains Extension. 
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Figure 1. Timeline showing the evolution of winter wheat grain yield in the (A) southern Great 

Plains (SGP), and (B) Oklahoma. Data spans the period from 1894 to 2012. Trend lines were 

calculated for the period of 1894 to 1955, 1955 to 1980, and 1980 to 2012. Data were obtained 

from the USDA National Agricultural Statistics Service. 
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Figure 2. Map of the state of Oklahoma showing wheat fields in 2010 (grey dots) (2010 land 

cover map, USDA Data Gateway) and the selected counties in this study (hatched areas). 

Counties are: Cimarron (1), Beaver (2), Woods (3), Alfalfa (4), Grant (5), Kay (6), Major (7), 

Garfield (8), Payne (9), Blaine (10), Custer (11), Canadian (12), Washita (13), Caddo (14), Kiowa 

(15), Jackson (16), Tillman (17), Sequoyah (18), and Le Flore (19). 
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Figure 3. Example of the construction of the frontier yield function for Grant county. Black 

inverted triangles represent pairwise GSRF and wheat yield for Grant county, and circled data 

represent the points selected to make the fit. The difference between the attainable yield (Ya) and 

the current yield (Yc) represents the yield gap relative to Ya (YGa). 
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Figure 4. Example of the construction of the linear approach used to estimate the potential yield 

in central-western Oklahoma. Black inverted triangles represent pairwise growing season rainfall 

(GSRF) and yield from counties in central-western Oklahoma, white diamonds represent pairwise 

data from wheat variety trials, and circled data represent the points selected to make the fit. 
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Figure 5. Comparison among wheat grain yield at different spatiotemporal scales for the state of 

Oklahoma.  
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Figure 6. Pairwise growing season rainfall amount and wheat grain yield for 93 yr across 19 

counties in Oklahoma. The frontier yield approach was used to estimate attainable yield (Ya) and 

a linear approach using transpiration efficiency was used to calculate water-limited potential yield 

(Yp). 
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Figure 7. Yield gap relative to water-limited yield potential (YGp) for all counties in central-

western Oklahoma with <500 mm growing season rainfall. 
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Figure 8. Comparison between yield gap relative to attainable yield (YGa) and production gap 

relative to attainable yield (PGa). 
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Figure 9. Time series of the 5-yr coefficient of variation (CV) of Oklahoma hard red winter 

wheat yield and production. Data are plotted as the CV for the preceding 5 yr. 
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CANOPEO: A POWERFUL NEW TOOL FOR MEASURING FRACTIONAL GREEN 

CANOPY COVER 

Andres Patrignani and Tyson E. Ochsner 

ABSTRACT 

Fractional green canopy cover (FGCC) is a key diagnostic variable that can be used to estimate 

canopy development, light interception, and evapotranspiration partitioning. Available image 

analysis tools for quantifying FGCC are time-consuming or expensive, and cannot analyze video. 

Our objective was to develop a simple, accurate, and rapid tool to analyze FGCC from images 

and videos. This tool, called Canopeo, was developed using Matlab and is based on color ratios of 

red to green (R/G) and blue to green (B/G) and an excess green index (2G–R–B). The output 

from this tool was compared to that from two software packages widely used to analyze FGCC, 

SamplePoint, and SigmaScan Pro. Canopeo’s image processing speed was 20 to 130 times faster 

than SigmaScan and 75 to 2500 times faster than SamplePoint. Canopeo correctly classified 90% 

of pixels when compared to SamplePoint. Root mean squared difference (RMSD) values for 

Canopeo FGCC vs. FGCC determined by SamplePoint and SigmaScan ranged from 0.04 to 0.12, 

with an average RMSD of 0.073 across several sets of images of corn (Zea mays L.), forage 

sorghum [Sorghum bicolor (L.) Moench], bermuda grass [Cynodon dactylon (L.) Pers.], and  
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switchgrass (Panicum virgatum L.). Analysis of video recordings of transects over crop canopies 

proved to be useful to minimize sampling error and to quantify FGCC spatial variability. This 

analysis was simple and rapid with Canopeo but not possible with SamplePoint or SigmaScan. 

The Canopeo app for Matlab and for iOS and Android mobile devices can be downloaded at 

www.canopeoapp.com.  
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INTRODUCTION 

Active plant canopies play an important role in the Earth’s atmospheric dynamics, 

surface energy balance, and soil water balance (Wittich and Hansing, 1995). To measure the 

extent of canopy development numerous indices such as spectral vegetation indices, Leaf Area 

Index (LAI), and Fractional Green Canopy Cover (FGCC) have been developed. Fractional green 

canopy cover has emerged as a non-destructive and relatively easy-to-measure variable that is 

employed in disciplines such as ecology, environmental science, and agronomy to quantify active 

vegetative land cover at different scales in space and time. For instance, FGCC was used to 

measure forest land cover of Scots pine and Norway spruce by Korhonen et al. (2006). Also, a 

relationship between FGCC and light interception was developed to estimate the proportion of 

green and senescing leaves in soybean (Purcell, 2000). The use of FGCC has also been examined 

to measure the color and percent land cover in turf (Karcher and Richardson, 2003; Richardson et 

al., 2001), and to measure growth rate of weeds after tillage events (Rasmussen et al., 2010). 

Sharma and Ritchie (2015) used FGCC along with crop height and normalized difference 

vegetation index (NDVI) to monitor cotton (Gossypium hirsutum L.) growth under different 

irrigation regimes in high-throughput phenotyping studies in Texas. Statistical correlations 

between FGCC, LAI, NDVI, and above ground biomass have also been developed by multiple 

researchers (Carlson and Ripley, 1997; Lati et al., 2011; Lukina et al., 1999; Nielsen et al., 2012; 

Rundquist, 2002). Crop FGCC is a key variable in soil-plant-atmosphere models such as 

Aquacrop (Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009), in which FGCC is used to 

estimate crop water use.  

Canopy cover has traditionally been measured using subjective methods (Richardson et 

al., 2001; Robson et al., 2013). The projection of images on a grid or transparency for point 

classification helped to reduce subjectivity, but these methods are not efficient when analyzing 

large sets of images (Corak et al., 1993; Ribeiro et al., 2011). In recent decades, improvements in 

the quality of images produced by affordable digital cameras and mobile devices propelled the 
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use of digital images for FGCC measurements. At the same time, numerous image processing 

methods (Behrens and Diepenbrock, 2006; Shrestha and Steward, 2002; Thorp and Dierig, 2011; 

Thorp et al., 2008) and software packages (Ewing and Horton, 1999; Purcell, 2000; Rasmussen et 

al., 2007) have been developed to analyze digital images of plants for a variety of applications.  

Currently available green canopy cover software packages can be classified in two groups 

according to their pixel classification principle: manual pixel classification (MPC) and automatic 

color threshold (ACT) classification. The first type uses a set of randomly selected pixels (usually 

less than 250 random points), which have to be manually classified by a trained user. The manual 

classification of pixels has high accuracy, but it is time consuming because the user typically 

classifies 100 to 250 pixels per image. Sampling error is also a concern with MPC methods 

because only a miniscule fraction of the millions of pixels in a typical image are actually 

classified. MPC methods are particularly useful when calibrating ACT methods (Booth et al., 

2006) or when calculating the proportion of various plant species or other components such as 

plant residue, soil, or rocks that are not easily distinguishable using color threshold settings.  An 

example of a widely used MPC product is SamplePoint, a program developed by Booth et al. 

(2006). Applications of SamplePoint have included monitoring ground cover in cropping systems 

research (Krueger et al., 2012), monitoring plant phenology (Crimmins and Crimmins, 2008), 

studying grazing intensity and spatial variability in grasslands (Augustine et al., 2012), and 

developing relationships between FGCC and LAI in crops for its use in the Aquacrop simulation 

model (Nielsen et al., 2012). 

The ACT type of software requires the specification of color thresholds or color ratios to 

select the desired portion of the image. This type of software is advantageous because a computer 

does the pixel classification, and therefore image processing time is markedly reduced. Another 

benefit of ACT methods is that all pixels in the image are classified. However, undesired pixels 

may be selected, leading to under or over estimation of the variable of interest. An example of a 

widely used ACT software package in agronomy is SigmaScan Pro 5, a product of Systat 



49 

 

software (Chicago, IL, US). This software requires user-specified hue (range from 0 to 360) and 

saturation values (range from 0 to 100) (Purcell, 2000). This software has been used to analyze 

canopy cover and light interception in soybean (Purcell, 2000), percent turf coverage (Karcher 

and Richardson, 2005; Richardson et al., 2001), and turf color (Karcher and Richardson, 2003). 

Even though this software can be significantly faster than SamplePoint, high resolution images 

can result in processing times >30 seconds per image. Traditionally, a small number of images 

have been taken to represent research plots or experimental fields, however, available technology 

is generating a growing interest for high spatial and temporal monitoring of plant growth, 

generating large datasets that require faster image processing tools. In addition, the user cannot 

visualize the effects of the chosen threshold values prior to batch image processing in SigmaScan, 

nor can SigmaScan analyze video recordings. 

Given the limitations of current software to quantify FGCC, there is a need to develop 

new tools that overcome those limitations and provide convenient and accurate methods to 

analyze FGCC. The objectives of this study were i) to develop an interactive, simple, and 

accurate tool capable of rapidly analyzing high resolution digital images and video recordings to 

quantify FGCC, and ii) to evaluate the accuracy and image processing speed of that tool relative 

to two software packages widely used in agronomic research. 

 

MATERIALS AND METHODS 

Canopeo description 

Canopeo is an ACT image analysis tool developed in the Matlab programming language 

(Mathworks, Inc., Natick, MA) using color values in the Red-Green-Blue (RGB) system. 

Canopeo analyzes and classifies all pixels in the image. The analysis is based on the selection of 

pixels according to ratios of red to green (R/G), blue to green (B/G) (Liang et al., 2012, Paruelo et 

al., 2000), and the excess green index (2G-R-B) (Chen et al., 2010; Richardson et al., 2007). The 

result of the analysis is a binary image where white pixels correspond to the pixels that satisfied 
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the selection criteria (green canopy) and black pixels correspond to the pixels that did not meet 

the selection criteria (not green canopy). Fractional green canopy cover ranges from zero (no 

green canopy cover) to 1 (100% green canopy cover). The classification of green canopy is based 

on the following criteria: 

R/G < P1  and  B/G < P2  and  2G-R-B > P3 

where P1 and P2 are parameters that typically have a value near 1 (Paruelo et al., 2000) in order to 

classify pixels that are predominantly in the green band (~500-570 nm), and P3 is a parameter that 

sets the minimum excess green index, which typically has a value around 20 to select green 

vegetation (Meyer and Neto, 2008; Richardson et al., 2007). The default parameter values for 

Canopeo are P1 = 0.95, P2 = 0.95, and P3 = 20.  

Canopeo allows the user to preview the effectiveness of the settings prior to starting 

image analysis, which is especially helpful when analyzing a large set of images or videos. 

Having the opportunity to set, test, and modify threshold R/G and B/G values for several test 

images selected from the set of images to be analyzed gives the user more confidence in the 

chosen threshold values. The threshold value for the excess green index was set constant at a 

value of 20, and cannot be changed by the user. The excess green index effectively classifies dark 

or gray pixels that cannot be adequately discriminated using the R/G and B/G ratios alone. 

Canopeo also has the capability to reduce noise by removing isolated green pixels. Isolated pixels 

that meet the color ratio specifications can sometimes occur in other objects and are not 

exclusively part of green canopy (Lati et al., 2011). For instance, some isolated pixels in residue 

shadows may have R/G and B/G ratios similar to those found in green canopies. Canopeo can 

remove these pixels or small clusters of pixels (e.g. small weeds in a row crop) by analyzing 

connected neighboring pixels. The user-adjustable noise reduction value in Canopeo determines 

the minimum number of 4-connected pixels that any area in the binary (i.e. classified) image must 

have to avoid being deleted.  



51 

 

In Canopeo a subset of frames from a given video can be extracted according to user 

specifications, and then each frame is analyzed as a separate image. Canopeo saves a spreadsheet 

(Microsoft Excel format) file with the settings used in the image analysis (R/G threshold, B/G 

threshold, and noise reduction), directory, image file name, and FGCC value for each image. In 

the case of video, Canopeo saves the video file name, frame number, FGCC values, average, 

standard deviation, coefficient of variation of FGCC in the video, and the minimum number of 

images that were necessary to estimate the mean with a 95% confidence interval of 0.05 FGCC 

for each video. The supported video formats are .avi (Audio Video Interleaved format), .wmv 

(Windows Video Media format), .mp4 (MPEG-4 format), and .mov (QuickTime multimedia file 

format). Canopeo is available as a free Matlab app, but requires prior installation of a properly 

licensed copy of Matlab R2013a or later and Matlab image processing toolbox 8.2 or newer. The 

Canopeo Matlab app can be downloaded by following the link at www.canopeoapp.com. To 

install Canopeo, first launch Matlab, then open the Apps tab, and finally install the downloaded 

app. Versions of Canopeo for iOS and Android mobile devices are also available through links at 

that same website. 

 

Evaluation 

Images for the evaluation were typically taken from 1000 to 1400 h on sunny to partially 

cloudy days during the years 2009-2012 from experimental plots in Oklahoma, USA. Nadir (i.e. 

downward-facing) images were taken from random areas of experimental plots using inexpensive 

“point and shoot” type digital cameras such as the Canon Powershot SD1200 IS (10 MPX). The 

camera was kept at about 1.5 m from the top of the canopy using a 1.5 m monopod. Maintaining 

adequate distance from the camera to the top of the canopy is critical in order to minimize 

overestimation of FGCC caused by the top leaves of the canopy being too close to the lens of the 

camera and by crop rows that are not orthogonal with the lens of the camera (Hoyos-Villegas et 

al., 2014). 

http://www.canopeoapp.com/
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Canopeo was compared against SamplePoint (i.e. MPC) version 1.56 and SigmaScan Pro 

5 (i.e. ACT) to test accuracy and image processing speed. In this study the pixel-level accuracy of 

Canopeo was evaluated by using SamplePoint as the “gold standard” (i.e. best available 

benchmark). For each test image, each pixel in an automatically-created, uniformly-spaced 10 by 

10 grid (i.e. 100 pixels) was manually classified as “Green” or “Not-Green”. SamplePoint 

automatically selects the grid spacing, based on the image resolution, so that the grid spans the 

majority of the image. For this accuracy test, a set of 20 images with resolution of 8 MPX (3264 

by 2448 pixels) and with FGCC ranging from 0.07 to 0.89 (based on values obtained using 

SamplePoint) for different crops (i.e. wheat, soybean, corn, canola, and grain sorghum) and 

backgrounds (i.e. no-till and conventional till) was used. A total of 2000 pixels (100 pixels per 

image x 20 images) resulted in a wide gamut of colors for testing Canopeo’s classification 

accuracy. 

