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CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSN) facilitate many application areas in the real world [1,

2]. The networks consist of small inexpensive sensors deployed randomly in geographi-

cal areas to monitor (e.g., temperature, humidity, acoustic, vibration) or detect events

(e.g., intruders, chemical leak, vehicle passing, fire or flood detection). The sensors

typically operate on battery power and they communicate wirelessly within a com-

munication range, and have some level of computational capability. In monitoring

applications, sensors send their readings to the sink or base-station (BS) for data

analysis or mapping. Since the sensors operate on low power and may not be easily

accessible by people, the network lifetime depends on sensor connections in the entire

area.

There have been many data collection methods exploring different network topolo-

gies to minimize the total consumed power for such networks [3, 4]. These methods

focus on balancing energy between sensors and spending less power on transmitting

data. But, those methods still have to ensure delivery of all the sensory readings from

sensors to the BS which could result in an energy imbalance, especially on the sensors

close to the BS which play a role of relaying data.

Compressive sensing (CS) [5, 6, 7, 8] is a mathematical technique in signal pro-

cessing focused on representing and reconstructing a signal through undersampling

and optimization. CS allows for sampling and recovering a signal at a sampling rate

lower than allowed by the Nyquist-Shannon sampling theorem based on knowledge

about a signals sparsity. Since the sensory readings in WSNs are often highly cor-

1



related, CS can be considered as a potential framework for data collection in such

networks [9, 10, 11]. With CS the BS only needs a small number of CS measurements

collected from the networks compared to the total number of sensors to reconstruct

all data from the sensing area. CS based data collection methods in WSNs have been

shown to be energy efficient.

In this dissertation, four new CS based data collection methods are propose

called CS based random walk (CSR) [12, 13, 14], Cluster-based CS data collection

(CCS) [15, 16, 17, 18], Tree-based data gathering (TCS) [19] and Neighborhood-based

data collection (NeiCS) [20], respectively. The methods exploit the existing network

topologies and common connection between sensors in WSNs including random walk

and tree routing, cluster network or undirected graph, and utilize CS to reduce the

data collecting in such networks. The total power consumption for data transmission

in the networks are analyzed and formulated. In each specific case, optimal points are

suggested to minimize the total power consumption to prolong the network lifetime.

This dissertation is organized as follows. In Chapter 2, the background including

the overview of WSNs and CS and the literature review are presented. The literature

review section addresses existing work related to applying CS into WSNs and our

proposed methods. In Chapters 3, 4, 5 and 6 we propose four data collection methods.

In each method, the problem formulation, power consumption analysis and simulation

results are provided. We further suggest optimal cases for each method to consume

the least power in order to prolong the network lifetime. Conclusions and suggestions

for future work for each data collection method are presented at the end of each

chapter. Finally, Chapter 7 summarizes the dissertation and describes future work.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Wireless Sensor Network Overview

2.1.1 Introduction

Wireless sensor networks (WSNs) facilitate many application areas. The network is

the collaboration of a large number of sensor nodes which are deployed in a sens-

ing area that needs to be observed. The sensors are typically low-cost, low-power,

multi-functional, and small devices that can calculate/measure/process sensed data

and communicate to each other or the base-station (BS) for data collection. Sensor

nodes can be considered as randomly and densely deployed in a sensing area, inside

a phenomenon, or close to it. They may be working in battlefield beyond the enemy

lines, at the bottom of an ocean, inside a tornado, attached to animals or moving

vehicles, in a biologically or chemically contaminated field, etc. They are usually

small in size, sometimes even smaller than a cubic centimeter [21]. These sensors

consume extremely low power [22] and the cost of each sensor could be less than one

dollar [23].

Composed of a large number of sensors, WSNs may consist of many different types

of sensors and may be able to accommodate different applications in diverse areas

including military applications, environmental applications, health applications, etc.

In military applications, as mentioned in [1, 24], sensors are deployed for battlefield

surveillance, monitoring force, nuclear, biological and chemical attack detection and

reconnaissance, etc. In environmental applications, a WSN can be deployed in a
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forest to detect fire. Other applications include flood detection, animal tracking, bio-

complexity mapping of the environment, and precision agriculture [25, 26, 27, 28]. In

health applications, sensors can be used to track doctors and patients in a hospital,

or to send patients’ behaviors for help if needed [22, 29, 30]. Home applications of

sensors have a lot of attention with smart or automation home. Almost the electronic

devices in the house can be under control/adjust with optimize solutions [31, 32, 33].

Sensor networks are being developed to satisfy the human needs in present and in the

future.

2.1.2 Challenges for Data Collection Method Design in WSNs

Energy saving is a critical issue for any WSN. Many routing, power management

and data dissemination protocols have been proposed to reduce power consumption

for such networks. Typically, WSNs contain hundreds or thousands of sensors. The

sensors are often densely deployed in a sensing area that needs to be observed. The

greater the number of sensors, the greater will be the accuracy of the observed in-

formation. As mentioned above, the cost for each sensor is typically very small due

to restrictions, such as limited energy supply, limited computing power, and limited

bandwidth of the wireless links connecting sensor nodes. Under the objectives of

transmitting data to a data processing center in an energy-efficient manner, saving

sensor energy consumption without losing accuracy, and preserving network lifetime,

designing WSNs involves several difficult challenges.

Sensor node deployment : Sensor nodes can be either manually placed or

randomly dropped in a sensing area to be observed. With manual deployment, data

is collected at the sink with predetermined routes. Most networks involve randomized

deployment with all sensors scattered randomly, creating an ad hoc routing infras-

tructure.

Balance and minimize energy consumption : In order to maintain the
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network connections or to prolong the network lifetime, a network design should have

an energy consideration to consume the least power. Inter-sensor communication is

often over sort distances due to limited energy and bandwidth limitations. Transmit-

ting data to the sink prefers multi-hop routing which normally consumes less energy

than direct communication. Besides, designed routes should deplete equally power

from all sensors deployed in the sensing area.

Data reporting method : Depending on the specific application and the time

criticality of sensing data, data reporting in WSNs can be categorized as time-driven,

event-driven, query-driven or a hybrid of some or all the methods. In the time-driven

method, sensors collect and send their data periodically. In event-driven and query-

driven methods, sensor nodes react when an event occurs and send data to the sink

or the BS. Some networks use hybrid data delivery models to facilitate sensors.

Sensor capability : In many research studies, all the sensor nodes deployed

in a sensing area are assumed to be homogeneous. This means that they have equal

capacity in terms of pre-charged battery, communication and computation. But in

some networks, sensors can be heterogeneous due to different roles. For example,

there may be different types of data to be collected such as temperature, pressure and

humidity. Furthermore, with pre-chosen cluster-heads (CH) in clustered networks, the

CHs have higher power capacity than others since the burden of data transmission

often falls on them.

Fault tolerance : Sensors may change from active status or fully functioned

to be blocked due to lack of energy. The malfunctioned nodes are isolated but might

still be used for relaying data in the network. The fully functioned nodes may cover

the inactivated nodes and this failure would not affect the network in collecting data

at the BS. This requires more capacity for each sensor to be able to work in a fault-

tolerant network. Such as sensors might adjust transmitting power, signal rates, etc.

Sensor coverage : Due to the limitations of sensing range and transmission
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range, sensors only can cover a limited region. Network coverage is highly dependent

on the number of sensors, types of sensors, and coverage algorithms in order to solve

the best coverage problem.

Network dynamics : In many applications, sensors may not be fixed all the

time. Sensors may take turns to be mobile to collect data from static sensors. In

some cases, the phenomenon may be mobile in tracking target applications. Dynamic

network structures become flexible and challenge data routing algorithms. Dynamic

networks may require additional energy, bandwidth, and so forth.

Data aggregation : Sensors may generate significant redundant data due over-

lapped regions covered by more than one sensors Similar packets from multiple nodes

can be aggregated to reduce the number of transmissions in the network. Data ag-

gregation or data fusion is the combination of data from different sources with sensed

data being processed before it is sent ot the BS.

Quality of service : Beside the accuracy of data transmitting to the BS,

latency is another condition for time-constrained applications. Data reporting time

and quality of sensed data, critical in some applications, and conservation of energy,

which is closely related to network lifetime, are in competition. Balancing quality of

service to prolong network lifetime is a challenge for designing WSNs.

Other than the challenges and design issues listed above, other factors that must

be considered in network design include sensor scalability, transmission media, con-

nectivity, etc and others. Based on these design constraints, many data collection

methods have been proposed in order to solve the issues and challenges. The meth-

ods are generally categorized as hierarchical routing, flat routing and local-based

routing as follows.
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2.1.3 Data Collection Method Protocols in WSNs

Hierarchical Routing

Hierarchical or cluster-based routing is utilized to perform energy-efficient routing

in WSNs. In order to keep sensors in WSNs alive longer in their tasks, numerous

clustering algorithms have been developed and refined in research. Sensors are divided

into clusters regionally with an appropriate number of clusters. Each cluster chooses

one of member leader, called the cluster head (CH), which will take the role to forward

all aggregated data from the cluster to the sink or BS. The non-cluster head sensors

only send their data to their own CHs.

There are many different clustering algorithms. Some focus on balancing energy

for the networks, or distances between non-CH sensors and CHs and distances between

CHs and BS; some others optimize the number of clusters in WSNs; and others

identify energy efficient topologies for the network. The hierarchical data collection

methods have general feature as follows.

- Cluster head (CH) may be pre-determined by a network designer before being

deployed to a sensing area [34]. These CHs may have richer resources than non-

cluster head sensors because they have to expend more power to transmit aggregated

data from clusters to the BS while all other sensors only send their readings over a

shorter distance to the CHs. This configuration can help to make a network operate

longer but will be a challenge to deploy those CHs uniformly in the sensing area.

However, the network is not flexible as intended or may be out of order when some

CHs fail to function properly.

- Role of CHs can be exchanged (tolerant) by algorithm: in the most cases, CHs

are some of the sensors deployed to sensing areas and determined after landing and

clustering. It depends on a specific algorithm, a CH is chosen to satisfy a network’s

requirements and works until running out of power. To avoid the network becoming
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disconnected as sensors deplete their power, especially CHs since they work for the

longest distance with all cluster gathered data, in many algorithms, the role of being

CHs will be changed frequently based on low energy notices within a cluster [35],[36],

[37].

- Multi-hop or single hop routing within a cluster could be applied: In general, CHs

often locate in the middle of clusters and minimize the total distance between non-

CH and CHs smallest [38]. If clusters are large, the direct links between sensors and

CHs may consume a lot of energy. In this case, we call single hop data transmission.

To reduce energy consumption, multi-hop links enable sensors to transfer their data

through adjacent nodes and finally reach a CH. These methods are mentioned in [39,

40].

- Clustering in WSNs with multiple objectives: under the common purpose of saving

transportation cost and energy, and prolonging the network lifetime, the objectives

can be load balanced between clusters, optimal number of clusters [36], fault-tolerance

[37], increased connectivity and reduced latency. These aspects are addressed in the

next sections.

K-means clustering algorithm : K-means is a very simple but effective algo-

rithm in WSNs [41, 38, 42]. Suppose we have a set of sensor nodes X = [x1 x2 . . . xN ],

and want them arranged into Nc clusters; each cluster has one cluster head (CH) at

the center. The algorithm has only four simple steps as follows.

1) Randomly choose Nc centroid points for Nc clusters (or we can base on some

prior knowledge); it really does not matter in choosing these positions at first. Cal-

culate the cluster prototype matrix M = [m1m2 . . .mNc ].

2) Assign each object in the data set to the nearest cluster Cw, i.e.

xj ∈ Cw if ||xj −mw || < || xj −mi ||

for j = 1, . . ., N, i ̸= w , and i = 1, . . ., Nc

In this step, we rearrange clusters based on distances between a CH and non-CH
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sensors. A sensor will choose the closest CH to be with and new CHs have to be at

the center of clusters.

3) Recalculate the cluster prototype matrix based on the current partition.

4) Repeat steps 2 - 3 until there is no change for each cluster;
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Figure 2.1: K-means clustering algorithm with k = 10 clusters

Figure 2.1 illustrates a WSN deployed in a square sensing area (100×100) with 500

sensors that are divided into 10 clusters by the K-means clustering algorithm. Besides

some advantages, K-means still has some limitations. All the centroid points vary with

different initial assignments. This means that each time we choose different centroid

positions, we will get different converged points in the same network. According

to [43], K-means cannot guarantee convergence to a global optimum. It is sensitive

to outliers and noise and the definition of means limits the application to numerical

variables. Some work on advanced K-means clustering can be found in [44] and [45].

Fuzzy C-means clustering algorithm According to [46, 47, 48], the FCM

or Fuzzy C-means clustering algorithm works better than K-means; it may converge

faster and dissipates energy less than K-means.

With FCM, one sensor can belong to more than one cluster head (CH) based on a
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relationship called degree between them. If we have N sensor nodes which are divided

into c clusters, the purpose of this algorithm is to minimize the total energy within

clusters called Jm as follows.

Jm =
c∑

i=1

N∑
j=1

umijd
2
ij, (2.1)

where:

uij is node j
′s degree that related to cluster ith.

dij is the distance between the centroid of cluster ith and node j.

M = [m1m2 . .mc] is the prototype matrix or cluster centroid points for our WSNs.

m ∈ [1, ∞), in general, m is selected as 2.

This algorithm contains 4 simple steps:

1) Randomly select C central point for C clusters and choose a value for ϵ as a

stop condition for our algorithm.

2) Calculate the matrix U = [uij] by

uij =
1∑c

k=1(
dij
dkj

)
2

m−1

, (2.2)

where i = 1, . . . , c and j = 1, . . . , N .

3) Update to calculate the prototype for clusters in the next step by

mi =

∑N
j=1 uij xj∑N
j=1 uij

, (2.3)

where xj is the position data of sensor jth.

4) Repeat the steps 2 to 3 until ||M (t+1) −M (t) || < ϵ .

The c central points are determined when the algorithm converges. These clusters

are joint (overlapped) and not adaptable to our problem, but we can use the central

points and then apply the idea of K-means to separate the clusters. In our simulation,

this algorithm produces the same results to K-means.

Low-energy adaptive clustering hierarchy (LEACH) In LEACH [49, 50],

nodes are organized into local clusters. In each cluster, all non-cluster head sensors
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transmit their data to the CH. This CH collects data from all nodes in its cluster

including its own data. The CH may perform processing on the data and then sends

it to the BS. Based on this point, the energy burden falls on CHs because they have

to transfer not only a larger amount of data than other nodes but also over a longer

distance from its position to the BS. These CHs expend energy faster than non-CH

nodes leading to earlier network disconnection.

LEACH is designed to expect that all nodes in WSNs have a chance to consume

energy equally. Every sensor takes turns being a CH with a probability. After one

round, the role of being a CH will be moved to another node.

* If we assume that all nodes start with equal energy available, then the probability

Pi(t) for becoming a CH can be calculated as follows.

Pi(t) =


Nc

N−Nc(rmod N
Nc

)
: Ci(t) = 1

0 : Ci(t) = 0
(2.4)

where

Ci(t) is the indicator function determining whether or not node i has been a CH.

r is number rounds of our algorithm.

Nc: indicates the number of clusters using in our network.

And we also have the expectation of the number of cluster as

E[#CH] =
N∑
i=1

Pi(t)× 1 = Nc (2.5)

* If the WSNs have sensor nodes with different amount of available energy, the

probability will be calculated based on every node’s energy as follows.

Pi(t) = min

{
Ei(t)

Etotal(t)
×Nc, 1

}
(2.6)

where Ei(t) is the current energy of node i.

And the average number of CHs in this case is

E[#CH] = (
E1(t)

Etotal

+ . . .+
EN(t)

Etotal

)×Nc. (2.7)
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Summarizing, nodes in WSNs select themselves to be CHs based on two different

cases mentioned above. In the cluster formation algorithm of LEACH, each non-CH

sensor chooses its CH based on the minimum communication energy; the decision

is based on the received signal strength of broadcast messages to determine which

cluster that sensor should belong to. This step is similar to step 2 in the K-means

clustering algorithm.

Energy Efficient Hierarchical Clustering (EEHC) The EEHC algorithm [51]

is based on the Max-Min d-cluster algorithm [52] in which clusters are formed of col-

lections of nodes that are up to d hops away from CHs. In EEHC, k is used to denote

the number of hops to collect nodes to form clusters. A sensor becomes a CH itself

with probability p and then sends advertisements to inform nodes within radius k

about the new role. Any sensor receiving the advertising message will join the clus-

ter. Those that do not receive any advertisement become CHs themselves resulting

in two kinds of cluster heads, volunteer CHs and forced CHs.

 

Figure 2.2: EEHC algorithm with single level of clustering

As shown in Figure 2.2, there are some nodes who are single and then become

forced CHs. Energy is consumed quite differently at this single level. To balance
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energy in the entire network, in the second phase, a multi-level clustering creates

h levels of cluster hierarchy. There are h hops of connectivity between CHs and

the BS. The algorithm also ensures that CHs far from BS can consume less energy

by transferring data to another CH, not by sending directly to the BS. EEHC is a

distributed, randomized clustering algorithm.

Fast Local Clustering service (FLOC) This clustering algorithm uses a wire-

less radio-model that has double bands to arrange sensor nodes in the entire net-

work [53]. Sensors are in communication within each other using inner-band range.

I-band radius is a unit distance can be determined. Similarly, we have outer-band

range that nodes can communicate unreliably.

Nodes can be determined into a cluster whether they fall within i-band or o-band

for a certain node. FLOC is a fast and scalable algorithm that creates non-overlapped

clusters with approximately equal radius.

 

Figure 2.3: FLOC program consists of 6 actions

Hybrid Energy-Efficient Distributed Clustering (HEED) In HEED [54,

55], CHs are chosen from deployed sensors working in WSNs. The algorithm considers

hybrid energy and cost while selecting CHs. The CHs are chosen based on their

residual energy, not randomly. The energy can be estimated based on the consumption

for sensing, processing and communication. The probability of becoming a CS can
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be calculated as follows.

CHprob = Cprob ×
Eresidual

Emax

, (2.8)

where Eresidual is the estimated current residual energy of a node; Emax is a full

charged battery of each sensor. Cprob is a initial percentage value of CHs among all

nodes.

During any iteration, every ”uncovered” node elects to become a CH with CHprob.

A node selects its CH with the least communication cost. If it does not hear any CH,

a sensor then selects itself to be a CH and sends an announcement message to its

neighbors informing them about the changed status. Every sensor doubles its CHprob

and goes to the next iteration step. A node will finish HEED execution if its CHprob

reaches 1 that will make two status: Tentative (CHprob < 1) and Final (CHprob = 1).

Note that a node can be chosen to become a CH at consecutive clustering intervals

if it has high residual energy and low cost. HEED is improved in [56] that considers

nodes that did not hear from any CH.

Energy-Efficient Unequal Clustering Mechanism (EEUC) EEUC [57]

attempts to balance energy consumption in the entire WSN to prolong the network

lifetime. As shown in Figure 2.4, a multi-hop WSN has some clusters that consume

energy differently. For more details, the ones closer to the BS consume more energy

than the further ones because the ones nearer the BS have to transmit not only their

own data but also the relayed data. To make every cluster deplete power equally,

EEUC proposed the idea to create unequal clustering for WSN in which the clusters

closer to the BS have smaller size than the ones far away from the BS.

In EEUC, data readings are transferred from clusters to the closest cluster to the

BS and then the BS. With the unequal size clusters, the small clusters consume less

energy for inter-cluster communication but larger energy on transferring data, which

is the inverses of the larger sized clusters.

The role of CHs is rotated among sensors in each data gathering round through
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Figure 2.4: Unequal size clusters in EEUC clustering algorithm

the network. CHs are selected based on the residual energy of each node. Due to the

different cluster sizes, there is a large number of small sized clusters which are close

to the BS. And there are fewer clusters with large size far from the BS. Tentative

CHs are selected at first with the same probability T . There is a competition range

Rcomp which is a function of the distance between nodes and the BS that decides that

a node can becomes a tentative CH as follows.

siRcomp = (1− cdmax − d(si, BS)
dmax − dmin

)R0
comp, (2.9)

where dmax and dmin denote the maximum and minimum distance between sensors

and the BS. si is a tentative CH and d(si, BS) is the distance between si and the BS.

c is a constant coefficient between 0 and 1.

The final CHs are selected at the end of a competition algorithm. There are more

CHs closer to the BS. Non-CH sensors choose the closest CH to join and then clusters

are formed. A sleeping mode is mentioned in this algorithm to save energy. EEUC

contributes a good proportion between cluster size and the distance from clusters to

the BS.

Power-Efficient and Adaptive Clustering Hierarchy PEACH [58] pro-
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poses the idea of saving energy for each sensor node that can distinguish the trans-

mitters or other sensors broadcasting their data. Sensors in PEACH can avoid addi-

tional overheard. PEACH is applicable in both location-unaware and location-aware

networks and this helps it become dynamic and effective to prolong network lifetime.

 

 

Figure 2.5: Packet transmission and global transmission schedule on location-aware

in PEACH

PEACH has two definitions: NodeSet(NiNj) is a set of sensor in a circle with

center point Ni and Nj is a radius distance far from Ni. All sensor nodes in NodeSet

can overhear messages from Ni to Nj. ClusterSet(NiNj) is a set that includes both

nodes and the sink or BS.

In the location-unaware algorithm, when a node receives a packet, if it is noticed
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to be the destination, it becomes a CH during Tdelay and after Tdelay,, it transmits

the packet to the next hop; if the node is not a CH, it will join the cluster of the

destination node.

When the location is aware, each node knows the locations of all the nodes. A node

can calculate a global transmission schedule without communicating with the others.

The farthest node away from the sink node must initiate the packet transmission.

Multi-hop Routing Protocol with Unequal Clustering (MRPUC) This

method [59] is quite similar to EEUC [57]; they both divide a WSN into unequal

clusters with the same purpose which is to balance energy consumption of the network.

They are also multi-hop methods to prolong the network lifetime. MRPUC can be

considered as an updated version of EEUC. It ensures that after clustering, there is

no sensing hole in the entirety of the network. This means that all sensors belong to

clusters and all sensor readings are sent to the BS. There are three phases in MRPUC:

Cluster setup, inter-cluster multi-hop routing formation and data transmission.

 

Figure 2.6: Cluster structure of a network with MRPUC

The BS is assumed to be at the center of the sensing area. Each node calculates

approximately its distance d to the BS based on a broadcast message sent by the BS.
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We have the maximum distance dmax, and the maximum and minimum radius are

predefined as Rmax and Rmin, respectively. The cluster radius Ri of node i is set as

Ri =
d(i, BS)(Rmax −Rmin)

dmax

+Rmin. (2.10)

Each node gathers correlative information of its neighbors and elects a node having

maximum residual energy to be the CH. Clusters closer to the BS have smaller size

than the ones father from the BS to balance between inter-cluster communication

energy and energy to transmit data to the BS.

