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Major Field: ZOOLOGY 
 
Abstract: The addition of biofuel crops to the agricultural landscape is drastically 
changing habitats around the world with unknown environmental consequences. 
Agricultural conversion of land negatively affects pollinators which are in decline 
globally, but semi-natural lands such as pasture can have positive effects on pollinator 
communities. Pollinators provide free ecological services and increase crop production of 
entomophylous plants. The biofuel crop canola (Brassica napus) provides floral 
resources that may benefit pollinators, and has higher yield when pollinated. Conversely, 
insect pests can substantially reduce canola production, so 90% of canola fields are 
treated with insecticides, many of which can be harmful to pollinators. In the South 
Central US, canola is generally planted in rotation with winter wheat, and has increased 
from 0 to 109,265 hectares since 2007. We tested whether pollinator abundance, richness, 
and diversity within and around canola fields were different in areas with and without 
pasture during and after canola bloom. Bees were captured (2011-2014) during April 
(peak canola bloom), (2012-2014) June (post-harvest when no more flowers were 
available) and (2012-2014) August (several months after canola had been harvested), 
using blue vane traps for 48 hours each period.  Butterflies were captured using yellow 
sticky traps (2011-2013) during peak canola bloom at the same locations. Additionally, 
trap nests for twig nesting bees were used in 2013 and 2014 to evaluate reproductive 
success of bees during canola bloom. Fruits of a wild entomophylous plant were collected 
to investigate reproductive success of wild plants after canola was harvested. Our data 
show adjacent pasture did not significantly increase bee or butterfly diversity, richness or 
abundance around canola fields but bumble bees were only present at sites with pasture. 
Reproductive success of bees did not significantly differ between sites with and without 
adjacent pasture; however, parasitism rates were highest in areas without pastures. Plant 
reproductive success was significantly higher in areas where canola was produced than in 
areas where it was not produced and bees were more abundant in June, after canola was 
harvested. Landscape analysis showed correlations of land cover with pollinator 
abundance and richness, which varied between morphospecies and time of the year.  
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CHAPTER I 
 

 

Overview 

 

Loss of habitat and biodiversity is one of the most important challenges the world 

must address, especially as agricultural expansion occurs to meet demands of our 

growing population (Tilman et al. 2001, Jantz et al. 2015). Agricultural conversion is one 

of the leading causes of habitat loss and fragmentation, both of which reduce biodiversity 

(Tilman et al. 2001, Foley et al. 2005, Hoekstra et al. 2005, Jiménez-García et al. 2014, 

Pool et al. 2014); however, there are species that can utilize cultivated areas including 

birds (Cruz et al. 1985), predators of crop pests (Landis et al. 2000, Dosdall and Mason 

2010), mammals (Coda et al. 2014) and pollinators (Bosch and Kemp 2002, Hoehn et al. 

2008, Moron et al. 2009). Species inhabiting cultivated areas can provide free ecosystem 

services such as crop pest control through natural enemies or increased crop production 

via pollination.  

Historically, we have cultivated land to provide food and some goods such as 

cotton and lumber. Within the past few decades, biofuel production has been added to 

agricultural landscapes around the world in an attempt to alleviate dependence on fossil 

fuels and reduce carbon emissions to lessen global climate change (Barbara 2007; 
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Fargione et al. 2008; Pimentel et al. 2009). The projected scale of agricultural change 

required to meet biofuel production goals may rival the landscape change from industrial 

agriculture (Altieri 2009). Biofuel can be made from oil and simple carbohydrates, which 

can also be used for human consumption, or from complex carbohydrates such as stalks 

and husks and even animal waste (Chandra et al. 2012, Koçar and Civaş 2013). In much 

of the Midwest, farmers have turned to Brassica napus, commonly known in different 

regions as LEAR (low euric acid rapeseed), oil seed rape (OSR), or canola (Canada oil 

low acid) which is the name common in North America. Canola is grown for both biofuel 

application, with a 2 to 1 net energy return, and for use as a cooking oil (Raymer 2002) so 

production is expected to continue, and likely to increase to meet demand. Production of 

canola is increased in the presence of pollinators, and canola provides both nectar and 

pollen resources for pollinators (Hoyle et al. 2007), but the addition of this crop into 

agricultural landscapes has unknown consequences. 

Pollinators are in decline globally (Biesmeijer et al. 2006, Potts et al. 2010a) and 

are negatively affected by agriculture and landscape homogenization (Klein et al. 2007b, 

Morandin et al. 2007, Jauker et al. 2009) so the agricultural intensification required to 

meet biofuel demands may harm pollinators. Conversely, the addition of biofuels such as 

canola into a landscape, which provides floral resources in the early spring when few 

plants are in bloom, may increase landscape heterogeneity and in turn benefit pollinators. 

Pollinators are extremely important because 35% of crops, globally, are at least partially 

dependent on animal pollination for production (Klein et al. 2007a). Crops that require 

pollination are critical for our nutritional health, evidenced by malnutrition overlapping 

with pollinator declines (Chaplin-Kramer et al. 2014, Nicole 2015). Furthermore most 
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wild plants depend on pollinators for reproduction (Kearns et al. 1998). Changes in 

pollinator communities affect wild plant communities (Biesmeijer et al. 2006) and plant 

communities in turn affect pollinator communities (Potts et al. 2003). Therefore, human 

and ecosystem health depend on how agricultural changes are affecting pollinators, plant 

communities and plant-pollinator interactions, as well as our ability to sustain pollinator 

populations. 

Insects are the primary group of pollinators for wild plants and crops (Free 1970, 

Potts et al. 2010a). Bees (Apoidea) are the main group of pollinators for crops, whereas 

butterflies (Hesperiidae and Papilionoidea) are considered poor pollinators for crops 

(Sahli and Conner 2007), but are important for various native plants (Cruden and 

Hermann-Parker 1979, Jennersten 1984, Borges et al. 2003). However, some butterfly 

species may increase seed set for some crops more than bees (e.g., Pieris rapae 

pollination of Brassica raphnus; Sahli and Conner 2007) so butterflies may affect crop 

production more than previously thought. Both bees and butterflies are sensitive to 

landscape change and can be used as indicator groups for environmental changes and 

landscape heterogeneity (New 1997, Tscharntke et al. 1998, Hoang et al. 2011), and the 

addition of canola into the landscape is expected to affect these insects.  

Honey bee (Apis mellifera) colonies are often moved to blooming crops to 

facilitate pollination. Native bee pollination, however, can rival services from managed 

hives in certain settings (Hoehn et al. 2008; Klein et al. 2007; Kremen et al. 2002, 2004; 

Morandin and Winston 2005). Furthermore, honey bees provide inadequate pollination 

for some crops, especially those that require specialized pollination services, such as 
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tomatoes (Banda and Paxton 1991), squash, and melons (Hoehn et al. 2008). With honey 

bee pollination security under threat (Winfree et al. 2007, Meixner 2010) due to the 

disappearance of managed and feral honey bee hives (Kraus and Page 1995, Potts et al. 

2010b) from colony collapse disorder (Dainat et al. 2012, Engelsdorp et al. 2014), and the 

threat of mites (Martin et al. 2012, Tofilski and Oleksa 2013), plus the importance of 

native bees and butterflies for the pollination of certain fruits, it is crucial to increase 

understanding of the factors influencing wild pollinator communities to ensure crop 

production (Winfree et al. 2007). 

Wild pollinator populations may be too small to provide adequate crop pollination 

in some situations (Klein et al. 2007a), but agricultural management can enhance local 

pollinator biodiversity and population sizes (Ricketts et al. 2008, Winfree et al. 2011, 

M'Gonigle et al. 2015). Therefore it is important to evaluate which pollinator species are 

present in agricultural areas and the affect of landscape composition on pollinator 

abundance and richness so that proper practices can be implemented to support 

pollinators and facilitate pollination services.   

In the South Central United States, winter canola was recently introduced for 

production and Oklahoma is currently the primary canola producer in this region. 

Historically and presently, Oklahoma has produced mainly cereal crops (Travis and Robb 

2009) which do not provide floral resources for pollinators. Long term production of 

cereal crops are known to negatively affect pollinators (Le Féon et al. 2013) but 

collections of pollinators within Oklahoma are sparse so it is unknown which species of 

pollinators are present and in turn may provide pollination services. Due to the 
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importance of pollinators for human and ecosystem health, and the sensitivity of bees and 

butterflies to landscape change, we investigated how the presence of canola production 

affects wild bee and butterfly communities within the South Central United States.  
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CHAPTER II 
 

 

EFFECTS OF SPRING FLOWERING CANOLA AND SURROUNDING 

LANDSCAPE COVER ON WILD BEE COMMUNIITS IN THE SOUTH CENTRAL 

UNITED STATES 

Abstract 

 Demand for biofuel crops is drastically changing agricultural landscapes around 

the world with unknown environmental consequences.. In the South Central US, canola 

(Brassica napus) is generally planted in rotation with winter wheat, and is an early-

blooming, floral resource for many bee species. Canola is susceptible to insect pests that 

can substantially reduce crop production, and approximately 90% of canola field are 

treated with insecticides, many of which are known to be harmful to bees. Native bees 

provide pollination services to canola and other crops, but many native bee species are in 

decline globally, likely due to habitat loss and insecticide use. We tested the hypothesis 

that bee abundance, richness, and diversity within and around canola fields will be higher 

in areas with pasture compared to areas without pasture. In early spring between 2011 

and 2014 we captured bees during the period of peak canola bloom using blue vane traps, 

in areas with and without adjacent pasture. Additionally, trap nests for twig nesting bees 

were used in 2013 and 2014 to evaluate reproductive success. Our data suggest adjacent 

pasture did not significantly increase bee richness or abundance around canola fields  
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during peak canola bloom, but pasture did significantly increase the likelihood of 

bumblebee and ground nesting bees being captured in the traps. The number of total cells 

and cells without development in trap nests did not significantly differ between sites with 

and without adjacent pasture; however, parasitism rates were higher in areas without 

pasture. Bumblebees and ground nesting bees may occur more often in areas with pasture 

due to the availability of nesting resources. Study sites were located in the wheat-

producing region of Oklahoma, where wheat has been produced for most of the past 

century, which may explain the similarity between bee communities. Bee communities of 

Oklahoma have not been well studied, restricting our interpretation; however, our study is 

informative as to which bee species occur in early spring and may increase crop yields.  
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Introduction 

The projected scale of agricultural change required to meet biofuel production goals 

may rival the landscape change from the industrial revolution (Altieri 2009). This change is 

expected to reduce oil dependence and carbon emissions; however, the ecological 

implications of biofuel crop production are not yet understood (Pimentel et al. 2009). In the 

United States, production of biofuel crops is increasing to meet the target goal of 136 

billion liters of biofuels for 2022 (White House 2010). In the South Central US, canola 

(Brassica napus) is being planted for biofuel applications and has a 2-to-1 net energy return 

(Canola Council of Canada website; US Canola Association website 2012), which is higher 

than ethanol made from corn (De Oliveira et al. 2005).  

Many agricultural crops depend on the ambient pollinator community for 

pollination services to increase fruit and seed set (Hoehn et al. 2008, Julier and Roulston 

2009). These pollination services are also important for native plant communities, which 

can be affected when pollinator communities are altered (Huryn 1997, Moron et al. 2009, 

Woods et al. 2012). Bees are considered the most important pollinator group for crop 

production and are responsible for pollinating 35-66% of the world’s crops (Klein et al. 

2007), but are also one of the more sensitive arthropod groups, of those that have been 

studied, to agricultural intensification (Hendrickx et al. 2007). Furthermore, native bee 

pollination can rival services from managed honey bee (Apis mellifera) colonies in certain 

settings (Kremen et al. 2002, Kremen et al. 2004, Morandin and Winston 2005, Klein et al. 

2007, Hoehn et al. 2008) and are required for crops which honey bees cannot pollinate such 

as tomatoes (Banda and Paxton 1990), squash and melons (Hoehn et al. 2008). However, 

native bee populations and communities are in decline globally (Williams 1986, Buchmann 
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and Nabhan 1997, Potts et al. 2010). Possible factors contributing to this decline include 

competition with non-native pollinators for floral resources (Huryn 1997, Roubik and 

Wolda 2001) insecticides (Gill et al. 2012), and nest site and habitat loss (reviewed in 

(Potts et al. 2010)). Due to the ecological and economic importance of native bee 

communities for native plant communities and agricultural crops it is important to 

understand the impact of biofuel crop production on native bee communities to develop 

effective management strategies for agroecosystems.  

Oklahoma is the primary producer of canola within the South Central US, where 

winter canola is planted in rotation with winter wheat. Pastures are also common within 

canola-wheat landscapes, and pastures have been shown to benefit bee abundance and 

richness by providing potential nesting and forage areas (Morandin et al. 2007, Julier and 

Roulston 2009). In the last 7 years, production of canola in Oklahoma has increased from 0 

to 270,000 acres (109,265 hectares) (USDA NASS 2008-2015). Canola plants produce an 

indeterminate raceme of flowers, each of which produces relatively large amounts of nectar 

(0.2µl - 6µl/flower, with an average of 2µl/flower), depending on the variety (Pierre et al. 

1999), as well as pollen (Morandin and Winston 2005). Flowering occurs in early spring, 

prior to most native plants (Berger et al. 1985, Michener 2000, Bosch and Kemp 2002) and 

typically lasts 3 to 5 weeks, making it attractive and potentially beneficial to native bees. 

Croplands with managed flowering areas have been shown to be beneficial to bumblebee 

(Bombus hortorum, B. lapidarius, B. pascuorum and B. terrestris) populations (Wood et al. 

2015) and canola may have similar effects on other native bee species. Existing research 

suggests an immediate benefit to pollinators, implying canola may be beneficial to 
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pollinator populations (Morandin et al. 2007, Jauker et al. 2009, Diekotter et al. 2010), but 

few studies have investigated long-term effects on wild pollinator populations.   