The same set of 20 images was classified in SamplePoint by three trained users to 

account for different perceptions of green canopy cover. Because only two classification 

outcomes were possible (i.e. “Green” and “Not Green”), the final pixel classification was decided 

upon the decision of two out of the three users (i.e. decision of the majority). Pixel classification 

by the trained users was based on two criteria: 1) color of the central pixel selected by 

SamplePoint and 2) surrounding context of the selected pixel. Examination of the context around 

the pixel (i.e. zooming out from pixel to leaf or plant level) can sometimes reveal that the selected 

pixel represents green canopy cover, particularly in portions of the image that display shaded 

canopy. Pixels were classified as “Green” only if the surrounding context of the pixel allowed the 

user to unambiguously determine that the pixel was representing green canopy cover, otherwise 

the pixel was classified as “Not-Green”.  

The same set of 20 images was also analyzed with Canopeo. We developed a Matlab 

script that matched the pixels selected by SamplePoint with the corresponding pixels classified by 

Canopeo. Because our pixel classification had a binomial outcome (i.e. “Green” and “Not-
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Green”), we evaluated Canopeo’s accuracy using the concept of sensitivity and specificity. 

Sensitivity evaluates the proportion of true positive cases (i.e. “Green” pixels defined by 

SamplePoint), while specificity evaluates the proportion of true negative cases (i.e. “Not-Green” 

pixels defined by SamplePoint) cases. Additionally, 50 or more images for corn, forage sorghum, 

switchgrass, and bermuda grass collected under natural lighting conditions in various fields were 

analyzed to extend our comparisons of the FGCC values from the three software packages across 

diverse vegetation, soil, and lighting conditions. We used the root mean squared difference 

(RMSD) to describe the performance of Canopeo relative to SamplePoint and SigmaScan. 

The Canopeo speed test was performed against SigmaScan using a computer with an 

Intel Core duo2 processor with a speed of 2.66 GHz and 3 GB of RAM. Three sets of 72 images 

per set were used to evaluate the processing speed using the macro for batch image analysis 

developed by Karcher and Richardson (2005). The processing speed was measured dividing the 

total image processing time by the total number of images in the set (i.e. 72 images). For 

SigmaScan we used a digital stopwatch to measure the processing time of the 72 images, while 

for Canopeo we used Matlab’s stopwatch timer functions (i.e. tic and toc functions). The three 

sets of images had resolutions of 0.3 MPX (640 by 480 pixels), 3.1 MPX (2048 by 1536 pixels), 

and 8 MPX (3264 by 2448 pixels), with an approximate image sizes of 150 KB, 1.7 MB, and 3.5 

MB, respectively. The approximate pixel size for each image resolution assuming a field of view 

of 1.2 m2 at the top of the canopy was 4, 0.4, and 0.15 mm2, respectively.  

For SigmaScan, we employed threshold values similar to those used by Purcell (2000), 

with hue values ranging from 25 to 150 and saturation values ranging from 10 to 115 (Table 1). 

The hue and saturation values for SigmaScan were optimized based on visual inspection of the 

classification performance of three to five images within each image set. The threshold values for 

the R/G and B/G ratios in Canopeo were optimized in the same way, but varied over a smaller 

range and required less adjustment. The R/G and B/G threshold ratios are independent of each 

other, and for FGCC the optimal values for both ratios typically ranged between 0.9 and 1. The 
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noise reduction parameter in Canopeo was set to one (effectively disabling the function) in order 

to provide a more fair comparison against the other software packages (Table 1).  

In order to demonstrate the spatial variability of FGCC, and how this spatial variability 

could be assessed by using video recordings, a power analysis statistical procedure was used to 

calculate the minimum number of images required to obtain a 95% confidence interval of + 0.05 

FGCC about the population mean along a 40-m transect in a wheat field (crop stage Feekes 3.0) 

and a grain sorghum field (crop stage V10). The population mean was calculated as the average 

FGCC of all images in a video. The minimum number of samples was calculated using the 

following equation (Clewer and Scarisbrick, 2001): 

𝑛 = (
1.96 𝜎

𝛿
)

2

 

where n is the number of samples needed to estimate 𝜇, the population mean, within 𝛿=0.05 

FGCC with 95% confidence using standard deviation 𝜎, which is calculated from all images in a 

given video. This comes from the fact that 𝑥 ± 1.96(𝜎/√𝑛) defines a sample mean with 95% 

confidence interval assuming a known 𝜎. The value of 𝛿=0.05 FGCC is an arbitrary but 

reasonable confidence interval width for our purposes. 

 

RESULTS AND DISCUSSION 

The combination of the R/G and B/G ratios with the excess green index (2G-R-B) 

resulted in effective and rapid classification of FGCC from digital images. Live green vegetation 

was effectively separated from the background by using the R/G and B/G ratios, which have been 

proven useful to quantify aboveground live biomass in a perennial shortgrass steppe in 

northcentral Colorado (Paruelo et al., 2000). The excess green index was used to set a minimum 

pixel greenness in order for a given pixel to be considered green canopy. The excess green index 

was particularly effective for classifying green canopy cover under dark conditions. The addition 

of the excess green index avoided mis-classifying dark pixels that otherwise would have been 
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selected by solely using the R/G and B/G ratios. The excess green index can be seen as a variable 

similar to that of saturation in the hue-saturation-brightness color framework. The excess green 

index has previously proven useful to track canopy green-up in a deciduous broadleaf forest 

located in northeastern US (Richardson et al., 2007).  

The classification process using the R/G and B/G ratios is illustrated using an image of 

no-till canola (Fig. 1A). This image was processed with R/G and B/G thresholds set to 0.95, the 

excess green index threshold set to 20, and the noise reduction parameter set to 1.0, resulting in 

FGCC = 0.54. Varying the R/G and B/G thresholds independently between 0.9 and 1.0 resulted in 

FGCC values from 0.52 to 0.56, highlighting the narrow variability in FGCC when adjusting the 

R/G and B/G thresholds within this range. The bivariate histogram (Fig. 1B) for this image 

revealed the formation of two clusters, which represent the green vegetation and the background. 

The cluster located on the left side of Figure 1B (Cluster 1) consists of pixels that were classified 

as “Green”, while the pixels in the cluster on the right side of Figure 1B (Cluster 2) consists of 

pixels belonging to the background (e.g. soil, crop residue, etc.). The clusters in Figure 1B are 

mainly a consequence of the bimodal distribution of the R/G ratio (Fig. 1C), which allows for 

selecting a clear FGCC classification threshold (R/G=0.95). Nonetheless, the inclusion of the B/G 

ratio (Fig. 1D) increases the robustness of the classification so that it can be used in more diverse 

field scenarios such as analyzing zenith (i.e. upward-facing) images where the color of the sky 

may need to be filtered (Fuentes et al., 2014).  

The accuracy test revealed that Canopeo had a sensitivity of 864/(864+89) = 0.91 and 

specificity of 933/(933+114) = 0.89 (Table 2). These values mean that Canopeo correctly 

classified 91% of the pixels defined as “Green” (i.e. true positives) and 89% of the pixels defined 

as “Not Green” (i.e. true negatives) by SamplePoint. The fact that the specificity was 2% lower 

than the sensitivity shows that Canopeo had a slight tendency to classify pixels as “Green” even 

though the trained users classified them as “Not Green” (i.e. false positive, type I error). Overall, 

Canopeo accurately classified 90% of the pixels (i.e. [864+933]/2000). Manual pixel 
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classification with SamplePoint was used as the pixel-level “gold standard” for comparison in this 

study, but subjectivity in classification cannot be completely eliminated. At the pixel level, there 

is sometimes no clear distinction of green canopy cover from background due to pixelation, poor 

lighting, or other complicating factors.  

Canopeo was 20-130 times faster than SigmaScan and 75-2500 times faster than 

SamplePoint (Table 3). Image resolution more severely impacted the image processing speed of 

SigmaScan than that of Canopeo. At the lowest resolution (640 by 480 pixels), Canopeo required 

0.12 s per image, and at the highest resolution (3264 by 2448 pixels), 1.6 s per image. On the 

other hand, SigmaScan required 2.4 s per image at the lowest image resolution and 49 s per image 

at the highest resolution. The relatively low processing speed of SigmaScan may justify the use of 

video graphics array (VGA) image resolution, i.e. 640 by 480 pixels, when analyzing FGCC with 

SigmaScan (Purcell, 2000). In SamplePoint, image processing time ranged from 2-5 minutes. 

Because SamplePoint requires pixel classification by a trained user, the processing speed highly 

depends on the ability of the user to keep focus on the analysis. The high image processing speed 

achieved by Canopeo is a result of Matlab’s efficiency in matrix manipulation. 

The use of Matlab for agronomic image analysis has been reported in other studies. Lati 

et al. (2011) provided a thorough analysis of the performance of an image segmentation approach 

based on a hue-invariant transformation to quantify weed biomass and leaf-cover area.  The 

strength of the hue-invariant segmentation approach is the excellent performance under different 

illumination conditions and camera positions. However, this approach requires a reference point, 

and was only tested on Purple nutsedge (Cyperus rotundus L.) under simple background 

conditions (i.e. conventional tillage). On the other hand, a study by Robson et al. (2013) used red 

and green/blue adjustable thresholds to quantify canopy establishment in biofuel crops such as 

Miscanthus (Robson et al., 2013). However, the studies by both Lati et al. (2011) and Robson et 

al. (2013) were based on single plant species and do not provide detailed information about 

accuracy and processing time relative to commercially available software packages. 
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For several crops, Canopeo resulted in FGCC values similar to those obtained using 

SamplePoint and SigmaScan (Fig. 2). Root mean squared differences (RMSD) for the FGCC 

values between Canopeo and SamplePoint ranged from 0.056 to 0.123 with an average of 0.086 

(Fig. 2). SamplePoint whole-image FGCC estimates cannot be considered as a “gold standard” in 

this context (i.e. Fig. 2) because the resulting FGCC in SamplePoint was obtained from the 

analysis of only a small fraction of the pixels in each image (i.e. 100 pixels) whereas the FGCC in 

Canopeo was calculated by classifying all the pixels. Therefore, the RMSD values shown for the 

comparisons between Canopeo and SamplePoint result from errors in both approaches. The 

comparison between SigmaScan and SamplePoint (data not shown) resulted in RMSD of 0.051 

for corn, 0.066 for sorghum, 0.096 for turf, and 0.115 for switchgrass, values that are similar to 

those observed between Canopeo and SamplePoint. The RMSD between FGCC values for 

Canopeo and SigmaScan ranged from 0.04 to 0.076 with an average of 0.050. These RMSD 

values are lower than those obtained by comparing either of the ACT methods to SamplePoint, 

likely due to the fact that both Canopeo and SigmaScan classify every pixel in the image. 

Corn and sorghum images with FGCC near a value of one had a combination of both 

green leaves fully exposed to the sun light and shaded leaves close to ground level. Despite the 

challenge of accurately identifying leaves under these difficult lighting conditions, Canopeo 

detected all green parts of plants exposed to sun light, and a great portion of shaded leaves. For 

example, see the circled portions of Fig. 3C and 3D. Some shaded lower leaves of the corn 

canopy are barely visible in the raw image (Fig. 3D) but are accurately identified by Canopeo 

(Fig. 3C). The Canopeo classification approach demonstrated robust performance even for 

imperfect images such as when the user’s feet or the camera monopod’s shadow were present in 

the images (e.g. Sharma and Ritchie, 2015). Previously, the G/R ratio was used by Adamsen et al. 

(1999) to measure senesced leaves in wheat (Triticum aestivum L.) and by Ritchie (2010) and 

Sharma and Ritchie (2015) to measure FGCC in cotton. Also, a greenness index using the G/B 

ratio was developed by Crimmins and Crimmins (2008) to monitor plant phenology. The use of 
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the R/G and B/G ratios together with the excess green index has not been widely reported, but it 

seems to be highly effective for selecting FGCC of numerous plant species across diverse 

backgrounds and light conditions without the need for a reference board (Lati et al., 2011). 

SigmaScan uses the hue-saturation-brightness (HSB) system instead of the RGB system 

because the red and blue levels alter pixel greenness (Ewing and Horton, 1999). Many ACT 

approaches are based on the selection of saturation and hue threshold values, but finding the 

optimal thresholds is difficult, and threshold settings differ when using images taken under 

different light intensities and backgrounds (Karcher and Richardson, 2005). Furthermore, in 

SigmaScan the user cannot pre-visualize the effects of the selected hue and saturation values 

before running an entire batch of images. 

For the batch of turf images, Canopeo had excellent agreement with SigmaScan (Fig. 2, 

RMSD=0.041), showing the potential of Canopeo to be applied in turf research and management. 

On the other hand, greater discrepancies were observed when comparing SamplePoint and 

Canopeo for turf (Fig. 2, RMSD=0.092). The grid size of 100 points used in SamplePoint may be 

inadequate for precise FGCC estimation for images containing turf plugs growing radially from 

the center of the image (Fig. 4A). Switchgrass FGCC measurement presented a challenge to all 

three programs because green parts of the plant were mixed with senesced leaves creating a wide 

range of color tones (Fig. 4B). In fact, close inspection at the pixel level revealed that gray-green 

and gray-reddish pixels (e.g. R=90 G=80 B=92) were common in actively growing switchgrass 

leaves, requiring R/G and B/G ratios to be slightly larger than 1 (i.e. R/G=1.1 and B/G=1.1, Table 

1) to select live vegetation. In this case, SamplePoint may be able to provide the most accurate 

results, but to achieve good precision for these highly heterogeneous images, a larger grid size 

(i.e. 225 pixels) may be necessary. 