In the multi-hop routing phase, each CH has to choose another CH to transfer

its data following a rule to minimize communication cost. The cost depends on two

factors: relay energy consumption and residual energy of neighbor CHs. After each

CH has chosen a parent node, an inter-cluster tree rooted at the BS is constructed.

During a round, a CH aggregates data packets into a single packet and then sends

to its parent node that will forward the packet to the BS.

S-Web: An Efficient and Self-organizing WSN Model This algorithm [60]

organizes sensors into clusters based on their geographical location without requiring

those sensors to have GPS or any localization mechanism supported.

 

Figure 2.7: S-Web clustering algorithm
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The geographical location is determined by two factors: distance and angle. Sen-

sors that receive beacon signals from the BS can measure those factors.

In S-Web, a node chosen as a CH has highest residual energy to work as a router

for the cluster that it belongs to. The role of being CH will be rotated in the same

cluster to balance load and also energy.

When a packet is transmitted to a cluster, non-CH nodes will transfer to the CH,

and this CH will forward the packet to a neighbor closer to the BS. The closeness is

determined by the two factor mentioned above.

Unequal cluster size is considered in this algorithm to balance energy consumption

in the network.

Hybrid Energy Effective Clustering Hierarchical Protocol (HEECH)

HEECH [61] is a multi-hop algorithm that has been shown to increase network lifetime

by about 56% and 9% compared to LEACH [50] and HEED [55], respectively.

 

Figure 2.8: HEECH divides WSN into six tracks with the same width

HEECH works to solve the unbalanced energy consumption problem not only by

choosing CHs but also dividing sensing area. There are five phases to the algorithm.
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The first phase is dividing the sensing area into six tracks with the same width,

shown in figure 2.8, called the configuration phase.

The announcement phase is the second one to choose CHs for each track based

on the residual and the maximum energy of each node as follows.

ProbCH = α(
Er

Em

) + β(
DLCH−BS −DLCH−HCH

n∗R
6

), (2.11)

where α is impact factor of energy and β is impact factor of distance.

Er is remaining energy of sensor node and Em is maximum or initial energy of sensor.

R is network radius.

DLCH−HCH is the distance between the desired node and the high level CH node

closer to it.

DLCH−BS is distance between the desired node and the BS.

The third and the forth phase are called cluster formation and schedule creation,

respectively. They are similar to LEACH but HEECH considers the distance between

CHs and BS in multi-hop transmissions and this point solves the unbalancing energy

problem.

In the fifth phase, called data transmission, the low level CH sends its data to the

high level one.

Flat Routing

In flat WSNs, every sensor typically plays the same role. The sensors also collaborate

to perform the sensing tasks in such networks. Due the large number of sensors

deployed in the sensing area, it is not feasible to assign global identifiers to all the

sensor nodes. This leads to the difficulty of collecting of specific sets of nodes to be

queried. This consideration has led to data-centric routing, which is different from

traditional address-based routing where routing links are created between addressable

nodes managed in the network layer. In data-centric routing, the BS sends queries
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to certain regions and waits for data from the sensors in the selected regions. We

describe some algorithms as follows.

Flooding and Gossiping : Flooding and gossiping [62, 63] are two classical

methods to relay data in WSNs. In the flooding method, each sensor keeps sending

broadcast messages to its neighbors within a sensor transmission range until it receives

data packets or the maximum number of hops for the packet is reached. On the other

hand, gossiping is a slightly enhanced version of flooding where the receiving node

sends the packet to a randomly selected neighbor. This neighbor will pick another

random neighbor to forward the data to, and so on.

Sensor Protocol for Information via Negotiation (SPIN): SPIN is a

family of negotiation-based information dissemination protocols suitable for WSNs.

In these protocols, all the information is disseminated at each sensor to every node

in the network [64, 65]. As assumed, all the sensor nodes could be able to be the sink

node or BS. In SPIN, sensor nodes name their data using high-level data descriptors,

also called meta-data, to eliminate the transmission of redundant data throughout

the network. Before transmission, meta-data are exchanged among sensors via a data

advertisement mechanism. Each sensor upon receiving new data, advertises it to its

neighbors and interested neighbors. Sensors which do not have data retrieve the data

by sending a request message.

Using meta-data names, sensor nodes negotiate with each other about the data

they process. These negotiations ensure that nodes only transmit data when necessary

and never waste energy on useless transmissions. SPIN’s meta-data negotiation solves

the problems of flooding such as redundant information passing, overlapping of sensing

area and resource blindness.

One of the advantages of SPIN is that topological changes are localized since each

node needs to know only its neighbors with single-hop communications. However,

the data advertisement mechanism cannot guarantee delivery of data. For example,
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in considering the application of intrusion detection where data should be reported

over periodic intervals, and assume that nodes interested in the data are located far

away from the source node, etc. such data would not be delivered to the destination.

Directed Diffusion : This is a data-centric (DC) routing algorithm in which all

communication is for named data. All nodes in a directed diffusion-based network

are application-aware [66]. Data generated by sensor nodes is named by attribute-

value pairs. The main idea of the DC paradigm is to combine the data coming from

multiple sources by eliminating redundancy, minimizing the number of transmissions,

thus saving network energy and prolonging the network lifetime.

In DC, sensor nodes detect events and create gradients of information in their re-

spective neighborhoods. The BS requests data by broadcasting interests. An interest

describes a task required to be done by the network. The interest diffuses through the

network hop by hop from neighbor to neighbor. As the interest is broadcast in the

network, gradients are set up to draw data satisfying the query toward the requesting

node. Each sensor that receives the interest sets up a gradient toward the sensors

from which it receives the interest. This process continues until gradients are set up

from the sources back to the BS.

 

Figure 2.9: An illustration of Directed Diffusion in WSN

A gradient specifies an attribute value and a direction. The strength of the gra-

dient may be different due to different neighbors that results in different information

flow. Figure 2.9 depicts an example of directed diffusion with sending interests, set-
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ting up gradients and data dissemination, respectively. When interests fits gradients,

paths for information flow are formed from multiple paths, and then the best paths

are reinforced to prevent further flooding according to a local rule. Data is aggregated

to reduce communication cost. The goal is to find an aggregation tree to transmit

data from source nodes to the BS. The BS periodically refreshes and resends the

interest when it starts to receive data from the sources.

Rumor Routing : This is a logical compromise between flooding queries and

flooding event notifications. The main idea in rumor routing [67] is to route the queries

to the nodes that have observed a particular event rather than flooding the entire

network to retrieve information about the occurring events. Each node maintains

a list of its neighbors as well as an events table. When a sensor node generates

a query for an event, the ones that know the route may respond to the query by

inspecting its event table. Note that any node may generate a query, which should

be routed to a particular event. It is not necessary to flood the whole network.

Rumor routing maintains only one path between source and destination as opposed

to directed diffusion where data can be routed through multiple paths at low rates.

Rumor routing can only perform well when the number of events is small. For

a large number of events, the cost for maintaining agents and event tables in each

node becomes infeasible if there is not enough interest in these events from the BS.

In addition, the overhead associated with rumor routing is controlled by different

parameters used in the algorithm such as time to live pertaining to queries and agents.

Minimum Cost Forwarding Algorithms (MCFA): In this method [68],

each sensor should know the least cost path estimated from itself to the BS. The BS

broadcasts a message with the cost set to zero, while every sensor initiates its least

cost to the BS to infinity. Each sensor node, upon receiving the broadcast message

originated at the BS, checks to see if the estimate in the message plus the link on

which it is received is less than the current estimate for updating. In this case, the
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nodes far away from the BS get more updates than the ones closer to the BS. Once

the cost field is established, any sensor can deliver the data to the sink along the

minimum cost path. Each intermediate node forwards the message only if it finds

itself on the optimal path for this message based on the messages cost states.

Gradient-based Routing (GBR): In GBR [69, 70], each sensor calculates a

parameter called the height of the node, which is the minimum number of hops

to reach the BS. The difference between a sensor’s height and that of its neighbor

is considered the gradient on that link. A packet is forwarded on a link with the

largest gradient. GBR uses auxiliary techniques such as data aggregation and traffic

spreading in order to uniformly divide the traffic over the network.

In GBR, three different data dissemination techniques have been discussed. Stochas-

tic scheme, where a sensor picks one gradient randomly when there is more than one

next hops that have the same gradient. In energy-based scheme, the sensor increases

its height when its energy drops below a certain threshold. In the stream-based

scheme, new streams are not routed through nodes that are currently part of the

path of other streams. The main objective of these schemes is to balance the traffic

in the network, to prolong the network lifetime.

Information-driven Sensor Querying and Constrained Anisotropic Dif-

fusion Routing : The paper [71] describes two techniques, information-driven sensor

querying (IDSQ) and constrained anisotropic diffusion routing (CADR), for energy-

efficient data querying and routing in ad-hoc sensor networks. The idea is to query

sensors and route data in a network in order to maximize the information gain, while

minimizing the latency and bandwidth.

In CADR, each node evaluates an information objective and routes data based

on the local information gradient and end-user requirements. The information utility

measure is modeled using standard estimation theory. CADR diffuses queries by using

a set of information criteria to select which sensors can get the data. This is achieved
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by activating only the sensors that are close to a particular event and dynamically

adjusting data routes.

In IDSQ, the querying node can determine which node can provide the most useful

information with the additional advantage of balancing the energy cost. While IDSQ

provides a way of selecting the optimal order of sensors for maximum incremental

information gain, it does not specifically define how the query and the information are

routed between sensors and the BS. Therefore IDSQ can be seen as a complementary

optimization procedure.

Active Query Forwarding (ACQUIRE): In ACQUIRE [72] an active query

is forwarded through the network, and intermediate nodes use cached local informa-

tion (within a look-ahead of d hops) in order to partially resolve the query. When

the query is fully resolved, a completed response is sent directly hack lo the querying

node.

Similar to COUGAR [73], ACQUIRE views the network as a distributed database

where the complex queries can be further divided into several sub-queries. The op-

eration of this method can be addressed as follows. The BS sends a query to other

sensors. During this progress, each sensor node tries to respond to the query par-

tially by using its pre-cached information and then forwards it to another node. If

the pre-cached information is not up-to-date, the nodes gather information from their

neighbors within a lookahead of d hops. Once the query is resolved completely, it is

sent back through either the reverse or shortest path to the BS. Hence, ACQUIRE

can deal with complex queries by allowing many sensors to send responses.

ACQUIRE selects the next node to forward a query that has two options, chooses

randomly or selects based on maximum potential query satisfaction. The problem of

selecting the next node is also mentioned in CADR [71].

Energy-Aware Routing :The goal of this method [74] is try to find the minimum

energy path to optimize energy usage at a node to increase the network lifetime. It
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maintains a set of paths instead of maintaining or enforcing one optimal path at higher

rates. These paths are maintained and chosen by means of a certain probability.

The probability depends on how low the energy consumption is that each path can

achieve. By having paths chosen at different times, the energy of any single path will

not deplete quickly. In addition, the energy is dissipated equally among all sensors

that balances the energy consumption in the network and prolonging the network

lifetime.

Routing Protocols with Random Walks : This method has been mentioned

in many research studies including [75, 76, 77, 78, 79]. The objective of random

walk based data gathering methods is to achieve load balancing in a statistical sense.

Since all sensors deplete energy equally, the connections in the network created by

the sensors can last longer.

Random walk (RW) on a graph can be modeled as a Markov Chain as mentioned

in [75]. Walking steps jump from node to node randomly based on probabilities

generated based on sensor neighborhoods, called transition probabilities. Specifically,

the next node j in the sequence is selected from the set of neighbors of the previous

node i in the sequence with probability Pij. The probabilities form a transition matrix

P = [Pij]N×N .

For example, a simple random walk, at time k and at vertex i needs to move to

one of its adjacent vertices j with a probability Pij. The transition probability is

calculated as follows

Pi,j = P (Xk+1 = j |Xk = i) =


1

d(i)
, if (i, j) ∈ E

0, others
(2.12)

where d(i) denotes the degree of vertex i.

Sensed data from the network is forwarded to the BS through intermediate nodes

which are chosen randomly as mentioned above. RW routing does not need global or

local information. Furthermore, the methods are suitable to apply sleeping schedules
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and fault tolerance schemes that can prolong the network lifetime.

Location-Based Routing

There are many data collection methods for WSNs that require location information

for sensors to calculate the data transmission distance between two sensor or sensors

and the BS. Based on that, the energy consumption for data transmission can be

estimated. The local information of sensors can be used in routing in an energy-

efficient manner. For instance, the query can be diffused only to a particular region

that can reduce the number of transmissions between sensors.

MECN and SMECN : Minimum energy communication network [80] sets up

and maintains a minimum energy consumption for a WSN by utilizing low power

GPS [81]. The paper describes a distributed network protocol optimized for achieving

the minimum energy for randomly deployed ad-hoc networks. The network protocol

not only maintain a globally connected network in spite of possible module failure, but

also defines the major power management strategy based on low-power RF transceiver

design. Although the algorithm is designed for mobile networks, it is applicable to

WSNs.

MECN identifies a relay region for every node. The relay region consists of nodes in

the surrounding area where transmitting through those nodes is more energy efficient

than direct transmission. The main idea of MECN is to find a sub-network, which will

have a smaller number of nodes and require less power for transmission between any

two particular nodes. In this way, global minimum power paths are found without

considering all the nodes in the network.

MECN is self-reconfiguring and thus can dynamically adapt to node failure or

deployment of new sensors. In SMECN [82] which is an extension to MECN, possible

obstacles between any pair of nodes are considered. The network is always connected

as in MECN, but SMECN consumes less energy than MECN.
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Geographic Adaptive Fidelity (GAF): GAF [83] is an energy-aware location-

based routing algorithm designed primarily for mobile ad-hoc networks. It could be

applicable to WSNs as well. The sensing area is divided into fixed regions which form

a virtual grid. Inside each region, sensor nodes collaborate with each other to play

different roles, sleep and awake for example. Each node uses its GPS to associate

itself with a point in the virtual grid. Nodes associated with the same point on the

grid are considered equivalent in terms of the cost of packet routing. Such equivalence

is exploited in keeping some nodes located in a particular grid area in a sleeping state

in order to save energy.

 

Figure 2.10: State transitions in GAF

There are three states defined in GAF as shown in Figure 2.10, discovery for

determining the neighbors in the grid; active for reflecting participation in routing;

and sleep when the radio is turned off for energy saving. Nodes change states from

sleeping to active in turn so that the load is balanced to prolong the network lifetime.

GAF strives to keep the network connected by keeping a representative node always

in active mode for each region on its virtual grid. GAF performs at least as well as

a normal ad-hoc routing protocol in terms of latency and packet loss and increases

the lifetime of the network by saving energy. GAF maybe considered a hierarchical

protocol, where the clusters are based on geographic location.

Geographic and Energy Aware Routing (GEAR): GEAR [84] uses energy-
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aware and geographically informed neighbor selection heuristics to route a packet

toward the destination region. The key idea is to restrict the number of interest in

directed diffusion by only considering a certain region rather than sending the interest

to the whole network. GEAR can conserve more energy than directed diffusion.

In GEAR, each sensor keeps an estimated cost and a learning cost of reaching the

destination through its neighbors. The estimated cost is a combination of residual

energy and distance to destination. There are two phases: (1) Forwarding packets

toward the target region: Upon receiving a packet, a node checks its neighbors to see

if there is one neighbor that is closer to the target region than itself. If there is no

more than one, the nearest neighbor is chosen as the next hop. If they are all further

than the node itself, one of the neighbors is picked to forward the packet based on

the learning cost function. (2) Forwarding the packets within the region: If the packet

has reached the region, it can be diffused in that region by either recursive geographic

forwarding or restricted flooding.

GEAR is compared to GPSR [85] in solving the problem of holes. GEAR not only

reduces energy consumption for the route setup but also outperforms GPSR in terms

of packet delivery.

MFR, DIR, and GEDIR: These protocols deal with basic distance, progress,

and direction-based methods [86]. The key ideas are forward and backward directions.

A source node or any intermediate node will select one of its neighbors according to a

certain criterion. The routing methods that belong to this category are Most Forward

within Radius (MFR), Geographic Distance Routing (GEDIR), that is a variant of

greedy algorithms, the two-hop greedy method, alternate greedy method, and DIR

(a compass routing method).

GEDIR is a greedy algorithm that always moves the packet to the neighbor of the

current vertex whose distance to the destination is minimized. The algorithm fails

when the packet crosses the same edge twice in succession. In most case, MFR and
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greedy methods have the same path to the destination. In DIR, the best neighbor has

the closest direction toward the destination. GEDIR and MFR are loop-free, while

DIR may create loops unless past traffic is memorized or a time-stamp is enforced [86].

Greedy other Adaptive Face Routing : This is a new geometric ad-hoc rout-

ing algorithm combining greedy and face routing, named GOAFR [87], which com-

bines greedy and face routing. It is shown that GOAFR is asymptotically optimal

with respect to the competitive ratio with the shortest path.

The greedy algorithm always picks the neighbor closest to a node to be next for

routing. However, it can easily be stuck at some local minimum, for example, no

neighbor is closer to a node than the current node. It was shown that GOARF

can achieve both worst-case optimality and average-case efficiency. Based on the

simulation results of GOARF, there are several ways to further improve the average-

case performance. It was also shown that GOAFR outperforms other prominent

algorithms, such as GPSR and AFR.

SPAN : SPAN is an energy-efficient Coordination Algorithm for Topology Main-

tenance in Ad Hoc Wireless Networks [88] that selects some nodes as coordinators

based on their positions. SPAN adaptively elects coordinators from all nodes in the

network, and rotates them in time. The coordinators form a network backbone used

to forward messages. A node should become a coordinator if two neighbors of a non-

coordinator node cannot reach each other directly or via one or two coordinators.

New and existing coordinators are not necessarily neighbors, which in effect makes

the design less energy-efficient because of the need to maintain the positions of two

or three-hop neighbors in the complicated SPAN algorithm. SPAN coordinators stay

awake and perform multi-hop packet routing within the ad hoc network, while other

nodes remain in power-saving mode and periodically check if they should awaken and

become a coordinator.

SPAN not only preserves network connectivity, it also preserves capacity, decreases
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latency, and provides significant energy savings. The amount of energy that SPAN

saves increases only slightly as density increases. This is largely due to the fact that

the current implementation of SPAN uses the power saving features of 802.11, in

which nodes periodically wake up and listen for traffic advertisements.

2.2 Introduction to Compressive Sensing

2.2.1 Introduction

Compressed Sensing (CS) [5, 6, 7, 8] is considered a very strong tool in signal process-

ing. CS builds upon the fundamental fact that we can represent many signals using

only a few non-zero coefficients in a suitable basis or dictionary. The sparse repre-

sentation will be mentioned later on but we call the signals to be applied CS sparse

signals with a small number of non-zero elements. Based on this representation, with

a very few measurements, the signal will be recovered precisely. This is the key point

of CS.

CS differs from Nyquist [89], which requires a high rate of sampling; CS shows

its ability to recover perfectly with a small number of measurements, also called

projections. This is a turning point for many applications which can apply CS. Re-

ducing measurements means that the cost for signal processing and data transmission

can also be reduced significantly. These costs are main components in any network

design. Many application areas including imaging, video, medical imaging, remote

surveillance, spectroscopy, etc. can apply CS and become more effective with CS.

These applications will be mentioned again in detail in the signal recovery section to

show how the signals are sampled and reconstructed.

We consider the signals to which we apply CS are sparse and have k non-zero

elements out of n elements in the data vector length n, where k ≪ n. The second con-

dition we assume in order to apply CS is that the signal must be compressible. Both

sparse and compressible signals can be represented with high fidelity by preserving
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the values of the largest coefficients of the signal. This point helps the reconstruction

process to recover the original signal with only a certain number of CS measurements.

There are some points in CS we need to consider to differentiate from classical

sampling methods. First, CS focuses on measuring finite-dimensional vectors in Rn

while other method such as Nyquist samples continuous and infinite signals. Second,

other than sampling the signal at specific points in time, CS systems acquire mea-

surements in the form of inner products between the signal and a more general test

function. The inner products are very important to mutual coherence between the ϕ

and ψ matrices that will be mentioned in the next section. Third, in CS, signal recov-

ery is achieved using nonlinear methods, while in the Nyquist-Shannon framework,

recovery is based on interpolation. These are distinct differences between traditional

Nyquist sampling and CS.

In this section, the overview of CS theory with fundamental basic and updated

techniques is addressed. Vector spaces, sensing matrices and signal reconstruction

techniques will be mentioned respectively.

2.2.2 Vector Spaces

Background

A vector space over a field F is a set of vectors V and a set of scalars F , vector

addition (+), scalar multiplication (.) satisfy

1) (V,+) is a commutative group

2) Scalar multiplication satisfies

(i) Closed

a ∈ F, X ∈ V

a.X ∈ V

(ii) Associativity

(ab)X = a(bX)
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(iii) Unity

1.X = X

3) Distribution

(i) a(X + Y ) = aX + aY

(ii) (a+ b)X = aX + bX

Definition 1:

The span {V1, . . . Vm} is a set of all linear combinations of V1, . . . Vm = a1V1 +

a2V2 + . . . + amVm. Where a1, a2, . . ., am ∈ F

Definition 2:

{V1, . . . Vm} is linearly dependent when one of the vector can be expressed as a

linear combination of others.

Definition 3:

A basis of a vector space V is a linearly independent set of vector that span V ,

Span(Basis) = V .

Definition 4:

- The dimension of a vector space is the number of a vectors in its basis, dim(V ) =

|basis|.

- Relation between dim(V ) and |V |: for a vector space, we have dimension of V

dim(V ) = number of vectors in basis = |basis| = k.

Basis =



V0

V1
...

Vk


V = a0V0 + a1V1 + . . . + ak−1Vk−1; ai ∈ GF (2). We can have 2k different

combinations, then we have the relationships: |V | = 2dim(V ) or dim(V ) = log2|V |

Definition 5:

A subset S ⊆ V of a vector space V is a subspace only if S is a vector space.
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Definition 6:

The inner product: Let two vectors X = (x0, . . . , xn−1) and Y = (y0, . . . , yn−1)

are in a vector space over F . The inner product is defined as follows

< X.Y >= X.Y =
n−1∑
i=0

xiyi

Properties of inner product:

(i) Commutative: X.Y = Y .X or a(X.Y ) = (aX).Y

(ii) Distributive: X.(Y + Z) = X.Y +X.Z

Normed vector spaces

In discrete and finite domains, our signals can be viewed as vectors in an n-dimensional

Euclidean space RN . We have the definition of the norm p that will be used very

often in the CS process, where p ∈ [1,∞] as follows.

||X ||p = (
∑N

i=1 |xi |p)
1
p

or lp = (| x1 |p + | x2 |p + . . . + | xN |p)1/p

We also have:

l0 = ||X ||0 = number of non-zero elements

and l∞ = || x ||∞ = max | xi |.