Although canola production has the potential to benefit native bee communities, 

insecticides used to control pest outbreaks in canola may harm bee communities. Canola 

is susceptible to a number of crop pests (Dosdall and Mason 2010) and in the South 

Central US, three aphid species infest canola: Turnip (Lipaphis erysimi), Green-Peach 

(Myzus persicae) and Cabbage aphids (Brevicoryne brassicae). Insecticide application is 

the primary method used to control aphid infestations, with approximately 90% of fields 

being sprayed in any given year, some more than once (Franke et al. 2009). Insecticide 

applications often occur around the time of flowering to control cabbage aphids that 

infest canola during bloom and seed-pod development (Boyles et al. 2004, Royer et al. 

2004) and can significantly reduce crop production. Bifenthrin, gamma- and lambda-

cyhalothrin, and methyl-parathion insecticides are used most frequently (Fact Sheet EPP-

7085), all of which are considered highly toxic to bees (US EPA 2008), although new 

narrow-spectrum insecticides have become available in the last couple of years. 

Winter wheat has been a major crop in the Great Plains since before the 

Oklahoma land run and a dominant crop in the South Central US for more than nine 

decades (Travis and Robb 2009). Previous research conducted in France found 

consecutive years of wheat production in an area negatively affected bee communities 

(Le Féon et al. 2013) and the long history of production in Oklahoma has likely 

influenced existing bee communities in a similar manner. Current bee community 

composition and structure reflects the stressors of historic agricultural patterns, such as 

reduction of forage, as wheat does not produce floral resources and is unlikely to attract 
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foraging pollinators (Le Féon et al. 2013). Therefore, since bees are not expected to 

forage in wheat fields, insecticide application to wheat is not likely to negatively impact 

bees. Furthermore, less than 5% of winter wheat is treated with insecticides (Giles et al. 

2003, USDA NASS 2012) so the addition of canola to the landscape represents a 

substantial increase in insecticide applications in a system with historically low 

insecticide input.  

In situ studies and studies using approved concentrations of insecticide in the 

environment show negative consequences to bees. Imidacloprid is a neonicotinoid 

commonly used in canola production for foliar and seed coat application. Bumblebees (B. 

terrestris) exposed to non-lethal levels of imidacloprid: collected significantly less pollen 

during foraging trips, and returned to the colony with pollen less often than non-exposed 

individuals (Feltham et al. 2014); had 33% brood reductions, although it did not affect 

fecundity (Laycock et al. 2012); reduced growth and 85% reduction in queen production 

when exposed to realistic field concentrations of insecticides (Whitehorn et al. 2012), but 

some resistence has been reported and was dose dependent (Laycock and Cresswell 

2013). Bumblebees (B. terrestris) exposed to non-lethal levels of insecticides showed 

accumulation within their brains and their neurons were negatively affected when 

exposed to imidacloprid and clothianidin (Moffat et al. 2015). Therefore, the addition of 

canola to the landscape could lead to higher levels of risk to bees being directly and 

indirectly exposed to insecticides.  

In addition to foraging bees being directly exposed to insecticides, exposure can 

also occur via contact with contaminated pollen and/or nectar deposited in the nest 
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(Williams et al. 2010, Pohorecka et al. 2012, Cutler and Scott-Dupree 2014). Bees select 

nest sites based on biotic and abiotic factors including floral and nesting resource 

availability (Plowright and Laverty 1984, Potts and Willmer 1997, Gathmann and 

Tscharntke 2002). Most research has focused on hive nesting bees, so it is unclear how 

solitary bees, including species that often nest in the ground or in twigs, are affected by in 

situ exposure to insecticides. Canola has the potential to attract bees to nest near canola 

fields in the spring with unknown population consequences such as: increased mortality 

from insecticide exposure; changes in reproductive success due to differences in 

parasitism rates; and higher reproductive success caused by high floral resource 

availability, although this may also lead to lower reproductive success once canola is 

post-bloom. 

 With both commercial and industrial demands for canola (Raymer 2002), 

production will likely continue long into the future and it is therefore important for land 

managers and producers to understand how canola production impacts native bee 

development and community structure. In this chapter, we evaluate native bee abundance, 

diversity and richness around canola fields adjacent to wheat fields and in the presence or 

absence of adjacent pasture. We also investigate the effects of canola production on twig 

nesting bee reproductive success near these fields which we compare to areas without 

crop production. 

Materials and Methods 

Study Sites 
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From 2011 to 2014, six to eight sites were selected in Oklahoma each year, with 3 

or 4 sites containing adjacent pasture and 3 or 4 sites with no adjacent pasture. The 

majority of sites were not the same as previous years due to crop rotation of winter wheat 

and winter canola.  All canola fields were sprayed with insecticide during canola bloom 

each year. Bee sampling occurred during all four years, and bee development studies 

occurred during the last two years. 

Bee sampling  

Estimates of bee abundance and richness were obtained using blue vane traps. We 

selected blue vane traps because they work well in the presence of a high reward floral 

resource and they collect large bodied bees such as Anthophora and Bombus (Stephen 

and Rao 2005). Pan trapping is expected to be less effective under these conditions 

because capture rates tend to be lower when floral resources are abundant and large 

bodied bees are not adequately sampled (Roulston et al. 2007, Baum and Wallen 2011). 

Blue vane traps consist of a plastic container (15 cm diameter × 15 cm high) secured 

under two cross vanes (3 mm thick) composed of blue polypropylene sheets (24 cm × 13 

cm) (SpringStar™ LLC, www.springstar.net). These traps are visually attractive to bees 

and collect live small to large bodied bees, while excluding honey bees (A. mellifera) due 

to honey bee foraging behavior (Stephen and Rao 2005, 2007). Utilization of these traps 

without killing agents allowed us to release living individuals that were easily identifiable 

such as Anthophora spp. and bumblebees (Bombus spp.). However, many individuals 

perished while in the traps, even when conditions were cool and traps were checked 

daily.  
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  Blue vane traps were placed in fields for 48 h during peak canola bloom, which 

was classified as occurring when the majority of canola plants had green buds on the top 

of the inflorescence and the first flower has started to senesce on the indeterminate 

raceme. Transects consisting of six traps were placed perpendicular to field borders and 

consisted of three traps extending into the canola field and the neighboring wheat field or 

pasture at 50m, 150m, 300m from the crop edge (Figure 1). Sites without adjacent 

pasture had 1 transect (across the canola-wheat interface) and sites with adjacent pasture 

had two transects (one across the canola-wheat interface and the other across the canola-

pasture interface) with a minimum of 600m between transects. Our sampling intensity 

was based on previously published research with blue vane trap sampling of bees in 

sunflower fields (also a high density floral resource) with three traps per field (Stephen 

and Rao 2005, 2007). Trapping only occurred when rain was not forecasted, winds were 

below 48kph, and daily high temperatures were above 10°C. Sites with and without 

pasture were sampled during the same days to avoid confounding weather and trapping 

effort (Bartholomew and Prowell 2006). 

Landscape characteristics 

To test for land cover effects, we used data from CropScape (Han et al. 2012, Han 

et al. 2014). We extracted data for land cover within a 1.5km buffer around the center of 

our transects because most bees forage within 1km of their nest site (and our transects 

extended 0.3km from the center). Furthermore, we assumed bees may travel further to 

find nesting and floral resource sites in the spring. Data were categorized into 8 land 

cover types: canola (recall it blooms before most other crops and native plants); non-



17 

 

nectar producing crops which included winter wheat, corn, sorghum, etc. (these crops do 

not provide nectar resources for the bees); grass or pasture (these areas may contain both 

floral and nesting resources and were not separated as different entities through 

CropScape); wetland which included open water (these areas can provide mud, reeds, and 

other nesting resources used by bees, as well as floral resources); fallow or barren land 

(these areas differ from year to year and likely will not provide many resources); 

developed land which included homesteads and gardens, fracking platforms, and roads 

(these areas may provide nesting areas for ground and wood nesting bees as well as floral 

resources on roadsides and homesteads); forests which comprised deciduous and 

evergreen forest (these areas provide nesting resources for xylophylous bees); and other 

flowering crops such as soybeans and alfalfa which bloom in later summer months (these 

areas can provide nectar resources after canola senesces). These data were then converted 

to percent cover for the areas around each site.  

Bee development studies 

Two twig nesting bee boxes were placed at each site in 2013 and 2014. Each box 

consisted of five untreated pine wood layers, with each layer measuring 30cm x 30cm x 

2.5cm. Tunnels were created in each layer using a router with a 0.318cm, 0.477cm, 

0.635cm, or 1.27cm, drill bit and each tunnel was separated by 1.27cm. Each layer 

consisted of a single tunnel dimension and a complete nest box consisted of one layer of 

each tunnel size and an unroutered layer with a roof to prevent rain from leaking between 

layers. Layers were held together by C-clamps.  

These nest boxes were designed for xylophylous bees, specifically Ceratina, 

Megachile, and Osmia, all of which were captured in our study sites during 2011 and 
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2012 and are known to utilize similar nest boxes (Bosch and Kemp 2000). Prior to canola 

flowering in the spring, two nest boxes were placed at each site in 2013 and 2014, along 

the field edges near canola and wheat interfaces on opposite sides of the field. Field edges 

were used to avoid disturbance by machinery during harvest. Nest boxes were also placed 

at three control sites at the Stillwater Research Range (3.2km south of Hwy 51 on Coyle 

Rd, Stillwater OK), which is comprised of patch-burn rangelands which are grazed with 

cattle at moderate stocking rates and burned on a 3 year rotation (McCollum III et al. 

1999, Allred et al. 2011). No cropland is present within the immediate vicinity. 

Nest boxes were removed in June of each year to reduce losses from predators 

such as ants and birds and to identify adults of multivoltine bee species. Nests boxes were 

evaluated in the lab to document cells with no-development, pupation, emergence and 

parasitism. Cells provisioned with pollen which did not have pupae were listed as no-

development, and cells without pollen and no development were considered “false cells”, 

which are common and hypothesized to reduce parasitism (Vinson and Frankie 1977), as 

well as the spread of chalkbrood fungus and mites.  

Analysis 

Specimens collected in blue vane traps were grouped into morphospecies and 

keyed to genus. Species level identifications were made when possible, and a synoptic 

collection was deposited at the USDA Bee Biology and Systematics Laboratory in 

Logan, Utah.  Blue vane trap data were used to calculate abundance, richness, Simpson 

diversity index, and evenness and compared between crops (canola and wheat) and 

landscape types (with and without pasture) to evaluate temporal patterns of bee species 

and community structure in these landscapes from year to year. Due to sampling effort 
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differing between sites with and without pasture, bee abundances were standardized as 

the number of bees collected per transect for each landscape type (with and without 

pasture). 

To test if the presence of adjacent pasture affected bee species presence, we used 

common morphospecies, which we defined as those found in both landscape types and at 

more than two sites. Presence was used because a severe drought occurred during our 

study period, and abundance of bees decreased from 2011 to 2012. The proportion of 

sites in which each morphospecies was captured was calculated and compared the 

percentage of sites with and without pasture in which the morphospecies was captured 

via the Z-calculator (VassarStats 2015). We also grouped morphospecies based on their 

common nesting habit (hive, ground, or twig) and used Chi-square to compare the 

abundance of each morphospecies with the same nesting habit between sites with and 

without pasture. Additionally, we analyzed adult parasitic species caught in our traps by 

landscape. Since parasitic species are only visiting traps to feed, and are not foraging and 

feeding at similar rates as non-parasitic species, we transformed the data to present or 

absent by site. 

We performed ANOVA in SAS to test for the differences in mean species 

richness and diversity between years and sites with and without pasture. T-tests were run 

in SPSS to separately compare overall bee richness and abundance in landscapes with 

adjoining pasture to landscapes without adjoining pasture for each year. Two tailed, 

heteroscedastic T- tests were also performed in SPSS on nest box data for total number of 

cells, percent of cells with no development, and rate of parasitism. Similarity of bee 
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communities from sites with pasture was also compared to areas without pasture for each 

year using the Sørensen–Dice index. 

To test how land cover from each site may have affected our data, we ran a 

Spearman’s rank correlation in Vassar Stats to test the influence each land cover type had 

on the number of bee species and the overall number of specimens collected per transect 

at our sites. 

Results 

A total of 21,291 bees were captured between April 2011 and April 2014, with 68 

morphospecies identified.  Of the 68 morphospecies, 23 were represented by one 

specimen, and five were represented by only two specimens. Seventeen morphospecies 

occurred in both site types (with and without pasture) and of these 17 species, eight 

morphospecies comprised 95% of our data. The least abundant of these 8 morphospecies 

contributed 1.05% of the data and the most abundant morphospecies comprised 31% of 

the data (Table 1).  

Bee diversity, abundance and richness 

 Adjacent pasture presence did not significantly affect bee diversity during peak 

canola bloom (F = 0.11; df = 1, 6; p = 0.76) or richness  (F = 3.04; df = 1, 6; p = 0.09) 

(Figure 2). The abundance of bees per trap did not significantly differ between sites with 

and without pasture when compared within years (F = 0.1; df = 1, 3; p = 0.74). The 

number of species in each site (areas with and without pasture) also did not significantly 

differ (F = 2.31; df = 1, 6; p = 0.20) (Figure 3). When we grouped our transect data for all 

years into sites with pastures and sites without pastures, we found no difference in 
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diversity (t = 0.39, df = 43, p = 0.70) or richness (t = 0.56, df = 43, p = 0.58) between 

transects in areas with and without pastures.  Parasitic species (Melecta spp., Anthidium 

porterae and Triepeolus sp.) alone or when grouped together did not differ in occurrence 

between sites with and without pasture or when grouped together or counted as present or 

absent (t = 0.854, df = 28 p = 0.20). Sites with pasture consistently had a greater 

abundance of ground nesting bees (χ2 = 436, df = 8, p < 0.001) (Table 1). Bumblebees (B. 

pennsylvanicus and B. auricomis) (Z = 2.63, n = 41, p < 0.005) and the 

Melissodes/Eucera (Z = -2.88, n = 41, p < 0.005) morphospecies were the only species 

which were captured significantly more often in areas with pasture  (Table 1).  

Our data from areas with and without pasture varied in similarity from year to 

year. Bee data from our 2011 sites were 76.36% similar to one another. Data from 2012 

had the lowest similarity at 63.16%, followed by 2013 at 67.74%. Our sites in 2014 had 

the most similar bee community composition at 80.65% similarity. Bee abundance was 

greatest in 2011 (63.9% of our specimens were collected that year), which also 

represented the beginning of a severe drought from 2011 to 2013. Yearly data were 

dominated by 3 morphospecies, Agapostemon, Halictus, and Lasioglossum  (Figure 4), 

none of which was consistently more abundant than the others from year to year. 