The thresholds were easy to set in Canopeo due to its interactive functionality that allows 

the user to preview and compare with the original image the effect of the selected R/G and B/G 

threshold values. This interactive capability allows the user to set proper ratios even under 
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difficult scenarios. Often, no-till cropping systems with low FGCC values are difficult to analyze 

accurately because crop residue does not offer adequate background contrast. However, Canopeo 

effectively selected FGCC in no-till crops with low FGCC and complex backgrounds with high 

crop residue levels (Fig. 5).  

Canopeo, as any other measurement tool, relies on proper operation by the end user, and 

it cannot compensate for some user operational errors. As an example, the images in Figure 5C 

and 5G would result in different FGCC if the camera lens had been positioned at different heights 

from the top of the canopy. In Figure 5C, the soybean rows on both sides of the image may have 

been excluded if the camera lens were closer to the canopy. On the other hand, in Figure 5G 

additional sunflower rows would have been included in the image if the camera lens was 

positioned at a greater height above the top of the canopy. While the position of the camera lens 

can affect the portion of the crop being captured in the image, the classification accuracy of 

Canopeo remains unaltered.  

Perhaps the most unique capability of Canopeo compared to current software packages 

for quantifying FGCC is the possibility to analyze video recordings. Analyzing video recordings 

to quantify FGCC can help minimize sampling error in plots or fields with high FGCC spatial 

variability by allowing the user to record a large number of images in a small amount of time.  

Video recordings have been used by other researchers to study the severity of foliar plant disease 

by monitoring necrotic and intact leaves in real-time (Lindow and Webb, 1983). Video was also 

used to analyze real-time Lepidoptera defoliation in traditional and Bacillus thuringiensis (Bt) 

transgenic cotton in the laboratory, allowing the inclusion of feeding activities in the analysis 

(Alchanatis et al., 2000). A Matlab tool was used by Fuentes et al. (2014) to estimate LAI in 

grapevine canopies by recording zenith (i.e. upward-facing) videos. Using zenith images and 

videos to estimate LAI or FGCC ensures good contrast between live vegetation and its 

background, which facilitates pixel classification, but operational data acquisition in agricultural 

fields can be challenging. Shrestha and Steward (2003) developed a vehicle-mounted video 
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system to quantify plant population in Iowa corn fields at a speed of 1 to 2 m/s. This approach has 

later been used by Thorp et al. (2007) to relate airborne hyperspectral remote sensing to ground 

machine-vision measurements of plant population of corn. In this context, measurement of FGCC 

from videos has the potential to be integrated with other data streams (e.g. multi-spectral or 

hyperspectral reflectance, plant height sensing) for high throughput phenotyping of plants.  

Recording videos in the field did not take longer than taking still images. About 30 

seconds were required per plot to record a 15-s video, covering an approximate area of 15 m2. 

Fifteen seconds of video using a Canon Powershot SD1200 IS (10 MPX) camera at 30 frames per 

second resulted in 450 frames. Even though each frame had VGA resolution, each frame is 

equivalent to an image. Also, many digital cameras allow for high definition video recordings. In 

the presence of spatial variability of FGCC, videos allow the FGCC of a field or experimental 

plot to be estimated more accurately by obtaining values close to the FGCC population mean 

rather than estimating FGCC based on a few images. This advantage is especially significant in 

plots or fields where FGCC shows large spatial variability and many images may be required to 

obtain a representative mean.  

An example FGCC transect of ~40 m length in a grain sorghum field in growth stage V10 

is presented in Figure 6A. The mean FGCC of the transect using ~2000 images was 0.63 with a 

standard deviation of 0.06 and a coefficient of variation of 9.5%. Using power analysis, we 

determined that six images were required to have a 95% confidence interval of + 0.05 FGCC 

about the mean (Fig. 6B). On the other hand, a transect of ~40 m in a wheat field in growth stage 

Feekes 3.0 had a mean of 0.46 FGCC and substantial spatial variability across the recorded 

transect with a standard deviation of 0.17 and coefficient of variation of 37% (Fig. 6C). The 

minimum number of images needed to have a 95% confidence interval of + 0.05 FGCC about the 

mean was 45 (Fig. 6D). This shows the importance of large sample sizes in estimating FGCC for 

heterogeneous canopies and how the use of transect video recordings can help minimize sampling 

error. Also, the possibility of analyzing FGCC from videos is useful for overcoming the need to 
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choose “representative” locations in heterogeneous canopies and, therefore, minimizing 

researcher bias. 

 

CONCLUSIONS 

Canopeo is capable of detecting FGCC at high speed relative to the available software 

packages tested in this study without sacrificing accuracy. The video feature present in this tool is 

a novel addition to software packages that are used to measure FGCC, allowing the user to record 

a large number of images and therefore minimize sampling error. One limitation of Canopeo (and 

other FGCC methods based on digital images) is the need to keep the camera an adequate height 

above the canopy. For vegetation taller than about 2.5 m, this may require the use of aerial images 

or special equipment. It may be possible to use the R/G and B/G ratios together with the excess 

green index to detect other components of digital images, but this possibility requires further 

research. It is important to highlight that MPC programs such as SamplePoint are invaluable for 

calibration and when there is need for simultaneous estimation of more complex variables other 

than FGCC. The Canopeo app for Matlab, as well as versions for iOS and Android mobile 

devices, can be downloaded at www.canopeoapp.com. The mobile apps are powerful tools which 

allow producers, crop consultants, researchers, and other end users to easily acquire and process 

digital images in the field and obtain real-time, geo-referenced green canopy cover estimates. 

  

http://www.canopeoapp.com/
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Table 1. Software settings used to analyze each batch of images. 

Software Settings Corn Forage sorghum Turf Switchgrass 

Canopeo R/G 0.97 0.97 0.99 1.1 

  B/G 0.97 0.97 0.99 1.1 

  Noise reduction 1 1 1 1 

            

SigmaScan 
Hue range 40-140 40-140 40-140 50-180 

Saturation range 15-100 15-100 15-100 10-100 

            

SamplePoint Number of pixels 100 100 100 100 
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Table 2. Comparison of pixel-level classification by Canopeo and SamplePoint using a total of 

2000 pixels selected from 20 images with different crops, backgrounds, and light conditions. 

  Canopeo Green Canopeo Not Green % Correct 

SamplePoint Green 864 (true positives) 89 (type II error) 0.91† 

SamplePoint Not Green 114 (type I error) 933 (true negatives) 0.89‡ 

Correctly classified pixels   0.90 

† Sensitivity 

‡ Specificity  
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Table 3. Comparison of pixel classification method, processing speed, cost, number of pixels 

included in the image analysis, and flexibility of Canopeo, SigmaScan, and SamplePoint. 

Characteristics  Canopeo SamplePoint SigmaScan 

Pixel classification Computer Manual Computer 

Speed† (sec. per image)    

    640 x 480 pixels 0.12  120-300‡ 2.4 

    2048 x 1536 pixels 0.18 120-300 24 

    3264 x 2448 pixels 1.62 120-300 49.2 

Cost (US$) Free§ Free $999# 

Number of pixels analyzed All 50 to 225 All 

Ability to classify other than green Limited Highly flexible Limited 

† Tested with a set of 72 images per level of resolution. 

‡ Maximum of 50 to 70 images per day per user.  

§ Matlab software needs to be previously installed. Individual academic license was US$ 500 and image 

processing toolbox was US$ 200 in September, 2014. 

# Academic price. Commercial price was US$ 1,499 on August, 2014. 

  



69 

 

 
Figure 1: Histograms of the red/green (R/G) and blue/green (B/G) ratios used to classify 

fractional green canopy cover (FGCC). Example is presented for an image of  no-till canola (A) 

using a bivariate histogram (B) and the one-dimensional R/G (C) and B/G (D) histograms.  
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Figure 2: Comparison of fractional green canopy cover (FGCC) for corn, forage sorghum, turf, 

and switchgrass using Canopeo, SigmaScan, and SamplePoint. The solid line in each subplot 

represents the 1:1 line.  
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Figure 3. From top to bottom, digital images of no-till grain sorghum (A, B), no-till corn (C, D), 

conventional till wheat (E, F), and no-till canola (G, H) are shown after the digital image was 

analyzed (left) relative to the original image (right). Area in white represents green pixels selected 

by Canopeo. The fractional green canopy cover from Canopeo and the percent of correctly 

classified pixels relative to SamplePoint are shown between the images. Area within red circle 

shows lower leaves in the canopy.  
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Figure 4. From top to bottom, digital images of turf (A, B) and switchgrass (C, D) are shown 

after the digital image was analyzed (left) relative to the original image (right). The fractional 

green canopy cover from Canopeo is shown between the images. 
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Figure 5. From top to bottom, digital images of no-till grain sorghum (A, B), no-till soybean (C, 

D), no-till wheat (E, F), and no-till sunflower (G, H) are shown after the digital image was 

analyzed (left) relative to the original image (right). Area in white represents green pixels selected 

by Canopeo. The fractional green canopy cover from Canopeo and the percent of correctly 

classified pixels relative to SamplePoint are shown between the images.  
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Figure 6: Fractional green canopy cover (FGCC) showing the variability along a transect in a 

grain sorghum field at phenological stage V10 (A) and a wheat field in stage Feekes 3.0 (C). The 

minimum number of images required to have a 95% confidence interval of + 0.05 about the mean 

FGCC is shown in B and D. 
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CHAPTER IV 
 

Manuscript to be submitted to Journal of Hydrology 

 

MODELING TRANSIENT ROOT-ZONE SOIL MOISTURE DICHOTOMIES IN 

LANDSCAPES WITH INTERMIXED LAND COVERS 

Andres Patrignani and Tyson E. Ochsner 

ABSTRACT 

Although large-scale in situ soil moisture monitoring networks are becoming 

increasingly valuable research tools, deficiencies of many existing networks include the 

small spatial support of each station, the low spatial density of stations, and the almost 

exclusive deployment of stations in grassland vegetation. These grassland soil moisture 

observations may not adequately represent the real soil moisture patterns in landscapes 

with intermixed land cover types. The objectives of this study were i) to compare root-

zone soil moisture dynamics of two dominant vegetation types across Oklahoma, 

grassland (observed) and winter wheat cropland (simulated); ii) to relate the soil moisture 

dynamics of grassland and cropland vegetation using an artificial neural network (ANN) 

as a the observation operator; and iii) to use the resulting ANN to estimate the soil 

moisture spatial patterns for a landscape of intermixed grassland and wheat cropland. 

Root-zone soil moisture was represented by plant available water (PAW) in the top 0.8 m 

of the soil profile. PAW under grassland was calculated from 18 years of soil moisture  
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observations at 78 stations of the Oklahoma Mesonet, whereas PAW under winter wheat 

was simulated for the same 78 locations using a soil water balance model. Then, we 

trained an ANN to reproduce the simulated PAW under winter wheat using only seven 

inputs:  day of the year, latitude and longitude, measured PAW under grassland, and 

percent sand, silt, and clay. The resulting ANN was used, along with grassland soil 

moisture observations, to estimate the detailed soil moisture pattern for a 9x9 km2 Soil 

Moisture Active Passive (SMAP) grid cell. The seasonal dynamics of root-zone PAW for 

grassland and winter wheat were strongly asynchronous, so grassland soil moisture 

observations rarely reflect cropland soil moisture conditions in the region. The simple 

ANN approach facilitated efficient and accurate prediction of the simulated PAW under 

winter wheat, RMSE = 24 mm, using observed PAW under grassland as an input. This 

promising new approach for estimating soil moisture under adjacent, contrasting land 

covers at a relatively low computational cost may significantly enhance the applications 

of existing large-scale monitoring networks. 
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INTRODUCTION 

The increasing relevance of soil moisture measurements for climate modeling 

(Hirschi et al., 2010; Koster and Suarez, 2001), hydrologic prediction (Houser et al., 

1998; Western et al., 2004), and agricultural drought monitoring (Bolten et al., 2010; 

Mozny et al., 2012; Torres et al., 2013) has propelled the deployment of new observing 

systems including aerial and satellite remote sensing, emerging proximal sensing 

technologies, and large-scale in situ monitoring networks (Ochsner et al., 2013). While 

soil moisture observations using remote and proximal sensing are typically limited to the 

soil surface, in situ networks fill a unique niche by accurately monitoring both surface 

and root-zone soil moisture across relatively large spatial extents (e.g. watershed, state, or 

nation) at high temporal resolution (e.g. hourly) (Dorigo et al., 2011). These networks can 

provide soil moisture measurements for greater depths and higher temporal resolutions 

that can be achieved using satellites such as Advanced SCATterometer (ASCAT) 

(Gelsthorpe et al., 2000), Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010), 

and Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010). The in situ networks 

can also play a vital role in calibration and validation of satellite-derived soil moisture 

estimates if the points of measurements from the network can be effectively upscaled to 

the satellite footprint. 

However, most existing large-scale networks share in common the limitation that 

stations have been deployed almost exclusively under grassland vegetation. Since soil 

moisture sensors are often associated with automated weather stations, grassland sites are 

usually chosen over forest sites where fetch is typically inadequate for above ground 

measurements. Grassland sites also offer greater long-term operational stability than 
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cropland, where farming operations make long-term deployment of automated soil 

moisture sensors impractical. The bias of in situ networks towards grassland sites and the 

presence of unmonitored contrasting land covers between the network stations create 

substantial uncertainty when estimating the soil moisture condition in landscapes with 

intermixed land covers. How well can grassland soil moisture observations represent the 

actual soil moisture patterns in landscapes with intermixed and contrasting land covers? 

To help answer this question, we explore here the relationship between grassland soil 

moisture measurements and soil moisture values in nearby cropland. 