We have some figures that show the Unit ball in some normed vectors:
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Figure 2.11: Some common normed vectors
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Sparse vectors

We have some definitions as follows.

Definition 1: A vector signal X is k-sparse if it has k non-zero coefficients as

||X ||l0 = k.

Definition 2:

Sparsity rate S of a k-sparse vector X ∈ RN is defined as S = k
N
, where n is the

length of vector X.

Definition 3: A signal X ∈ RN is approximately k-sparse if it has k ≪ N large

coefficients while the remaining coefficients are small but not necessarily zero.

*Compressible signals :

Our signal must be compressible if CS is to be applied. Compressible signals are

well approximated by sparse signals in the same way that signals close to a subspace

are well approximated by the first few principle components.

We can quantify the compressibility by calculating the error incurred by approx-

imating a signal X by some X̂ ∈
∑

k: δk(X)p = minX̂∈
∑

k
||X − X̂ ||p.

We have another way to judge compressibility of a signal; it is the rate of decay of

their coefficients which will be addressed as follows: IfX = Ψθ, we sort the coefficients

θi such that |θ1| ≥ |θ2| ≥ · · · · · · ≥ |θN | . We can say that the coefficients obey a

power law decay if there exist constants θ1 and q such that |θi| ≤ θ1i
−q. It is clear

that the larger q, the faster the magnitudes decay, and the more compressible a signal

is. Because the magnitudes of their coefficients decay so rapidly, compressible signals

can be represented accurately by k ≪ N coefficients.

2.2.3 Sensing Matrices

Also called measurement matrices or projection matrices, sensing matrices are the

most important ones to decide how effective CS works. It is known as Φ matrix in
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CS’s representation in the equation as follows.

Y = ΦX, (2.13)

where Y is measurement vector, Y ∈ RM and Φ is M ×N sensing matrix.

We will show the structure of these matrices and some properties that affect

directly CS process in the following sections.

Structure of measurement matrices

 

Figure 2.12: Random projection matrix

As mentioned, CS can be applied to signals that can have sparse representation

in a proper basis. We have:

- CS sampling (encoding): Y = ΦX

- CS recovery (decoding): X̂ = arg min||X||l1 subject to Y = ΦX

or θ̂ = arg min||θ||l1 subject to Y = ΦΨθ, where X = Ψθ

As shown in Figure 2.12, measurement matrix Φ collects data from sensor nodes

for each measurement that is recorded as each row of the matrix. We have M rows

corresponding to M times collecting data or M measurements.

Coefficients of the Φ matrix are generated differently depending on which matrix

is chosen to be applied. There are some common matrices often used with CS.
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* Gaussian matrix: all coefficients in this matrix are randomly generated following

Gaussian coefficients with zero mean and covariance (1/M).

Φij ∼ N(0, δ2 = 1/M)

M > Cklog(N/k) = O(klogN)

* Binary matrix: Φ matrix with iid elements

ϕij =

 1/
√
M p = 1/2

−1/
√
M p = 1/2

(2.14)

* Bernoulli matrix: Coefficients are only (+1) and (-1) or (0) with the same

probability as follows

ϕij =

 +1 p = 1/2

−1 p = 1/2
(2.15)

or

ϕij =

 1 p = 1/2

0 p = 1/2
(2.16)

* Scrambled Fourier matrix: our Φ matrix is created as follows

Φ =
1√
N



1 1 · · · 1

1 ξ · · · ξ(N−1)

...
...

...
...

1 ξ(M−1) · · · ξ(M−1)(M−1)


M×N

(2.17)

where ξ = e−j 2π
N

* Sparse matrices: these matrices are different from the others. Each row has a certain

and small number of non-zero elements randomly distributed. There are three cases

of this type of matrix:
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- Constant column weight: All columns have the same number of non-zero ele-

ments.

- Constant row weight: rows in Φ have the same number of non-zero elements.

- Constant row and column weight: a constant r is assigned for our Φ matrix that

each row or each column has only r non-zero elements.

Null space conditions

Null space of a matrix is denoted as N (A) and is defined as a set of all vectors X

that satisfy AX = 0, where A is a measurement matrix with dimension M ×N .

N (A) = {X | AX = 0}

if A is full-rank, then N (A) = {0}

We have: Rank(A) + dim(N (A)) = N

Lemma: If X0 is a set of solution for Y = ΦX then N(Φ) + X0 is the set of all

possible solutions.

Returning to our k-sparse signal X that is sampled with measurement vector Y

in Y = ΦX, the null space of Φ must NOT include a vector whose sparsity is 2k or

less. Further, any 2k columns of ϕ must be linearly independent and any submatrix

of Φ with 2k columns must be full rank.

As defined as in [90], the spark of a given matrix is the smallest number of columns

of that matrix that are linearly dependent. We have a theorem as follows:

Theorem: For any vector Y ∈ RM , there exists at most one signal X ∈
∑

k such

that Y = AX if and only if spark(A) > 2k.

Based on all conditions addressed, we can pick M such that M ≥ 2k.

The Restricted Isometry Property (RIP)

In [91], the following isometry condition on matrices Φ and established its important

role in CS. The definition is as follows.
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Definition: A matrix Φ satisfies the restricted isometry property (RIP) of order k if

there exists a δk ∈ (0, 1), called restricted isometry constant, is the smallest quatity

such that

(1− δk)||X||22 ≤ ||ϕX||22 ≤ (1 + δk)||X||22 (2.18)

We also have

1− δk ≤ λmin(Φ
T
TΦT ) ≤ λmax(Φ

T
TΦT ) ≤ 1− δk (2.19)

where T is all subset of {1, ..., N} with |T | ≤ k

We strive to work on the Φ matrix to get columns of ΦT close to being orthogonal

to make CS perform better. We finally have the definition for RIP as follows:

Definition: A matrix Φ ∈ RM×N is said to satisfy RIP of order k ∈ N if its RIP

constant δk is less than 1, (0 ≤ δ ≤ 1).
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Figure 2.13: Restricted Isometric Constant Function

Mutual Coherence

The coherence between Φ and Ψ is defined as

µ(Φ,Ψ) =
√
Nmax| < φi, ψj > |, (2.20)

where i = 1÷M, j = 1÷N and

φi: row of Φ
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Figure 2.14: Sparsifying signals in a proper domain with ψ matrix

ψj: column of Ψ

The coherence measures the largest correlation between rows of Φ and columns

of Ψ. If they contain correlated vectors, µ is large, otherwise, it is small. In CS, we

expect to have µ is as small as possible. For orthonormal Ψ and Φ normalized rows,

we have a limited range for coherence µ ∈ [1,
√
N ].

Theorem 1 : If φi’s and ψj’s have unit norm ||φi||2 = 1 and ||ψi||2 = 1 then

1 ≤ µ(φ, ψ) ≤
√
N

Theorem 2 : Suppose X ∈ RN , X is k-sparse in Ψ domain. Set M measurement

Y = ΦX if M ≥ Cµ2(φ, ψ)klog(N/k) for C ≥ 0. The solution to l1 minimization is

exact with high probability.

θ̂ = arg min ||θ||l1 subject to Y = ΦΨθ , X = Ψθ

As mentioned, we expect µ small to get better CS reconstruction. For µ to be close

to its minimum value of 1, each of the row of Φ must spread out in the Ψ domain.

Optimizing sensing matrices

Based on analysis above, the performance of CS can be improved by optimizing the

Φ matrices. This is an open topic for additional research. There has been some

work improving the projection matrix to make CS work better [92]. In WSNs, ϕ

is created by the way we collect data. In other words, the matrix created depends
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on the network topology and routing methods applied in a WSN. We will focus on

different forms of the matrix in the next chapters associated with our data collection

algorithms.

2.2.4 Signal Recovery

There are many studies on different reconstruction algorithms. All of these algorithm

strive to recover the original signals more precisely. This dissertation will briefly

address only some popular algorithms: L1-optimization [5, 6], OMP [93], ROMP [94],

CoSaMP [95]. At the conclusion this section, there is an example which compare these

recovery methods under one particular assumption.

L1 optimization

The number of measurements required to reconstruct the original signal perfectly

with high probability is M = O (k log N) following the l1 optimization problem given

by [5, 6].

X̂ = arg min ||X ||1, subject to Y = ΦX. (2.21)

In case X is not sparse in canonical basis but sparse in a proper domain (Ψ can be

Wavelet or DCT depending on signal properties). We have

θ̂ = arg min || θ ||1, subject to Y = ΦΨθ, (2.22)

where || θ ||1 =
∑N

i=1 |θi| . The l1 optimization problem can be solved with linear

programming techniques such as Basis Pursuit (BP) [5].

In reality, we have to consider noise while sampling and sending the measurements

(in our case we collect measurements and send to the base-station) : Y = ΦX + e ,

with || e ||2 < ϵ and recover

X̂ = arg min ||X ′ ||1, subject to ||Y − ΦX ′||2 < ϵ. (2.23)
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Orthogonal Matching Pursuit (OMP)

Given measurements Y and the knowledge that our signal X is sparse or compress-

ible, we can consider that Y is a linear combination of k columns of Φ. In OMP

algorithm [93], we need to determine which columns of Φ contribute to Y .

The idea of OMP is to pick columns in a greedy fashion. At each iteration, we

choose a column of Φ that is most strongly correlated with remaining part of Y , then

we subtract its contribution to Y and iterate on the residual for k iterations. The

OMP will find the correct set of columns.

Before starting OMP, the columns of Φ should be normalized as ||φi||2 = 1. Then

we have OMP algorithm with 5 steps as follows:

1) Initialize:

Residual r0 = Y

It= index set of column (support) = {}

Iteration t = 1

ϕ0 = {} ←set of columns

2) Find the index It that solves

It = arg maxi=1,...,n| < φi, rt−1 > |

I1 = arg max| < φ1, r0 > |

If the max occurs for multiple indices, then pick one of them. This step find the

largest correlation with residual rt−1(Note: t = 1, r0 = y).

3) Argument the indices

Find the index for support: colt = colt−1 ∪ {It}

then add the column to ϕt: ϕt = [φt−1 φIt ]

4) Solve a least square problem to obtain a new signal estimate

xt = arg min||ϕtx− y||2

we have closed form solution for the least square problem:

xt = (ϕT
t ϕt)

−1ϕty
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rt = y − ϕtx

5) Increase t = t+ 1, go to step 2. with the condition: while t < k.

Note: at step 4, we look for a linear combination of a chosen column in ϕt such

that rt = y − ϕtx has the smallest norm 2. It is known that rt is orthogonal to ϕt.

In general, greedy methods are usually fast and easy to implement. OMP only

needs k iterations to find support and each of them requires matrix multiplication,

solving one least square problem.

Regularized OMP (ROMP)

OMP does not typically perform well in the presence of noise. A similar algorithm

called Regularized OMP [94] is created to solve the noise problem. In ROMP, at each

iteration, more than one support will be collected.

In ROMP, instead of picking one support like OMP, ROMP picks more than one

support at each iteration.

u = ϕT rt−1

Choose a set J with |J | = k biggest absolute values of u.

Regularize: Derive set J into subsets J0 with comparable coordinate that satisfy:

|U(j)| ≥ 1
2
|U(i)| ∀i, j ∈ J0

- Sorting U(i)

- Choose the subset J0 with the maximum energy

- Update colt = colt−1 ∪ J0

- The next steps are similar to step 4 and 5 in OMP.

The condition to stop: ||rt||2 < 10−6 or number of selected indices for support

≥ 2k.
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Compressive Sampling Matching Pursuit (CoSaMP)

We know that the most important part of the reconstruction process is to identify

the support of X. In CoSaMP [95], an approach inspired by RIP is used.

Suppose Φ has δk ≪ 1, then for a k-sparse signal X, we can have Z = ΦTΦX =

ΦTY .

For more details, the largest k entries of Z point toward the largest k entries of

X. So we can obtain a proxy of X by applying ΦT of Y . At each iteration, the

current approximation induces a residual, the part of the signal that has not been

approximated.

As the algorithm progress, the samples are updated as follows:

Initialize:

r0 = Y

t = 1

a0 = 0 (zero vector)

Repeat:

Z = ΦT rt−1 (form proxy)

Ω = supp(Z2k) (identify large components)

Ω ∪ supp(at−1) (merge support)

Least square:

xt = arg min||Y − ΦTX||

xt = (ΦT
TΦT )

−1ΦT
TY

- Prune to have k largest elements: at = x̂k

rt = y − Φat

t = t+ 1

Go back!

To sum up, with CoSaMP, we have five major steps:
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1) Identification: The algorithm forms a proxy of the residual and locates 2k

largest components of the proxy.

2) Support merge: The set of newly identified components is united with the set

of component that appear in the current approximation.

3) Estimation: The algorithm solves a least square problem to estimate the target

signal on the merged set.

4)Pruning: The algorithm produces a new approximation by keeping only k largest

entries in least square approximation.

5)Update: Form the residual and go back to 1.

- Stop criteria is set as the number of iteration > 6(k + 1) or ||rt||2 < 10−6.

Comparison of reconstruction algorithms in compressed sensing

There are many more CS algorithms that have been applied to different areas that

are not listed here. The success of CS depends on properties of the signals to which

it is being applied. In this subsection, we only give one simple example to show how

these four CS reconstruction schemes work on a specific signal. We assume to have

a k-sparse signal with length N = 1000 and k = 50. We sample our X signal with

additive noise having zero mean and unit variance. The number of measurement is

variable from (100 : 350).

From 2.15, we can briefly say that OMP is not good with noise and L1 is still the

best one in this case.

2.3 Literature Review

In this section, work which focuses on two different points to improve data collection

algorithms inWSNs is reviewed. The first is applying CS into data collection methods.

As discussed in 2.1.3, there are many methods to collect data in WSNs to be sent to

the sink or BS. When these methods employ CS, the common ways of collecting data

45



 

200 250 300 350

10
-0.1

10
0

10
0.1

Compare 4 CS schemes

Number of measurements

R
e
c
o
n
s
tr
u
c
ti
o
n
 E
rr
o
r

 

 

L1 opt

OMP

ROMP

CoSaMP

Figure 2.15: Compare four Compressive Sensing reconstruction schemes

from sensors changes depending on each specific method. Measurement matrices in

CS recovery algorithms at the BS show records of how CS measurements are collected.

They are also called routing matrices. We want to ensure that a measurement matrix

created by each routing method can work well in a CS recovery process. In this

review, measurement matrices created by data collection methods have been shown

to satisfy RIP.

The second point will be addressed in this review is improving the measurement

matrix for better CS performance. Based on that, the number of CS measurements

could be reduced which may reduce transportation cost in WSNs.

2.3.1 CS Based Data Collection Algorithm in WSNs

There are three goals we always expect when CS-based routing algorithms are de-

signed; balance energy for sensor, reduce total power consumption for networks and

measurement matrices created by collecting CS measurements do not degrade CS

46



performance.

Random routing based methods

Random routing, also called random walk (RW), is considered as a routing method

that balances energy for sensors in a WSN. Sensors are chosen randomly to send their

data to be forwarded to the sink node or BS. There is not routing table or global

information for sensors to send data to the BS. In this type of routing, the existing

work focuses on how to send data to the BS or how to form CS measurements to be

forwarded to the BS for data reconstruction.

In [96] RWs start from random sensors in a WSN. They choose the next nodes

to collect data based on a fixed probability until they meet the BS or the sink. As

mentioned in [97], the RW length can be considered as the cover time in random

geometric graphs as O(NlogN). In this case, the RW’s lengths are different to each

other and extendable into many steps that the sensors consume more energy for

transmitting data. In [98] a mobile sink is used to collect CS measurements from

storage nodes after nodes forward data based on RWs. In [99, 12] RWs are created

that sensors choose the next nodes based on the Metropolis-Hastings algorithm as

mentioned in [100, 97, 101, 102]. Based on the probability mentioned in [100], every

sensor has an equal chance to be visited with smaller RW length. Each sensor also

needs to verify the number of its neighbors from others to decide the next nodes to

forward data.

In [13, 103, 14], simple RWs are used to collect data in which the next nodes for

RWs are chosen based on a uniform probability [13, 14] or pseudo-random seeds [103].

Each CS measurement is created at the last node visited by each RW with a predefined

length. CS measurements from RWs are sent directly [13] or through intermediate

nodes in multi-hop [103, 14] to the BS.
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Clustering based methods

Generally, a WSN has one sink node or BS as the data processing center. The

network could be clustered in different ways as mentioned in 2.1.3. Cluster-heads

(CH) can be chosen from random nodes to balance energy for the network since they

deplete energy more quickly than common nodes. There are two types of measurement

matrices which are applied, random Gaussian with all entries i.i.d. zero-mean random

variables with variance 1
M

and block diagonal matrix (BDM).

In [104, 105, 106] both raw data and combined samples are in traffic. In [104]

the CS operation requires each node in the WSN to send exactly M packets. M is

denoted as the number of CS measurements required to reach a given reconstruction

quality. A spanning tree is used to partition the network into sub-nets. [105] and [106]

propose a scheme called hybrid CS aggregation that combines the non-aggregation

and plain CS mentioned in [104] to reduce the traffic loads sending from each node.

The non-aggregation method is used if a node receives less than (M−1) raw readings

from its downstream nodes. Otherwise, plain CS is used. In [104, 105, 106], each

sensor needs to send up to M samples to the BS to contribute M CS measurements

for signal recovery. The BDM is mentioned in [106] to reduce partially the total

samples being sent from each sub-net. In [107], a WSN is partitioned into clusters.

Sensor readings are sent to CHs and the CHs send the received data to the BS. Since

the measurement matrix is full Gaussian, each cluster needs to generate M samples

to contribute to M CS measurements at the BS.

The block diagonal matrices are used in [15, 16, 17] for more energy saving in

data transmission in clustered WSNs utilizing CS. Sensors take turns to become

CHs to share the burden of the role which has to transmit data much more than

common nodes. In [16], non-CH sensors multiply their readings with Gaussian random

coefficients and keep sending data to CHs they belong to. The CHs add up the

received data including their own and finally send all data from their clusters to the
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BS for data reconstruction. In this work, each sensor still has to send its own data a

certain number of times corresponding to the number of CS measurements required

from its cluster. Note that as shown in [15], the number of CS measurements required

from a cluster is linearly proportional to the number of sensors in the cluster. In this

case, sensors from cluster ith do not have to send M times, just Mi times, where

Mi

M
= Ni

N
. (Ni is number of sensors in ith cluster).

In [15, 17], each sensor only has to send its data once to its CH. A sub-matrix

is created at every cluster to form CS measurements to be sent to the BS. The

sub-matrix is created to be contributed to the BDM at the BS. The dimensions

of the sub-matrices are also linearly proportional to the number of sensors in the

clusters. After CS measurements are created at CHs, they can be forwarded to the

BS directly [15] or in multi-hop through CHs [17] to the BS. By utilizing CS in

data collection in clustered WSNs, the total power consumption could be reduced

significantly. As mentioned in [15, 17], reducing the cluster size could either reduce

intra-cluster power consumption or total power consumption for such networks.

Tree based methods

As mentioned in 2.1.3 tree can be formed for data collection in WSNs. When CS

is employed in collecting data, there are two types of measurement matrices which

are created by different methods: random sparse measurement matrix and full dense

Gaussian matrix.

C. Luo [108] and J. Luo [109] contribute routing methods to collect data in a

WSN utilizing CS. All sensors in the methods have to send either their own readings

or combined messages to their parent node or the sink M times corresponding to

the number of measurements required. The methods only help to balance energy

in such networks since all sensors need to transmit data a certain number of times

corresponding to the number of CS measurement required. Measurement matrices
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created in the methods are full dense Gaussian since all sensors contribute their

readings for each CS measurement.

Wang [110] mentioned a distributed algorithm with the sparse random projections

that motivated a different way to collect measurements from sensors in a WSN. At

a sampling time, only some random sensors send their data to the BS. Their indices

correspond to the non-zero entries in each row of the measurement matrix at the BS.

For the others which do not contribute data to a CS measurement, the entries in the

corresponding row in the measurement matrix are zeros. This significantly reduces

a huge number of transmissions or power consumption for data collection in such

networks. We need to make sure that this type of sparse random matrix does not

degrade the CS performance.

A novel idea from Xie called MTT [111] significantly reduces transportation cost.

By using the sparse random matrix, only some random nodes send their own data to

build a CS measurement. The other nodes relay data if they are along the routing

path or they may not participate in some rounds of transmission. The routing tree is

designed to eliminate some residual transmissions since nodes that have more rounds

to transmit their own data are a priority to choose while building the tree.

In TCS [19], an algorithm is proposed based on an existing tree which can be

formed by any routing tree. The algorithm assumes that each sensor could be able to

store and generate accumulative measurements to be forwarded to the BS. Each node

sends its own readings to its parent node only once. Based on a generated sparse

measurement matrix, the parent nodes know when their child nodes contribute their

data to CS measurement and they generate measurements to send to upper nodes

or the BS for the CS recovery process. The results in [19] have shown that TCS

overcomes MTT [111] in performance.
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2.3.2 Minimizing the Number of CS Measurements

Exploiting Inner Products

As mentioned in Section 2.3.1, data collection algorithms are designed under routing

mechanism to reduce transportation cost or power consumption for such networks in

order to prolong the network lifetime.

In [112], a different mutual coherence is considered. The goal is to minimize

the mutual coherence for a better CS performance. It is known that each row of the

measurement matrix represents a routing path to collect data from sensors contributed

data for that corresponding measurement. The CS measurements collected at the BS

for signal reconstruction can be addressed as Y = [y1 y2 . . . yM ]T or Y = ΦΨΘ, where

Θ = ΨTX. The sparsity of measurement matrices or projections have limitation. So

we only can exploit the incoherence between Φ and Ψ for more energy saving. The

coherence µ can be calculated as

µ = maxi̸=j⟨Hi, Hj⟩. (2.24)

The inner product

⟨Hi, Hj⟩ = ΨT
i Φ

TΦΨj. (2.25)

For small coherence value, we require ΦTΦ ≈ I. In [113], Lee proposed a low coherence

projection for efficient routing in WSNs, called LCPR. At each routing path, a random

node chooses a next node to forward data based on a greedy choice which minimizes

the ”intermediate coherence” of the spatial measurement matrix Φ.