Landscape effect 

Our classification of sites as with or without adjacent pasture did not control for 

the percent of grassy areas and pastures within 1.5km of transects. Except for canola, 

which was present at all sites, no variable had moderate or strong positive correlations 

with the number of bee species or the number of organisms captured per transect. The 
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strongest correlation was on the number of bee species (richness) per transect (rs = -

0.3902, n=28, p = 0.089) from fallow land cover. Abundance correlated most with non-

nectar producing crop land cover (rs = -0.2929, n= 28, p = 0.210) (Table 2). 

Bee reproductive success 

 In the sites with adjacent pasture, in both 2013 and 2014, Osmia spp. comprised 

40-43% of the bee cells. Two distinct types of Megachilidae nests were found; nests built 

with green leaf layers comprised 9-17% of the nest cells, whereas nests made from flower 

petals comprised 41-47% of the cells. Less than 1% of the cells were parasitized by flies 

or gregarious parasitoid wasps each year and no parasitic bee species emerged. 

Unidentified ant species also colonized 1 box each year and it is unclear how many nests 

were lost because the ants removed bee nesting materials. Evidence of mud walls and 

stains were observed, but it is unclear how long those walls and cells were present or if 

any Megachilidae nests existed before the ants invaded the nest box.  

 Nest boxes from sites without adjacent pasture had greater variability in numbers 

between years, but no statistical differences were found (p = 0.49). Osmia spp. made up 

3-54% of the successful cells, and Diceratosmia subfasciatus represented 80% of the 

cells in 2014, but D. subfasciatus was absent from all boxes in 2013. Megachilidae cells 

made of green leaves comprised 0-5% of the data, and cells made of petals made up 7.5-

36% of the data. Parasitism by flies and gregarious wasps occurred in 5% of the cells in 

both years.  

In addition to the successful nest cells, we found no significant difference 

between the control rangelands (no nearby croplands), croplands with pasture and 
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croplands without pasture and the percent of cells with provisions and no bee 

development. Both matrices with and without pasture had 8.5-8.8% of the nest cells with 

provisions and no development. The sampled pollen of the cells without development 

was from canola, which we also encountered in Osmia spp. cells which still had 

developing larvae. 

Discussion 

Bee abundance, richness, and diversity during peak canola bloom, as well as rates 

of non-development for twig nesting bees in canola-wheat landscapes, did not 

significantly differ between areas with and without adjacent pasture. Land cover also did 

not have any statistically significant correlations with bee abundance or richness within a 

1.5km radius of our sites and our data did not reveal any discernable pattern in abundance 

of the three most commonly captured morphospecies from year to year. Our findings are 

likely affected by the severe drought experienced from 2011 to 2013. Bees were most 

abundant in 2011 with a significant decrease in 2012, and small increases in the 

following years. Therefore, environmental variables, like drought, may be strongly 

influencing our results and be more important to yearly bee abundance and richness than 

land cover. Although overall bee communities did not significantly differ in areas with 

and without adjacent pasture, bumblebees and Melissodes sp. were captured significantly 

more often in areas with adjacent pasture than areas without pasture (Table 1). Areas with 

pasture also had more ground nesting bee morphospecies than areas without pasture, 

likely due to nesting resource availability and lack of disturbance of nesting areas.   
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Parasitism of solitary bee nests was significantly higher in areas without pasture 

and all nest parasitism events were from parasitic species that are not in Apoidea. Adult 

parasitic bee species presence did not differ among sites with and without pasture. The 

difference between the rate of parasitism and the occurrence of parasite species may be 

due to differences in nesting resource availability in these areas. This difference may also 

be due to adult parasitic bees and the nest parasite species we did encounter, potentially 

being less attracted to our traps since they only need to feed on nectar resources and not 

provision for their young. 

Few native bee surveys have been conducted in Oklahoma, so we cannot compare 

our data to early spring bee community data prior to the incorporation of canola into the 

landscape. Also, our current data are limited to the species that have persisted in this area 

of intensive wheat production over many decades, which can negatively affect bee 

species (Le Féon et al. 2013). Higher nest parasitism rates in areas without pasture may 

be due to the lower availability of nest sites for bees in these areas, which could lead to 

the concentration of nesting resources, and may have made it easier for parasites to find 

nests as well. Areas without pasture may have also had less spatial complexity, a factor 

which positively correlates with local persistence of parasitoid populations (Tilman and 

Kareiva 1997). Furthermore, we placed our trap nests on field margins, and parasitism 

rates are higher in these areas which has been observed for rape beetles (Thies and 

Tscharntke 1999, Tscharntke et al. 2002) and more generally for other species and 

systems  (Paton 1994, Benson et al. 2013) and may be similar for bees. Our data only 

capture a two-year period, and these patterns may not be consistent over longer time 

frames or representative of patterns in non-agricultural settings. 
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 For many decades, two to two and half million hectares of winter wheat have 

been produced in the South Central United States and Oklahoma. Over the past 7 years, 

canola production has increased each year, as it is increasingly used as a rotational crop 

with winter wheat (USDA NASS 2008-2015). Due to solitary bees being one of the most 

sensitive groups of arthropods to agricultural intensification (Hendrickx et al. 2007), 

historical agriculture intensity may have homogenized local bee communities. Winter 

wheat does not provide nectar resources for bees, and historical, large-scale production of 

wheat and other cereal crops is known to decrease solitary bee richness (Le Feon et al. 

2013) and possibly contributed to the similarity of bee communities in our study region 

regardless of pasture presence. Furthermore, pasture management practices often focus 

on increasing graminoids by reducing forbs. For example, application of broad-leaf 

herbicides in pasture (Fuhlendorf et al. 2002, Hamilton 2007) may have further reduced 

floral resource availability in this system, although nesting resources are likely still 

available. Therefore, bees would need to obtain floral resources in other areas such as 

roadsides or fallow fields, which would likely provide similar resources in areas with and 

without pasture. This may explain why we found a greater abundance of ground nesting 

bees and higher bee community similarity in areas with pasture, where tilling is not likely 

to occur, compared to areas without pasture, but did not find a difference for overall bee 

abundance and richness. The similarity in overall bee abundance and richness may also 

be due to canola attracting bees to the area (Le Féon et al. 2013), which may have diluted 

the effects of the pasture seen in other studies. 

 Previous research has shown that natural lands (Greenleaf et al. 2007), pasture, 

and forested areas (Mandelik et al. 2012) within agricultural landscapes increase bee 
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diversity and abundance in croplands (Kim et al. 2006, Morandin et al. 2007, Julier and 

Roulston 2009). Crop pollination services, however, are not significantly increased by 

rare species, but are provided by a subset of common bees from the local bee community 

(Kleijn et al. 2015b) so it is important to provide areas for bees to increase abundance and 

in turn pollination services (Deguines et al. 2014). Our study shows that Agapostemon, 

Lasioglossum, and Halictus are the most abundant bees in our study area, which may be 

of interest to land managers and producers trying to increase pollinator abundance. The 

increase in diversity and abundance in previous studies likely reflects more availability of 

nesting resources, such as undisturbed ground for ground nesting bees, woody vegetation 

for twig nesting bees and diversity of floral resources throughout the year (Potts and 

Willmer 1997, Kim et al. 2006). Previous studies, however, focused on later season crops 

and bee communities which may have more richness and abundance than early spring bee 

communities. It is also unclear which of the previously studied systems have been heavily 

farmed in the past, which crops were grown historically in those regions, and if refugia 

existed to sustain the bee community as agricultural production intensified.  

Although the overall bee abundance and richness did not significantly differ, our 

data show bumblebees and ground nesting bee species were more common in the 

presence of pasture, but further research is needed to understand how farming intensity 

on a landscape scale influences bee communities in these areas. We were not able to 

control for dirt roads and roadside areas which may have also contributed to patch 

similarities. Roadsides, especially those restored to prairie or those not treated with 

herbicide, have been identified as important resources for bee communities (Hopwood 

2008). Common pollinators are able to survive in agricultural areas and are enhanced 
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with simple conservation practices such as hedgerows (Kleijn et al. 2015a).  Our 

roadsides were mostly unmanaged, but sometimes mowed, with various floral resources 

present in late spring and early summer (unpublished data) and may function as refugia 

by providing sufficient nesting and floral resources to sustain spring bee communities in 

years when canola was not planted, or after canola senesces which could support bee 

community persistence in these areas.  

 We found canola pollen in our trap nest boxes which suggests these bees foraged 

mainly in canola fields and is congruent with previous research on B. napus (Le Féon et 

al. 2013). There was no difference in the percent of cells without larval development 

between sites with and without pasture. Since our canola-wheat and canola-wheat-pasture 

landscapes were both treated with insecticides, we expected higher rates of no 

development or incomplete development in areas with canola compared to our control 

(non-crop) landscapes. Our data suggest native bees have similar rates of non-

development in areas producing canola and areas not producing canola. Further research 

is needed on in situ exposure of insecticides on solitary bees, since most existing research 

has focused mainly on hive nesting bees (Feltham et al. 2014, Moffat et al. 2015). Some 

of the effects of non-lethal pesticide exposure on bumblebees were decreases in colony 

and worker size and reduction of queen production (Whitehorn et al. 2012). This suggests 

negative effects may be observed in the next generation, or insecticides could affect adult 

weight, foraging capability, and the number of offspring per exposed adult which our 

research did not address. The similar rates of cells without larval development in our nest 

traps between sites in canola producing and non-producing areas suggests canola pollen 
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is a suitable food resource for solitary bees. However, we did not test for effects of 

sublethal pesticide exposure or pesticide residue within the trap nests. 

 Although many agroecosystems within the United States do not provide year 

round floral resources, native bee communities do benefit from agricultural planning that 

provides consistent floral resources throughout the year (Mandelik et al. 2012). Our data 

suggest canola potentially is a suitable forage for spring bees, and could be beneficial if 

integrated into crop rotations. However, additional research is needed to evaluate the 

implications of insecticide applications in canola on native bees, both in adult and larval 

stages.   
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Tables and Figures 

Table 1: The percent of sites in which bee morphospecies were 

captured out of the total number of each site type (areas with and 

without pasture). Data are only provided for the 17 morphospecies 

encountered in 2 or more sites, with z-scores and p-values for the 

differences in occurrences. Nesting habitat for each 

morphospecies is indicated by color, and the total percent of the 

data which the morphospecies represented is provided in the last 

row. Grey shaded cells in the last row identify the 8 most 

abundant morphospecies. NaN is reported for numbers that could 

not be tested due to 100% presence. 
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Table 2: Spearman’s rank correlation test values for percent land cover of sites within a 

1.5km radius from the center of transects and the number of species (richness) and 

number of bees (abundance) collected per transect. Reported p-values are for a 2-tailed 

test. The average percent cover of each land cover category is also reported. 

 

 

 

 

 

 

 

 

 

 

Non-nec tar  

produc ing

Grass/ 

pasture
Canola

Nec tar  

produc ing

Developed/ 

open space
Fallow Forest Wet land

Abundance Rs -0.2929 0.2063 0.3283 -0.2169 -0.1476 -0.2899 0.0696 0.0132

p-value 0.21 0.385 0.159 0.36 0.537 0.217 0.768 0.953

Richness Rs -0.1288 0.223 0.2516 -0.2855 -0.0362 -0.3902 0.0953 -0.315

p-value 0.589 0.345 0.286 0.224 0.882 0.089 0.687 0.898

Percent ± SE 56.71 ± 3.15 23.73 ± 2.27 12.01 ± 1.94 2.02 ± 0.32 3.77 ± 0.24 0.61 ± 0.39 1.10 ± 0.36 0.04 ± 0.02
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Figure 1: Transects of blue vane traps in areas with adjacent pasture (A) and areas 

without adjacent pasture (B). Fields differed in size and arrangement, so a 

hypothetical example is provided.  

 

 

 

 

 

 

 



32 

 

 

Figure 2: Average Simpson diversity index for each field sampled between 2011 and 

2014. 
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Figure 3: Average number of bee species per transect (± SE) in canola-wheat landscapes 

with and without pasture during the period of peak canola bloom.  
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Figure 4: The abundance of the three most abundant morphospecies, each comprising 

more than 25% of captured bees, varied from year to year as well as between areas with 

and without pasture. Of the total collected specimens, 63.9% were collected in 2011, 

5.5% were collected in 2012, 14.9% were collected in 2013, and 15.7% were collected in 

2014. 
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CHAPTER III 
 

  

SPRING BLOOMING CROP COVER OF BRASSICA NAPUS CORRELATES WITH 

EARLY SUMMER BEE ABUNDANCE AND HIGHER SEED SET OF CUCURBITA 

FOETIDISSIMA 

 

Abstract 

 Wild bees provide free pollination services and increase fruit/seed set for many 

agricultural crops, even in the presence of managed honey bee colonies. Many studies 

have focused on the distribution and abundance of bees in agricultural fields during crop 

bloom, but few studies have investigated bee abundance, diversity, and richness post crop 

bloom, during which time bees continue to forage in the landscape. Nearby land cover 

types may influence post crop bloom bee communities, as well as native flowering plant 

reproductive success. Pasture and semi-natural lands are known to increase abundance 

and species richness of bees in surrounding agricultural fields, and are a common land 

use type in the South Central United States. Canola (Brassica napus) has recently been 

introduced to Oklahoma as an early spring flowering crop, which is known to be 

attractive to pollinators, but which is grown in the wheat production region where other 

floral resources may be scarce. We sampled bees in canola production sites with and 
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without pasture in June and August using blue vane traps. We also quantified annual land 

cover within 1.5 km of each sampling location to evaluate the relationship between bee 

abundance and richness with eight land cover types. Additionally, we collected mature 

fruits of Cucurbita foetidissima, a late spring blooming native plant, from roadsides near 

canola with and without pasture, and in areas lacking both canola and pastures to evaluate 

if reproductive success was affected by landscape composition. Bees were more abundant 

in June, after canola was harvested. Seed set of C. foetidissima was highest in areas 

where canola had been produced. Sites with pastures did not strongly vary in bee 

communities or seeds per fruit of C. foetidissima compared to sites without adjacent 

pasture. Our landscape analysis showed no significant correlations of bee abundance and 

species richness with land cover types in June or August except for fallow lands. Based 

on bee abundance data and seed set data, wild plants in areas with canola production may 

have higher reproductive success compared to areas without canola production. 
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Introduction 

Wild pollinator communities provide free ecosystem services and are important to 

the global economy as they significantly increase fruit and seed set for some crops which 

require pollination (Sahli and Conner 2007, Hoehn et al. 2008) and can be more effective 

than honey bees (Apis mellifera) in 35 of the 41 studied entomophylous crop systems 

(Garibaldi et al. 2013). However, agricultural and land-use intensification can negatively 

affect pollinator communities and biodiversity, but the exact mechanisms leading to these 

negative responses are not completely understood (Vitousek et al. 1997, Kleijn et al. 