Soil moisture values under grassland and adjacent cropland can differ 

substantially, but the difference is not temporally stable. For example, 5-cm grassland 

soil moisture measurements from an NRCS-SCAN network station in the Walnut Creek 

watershed in Iowa overestimated soil moisture in nearby corn and soybean fields by 20% 

on average and the difference was not stable over time (Cosh et al., 2004).  In the Upper 

Cedar Creek watershed in Indiana, sensors located under grassland at the edge of two 

soybean fields overestimated field average 5-cm soil moisture by 4-12% on average, but 

again the difference was not temporally stable (Heathman et al., 2012). For the same 

watershed, Han et al. (2012) found that the cumulative density function (CDF) matching 

operator was able to reliably translate soil moisture observations from permanent sensors 

at the edge of the field into average field soil moisture, but the CDF observation operator 

was not constant in time. The absence of a temporally stable relationship between soil 

moisture values under grassland and cropland is likely due to differences in phenology 

(Fig. 1) and growth habit between these land cover types, and this absence hinders the 



79 

 

use of data from in situ networks in a variety of contexts, from agricultural drought 

monitoring to soil moisture satellite validation. 

There is a clear need to better understand how effectively grassland-based in situ 

networks can represent the soil moisture dynamics of landscapes with intermixed and 

contrasting land covers. There is also a need to develop upscaling methods that do not 

require temporally stable relationships between land covers in order to enhance the value 

and applications of large-scale soil moisture monitoring networks, particularly for 

validation of remote sensing soil moisture products. In this study set in the US southern 

Great Plains, we examine whether soil moisture observations in warm-season grassland 

can be used to effectively estimate soil moisture conditions of nearby winter wheat 

cropland. The specific objectives of this study were i) to compare root-zone soil moisture 

dynamics of two dominant and intermixed vegetation types in the southern Great Plains, 

grassland (measured) and winter wheat cropland (simulated); ii) to relate the soil 

moisture dynamics of grassland and cropland vegetation using a neural network as an 

observation operator; and iii) to apply the resulting neural network to estimate the soil 

moisture spatial patterns and spatial mean for a landscape of intermixed grassland and 

wheat cropland, specifically a 9x9 km2 SMAP grid cell. 

 

MATERIALS AND METHODS 

Settings and Limitations 

The study was conducted in Oklahoma, USA, where winter wheat is cultivated on 

approximately 2 million hectares, mostly in the western part of the state (Fig. 2). 

Grasslands cover approximately 8 million hectares in Oklahoma and are more evenly 
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distributed across the state (Fig. 2). As a result of the co-existence and predominance of 

these two land covers in central and western Oklahoma, the landscapes in this region 

often consists of intermixed grassland and winter wheat at spatial scales <1 km. 

Grassland soil moisture measurements are available through the Oklahoma Mesonet, an 

environmental monitoring network that spans the entire state with a total of 120 stations 

(McPherson et al., 2007). In the immediate vicinity of each station (≥ 25 m radius), the 

landscape is typically dominated by perennial warm-season grasses such as bermuda 

grass (Cynodon dactylon L.), big bluestem (Andropogon gerardii L.), and little bluestem 

(Schizachyrium scoparium L.), although species vary depending on the geographic 

location of the station.  

All 120 stations monitor air temperature, relative humidity, wind speed and 

direction, rainfall, incoming solar radiation, and barometric pressure. For 78 out of the 

120 stations, soil moisture observations are available from sensors installed at 0.05, 0.25, 

and 0.60-m depths (Fig. 2). We assumed each sensor to be located at the center of its 

representative soil layer (Scott et al., 2013). Thus, the sensor installed at 0.05 m depth 

was assumed to be representative of the layer between the soil surface and 0.10 cm depth. 

Similarly, the sensors located at 0.25 and 0.60-m depth were assumed to be representative 

of the 0.10 to 0.40 m and 0.40 to 0.80 m soil layers, respectively. We defined root-zone 

soil moisture as the plant available water (PAW) in the top 0.8 m of the soil profile. To 

allow direct comparisons of PAW between grassland and winter wheat, we assumed the 

root-zone for both was limited to a depth of 0.8 m. Although we acknowledge that 0.8 m 

is a relatively shallow rooting depth, we were constrained by the depth of soil moisture 

observations at the Oklahoma Mesonet stations. Nonetheless, shallow soils and root 
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restricting layers are common in the region and our choice of rooting depth is similar to 

that used in other related studies in the southern Great Plains (e.g. Heathman et al., 2003).  

Plant available water under grassland was calculated from 18 years of soil 

moisture observations at 78 stations of the Oklahoma Mesonet, whereas PAW under 

winter wheat was simulated for the same 78 locations using a soil water balance model. 

The reason for relying on simulations of the soil moisture dynamics of wheat cropland 

was twofold: i) a modeling approach was the only way to obtain soil moisture estimates 

for the same points in space and time for both land covers; and ii) a modeling approach 

was the only practical alternative to conduct a soil moisture comparison among two land 

covers with adequate spatial and temporal extent to ensure the results are broadly 

applicable. 

 

Plant available water observations under grassland 

Daily values of plant available water under grassland were calculated from the 

output of the heat dissipation sensors (CS-229L, Campbell Scientific, Inc., Logan, UT) at 

the selected Oklahoma Mesonet sites following the steps detailed in Scott et al. (2013). 

Briefly, this approach consists of converting daily average normalized temperature 

differentials from the heat dissipation sensors into soil matric potential, which was 

subsequently converted into volumetric water content using a site- and depth-specific soil 

water retention parameters. For any given station, the days with missing temperature 

differentials were excluded from the analysis. Daily PAW was calculated by subtracting 

the lower limit (soil moisture at -1500 kPa) from the observed volumetric water content 

for each of the sensor depths, and then multiplying the resulting values by the thickness 
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of the corresponding soil layer. Root-zone PAW was calculated as the sum of the PAW in 

each the three layers. 

 

Plant available water model for winter wheat 

For each of the 78 selected locations, we simulated PAW in continuous winter 

wheat using the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 

No. 56 dual crop coefficient (dual Kc) method (Allen et al., 1998) with daily time steps. 

The dual Kc is a parsimonious and well established two-layer soil water balance model 

that has been calibrated and validated for wheat in several environments (Hunsaker et al., 

2007; López-Urrea et al., 2009; Zhang et al., 2013; Zhao et al., 2013). The dual Kc model 

estimates crop evapotranspiration (ETc) based on the evapotranspiration of a hypothetical 

well-watered grass reference surface (ETo) and empirically determined basal crop 

coefficients (Kcb) that change with the different growth stages of the crop. For winter 

wheat we used crop coefficients for specific wheat growth stages derived from prior 

lysimeter studies in the southern Great Plains (Ko et al., 2009; Piccinni et al., 2007). 

Because these authors reported single crop coefficients rather than basal crop 

coefficients, values were adjusted following recommended methods (Allen et al., 1998) 

(Table 1).  

We used the modified Wang-Engel (WES) quantitative wheat phenological model 

(Streck et al., 2003; Wang and Engel, 1998) to simulate wheat growth stages. The WES 

is a multiplicative phenological model that incorporates the effects of temperature and 

photoperiod to predict wheat stages. The WES model consists of three main 

developmental stages: emergence-terminal spikelet initiation (EM-TS), terminal spikelet-
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anthesis (TS-AN), and anthesis-physiological maturity (AN-PM). Both vegetative (EM-

TS and TS-AN) and reproductive (AN-PM) stages have maximum developmental rates 

that are modulated by non-linear functions that describe the effect of temperature and 

photoperiod on wheat development. We adopted the set of parameters (Table 2) for 

winter wheat used by Streck et al. (2003), who modeled wheat phenological stages in the 

central Great Plains using cultivars that are also common in the southern Great Plains.  

To simulate daily PAW using the dual Kc model, daily precipitation data were 

obtained from the Oklahoma Mesonet station at each simulation site. Missing 

precipitation values were retrieved from the nearest neighboring station with available 

rainfall data. Daily surface runoff was approximated using the Soil Conservation Service 

Curve Number method (Hawkins et al., 2009). The curve number for each location was 

estimated based on land cover (i.e. winter wheat or fallow), an estimated residue cover of 

50%, and the soil hydrologic group, which was retrieved from the Soil Survey 

Geographic Database (SSURGO, Soil Survey Staff, 2015). Upper and lower soil water 

retention limits, and percent clay and sand were obtained from prior measurements at 

each Oklahoma Mesonet site (Scott et al., 2013). Simulations of the winter wheat 

growing season started on 15 October across the entire state. Although average winter 

wheat planting dates for the southern and northern part of Oklahoma usually differ by 

about 10 days, the selected date represents a reasonable midpoint. Growing season 

simulations were terminated on 1 June, which is a reasonable date for physiological 

maturity in this region. Root growth was simulated using thermal time based on the 

empirical function proposed by Steduto et al. (2009). 
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Calibration and validation of the dual Kc model 

The dual Kc model was calibrated using a set of soil moisture measurements 

collected under continuous no-till winter wheat from July 2009 to June 2011 at Lahoma, 

OK. Soil moisture was recorded every 15 days using a neutron probe soil moisture meter 

at 0.2-m intervals. For each soil layer, PAW was calculated by subtracting the lower limit 

from the daily volumetric water content and then multiplying the resulting value by the 

thickness of each layer. Root-zone PAW was then determined by adding up the PAW of 

the top four layers. Further details about this dataset were provided by Patrignani et al. 

(2012). Calibration of the dual Kc consisted of optimizing one model parameter that 

regulates the proportion of the plant available water capacity that can be depleted before 

plant stress occurs. Other parameters commonly included in the calibration process of the 

dual Kc model are the effective evaporative layer and the total and readily evaporable 

water (Allen et al., 2005; Zhao et al., 2013). In our study these parameters were not 

calibrated but were estimated using the fraction of sand and clay as described by Allen et 

al. (2005). 

The calibrated dual Kc model was validated using three independent validation 

sets. The first validation set consisted of a time series of PAW in continuous no-till 

winter wheat from 2011 to 2013 recorded at Lahoma, OK. This validation set helped us 

to corroborate that the model was adequately predicting PAW at the calibration site. A 

second validation set was created using soil moisture observations from 2009 to 2011 at 

Lake Carl Blackwell, OK. This site was located on a side slope (5%), a landscape 

position on which winter wheat is sometimes cultivated in the southern Great Plains. 

Because of its topography, this site served as a challenging scenario to evaluate the dual 
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Kc model. At this location, soil moisture was also measured using a neutron probe soil 

moisture meter at 0.2-m intervals under continuous conventional and no-till wheat 

(Patrignani et al., 2012). The third validation set consisted of 23 measurements of PAW 

in the top 0.8 m from 8 site-years across the state of Oklahoma. From March to May of 

2014 and 2015 four measurements per field were collected at each sampling date from 

large-scale (>0.5 ha) experimental fields and wheat producer fields. During 2014 

volumetric water content was measured using an impedance probe (ML2x, Theta Probe, 

Delta-T Devices) with an attached extension to reach 0.8 m depth. A manual auger 

(Eijkelkamp, ~65 mm o.d.) was used to facilitate the access of the probe to 0.8 m depth. 

In each core, volumetric water content was recorded at six depths, approximately every 

0.15 m. All volumetric water content values for each core were averaged to estimate the 

soil water content of the soil profile. In 2015, soil moisture was also measured in four 

cores per field of 0.8-m depth using the thermo-gravimetric method at each sampling 

date. Homogenized soil samples for each of the 0.8 m cores were used to estimate soil 

water content, particle size analysis (Gavlak et al., 2003), and soil water retention at 1500 

kPa (i.e. lower limit). The upper limit for each soil was estimated by adding the available 

water holding capacity to the lower limit. The water holding capacity for each soil was 

retrieved from a previous study in the region where this variable was measured in field 

conditions (Lollato and Edwards, 2015 data not published). In this third validation set, the 

initial soil moisture condition of the sampled sites at the start of the winter wheat growing 

season was unknown. Therefore, simulations were started in 1 June of the preceding 

summer fallow period using an estimated initial PAW of 100 mm. Root mean squared 

error (RMSE), mean bias error (MBE), and Wilmott's index of agreement (Willmott, 
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1981) were used to describe the overall goodness of fit of the dual Kc against field 

observations of PAW. 

 

Temporal and Spatial Soil Moisture Analyses 

For the purpose of comparing the temporal dynamics of root-zone soil moisture in 

grassland and winter wheat, we computed the long-term (18-yr) mean PAW for four 

selected climate divisions of Oklahoma with contrasting precipitation regimes. These 

means were calculated by taking the arithmetic mean for each day of the year using PAW 

values from June 1997 to May 2015. Spatial soil moisture patterns were compared by 

generating state level maps of root-zone PAW for selected days. Maps were generated 

by: i) calculating an empirical semivariogram using PAW at each of 78 selected stations, 

ii) fitting an exponential model to the empirical semivariogram, and iii) interpolating 

PAW at the selected locations to a grid of 5000 points covering the state of Oklahoma 

using ordinary kriging. For each point in the grid, PAW was interpolated considering a 

maximum of eight nearest stations within a maximum radius of 200 kilometers. Although 

these maps ignore the spatial distribution of the land cover, they are useful to describe the 

spatial patterns imposed by the weather and vegetation (grassland vs winter wheat) across 

the state. We used the median to characterize the central tendency of root-zone PAW at 

state level and the highest density interval (HDI) as a measure of dispersion. The HDI is a 

concept commonly used in Bayesian analysis to represent the shortest interval that spans 

95% of the values in a distribution (Kruschke, 2015). 