In [114], ”maximum energy overlap” is calculated as

β(Ψ) = β(P Ψ̃) = max
i,j

∑
l

Ψ2
i (i, j), β(Ψ) ∈ [0, 1], (2.26)

where β represents the maximum amount of energy of a basis functions captured by

a single cluster. As basis functions are overlapped with more clusters, we will have a
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potentially higher chance to reconstruct the signal correctly. As discussed, the more

energy overlapped, the better CS performance.

Mapping sensor nodes

As mentioned, sensor readings are often highly correlation which is suitable to apply

CS. While collecting data in a WSN from a sensing area, there are many way to find a

mapping between sensors and the data vector (X = [x1 x2 . . . xN ]
T ) that is supposed

to be sparse or compressible. If the sensor nodes are indexed properly, the sensory

data collected from them can be more compressible in a sparsifying domain (Discrete

Cosine Transform - DCT or wavelet). As mentioned in [115], the coherence between

the measurement matrix (Φ) and the sparsifying matrix (Ψ) is exploited. The smaller

the coherence, the fewer CS measurements are required. This means that the WSN

collects less CS measurements from the sensors that reduces power consumption for

data transmission from sensors to the BS.

In [116], an algorithm is designed to compress and reconstruct sensor observations

in an energy efficient manner by exploiting spatial correlation between the sensed

data. In [117] Leinonen reduced the number of transmissions by exploiting certain

correlation structures of a multi-dimensional signal. Instead of conveying original

sensor readings, the sensors deliver CS-aggregated measurements to the sink, leading

to a reduced number of incurred transmissions in the WSN. With a sufficient number

of measurements, the sink can accurately reconstruct the data via CS decoding.
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CHAPTER 3

RANDOM WALK BASED DATA GATHERING IN WIRELESS

SENSOR NETWORKS

3.1 Introduction

3.1.1 Motivation

Saving power consumption in monitoring data in wireless sensor networks (WSNs)

is always a critical issue. Sensors in the networks are randomly deployed to sensing

areas that need to be observed. They are often deployed in harsh conditions without

maintenance or a replaceable power supply [118]. Therefore, the connection of the

network relies on these small and inexpensive devices under a severe energy constraint.

Random walk routing (RW) [75, 119, 120] has been shown to balance sensors’

consumed energy in WSNs since each node is randomly chosen to transmit or relay

data. Based on the sensor broadcasting radius, also called transmission range, a WSN

is connected as an undirected graph G(V,E), where V is the vertex set and E is the

edge set. Depending on the transmission range, each node may connect to many or

a few other nodes with different real distances. The method itself prolongs network

lifetime.

Compressive sensing (CS) [5, 6, 7, 8, 121] provides a novel data processing tech-

nique for sparse or compressible signals. Based on the spatial correlation of the

sensory data in WSNs, the technique offers to reconstruct all sensor readings from N

nodes based on only M = O(klogN/k) CS measurements collected from the sensing

area and sent to the sink or base-station (BS) [9, 11, 10]. The sensory data is assumed
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to be k-sparse signal in canonical basis or other sparsifying bases such as Discrete

Cosine Transform (DCT) or Wavelet. Each CS measurement can be collected from

all sensing nodes or from some random nodes depending on data collection methods

in the network utilizing CS. In recent years, there are several studies on the inte-

gration of CS and data collection in WSNs [122, 123, 99, 124, 13, 15, 20]. In these

methods, sensor readings are multiplied by some coefficients and are sent to the BS

following some chosen routing method such as gossip-based, random walk, tree-based,

and cluster-based. The CS measurements are collected at the BS as Y = ΦX, where

Φ is the measurement matrix, also called the projection matrix and vector X presents

all unknown readings from all the sensors. The resulting measurement matrices can

be sparse or dense with Gaussian coefficients depending on the underlying routing

methods.

In order to apply CS in RW routing in WSNs in which all sensors are randomly

deployed in the sensing area, we need to initiate a certain number of RWs with a

predefined length to collect sensor readings from random nodes. Those readings are

added together as a CS measurement to be sent to the BS for the CS recovery process.

Each RW may or may not sample all sensors depending on the RW’s length or the

measurement matrices we want to apply in the CS recovery. Since Radu [125] states

that random sparse measurement matrices can work as well as the full Gaussian

ones in the CS recovery processes, then the sparse binary matrix is applied in the

proposed RW routing. Thus, each RW only needs to collect sensory data from some

random nodes, not from the entire network, which results one spare binary row of

the measurement matrix. M rounds of RW collect M random measurements as

Y M×1 = ΦM×NXN×1 to be sent to the BS for the CS recovery process.

The length of RWs mainly determines the energy consumption for each measure-

ment collected. In order to have each RW visit nodes with an equal probability, we

choose the length as the mixing time based on RW theory. The mixing time is dif-
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ferent in each particular network and depends on the transition probability matrix

which will be addressed in the next section. It is known that sensors communicate

to each other based on a transmission range. This range decides the size of each

sensor’s neighborhood. We analyze the trade-off between the length of RWs and the

transmission range and suggest an optimal case to minimize the energy consumption

for such networks.

3.1.2 Related Work

Random walk has been used effectively for data gathering in WSNs. It does not need

global information as the shortest path routing [126] or other methods. Furthermore,

RW achieves load balancing for the networks based on the probabilities to transmit or

relay sensory data. [127] provides some results on regular and irregular grid networks

to contribute a construction of RWs on one particular family of random graphs. [128]

uses some mobile patrol nodes to collect data from random static sensors uniformly

distributed in a square network. The paper provides the concept of node coverage to

calculate the expected number of sensors captured within a given time frame. [129]

works on lattice networks to collect data based on oriented routing from a source to

a destination. The probabilities of wrong and right directions is mentioned in the

paper. [119] considers a given packet from a random sensor sending until it reaches

the sink or BS. Only grid networks are considered. [120] addresses different RWs as

Blind RW, RW with memory, and a new proposed RW. It is proposed that a node

chooses a next node based on a probabilities created by the distances between its

neighbors. None of them consider the length of RWs routing in WSNs in calculating

the power consumption.

RW becomes more powerful when it combines with CS [5, 6, 7] since the sparse

random projection has been shown to work as well as the dense full Gaussian matrix

in [125, 130, 110]. In [96] RWs choose the next nodes to collect data based on a fixed
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probability until they meet the BS or the sink. In this case, the RW’s lengths are

different to each other and extendable into many steps that the sensors consume more

energy for transmitting data. In [98] a mobile sink is used to collect CS measurements

from storage nodes after nodes forward data based on RWs. In [99, 12] RWs are used

where sensors choose the next nodes based on the Metropolis-Hastings algorithm

mentioned in [100, 97, 101, 102]. They also verify the number of neighbors from

others to decide the next nodes to forward data. In [13, 103, 14] simple RWs are

used to collect data in which the next nodes for RWs are chosen based on an uniform

probability [13, 14] or pseudo-random seeds [103]. Each CS measurement is created

at the last node visited by each RW with a predefined length and is sent directly [13]

or through intermediate nodes in multi-hop [103, 14] to the BS.

The approach here is based on our previous work in [13, 14]. We study RWs

and the integration between RWs and CS to build an energy-efficient data collection

method in WSNs employing CS. In this CSR algorithm, M RWs start from M ran-

dom nodes which are chosen with probabilityM/N . These RWs randomly choose the

next nodes as neighbors and visit random nodes in a certain number of steps which

are defined as RW’s length to collect sensory readings, and finally send directly (D-

CSR) or in multi-hop routing (M-CSR) the CS measurements to the BS. All power

consumptions for data collection in the networks are formulated, simulated and an-

alyzed. The trade-off between the RW length and the sensor transmission range is

investigated to minimize the network power consumption.

The main contributions in this work are summarized as follows:

1- Two versions of the CSR algorithm (D-CSR and M-CSR), which combine RW

and CS in collecting data in WSNs. CSR significantly reduces transmission energy

consumption in the networks.

2- Energy consumptions in D-CSR and M-CSR are formulated and simulated.

3- A simple greedy distributed data gathering tree algorithm is proposed to for-
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ward CS measurements in multi-hop routing to the BS.

4- The trade-off between the RW length (Mixing time) and the sensor transmission

range is investigated for further energy saving.

3.2 Background and Problem Formulation

3.2.1 Random Walk

Random walk (RW) on a graph can be modeled as a Markov chain as noted in [75,

97, 131]. Walking steps jump from node to node randomly based on probabilities

generated based on sensor neighborhoods, called transition probabilities. Specifically,

the next node j in the sequence is selected from the set of neighbors of the previous

node i in the sequence with probability pij. Such probabilities form a transition

probability matrix P = [pij]N×N , where N is the total number of vertexes. For

example, a simple random walk at a step of time k needs to move from vertex i to

one of its adjacent vertices j with a probability pij. The transition probability is

calculated as follows

pi,j = P (Xk+1 = j |Xk = i) =


1

d(i)
, if (i, j) ∈ E

0, others,
(3.1)

where d(i) denotes the degree of vertex i. This matrix characterizes the Markov chain

that is an important model for random walks on graphs which satisfies

0 ≤ p{ij} ≤ 1, i, j = 1, 2, ...N ;
N∑
j=1

p{ij} = 1, i = 1, 2, ...N. (3.2)

The length of RWs is often considered based on two factors, the cover time and

the mixing time which are defined as follows.

Definition 1 : Cover time is the expected number of steps to each every node in

the connected graph. The cover time of the graph is O(NlogN), where there are N

vertices in the graph (|V | = N).
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The cover time refers to a long RW length. We prefer to choose the mixing time

that can approach uniform stationary distribution for all sensor nodes as

Definition 2 : Mixing time is the number of steps for the distribution of a random

walk to be stationary. It shows how fast a RW converges to its stationary distribution.

The mixing time of RWs has been studied well in [97, 132, 133] showing that it

significantly depends on the transmission range or the transition probability pij. It

measures the number of steps for the distribution to reach the stationary distribution.

As mentioned in [97], the asymptotic rate of convergence of the Markov chain to the

uniform equilibrium distribution is determined by the second largest eigenvalue of the

transition probability matrix P as follows

µ(P ) = maxi=2,...,n|λi(P )| = max[λ2(P ), .λn(P )]. (3.3)

Since the graph is irreducible and aperiodic, then µ(P ) < 1 and the distribution

converges to uniform asymptotically. The mixing time τ can be calculated as

τ = 1/log(1/µ). (3.4)

3.2.2 Problem Formulation

We assume to have a WSN in which the sensors are randomly distributed in the sens-

ing area. An appropriate transmission range is chosen for all sensors to be connected

to each other as a undirected graph G(V,E). The edge set E represents all commu-

nication links between sensors that can be changed based on the sensor transmission

range, denoted as R.

Based on the CS theory, we need a number of measurements required (M =

O(klogN/k)) from the network to recover all raw sensor readings at the BS.M nodes

are chosen randomly to initiate M data collection walks. In each RW, a chosen node

adds its own reading to the RW’s message and continue to choose another node to

forward the combined message to. Its ID corresponds to the non-zero coefficient in a
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row of the measurement matrix ϕ. The sampling processes finish when the number

of walking steps reaches the length of the RWs which is chosen as the mixing time of

the graph G(V,E).  
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Figure 3.1: Illustration of a simple RW routing in a WSN with 8 nodes and the

projection matrix created from each RW.

Figure 3.1 shows a simple example of RW routing and building the matrix ϕ. The

first RW samples only two nodes, numbered as 1 and 2. It starts from node 1 and

finishes at node 2. The readings from the two nodes are added together to be sent to

the BS as the first CS measurement. This is illustrated as a record of collecting data in

the measurement matrix at the 1st row. The next (M−1) nodes are chosen randomly

to initiate (M − 1) RWs that also create (M − 1) rows for the measurement matrix.

For simplicity, we choose all coefficients equal to ”1” that results in a sparse binary

matrix. We assume that M RWs will collect enough of the number of measurements

required to reconstruct precisely all raw data from the network at the BS.
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3.3 Compressive Sensing Based Random Walk Data Collection

Algorithm (CSR)

3.3.1 System Model

We model a WSN with N sensors which are uniformly randomly distributed in either

a square area L × L or circular area with radius R0. The topology of the connected

network is a random geometric graph G(V,E). We assume that each sensor has

the same broadcasting radius, also called transmission range (R), calculated as a

Euclidean distance. It is also assumed that sensors can adjust their consumed energy

to transmit data based on real distances between them.

In reality, our network is not a regular network where each sensor has a different

number of neighbors within its range of the radius R. If we change the value of

R, the connection of the graph will change as follows: the set of vertex V is the

same based on the total number of sensors, but the edge set E changes based on the

communications between sensors in each neighborhood. We assume that a proper

value of R is chosen that each node connect to O(logN) neighbors for connectivity of

the network [134].

3.3.2 The CSR Algorithm

The proposed algorithm is summarized below as Algorithm 1.

The number of measurements required M is now the number of RWs that decides

the reconstruction error when the BS recovers all sensor readings X. It can be deter-

mined prior to sampling the data. The more CS measurements, the more accuracy

of the recovered data.

In aWSN with a large number of nodes, the transmission range determines number

of neighborhoods of each sensor as shown in Figure 3.5 in Section 3.4.3. It is highly

related to the mixing time (τ) which is chosen as the RW length. The LengthCounter
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Algorithm 1: Compressive Sensing Based RW Data Collection Algorithm

Initial phase:

- X = [x1 . . . xN ]
T represents N unknown values to the BS.

- Y = [y1 . . . yM ]T = zeros(M, 1); % CS measurements collected from M RWs.

- RWlength = τ ; % The RW length is chosen as the mixing time τ

- LengthCounter = RWlength;

- ID[i] = zeros(1, RWlength) % shows IDs of all nodes visited by ith RW.

- Φ = zeros[M,N ]; % The measurement matrix before the RWs proceed.

Data collection phase:

for i = 1 to M do

while LengthCounter ≥ 0 do

if Node jth is chosen based on Equation (3.1) then

if j /∈ ID[i] then

Y (i) = Y (i) +X(j); % Add new data to the combined message

Update ID[i];

else

Y (i) = Y (i); % Do not add data or update ID

end

LengthCounter = LengthCounter − 1;

Φ[i, :] = ID[i];

end

end

One RW complete: CS measurement Y (i) is sent to the BS.

end

Data recovery phase

All unknown values (X) are reconstructed at the BS based on M CS

measurements (Y) as

X̂ = arg min ||X ||1, subject to Y = ΦX.
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is set as the length when a random node is chosen to start a RW. It count-downs when

a RW reaches a next node. It is possible that a RW may visit a node more than once.

The node cannot add again its own reading to the combined packet and update its

ID. It only receives and forwards the same packet to a neighbor chosen randomly

based on Equation (3.1). Each CS measurement is built when a RW reaches the last

node or LengthCounter = 0. The CS measurements are sent directly or in multi-hop

to the BS for reconstructing all the unknown readings from the network.

3.3.3 Analysis of the Measurement Matrix: CS Recovery Performance

and Network Coverage

Each row of the measurement matrix is built from a RW with length τ . It shows the

node each RW visited corresponding to the non-zero elements in the matrix as follows

Φ =



1 0 0 1 0 1 ... 0

0 1 1 0 0 0 ... 1

1 1 0 1 0 1 ... 0

... ... ... ... ... ... ... ...

1 0 1 0 0 1 ... 0


M×N

(3.5)

Some row weight may be less than τ since a RW may visit a sensor node more than

once that does not affect the CS recovery process. As shown in [125, 130], this sparse

binary matrix satisfies the Restricted Isometry Property (RIP) that can be applied

in the CS recovery algorithm to reconstruct signals. We also show in the simulation

section that a sparse binary matrix formed from RWs in an arbitrary network can

work as well as a full dense Gaussian matrix in Figure 3.10.

We also consider sensor coverage for the networks while using a certain number

of RWs with a limited RW length as τ . Coverage is usually interpreted as how well

a sensor network will monitor a field of interest. It can be thought of as a measure

of quality of service. Back to our problem, we show the rate of sampling all sensors
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in the network by different numbers of RWs with a fixed RW length in Figure 3.7.

With the received measurement matrix Φ, if there is a column weight ≥ 1 then the

corresponding node is visited at least once, or vice versa.

3.3.4 Analysis of the Trade-off between the Transmission Range and the

Random Walk Length

As mentioned in Section 3.2.1, the RW length or the mixing time (τ) is calculated

based on the transition probability matrix P . The matrix is created based on the

sensor connections which are determined by the sensor transmission range R. Our

sampling goal is to have RWs visit all nodes with the same probability that also

means the stationary distribution is approximately uniform. If we increase R, each

sensor node will have more neighbors as shown in Figure 3.5. It can reach the others

in a smaller number of steps or in other words, the mixing time reduces, as shown in

Figure 3.6. When the RW length reduces, each RW spends transmission energy on

the smaller number of walking steps but longer distances. We investigate the trade-off

between these two important factors, mixing time and transmission range that can

provide an optimal point for the networks to consume the least power, as shown in

Figures 5.4 and 4.19 in D-CSR and M-CSR in the next sections, respectively.

3.4 Directly Forwarding the CS Measurements to the Base-station

(D-CSR)

3.4.1 Network Model

In this section, we choose a square sensing area dimensioned L × L with N sensor

nodes randomly deployed in the area. An appropriate transmission range R is chosen

for all sensors that the network is connected as a graph G(V,E). Given the number of

RWs (M) and the RW length (τ),M random nodes are chosen with the probability M
N

to initiate RWs. At the end of each walk, the last node obtains one CS measurement
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and sends the measurement directly to the BS as shown in Figures 3.3 or 3.4. The

power consumption of the power amplifier is a function of transmitting distances

which we consider to formulate based on a stochastic problem.

3.4.2 D-CSR Power Consumption Analysis

The total power consumption for collecting measurements at the BS generally con-

tains the consumed power for random walks and the power to send directly the

measurements to the BS, that is specified as

Etotal = (ERW + EtoBS). (3.6)

ERW is the consumed power for M random walks with length τ that can be

calculated as follows

ERW =M ×
τ∑

i=1

rαi , (3.7)

where r represents real transmitting distances between sensors in RW routing, and α

is the path-loss exponent (α ≥ 2). It is shown in [135] that α = 2 and α = 4 in free

space and multipath fading channels, respectively.
 

R 

R 

 Real communication distance (r) 

Figure 3.2: Sensor neighborhoods defined by the sensor transmission range R
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Since sensors are uniformly distributed in an area covered by R as shown in Fig-

ure 3.2, and one of them is chosen based on the transition probability mentioned in

Equation (3.1), r is also a random variable presenting the real distance between con-

secutive sensors along a RW (Figure 3.2).We can calculate the mean communication

distance statistically as follows

E[r2] =

∫ ∫
(x2 + y2) ρ(x, y) dx dy, (3.8)

where ρ = 1/(πR2) is the joint probability (pdf) with two random variables x and y.

We can change Equation (3.8) into polar coordinates as

E[r2] =

∫ ∫
r′2ρ(r′, θ) r′ dr′ dθ (3.9)

E[r2] =
1

πR2

∫ 2π

θ=0

∫ R

r′=0

r′3dr′ dθ. (3.10)

Finally, we obtain

E[r2] =
R2

2
, (3.11)

or

rmean =
R√
2
. (3.12)

So, the total consumed power for M random walks with length τ is

ERW =M × τ (R
2

2
)α/2. (3.13)

Since the nodes sending CS measurements to the BS are randomly distributed,

we can calculate EtoBS statistically as

EtoBS =
M∑
i=1

dαi = M × dαmean, (3.14)

where d presents the transmitting distance between the last node of a RW and the

BS that can be considered as a random variable. Since sensors and RWs are initiated
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randomly, we can calculate the mean value of d (dmean) approximately in two common

positions for the BS in WSNs: BS at the center and outside the sensing area.

BS at the center of the sensing area

 

 

 

BS 

LxL Sensor node  Flow of data 

Figure 3.3: An illustration of RWs collecting data when BS at the center

In Figure 3.3, a RW ends at a node that is also randomly distributed in the whole

network. We can calculate the mean square distance as follows

E[d2] =

∫ L

0

∫ L

0

[(x− L

2
)2 + (y − L

2
)2]f(x, y)dxdy, (3.15)

where f(x, y) = 1
L2 is the joint probability function (pdf). We can obtain the expected

square distance from RWs to the BS

E[d2] =
L2

6
. (3.16)

We finally derive the total power consumption for WSNs from Equation (3.6) as

follows

Etotal =M(τ (
R2

2
)α/2 + (

L2

6
)α/2). (3.17)
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BS outside the sensing area

 

 Sensor node  Flow of data 

L 

L 

Base Station 

0 

L /2

Li 

Figure 3.4: RWs collecting data when the BS is outside the sensing area at (Li,
L
2
).

As shown in Figure 3.4, the BS is located outside the sensing area. We set a fixed

position for BS (Li,
L
2
) in this analysis section. It means Li can be changed versus

L in real applications. The expected square distance between RWs and BS can be

calculated as

E[d2] =

∫ L

0

∫ L

0

[(x− Li)
2 + (y − L

2
)2]f(x, y)dxdy. (3.18)

Similarly, we obtain the mean square distance between RWs and BS as follows

E[d2] =
1

L
[
(L− Li)

3

3
+
L3
i

3
] +

L2

12
. (3.19)

From Equations (3.6) and (3.19), we derive the formula for the total power con-

sumption when BS is outside the sensing area as

Etotal =M [τ (
R2

2
)α/2 + (

(L− Li)
3 + L3

i

3L
+
L2

12
)α/2]. (3.20)

We now have built the required total power consumption formulas. They will be

applied for an arbitrary network in the simulation section.
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3.4.3 D-CSR Simulation Results

In this section, we consider a WSN with N = 500 sensors uniformly randomly dis-

tributed in a square sensing area 100× 100 (L = 100). The path-loss exponent for all

communication distances is chosen as α = 2.5. As we assumed, all sensors have the

same transmission range R but they can adjust their power while communicating.

We work on both sparse signals and real sensor readings. The real sensor readings

we chose to use are collected from Sensorscope: Sensor Networks for Environmental

Monitoring [136].

Since R significantly affects the transmission energy which sensors spend on com-

municating with each other, we first simulate this case with different values of R. We

start with a smallest R = 10 to satisfy the network being always connected. As we

increase R, the number of sensors in each neighborhood in the graph increases as

shown in Figure 3.5. The maximum number of sensors in each neighborhood is equal

to the total number of sensors in the whole network.
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Figure 3.5: The average number of neighbors of each sensor when changing the sensor

transmission range R

Based on the connected graph, we derive the probability transition matrix [pij]
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that follows Equation (2.12). As shown in Figure 3.6 the mixing time required for all

sensors to achieve the uniform distribution asymptotically reduces as we increase the

transmission range R. It leads to a trade-off to choose an optimal value of R for the

least energy consumption.
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Figure 3.6: The mixing time reduces as the sensor transmission range R increases

Figure 3.7 illustrates the sensor coverage of the network. We need to consider how

many RWs can sample the entire network area with the chosen RW’s length τ . It

shows that 90 RWs with the length of 48 can visit all nodes in the network.