2009) and some driving factors may be unknown. Possible factors contributing to 

pollinator decline include competition with non-native pollinators for floral resources 

(Huryn 1997, Roubik and Wolda 2001), insecticides (Gill et al. 2012), and nest and 

habitat loss (reviewed in (Potts et al. 2010).  

Habitat loss is common in agriculture when semi-natural areas are converted to 

arable land. This conversion can contribute to local declines in overall biodiversity 

including native bees due to destruction of nesting sites (e.g., undisturbed ground, woody 

plants) via plowing (Julier and Roulston 2009) and removal of floral resources. Although 

certain practices can harm bee species, agricultural areas can also provide suitable habitat 

for some pollinator species (Pimentel et al. 1992, Morandin et al. 2007, Carré et al. 2009, 

Flick et al. 2012, Gonthier et al. 2014). Data for multiple guilds (syrphid flies, wasps, 

butterflies, and bees) suggest natural and semi-natural areas, such as pastures and 

roadsides, provide resources which permit long-term persistence of pollinator 

communities in agricultural areas (Williams and Kremen 2007, Ricketts et al. 2008, 

Garibaldi et al. 2011). In the South Central United States, large crop monocultures 
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dominate with cattle producing pastures, roads and roadsides commonly occurring in the 

landscape. Cultivated fields can provide resources for pollinators when crops are 

flowering (Knight et al. 2009, Holzschuh et al. 2011, Baños-Picón et al. 2013), but may 

not provide resources at other times of the year. These patterns can cause a local 

saturation in resources during specific time periods (Morandin et al. 2007, Holzschuh et 

al. 2011) attracting organisms into the fields, and emigration as resources decrease (Mesa 

et al. 2013).  

Wild pollinators foraging on flowering crops can increase crop production in 

some settings (Kremen et al. 2002, Kremen et al. 2004, Garibaldi et al. 2013); however, 

flowering crops can alter plant-pollinator interactions (Diekotter et al. 2010) including 

pollinator service dilution for native flora (Holzschuh et al. 2011). Pollination service 

dilution causes a decrease in seed set of simultaneously blooming wild flowers 

(Holzschuh et al. 2011), but it is not known if the seed set of plants which bloom after 

crops senesce is affected. Blooming crops concentrate pollinators into surrounding areas 

(Le Féon et al. 2013) and this may potentially enhance pollination services for 

surrounding flora when the crop stops blooming. 

 Conversely, mass flowering crops may attract pollinators which are not effective 

for some native plants to an area. For example, bumblebees will resort to nectar robbing 

(Diekotter et al. 2010) if they cannot find sufficient forage, an action which does not 

pollinate flowers and can decrease the reproductive success of those plants.  In addition 

to attracting pollinators to forage, mass flowering crops may also attract emerging bees to 

nest near these agricultural fields, which will only have nectar resources for a short 

period of time. Nest sites are selected based on a variety of biotic and abiotic factors 
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including floral resource availability, plant community structure, and nesting resources 

(Potts and Willmer 1997, Gathmann and Tscharntke 2002). It is unknown if solitary bees 

can relocate and build new nests as resources change but due to lack of parental care of 

young, this movement may be possible (Berger et al. 1985). However, species that do 

provide parental care to young, such as bumblebees, will stay with their nest and starve 

when sufficient forage is not available (Goulson et al. 2008).  

Canola (Brassica napus) has early spring and summer blooming varieties, which 

add highly concentrated floral resources into the landscape for pollinator communities 

(Hoyle et al. 2007) and is used for biofuel and cooking oil (Raymer 2002).  In Oklahoma, 

winter canola has been in production since 2008 (USDA NASS 2008). It is rotated with 

winter wheat, which has been the dominant crop in this region for many decades (Boyles 

et al. 2004, Travis and Robb 2009). The agricultural landscape also has seminatural areas 

as well cattle producing pastures, both of which are known to increase native bee 

abundance and richness by providing potential nesting and forage areas throughout the 

year (Morandin et al. 2007, Julier and Roulston 2009), but these patterns have not been 

investigated in the South Central United States. 

Production of canola will likely continue to increase to meet both biofuel and 

cooking oil demands, but it is unclear how the introduction of canola may impact the 

spatial and temporal distribution of wild bees once it is harvested. Spatial concentration 

of bees has been positively correlated with canola and other Brassica crop peak bloom 

times (Morandin and Winston 2005, Hoyle et al. 2007, Knight et al. 2009, Le Féon et al. 

2013, Mesa et al. 2013), with mass emigration observed during senescence of Brassica 

crops (Mesa et al. 2013) but it is not known if bees stay in the surrounding landscape or 
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migrate to areas with sufficient forage. It is also unknown whether the presence of 

pastures affects the abundance and richness of bees in the area, once canola is harvested. 

Bees leaving canola fields and entering the surrounding landscape can affect pollinator 

communities (Diekotter et al. 2010) as well as plant-pollinator interactions (Levin and 

Anderson 1970, Diekotter et al. 2010, Gardiner et al. 2010, Holzschuh et al. 2011), which 

may also be affected by the presence natural areas.   

As canola production increases in the South Central United States, it is important 

to understand the effects canola production will have on wild bee and wild plant 

communities, as well as the availability of pollination services. To elucidate the effects of 

pasture on abundance, richness and diversity of bee species, which may provide 

pollination services as canola crops senesce, we trapped bees in June and August in the 

South Central United States in field margins of canola production sites with and without 

adjacent pasture from 2012 to 2014. Since we could not control for land cover, we 

performed correlations between the percent of land cover types around canola producing 

areas and bee abundance and richness. We also sampled a native entomophylous plant 

(Cucurbita foetidissima) to test if seed production per fruit differed in areas with and 

without pasture next to canola fields as well as in field margins of non-nectar producing 

cereal crops without pasture or canola.  

Materials and methods 

Study Sites 

Four sites were selected each year in 2012-2014 (n=12) which contained fields 

that produced canola and wheat in the spring of the sampled year. The majority of sites 
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were different from previous years due to crop rotation of winter wheat and winter 

canola. Sites were also sampled during canola bloom (McCoshum et al. in prep). Of the 

four sites selected each year, two sites had pastures and two sites lacked pastures adjacent 

to the canola fields.  

Bee sampling  

Estimates of bee community composition were obtained by placing transects of 

three blue vane traps for 48 hours at the interface of the canola fields and wheat fields 

with traps at 0m, 100m and 200m. Sites with pastures had an additional three blue vane 

traps placed at the interface of the pasture and senesced canola field. We utilized blue 

vane trapes because they are more effective than pan traps in capturing large bodied bees 

(Stephen and Rao 2005), and we used these traps during the spring when canola was in 

bloom due to their success in the presence of a high reward floral resource (Roulston et 

al. 2007, Baum et al. 2011). Blue vane traps consist of a plastic container (15 cm 

diameter × 15 cm high) secured under two cross vanes (3 mm thick) composed of blue 

polypropylene sheets (24 cm × 13 cm) (SpringStar™ LLC, www.springstar.net). These 

traps are visually attractive to bees and collect living small to large bodied bees, while 

excluding most honey bees (A. mellifera) due to honey bee foraging behavior (Stephen 

and Rao 2005, 2007).  

Utilization of blue vane traps without killing agents allowed us to release living 

specimens that were easily identifiable such as Anthophora spp. and bumblebees 

(Bombus spp.). However, many specimens perished while in the traps due to the summer 

heat, even when traps were checked daily. Our sampling intensity was based on 

previously published research with blue vane traps sampling bees in sunflower fields, 
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which are high density floral resource areas with three traps set per field (Stephen and 

Rao 2007). Trapping only occurred when rain was not forecasted, winds were below 

48kph, and daily high temperatures were above 10°C. Sites with and without pastures 

were sampled during the same days to avoid confounding weather and trapping effort 

(Bartholomew and Prowell 2006). 

Landscape analysis 

Using data from Cropscape: USDA (Han et al. 2012, Han et al. 2014) for the 

same year our sampling was conducted, we extracted data for land cover within a 1.5 km 

radius; a distance which was chosen because most bees forage within 1 km from their 

nest and the transects extended 0.1 km in both directions from the center trap point. 

Furthermore, we assumed bees may travel further to find nesting sites when they emerge 

and nest location selection is influenced by floral resource availability (canola). Species 

which emerged when canola was still producing flowers and selected nest sites near 

canola fields should influence bee abundance and richness at our sites in June. We kept 

this buffer size for comparison of August data. Data were categorized into 8 land cover 

types: canola (recall it blooms before most other crops and native plants); non-nectar 

producing crops which included winter wheat, corn, sorghum, etc. (these crops do not 

provide nectar resources for the bees); grass or pasture (these areas may contain both 

floral and nesting resources); wetland which included open water (these areas can provide 

mud, reeds, and a variety of resources for bees); fallow or barren land (these areas differ 

from year to year and likely will not provide many resources); developed land which 

included homesteads and gardens, fracking platforms, and roads (which may provide 

nesting areas for ground nesting bees and floral resources on roadsides and homesteads); 
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forests which comprised deciduous and evergreen forest (areas providing nesting 

resources for xylophylous bees); and other flowering crops such as soybeans and alfalfa 

which bloom in later summer months (these areas can provide nectar resources after 

canola senesces). These data were then converted to percent cover for the 1.5 km area 

around each site.   

Seed set study 

 To test if pollination services for native plants increase after canola senescence, 

fruits from C. foetidissima: Cucurbitaceae were collected in August of 2013 and 2014 

from plants growing within roadside margins. We selected plants based on female 

flowers being produced which are only produced when plants are able to sustain fruit 

production, and marked in June with pink marking tape. Fruits from marked flowers were 

collected in August, from roadsides in 3 different types of sites: roadsides without canola 

production or pastures within 1.6km; roadsides with canola production and no pastures 

present within 1.6km, and; roadsides with canola production and pastures present within 

1.6km.  The distance of 1.6km was chosen because it is the normal grid spacing of roads 

in our sampling area and was larger than the 1.5km radius we used for landscape 

analyses. One to five fruits were collected from sites (max of 3 fruits acquired from each 

plant) (N=62 fruits), dried and seeds were counted. We chose to use C. foetidissima 

because these plants are gynodioecious, with female, male, and hermaphrodite plants, all 

of which require insect pollination for seed set to occur. Reproductive tissue investment 

and seed count is not known to differ between female and hermaphrodite plants (Kohn 

1989) so any differences in seed set should be due to pollination services. Furthermore, 

these plants bloom in late June, are common on roadsides, and are utilized by various bee 



49 

 

species. When present fruits were collected from sites where we sampled bees, however, 

not all sites had C. foetidissima so collections were also made from areas which were not 

sampled for bees using the same criteria as site selection described above. 

Analyses 

Bee species were grouped into morphospecies and keyed to genus. Species level 

identifications were made when possible, and a synoptic collection was deposited at the 

USDA Bee Biology and Systematics Laboratory in Logan, Utah.  Abundance, richness, 

and Simpson Diversity, were calculated and compared between sites with and without 

adjacent pasture using an ANOVA. Sørensen’s similarity coefficient was calculated for 

each year, comparing all sites with adjacent pasture and all sites without adjacent pasture. 

Due to sampling effort differing between sites with and without pasture, bee abundances 

were standardized as the number of bees collected per transect for each landscape type 

(with and without pasture).  

To test if adjacent pasture affected species presence, we used common 

morphospecies, which we defined as those found in both landscape types (areas with and 

without adjacent pasture) and comprised more than one percent of our data. We 

compared the frequency at which common morphospecies occurred per transect for sites 

with pasture vs without pasture using the z-score (VassarStats 2015). We also grouped 

morphospecies based on their common nesting habit (hive, ground, or twig) and used a 

Chi-square test to compare the abundance of each morphospecies with the same nesting 

habit between sites with and without pasture. Additionally, we analyzed adult parasitic 

species and bumblebees by landscape. Since parasitic species are only visiting traps to 
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feed, and are not foraging and feeding at similar rates as non-parasitic species, and 

bumblebees of the same species could potentially be of the same hive, we transformed 

the data to present or absent by site to test the effects of adjacent pasture. 

T-tests were run using VassarStats to compare overall bee richness and abundance 

in canola landscapes with adjoining pasture to canola landscapes without adjoining 

pasture for each year. June and August abundances were also compared using a paired t-

test (VassarStats 2015). Due to bee foraging distances, we also tested for correlation 

between types of land cover and bee abundance and richness for both June and August. 

To test how land cover from each site may have affected our data, we ran a correlation 

matrix and a Spearman’s rank correlation in VassarStats to test the correlation each land 

cover type had with bee richness and abundance per transect. 

We ran t-tests in VassarStats to compare seeds per fruit in canola producing areas 

with and without adjacent pasture. We also ran an ANOVA in VassarStats to test the 

difference in seeds per fruit between sites of canola without pasture, canola with pasture, 

and cereal crops without canola or pastures within 1.6 km. 