 

Relating grassland and cropland soil moisture using an observation operator 
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To relate the soil moisture dynamics of grassland and winter wheat we developed 

an artificial neural network to serve as an observation operator (Drusch et al., 2005). This 

approach can be summarized as: 

𝜙𝑤ℎ𝑒𝑎𝑡 = ℋ(𝜙𝑔𝑟𝑎𝑠𝑠, 𝜃𝑛) + 휀 

where  𝜙𝑤ℎ𝑒𝑎𝑡 represents the soil moisture time series under wheat cropland, 𝜙𝑔𝑟𝑎𝑠𝑠 

represents the soil moisture time series under grassland, ℋ represents the observation 

operator, 𝜃𝑛 is the set of other covariates used to estimate cropland soil moisture, and 휀 is 

the error term. Although models based on first principles are often preferred to explain 

environmental processes, supervised machine learning techniques such as artificial neural 

networks are ideal in scenarios with complex non-linear interactions, unknown 

relationships, and abundant high quality data that can be used for proper training, 

validation, and testing (Abu-Mostafa et al., 2012). A key benefit of developing an 

observation operator capable of estimating cropland soil moisture from grassland soil 

moisture observations is that it would dramatically reduce computational burdens 

associated with operational large-scale, high-resolution soil moisture mapping. 

We used a multi-layer feedforward neural network trained by a backpropagation 

algorithm with stochastic learning. This simple neural network consisted of: one input 

layer, one hidden layer, and one output layer. The input layer had seven neurons that 

corresponded to day of the year, latitude and longitude, observed root-zone PAW under 

grassland, and the percent of sand, silt, and clay in the top 0.8 m. The hidden layer had 

ten neurons and the output layer had one neuron representing the root-zone PAW in 

continuous wheat. The activation function between the input and the hidden layer was the 

following hyperbolic tangent function (LeCun et al., 2012): 
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𝑓(𝑥) = 1.7159 𝑡𝑎𝑛ℎ (
2

3
𝑥) 

This function has carefully selected parameter values so that saturation of the activation 

function is minimized, while still taking advantage of its non-linearity.  

 Since this is a regression rather than a classification problem, we used a linear activation 

function between the hidden and output layer. To improve training performance we 

added a learning rate with value of 0.01 and a momentum of 0.2 to help with escaping 

local minima (LeCun et al., 2012). 

For training, validation, and testing of the neural network, a full dataset was 

created totaling 350,000 entries for each of the seven input and output variables (350,000 

rows by 8 columns matrix) for the period of 2 June 1997 to 27 May 2015 for the 78 

selected Oklahoma Mesonet stations. As output targets we used the PAW for winter 

wheat simulated with the dual Kc model. Rows with missing values in at least one input 

or the output variable were eliminated from the dataset. Then, we subdivided the full 

dataset to generate a training, validation, and testing set. We assigned 70% of the values 

in the full dataset to the training set. Assigning large fractions of the full dataset to the 

training set is a common practice to ensure that most plausible scenarios are presented to 

the network during the training stage. For better training performance, input values were 

shuffled using a pseudo random generator in Matlab (Mathworks, Nantick, MA). The 

randomization of the entries was performed for individual rows to keep inputs and 

outputs associated to each other. Then, inputs and outputs were standardized by centering 

the data with a mean of zero and a variance of one. The mean and variance were stored 

and were used to restore the standardized input and output values. The next step consisted 

in generating a validation set, which was composed of only 10% of the values in the full 
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dataset. The validation set is intended to evaluate the neural network during the training 

process to identify the set of training weights that minimized the error in the validation 

set, and thus, minimize the risk of over-fitting. We selected the training weights that 

minimized the root mean squared error (RMSE) of the validation set. Since the selected 

training weights were dependent on the validation set, a third independent set of 

information was required to assess the prediction power of the trained neural network. 

This was accomplished by creating a test set using the remaining 20% of the full dataset. 

The test set included a total of 70,000 entries encompassing 17 stations with different 

annual precipitation regimes and contrasting soil properties. Because only the entries of 

the training set were shuffled, none of the stations in the test set participated during the 

training process, resulting in a robust test for the neural network. 

In light of the large number of values that were used for training, validation, and 

testing, we used a bivariate histogram to pictorially represent the performance of the 

network. The root mean squared difference (RMSD), the mean biased error (MBE), and 

the Pearson's correlation coefficient (r) were used to evaluate the predictions of the neural 

network relative to PAW simulated using the dual Kc model. For the evaluation of the 

neural network we used the term RMSD to emphasize that the differences were 

calculated relative to simulated, and thus uncertain, PAW in winter wheat instead of 

ground-truth field observations. 

 

Application of the neural network to estimate root-zone PAW patterns across a 

heterogeneous SMAP grid cell 
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To demonstrate the significance of the observation operator, we used it, along 

with grassland soil moisture observations, to estimate the detailed soil moisture pattern 

for a 9x9 km2 SMAP grid cell. For this example, we selected a grid encompassing an area 

dominated by winter wheat and grassland, and also including the Lahoma station of the 

Oklahoma Mesonet and the field site at which some of the calibration and validation data 

were recorded. To estimate the PAW under grassland and winter wheat cropland across 

the grid we followed these steps: i) identify locations of winter wheat cropland and 

grassland within the grid using the 2014 USDA cropland data layer (30x30 m resolution); 

ii) retrieve observations of temperature differentials for the Oklahoma Mesonet stations 

recording soil moisture at all three sensor depths for the selected date; iii) convert 

temperature differentials into root-zone PAW under grassland; iv) use an interpolation 

method (in this case ordinary kriging) to estimate grassland root-zone PAW for all 

locations (i.e. grassland and cropland) within the SMAP grid cell; v) collect and 

normalize inputs for the neural network including day of the year for the selected date, 

latitude and longitude of the wheat cropland, the interpolated grassland PAW for the 

wheat cropland, and the percent sand, silt, and clay for each wheat cropland location 

within the grid; and vi) estimate the PAW for the wheat cropland using the neural 

network as an observation operator that relates grassland and wheat cropland. 

 

RESULTS AND DISCUSSION 

Model calibration and validation 

Considering all calibration and validation sets, modeling root-zone PAW of 

winter wheat cropland using the dual Kc model decreased estimation errors 
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approximately 60% compared to the default approach of assuming that soil moisture 

observations under grassland represent soil moisture conditions under winter wheat. The 

calibration of the dual Kc model using the data set for Lahoma 2009-2011 resulted in a 

RMSE of 21 mm relative to the measured PAW under winter wheat, whereas direct use 

of the observed grassland PAW at the nearest Mesonet station resulted in a RMSD of 50 

mm (Fig 3A). Validation of the dual Kc model using the sets of winter wheat PAW 

measured at Lahoma 2011-2013 and Lake Carl Blackwell 2009-2011 (Fig. 3B and 3C) 

had RMSE ranging from 3 to 23 mm, MBE from 10 to 13 mm, and d from 0.82 to 0.85. 

As in the calibration set, prediction of winter wheat PAW using observed grassland PAW 

at the nearest Mesonet station had RMSD values ranging from 51 to 66 mm. In the 

validation set containing multiple sites from across the state (Fig. 3D), predictions of 

PAW resulted in a RMSE of 24 mm, a good result considering that the soil moisture 

condition at the beginning of the growing season was unknown and had to be estimated 

by initializing the model in the preceding summer fallow.  

Although the model predictions were satisfactory, lower RMSE values for the 

dual Kc model have been reported for winter wheat in the literature. A study by Zhao et 

al. (2013) reported RMSE of approximately 7 mm in the top meter of the soil profile, a 

value three times lower than our study. Nonetheless, in that study the calibration and 

validation sets contained soil moisture collected only during two growing seasons at a 

single location. In contrast, the strength of our study relies on a calibration and validation 

set totaling 148 field observations over a period of six years across multiple locations 

with diverse soil properties, landscape positions, and climate conditions. Also our study 

requires year-round simulation of the winter wheat cropping system, which is a greater 
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challenge than simulating individual growing seasons. Under these circumstances, 

predictions of root-zone PAW may be improved using more advance models such as the 

Root Zone and Water Quality Model (RZWQM) or the Decision Support System for 

Agrotechnology Transfer (DSSAT), but a drawback associated with more sophisticated 

models is the large number of parameters requiring calibration. 

 

Asynchronous soil moisture dynamics 

Long-term mean root-zone PAW for grassland (measured) and winter wheat 

(simulated) displayed distinct sinusoidal seasonal cycles that were strongly asynchronous 

(Fig. 4). Winter wheat consistently had minimum PAW values at the end of the growing 

season in early June (DOY 112 to 152) and maximum PAW values at the end of the 

summer fallow (DOY 283 to 286). During the fallow period, summer rainfall, partial 

residue cover left from the prior wheat harvest, and the absence of an actively growing 

vegetation contribute to a slow but positive soil moisture recharge. On the other hand, 

grassland showed minimum PAW values from late July to mid-August (DOY 209 to 221) 

and maximum PAW values from early to late March (DOY 64 to 91). Clearly, the soil 

moisture dynamics under grassland were not representative of conditions under winter 

wheat. The seasonal soil moisture cycles of each land cover were closely linked with 

vegetation dynamics. While winter wheat is an annual cool-season (fall-winter-spring) 

crop, grasslands surrounding the stations of the Oklahoma Mesonet are predominantly 

composed of perennial warm-season (spring-summer-fall) grasses. In mid to late 

February, winter wheat reaches the end of its dormant growth stage with green canopy 

cover typically >75% (Fig. 1). Although dormant, the high percentage of green canopy 
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cover can become fully active with a few days of warm temperatures, explaining the 

typical rapid drying phase of winter wheat early in the spring compared to grassland (Fig. 

4). At the same time, warm-season grasslands typically have almost no green canopy 

cover, which explains the lower soil moisture depletion rate in the early spring compared 

to continuous wheat. 

Despite the contrasting temporal dynamics of soil moisture between these land 

covers, the mean annual PAW of winter wheat and grassland vegetation were similar 

within different climate divisions. Within each climate division, differences in mean 

annual PAW between grassland and winter wheat ranged from 5 mm in the south central 

division to only 9 mm in the north central division. Across climate divisions, mean 

annual PAW for continuous wheat ranged from 56 to 121 mm, while the mean annual 

PAW of grassland ranged from 50 to 115 mm. The lowest mean annual PAW for both 

land covers was in the Oklahoma Panhandle (460 mm 30-yr annual rainfall) and the 

greatest mean annual PAW was observed in the northeast division of Oklahoma (1200 

mm 30-yr annual rainfall). While the seasonal variations of PAW within each climatic 

division were dominated by the land cover, the mean annual PAW values were 

dominated by the climate and precipitation regime. 

The seasonal soil moisture patterns of winter wheat observed in this study were in 

agreement with a prior study conducted by Zhang (2004), who studied the soil moisture 

dynamics of continuous winter wheat in a watershed near El Reno, OK. Similarly, the 

soil moisture dynamics in grassland vegetation closely matched those found by Illston et 

al. (2004), who conducted an analysis of the soil moisture patterns for the Oklahoma 

Mesonet. The unique contribution of our study lies in the direct comparison of the soil 
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moisture dynamics of these two dominant land covers that are usually intermixed in the 

landscape of the southern Great Plains at scales <1 km. Our results shows that soil 

moisture observations from in situ networks deployed on warm-season grassland 

vegetation should not be used directly to assess the soil moisture conditions of winter 

wheat in the southern Great Plains or similar climatic conditions around the world. The 

asynchronous soil moisture patterns observed for grassland and winter wheat in 

Oklahoma would cause a lack of temporal stability in the relationship between edge of 

the field sensors and the actual soil moisture values under cropland, a phenomenon which 

has been reported in prior studies (e.g. Han et al., 2012; Heathman et al., 2012b). 

 

Spatial pattern of vegetation impacts on soil moisture  

State level interpolation of the long-term average root-zone PAW of grassland 

and wheat cropland for two contrasting dates revealed three distinct patterns as a 

consequence of the interaction between climate and land cover (Figure 5). In the western 

portion of the state, the low annual rainfall and the high atmospheric demand create soil 

moisture conditions that are typically in the dry range regardless of the land cover. 

Similarly, in the eastern part of the state, the average annual rainfall regime >1000 mm 

consistently generates the relatively wet soil moisture conditions regardless of the land 

cover. In contrast, the central portion of the state shows the greatest influence of the land 

cover on root-zone soil moisture. This is of particular relevance because a great portion 

of the wheat cropland in Oklahoma is concentrated in the central-western part of the state 

(Fig. 2), where using observed soil moisture under grassland vegetation as a surrogate of 
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the soil moisture condition under wheat cropland can induce substantial errors in root-

zone PAW.  

A highly instrumented watershed in southwest Oklahoma, called the Little 

Washita, has been the focus of numerous studies aimed at better understanding the spatio-

temporal variability of soil moisture under varied topography and vegetation (Jackson et 

al., 1999; Mohanty and Skaggs, 2001; Starks et al., 2006). A study conducted by 

Mohanty and Skaggs (2001) using soil moisture observations collected during Southern 

Great Plains 1997 (SGP97) Hydrology Experiment showed that areas with intermixed 

grassland and cropland had the least temporally stability in soil moisture. The results in 

Figures 4 and 5 help explain that previous finding. The SGP97 experiment was conducted 

from mid-June through mid-July, a time when soil moisture conditions under grassland 

and winter wheat cropland are typically trending in opposite directions (Fig. 4). 

 

Neural network-based observation operator 

After training, the neural network effectively mimicked the soil moisture 

dynamics under winter wheat as simulated by the dual Kc model (Fig. 6). The only 

required inputs for operational use of the neural network are the day of the year, latitude 

and longitude, observed root-zone PAW under grassland, and percent of sand, silt, and 

clay. The neural network exploits information in grassland soil moisture observations to 

predict the soil moisture condition under winter wheat cropland. The training of the 

neural network using almost 250,000 simulated winter wheat PAW values from the dual 

Kc model resulted in MBE of 0 mm and Pearson's correlation coefficient of 0.91 (Fig. 

6A). The ANN tended to slightly overestimate PAW values in the dry end and to under 
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estimate PAW in the wet end. In the validation set, the neural network resulted in MBE 

of -4.3 mm and correlation coefficient of 0.71. Despite the lower correlation coefficient, 

the validation set was effective to prevent overfitting of the neural network. The 

performance of the neural network in the test set showed a MBE of 0.4 mm, r equal to 

0.78, and RMSD equal to 23.8 mm, values that are similar to those obtained with the dual 

Kc model when compared to field observations (compare Fig. 6C and D to Fig. 3B, C, 

and D). The soil moisture time series for a particular location, e.g. the Waurika Mesonet 

station, shows the relatively close match between simulated PAW dynamics using the 

dual Kc model and the neural network observation operator (Fig. 6D). Simply assuming 

that the grassland soil moisture observations were representative of neighboring winter 

wheat cropland would have resulted in RMSD of 50 mm relative to the dual Kc model at 

Waurika. This suggests that the neural network improves the prediction accuracy by 

>50% relative to the default assumption. 