In order to check the accuracy of the statistical calculation of the distance between

RWs and the BS, we consider the BS at many different positions and compare the

analysis and simulation results. As shown in Figure 3.8, Equations (3.16) and (3.19)

are calculated precisely when either the BS is at the center (Li = 0.5L) or outside

the sensing area (Li > L).

As we receive the lengths of RWs corresponding to the different transmission

ranges as mentioned above, we can calculate the total power consumption for the

network. Figure 3.9 shows the average power consumption at each value of transmis-

sion range. We can see that the network consumes the lowest energy at R∗ = 14 or at
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Figure 3.7: Sampling coverage the network with different number of random walks

length 48 (τ = 48)
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different positions Li ≥ 0.5L up to Li = 5L
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Figure 3.9: Total power consumption of the network versus sensor transmission ranges

when BS at the center of the sensing area

the rate R/L = 0.14. Based on these results, we can suggest it as the optimal range

for the sake of prolonging the network lifetime.

The total power consumption is minimized at R∗ = 14 when the RW length is τ =

48 as shown in Figure 3.6. Each RW only visit at most 48 random nodes for building

one CS measurement. It also means that the corresponding row in the projection

matrix has only 48 or less non-zero elements since a RW may visit a node more than

once. As mentioned in [125], an appropriate sparse binary projection matrix can

work as well as a full-Gaussian matrix for k-sparse signals with different k values.

We also have worked on real temperature sensor readings with different number of

CS measurements from 60 to 90. The normalized reconstruction errors (∥X−X̂∥2
∥X∥2 ) are

used to compare the two different measurement matrices, the full dense Gaussian

and the sparse binary matrix collected from the RWs. It is shown in Figure 3.10

that the optimal length of RWs (τ = 48) works well for either energy saving or CS

reconstruction.

Figure 3.11 illustrates the total energy consumption for 90 RWs with different RW
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Figure 3.11: Total power consumption through all data collection processes with M

= 90 measurements, transmission range R* = 14 in different RW’s lengths when the

BS at the center of the sensing area
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lengths. It is clear that the total energy is a linear function of the RW length τ .

3.5 Multi-hop Relaying Data from Random Walks to the Base-station

(M-CSR)

In this section, we extend our previous work by proposing a multi-hop transmission

method to relay CS measurements though intermediate nodes to the BS instead of

sending them directly. We also propose a distributed greedy algorithm to form a

spanning tree with the root at the BS. In the method, sensors do not require global

information from the others as the minimum spanning tree [137] or the shortest path

tree [138]. After a RW finishes collecting data, the CS measurement is transmitted

following the tree to the BS. We formulate the total energy consumption for the

network and also suggest an optimal sensor transmission range R∗.

3.5.1 Network Model

In this model, we assume that the sensing area has a circular shape in which the

BS is at the center. We also assume that sensors still can adjust their power level

to collect data while walking through the number of sensors corresponding to the

length of RWs. After that, sensors use transmission range, denoted as R to connect

to their parent nodes in the tree to relay CS measurements to the BS. We still have N

sensors uniformly distributed in the circular area of radius R0, and also, the path-loss

exponent is still assumed to be equal to 2.5 (α = 2.5) as used in the previous sections.

3.5.2 Multi-hop Relaying Data Algorithm

We propose a distributed greedy algorithm to form Multi-hop Relaying for RWs,

named M-CSR: We assume all sensors have an equal transmission range (R) that

allows them to communicate to each other within range R. An appropriate R should

be chosen depending on the node density of the entire network ( N
πR2

0
) to ensure that
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all sensors are connected as an undirected geometry graph. Based on the graph, we

can deploy M-CSR to form the routing paths for the sensors as: All nodes broadcast

their information about their number of hops away from the BS to their neighbors.

At the first iteration, only nodes close to the BS (the R overlap the BS) have the

number of hops (NoH). They name their NoH as ”1” and broadcast to their neighbors

in the next iterations. A node choose to connect to one of its neighbors which has

the smallest NoH. After a few iterations, the routing paths may be formed but not

completely done because a sensor only chooses one of its neighbors having NoH while

the rest may not have one after a few iterations. So the algorithm keeps running

until there is no change of routing paths between all sensors. This algorithm can be

written shortly as below:

All nodes connected as a graph with the same range R

1. While (the routing paths is changing)

2. NoH(BS) = 0; i ∈ N nodes

3. Nei = set of i’s neighbors

4. if dij < R, where j ∈ Nei

5. sensor(i) chooses sensor(j) when NoH(j) = min{NoH(Nei)}

6. name NoH(i) = NoH(j) + 1

7. end if

8. end while (Until no change of routing paths between all nodes)

Figure 3.12 is created by running the algorithm with 500 sensor randomly deployed

in the circular area with radius R0 = 50. The transmission range is chosen based on

the optimal one in the previous part (D-CSR), R∗ = 14. The optimal transmission

range in M-CSR could be different based on the multi-hop routing part that will be

shown later in the simulation results.
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Figure 3.12: Tree-based relaying measurements after each RW to the base-station

formed with 500 nodes and transmission range R = 14.

3.5.3 M-CSR Power Consumption Analysis

The total power consumption generally in WSNs using RWs is Etotal = (ERW+EtoBS)

as mentioned in Equation (3.6). The consumed power for only RW part is already

calculated in Equation (3.13) as ERW = Mτ(R
2

2
)(α/2), where R is the transmission

range and M is the number of measurements required or the number of RWs.

EtoBS is calculated after we have the tree-based multi-hop routing formed. Since

we use multi-hop transmission rather than directly transmitting data from RWs to

the BS, we need to formulate this consumed energy as follows

EtoBS =
M∑
i=1

NoH(i)×Rα, (3.21)

where Rα is the energy consumption based on the transmission range spent on each

hop relaying measurements.

In [139], Chandler calculated the average number of relay hops in randomly located

radio network. Based on the idea, equation (4.29) can be written as

EtoBS = NoHave ×Rα ×M, (3.22)
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where NoHave is the average number of hops calculated as E[n] in [139]. The ex-

pectation of the number of hops is calculated based on the probability of being able

to make a connection between a random node and the BS. Sensors are supposed to

have an equal transmission range. If an area covered by a transmission range does

not include a destination as the BS, there must be at least one node existing in the

radio overlapped area called A to relay data.

The number of sensors existing in the area A follows Poisson distribution with

the mean value λ = Nc

πR2
0
× A. The probability of being able to make a connection

between a random node and the BS is

P (#ofnodes ≥ 1) = 1− P (#ofnodes = 0) (3.23)

= 1− e
− N

πR2
0
×A
, (3.24)

where A = 2R(2θ − sinθcosθ) and θ = cos−1(x/2R).

Since sensor nodes are randomly distributed and are chosen in the sensing area, the

distance between any sensor and the BS denoted as x can be considered as a random

variable. The probability of being able to make a connection at distance x using NoH

or less hops is denoted by PNoH(x). Chandler [139] provides the expectation value of

the number of hops in a random network as follows

E[NoH] =

max(NoH)∑
NoH=1

n[PNoH(x)− PNoH−1(x)]/Pmax(NoH)(x) (3.25)

= max(NoH)−
max(NoH)−1∑

NoH=1

PNoH(x)

Pmax(NoH)(x)
, (3.26)

where max(NoH) is the maximum number of hops allowed. Finally, we obtain the

power consumption for RWs relaying M measurements to the BS formulated as

EtoBS =

{
NoHmax −

NoHmax−1∑
NoH=1

PNoH(x)

PNoHmax(x)

}
Rα ×M. (3.27)

Now we analyze the transmission range R. In each routing path, the number of

hops is directly related to R. If we increase R, a sensor could reach further nodes
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to choose one of them to forward measurements. This means that total number of

hops can be reduced or increased with variable values of R, which may effect power

consumption. For example, if we increase R, the number of hops in each routing path

might be reduced. But we have to deal with longer hop distance that consumes more

power. In addition, R is strongly related to the RW length τ as shown in Figure 3.6

that might provide us a trade-off of choosing an optimal R∗.

3.5.4 M-CSR Simulation Results

These conditions are simulated using an arbitrary circular network having radius

R0 = 50. All 500 sensors are uniformly randomly distributed and have the same

transmission range R. The path-loss exponent is still assumed as α = 2.5.
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Figure 3.13: Total number of hops from all sensor nodes to the BS as we increase the

transmission range R

In Figure 3.13, the transmission ranges are chosen as R = {10 ÷ 20} to consider

the total number of hops from all nodes on the relaying tree to the BS. It shows

the accuracy of Equation (3.26) and clarifies that the total number of hops degraded

corresponding to the transmission range increased. As mentioned in the M-CSR
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analysis section, increasing R might increase EtoBS but also reduces the RW length

τ as calculated in the D-CSR section.

Figure 3.14 shows the total power consumption for the network while different

values of transmission ranges are chosen for the sensors in the network. This provides

us the optimal transmission range in this case, R∗ = 12.
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Figure 3.14: The total power consumption applied M-CSR versus different transmis-

sion ranges R when BS at the center; R* = 12

Based on Figures 3.13, 3.14, we should choose the optimal transmission range

R∗ = 12 that results the least consumed power for the network.

Figure 3.15 compares the total power consumption from the two methods, D-CSR

and M-CSR. Please note that our calculation for power consumption for D-CSR was

based on the assumption of a square sensing area. We extended our results for the

case of a circular sensing area with BS at the center in Appendix A. In Figure 3.15,

the total consumed power is a linear function of the number of measurements required

or the number of RWs. We can save up to 20 − 30% when using M-CSR instead of

D-CSR.
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Figure 3.15: Compare the total power consumption in two random walk routing

method when BS at the center and R = 14.

3.6 Conclusion and Future Work

In this chapter, the integration between CS and RW for the purpose of saving energy

for monitoring data in WSNs was presented and analyzed. It is well known that

natural signals have spatial correlation and therefore the sensor readings in a WSN

are sparse in a proper basis that facilitates the utilization of CS for energy-efficient

data collection in such networks. In our proposed method, a certain number of sensors

are chosen to initiate RWs. Each RW keeps adding sensory data from nodes it visits

and finally forward the CS measurement to the BS for the CS recovery processes

in two ways: directly (one hop) and multi-hop fashion, called D-CSR and M-CSR,

respectively. The RW length is chosen as the mixing time that allows the RWs to

visit sensors node with an approximately equal probability.

We investigated the trade-off between the transmission range R and the mixing

time τ to suggest an optimal R∗ for the networks to consume the least power. Fur-

thermore, we analyzed and formulated all power consumptions collecting data in such

networks based on stochastic problems. We also compared both models of transmit-
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ting CS measurements to the BS, D-CSR and M-CSR. The total power consumption

in M-CSR reduces up to 30% compared to D-CSR in both analysis and simulation.

Since we do not consider other characteristics such as latency or capacity in the

networks, the multi-hop routing (M-CSR) is suggested for energy saving.

In future work, we will exploit how the sparsity of the projection matrix to save

the power consumption for routing methods in WSNs utilizing CS.
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CHAPTER 4

CLUSTER BASED DATA COLLECTION IN WIRELESS SENSOR

NETWORKS

4.1 Introduction

4.1.1 Motivation

Wireless sensor networks (WSNs) have found numerous uses in both military and

civilian applications [118]. Sensors in WSNs are usually randomly dropped/deployed

in a sensing area that needs to be monitored. They are often deployed in harsh

conditions without maintenance or renewable power supply. Therefore, the connection

and operation of these networks rely on these small and inexpensive devices under a

severe energy constraint. Saving energy in data collection in such networks is always

a critical problem that directly impacts network lifetime.

The spatial correlation of the sensor readings in WSNs results in an inherent

sparsity of data in a proper basis. This sparsity facilitates the application of the

compressive sensing (CS) [5, 6, 8] technique in data collection in WSNs [9, 10, 140].

CS offers a novel framework to reconstruct all sensor readings based on a small num-

ber of CS measurements, which creates an opportunity to significantly reduce power

consumption.

In recent years, there have been several studies on the integration of CS and data

collection in WSNs, e.g., [122, 123, 124, 13, 15]. In these methods, sensor readings

are multiplied by a selected set of coefficients and are sent to the base station (BS)

following some routing methods such as gossip-based, random walk, tree-based, or
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cluster-based. The CS measurements are collected at the BS as Y = ΦX, where Φ is

called the measurement matrix and vector X represents all unknown readings from

all the sensors. The resulting measurement matrices can be sparse or dense with

Gaussian coefficients depending on the underlying routing method.

In this chapter we combine the clustering technique, which has been shown to save

and balance energy consumption for WSNs, and block diagonal matrices (BDMs)

as the CS measurement matrices. We propose an algorithm called Cluster-Based

Compressive Sensing Data Collection (CCS) in which the CS measurements are

generated at each cluster-head (CH) in the clustered networks. We consider

two methods to send these measurements to the BS: directly (one-hop) and multi-

hop relaying through the intermediate CHs. In the BDM, the size of each sub-matrix

(block) depends on the size of each cluster. We formulate the total power consumption

and discuss the effect of different sparsifying bases on the CS performance as well as

the optimal number of clusters for reaching the minimum power consumption. For our

formulations, two common positions for the BS are considered: the BS located at the

center and outside the sensing area. Based on that, we can obtain the optimal number

of clusters that provides the minimum power consumption for our networks. In our

simulation, we consider both random sparse signals in canonical basis and real sensor

readings. The real sensor readings, although not sparse in canonical domain, are

sparse in frequency domains (DCT or Wavelet). We compare different combinations

between the measurement matrices and the sparsifying matrices in our theoretical

and simulation results. Our work shows promise not only in WSNs but also in mobile

sensor networks or vehicle networks for data monitoring or similar purposes. The

power saving in communications prolongs the lifetime in such networks.
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4.1.2 Related work

Clustering is an effective way to enhance the performance and lifetime of a WSN and

many different clustering algorithms have been studied [34, 43, 51, 61, 141]. Each

cluster has a cluster head (CH) and CHs can be pre-determined [34] or be selected

while doing clustering as in the following algorithms. K-means [41, 38, 42] is a well-

known and simple clustering algorithm that chooses CHs for K clusters at the central

point of each cluster. Since power consumption is dependent on transmission distance,

this helps to minimize the intra-cluster power consumption. In general, CHs consume

power much more than other sensors as they transmit the entire cluster’s data to the

BS. In LEACH [141], sensor nodes randomly elect themselves to be CHs. This way,

the high power consumption related to communication with the BS will be distributed

among the nodes in the network. The HEED algorithm [142] chooses CHs based on

the highest residual energy of sensors to balance network energy. EEUC [57] makes

unequal size clusters and muti-hop links between CHs to reduce and balance the

power consumption. Fault-tolerant clustering is considered in [37] in order to recover

sensors in a failed cluster. Load-balancing clustering [35] makes the whole network

consume power equally and [50] finds the optimal number of clusters to get the lowest

power consumption for WSNs.

Utilizing CS is also an effective way to reduce the number of required samples from

a sparse signal. Due to the correlation between the sensor readings in a WSN, the

monitored signal can have a sparse representation in a proper domain such as DCT

or wavelet. Accordingly, CS has found applications in data collection in WSNs [9,

10, 140]. In [123] a tree-based algorithm called CDG is proposed to balance the

payload falling on nodes close to the BS. The measurement matrix is a full Gaussian

one that consumes more power than the sparse binary measurement matrices [125].

To reduce power consumption, other methods based on sparse CS matrices have

been proposed [143, 19]. In [143] the authors proposed MTT, which is an heuristic
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algorithm to compute a minimum transmission spanning tree for data collection in

WSNs using CS. Another tree-based study is TCS [19] that utilizes sensor storage to

reduce the number of transmissions in a routing tree.

Hybrid data collection schemes where both raw data and combined samples are

in traffic are mentioned in [104, 105, 106]. In [104] CS operation requires each node

in the WSN to send exactly M packets. M is denoted as the number of CS measure-

ments required to reach a given reconstruction quality. A spanning tree is used to

partition the network into sub-nets. [105] and [106] propose a scheme called hybrid

CS aggregation that combines the non-aggregation and plain CS mentioned in [104]

to reduce the traffic loads sending from each node. The non-aggregation method is

used if a node receives less than (M − 1) raw readings from its downstream nodes.

Otherwise, plain CS is used. In [104, 105, 106], each sensor needs to send up to M

samples to the BS to contributeM CS measurements for signal recovery. The BDM is

mentioned in [106] to reduce partially the total samples being sent from each sub-net.

In [107], a WSN is partitioned into clusters. Sensor readings are sent to CHs and the

CHs send the received data to the BS. Since the measurement matrix is full Gaussian,

each cluster needs to generate M samples to contribute to M CS measurements at

the BS.

This work extends our previous studies [15, 17]. In our proposed CCS algorithm,

all non-CH sensors send their own readings to their corresponding CHs only once

during M rounds of measurement collection. The CHs generate sub-matrices with

Gaussian coefficients (ϕi) and generateMi CS measurements using y
i
= ϕixi, where yi

is the measurement vector collected from the ith cluster, and xi represents all readings

in the ith cluster. The CS measurements are either sent directly from CHs to the BS

or in a multi-hop fashion. We provide Table 4.1 to compare our data collection

method with other related studies. In the table, we focus on the network structures,

the number of times each sensor sends its reading to its CH or the subnet-head to
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contribute to M CS measurements, and the number of combined data packets being

sent from each CH or subnet-head to contribute to M CS measurements.

Table 4.1: Comparison between the existing data collection methods and CCS

Related papers [104, 105, 106] Partly [106] [107] CCS

Network structure Spanning tree Spanning tree Cluster Cluster

Measurement

matrix

Full dense

Gaussian

BDM
Full dense

Gaussian

BDM

Number of times

sending data from

each sensor

Up to M times Mi times Only once Only once

Number of packets

sending from each

cluster or subnet

M Mi M Mi (
Mi

M
= Ni

N
)

CS measurements

are generated at

Base-station Subnets Base-station Cluster-heads

The main contributions in this chapter are summarized as follows:

1- Two versions of the CCS algorithm (D-CCS and I-CCS), which combine cluster-

ing and BDMs as CS matrices, are proposed. CCS significantly reduces transmission

power consumption in WSNs.

2- Expressions for power consumption in D-CCS and I-CCS are formulated.

3- The optimal numbers of clusters are suggested for the networks in different

scenarios to consume the least power.

The remainder of this chapter is organized as follows. Problem Formulation is

addressed in Section II. The CCS algorithm is stated in Section III. In Section IV and
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Section V, the two models to forward the CS measurements to the BS are presented

with corresponding transmission power consumption analysis and simulation results.

In Section VI use of the DCT and sending only k large transformed coefficients is

considered for comparison purpose since k ≪ M ≪ N . Finally, conclusions and

suggestions for future work are presented.

4.2 Problem Formulation

4.2.1 System Model

In the network model considered here, we assume thatN sensors have been distributed

uniformly at random in a sensing area. Nc out of N nodes in the network are selected

uniformly at random as CHs with probability Nc

N
and the other nodes connect to the

closest CH, as mentioned in LEACH [141]. This creates Nc non-overlapped clusters

with each cluster having one CH and ( N
Nc
− 1) non-CH sensors on average. Each CH

is assumed to have enough capacity to store the data vector collected from its own

non-CH sensors and to generate a number of CS measurements required based on the

number of sensors in the cluster.

We assume that each node can adjust its power level based on its distance from its

CH and this can be done based on the received signal strength [144]. The consumed

power for reaching a destination node j with distance dij from the node i is1 Pij = dαij.

Parameter α is called the path loss exponent, which is usually between 2 and 4,

depending on the characteristics of the channel [135]. In this chapter, we assume

α = 2. For the reconstruction error related to CS signal recovery we consider the

normalized reconstruction error ∥X−X̂∥2
∥X∥2 .

1In fact, we have Pij ∝ dαij [144]. However, since we are interested in a comparison of different

schemes, and not the exact values of the power, without loss of generality, we can consider the

constant factor as one.
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4.2.2 Block Diagonal Matrices

As mentioned before, our goal is to utilize block-wise CS for data collection in clus-

tered WSNs. Since CS measurements are formed at each CH, the overall CS mea-

surement matrix formed at the BS will no longer have the form of the conventional

CS matrices, such as a dense matrix with all the entries being i.i.d. Gaussian or

Rademacher 2. Instead, our CCS algorithm results in block diagonal matrices (BDMs),

in which ϕi, the i
th block in ϕ, corresponds to the ith cluster and has i.i.d. Gaussian

entries. Let xi denote a vector of size Ni consisting of the sensor readings of the

nodes in the ith cluster, and y
i
= ϕixi denote a vector includingMi CS measurements

collected from the ith cluster. We have

y
1

y
2

...

y
Nc


︸ ︷︷ ︸
Y :M×1

=



ϕ1

ϕ2

. . .

ϕNc


︸ ︷︷ ︸

Φ:M×N



x1

x2
...

xNc


︸ ︷︷ ︸
X:N×1

(4.1)

The restricted isometry property (RIP) of BDMs has been studied in [145, 146]

and it has been shown that BDMs can satisfy RIP and therefore can be used as

efficient measurement matrices. The required number of the measurements though

depends on the basis in which the signal is sparse. According to [145, 147], the number

of measurements required for a BDM, consisting of Nc blocks with Gaussian entries,

to satisfy RIP with high probability is given as [145]

M = O(k µ̃2log2(k) log4(N)), (4.2)

where µ̃ = min{
√
Nc, µ} and 1 ≤ µ ≤

√
N is the coherence between ψ and canonical

basis and defined as µ =
√
N max |ψij|. From (4.2) several very interesting points

can be concluded. If the sparsifying basis has a small coherence with the canonical

2A Rademacher random variable takes a value of +1 or -1 with equal probability.
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basis (such as the Fourier basis or DCT basis), then increasing Nc (which results in

a more sparse matrix) does not increase M . On the other hand, if the sparsifying

basis has a large coherence with the canonical basis (such as Wavelet or Canonical

bases), then for Nc < µ2, M is a linear function of Nc. These results will be seen in

our simulations later (Figures 4.4, 4.9, 4.14).

4.2.3 Problem Formulation

Consider a vector X = [x1, x2, . . . , xNc
] in which xi represents unknown sensor read-

ings from cluster i. We assume the BS needs M CS measurements collected from the

network to recover precisely all raw readings. The ith CH (i = 1, 2, . . . , Nc) generates

an Mi ×Ni block of Gaussian coefficients (ϕi), where Ni is the number of sensors in

the ith cluster. The CH then generates Mi CS measurements using y
i
= ϕixi and

sends them to the BS. The exact value of Mi out of M is calculated based on Ni

N
)

which is shown in Lemma 1 in the next section.