Results 

We collected a total of 2,428 bees and identified 53 morphospecies from our June 

samples and 2,016 bees and 62 morphospecies from our August samples, between 2012 

and 2014. We collected 120 ± 31.5 bees per transect in June at sites with pastures and 

165 ± 76.5 bees per transect at sites without pastures (t = 0.91, df = 10, p = 0.390). In 

August transects at sites with pastures averaged 104 ± 24.7 bees per transect compared to 

128 ± 68 bees at sites without pastures (t = -0.43, df = 10, p = 0.676). Our June data had 
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16 common morphospecies (morphospecies comprising more than 1% of our data and 

found at more than 1 site) and August data had 18 common morphospecies. Six 

morphospecies were found at 100% of our sites with pasture, but only one morphospecies 

(Agapostemon type 1) was found at all sites without pasture in June (Table 1). Four 

morphospecies were collected at all of our sites with adjacent pasture in August, and only 

one morphospecies (Lasioglossum) was collected at all sites without adjacent pasture 

(Table 2). Seven morphospecies from June and thirteen morphospecies from August were 

represented by only one specimen. Abundance overall significantly decreased from June 

to August (t = 1.99, df = 22, p = 0.035). All three Agapostemon morphospecies present in 

June and August were less abundant in our August samples. Similarly, Eucera, Halictus, 

Lasioglossum type 1, Xenoglossa types 2 and 3 all decreased in abundance from June to 

August. Svastra type 1 and 2 increased in abundance from June to August (Figure 1) as 

did Bombus pensylvanicus. 

Community similarity between sites with adjacent pasture compared to sites 

without adjacent pasture in June varied from year to year. Sites were least similar in 2012 

(47.06%), and most similar in 2014 (88.24%), with 2013 having a similarity between the 

two years (64.23%). Similarity for sites with adjacent pasture and sites without adjacent 

pasture in August followed similar patterns as June sites. Sites were least similar in 2012 

(26.65%) and most similar in 2014 (98.62%), with 2013 having intermediate similarity 

(52.83%). Adjacent pasture did not significantly increase the likelihood of any 

morphospecies being present at our transects in June or August except for B. griseocolis 

and Lasioglossum 2 in June.  

Bumblebees and cleptoparasites 



52 

 

Bombus auricomus, B. pensylvanicus, and B. griseocollis were only found in 

areas with pastures during June (Table 1), but B. pensylvanicus was only represented by 

one specimen. In August, B pensylvanicus was the most abundant, found at 83% of our 

sites and B. auricomus (Z = 2.309, n = 12, p = 0.02) and B. griseocollis (Z = 2.309, n = 

12, p = 0.02) were only represented by one specimen each (Table 1). Parasitic species 

(Triepeolus remigatus, Xeromelecta californica and Triepeolus sp.) were found at sites 

with and without pastures in June (Z = 0.586, n= 12, p = 0.56). Anthidium porterae, 

Coelioxys sp., and Triepeolus remigatus were the only parasitic species found in August. 

No species were captured at the same location as another parasitic species, and no species 

was present at more than one site. Cumulatively, parasitic species did not occur more 

often in areas with or without pasture (Z = 1.155, n = 12, p = 0.25). 

Landscape analysis 

Abundance of bees in June was most correlated with non-nectar producing crops 

(rs = -0.494, n = 12, p = 0.102) and richness was most correlated with wetlands (rs = -

0.512, n = 12, p = 0.090) neither of which were statistically significant. Similarly, August 

bee abundance was most correlated with non-nectar producing crops (rs = -0.487, n = 12, 

p = 0.101) and richness was most correlated with fallow land (rs = 0.6774, n = 12, p = 

0.016) with only the fallow correlation showing statistical significance.  

Seed count 

Mature fruits of C. foetidissima were collected in August in areas without canola 

production and in areas with canola production with and without pasture. No difference 

was found between the number of seeds produced per fruit in areas producing canola with 
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and without adjacent pasture (t = -1.28, df = 38, p = 0.21). Seeds per fruit averaged 249 ± 

9.1 for areas with pasture and 233.8 ± 7.5 for areas without adjacent pasture. Areas 

without canola or pasture had significantly reduced seeds per fruit (F2,58 = 20.039, p < 

0.01), with an average of 165.5 ± 12.7 seeds per fruit (Figure 2). 

Discussion 

 Total bee abundance was significantly higher during June, soon after canola sets 

seed and ceases to produce flowers, compared to August with eight of the ten 

morphospecies present in both trapping periods decreasing in abundance (Figure 2). The 

higher abundance of bees during June is potentially due to the influence of canola 

attracting bees into these areas (Le Féon et al. 2013, Mesa et al. 2013), but canola land 

cover within 1.5km did not have significant correlation with our data. The decline in 

August may reflect reduced floral resource availability from the absence of canola during 

the emergence of fall bee species. Another possible explanation is that August bee 

community is smaller overall compared to June, but further research is needed into 

seasonal bee communities in this region to elucidate this possibility.  

Bees are known to be attracted to areas where nectar producing crops are 

blooming (Diekotter et al. 2010, Holzschuh et al. 2011, Mesa et al. 2013) but our data did 

not suggest this was occurring at our sites in June or August. Fallow land cover was the 

only land cover in our analyses which had a significant correlation with bee abundance or 

richness, and only during August for bee richness. All of our sites had less than 1% of 

fallow land cover at all sites except for one where it was 4.82%. Fallow field margins 

have been shown to positively correlate with bee abundance (Williams and Kremen 
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2007) so it is possible our results have biological importance. Further research is needed 

to explain how August bee communities differ from June bee communities to further 

understand this correlation. 

 Annual differences in similarity of bee communities were also observed between 

our sites with and without pasture with sites being least similar in 2012 for both June and 

August and most similar in 2014. 2012 was the second year of a 3 year drought which 

may have influenced the differences in similarity as well as abundance (Frankie et al. 

1998). We captured the lowest number of bees in June of 2012 and the most in 2014; but 

the same pattern was not observed in August as bees were most abundant in August of 

2012 and least abundant in August of 2013. Positive correlation of August bee richness 

with developed areas and forests may be due to these areas potentially having water or 

floral resources during the drought periods. Further research is needed to understand the 

effects of drought on bee communities in agricultural areas, as well as the effects each 

land cover may have in both drought and non-drought years. 

Seed counts from C. foetidissima suggest pollination services are greater in areas 

with canola production compared to areas without canola production in early summer 

when this species starts to bloom. We did not collect fruits which were pollinated in 

August, although they may have been present, and we did not sample for bees in areas 

where canola was not produced so we cannot speculate as to whether or not overall bee 

abundance or richness affects seed set in C. foetidissima. However, canola producing 

areas did have increased seed set which requires pollination (Kohn 1989), so it is possible 

that bees which were previously attracted to and foraging on canola increased seed set. If 

canola fields are used in agricultural management plans, our data suggest seed set of wild, 
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entomophylous plants will be higher near canola fields. Furthermore, our data suggest C. 

foetidissima in areas near cereal crops, has lower reproductive success than plants near 

canola production. Further studies should investigate long term bee community data as 

well as seed set of domestic and other wild entomophylous plants in areas with only 

cereal crop productions, especially in cases of multiple successive years (Le Féon et al. 

2013) compared to areas with crops providing early spring floral resources (Riedinger et 

al. 2015).  

Areas with pasture did not have more bees per transect in June or August 

compared to areas without pasture, which contradicts findings of many studies which 

suggest bee abundance and richness in agricultural fields are positively correlated with 

the presence of seminatural areas (Morandin et al. 2007, Carré et al. 2009, Julier and 

Roulston 2009). Our results may be different than previous studies because our study 

focused on post bloom bee communities, whereas other studies focused on summer 

blooming crops while crops were in bloom. However, our trapping effort in areas with 

pasture was twice as intense (traps in both canola and pasture), which may have diluted 

the number of bees per transect. It is also possible that competition between traps and 

flowers for bees, which has been documented with pan traps and bees (Baum and Wallen 

2011) could have occurred. Areas with pasture may have had an higher abundance of 

floral resources  (Morandin et al. 2007, Ricketts et al. 2008, Carré et al. 2009) or diversity 

of floral resources, which affects forage flight patterns (Osborne et al. 2008). Therefore, 

bees may have been more likely to be captured in areas without pasture if floral resources 

were less abundant or diverse in these areas.  
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Bumblebee species were caught mostly at sites with pasture, which aligns with 

previous research (Carvell et al. 2007, Heard et al. 2007) and in June these were the only 

sites where we captured bumblebees. However, in August B. pensylvanicus was captured 

in areas without pasture, even though they were not previously captured at those sites in 

June. This could be due to gynes foraging further from nests in August to accommodate 

colony growth, or due to more direct flight patterns over harvested fields to reach 

available floral resources (Osborne et al. 2008, Knight et al. 2009). We also captured 

males and queens of B. pensylvanicus and B. auricomus in August, which suggests 

bumblebee colonies are at least successful in areas where canola is produced which may 

be beneficial since bumblebees throughout North America, including the Midwest, are 

declining (Goulson et al. 2008, Grixti et al. 2009, Cameron et al. 2011). However, we did 

not measure nest size or success, or evaluate other factors, such as insecticide exposure, 

which may influence the success of bumblebee colonies (Gill et al. 2012, Whitehorn et al. 

2012, Rundlof et al. 2015). Further research is needed on queen production and nest 

success to address how canola production is affecting bumblebee populations in the 

South Central United States. 

Agricultural planning, which is currently not common in our study region, can be 

implemented to benefit native bee communities by providing consistent floral resources 

throughout the year (Mandelik et al. 2012). The decrease in bee abundance from June to 

August supports previous research illustrating wild bees are attracted to nectar producing 

crops (Diekotter et al. 2010, Holzschuh et al. 2011, Mesa et al. 2013) and suggest canola 

could be beneficial if integrated into summer entomophylous crop production by being 

planted adjacent to summer blooming crops. Additional research is needed however to 
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evaluate the impacts of these crops, and production practices, on wild bee reproduction 

and persistence in areas where nectar producing crops are grown in consecutive years. 

Nectar producing crops are clearly attractive to pollinators and add floral resources to the 

landscape, however bees may be affected by: insecticide applications, including sub-

lethal exposure (Laycock et al. 2012, Feltham et al. 2014, Rundlof et al. 2015); no-till 

practices (Carr et al. 2012) that reduce ground disturbance and may benefit ground 

nesting bees; additional water availability from irrigation (Qadir and Oster 2004) which 

may affect plant communities and soils;  or other variables common in agricultural 

landscapes.   
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Tables and Figures 

Table 1: The bumblebee species and most common 

morphospecies captured in June, in transects between canola and 

wheat production sites, with and without pasture. The percent of 

transects in which a morphospecies occurred as well as its overall 

abundance in similar sites and total data. z-scores and p-values are 

also reported. 

 

 

  

 

 

 

 

 

 

 

 

Bombus 

aur icomus

Bombus 

griseocollis

Bombus 

pensylvanicus

Agapostemon

Agapostemon

Agapostemon

Diadasia

Eucera

Halic tus 

ligatus

Halic tus 

parallelus

Lasioglossum 

1

Lasioglossum 

2

Melisodes 1

Melisodes 2

Svastra 1

Svastra 2

Tr iepeolus 

remigatus

Xenoglossa 1

Xenoglossa 2

Xenoglossa 

st renua 3

%
 t

r
a

n
s

e
c

ts
 p

a
s

t
u

r
e

3
3

.3
3

5
0

.0
0

1
6

.6
7

1
0

0
6

6
.6

7
1

0
0

6
6

.6
7

6
6

.6
7

8
3

.3
3

8
3

.3
3

1
0

0
8

3
.3

3
1

0
0

8
3

.3
3

1
0

0
5

0
.0

0
6

6
.6

7
8

3
.3

3
1

0
0

6
6

.6
7

S
p

e
c

im
e

n
s

 p
a

s
tu

r
e

2
4

2
3

2
7

9
0

2
3

6
4

2
6

7
5

2
5

1
9

1
1

4
1

3
3

2
6

6
2

2
8

2
2

4
2

8
8

9
1

%
 t

r
a

n
s

e
c

ts
 n

o
 p

a
s

t
u

r
e

0
0

0
1

0
0

6
6

.6
7

8
3

.3
3

5
0

.0
0

5
0

.0
0

8
3

.3
3

5
0

.0
0

8
3

.3
3

1
6

.6
7

6
6

.6
7

5
0

.0
0

6
6

.6
7

5
0

.0
0

1
6

.6
7

6
6

.6
7

8
3

.3
3

8
3

.3
3

S
p

e
c

im
e

n
s

 n
o

 p
a

s
tu

r
e

0
0

0
4

1
9

1
7

4
1

3
3

5
1

4
2

0
1

1
1

0
5

1
4

3
8

8
1

4
1

3
1

3
6

2
0

2
4

z
-s

c
o

r
e

-1
.5

5
2

.0
0

-1
.0

4
0

.0
0

0
.0

0
-1

.0
4

0
.5

9
0

.5
9

0
.0

0
1

.2
3

-1
.0

4
2

.3
1

1
.5

5
1

.2
3

1
.5

5
0

.0
0

1
.7

6
0

.6
7

-1
.0

4
-0

.6
7

p
-v

a
lu

e
0

.1
2

0
.0

4
5

5
*

0
.3

0
1

.0
0

1
.0

0
0

.3
0

0
.5

6
0

.5
6

1
.0

0
0

.2
2

0
.3

0
0

.0
2

0
9

*
0

.1
2

0
.2

2
0

.1
2

1
.0

0
0

.0
8

0
.5

0
0

.3
0

0
.5

0

%
 t

o
t
a

l 
d

a
ta

0
.0

8
0

.1
6

0
.0

8
3

0
.7

2
1

0
.8

7
1

.4
8

4
.0

8
1

.6
5

3
.9

1
1

.4
8

1
2

.1
9

0
.9

5
7

.0
4

1
.4

0
3

.1
3

1
.6

9
1

.4
4

1
.9

8
4

.4
5

4
.7

4



59 

 

Table 2: The bumblebee species and most common  

morphospecies captured in August, in transects 

between canola and wheat production sites, with and 

without pasture. The percent of transects in which a 

morphospecies occurred as well as its overall 

abundance in similar sites and total data. 
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Table 3: Correlation coefficients and their Spearman’s rank correlation coefficients and 

two-tail p-values for the eight land cover types 1.5 km from the center of our transects in 

June and August for the abundance and richness of bees in areas where winter canola had 

been planted earlier that year.  The average percent land cover is also given. 