A limitation of using this neural network as an observation operator was its 

inability to exactly mimic the daily variations of PAW predicted by the dual Kc model, 

particularly the sharp rise of PAW as a consequence of rainfall events. Perhaps, the 

addition of other variables, such as daily precipitation, could improve the performance of 

the neural network. However, our intention was not to maximize similarity between the 

neural network and the mechanistic model, but to test whether observed PAW under 

grassland can be used to effectively estimate PAW under nearby winter wheat cropland. 

Due to the complexity of the problem and the few input variables provided to the neural 

network, it performed surprisingly well. The use of a neural network-based observation 

operator to relate the soil moisture of two different and adjacent land covers is a 



97 

 

departure from the use of mechanistic models that heavily rely on weather variables to 

model cropland soil moisture. Simulation of soil moisture using mechanistic crop models 

for a large number of fields can be computationally demanding and offers no guarantee of 

increased accuracy. The neural network is a faster computational alternative with limited 

requirements, which is well-suited for operational use to enhance the value of existing in 

situ soil moisture monitoring networks. 

 

Application of the neural network to a SMAP pixel 

One practical application of this approach can be demonstrated using a single 9x9 

km2 grid cell (FID: 153137, Row: 329, Column: 877) of the recently launched SMAP 

mission. This grid cell, which includes the Lahoma Oklahoma Mesonet station, has a 

total of 8,200 hectares including intermixed grassland (25% of the area) and winter wheat 

(47% of the area) as the dominant land covers (Fig 7A and 7B). The estimation of PAW 

at 30-m resolution for grassland (by ordinary kriging) and wheat cropland (by neural 

network) within the selected grid cell on 10 Oct. 2014, unveiled the strongly contrasting 

soil moisture patterns that can be present in intermixed landscapes (Fig. 7C). For the 

selected date, the median PAW under grassland in this domain was 18 mm, a value 

similar to the minimum long-term PAW presented in Figure 4B. This value seems 

reasonable since active grassland vegetation probably depleted a large portion of the soil 

moisture during the summer period. A completely different situation was predicted in the 

wheat fields, where the median PAW was 106 mm, a value almost six times higher than 

the median PAW in grassland. The median PAW in wheat cropland was also in 

agreement with the long-term mean PAW shown in Figure 4B for winter wheat. The 
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mean PAW across both land covers in the domain was 76 mm, or in other units, the mean 

root-zone soil moisture across both land covers was 0.073 cm3 cm-3 [(76 mm – 18 

mm)/800 mm] higher than the value which would have been estimated using the 

grassland observations alone. This bias in estimated soil moisture which would occur if 

grassland values were used directly for SMAP validation is large relative to the SMAP 

mission requirement of measuring 0-5 cm soil moisture to within 0.04 cm3 cm-3. Using 

the neural network allowed us not only to effectively translate root-zone soil moisture 

from the Oklahoma Mesonet stations to adjacent wheat fields, but also to estimate the 

weighted mean PAW of the grid without relying on identification of representative 

locations that exhibit temporally stable relationships to the grid mean (Vachaud et al., 

1985; Chen, 2006).  

 

CONCLUSION 

The dual crop coefficient model was able to effectively predict the root-zone soil 

moisture dynamics of wheat cropland for a wide range of conditions. Simulations using 

the dual crop coefficient method allowed us to compare wheat cropland and grassland 

soil moisture at 78 stations of the Oklahoma Mesonet. Grassland and winter wheat had 

similar mean annual root-zone PAW across several climate divisions in Oklahoma, but 

the strongly asynchronous dynamics demonstrate that soil moisture observations under 

grassland vegetation should not be used to represent the soil moisture condition of nearby 

wheat cropland. A simple neural network proved to be an effective observation operator 

to translate soil moisture measurements under grassland into soil moisture estimates 

under nearby wheat cropland, demonstrating that it is possible to exploit embedded 
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information present in grassland soil moisture to predict wheat cropland soil moisture. 

The use of a neural network as an observation operator allowed us to identify and 

quantify the contrasting soil moisture patterns of intermixed grassland and cropland 

within a 9x9 km2 SMAP grid cell. This promising new approach for estimating soil 

moisture under adjacent, contrasting land covers at a relatively low computational cost 

and without depending on the assumption of temporal stability may significantly enhance 

the applications of existing large-scale monitoring networks. 
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Table 1. Basal crop coefficients for the different winter wheat growth stages and 

equivalent Zadoks and Wang-Engel quantitative scales. 

Growth stage Zadoks Wang-Engel† Kcb 

Planting 0 -1.00 0.40 

Emergence 10 0.00 0.40 

Early tiller 21 0.26 0.40 

Mid tiller 26 0.37 0.65 

Late tiller 30 0.45 0.90 

Stem elongation 31 0.47 1.15 

Heading 50 0.90 1.25 

Flowering 60 1.00 1.20 

Milk 71 1.20 1.00 

Soft dough 85 1.75 0.80 

Hard dough 87 1.82 0.60 

Maturity 91 2.00 0.40 
†Values were approximated using linear interpolation based on Wang and Engel 1998. 
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Table 2. Set of parameters used in the dual crop coefficient soil water balance model and the 

modified Wang-Engel phenological model. 

Parameter Description Value Units 

Dual Kc model†       

TTemergence Cumulative thermal time to emergence 100 GDD 

ptab Factor that modulates available water 0.6 Dimensionless 

Kcb fallow Coefficient for diffusive losses 0.02 Dimensionless 

Zmax Maximum rooting depth 0.8 m 

Zshape Shape factor for root growth 1.5 Dimensionless 

TTZmax Thermal time to maximum rooting depth 900 GDD 

      

Wang-Engel model‡       

Rmax E-TS Maximum development rate emergence-

terminal spikelet 

0.025 scale units per 

day 

Rmax TS-AN Maximum development rate terminal 

spikelet -anthesis 

0.049 scale units per 

day 

Rmax AN-PM Maximum development rate anthesis-

physiological maturity 

0.038 scale units per 

day 

Tmin E-TS Minimum temperature for emergence- 

terminal spikelet 

0 °C 

Tmin DS-AN Minimum temperature for terminal 

spikelet -anthesis 

4 °C 

Tmin AN-PM Minimum temperature for anthesis-

maturity 

8 °C 

Tmin Vernalization Minimum temperature for vernalization -1.3 °C 

Topt E-TS Optimal temperature for emergence- 

terminal spikelet 

19 °C 

Topt DS-AN Optimal temperature for terminal 

spikelet-anthesis 

24 °C 

Topt AN-PM Optimal temperature for anthesis-

physiological maturity 

24 °C 

Topt Vernalization Optimal temperature for vernalization 4.9 °C 

Tmax E-TS Maximum temperature for emergence- 

terminal spikelet 

30 °C 

Tmax DS-AN Maximum temperature for terminal 

spikelet-anthesis 

35 °C 

Tmax AN-PM Maximum temperature for anthesis-

physiological maturity 

35 °C 

Tmax Vernalization Maximum temperature for vernalization 15.7 °C 

Pc Critical photoperiod 7 hr 

ω Photoperiod sensitivity factor 0.16 h-1 

VDfull Number of days to complete 

vernalization stage 

40 days 

†Parameters are similar to those of Steduto et al. (2009) and Allen et al. (1998). 

‡ Parameters are equal to those suggested by Streck et al. (2003) for wheat cultivar Karl 92.  
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Figure 1. Field observations of green canopy cover in the grassland surrounding the Stillwater 

Oklahoma Mesonet station and an adjacent field of continuous winter wheat during the late 

winter and spring of 2015. 
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Figure 2. Map showing the spatial distribution of winter wheat cropland, grassland, and the 78 

selected Oklahoma Mesonet stations (inverted black triangles) across the state of Oklahoma. Each 

point represents an area of 30 by 30 m. Source: USDA cropland data layer, 2014. 
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Figure 3. Calibration (A) and validation (B, C, D) of the dual crop coefficient model for different 

years and sites across the state of Oklahoma. Root mean squared error (RMSE), mean bias error 

(MBE), and the Wilmott index of agreement (d) were used to evaluate the model prediction of 

plant available water (PAW) in the top 0.8 m. The root mean squared difference (RMSD grass) 

was used to evaluate the difference between PAW field observations and the nearest Oklahoma 

Mesonet station. Bars in A, B, and C represent daily total precipitation. 
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Figure 4. Long-term (18-yr) mean plant available water (PAW) in the top 0.8 m of continuous 

wheat and grassland across four Oklahoma climate divisions with contrasting annual 

precipitation. 
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Figure 5. Selected dates of long-term (18-yr) mean plant available water (PAW) in the top 0.8 m 

of grassland (A and C) and continuous wheat (B and D) across Oklahoma. 
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Figure 6. Training (A), validation (B), and testing (C) results of the feedforward-backpropagation 

artificial neural network (ANN) used to predict plant available water (PAW) in winter wheat 

based on observed soil moisture under grassland vegetation and six other inputs. The PAW 

dynamics for the Waurika station within the test set are displayed in (D). N represents the number 

of samples included in each set, MBE is the mean bias error, R is the correlation coefficient, and 

RMSD grass is the error between the simulated PAW in continuous wheat and the PAW at the 

Waurika Oklahoma Mesonet station. 
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Figure 7. Orthophoto (A), grassland and winter wheat cropland area (B), and estimated plant 

available water (PAW) in the top 0.8 m of the soil profile on 10 Oct. 2014 for a SMAP grid cell 

(FID: 153137, row: 329, column: 877) near the Lahoma Oklahoma Mesonet station.  
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CHAPTER V 
 

 

TRANSPIRATION RESPONSES TO SOIL DRYING UNDER HIGH ATMOSPHERIC 

DEMAND 

Andres Patrignani and Tyson E. Ochsner 

ABSTRACT 

Quantitative relationships between plant transpiration and soil water are necessary to 

model vegetation dynamics in water-limited environments. It is a common practice to determine 

these relationships empirically by conducting field or pot experiments. However, most studies 

have only been conducted in low to moderate atmospheric demands adopting the concept of plant 

available water to describe the soil moisture condition, which relies on somewhat arbitrary lower 

and upper limits. The objectives of this study were: i) to compare transpirational responses of 

corn plants under a moderate and a high atmospheric demand for three soil textures, and ii) to 

investigate the application of a continuous double exponential function that relates relative plant 

transpiration to soil matric potential from saturation to oven-dryness without relying on lower and 

upper limits. Corn plants were grown in 7.8 L pots in a controlled-environment chamber under 

atmospheric demands of 4.8 and 8.4 mm d-1. Actual transpiration rate was determined by 

differences in pot weight every 24 h.  Potential transpiration was determined by estimating the 

maximum transpiration rate for a given fresh biomass. Relative plant transpiration was 

determined as the ratio between actual and potential transpiration rates. The soil matric potential 

at the inflection point of the soil water retention curve proved to be an effective and unbiased 
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point to generalize the relative transpiration response for different soil textures and both the 

moderate and high atmospheric demands. This generalized response was well represented by a 

double exponential model, which can be used within emerging quantitative frameworks such as 

the integral water capacity to determine the soil’s plant available water capacity. 
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INTRODUCTION 

 Simulation of plant growth in water-limited environments requires expressions that 

quantitatively describe transpiration responses to different degrees of soil moisture content. As a 

consequence of the high complexity of the soil-plant-atmosphere continuum, these quantitative 

responses are usually determined empirically by conducting field, greenhouse, or controlled-

environment chamber experiments that compare the transpiration rate of plants under different 

levels of soil water deficit with that of plants under well-watered conditions. The different levels 

of soil moisture content are often expressed as a fraction of the soil’s plant available water 

capacity (PAWC), which is often defined by somewhat arbitrary lower and an upper retention 

limits. The threshold (PAWt) at which relative plant transpiration starts to rapidly decline as a 

function of plant available water is generally used to delimit the transition between well-watered 

and water-limited conditions.  

Using the concept of PAW to describe plant transpiration responses to soil drying is 

attractive due to its simplicity. However, the arbitrary nature of the lower and upper limits 

prevent consistent determination of PAWC across field studies, laboratory routines, and pot 

experiments (Ratliff et al., 1983; Passioura, 2006). After an exhaustive review of the topic, Sadras 

and Milroy (1996) concluded that PAWt for different physiological processes is highly variable 

and that discrepancies in the determination of PAWt for a given plant under different conditions 

may be affected by the uncertainties in the determination of PAWC. Inspection of several studies 

(Denmead and Shaw, 1962; Ray and Sinclair, 1998; Fletcher et al., 2007; Gholipoor et al., 2010, 

2013b) revealed that the procedures for determination of the drained upper limit (i.e. field 

capacity) to define PAWC are inconsistent. For instance, the study by Denmead and Shaw (1962) 

provides little information about the determination of the field capacity. It is unclear whether field 

capacity was determined using laboratory measurements at a given matric potential or was 

determined in field conditions. On the other hand, the determination of the drained upper limit in 

pot experiments (e.g. Ray et al., 2002; Gholipoor et al., 2013a) often is based on the soil moisture 
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content after thoroughly wetted pots drained overnight. This approach typically results in higher 

soil moisture contents compared to determinations in field conditions or by laboratory routines 

(Passioura, 2006). 