The BS receives random seeds to generate the BDM and the measurement vector

Y = [y
1
, y

2
, . . . , y

Nc
] separately from Nc CHs. The greater number of measurements,

the better the accuracy of the reconstruction. In the following sections we will analyze

the use of BDMs in the CS recovery processes with different types of signals; sparse

in canonical basis or in frequency domain. Transmission power consumptions for

data collection in the networks are formulated, analyzed and finally simulated in

arbitrary networks. The optimum number of clusters such that power consumption

is minimized will be determined for each network.

4.3 CCS: Cluster-Based Compressive Sensing for Data Collection in

WSNs

The proposed CCS algorithm is summarized in Algorithm 2 below. CCS is divided

into two parts. The first is the underlying clustering that can be based on different
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Algorithm 2: CCS - Cluster-Based Compressive Sensing Algorithm

(1)-Clustering phase:

- Nc out of N sensors are randomly chosen as CHi (i = 1, ...Nc) with

probability p = Nc

N
.

- Assign each sensor (Sj) in the entire network to the nearest cluster Ci as

Sj ∈ Ci if ∥ Sj − CHi ∥<∥ Sj − CHt ∥

forj = 1, ..., N, i ̸= t and i = 1, ...Nc

(2)-Measurement generating phase

- Non-CH sensors send their data once to their CHs. Data vector xi is stored

at CHi

- CS measurements are generated at each CH as

for i = 1 to Nc do

- ϕi = randn(Mi, Ni) % sub-matrix is created at each cluster

- y
i
= ϕixi % Mi measurements are created at CHi

end

(3)-Measurement collection and Data recovery phase

- M =
∑Nc

i (Mi) CS measurements are forwarded separately from CHs to the

BS.

- Given the BDM ϕ, all unknown values (x) are reconstructed based on (y).
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methods such as K-means [38] and LEACH [141] which we use for comparison pur-

poses in our simulations. The second is the generation of CS measurements based

on BDMs and forwarding them to the BS either directly or in multiple hops to be

addressed in Sections 4.4 and 4.5, respectively. In a real WSN each cluster may have

a different number of sensors and accordingly different numbers of measurements are

required from each CH. The following lemma relates Ni and Mi.

Lemma 1 Let M be the number of required measurements to be taken from all clus-

ters to satisfy the RIP for a block diagonal matrix with blocks ϕi of size Mi × Ni.

To get the best CS performance in term of the reconstruction error, the number of

measurements from the ithcluster (Mi) should be linearly proportional to the number

of sensors in the cluster (Ni). In other words, Mi

M
= O(Ni

N
).

Proof. According to [7], the number of CS measurements required to reconstruct a

k-sparse signal of length N using a dense Gaussian measurement matrix of sizeM×N

is given as

M = O(klog
N

k
). (4.3)

Now assume the k non-zero elements are uniformly distributed in the vector X,

and X has been partitioned into sub-vectors of size Ni. Therefore, we have

Ni

N
=
ki
k
. (4.4)

Using (4.3), and considering that ϕi is a dense Gaussian measurement matrix we have:

Mi = O(kilog
Ni

ki
). (4.5)

From (4.3), (4.4) and (4.5), we obtain

Mi

M
= O(kilogNi/ki)

O(klogN/k)
= O(ki

k
) = O(Ni

N
).

Hence,

Mi

M
= O(

Ni

N
). (4.6)
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Although this lemma has been proven for the case that the signal X is sparse in the

canonical domain, our simulation results, below, show that the lemma holds even

when X is sparse in another domain. Here is an example. Assume a network of size

N is divided into two clusters with sizes of N1 = 0.7N and N2 = 0.3N . A fraction T

and 1− T of the total measurements are collected from cluster 1 and 2, respectively.

Signal x is assumed to be sparse in DCT. Figure 4.1 depicts the reconstruction error

versus T , when N = 1000 and M = 250. As we see the minimum error occurs

when T = M1/M is exactly equal to N1/N = 0.7. This is the same result stated

in Lemma 1. Experiment with real sensor readings illustrates that the number of

acquired measurements from a cluster should be proportional to the cluster size for

the best CS performance.
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Figure 4.1: Average reconstruction error versus the fraction of the measurements

collected from the first cluster (T = M1/M). The error is minimize when T is equal

to the fraction of the nodes in the first cluster (N1/N = 0.7).
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4.4 Directly Send CS Measurements to the BS (DCCS)

4.4.1 Network Model

In this model, we assume a WSN with N sensors deployed in a square sensing area

sized L × L distance unit2. Non-CH sensors send their readings directly to the CHs

they belong to based on real distances (r). The CHs generate CS measurements and

send them directly to the BS. The position of BS is changeable which can be inside

or outside the sensing area.

4.4.2 Power Consumption Analysis for DCCS

We refer to the communication cost associated with the communication between

the non-CH nodes and their CHs as the intra-cluster power consumption which is

denoted as Pintra−cluster. The CHs create the CS measurements as combinations of

all received data within each cluster (y
i
= ϕixi) and send the measurements directly

to the BS. The corresponding power consumption is referred to as PtoBS. The total

power consumption is formed as

Ptotal = (Pintra−cluster + PtoBS). (4.7)

Analysis of Pintra−cluster

We assume a uniformly distributed WSN divided into Nc clusters with the same

number of sensors as N/Nc, consisting of one CH and ( N
Nc
− 1) non-CH nodes. We

have

Pintra−cluster = NC(
N

Nc

− 1)E[rα], (4.8)

where r is a random variable representing the distance of a non-CH sensor to its

corresponding CH and α is the path loss exponent that we assume to be 2 throughout
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the chapter. We can calculate E[r2] as following:

E[r2] =

∫ ∫
(x2 + y2) ρ(x, y) dx dy (4.9)

=

∫ ∫
r′2ρ(r′, θ) r′ dr′ dθ, (4.10)

in which ρ(x, y) is the node distribution. To make the analysis tractable, similar to

[50], we assume each cluster area is a circle with radius R = L/
√
πNc and the density

of the nodes is uniform throughout the cluster area, i.e. ρ(r′, θ) = 1/(L2/Nc). We

have [50]:

E[r2] =
1

(L2/Nc)

∫ 2π

θ=0

∫ R

r′=0

r′3dr′ dθ =
L2

2πNc

. (4.11)

and accordingly

Pintra−cluster = (
N

Nc

− 1)
L2

2π
. (4.12)

As we see, the total intra-cluster power consumption is a decreasing function of the

number of clusters.

Analysis of PtoBS

Next, we need to determine PtoBS, which is based on the distances between CHs and

the BS and the total number of measurements M required to be transmitted from

each CH to the BS. We assume the BS is located at the location (Li,
L
2
) with respect

to our reference point (see Figure 4.2). The average consumed power by all CHs is

given by

PtoBS =ME[d2], (4.13)

where d is a random variable representing the distance between the CHs and BS.

Assuming that all CHs are randomly distributed in the sensing area, the expected
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Figure 4.2: A clustered WSN with BS outside the sensing area (Li > L).

squared distance between CHs and the BS is given by

E[d2] =

∫ L

0

∫ L

0

[(x− Li)
2 + (y − L

2
)2]f(x, y)dxdy (4.14)

=
1

L
[
(L− Li)

3

3
+
L3

i

3
] +

L2

12
, (4.15)

in which f(x, y) = 1
L2 (uniform distribution of CHs). From Equations (4.13) and (4.15)

we conclude that PtoBS is independent of the number of the clusters. Using (4.7),

(4.12), (4.13), and (4.15), the total power consumption can be formulated as

Ptotal = (
N

Nc

− 1)
L2

2π
+
M

L
[
(L− Li)

3 + L3
i

3
] +

ML2

12
(4.16)

We usually have two common positions for the BS, at the center of the sensing area

(Li = L/2) and outside the sensing area (Li ≥ L). For the former case, (4.16) is

simplified as

Ptotal = (
N

Nc

− 1)
L2

2π
+
ML2

6
. (4.17)

According to (4.2) [145], we can see that for canonical and wavelet bases, the

number of required measurements is a linear function of Nc. Based on this, we can

state the following lemma to find the optimal number of clusters N∗
c for minimizing

the power consumption.
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Lemma 2 Assume the number of required measurements is a linear function of the

number of clusters, i.e., M = aNc + b, where a and b are appropriate constants.

In order to achieve the lowest power consumption with CCS, the optimal number of

clusters is given by

N∗
c =
√
C N = O(

√
N), (4.18)

where

C =
6L3

4πa [(L− Li)3 + L3
i ] + πaL3

. (4.19)

Proof. Adding the linear function of M mentioned in the lemma into the general

equation of the total power consumption (4.16), we have

Ptotal = (
N

Nc

− 1)
L2

2π
+
aNc + b

L
[
(L− Li)

3 + L3
i

3
] +

(aNc + b)L2

12
. (4.20)

We have

dPtotal

dNc

= − NL2

N2
c 2π

+
a

L
[
(L− Li)

3 + L3
i

3
] +

aL2

12
. (4.21)

By forcing dPtotal

dNc
= 0, we can obtain the optimal number of cluster N∗

c calculated

as

N∗
c =

√
6L3N

4πa[(L− Li)3 + L3
i ] + πaL3

=
√
C ×N. (4.22)

So,

N∗
c = O(

√
N). (4.23)

4.4.3 Simulation Results for DCCS

In this section, we work with both random k-sparse signals (sparse in a canonical

basis, i.e, ψ is the identity matrix) and real sensor readings (which are sparse in

DCT or wavelet bases). We create a random network with number of sensors N =

2000 and size L = 100 according to the network model from Sections 4.2.1 and

4.4.1. We use K-means and LEACH clustering algorithms to arrange sensors into Nc
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clusters. Then, we apply our CS-based data collection and calculate the total power

consumption of the network for collecting M CS measurements that is required for

reaching a target error rate of 0.1. The number of measurements from each cluster is

linearly proportional to the size of the cluster based on Lemma 1. Simulation results

based on K-means and LEACH clustering as well as the analytical results derived in

Section 4.4.2 are provided below.

Figure 4.3 shows the histogram for the number of sensors in each cluster for both

K-means and LEACH when Nc = 10. K-means generates clusters that are more

uniform in size, resulting in a lower expected intra-cluster power consumption since it

aims to minimize the within-cluster sum of squares [38]. Next we find the number of
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Figure 4.3: Histogram of number of sensors in each cluster for K-means and LEACH.

measurements required based on CS to satisfy a target error for our network when it is

clustered into different number of clusters (Nc = [1 2 ... 50]). Each clustering method

provides a different BDM as the measurement matrix. For deriving our analytical

results, we assumed clusters with equal size, while K-means and LEACH have different

size blocks. For comparison, we also generated a BDM with all equal size blocks as

the measurement matrix and found the number of required measurements to reach

the target error. This is referred to as CS-based uniform clustering to compare with

other methods. We choose a fixed target error in all our simulations as target error=

0.1. After finding the number of measurements required, we will find the power
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consumption for different choices for the location of the BS as mentioned before. We

present our first simulation with random k-sparse signals, then real sensor readings

as actual temperatures.

X as a random k-sparse vector

In this example, we consider x to be sparse in the canonical basis. We create a 100-

sparse vector X with length N = 2000. The measurement matrix is anM ×N BDM,

where M is the number of measurements required to satisfy the target error of 0.1.

We obtain the number of required measurements for three algorithms as shown in

Figure 4.4.
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Figure 4.4: Number of measurements required to satisfy target error = 0.1 for a

100-sparse signal (sparse in canonical basis).

As shown in Figure 4.4, increasingNc leads to a degradation in the CS performance

and an approximately linear increase in the number of required measurements (as

discussed in Section 4.2.2). This increases PtoBS. On the other hand, Pintra−cluster is

a decreasing function of Nc. Therefore, there is an optimal N∗
c , for which the total

power consumption is minimized. Figure 4.5 depicts Ptotal when the BS is at the

center of the sensing area. In this case, we have N∗
c = 14.
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Figure 4.5: Total power consumption when BS at the center of the sensing area. Here,

N∗
c = 14.

Figures 4.6, 4.7 and 4.8 depict Ptotal when BS is outside the sensing area at different

locations. In the first case, the minimum power consumption occurs for N∗
c = 9.

Figures 4.7 and 4.8 show Ptotal when the BS is far from the sensing area. The optimal

number of clusters is N∗
c = 4 and N∗

c = 2 for Li = 2L and Li = 3L, respectively. In

such cases, PtoBS will be the dominating factor in Ptotal and accordingly N∗
c becomes

smaller. It is worth nothing that the results with K-means clustering match the

analytical results much better than the case with LEACH clustering. This is due to

the nonuniform cluster sizes in LEACH compared to K-means (Figure 4.3).

X as real sensor readings

We use real sensor readings from Sensorscope: Sensor Networks for Environmental

Monitoring [136]. x is dense in the canonical domain. In order to apply CS, as

mentioned in the background section, we need a sparsifying basis. Next, we will

consider the utilization of both DCT and wavelet bases for this purpose.

* Wavelet as the sparsifying basis : This case is similar to the case dis-
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Figure 4.6: Total power consumption when BS at 1L (Li = L). Here, N∗
c = 9.
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Figure 4.7: Total power consumption when BS at 2L (Li = 2L). Here, N∗
c = 4.
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Figure 4.8: Total power consumption when BS at 3L (Li = 3L). Here, N∗
c = 2.

cussed in Section 4.4.3 in the sense that the wavelet basis also has a large coherence

µ. As discussed in Section 4.2.2, this causes a linear increase in the number of re-

quired measurements versus Nc. Our simulation results in Figure 4.9 depict this fact.

Similarly, there will be an optimal N∗
c , for which the total power consumption is min-

imized. Figures 4.10, 4.11, 4.12 and 4.13 depict Ptotal when the BS is at the center,

Li = L, Li = 3L, and Li = 5L, respectively. The optimal number of clusters are

N∗
c = 18, N∗

c = 12, N∗
c = 2 or 3 (depending on the clustering scheme), and N∗

c = 2,

respectively. As we make the BS farther from the sensing area, PtoBS becomes a more

dominating factor in Ptotal and this leads to a decrease in N∗
c .

* DCT as the sparsifying basis : In this case we employ DCT as the sparsi-

fying basis. As discussed in Section 4.2.2, the DCT is incoherent with the canonical

basis and the CS performance does not degrade with increasing Nc. This can be seen

in our simulation results shown in Figure 4.14. The number of required measurements

to reach a target reconstruction error is almost constant versus changing Nc. Given

that M does not change with Nc, we can see from Equation (4.16) that Ptotal is a

decreasing function of Nc. This is also shown in Figure 4.15 and 4.16 for the BS being
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Figure 4.9: Number of measurements required when Wavelet is considered as the

sparsifying basis.
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Figure 4.10: Total power consumption when the BS is at the center of the sensing

area. Here, N∗
c = 18.
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Figure 4.11: Total power consumption when Li = L. Here, N∗
c = 12.
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Figure 4.12: Total power consumption when Li = 3L. Here, N∗
c = 2 or 3 (depending

on the clustering scheme).
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Figure 4.13: Total power consumption when Li = 5× L. Here, N∗
c = 2.
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Figure 4.14: Number of measurements required when DCT is considered as the spar-

sifying basis.
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at the center and Li = 3L, respectively. On the other hand, since we are collecting

M measurements from the networks, we have Nc ≤ M . Therefore, N∗
c = M and the

smallest size of each cluster on average is N/M sensors.
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Figure 4.15: Total power consumption when the BS at the center of the sensing area.

* Remarks on the effect of the sparsifying basis on performance :

Based on our discussion, we can conclude that under the given cluster scenarios

and assuming that the signal of interest is sparse in both wavelet and DCT bases,

employing the DCT will be more energy efficient. This is because when ψ is a DCT

matrix, ϕ can become very sparse (by increasing Nc) without a considerable loss in

CS performance. Our analytical and simulation results showed that in this case the

consumed power is a decreasing function of Nc and more clusters results in more

power savings and N∗
c =M .

4.5 Inter-cluster Multi-hop Routing in CCS (ICCS)

In this section, we propose a method for further energy saving during data collec-

tion where by CHs transmit the CS measurements through intermediate CHs to the

BS. We refer to this method as inter-cluster multi-hop routing in CCS (ICCS). For
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Figure 4.16: Total power consumption when the BS outside the sensing area at Li =

3L.
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Figure 4.17: All transmissions in the clustered network with inter-cluster multi-hop

routing when the BS at the center.

105



networks with a small number of clusters, ICCS may not help because the multi-hop

routing paths might require more power than transmitting directly. But with a large

number of CHs, ICCS can significantly reduce the power needed to transmit the CS

measurements.

Since we already have clusters formed by K-means or LEACH, we develop an

iterative greedy distributed algorithm to form a tree that connects all CHs with the

root at the BS. We assume all the CHs have the same transmission range (R) and that

CHs within that range can communicate with one another. An appropriate R should

be chosen based on the number of CHs formed so that all CHs can be connected as

an undirected geometry graph G(V,E), where V is the set of vertices referred to the

number of CHs, and E is the set of edges referred to the number of communications

links between CHs. Based on the graph, we can deploy the GDA to form the routing

paths for the CHs: All CHs broadcast their information about the number of hops

away from the BS to their neighbors. At the first iteration, only the CHs which are

close to the BS (their transmission ranges cover the BS) have the number of hops

(NoH). They name their NoH as ”1” and broadcast their own updated information

to their neighbors in the next iterations. The algorithm iterates running until there

is no change in the communication links between all CHs. This algorithm is shown

below as Algorithm 3.

4.5.1 Network Model

To simplify the problem, in this model, we assume that the sensing area has a circular

shape with radius R0 in which the BS is at the center. With intra-cluster transmission,

sensors still can adjust their power level to transmit data to the CHs, while all CHs

only use one transmission range, denoted as R, to connect to other CHs and the BS.

We still have N sensors uniformly distributed in the area, and the path-loss exponent

is assumed to be equal to 2 (α = 2).
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Algorithm 3: Distributed Tree-based Routing Algorithm

Initialization phase:

- Nc clusters marked as CHi, i = 1, ...Nc; CH’s transmission range is R.

- NoH(BS) = 0; Nei = set of CHi’s neighbors;

Tree forming phase

while the routing paths are changing do

for i = 1 to Nc do

for j = 1 to Nc do

if d(i, j) < R then

CH(i) chooses CH(j) if NoH(j) = min{NoH(Nei)};

NoH(i) = NoH(j) + 1;

end

end

end

end
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As shown in Figure 4.17, all the transmissions show CHs receive readings from

their cluster members as non-CH sensors and they transmit CS measurements through

other CHs or directly to the BS at the center depending on their positions and R.

4.5.2 ICCS Power Consumption Analysis

As before, we refer to the communication cost associated with the communication

between the non-CH nodes to CHs as the intra-cluster power consumption and denote

it as Pintra−cluster. The CHs create the CS measurements as the combinations of all

sampled data within each cluster (y
i
= ϕixi) and send the measurements to the BS in

a multi-hop fashion. The corresponding power consumption is referred to as PtoBS.

The total power consumption is formed as

Ptotal = (Pintra−cluster + PtoBS). (4.24)

Analysis of Pintra−cluster

Similar to the assumption for Equation (4.8), we have

Pintra−cluster = NC(
N

Nc

− 1)E[r2], (4.25)

and

E[r2] =

∫ ∫
r′2ρ(r′, θ) r′ dr′ dθ. (4.26)

We assume each cluster area is a circle with radius R = R0/
√
Nc and the density of

the nodes ρ(r′, θ) = 1/(πR2
0/Nc). Hence,

E[r2] =
1

(πR2
0/Nc)

∫ 2π

θ=0

∫ R

r′=0

r′3dr′ dθ =
R2

0

2Nc

, (4.27)

and accordingly

Pintra−cluster = (
N

Nc

− 1)
R2

0

2
. (4.28)

Equation (4.28) shows that Pintra−cluster is a decreasing function of Nc.
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Analysis of PtoBS

PtoBS is calculated based on the inter-cluster multi-hop routing as follows

PtoBS =
Nc∑
i=1

NoHi ×R2 ×Mi, (4.29)

where Mi is the number of measurements required taken from the ith cluster, and R2

is the power consumption based on the CH’s radius spent on each hop with path-loss

exponent α = 2. For analysis we assume equal size clusters (equal number of sensor

nodes). According to Lemma 1, the number of measurements required taken from

each cluster should be linearly proportional to the number of sensors in each cluster

or Mi =
M
Nc
. So, (4.29) can be written as

PtoBS = R2 × M

Nc

Nc∑
i=1

NoHi, (4.30)

where, M is the total number of measurement required from the network to satisfy

an error-target. In [139], Chandler calculated the average number of relay hops in

randomly located radio networks. Based on this, (4.30) is given by

PtoBS = NoHavg ×R2 ×M, (4.31)

where NoHavg is the average number of hops equal to E[NoH] as mentioned in [139].

This expectation of the number of hops is calculated as

E[NoH] = max(NoH)−
max(NoH)−1∑

NoH=1

PNoH(x)

Pmax(NoH)(x)
, (4.32)

where max(NoH) is the maximum number of hops allowed and PNoH(x) is the prob-

ability of being able to send data from a CH to BS at distance x using NoH or less

hops. Interested readers are referred to [139] for the details on the calculation of

PNoH(x).

Analysis of CH’s transmission range R

In each routing path, the number of hops is directly related to the broadcast radius

R. If we increase R, a CH could reach more distant CHs and choose one of them to
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forward measurements. This means that the total number of hops can be reduced or

increased with variable values of R which may affect power consumption. For exam-

ple, if we increase R the number of hops in each routing path might decrease. But

we have to deal with longer hop distance that consumes more power. In Figures 4.18

and 4.19, we have a 2000-node sensor network with 500 clusters formed by K-means

and LEACH. We chose R = {10, 12, 14, 16, 18, 20}. Figure 4.18 shows the total num-

ber of hops reduced corresponding to the increase in the radius. Figure 4.19 shows
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Figure 4.18: Total number of hops routing when changing the broadcasting radius R

that the total consumed power increases as we increase R. Based on Figures 4.18

and 4.19 we should choose the smallest R that results in the least consumed power

for the network.