  

 

 

 

 

 

 

 

 

 

June
Non-nec tar  

produc ing

Grass/ 

pasture

Canola Nec tar  

produc ing

Developed/ 

open space

Fallow Forest Wet land

Abundance Rs -0.4939 0.1611 0.4729 -0.1366 0.1786 0.0624 0.1576 0.1159

p-value 0.102 0.614 0.12 0.669 0.581 0.845 0.628 0.719

Richness Rs -0.1954 -0.0142 0.2061 -0.0213 0.2807 -0.0506 0.0959 -0.512

p-value 0.543 0.96 0.518 0.946 0.379 0.876 0.77 0.0895

August

Non-nec tar  

produc ing

Grass/ 

pasture

Canola Nec tar  

produc ing

Developed/ 

open space

Fallow Forest Wet land

Abundance Rs -0.4869 0.3398 0.1786 0.3783 0.056 0.6454 0.3853 0.1496

p-value 0.101 0.281 0.581 0.226 0.861 0.235 0.216 0.642

Richness Rs -0.3047 0.1856 0.0685 0.5744 -0.1121 0.6774 0.5184 -0.0224

p-value 0.336 0.562 0.607 0.51 0.726 0.016 0.084 0.946

Percent ± SE 56.71 ± 3.15 23.73 ± 2.27 12.01 ± 1.94 2.02 ± 0.32 3.77 ± 0.24 0.61 ± 0.39 1.10 ± 0.36 0.04 ± 0.02
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Figure 1: Box-plots for the number of seeds per fruit of C. foetidissima collected in 

August of 2013 and 2014. Fruits were collected from canola producing areas with and 

without pasture, as well as areas which did not have canola production or pasture within 

1.6 km. A significant decrease in seeds per fruit was found in areas without pasture or 

canola production. 
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Figure 2: The percent change in abundance of common morphospecies captured in both 

June and August. Total abundance significantly decreased from June to August, with 

eight of the ten morphospecies also declining in abundance. 
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CHAPTER IV 
 

 

EARLY SPRING BUTTERFLY RICHNESS WITHIN AREAS PRODUCING 

BRASSICA NAPUS INCREASES WITH PERCENT OF GRASS/ PASTURE 

 

Abstract 

Human dominated land use covers more than 20% of the world, and mainly 

consists of agriculture, which reduces landscape heterogeneity, biodiversity, and 

community structure. Invertebrate pollinators are sensitive to land use patterns and are in 

decline globally in part due to habitat fragmentation and loss. However, some agricultural 

management practices which include pastures and semi-natural areas within agricultural 

landscapes have been shown to increase pollinator diversity as well as landscape 

heterogeneity and plant diversity. Butterflies are generally considered poor crop 

pollinators, but some species are important native plant pollinators. The South Central 

United States has historically been intensively cultivated to produce non-nectar producing 

cereal crops and has intermittent pastures and semi natural areas. Both migratory and 

non-migratory butterfly species are active in early spring in this area, but data on the 

butterfly communities are lacking. In 2008 Oklahoma wheat producers began rotating 

winter wheat crops with winter canola (Brassica napus), a nectar producing, early-spring  
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blooming crop which may benefit pollinators, but the effects on pollinator assemblages is 

unknown. We sampled butterfly communities with yellow sticky traps from 2011 to 2013 

in wheat and canola fields with and without adjacent pasture to evaluate if butterfly 

communities differed in the presence or absence of pasture. Using 30 m resolution land 

cover data we tested for correlations between land cover and butterfly abundance and 

richness. Sites with canola, wheat and pasture did not have significantly different 

butterfly communities compared to areas of canola and wheat without pasture. Yearly 

populations varied over the course of the study, which may reflect drought conditions 

and/or spring temperatures. We also found four species of migratory butterfly species 

active during canola bloom in the South Central United States, which may enable long 

distance cross-pollination of canola. Our study suggests butterfly communities in this area 

are fairly similar and yearly assemblages may be more sensitive to temperature and 

drought than land cover type.   
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Introduction 

More than 20% of the world’s land has been converted from its natural state into 

human dominated use, with various biomes being affected at different rates (Hoekstra et 

al. 2005). These lands are mostly converted to agricultural lands (McLaughlin and 

Mineau 1995, Hoekstra et al. 2005) and with advances in technology and pest 

management, agricultural lands have become more simplified (Persson et al. 2010). 

Simplification of agricultural areas reduces landscape heterogeneity (Fahrig et al. 2011), 

threatens biodiversity (Foley et al. 2005) and alters overall community structure (Cronin 

and Reeve 2005, Haddad et al. 2009, Diekotter et al. 2010). Plant community structure 

can be changed by local extirpations, changes in plant dominance or addition of non-

native species, and these changes can affect the surrounding pollinator community 

(Tepedino et al. 2008, Haddad et al. 2009, Moron et al. 2009, Woods et al. 2012). These 

changes strongly affect plant pollination and reproductive success, creating a feedback 

loop which influences plant community structure as well as food security (Moron et al. 

2009, Holzschuh et al. 2011).  

Declines in pollinators have been documented over the past 30 years (Potts et al. 

2010), although proper management has successfully slowed pollinator declines in some 

areas (Donald and Evans 2006, Carvalheiro et al. 2013). Additionally, management 

practices in agricultural settings can enhance local biodiversity and ecosystem services 

provided by pollinators and natural predators of crop pests (Bosch et al. 2000, Landis et 

al. 2000, Esther Julier and Roulston 2009, Dosdall and Mason 2010). However for most 

species, including pollinators, definitive assessment of populations is extremely difficult 

due to insufficient long term data (National Research Council 2007); therefore it is 
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important to document spatial and temporal patterns in species abundance and richness. 

Moreover, studies which document occurrences assist in identifying range changes (Hill 

et al. 2001, Grixti et al. 2009, Cameron et al. 2011) and introductions into areas (Lange 

and Cap 1986, Davis and Peña 1990, McCoshum et al. 2012). These data are extremely 

important for creating effective agricultural management plans. 

Long term studies on butterfly populations in agricultural settings have mainly 

focused on pest species of perennial crops and are lacking for annual crops and non-pest 

butterfly species (Gilbert and Singer 1975). Butterfly assemblages are good indicators for 

landscape heterogeneity because assemblages will change with disturbance (Kremen 

1992) and are used to conditionally assess habitat for other species (Landres et al. 1988). 

Furthermore, many natural predators of crop pests use resources within the surrounding 

landscape, including hosts for overwintering (Pfannenstiel et al. 2010) and many non-pest 

Lepidopteran species can host important natural enemies of crop pests (Takagi 1985, 

Stapel et al. 1997, Pfannenstiel et al. 2010). Most butterflies (Hesperiidae and 

Papilionoidea) are considered poor pollinators due to their long legs and lack of pollen 

carrying structures (Sahli and Conner 2007); however, they are important for various 

native plants (Cruden and Hermann-Parker 1979, Jennersten 1984, Borges et al. 2003). 

Furthermore, some butterfly species, such as Pieris rapae, are more effective at 

increasing seed set in Brassica raphnus than some bee species (Sahli and Conner 2007), 

although this has not been evaluated for B. napus.  

Within North America, grasslands have been reduced by more than 50% due to 

agricultural conversion (Hoekstra et al. 2005) especially within the Great Plains with 

most states having a 99% reduction (Samson and Knopf 1994). The South Central United 
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States has intense agricultural production, mainly producing wheat and other non-nectar 

producing crops for more than nine decades (Travis and Robb 2009). Consecutive years 

of wheat production in an area have been shown to negatively affect bee communities (Le 

Féon et al. 2013) and may similarly affect butterfly communities. However, the recent 

addition of winter canola to the South Central United States could positively affect 

butterfly species active in the early spring. Pastures, seminatural areas, and even organic 

farming are known to positively affect butterfly abundance and richness (Rundlöf and 

Smith 2006), as they increase landscape heterogeneity which is positively correlated with 

butterfly abundance and richness (Flick et al. 2012). Similarly, pastures in agricultural 

areas of the South Central United States could increase butterfly abundance and richness 

by supporting host and/or nectar plants. Alternatively, butterfly communities in heavily 

cultivated areas could experience homogenization, regardless of the presence or absence 

of grasslands.  

Canola is an early spring flowering crop that produces an indeterminate raceme of 

flowers. Each flower produces relatively large amounts of nectar (0.2µl - 6µl/flower, with 

an average of 2µl/flower), depending on the variety (Pierre et al. 1999). Flowering occurs 

in early spring, prior to most native plants (Berger et al. 1985, Bosch et al. 2000), and 

typically lasts approximately 3 to 5 weeks, making it attractive and potentially beneficial 

to adult butterflies. Oklahoma is the primary producer of canola within the South Central 

US, where winter canola is planted in rotation with winter wheat. In the last 7 years, 

production of canola in Oklahoma has increased from 0 to 270,000 acres (109,265 

hectares) per year (USDA NASS 2008-2015), but how butterfly communities are affected 

by this increase is not yet known. Furthermore, within the canola-wheat landscapes of 
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Oklahoma, semi-natural grassland areas (often mowed), roadsides and pasture are 

common which increases overall landscape heterogeneity.  

Although canola production has the potential to benefit adult butterflies by 

providing nectar resources, canola is susceptible to several crop pests including aphids 

(Dosdall and Mason 2010), and insecticide application is the primary method used to 

control aphid infestations. Each year, 90% of fields are sprayed with insecticide, some 

more than once (Franke et al. 2009) and applications often occur around the time of 

flowering to control cabbage aphids that infest canola during bloom and seed-pod 

development (Boyles et al. 2004, Royer et al. 2004) and can significantly reduce crop 

production. Due to the potential positive and negative effects canola production may have 

on butterfly communities, it is important to evaluate how butterflies may be affected to 

develop appropriate agricultural management strategies. 

Using passive capture techniques in fields of canola, wheat, and pasture, we 

sampled butterfly communities in Oklahoma to assess: the influence of adjacent pastures 

as well as land cover on butterfly abundance and richness near and within canola fields; 

whether overall butterfly abundance differed between years as canola production 

increased; and the temporal pattern of butterfly presence in canola producing areas in the 

South Central United States (especially as it relates to the arrival of migratory butterflies). 

Collectively these data will inform agricultural management strategies in this region that 

are relevant to butterfly communities. 

 

 



73 

 

Materials and methods 

Non-scented, yellow sticky traps were placed in winter canola fields, winter 

wheat fields, and pastures in 8 sites throughout the canola producing region in north-

central Oklahoma in April and early May of 2011, 2012, and 2013 when canola began to 

bloom. Each field had 17 trap points (Figure 1) with two sticky traps per point, one facing 

the field margin, and one facing away from the field margin. Five trap points parallel to 

the field margin, were located 50 m into the field, with the center three traps spaced 40 m 

apart, and the two end traps spaced 20 m apart. A grid of twelve traps in a 3 x 4 grid or 

equally spaced trap points 40 m apart was placed 60 m further into the field than the first 

row, with the furthest traps located 230 m from the margin. Sticky traps were set up when 

canola fields began to bloom and replaced 6 times on days 2, 4, 6, 8, and 12 after initial 

placement, and taken down on day 18, which was during peak bloom. This study was 

designed to investigate the movement of aphid predating insects, and the butterflies were 

by-catch. Although the study was not designed to sample butterflies, their activity is 

likely highest near the margins compared to the center of the fields based on daily 

movement estimates (Scott 1975, Davis et al. 2007), so this design should reflect 

butterfly assemblages in the area. 

Butterflies were identified to the lowest possible taxon using Butterflies of North 

America (Brock et al. 2003). Due to damage to specimens from struggling against the 

glue and bird predation, which was evident by missing bodies of butterflies, some 

specimens were only identifiable to family or genus. Butterflies in Lycaeniidae and 

Hesperiidae, except for Pyrgus communis were identified to family due to color 

distortions and wing damage caused by the sticky traps. Vanessa cardui, V. virginiensis, 
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Colias eurytheme and C. philodice were identified to species when possible but we 

grouped species in each genus for analysis due to the number of specimens that were not 

identifiable beyond genus and because the two Colias species can hybridize. 

Analyses 

We calculated diversity using the Shannon-Weiner Index for each field (canola, 

wheat and pasture) and performed a T-test comparing canola fields and wheat fields in 

areas without pasture, and comparing canola fields and wheat fields in areas with pasture. 

Fields were then grouped in order to compare sites with pasture and sites without pasture. 

Due to differences in trapping effort between site types (34 trap points in areas without 

pasture and 68 trap point in areas with pasture), we standardized our site data by trapping 

effort to number of butterflies caught per two fields because sites without pasture had 

canola and wheat fields (butterflies per 34 traps) to calculate diversity, richness, and 

abundance at each site, and then utilized T-tests to compare each measure between sites 

with and without pasture. Similarity was calculated using Sørensen's coefficient for sites 

with and without pasture as well.  

Landscape analysis 

To test for land cover effects, we used data from CropScape (Han 2014, USDA 

NASS 2014) and extracted land cover type for 1.5 km radius from the center of our 

transects. We selected 1.5 km because distance of daily butterfly movement is known to 

be higher in agricultural settings compared to natural areas (Loos et al. 2015). Colias 

eurytheme were documented moving 1.12 km in a mark release recapture study (Watt et 

al. 1979) and our trap points extended 0.27 km into crops. We rounded up to 1.5 km to 
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capture these movements. Data were categorized into 8 land cover types: canola (recall it 

blooms before most other crops and native plants); non-nectar producing crops which 

included winter wheat, corn, sorghum, etc. (these crops do not provide nectar resources 

for the butterflies); grass or pasture (these areas may contain both floral and larval host 

plant resources); wetland which included open water (these areas can provide areas for 

puddling, where butterflies congregate to collect minerals and salts); fallow or barren 

land (these areas differ from year to year and likely will not provide many resources 

except potentially from annual plants); developed land which included homesteads and 

gardens, fracking platforms, and roads (which may provide ground for puddling and 

potentially unmanaged plant buffers with floral resources on roadsides and homesteads); 

forests which comprised deciduous and evergreen forest (areas potentially providing 

more nectar resources and overwintering areas) and other flowering crops such as 

soybeans and alfalfa which bloom in later summer months (these areas can provide nectar 

resources and potentially host plants after canola is harvested). These data were then 

converted to percent cover for each of our sites. We ran a Spearman’s rank coefficient to 

test the correlation of butterfly abundance and richness with land cover type.  