The review by Sadras and Milroy (1996) also showed that a wealth of literature exists for 

transpiration responses in low (<3 mm d-1 reference evapotranspiration, ET0) to moderate (3-6 

mm d-1 ET0) atmospheric demands, but there is lack of research under high (>6 mm d-1 ET0) 

atmospheric demands, which are the environments that are most prone to experience soil water 

deficits and thus limit plant transpiration. We were unable to find any studies that investigated 

plant transpiration responses in environments with evapotranspiration demands exceeding 6.5 

mm d-1. A study conducted by Denmead and Shaw (1962) in Iowa, US explored the transpiration 

response of corn (Zea mays L.) plants growing in large pots buried in the field and subjected to 

different soil moisture treatments with atmospheric demands ranging from 1.4 to 6.4 mm d-1. The 

authors found that the relative transpiration rate starts to decline at increasing soil moisture 

contents with increasing atmospheric demand. In contrast, a study conducted by Ray et al. (2002) 

showed that corn plants growing in a sandy loam soil under day-time vapor pressure deficits 

ranging from 1.1 to 3.6 kPa had stable transpiration responses regardless of the atmospheric 

demand. The authors found that relative transpiration started to consistently decline at PAWt 

ranging from 0.31 to 0.38. Despite its significance, the discrepancy of relative plant transpiration 

responses under contrasting atmospheric demands and its relationship to plant available water 

remains has not yet been clarified.  

To solve some of these limitations, new methods such as the integral water capacity 

(Groenevelt et al., 2001) and the integral energy (Minasny and McBratney, 2003) have been 

proposed to estimate PAWC. The integral water capacity is a particularly attractive framework 

because of its flexibility to incorporate multiple weighting functions that describe different 

limitations to plant water uptake. Unfortunately, this flexibility is also a disadvantage, since the 

functions describing the limitations are unknown. In this study we explore the hypothesis that a 
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single continuous function could be used as a weighting function within the integral water 

capacity framework to describe the response of relative transpiration to soil moisture conditions 

without relying on arbitrary upper and lower limits. The objectives of this study were: i) to 

compare transpirational responses of corn plants under a moderate and a high atmospheric 

demand for three soil textures, and ii) to investigate the application of a continuous double 

exponential function that relates relative plant transpiration to soil matric potential from 

saturation to oven-dryness. 

 

MATERIALS AND METHODS 

Controlled-environment chamber 

A walk-in growth chamber with an area of ~10 m2 by 3 m tall with controlled air temperature, 

wind speed, and light was used to grow corn plants in a moderate and a high atmospheric 

demands (Table 1). The different atmospheric demands were generated by changing the air 

temperature and the wind speed during the day-time only. The day-time was set to 14 h and the 

night time was set to 10 h since these are representative of the growing season for corn. The 

moderate atmospheric demand was generated by setting the day-time air temperature to a target 

of 28 °C and the fan at its lowest speed (~ 1 m s-1), while the highest atmospheric demand was 

generated by setting a target day-time air temperature of 38 °C and the fan was set to its highest 

speed (~ 3 m s-1).  The growth chambers successfully maintained the air temperature within ±1 °C 

from the specified values (Table 1). For each atmospheric demand we measured air temperature, 

relative humidity, and carbon dioxide concentration. 

The chamber had a combination of metal halide and high pressure sodium lamps (400 

Watts, Hortilife) that were used to maintain the photosynthetically active radiation (PAR) 

between 1200 and 1400 µmol cm-2 s-1 at the top of the canopy. To measure reference 

evapotranspiration (ET0) we installed an atmometer (ETgage Co. Loveland, CO, USA) near the 

plants and its top part was kept aligned with the top of the canopy. Atmometers have been shown 
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to produce reliable estimates that closely match those of reference evapotranspiration by the 

Penman-Monteith method in Mediterranean (Magliulo et al., 2003), semi-arid (Gavilán and 

Castillo-Llanque, 2009), and humid (Knox et al., 2011) environments. Day-time, night-time, and 

weighted daily vapor pressure deficit for each atmospheric demand were estimated from air 

temperature and relative humidity. 

 

Experiment setting 

 Corn plants were grown in the controlled-environment chamber using 7.8 L (0.3 m 

height) pots filled with homogenized silt loam, clay loam, and sandy loam soils. The silt loam soil 

was collected at Lahoma, OK (N 36.389642 W -98.105749), the clay loam soil was collected in 

Stillwater, OK (N 36.121377 W-97.094243), and the sandy loam was a commercially available 

soil (Timberline Top Soil acquired at Lowes). At the bottom of each pot we placed a mesh that 

held a thin layer of pea size gravel to improve drainage. Each soil was passed through the 2-mm 

sieve prior filling the pots. The filling process consisted of adding one third of the soil required to 

completely fill the pot at a time. After filling each third of the pot, the soil was irrigated using de-

ionized water until drainage was evident.  When completely filled, pots were left for one week 

prior to planting inside the growth chamber to experience several drying and wetting events that 

resulted in a homogeneous soil with mean bulk density of 1.17 g cm-3 with standard deviation of 

0.05 g cm-3 across all pots and soils. During this period pots were irrigated two or three times. 

We adopted this packing technique to avoid the development of differentially compacted soil 

layers that can be present when manually packing the soil by layers. Initially, a total of 15 to 18 

pots were planted with corn. Three seeds of similar weight (±0.01 g) were planted in each pot. 

After emergence, pots were thinned to leave only the most vigorous plant. When plants had five 

leaves fully expanded (V5), we selected the set of 12 plants with the lowest variance in plant 

height. To achieve this selection, we developed a routine in Matlab (Mathworks, Inc., Natick, 
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MA) that calculates the variance of all possible combinations of sets of 12 plants. This procedure 

ensured that comparisons of transpiration responses was for similar plants.  

The day prior to initializing the treatments, pots were thoroughly wetted, sealed with 

white 150-µm thick polyethylene around the stem of the plants to prevent soil evaporation, and 

left draining overnight in order to reproduce the drained upper limit achieved by other 

researchers. At the beginning of the experiment eight plants were randomly selected as “stressed” 

and four plants were selected as “Non-stressed”. The stressed plants received water only at the 

start of the experiment. The non-stressed plants received water periodically to avoid any visible 

stress. Soil water was replenished to ensure that well-watered pots had a soil matric potential of 

>-50 kPa based on tensiometers installed in the well-watered pots. To minimize nutritional 

deficiencies, pots were fertilized at planting and prior the initialization of the treatments by 

dissolving 22 g of a complete fertilizer (24-8-16, Miracle-Gro, Geneva, New York) in 10 L of 

water and then distributing this nutritive solution among the 12 pots in equal parts. 

 

Determination of actual transpiration rates 

Daily transpiration rate was calculated as the difference in pot weight between two 

successive daily weights using an Ohaus balance with minimum resolution of 1 g. Initial and final 

pot volumetric water content at the start and end of the experiment were estimated by taking three 

measurements in the top 0-6 cm per pot with a calibrated impedance probe (ML2x, Theta Probe, 

Delta-T Devices). From pilot experiments we learned that average 0-6 cm soil moisture was not 

different from the average of soil moisture measurements at several depths within the pot). Soil-

specific soil water retention curves were used to convert volumetric water contents into soil 

matric potentials. 

 

Determination of potential and relative transpiration rates 
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In many experiments non-stressed plants are referred to as “well-watered” plants. However, the 

definition of “well-watered” plants is seldom given. It is usually assumed that maximum 

transpiration rates occur at “field capacity”, but this term is loosely defined and often not 

consistent across experiment settings. Furthermore, because plant growth is affected by soil water 

stress, normalizations in the transpiration rates are often needed to account for the different sizes 

in well-watered and stressed plants. For these reasons, in this experiment we adopt a different 

approach to estimate the potential transpiration rates. Therefore, in this study we assumed that 

well-watered plants are those plants that exhibit the greatest transpiration rate for a given fresh 

biomass at each evapotranspiration demand. Our idea was not to achieve a given soil moisture 

content in the well-watered plants, but a range of well-watered conditions to determine the 

maximum transpiration rate. Our method was designed to account for subtle soil water excess or 

deficits under the so called “well-watered” conditions that may decrease the transpiration rate. 

Then, we used a 95th percentile quantile regression analysis (Cade et al., 2005) to determine the 

potential transpiration rate for any given fresh biomass. Quantile regression analysis allowed us to 

filter plants that were in the well-watered treatment but for some reason had lower transpiration 

rates as a consequence of soil water excess or deficits. Finally, the daily relative transpiration rate 

for each plant was calculated as the ratio between the actual transpiration rate of the plant and the 

corresponding potential transpiration rate according to its fresh biomass. This method allowed us 

to compare the actual and potential transpiration rates for plants of the same size. 

 

Determination of aboveground and root biomass 

Daily fresh and dry aboveground biomass were estimated by measuring stem diameter 

and plant height. Extra corn plants were grown to develop models for predicting fresh and dry 

biomass using multiple linear regression. At the end of each experiment, aboveground biomass 

was estimated destructively by harvesting the plants and drying them in an oven at 60 °C until 

constant weight (about 7 days). Plants were cut in small pieces to accelerate drying. Root dry 
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biomass was measured by first manually extracting the bulk of the root system from the soil. 

Then, a 2.0 mm-sieve was used to collect the remaining fine roots. Roots were soaked for 15 

minutes to loosen up the soil in the rhizosphere, and then thoroughly washed. Similarly to the 

aboveground biomass, roots were dried until constant weight (about two to three days). 

 

Soil properties  

 For each soil we sampled four cores from different pots using 100 cm3 (50 mm i.d. and 

50 mm height) stainless steel rings (Eijkelkamp sampling kit, Giesbeek, Netherlands). These 

samples were then used to measure the volumetric water content at soil matric potentials of 0, -5, 

-10, and -33 kPa using the pressure cell (Tempe cell) method (Dane and Hopmans, 2002) and at 

soil matric potentials of -100, -500, -1000, and -1500 kPa using the pressure plate extraction 

method (Dane and Hopmans 2002) (Table 2, Fig. 1). The Groenevelt-Grant (Groenevelt and 

Grant, 2004) soil water retention model was chosen because it allows multiple anchor points, 

does not rely on the assumption of residual water content, and explicitly provides the inflection 

point. In this case, we anchored the model to the saturation and oven-dryness points to fit the 

observed data. The equation of the models with two anchor points is: 

𝜃(ℎ) = 𝜃𝑠 − (𝜃𝑠 − 𝜃𝑜𝑑) {𝑒𝑥𝑝 [(
𝑘0

ℎ𝑜𝑑
)

𝑛

− (
𝑘0

ℎ
)

𝑛

]}    Eq. [1] 

where 𝜃𝑠 (cm3 cm-3) is the volumetric water content at saturation, 𝜃𝑜𝑑 (cm3 cm-3) is the 

volumetric water content at oven dryness (assumed to be zero), 𝑘0 (kPa) and 𝑛 (dimensionless) 

are fitting parameters, ℎ𝑜𝑑 (kPa) is the soil matric potential at oven dryness which is 

approximately 105.9 kPa (Grant et al., 2010). The term (𝜃𝑠 − 𝜃𝑜𝑑) is equivalent to the 𝑘1 

parameter in the version of the equation with only one anchor point, since 𝜃𝑜𝑑 is assumed zero, 

then 𝑘1 = 𝜃𝑠. 

 

Double exponential stress function 
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  Transpiration responses to soil water stress are usually modeled using piece-wise linear 

(Soltani et al., 2000; Ray et al., 2002) or single exponential functions (Muchow and Sinclair, 

1991; Sadras and Milroy, 1996; Soltani et al., 2000). However, these functions are only able to 

represent the transpiration responses to soil drying from the point of maximum transpiration rate. 

We propose a flexible and continuous double exponential stress function that covers the entire 

range from saturation to oven dryness, which can be presented in its most general form as: 

𝑅𝑇 =  𝑅𝑇𝑚𝑎𝑥 {[1 + 𝑒𝑥𝑝 (
𝜓𝑚

𝜓𝑖𝑝
− 𝛼)]

−𝑛

− 𝑒𝑥𝑝 [𝑏 (
𝜓𝑚

𝜓𝑖𝑝
− 𝑐)]} Eq [2] 

where 𝑅𝑇 is the relative transpiration rate, 𝑅𝑇𝑚𝑎𝑥 is the maximum relative transpiration rate, 𝛼, 

𝑏, 𝑐, and 𝑛 are fitting parameters, 𝜓𝑚 is the soil matric potential, and 𝜓𝑖𝑝 is the soil matric 

potential at the inflection point of the retention curve 𝜃(𝑙𝑜𝑔10𝜓𝑚). Although 𝜓𝑖𝑝 is equivalent to 

the parameter 𝑘0 in the Groenevelt-Grant model, we adopt the more general symbolic 

representation, 𝜓𝑖𝑝, because the inflection point can be obtained from other soil water retention 

models. Because a weighting function has a desired maximum of one, the parameter 𝑅𝑇𝑚𝑎𝑥 can 

be dropped. Also assuming that the transpiration rate is zero at the saturation point, the c 

parameter can also be dropped producing a more convenient three-parameter function of the 

form: 

𝑅𝑇 =  [1 + 𝑒𝑥𝑝 (
𝜓𝑚

𝜓𝑖𝑝
− 𝛼)]

−𝑛

− 𝑒𝑥𝑝 (𝑏
𝜓𝑚

𝜓𝑖𝑝
)  Eq [3] 

An interesting feature about equation 3 is that the transpiration responses to soil water under wet 

and dry conditions can be controlled independently by different terms. The first part of the 

equation represents the responses to soil drying from the maximum transpiration rate, while the 

second part represents the plant transpiration responses from saturation to maximum transpiration 

rate. The parameter 𝑎 (kPa) has the same unit as the soil matric potential and represents the 

inflection point of the drying portion of the curve, the  𝑛 (dimensionless) parameter is related to 

the sensitivity of the plant to soil water stress in the drying portion of the curve, whereas the 𝑏 
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(kPa-1) parameter controls the response of the plant at high soil moisture contents. The c (kPa) 

parameter may be considered in cases when there is plant transpiration even under saturated soil 

conditions. Plants such as rice and corn have specialized tissue (i.e. aerenchyma) that allows 

gaseous transport from shoot to root in hypoxic conditions, thus allowing transpiration. In 

equation 3 the maximum value is an asymptote, which may be a subtle limitation considering that 

a desirable property of weighting functions is to span the range from zero to one. 