4.5.3 ICCS Simulation Results

In this simulation we form a network consisting of 2000 sensors randomly distributed

in a circular area with radius R0 = 50. The BS is set at the center of the sensing

area. We use real sensory data collected from [136] and the sparsifying matrix ψ

as the DCT. In this case, as discussed in the previous sections, the total number of
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Figure 4.19: The total power consumption when change the broadcast radius R

measurements required does not change as we increase the number of clusters. Hence,

for any number of clusters, we chose M = 500 to satisfy the error-target of 0.1. We

only consider the maximum number of clusters up to Nc = 500 since M = 500. This

means that each cluster should send at least one measurement to the BS for the data

recovery process.

We apply K-means and LEACH clustering algorithms to form two different clus-

tered networks. Figure 4.20 shows the total intra-cluster power consumption due to

the total consumed power required to transmit data from all non-CH sensors to their

CHs within all clusters. As shown in Figure 4.20, the intra-cluster consumed power

becomes very small if the network is divided into many clusters. In this case, the total

power consumption will be dominated by the power corresponding to the inter-cluster

routing paths.

In Figure 4.21, the total inter-cluster power consumption is reduced as the network

is divided into a larger number of clusters. For a large value of Nc, the density of

CHs in the sensing area is large. Therefore, the CH’s transmission range needed to

maintain inter-cluster connection becomes smaller. These numbers of clusters of Nc =
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Figure 4.20: Intra-cluster power consumption when BS at the center in a circle sensing

area

10, 100, 200, 300, 400, 500 correspond to values of R = 50, 30, 25, 22, 18, 14, 11,

respectively, which explains the reduced inter-cluster consumed power.

As shown in Figures 4.20 and 4.21, the total power consumption is reduced by

both intra-cluster and inter-cluster transmissions as we increase Nc. As compared

with DCCS in Figure 4.22, ICCS significantly reduces the power consumption when

the network is arranged into a large number of clusters (Nc ≥ 100). Note that our

calculation for power consumption for DCCS was originally based on the assumption

of a square sensing area. These results are extended to the case of a circular sensing

area with BS at the center in our previous work [17].

4.6 DCT Compression Transmitting only k Large Coefficients

In this section, we consider transmitting only k large DCT coefficients as proposed in

RIDA [148]. All raw readings from non-CH sensors are sent to their respective CH and

sorted at each CH in descending or ascending order. Either DCT or wavelet transform

is used as the sparsifying matrix to achieve a k-sparse data vector. The mapping
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Figure 4.21: Inter-cluster power consumption when BS at the center in a circular

sensing area
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process given in [148] is used to match sensors to virtual indices. These sensors will

multiply their readings with DCT coefficients and then only send k significant large

coefficients to the BS. The rest of the coefficients are considered as zeros and not

sent to the BS. At the BS, all k large coefficients are mapped to zero-coefficients and

recovered to return all the raw data.

In order to reduce transmission cost in RIDA, the idea of transmitting measure-

ments in CCS [15, 17] is applied. First, all sensor readings from non-CH sensors are

sent to their own CH. The data is sorted at the CHs. After being multiplied with

a sparsifying DCT matrix, a large proportion of the signal energy is focused on the

very k first large coefficients. Instead of sending M CS measurements from the CHs

as with in CCS, only these k large coefficients are sent directly to the BS for the

recovery process as mentioned in RIDA. All calculations in this section are based on

the network model in the DCCS section, and k is much less than M .

4.6.1 Network Model

We assume the WSN is deployed in a square sensing area sized L × L. This model

is similar to the model defined for the analysis of the DCCS algorithm. The power

consumption for each transmission is calculated as it was with DCCS, except for the

number of coefficients k transmitted from CHs to the BS. We will not compare the

total power consumption between DCCS and DCT compression because of k ≪ M .

We formulate and also simulate the problem to show how this compression method

works with clusters, noiseless or noisy signals.

4.6.2 Communication Power Consumption

We assume that all clusters have the same number of sensors. Hence, the number of

large coefficients collected from all clusters should be equal. Hence, the total number

of large coefficients is calculated as k =
∑Nc

i=1 ki, where ki is number of coefficients
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collected from the ith cluster. Similar to Equation (4.16) in Section 4.4.2, the total

power consumption for this method can be formulated in general as

Ptotal = (
N

Nc

− 1)
L2

2π
+
k

L
[
(L− Li)

3 + L3
i

3
] +

kL2

12
. (4.33)

When the BS at the center of the sensing area (Li = L/2), (4.33) is simplified as

Ptotal = (
N

Nc

− 1)
L2

2π
+
kL2

6
. (4.34)

4.6.3 Simulation Results

In this section, we consider both sorted and unsorted signals generated from 2000

sensors uniformly distributed in a square sensing area. These types of data provide

different values of k that affects either the transmitting cost from the CHs to the BS

or the reconstruction error at the BS.

Figure 4.23 shows unsorted sensor readings collected from a WSN [136] and their

transformations in the DCT domain. All signal energy is preserved in the transformed

vector but is now focused in a relatively small number of large coefficients. If we

transmit only these k large valued coefficients to the BS, this results in much less

consumed power than transmitting all the values as was done earlier with CCS.

Figure 4.24 shows sorted signals in decreasing order and the DCT coefficients.

The large coefficients are concentrated in the lower numbered coefficients. The trans-

mission cost can be reduced based on the smaller values of k compared to that in

unsorted signals.

Both Figures 4.25 and 4.26 show that increasing the number of clusters or re-

ducing the total number of coefficients k transmitted to the BS will increase the

reconstruction error. Transmitting more of the larger DCT coefficients to the BS can

compensate for the error as we increase the number of clusters.

In a noiseless environment, using DCT compression consumes less energy than

CCS since CCS transmits M measurements to the BS while DCT compression only
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Figure 4.23: Unsorted sensory readings from 2000 sensors and the DCT transformed

coefficients
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Figure 4.24: Descending sorted readings from 2000 sensors and the DCT transformed

coefficients
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sends k large transformed coefficients (k ≪ M). As shown in our simulation results,

k is generally only about 20% as large as M to satisfy the error-target in signal

recovery processes. In practical networks noise is problematic. CCS can work with

noise contaminated measurements while DCT compression is quickly degraded. As

shown in Figure 4.27, sensor readings can be recovered at the BS based on different

numbers of noisy measurements. Increasing the CS measurements can recover the

original signals with less error.

Figure 4.28 shows that with DCT compression in the presence of noise the recon-

struction error increases as the total number of measurements is increased. So, in

practical applications of WSNs DCCS and ICCS should be considered.

4.7 Conclusion

In this chapter we presented an energy-efficient data collection method applied in

WSNs that is based on an integration of clustering and block-wise CS, called CCS.

It is well known that natural signals have spatial correlation and therefore the sensor

readings in a WSN are sparse in a proper basis such as DCT or wavelet. This sparsity

facilitates the utilization of CS for energy-efficient data collection in such networks.

In contrast to previous work in this area, we introduced CCS in which all non-CH

sensors send their readings only once to the CH they belong to. The CS measurements

required are generated at the CH before being sent to the BS for the CS recovery

processes in two possible ways: directly (one hop) or multi-hop, called DCCS and

ICCS, respectively.

We formulated the total power consumption and discussed the effect of different

sparsifying bases on CS performance as well as the optimal number of clusters for

reaching the minimum power consumption. We employed K-means, LEACH, and

uniform clustering techniques in our simulations and found the optimal cluster size

when the signal of interest is sparse in canonical, wavelet, and DCT bases. After
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choosing DCT as the best sparsifying basis for CCS, we showed choosing a larger

number of clusters can achieve less power consumption utilizing DCT with real sensor

readings as the intra-cluster power consumption is reduced. The optimum number of

clusters was determined to be N∗
c = M . Furthermore, as we employ many clusters,

ICCS outperforms DCCS based on multi-hop routing.

As a final case to compare with DCCS and ICCS, we considered transmitting only

k large coefficients in DCT transformed signals. This method cannot work in noisy

environments as mentioned in simulation Section 4.6.
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CHAPTER 5

TREE-BASED DATA GATHERING IN WIRELESS SENSOR

NETWORKS

5.1 Introduction

5.1.1 Motivation

As noted before data gathering in wireless sensor networks (WSNs) relies on small

and inexpensive devices with severe energy constraints. Our goal is to prolong the

network lifetime based on saving energy for the sensors while collecting the required

CS measurements. In this chapter, tree-based data gathering for WSNs is considered.

In order to apply compressive sensed data gathering in WSNs, only M CS mea-

surements need to be collected from the network and sent to the base-station (BS)

to reconstruct all N raw sensor readings (M ≪ N). Each measurement is a lin-

ear combination that might be collected from all sensors as mentioned in [108, 109]

or from only a certain small number of random active sensors in the network [111].

The network topology can be formed as a spanning tree with parent and child nodes

counted from the sink, also called BS. Once the parent node receives data from all

its descendant nodes, it adds its own data sample and all received data together and

then sends the combined data to its upper parent node or the sink node. Radu [125]

has shown that the sparse binary measurement matrix can work as well as the dense

Gaussian one in CS recovery processes, so not all sensors must participate in adding

their readings together to make each CS measurement. We are motivated to work on

the sparse compressed networked data for more power savings. We need to find a rout-
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Figure 5.1: An example of a tree formed by MTT algorithm with 1000 nodes deployed

in a arbitrary network when BS at the center

ing method that consumes energy the least. In this chapter, we consider a method

called the tree-based energy-efficient method (TCS) that reduces significantly the

consumed power for data transmission between sensors. A sensor (instead of sending

many times its own data to a parent corresponding to the number of times to collect

M measurements) only sends its data once. The raw data is processed by the parent

node: multiplying the coefficients based on a measurement matrix and adding all

received data together and eventually forwarding one combined data sample to an

upper parent or the sink.

The minimum transmission data gathering tree method, called MTT [111], that

has been known as an energy-efficient data collection method. It forms the data

gathering tree based on not only the shortest path, but also the number of times that

nodes transmit their own data. As shown in [111], MTT consumes power significantly

less than both methods: the minimum spanning tree (MST) [137] and the shortest

path tree (SPT) [138]. So, in our experiments with both lattice and arbitrary net-
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works, we consider MTT as a baseline and apply our algorithm to compare results

related to consumed power.

In addition, we analyze the networks’ characteristics in terms of saving energy,

then choose an appropriate transmission radius for sensors. And, we exploit the

sparsity of the measurement matrix for the networks to consume less power, which

does not affect the reconstruction error at the BS.

5.1.2 Related Work

An important issue that needs to be considered for applying CS in the data collection

problem is the underlying routing mechanism. Wang [110] mentioned the distributed

algorithm with sparse random projections that provides the idea for how to collect

measurements from sensors in a WSN. C. Luo [108] and J. Luo [109] contribute

routing methods to collect data but all sensors have to send either their own readings

or combined messages to their parent node or the sink M times corresponding to

the number of measurements required. Some other work focused on random walk

routing [12, 13] or cluster-based data collection [15, 16, 17] as discussed previously. We

propose applying CS using a tree-based algorithm to reduce the power consumption

based on Radu’s [125] results with sparse binary matrices. This means that each

measurement could be collected from some random sensed data, not from all sensors.

This motivates us to focus on the routing problem to save consumed power for WSNs

to prolong the network lifetime. A novel idea from Xie [111] significantly reduces

transportation cost. By using the sparse random matrix, only some random nodes

send their own data to build one measurement. The other nodes relay data if they are

along the routing path or they may not participate in some rounds of transmission.

The routing tree is designed to eliminate some residual transmissions since nodes that

have more rounds to transmit their own data are a priority to choose while building

the tree.
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* Minimum Transmission data gathering Tree (MTT) [111] This algo-

rithm provides a novel idea to form a spanning tree as an energy efficient tree. The

tree is built from the sink node as shown in Figure 5.1 based on a random connected

network and a projection matrix Φ. The network can be considered as a undirected

graph G(V,E), where V is the vertex set and E is the edge set. The graph is created

by the broadcasting radius between nodes, called R. A subtree at first has only the

sink node. Each iteration considers the lowest cost edge within its transmitting range

to extend the tree one more node. In addition, based on the projection matrix that

shows the number of times each node sends it own data, the algorithm calculates a

cost called the incremental cost for every edge connected to the subtree, and chooses

the lowest cost edge and adds the node in the tree. These steps help to reduce

redundant transportation energy from relaying data between nodes.

The heuristic MTT algorithm[111]:

Input: G =< V,E > and Φ;

1. Initialization: T ′ = {v0}, V ′ = {v0}, U ′ = V \ {v0}

2. Get R(u) from Φ, for u ∈ U ′;

3. while U ′ ̸= ∅ do

4. for e = (u, v) ∈ E, where u ∈ U ′, v ∈ V ′

5. Calculate incremental cost C+(T ′, e);

6. Calculate average incremental cost C̄+(T ′, e);

7. end for

8. Choose the edge e∗, whose average incremental cost

C̄+(T ′, e) is minimum, and add the edge e∗ into T ′;

9. Update the related variable U ′, V ′;

10. end while

Output: Data gathering tree T = T ′ with the root of v0 and connecting the nodes

in V .
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Given a graph G =< V,E > and the measurement matrix Φ, the iterative MTT

algorithm adds one node into the subtree T ′ constructed by each iteration. V ′ stands

for the set of nodes in the subtree T ′, and U ′ denote the set of nodes unconnected to

T ′. At each one out of N iterations, the algorithm chooses one edge which connects

a node in U ′ to T ′ based on the average incremental cost of each edge calculated as

C̄+(T ′, e) =
∑

i∈R(u)

C+
i (T

′, e)/|R(u) |, (5.1)

where |R(u) | presents the number of rounds in which node u has its own data to

transmit. This corresponds to the number of non-zero elements in the column u in

the projection matrix ϕ.

After N iterations, U ′ = ∅, then the tree is completely built. For the sake of

simplicity, MTT assumes the cost of each edge for one transmission is 1 and applies

this for building the trees.

The MTT algorithm initiates collecting data based on ϕ. The non-zero elements

in each row ϕij present sensor nodes that send their own data to upper parents.

The rest of the sensors may not participate in a routing path or just relay data

if they are located between the routing paths. The participation costs energy for

transmitting. All the combined data is gathered at the BS to build one measurement

that corresponds to one row in ϕ.

In this chapter, we offer a new algorithm to improve the generation of CS mea-

surements for more energy saving, called TCS. The algorithm can apply to any tree

that is formed by MTT, SPT or MST. It significantly diminishes the total number of

transmissions in tree-based routing in WSNs. TCS will be addressed and analyzed in

the next section.
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5.2 Problem Formulation

5.2.1 Network Model

We model a WSN with N sensors which are uniformly randomly distributed to a

square area L × L. The topology of the connected network is a random geometric

graph G(V,E). Any algorithm creates a tree based on the graph. We assume that

each sensor has the same maximum broadcasting radius called R calculated as a

Euclidean distance. The sensor nodes can adjust their power to transmit to each

other based on real distances between them. In reality, this network is not a regular

network where each sensor has a different number of neighbors within its broadcasting

radius R. If we change the value of R, the connection of the graph will change as

follows: the set of vertices is the same based on the total number of sensors, but the

edge set changes based on the communication between sensors in each neighborhood.

We exploit this in the next section.

5.2.2 Tree-base Energy-Efficient Data Gathering (TCS)

                 

 

4 6 

1 

2 3 

5 7 8 

Figure 5.2: A simple example illustrates TCS algorithm with 8 sensors
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The algorithm : There are three sensor status conditions in TCS:

Definition 1 : ST : Nodes that have their own data to transmit in a round of

transmission are corresponding to non-zero elements in a row of the projection matrix

ϕ. In TCS, these nodes send their readings only once at the first time. Then, they

might relay data or may not participate in rounds of transmission.

Definition 2 : SR: Nodes that relay data do not have their own data to transmit

but still participate transmitting data in each round if they are distributed in a

routing path between ST and the sink. They have three roles: generating data if

their children’s vectors have at least one non-zero element, adding received data from

downstream nodes including the one it might have, and then forwarding the combined

data to its parent or the BS.

Definition 3 : SN : Nodes do not participate in a round of collecting data cor-

responding to zero elements in the vectors stored at sensors. The status of sensors

randomly changes between three of them depending on the Φ matrix.

TCS only exploits the measurement collecting part that significantly reduces a

certain number of transmissions for WSNs using tree-based routing. Given a spanning

tree, sensor nodes store their children’s measurement vectors instead of their own

vectors as shown in Figure 5.2. Each node only sends its data to the parent node

once. A parent node stores a number of column sparse binary vectors corresponding

to the number of its descendant sensors. At each round of collecting data, it adds

stored readings from nodes that have non-zero coefficients in the same index row of

the stored vectors. It also adds the received data from the downstream nodes, then

finally sends the combined data to its parent. The message might add more data

through the routing path to the BS.

In Figure 5.2, node 2 stores three sensor readings from nodes 4, 5, 6 and their

column measurement vectors. Node 1 stores 2’s and 3’s while node 3 stores 7’s and

8’s. Since all the coefficients are zero and one, a node only generates a measurement
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and then transmits it to the BS if it has at least one non-zero coefficient in the same

row of stored vectors corresponding to the round of collecting data.

The total power consumption is calculated based on the total number of trans-

missions in the network. In TCS, although a ST node transmits it own data to the

upper node once through M rounds, it may work as SR in some rounds that count

for power consumption. So, TCS obviously reduces transmissions with ST which are

not between any ST and the sink at each round. The reduction rate will be shown in

the simulation section.

5.2.3 Power Consumption Analysis

Based on CS theory, a certain number of measurements is required (M) from the

network to recover all raw sensor readings at the BS. To build one measurement,

some sensors ST that correspond to the non-zero coefficients in a row of ϕ matrices

send their own data to the parent node. In addition, a number of sensors along the

routing path work as SR. If we call the total number of transmissions NT , the total

power consumption for collecting M measurements to the BS can be calculated as

Ptotal = NT × rα, (5.2)

where r presents real transmitting distances between consecutive nodes in the routing

tree while we assume sensors can adjust power to transmit data to a destination. α

is the path loss exponent that is α = 2 and α = 4 in free space and multipath

fading channels, respectively [135]. For simplicity, we assume α = 2 throughout this

discussion.

Power consumption formulas that will be applied for a grid network and also an

arbitrary network are presented in the simulation section. In both networks, the total

number of hops NT determines the total energy consumption. There are two steps to

eliminate numbers of hops and choose an optimal transmission range for sensors.
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Reduce the sparsity of measurement matrices

Originally, the MTT tree is formed as a spanning tree with a large number of non-zero

entries of the projection matrix as follows

ϕij =

 1 with p = 1/3

0 with p = 2/3.
(5.3)

We know that p results from the number of nodes sending their own data to create

one measurement corresponding to each row of Φ. It means that at each round of

collecting one measurement, only p×N = N/3 sensors sending their data to the BS,

on average. The rest (2N/3 sensors) could be in standby or sleep to save energy if

the sleeping schedule is applicable. Based on Radu’s works on sparse measurement

matrices [125], it could be possible to reduce the probability of non-zero element p in

Φ matrix as much as it does not affect the reconstruction error. Furthermore, since

the sensing data is highly correlated, all raw signals are reconstructed accurately at

the BS even if a few nodes may not be sampled. Figure 5.8 in the simulation section

shows the improvement from the probability reductions.

Choosing an optimum transmission range for sensors

Since all sensors are connected as a spanning tree, evaluating the transmission range

is a huge step in building a WSN. It is not only about energy saving but also related

to other coefficients of the network. Each sensor consumes more energy when its

transmission range is increased. But the number of hops transmitted from its position

to the sink is reduced. Based on equation (5.2), the transmission distances between

consecutive nodes with exponent α dominates the total consumed power, even with

the total number of hops reduced. So, the optimal transmission range should be

as small as possible only to keep the network connected. Further, if we consider

interference, increasing transmission range can interfere with other nodes within the
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range. Figures 5.6 and 5.7 in the simulation section show the total number of hops

and consumed power when we change the transmission range.

5.3 Simulation Results

In our simulations, we first use the sparse binary matrices generated by the following

equation (5.3). We work on lattice networks and then arbitrary networks. In both

types of network, different numbers of sensors are deployed. We consider normalized

reconstruction error ||x−x̂||2
||x||2 in CS signal recovery.

5.3.1 Lattice Network

We create a lattice topology that has the same number of rows and columns. Nodes

at the corner have only two neighbors while nodes at the border have three and the

others have four neighbors. The transmission range R and the distance r are both

equal to 1. The sink node is one of the nodes and it locates at the center point. We

choose different numbers of nodes as shown in Figure 5.3 that results in a different size

of the lattice. We apply algorithms SPT and MTT to form the data gathering trees

at each network size. In MTT, we use M = N/5 to generate ϕ before building the

MTT tree as mentioned in [111]. After the trees are formed, we calculate the number

of transmissions NT following SPT, MTT and TCS based on MTT tree. Figure 5.3

shows that TCS significantly reduces the total number of transmissions at each lattice

size.

Since R = 1, r = 1 in lattice topologies, we only compare the number of transmis-

sions. We calculate and compare the power consumptions in the arbitrary network.

5.3.2 Arbitrary Network

As briefly mentioned in the network model, we deploy different numbers of sensors

N = 1000, ..., 3000 which are randomly distributed in a square area 1000×1000 unit2.
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Figure 5.3: Compare total numbers of transmissions between three algorithms in

different lattice topology networks

We use real sensor readings from Sensorscope: Sensor Networks for Environmental

Monitoring [136]. x is dense in the canonical domain. In order to apply CS, as

mentioned in the background section, we need a sparsifying basis such as DCT. In

each network, we collect the same number of measurements M = 500. We choose the

same transmission range R = 60 units for the sensors throughout all networks. Based

on Figure 5.3, MTT used fewer number of hops than SPT. So, with random networks,

we only work with MTT and apply TCS on the tree to show the results mentioned

in the previous section. After using MTT to form the routing tree, we can calculate

the total power consumption for both MTT and TCS. As shown in Figure 5.4, TCS

consumes less power than MTT. TCS can gain more energy reduction when the

networks are more dense. In other words, with the same M and p applied, each

parent node has more children nodes when sensor density is increased. TCS benefits

at this point since all child nodes send their readings to their parent only once. It

also results in Figure 5.5 that the power consumption reduction ratio of TCS over

MTT increases when the networks deployed more sensors. It could save from 30%
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Figure 5.4: Total energy consumption in arbitrary networks with different numbers

of nodes with M = 500, p = 1/3

to 37% energy compared to MTT in such networks. In order to save more power in

gathering data, we can consider both of these ideas: Find an appropriate transmission

range R and increase the sparsity of the measurement matrix Φ. As mentioned in

section 5.2.3, we can find an optimal value of R. Figure 5.6 shows the number of

hops reduced when we increase R since a node can reach further along the route to

transmit data to the BS. In addition to this slow reduction, we have to deal with the

energy increase of R2.