Results 

Our traps collected 1,871 identifiable butterflies from 5 families: Hesperiidae, 

Lycaeniidae, Nymphalidae, Pieridae, and Papilionidae. The most abundant species were 

C. eurytheme and C. philodice. Due to damage and hybridization species specific 

identification were difficult for ~20% of the Colias specimens. Cumulatively, Colias spp. 

comprised 53.72% of the collected butterflies. Vanessa spp. were the second most 

abundant group comprising 18.8% of our data, and we were unable to make 
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identifications for ~45% of the Vanessa butterflies. Pontia protodice accounted for 9% of 

our data followed by Danaus plexippus at 8.5%. These percentages varied between years, 

and some less common species only occurred in a single year (Figure 2).  

Abundance, diversity, and similarity differed from year to year, with no consistent 

patterns between sites with pastures compared to sites without pastures. Sites with 

pastures had higher abundance of butterflies in 2011, but sites without pastures had 

almost double the number of butterflies than areas without pasture in 2012 and 2013. 

Overall, 2012 had the highest abundance and richness of butterflies compared to the other 

years. Species richness was higher at sites with pastures in 2011 and 2012, but lower in 

2013. Similarity of sites had small changes between years, ranging between 0.75 and 0.8 

(Table 1) with the most similarity seen in 2012. No statistical differences were found 

between areas with adjacent pasture vs areas without adjacent pasture when all years 

were grouped and compared for abundance (t = -0.67, df = 17  p = 0.51), richness (t = 

1.27, df = 17, p = 0.22), or diversity (t = 1.01, df = 17, p = 0.33). 

Landscape analysis 

Landscape analyses showed our sites with and without adjacent pasture had large 

variations in the amount of grass/pasture land cover within 1.5 km, with only three sites 

containing less than 10% grass/pasture cover at this larger spatial scale.  The three most 

common land cover types, non-nectar producing crops, grass/pasture and canola, did not 

have any significant correlation with butterfly abundance (rs < 0.21, p > 0.41) or richness 

(rs < 0.28, p > 0.28) (Table 2). Developed/open space was the only land cover type with a 

significant positive correlation with butterfly richness (rs = 0.70, p = 0.002) (Table 2).  
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Temporal patterns 

Four species of migratory butterflies were captured on our traps: Danaus 

plexippus, Vanessa atalanta, V. cardui, and V. virginiensis. Danaus plexippus was 

encountered in all 3 years and was captured first on April 7, 2011, 2 days after our first 

traps were placed; April 5, 2012, 1 day after our first traps were setup (half of the sites 

were setup on April 4, 2012 which did not collect any monarchs); and April 24, 2013. 

Vanessa atalanta was only captured in 2012 starting on the first day we placed traps in 

fields (April 4, 2012), and throughout our trapping period with a total of 22 identifiable 

specimens. Identifiable specimens of V. cardui were not very abundant in 2011, with only 

3 specimens collected starting on April 17, 2011. Similarly in 2013, only 3 individuals 

were captured starting on April 19, 2013. In 2012, we captured 93 V. cardui starting on 

April 4, 2012, the first day our traps were placed. Vanessa virginiensis was captured in all 

3 years as well, with 3 specimens collected in 2011 starting on April 18, 2011, 58 

collected in 2012 starting on April 6, 2012, and 2 collected in 2013 starting April 27, 

2013. 

Discussion 

The most common butterflies collected were Colias (C. philodice and C. 

eurytheme), both of which can be crop pests of alfalfa. Butterfly abundance was not 

higher in pastures adjacent to canola fields, but these sites tended to have higher species 

richness. Our landscape analysis showed a positive correlation of butterfly richness with 

developed space, which included private gardens and homesteads. It is possible these 

areas provided a wider variety of host plants and nectar resources as well as 
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overwintering areas. No significant correlations were found between butterfly richness 

and any other land cover category, which is not consistent with previous research (Hill et 

al. 2001, Rundlöf and Smith 2006, Winfree et al. 2011, Loos et al. 2015). However our 

study focuses on early spring butterfly communities in the South Central United States, 

where other studies have focused on annual communites, or mid to late summer 

communities.  

Due to the differences in butterfly abundance between years, it is likely that 

variables such as drought, seasonal temperature or overwintering sites influence 

abundance more than land cover in the study region. The tendency for higher species 

richness in areas with development is likely due to host plant diversity in these areas 

compared to other landscape types (Öckinger and Smith 2006, Williams and Kremen 

2007) Further research should look into plant community differences in pastures 

compared to unmanaged areas which may have similar host plant species for butterflies. 

For example, some management practices for pastures increase forage species for cattle 

by promoting graminoid growth via broadleaf herbicide application (e.g., Lochmiller et 

al. 1991, Hamilton 2007), which decreases heterogeneity within the pastures. Prescribed 

fire, which was implemented at some sites, can increase plant biodiversity (Fuhlendorf 

and Engle 2001) or decrease it depending on frequency (Blair et al. 2008). It is unclear 

which pastures within our study utilized prescribed fire or how frequently burning 

occurred, so we did not include burns in our analysis, but further research should 

investigate burning and burn frequency in addition to grass/pasture coverage with 

butterfly abundance and richness.  
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Abundance of the crop pests is interesting and warrants further consideration. 

Canola is a host plant to Pieris rapae, the cabbage white, (Scott 1986, Graves and 

Shapiro 2003) which we captured few specimens of; however, C. eurytheme and C. 

philodice were the most abundant species we collected. Both of these Colias species can 

develop on alfalfa (Medicago sativa), which is produced in the South Central United 

States. It is not clear if the availability of canola (and associated nectar) in the landscape 

influences the distribution and abundance of these crop pests at larger spatial scales; 

however, this warrants further research. Furthermore, four species of parasitoids have 

been collected in Oklahoma from C. eurytheme (Soteres et al. 1984) and canola may alter 

their distribution, abundance, and subsequent parasitism of C. eurytheme in the landscape 

as well. Similarly, canola may attract butterflies to areas where host plant abundance is 

low leading to competition among larvae, or where host plant abundance is high and both 

situations may benefit parasitoid communities. Natural predators of crop pests are known 

to benefit from pastures and seminatural areas, so although we did not find butterfly 

abundance to be correlated with pastures or grass/ pasture (Kruess 2003, Cronin and 

Reeve 2005, Haddad et al. 2009, Dosdall and Mason 2010), natural enemies of these 

species may be more abundant in these areas. 

Other flowering crops in the area, mainly alfalfa and soybeans, bloom after our 

butterflies were collected so they did not provide floral resources while our traps were 

deployed. However, these crops were also produced in previous years which may have 

influenced butterfly assemblages at our sites because diversity of floral resources has 

been shown to increase pollinator abundance (Ries et al. 2001, Davis et al. 2007) and 

butterflies may have overwintered near fields of soybean or alfalfa, which would not be 
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captured in our analyses. Similarly, wetlands and forested areas generally create areas 

which are not disturbed during crop production, so these areas may provide floral 

resources and host plants the previous year as well as areas for butterflies to overwinter, 

but both of these land covers were generally between 0 and 1% of the site land cover. 

Developed land cover had a moderately positive influence on both species abundance and 

number of species, but this land cover type did not exceed 6.5% at any site, and it is 

possible a different pattern would be observed if developed land comprised a greater 

percent of the landscape since butterflies can be negatively affected by intense 

development (Van Dyck et al. 2009). Further analyses for effects of crops from the 

previous year, and environmental patterns are warranted as well as species level analysis 

for common species. 

We did not formally survey roadsides  for our study but plants in the Asteraceae, 

Convolvulaceae, Cucurbitaceae, Poaceae and Solanaceae, were common along roadsides 

near our study sites. Roadside buffers differed between sites with larger buffers existing 

next to paved roads and smaller buffers next to dirt roads. Buffers next to paved roads 

were generally mowed, with a narrow unmanaged strip next to agricultural fields, and 

buffers along dirt roads were generally left unmanaged.  These differences in both buffer 

size and management are known to affect biodiversity (Ries et al. 2001, Hopwood 2008, 

Ernoult et al. 2013), and likely affected community similarity, diversity, abundance and 

richness around canola fields.  

The differences we observed between years for similarity, abundance and richness 

may also be explained by climatic differences between the years. April of 2011 was dry 

with a total of 2.67 cm of rain and a daily high temperature average of 23.89 °C. April of 
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2012 had more rain with 6.91 cm in total and a daily high temperature average of 23.33 

°C. April was much cooler in 2013 with a daily high temperature average of 17.22 °C and 

4.01 cm of precipitation (NOAA 2015). The unseasonably cold weather in 2013 delayed 

spring migration of D. plexippus into the area (JourneyNorth 2013, McCoshum and 

Baum 2014) and likely had a similar effect on the other migrating species. Since 

temperature affects when butterflies emerge (Sparks and Yates 1997) in spring as well as 

migrate, it is plausible most of the differences we observed between years can be 

attributed to spring temperatures and this may explain the low abundance of butterflies in 

2013. Even with these yearly differences, our data show that canola does bloom during 

the period of spring migration for four of our study species, which may provide an 

important nectar source in the area during that time and may also enable long distance 

cross-pollination or plant pathogen dispersal (Roy 1993). Furthermore, canola blooms 

when spring butterfly species are active, which may benefit these populations in 

agricultural settings as well.  

Data show that butterfly pollinated plants are declining in areas consisting of 

smaller patches (Hendrix and Kyhl 2000), which also supports the data showing their 

pollinators are also in decline (Biesmeijer et al. 2006, Carvalheiro et al. 2013). In the 

past, agricultural fields with annual crops often supported wild plants (e.g., milkweeds; 

(Hartzler 2010, Pleasants and Oberhauser 2013) in addition to the crop species. With the 

development of widely used herbicide resistant crops, weed diversity has significantly 

decreased (Young et al. 2013). Weed loss from agricultural fields has been suggested to 

harm species that are dependent upon those plants for all or part of their life cycles (e.g., 

monarch butterflies are declining due to milkweed loss from agricultural fields (Pleasants 
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and Oberhauser 2013).  Our study is one of the first to investigate butterfly abundance 

and richness in Oklahoma agricultural areas. Although we found positive correlation with 

butterfly richness and grass/ pasture land cover, butterfly communities were fairly similar 

in areas of canola production with and without pasture, which suggests butterfly 

pollination services for canola should also be fairly similar. The similarity of butterfly 

assemblages in areas with and without pasture may be due to the reduction of wild host 

and nectar plants. Further research into the distribution of these wild plants in this region 

may provide better data for the butterfly community structure.  

 Canola is often treated with insecticides around the time of flowering to reduce 

aphid pests, and our study did not investigate the effects of insecticide exposure. Non-

lethal exposure to insecticides has been linked to problems within bumble bees, honey 

bees, and caterpillars including lower reproductive success and decreased foraging 

capability (Longley and Sotherton 1997, Goulson et al. 2002, Dai et al. 2010, Feltham et 

al. 2014). Most studies have focused on caterpillar exposure to sub-lethal effects, which 

led to smaller adults (Longley and Sotherton 1997, Hoang et al. 2011); no studies have 

investigated the effects of sub-lethal insecticide exposure on adult butterflies. Our data 

also showed a high prevalence of two species that can be pests to alfalfa production, and 

further research should investigate if canola influences the abundance of these crop pests 

or whether alfalfa fields near canola production sites are more likely to have more 

caterpillar damage than areas without canola production..  

Agriculture management plans will also have to consider butterfly communities 

structure including migratory and non-migratory species. In general, butterflies make 

daily movements of between 200 and 600 m and non-migratory butterflies have dispersal 



83 

 

movements from 1 to 2.9 km (Scott 1975, Davis et al. 2007) generally making habitat or 

risk assessment easy because host plants and nectar resources need to be within this 

range. Migratory species, however, can move much further on a daily basis overwintering 

in southern regions and moving north during the spring and summer (Drake and 

Gatehouse 1995, Stefanescu et al. 2013) which is an important aspect when considering 

spread of plant pathogens that use pollinators as vectors (Real et al. 1992, Roy 1993, 

Shykoff and Bucheli 1995) and cross-pollination (Hayter and Cresswell 2006).  Floral 

and anther rusts affect mainly non-cultivated plants and affect reproductive success (Real 

et al. 1992, Shykoff and Bucheli 1995) and may be of concern to land managers. Cross-

pollination is mainly a concern for seed contamination by genetically modified organisms 

(GMOs); regulations are quickly changing around the world concerning GMO labeling 

and production (Anderson et al. 2001, Vigani and Olper 2015). Gene dispersal via cross-

pollination is strictly dependent upon pollen movement and migratory butterflies may 

contribute to long range movement of pollen.  

Our study shows that the early spring butterfly community in the South Central 

United States has four migratory butterfly species: the well-studied monarch butterfly 

(Danaus plexippus) (Urquhart and Urquhart 1978, Flockhart et al. 2013, McCoshum and 

Baum 2014) which feeds on non-crop plants and three species in the Vanessa genus: the 

painted-lady butterfly (Vanessa cardui); the red admiral (V. atalanta); and the American 

lady (V. virginiensis). Few studies have investigated the migration Vanessa species in 

North America  (Abbott 1951, Stefanescu 2001, Stefanescu et al. 2013), but it is clear 

that these species overlap with canola bloom, which may facilitate long-range cross-

pollination of canola. Further details on migrating butterflies will be important as 
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regulations of GMO’s change. Further research is also needed to elucidate: whether 

temperature and precipitation have effects on the community structure and how migratory 

species are affected by these variables; whether canola puts butterflies at risk of 

insecticide exposure; and how land cover affects long term annual populations and 

migrations.  

Canola production in the South Central United States will likely continue to 

increase due to biofuel and cooking oil demands (Raymer 2002). This early nectar 

resource may also be a valuable integration into crop rotation and land management 

policy to support pollinator communities. Our study shows percent of grass/ pasture area 

cover positively correlates with butterfly richness and that butterfly communities are 

similar in areas of canola production with and without pasture in the South Central 

United States, which suggests butterfly pollination services for canola should also be 

similar. Butterflies are generally not considered important pollinators (Cruden and 

Hermann-Parker 1979, Jennersten 1988, Hendrix 2000, Borges et al. 2003), but some 

species can increase seed set at or above the rate of small solitary bees in some settings 

(Sahli and Conner 2007). Populations fluctuated between years, and did not steadily 

increase or decrease from year to year in our study, so the short-term effects of canola on 

butterfly populations are not clear, but longer-term studies may clarify canola’s effects on 

the butterfly community.  
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Tables and Figures 

Table 1: Data for Shannon-Weiner diversity index (H’), butterfly richness and abundance 

for sites with and without pasture, and Sørensen's similarity (QS) comparing sites with 

and without pasture for each year. 