 

RESULTS AND DISCUSSION 

Plant height and stem diameter proved adequate to nondestructively predict fresh and dry 

plant biomass during the experiments. All terms included in the full model for fresh biomass were 

significant with an R2 of 0.92 (Table 3). For dry biomass, only stem diameter and the interaction 

of stem diameter x plant height were significant predictors, and therefore these terms were used to 

build a reduced model, which resulted in an R2 of 0.79. The greater error in estimating dry 

biomass relative to fresh biomass may be related to our measurements. When plants are turgid, 

stem diameter and plant height can be measured with high precision, but when plants are wilted, 

accurate measurements become more difficult, particularly for stem diameter. For this reason, we 

employed fresh biomass to conduct our quantile regression analysis. In addition, using fresh 

biomass seems a better indicator of the current transpirational condition of the plant than dry 

biomass. A turgid plant and a stressed plant may have the same dry biomass, but dramatically 

different transpiration rates. 

The use of quantile regression allowed us to determine the maximum plant transpiration 

rate as a function of fresh biomass for each soil and atmospheric demand. This method reduced 

the sensitivity to plants in the presumably well-watered treatment that had transpiration rates 

below the potential transpiration rate for a given plant fresh biomass. Transpiration rates below 

the potential rate may be present in “well-watered” plants that have excess of mild soil moisture 

deficits. This method has the advantage of not relying on the assumption that well-watered plants 
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are those at “field capacity” and avoids the double normalization used in other studies which 

sometimes mask the effect of lower transpiration rates as a consequence of overwatering pots. 

The maximum possible potential transpiration rate as a function of fresh biomass was effectively 

approximated using a power function (Fig. 2). 

In order to demonstrate the limitations and the bias that can be introduced when 

determining PAWt based on arbitrary upper limits, we show in Figure 3 the transpiration 

response for corn plants growing in a sandy loam soil at an atmospheric demand of 8.4 mm d-1. 

The determination of PAWC based on the soil moisture content at the saturation point, 10% air-

filled porosity, -10 kPa, and -33 kPa resulted in dramatic changes of the PAWt with values 

ranging from approximately 0.4 to 1.0 PAWC. In the case of pot experiments where the drained 

upper limit can be close to 10% air-filled porosity (Passioura, 2006) the PAWt of the sandy loam 

soil occurred at values of 0.4 PAWC. This value closely matches the PAWt values obtained by 

other studies evaluating the transpiration response of corn in commercially available sandy loam 

soils (Ray et al., 2002). From this particular example, it is clear that using functions developed 

from pot experiments in models that are intended to simulate field conditions can result in 

considerable error. This example also highlights the large amount of water that can be held in the 

soil between -10 or -33 kPa and saturation or 10% air-filled porosity. 

A simple alternative to using PAWC is to describe relative plant transpiration using soil 

matric potential. Using the soil matric potential is attractive since it has a direct relationship with 

the energy state at which water is held in the soil. The use of the soil matric potential to describe 

relative plant transpiration rate has been proposed by Feddes et al. (1978). While transpiration 

responses were consistent within a given soil texture for both moderate and high atmospheric 

demands (Fig. 4), the markedly different responses across soils implies that transpiration 

reduction curves need to be developed for each soil, which is certainly a disadvantage. The 

consistency of the transpiration responses within each soil under different atmospheric demands 

and the similarity between the transpiration responses in the clay loam and silt loam soils relative 
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to the sandy loam soil, inspired us to investigate the role of the inflection point of the soil water 

retention curve as a normalizing factor (Grant and Groenevelt, 2015). 

Normalizing the soil matric potential (𝜓𝑚) by the matric potential at the inflection point 

(𝜓𝑖𝑝) resulted in a generalized response describing relative transpiration and soil water content 

(Fig. 5). The double exponential equation (Eq. 3) presented in this study, can be used to relate 

relative plant transpiration to soil moisture with a single set of parameters across different soil 

types and atmospheric demands without relying on the arbitrary concept of “field capacity” or 

“drained upper limit”. Parameters 𝛼, 𝑏, and 𝑛 calculated for a particular variety or species grown 

in any given soil type could then be used be used to describe relative plant transpiration as a 

function of soil matric potential of any other soil by knowing the soil matric potential at its 

inflection point. The soil water retention model of Groenevelt and Grant (2004) explicitly 

provides with the inflection point, which is equal to one of the fitting parameters (i.e.𝑘0). 

Interestingly, the relative transpiration rate started to consistently decline when  𝜓𝑚/𝜓𝑖𝑝  had an 

approximate value of one for all three soils. Our findings provide evidence supporting the 

hypothesis formulated by Grant and Groenevelt (2015) about the rapid decline in transpiration 

rate at, or nearby, the soil matric potential at the inflection point of the soil water retention curve.  

The proposed continuous function describing plant transpiration responses to soil drying 

could also be used as a weighting function within the integral water capacity (Groenevelt et al., 

2001) framework to estimate plant available water.  

CONCLUSION 

This study presented a set of observations that demonstrated the limitations of the often 

used PAWt framework which depends on assumption of “field capacity” or “drained upper limit” 

to represent transpiration responses to soil drying. For each of the three soil textures evaluated, 

the soil matric potential at the inflection point of the soil water retention curve proved to be an 

effective and unbiased point to generalize the relative transpiration response for different soil 
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textures, revealing that the relative transpiration rate started to decline at a soil matric potential 

near that at the inflection point. This generalized response can be represented by a double 

exponential model which describes the relative transpiration responses to different soil matric 

potentials for different soils and atmospheric demands. The proposed double exponential function 

can be used within emerging quantitative frameworks such as the integral water capacity to 

determine the soil’s plant available water capacity. 
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Table 1. Environmental conditions of the controlled-environment chamber at moderate and high 

atmospheric demands.  

  Units Moderate demand High demand 

Daily reference ETo† mm d-1 4.8 8.4 

Day-time vapor pressure deficit kPa 2.2 4.7 

Night-time vapor pressure deficit kPa 0.8 1.6 

Daily weighted vapor pressure deficit kPa 1.6 3.5 

Photosynthetically active radiation μmol cm-2s-1 1200-1400 1200-1400 

Length day-time h 14 14 

Day-time air temperature °C 29.0 37.9 

Night-time air temperature °C 21.2 20.6 

Mean RH day % 43.8 27.7 

Mean RH night % 70.4 31.8 

Carbon dioxide concentration ppm 595 588 

† Determined by the atmometer. 
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Table 2. Saturated hydraulic conductivity (𝐾𝑠𝑎𝑡), bulk density (𝜌𝑏), and the volumetric water 

content at saturation (𝜃𝑠), 10% air-filled porosity (𝜃𝐴𝐹𝑃), -10 kPa (𝜃10), -33 kPa (𝜃33), -1500 kPa 

(𝜃1500), 𝑘0, and 𝑛. 

Soil texture Ksat ρb θsat θAFP θ10 θ33 θ1500 k0 n 

  cm h-1 g cm-3     cm3  cm-3    kPa Unitless 

Silty Loam 2.59 1.19 0.466 0.419 0.315 0.250 0.068 14.8 0.457 

Clay Loam 1.79 1.22 0.466 0.420 0.268 0.222 0.102 12.7 0.349 

Sandy Loam 22.7 1.10 0.495 0.445 0.198 0.177 0.062 3.81 0.559 

 

  



135 

 

 

Table 3. Parameter estimates, 95% confidence intervals, coefficients of determination (R2), and F 

statistics for the full and reduced regression models. The independent variables are plant height, 

stem diameter (stemD), and their cross-products. The dependent variable is aboveground fresh 

(FB) and dry (DB) corn biomass (g). 

    95% Confidence intervals   

Dependent variable Parameter estimate Lower Upper R2 F 

Full model FB           

    Intercept 91.69 60.04 123.33 0.922 544*** 

    Height, cm -0.69 -1.05 -0.33     

    StemD, cm -255.37 -287.02 -223.72     

    StemD X Height 2.47 2.23 2.70     

Full model DB           

    Intercept 4.77 -1.57 11.10 0.797 179*** 

    Height, cm 0.05 -0.02 0.12     

    StemD, cm -26.32 -32.66 -19.99     

    StemD X Height 0.22 0.17 0.27     

Reduced model DB           

    Intercept 8.04 3.98 12.09 0.794 266*** 

    StemD, cm -27.74 -33.73 -21.76     

    StemD X Height 0.25 0.22 0.28     

***Significant at the 0.001 probability level. 
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Figure 1. Laboratory observation and the fitted Groenevelt-Grant soil water retention model for 

the silt loam, clay loam, and sandy loams soils used in this study. 
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Figure 2. Example of the determination of the potential transpiration rate for a given plant fresh 

biomass using Quantile regression (95th percentile) for a silt loam at moderate atmospheric 

demand (4.8 mm d-1) and a sandy loam at high atmospheric demand (8.4 mm d-1). 
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Figure 3. Relative transpiration rate as a function of the fraction of plant available water capacity 

(PAWC) for a sandy loam soil under an atmospheric demand of 8.4 mm d-1. The value of 

PAWC=1 was defined by different common alternatives to estimate the upper limit (UL). 
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Figure 4. Transpiration responses as a function of the soil matric potential for a silt loam (SiL), 

clay loam (CL), and sandy loam (SaL) at atmospheric demands of 4.8 and 8.4 mm d-1 The vertical 

dashed line represents the inflection point of the soil water retention curve when plotted on a 

log10 scale. Soil matric potential was estimated from observations of volumetric water content 

and the fitted soil water retention curves. 

  



140 

 

 

 

Figure 5. Relationship between the relative transpiration rate and the normalized soil matric 

potential by the soil matric potential at the inflection point for a sandy loam (SaL), clay loam 

(CL), and silt loam (SiL) at atmospheric demands of 4.8 and 8.4 mm d-1. RT stands for relative 

transpiration, ѱm/ ѱip is the normalized soil matric potential, and a, b, and n are fitting parameters 

with value of 2.9 kPa, 4.06 kPa-1, and 0.17, respectively.  
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CHAPTER VI 
 

 

GENERAL CONCLUSION 

Winter wheat is the predominant crop in the southern Great Plains of North America with 

about 8.5 million hectares planted every year. Winter wheat is predominantly grown in rainfed 

conditions and the frequent soil water deficits occurring during the growing season impose a 

limitation to crop production. The challenges that we addressed in this dissertation are related to 

i) the identification and quantification of the magnitude and possible reasons for state-level 

stagnation of wheat grain yields, ii) the development of a new tool to measure green canopy cover 

that can help improve crop models used for grain yield and root-zone soil moisture estimations, 

and thus aid wheat producers to make better in-season management decisions; iii) the need to 

increase the applications of large-scale soil moisture monitoring networks by translating soil 

moisture observations under grassland to estimate the soil moisture condition under wheat 

cropland, and iv) better understanding transpiration responses to soil water deficits under 

moderate and high atmospheric demands. 

In the first study we investigated the magnitude of the yield and production gaps, and we 

tested the hypothesis that yield stagnation of wheat yields in the southern Great Plains is the result 

of a narrow yield gap. The study revealed that current average yield at state level are well below 

the maximum recorded yield at the plot level. Current yields represent 74% of the maximum 

attainable yield but only 30% of water-limited potential yield at state level. Wheat yields were 

often limited in growing seasons with total rainfall amount <250 mm, but average growing season 

rainfall was 471 mm, and yield was typically limited by factors. Production exhibited greater 
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temporal variability than yield, and production gap may be a better indicator than yield gap for 

regions with highest potential to increase production. We conclude that low yields and yield 

stagnation in Oklahoma cannot be attributed to a small remaining yield gap, nor to inadequate 

growing season rainfall amount. We suggest that low yields and yield stagnation may be related 

in part to past and present soil erosion. 

The second study described a new tool to measure green canopy cover. This tool called 

Canopeo had an image processing speed 20 to 130 times faster than SigmaScan and 75 to 2500 

times faster than SamplePoint, two existing image analysis tools. Canopeo correctly classified 

90% of pixels when compared to SamplePoint, which was used as the “gold standard”. The 

average root mean squared difference across several sets of images of corn, forage sorghum, 

bermuda grass, and switchgrass was 0.073. The unique capability of Canopeo to analyze video 

recordings proved to be useful to minimize sampling error and to quantify FGCC spatial 

variability. This analysis was simple and rapid with Canopeo but not possible with SamplePoint 

or SigmaScan. The rapid image processing and the accurate values of green canopy cover make 

Canopeo a useful tool to better manage grazing in dual purpose wheat systems. We also envision 

that Canopeo has potential for a variety of other applications in the field of agronomy and 

beyond. 

The third study provided useful insights to estimate soil moisture under wheat cropland 

based on soil moisture observations under nearby grasslands. The use of an observation operator 

was proposed to translate root-zone soil moisture under grassland into root-zone soil moisture 

under wheat cropland. In this particular study we used a neural network as the observation 

operator, which proved to be effective to capture the main soil moisture dynamics simulated by 

the dual crop coefficient model. This study revealed that there is inscribed information in the soil 

moisture time series under grassland vegetation that allow estimates of soil moisture in nearby 

cropland. Potential applications of this approach involve the generations of more accurate large-
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scale soil moisture maps and the possibility to determine the soil moisture patterns of landscapes 

with intermixed land covers for the ground-truthing remote sensing soil moisture estimations. 

The fourth study focused on the transpiration responses of corn plants growing in 

different soils under moderate and high atmospheric demands. Relative plant transpiration rate 

(actual rate/potential rate) started to consistently decline at a soil matric potential similar to that at 

the inflection point of the soil water retention curve regardless of the atmospheric demand. This 

knowledge allowed us to generalize the transpiration response of corn plants by normalizing the 

soil matric potential by the soil matric potential at the inflection point. Using the normalized soil 

matric potential appears a better alternative to describe transpiration responses since it does not 

depend on arbitrary lower and upper limits to estimate plant available water. A double 

exponential function proved effective to describe the relationship between relative transpiration 

and the normalized soil matric potential for different soil and atmospheric demands. This function 

has the potential to be used within emerging quantitative frameworks to quantify the soil’s plant 

available water capacity. 
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