In Figure 5.7, when R is increased, the total power consumption is also increased

following our discussion in section 5.2.3. Without considering other characteristics of

the network such as capacity and latency, this figure leads to a conclusion that we

should choose a smallest R as the optimal R or R∗ = min{R}.

We prefer to suggest the second idea: using small p that can significantly reduce

the number of transmissions. We need to ensure in getting p reduced that the projec-

tion matrices are getting sparser does not affect CS performance. In other words, if

the CS recovery processes do not degrade, we can keep reducing p as small as possible
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Figure 5.5: The reduction ratio of power consumption of TCS over MTT in arbitrary

networks versus the various number of sensors(M = 500, p = 1/3)
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2000; M = 500; p = 1/3)
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Figure 5.7: Power consumption affected by increasing transmission range (N = 2000;

M = 500; p = 1/3)

to save more energy for WSNs.

In Figure 5.8, we chose one specific arbitrary network with 2000 sensors and

R = 60. Sparse projection matrices with the same dimension (500 × 2000) but

different sparsity are created to form the routing trees. As we calculated, the total

consumed power reduces as long as we reduce p. Since p is very small, the number

of nodes transmitting their own data at each time of collecting a measurement also

becomes to small (p×N , on average). And the gain of TCS over MTT becomes smaller

since TCS only reduces the number of times each node transmits its own data. If

we keep reducing p across a threshold, we cannot get much more gain but it may

effect the CS reconstruction error that will be shown in Figure 5.9. Figure 5.9 shows

the probability p we could apply to achieve the smallest consumed power. According

to Figure 5.9, we should only reduce p until p = 1/500 that does not affect the CS

recovery performance. If we choose p < 1/500, the reconstruction error increases and

the number of measurements required, M , should be increased to compensate for the

error target which we want to achieve. It absolutely consumes much more energy. So
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Figure 5.8: Power consumption reduced with sparser projection matrices in both

MTT and TCS in arbitrary networks (N = 2000; M = 500)
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p = 1/500 could be the optimal sparsity for matrix Φ or p∗ = 1/500 in this example.

5.4 Conclusions and Future Work

In the chapter, we introduce a tree-based energy-efficient data gathering algorithm,

called TCS. We exploit the sensor-storage to store measurement vectors and generate

measurements at parent nodes in order to reduce the number of transmissions due

to collecting data. All sensors send their readings to their parents only once. Each

parent node stores a certain number of measurement vectors corresponding to its

descendant nodes. It generates samples for its children, adds more data received from

other sensors and eventually forwards the combined measurement to the upper node.

All data collected at the sink node for one measurement at each round corresponds to

one row of the projection matrix. What we achieve from TCS is that ST nodes only

transmit their data once which significantly reduces the number of transmissions. We

provide experiments in both lattice and arbitrary networks to show the advancement

of TCS. In addition, we suggest two ideas to save more consumed power by choosing

an optimal transmission range R∗ and reducing the probability of non-zero elements

p for the Φ matrix. Based on the reconstruction error at the BS, we can suggest

approximately the optimal sparsity for the projection matrix. In future work, we

plan to exploit the boundary of sparsity of the projection matrix in formulas for

further consumed power saving in tree-based routing methods in WSNs utilizing CS

and optimize the transmission range R based on other network’s characteristics.
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CHAPTER 6

NEIGHBORHOOD BASED DATA COLLECTION IN WIRELESS

SENSOR NETWORKS

6.1 Introduction

In this chapter, we propose a new paradigm of generating measurements combined

with two ways of delivering and collecting those CS measurements to the BS. Based

on a geographic graph G(V, E) based on an appropriate transmission range R between

sensors, the network is supposed to be connected. The set of vertices is always equal

to N but the set of edges E increases or decreases depending on R. Each sensor has its

own neighborhood which is different to the others’. When a sensor is randomly picked

to generate CS measurements, all nodes within its neighborhood send their readings

to it. This node generates a linear measurement by multiplying the received data

including its own reading with a random Gaussian vector. The measurement is sent to

the BS by two proposed methods: directly to the BS or through intermediate sensors.

We formulate the total power consumption for each method and then compare them

in both simulation and analysis results. The network’s characteristics are considered

and suggested for further energy saving.

6.2 Problem Formulation

6.2.1 Network Model

We assume to have N sensors randomly distributed in a circular shaped area, as

shown in Figure 6.1. Based on a pre-chosen sensor transmission range R, the network
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is connected as a graph G(V, E), where V is the vertex set that represents N sensors,

and E is the edge set that depends on the value of R. In other words, the number

of edges is increased as we extend R and vice versa. We also assume that sensors

communicate with each other within their transmission range R. Therefore, sensor

nodes can only contact within their neighborhoods, but each sensor might have a

different neighborhood.

6.2.2 Neighborhood Based Data Collection Algorithm (NeiCS)

We assume a graph G(V, E) associates all N sensors in forming a connected network.

Based on an appropriate transmission range R, the set of edges E could be changed,

but the set of vertices V is always equal to N . Our algorithm is referred as NeiCS is

addressed as follows:

1. M sensors are chosen randomly with probability M
N
.

2. A chosen sensor broadcasts a beacon to its neighbors asking for data. The

neighbors transmit directly their readings to requesting node.

3. The node generates a random measurement vector, then multiplies with the

received data including its own data to create one CS measurement, and fi-

nally sends the measurement accompanied with the seed used for generating

the measurement vector to the BS.

4. The BS implements a CS reconstruction algorithm to find sensor readings x,

given the measurement matrix ϕ and M measurements collected.

As shown in Figure 6.1. M random chosen sensors send data from their neigh-

borhoods defined by the transmission range R to the BS. In NeiCS, nodes which

do not get any beacon asking for data after the listening period can go to sleep to

save energy. In addition, M sensors are picked randomly at each surveillance time
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Graph G(V,E) in the network with N = 500 sensors, R = 9

Figure 6.1: M random neighborhoods are sampled in an arbitrary network with 500

sensors; transmission range R = 9 defines N neighborhoods in the graph G(V, E).

which helps balance energy for such networks. Additionally, we consider two ways to

transmit measurements from each random neighborhood to the BS: one-hop directly

and multi-hop through active nodes, which are analyzed and formulated in the next

section.

This algorithm can work well with fault tolerance in the network. Since we only

take one measurement from each neighborhood separately, each node is only respon-

sible to the others within its neighborhood. Network or node faults could be detected

and recovered by fault tolerant algorithms for clustered networks [149] since each

neighborhood can be considered as a cluster, or for tree-based networks [150] since

we apply multi-hop routing to relay measurements. In that case, malfunctioned nodes

are isolated but could be used for relaying data in the network if possible. This could

be an open area for our future research.
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6.2.3 Power Consumption Analysis

The total power consumption for such networks based on the NeiCS algorithm can

be addressed as

Ptotal = (Pnei + PtoBS). (6.1)

Pnei represents the total consumed power for neighbor nodes sending data to M

sensors that get picked with probability M/N .

Pnei = ω ×Rα ×M, (6.2)

where ω is the average number of neighbors of each node. α is the path loss exponent

that α = 2 and α = 4 in free space and multipath fading channels, respectively

[135]. For simplicity, we assume to have α = 2. As assumed, sensors are randomly

distributed in the area, we can find the average number of nodes deployed in the

area covered by each sensor transmission range R as N
R2

0
×R2. Based on this, we can

approximately obtain the mean value of ω as

ω = (N
R2

R2
0

− 1). (6.3)

Hence, the total consumed power for data gathering inM neighborhoods is calculated

as

Pnei = (N
R2

R2
0

− 1)R2M, (6.4)

that will be verified in figure 6.2 in the simulation section.

As previously mentioned, we formulate the power consumption PtoBS for two cases:

transmit measurements directly to the BS and relay them through intermediate nodes

to the BS.

Transmit CS measurements directly from random nodes to the BS

Based on the idea in [13], the expectation of the square distance between random

nodes distributed in a square shape area, and the BS at the center can be calculated
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as follows

E[d2toBS] =

∫ ∫
(x2 + y2) ρ(x, y) dx dy. (6.5)

In our case, as assumed, the sensors are uniformly distributed in the circular area

with the radius R0. ρ(r
′, θ) = 1/(πR2

0) is the joint probability function (pdf). We can

apply Equation (6.5) into polar coordinates with r a random variable representing

distance from any node to the BS

E[d2toBS] =

∫ ∫
r′2ρ(r′, θ) r′ dr′ dθ (6.6)

=
1

πR2
0

∫ 2π

θ=0

∫ R0

r′=0

r′3dr′ dθ. (6.7)

Finally, we obtain

E[d2toBS] =
R2

0

2
, (6.8)

and

PtoBS =
R2

0

2
×M. (6.9)

From Equations (6.4) and (6.9), the total power consumption in this case is calculated

as

Ptotal =M [(N
R2

R2
0

− 1)R2 +
R2

0

2
]. (6.10)

Forward CS measurements through intermediate nodes to the BS

In order to forward M measurements to the BS, we need a spanning tree to connect

all sensors and a routing to forward measurements. Then, we formulate the consumed

power for multi-hop transmission.

We first propose a greedy distributed algorithm to form multi-hop relaying CS

measurements to the BS: We assume all sensors have the same transmission range R

that enables them to communicate with each other within range R. An appropriate

R that should be chosen depends on the number of sensors in the entire network to

ensure that all sensors are connected as an undirected geometric graph G(V,E). Based
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on the graph, we can form the routing paths for the sensors: All nodes broadcast their

information about the number of hops away from the BS to their neighbors. At the

first iteration, only nodes close to the BS (the R overlap the BS) have the number

of hops (NoH). They name their NoH as ”1” and broadcast to their neighbors in the

next iterations. A node connects to one of its neighbors broadcasting their NoHs

which is closest. Or it chooses the one with smaller NoH to connect. After a few

iterations, the routing paths may be formed but not completely because a sensor only

chooses one of its neighbors having NoH while the rest may not have one after a few

iterations. So the algorithm keeps running until there is no change of routing paths

between all sensors. This algorithm can be written concisely as below:

All nodes connected as a graph with a same value of R

1. While (the routing paths is changing)

2. NoH(BS) = 0; i ∈ N nodes

3. Nei = set of i’s neighbors

4. if distance [i, j] < R, where j ∈ Nei

5. sensor(i) chooses sensor(j) when NoH(j) = min{NoH(Nei)}

6. name NoH(i) = NoH(j) + 1

7. end if

8. end while (Until no change of routing paths between all nodes)

PtoBS is calculated after we have the tree-based multi-hop routing formed. Since

we use a multi-hop transmission for relaying data from random sensors to the BS, so

we need to formulate this consumed power as follows:

PtoBS =
M∑
i=1

NoH(i)×R2, (6.11)

where M is the total number of measurements required, and R2 is the power con-

sumption based spending on each hop to relay CS measurements.

In [139], Chandler calculated the average number of relay hops in the randomly
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Multihop tree-based relaying measurements to the BS; N = 500; R = 14

Figure 6.2: Tree formed by the greedy algorithm with 500 nodes and transmission

range R = 14 to relay measurements from random sensors to the BS.

located radio network. Based on the idea, Equation (6.11) can be written as

PtoBS = NoHave ×R2 ×M, (6.12)

where NoHave is the average number of hops mentioned as E[n] in [139]. The ex-

pectation of the number of hops is calculated based on the probability of being able

to make a connection between random nodes. These nodes have an equal transmis-

sion range. If an area covered by a sensor’s transmission range does not include its

destination, there must be at least one node exist in the area called A to relay data.

The number of sensors existing in the area A follows a Poisson distribution with

the mean value λ = N
πR2

0
× A. The probability of being able to make a connection

between a source node and a destination node is

P (#ofnodes ≥ 1) = 1− P (#ofnodes = 0) (6.13)

= 1− e
− N

πR2
0
×A
, (6.14)

where A = 2R(2θ − sinθcosθ) and θ = cos−1(x/2R).
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Since sensors are randomly distributed and are chosen in the sensing area, the

distance between a random node and the BS is a random variable, denoted as x. The

probability of being able to make a connection at distance x using n or less hops is

denoted by Pn(x). In [139] the mean value of the NoH is calculated as follows

E[n] = max(NoH)−
max(NoH)−1∑

n=1

Pn(x)

Pmax(NoH)(x)
, (6.15)

where max(NoH) is the maximum number of hops allowed. Finally, we obtain the

total consumed power for relaying M measurements to the BS as

PtoBS =

{
NoHmax −

NoHmax−1∑
n=1

Pn(x)

Pmax(NoH)(x)

}
R2 ×M. (6.16)

We now have the total power consumption for data collection when relaying measure-

ments to the BS

Ptotal = R2[(N
R2

R2
0

− 1) +NoHave]M (6.17)

Compare NeiCS multi-hop power consumption with tree-based data gath-

ering in formula

We simply compare the results of our analysis with a general tree-based data aggrega-

tion network applying CS. In a tree-based network,M CS measurements are collected

from ω sensors at each time of sampling data. The measurement matrix created is a

sparse binary matrix as mentioned in [151, 111]. We can formulate the total power

consumption in this case as follows:

Ptotal(tree−based) = R2[ω ×NoHave]M, (6.18)

where ω can be considered as the average row weight of the measurement matrix.

Our NeiCS multi-hop provides the total consumed power as addressed in Equation

(6.17), that can be simplified as

Ptotal(neiCS) = R2[ω +NoHave]M. (6.19)
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In WSNs, ω could not be equal to 1 since the measurement matrix has to satisfy

sparsity in the CS recovery process [125]. NoHave also could not equal to 1 when the

networks have many nodes with multi-hop routing. Hence, the total consumed power

in Equation (6.18) is always much greater than the one in Equation (6.19).

6.3 Simulation Results

In this section, we created an arbitrary network and deployed 500 sensors (N = 500)

randomly distributed in a circular area with radius R0 = 50. N neighborhoods

are connected based on a given transmission range R. We first ensure that the

measurement matrix created by NeiCS can work as well as the standard full Gaussian

matrix. We calculate the total power consumption for the network with the two

different data collection methods. We use real sensor readings from Sensorscope:

Sensor Networks for Environmental Monitoring [136]. Since our data vector x is

dense in the canonical domain, in order to apply CS recovery algorithms, we use

DCT as a sparsifying matrix (ψ).

As shown in Figure 6.3, the measurement matrix created by NeiCS achieves the

reconstruction error as low as the Gaussian one. The error decreases as we collect

more CS measurements from the network.

Figure 6.4 shows the total consumed power in M neighborhoods in which all the

neighbors send their readings to the chosen nodes before the CS measurements are

generated and are sent to the BS.

In the case all the CS measurements are directly transmitted to the BS, the total

consumed power referred as PtoBS is calculated based on the distances between M

random nodes to the BS as shown in Figure 6.5.

Figure 6.6 represents the total consumed power (Ptotal) when using one-hop to

forward CS measurements directly to the BS. It shows with the same transmission

range R, this total power is a linear function of the total number of measurements

146



 

90 95 100 105 110 115 120 125 130 135 140
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15
Compare 2 projection matrices: full Gaussian and NeiCS 

Number of measurements

A
v
e
ra
g
e
 R
e
c
o
n
s
tr
u
c
ti
o
n
 E
rr
o
r

 

 

NeiCS

Gaussian

Figure 6.3: Comparison between full Gaussian measurement matrix and the one

created by NeiCS

 

90 95 100 105 110 115 120 125 130 135 140
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

5      Total neighbors transmission power consumption (P
nei

) 

Number of measurements

A
v
e
ra

g
e
 t
o
ta

l 
p
o
w

e
r 
c
o
n
s
u
m

p
ti
o
n

 

 

Analysis

Simulation

Figure 6.4: Total power consumption within difference number of neighborhoods;

N = 500, R0 = 50 and R = 9.
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Figure 6.5: Total consumption transmits M measurements directly to the BS; N =

500, R0 = 50 and R = 9.

M .

When NeiCS is applied multi-hop for relaying the measurements to the BS. PtoBS

depends on either the average number of hops (NoHave) or the transmission range

(R). These two variables are inverse to each other. The number of hops is reduced as

we increase the transmission range and vice versa. Figure 6.7 shows the PtoBS when

we chose a fixed R = 9 with different number of measurements. Figure 6.8 specifies

that, even we increase the transmission range, the PtoBS cannot be increased as a

general parabolic line since the number of hops is also reduced.

Finally, Figure 6.9 presents the total power consumption for the network NeiCS

applying multi-hop forwarding measurements, and compares with NeiCS one-hop. If

we do not consider latency or capacity for the network, the best way to save energy

is using NeiCS with multi-hop routing.

148



 

 

90 95 100 105 110 115 120 125 130 135 140
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
x 10

5 Total power consumption (N = 500 sensors, R = 9) 

Number of measurements

A
v
e
ra
g
e
 t
o
ta
l 
p
o
w
e
r 
c
o
n
s
u
m
p
ti
o
n

 

 

Analysis

Simulation

Figure 6.6: Total power consumption when NeiCS transmits measurements directly

to the BS; N = 500, R0 = 50 and R = 9.

 

90 95 100 105 110 115 120 125 130 135 140
3.5

4

4.5

5

5.5

6
x 10

4       Total consumed power to transmit M measurements to BS (P
toBS

)

Number of measurements

A
v
e
ra
g
e
 t
o
ta
l 
p
o
w
e
r 
c
o
n
s
u
m
p
ti
o
n

 

 

Analysis

Simulation

Figure 6.7: Total power consumption to relay multi-hop M measurements through

intermediate nodes to the BS; N = 500, R0 = 50 and R = 9.
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Figure 6.8: Total power consumption to relay multi-hop M = 100 measurements

through intermediate nodes to the BS with different transmission ranges; N = 500,

R0 = 50.
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and R = 9.

150



6.4 Conclusion and Future Work

In this chapter, we propose neighborhood based paradigms for sampling and collecting

data in WSNs applying CS. Sensors in WSNs are connected as different neighborhoods

based on an appropriate transmission range. Each neighborhood is sampled randomly

and its CS measurement is sent to the BS by two common ways, directly and relaying

through intermediate nodes. The algorithm, called NeiCS is proposed to collect data

in each neighborhood. An iterative greedy algorithm is also proposed to form a routing

tree for relaying the CS measurements to the BS. We have verified the performance of

the measurement matrix to ensure that it works well with CS recovery algorithms. All

consumed powers for each transmission method are formulated and compared with

simulation results. We suggest the multi-hop NeiCS for further power saving for the

networks since it outperforms NeiCS one-hop. In future work, we want to study the

capacity and latency of the networks based on the NeiCS algorithm. Fault tolerance

should also be considered for more details. Our goal is to optimize the total power

consumption in order to extend the network lifetime.
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CHAPTER 7

CONCLUSIONS

Wireless sensor networks (WSNs) facilitate many applications in sensing, observing

and detecting areas. Since the networks in service are often based on sensors having

limited power capacity, our goal is to improve such network lifetime by designing data

collection algorithms that consume less energy for data transmission. We employed

Compressive Sensing (CS) to our algorithms to reduce the number of measurements

collected from the networks which also reduces the number of transmissions. The

algorithms were addressed in chapters from Chapter 3 through Chapter 6.

In Chapter 3, the algorithm called Random Walk Based Data Gathering in WSNs

was proposed. With this algorithm sensors are sampled randomly and sparsely in

order to balance power consumption between sensors in the network. The predefined

RW length was chosen so as to visit equally all sensors. Each CS measurement is

created after each RW to be forwarded to the BS in two ways, directly (D-CSR) and

in multi-hop through intermediate nodes (M-CSR).

In Chapter 4, Cluster Based Data Collection in WSNs was proposed. With this

algorithm, non-CH sensors only send their data to their CHs once. CS measurements

are generated at the CHs to be forwarded to the BS directly (DCCS) or by inter-CH

multi-hop (ICCS) routing for data recovery.

Tree Based Data Gathering in WSNs for energy-efficient manner was proposed

in Chapter 5. The algorithm exploits storage capacity of sensor nodes to reduce the

number of transmissions in a routing tree. Each parent node stores its children nodes’

data and generates and sends their accumulative data to an upper node each time they
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contribute to form CS measurements corresponding to a sparse binary measurement

matrix. The combined measurements are sent instead of individual sensor readings

which significantly reduces power consumption for the networks.

In Chapter 6 Neighborhood Based Data Collection in WSNs was proposed to

exploit the short communication between sensors and their neighbors to sample ran-

domly the networks. A certain number of sensors is chosen randomly to create CS

measurements to be sent to the BS. The CS measurements are created only between

sensor neighborhoods with a limited communication range that reduces power con-

sumption for such networks.

These algorithms all focused on data collection methods employing CS in WSNs.

They did not address improvement of CS performance in reconstructing data and they

also did not degrade it. The algorithms exploited common ways sensors can send data

to each other and combined with the ways which CS measurements are created to

reduce power consumption for WSNs. The measurement matrices in Chapters 3 and 5

are sparse binary. In Chapter 4 the measurement matrix is a block diagonal matrix.

In Chapter 6, the measurement matrix is an asymptotically sparse binary matrix.

This matrix may degrade the CS performance when it becomes excessively sparse.

In all chapters, all the matrices formed by the algorithms are tested to be able to

perform as well as the full dense Gaussian random matrix which corresponds to full

sampling all sensor nodes for one CS measurement. Furthermore, power consumption

for data transmission in such networks was analyzed, formulated and simulated, and

suggestions were presented for the networks to consume the least power in terms of

prolonging the network lifetime.
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APPENDIX A

RANDOM WALK BASED DATA GATHERING IN WIRELESS

SENSOR NETWORKS

A.1 Additional Analysis for D-CSR to calculate EdtoBS in order to

compare with M-CSR

In our previous results in Section 3.4.2, EtoBS is calculated in a square area network

based on the mean square distance to send directly CS measurements from RWs to

the BS. To be compared with M-CSR, we provide an additional analysis to calculate

EdtoBS for this circular area network with the BS at the center as shown in Figure A.1.

 

 

R0 

 Real  distance (dtoBS) 

Figure A.1: Real distances from any random node to the BS in a circle shape area

arbitrary network

Since sensors are uniformly randomly distributed in the model and the sensors are

also chosen randomly, dtoBS can be considered as a random variable. The expectation
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of the square distance E[d2toBS] can be calculated following the idea in [13] as

E[d2toBS] =

∫ ∫
r′2ρ(r′, θ) r′ dr′ dθ, (A.1)

where random variable r presents a real transmitting distance from any random node

to the BS. As assumed, the sensors are uniformly distributed in the area with the

radius of R0, and ρ(r
′, θ) = 1/(πR2

0) is the joint probability function (pdf). Finally,

we obtain

E[d2toBS] =
1

πR2
0

∫ 2π

θ=0

∫ R0

r=0

r′3dr′ dθ (A.2)

=
R2

0

2
. (A.3)
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