 

 

 

 

 

 

 

 

 

 

 

Measure 2011 2012 2013

H' 1.51 1.92 1.53

Richness 11 12 4

Abundance 114 256 17

H' 1.80 2.25 1.35

Richness 7 8 4

Abundance 84 733 63

Similarity QS 0.78 0.80 0.75

Pasture

No Pasture
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Table 2: Spearman’s rank order coefficients and p-values for land cover and butterfly 

richness and abundance and the average percent of each land cover across all sites. 

 

 

 

 

 

 

 

 

 

 

 

 

Butter flies

Non-nec tar  

produc ing

Grass/ 

pasture
Canola

Developed/ 

open space

Nectar  

produc ing
Fallow Forest Wet land

Richness rs -0.22 0.28 0.05 0.70 -0.09 -0.27 0.02 0.08

p-value 0.39 0.28 0.85 0.002* 0.72 0.30 0.95 0.77

Abundance rs -0.07 0.21 -0.21 -0.05 0.30 0.02 0.16 -0.28

p-value 0.78 0.41 0.41 0.85 0.25 0.94 0.53 0.28

Percent ± SE 62.66 ± 2.35 18.41 ± 2.08 9.83 ± 1.15 3.47 ± 0.21 3.34 ± 0.91 1.65 ± 0.61 0.56 ± 0.25 0.07 ± 0.03
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Figure 1: Layout of yellow sticky trap points in a single field. Five traps were placed 

parallel to the margin located 50 m into the agricultural field  (canola, wheat, or pasture). 

Traps were spaced along a 120m transect at 0 m, 20 m, 60 m, 100 m, and 120 m. Twelve 

additional traps points were equally spaced 40 m apart in a 3 x 4 grid within the field, 

located 60 m from the first five traps with the furthest traps placed 230 m into the 

agricultural field. 
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Figure 2: Yearly butterfly assemblages for all sites and the percent composition of each 

taxa. The “Other” category for each year includes the least abundant butterfly species.  
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Abstract 

Monarch butterflies (Danaus plexippus; Lepidoptera: Nymphalidae) have a 

multiple brood migration in the spring as they move between their overwintering grounds 

and summer breeding grounds. In Oklahoma, monarchs produce at least one generation in 

the spring, which develop and continue the northward migration, leaving Oklahoma 

without a breeding population during the hot summer months. Female monarchs leave the 

overwintering grounds prior to males, but it is not clear whether females re-colonize areas 

along the migration route prior to, or at the same time as males. Studies have documented 

similar male to female ratios at emergence, but have identified a male biased sex ratio in 

the field. Both males and females are susceptible to infections from the neo-gregarine 

parasite, Ophryocystis elektroscirrha (OE), which is an obligate spore-forming protist 

that reduces the flight abilities and life spans of infected individuals. We examine the 

number of male and female monarchs during the spring migration through Oklahoma and 

whether sex ratios or OE infection estimates vary with capture technique (active or 

passive). Our data suggest populations are male biased during the first week of spring 

migration in Oklahoma, but shift to female biased by the third week in both cool and 

warm springs. Therefore, males may leave southern areas prior to females or migrate 

longer distances per day. Active sampling (i.e., netting) did not lead to more males than 

females being caught compared to passive sampling (i.e., sticky traps). Significantly 

fewer OE carrying monarchs (with 2 or more spores) were captured via netting than by 
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sticky traps which may be caused by sticky trap glue affecting tape sampling 

effectiveness, but there was no difference in the number of heavily infected individuals 

(more than 100 spores). Therefore, data from netted monarchs may underestimate OE 

infection rates within populations.  

Introduction 

North America has three populations of monarch butterflies (Danaus plexippus; 

Lepidoptera: Nymphalidae): the western population overwinters in CA and breeds in the 

western US and Canada; the eastern population breeds east of the Rockies and 

overwinters in Mexico; and a year round breeding population occurs in southern Florida 

(Brower & Jeansonne, 2004). The eastern population is well known for its long distance 

migration from breeding grounds as far north as Canada to overwintering sites in the 

Transvolcanic Mountains in Mexico (Urquhart & Urquhart, 1976). Each year during the 

spring migration, the eastern monarch population arrives in Oklahoma, produces one to 

two generations, and continues moving north (Malcolm et al., 1987; Flockhart et al., 

2013). Re-colonization of eastern North America occurs via movement of successive 

broods, with multiple generations being produced between the overwintering grounds and 

the most northern summer breeding grounds (Malcolm et al., 1993, Wassenaar & Hobson 

1998, Flockhart et al., 2013). Monarchs migrate from the south into Oklahoma during the 

spring, produce a generation, and continue moving north, vacating the area during the 
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hotter summer months (Malcolm et al., 1987) when high temperatures (>29°C) increase 

larval mortality rates and delay larval development (Zalucki, 1982). 

All three North American populations of monarchs are infected with the 

protozoan parasite, Ophryocystis elektroscirrha (OE) (Leong et al., 1997), which is an 

obligate parasite of the monarch genus, Danaus (McLauphlin & Myers, 1970). OE 

negatively affects larval development and reduces adult longevity (deRoode et al., 2009) 

and flight ability (Bradley & Altizer, 2005). OE spores are spread by infected adult 

monarchs, which develop in the cells of the caterpillar until pupation when the parasites 

move to the hemolymph and hypoderm, before undergoing meiosis and forming spores 

on the exterior surface of the adult butterfly (McLaughlin & Myers, 1970). These 

external spores are transferred to eggs and host plants during oviposition, which are then 

ingested by larvae leading to infection (McLaughlin & Myers, 1970). Female monarchs 

are not as severely inhibited by similar OE loads as males (Altizer & Oberhauser, 1999) 

suggesting infected females can travel further than infected males during migration and 

dispersal, but females are more likely to possess heavier infections than males (de Roode 

et al., 2008).  Long distance migration of monarchs likely removes infected individuals 

from the population through migratory culling (Bartel et al., 2011), because infected 

individuals are less likely to survive long distance movements (Altizer et al., 2000). 

Therefore, the eastern North American monarch population has the lowest number of OE 

infected individuals for the year as it leaves the overwintering grounds and the proportion 
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of infected individuals in the population increases over the breeding season until fall 

migration (Bartel et al., 2011).  

Monarchs overwintering in CA and Mexico historically have a male biased sex 

ratio (Tuskes & Brower, 1978; Sakai, 1991; Frey & Leong, 1993, 1995; Nagano et al., 

1993), even though no sex bias has been found during development (Hilburn, 1989; Frey 

& Leong, 1995). Male bias has increased over the past thirty years in the overwintering 

sites in Mexico (Davis & Rendón-Salinas, 2010) and numerous studies have documented 

male biased sex ratios of captured wild adult monarchs (Hilburn, 1989; Frey & Leong, 

1993; Borland et al., 2004; Brindza et al., 2008; McCord & Davis, 2010). Knight et al. 

(1999) tested if male bias in studies was due to males being more readily observed in 

breeding areas because male monarchs will remain in an area, searching milkweed 

patches for mates, while females fly in more direct flight paths, entering and leaving 

areas with milkweed. However, data suggest both males and females have the same 

likelihood of being captured in breeding areas (Knight et al., 1999; Davis & Rendón-

Salinas, 2010), as well as at overwintering sites (Frey & Leong, 1993) so no solid 

evidence has been found to explain the male bias. No studies to date have evaluated if the 

active capture technique of netting, chasing and capturing butterflies with a hand-held 

butterfly net, biases results compared to passive capture techniques, such as sticky traps.  

Data may also be biased by monarch behavior which differs between the sexes. 

Although breeding can occur year round in the eastern population (Oberhauser, 1997), 
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oviposition occurs after monarchs leave Mexico until the fall migration generation 

emerges. Female monarchs  leave the overwintering grounds in Mexico and CA prior to 

males, sometimes even before mating, and migrate north (Van Hook, 1996). The eastern 

population of monarchs arrives in the Gulf Coast states of the USA where they begin 

laying eggs on Asclepias spp. (Van Hook, 1996). The monarchs encountered north of the 

Gulf Coast states in spring are thought to be the offspring of these re-migrants (monarchs 

which migrated south, overwintered in Mexico, then migrated north) from the 

overwintering population which reproduced in the southern US (Cockrell et al., 1993; 

Malcolm et al., 1993; Hobson et al., 1999). Previous studies suggest it is uncommon for 

re-migrants to travel further north than the Gulf Coast states (Fales, 1984; Brower, 1985).  

It is unknown whether the female offspring of re-migrants leave the southern USA first, 

as they do from the overwintering sites, or if both sexes migrate north at equal times and 

speeds. Based on the migration pattern from the overwintering grounds, we expect 

females will arrive prior to males or be more abundant than males in the initial spring re-

colonization of Oklahoma.  

Using monarchs collected in spring 2011-2013 with both active and passive 

capture techniques, we evaluated if sex ratios or OE infection rates varied over the course 

of spring migration and reproduction in Oklahoma. We also tested whether sex ratios or 

OE infection status differed with capture technique. 

Materials and methods 
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Monarchs were collected from April-June using two different methods in two 

different land use types. Sticky traps, a passive capture method, were used in agricultural 

fields with canola (Brassica napus), a high floral resource, wheat fields (Triticum spp.), 

and pasturelands. In separate pasturelands and open grasslands, we collected monarchs 

by actively searching areas with and without larval food resources (i.e., milkweed plants) 

using hand-held butterfly nets (netting). To understand re-colonization patterns, data from 

the first generation of each year were separated into one week intervals starting from the 

first week monarchs were observed with regularity. Due to OE infections differing by 

generation (i.e., infection increases over the breeding season), monarch generations were 

separated into generations with generation 1 representing the first 3 weeks of samples, 

and generation 2 the next 3 weeks. Generation times of approximately three weeks were 

used based on the mean adult lifespan of 22.5 days (Oberhauser, 1997). 

OE Sampling:  

Monarchs were sampled for OE spores using the tape count method (Altizer et al., 

2000). Transparent ScotchTM tape was pressed against the abdomen and placed on white 

index cards. Each tape count sample was inspected for OE spores using a dissecting 

microscope and ranked on a 0-5 infection scale with 0 = no spores, 1 = 1 spore, 2 = 2-20 

spores, 3 = 21-100 spores, 4 = 101-1000 spores, and 5 = 1001+ spores (Altizer et al., 

2000). Monarchs were classified as infected when more than 100 spores were found on 

the tape samples (rankings 4 and 5) and classified spore carrying (rankings 2-5) when 2 
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or more spores were found. We used this spore carrying classification because accuracy 

of separation between categories is reduced because of the loss of scales and spores 

incurred from the monarchs’ struggle against the glue on the sticky traps. Furthermore, 

glue from the traps was also present on the tape sample and monarchs on sticky traps 

could not always be sampled for OE on the ventral abdominal side (if that side was stuck 

to the sticky trap), so tape samples sometimes had to be taken from the dorsalsurface of 

the abdomen. Both categories of monarchs (actively and passively captured) were tested 

separately for differences between capture method and generation. 

Wing Wear: 

Wing wear scoring was used to estimate the age of the monarchs in the arriving 

generation of monarchs on a 5 interval scale (excellent condition, light damage, moderate 

damage, significant damage, and poor condition) (Oberhauser, 2003; McCord & Davis, 

2012) This information informs the interpretation of our results by approximating if 

arriving monarchs were recently emerged or potentially from the Mexico overwintering 

population. Monarchs from the sticky traps were classified as excellent condition, 

moderate damage, or poor condition, due to lower accuracy of separation between 

categories due to the damage and scale loss incurred from the monarchs’ struggle against 

the glue on the sticky traps. 

Passive Capture: 
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As part of a separate study on the movement of aphid predating insects, non-

scented, yellow sticky traps were placed in canola fields, winter wheat fields, and 

pasturelands in 8 sites each year throughout north-central Oklahoma in April and early 

May of 2011, 2012, and 2013. Canola blooms during the early spring and is utilized by 

monarchs as a floral resource (personal observation). Winter wheat does not produce 

nectar, but is an important agricultural commodity in Oklahoma with an average of 

approximately 2,270,000 hectares planted each year for the last ten years (USDA NASS, 

2003-2013). Each field had 17 sticky traps equally spaced in a 300 sq m area. Sticky traps 

were replaced 6 times on days 2, 4, 6, 8, and 12 after initial placement, and taken down 

on day 18.  Monarch butterflies were a by-catch of the original study. Tape count samples 

for OE were taken on the exposed side of the abdomen.  

Active Capture:  

In 2012 and 2013 adult monarchs were captured using hand-held butterfly nets in 

4 separate field settings, including roadsides, pasturelands, grasslands, and urban gardens. 

Most areas contained milkweed, and had varying degrees of floral resources. Each site 

also had vegetation which was generally less than 0.5m tall to enable pursuit of 

monarchs. Canola and wheat fields were not used because canola is too dense to run 

through and wheat fields have plowed soils which make running difficult and we did not 

want to damage the crops. Adult monarchs were actively pursued and captured mid-

flight, or while nectaring, resting or ovipositing on plants. Netting days were dependent 
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on weather, and varied from 1 h to 11 h with 1 to 4 people netting per day. Netting 

occurred 3-7 days per week between 0800 and 1900 hours Central Daylight Savings 

Time. 

Capture Bias Studies: 

To test for a bias in sampling methods, data from sticky traps and netted 

monarchs were compared. We defined bias as not obtaining similar representation in our 

samples for OE infection and for sex ratios. To control for the movement of monarchs 

through Oklahoma and overlapping generations, we compared monarchs that were 

captured within the same generation time to reduce the error that could arise from the OE 

infection rate differing between generations.  

Analyses: 

We examined how sex ratios of the arriving generation differed between weeks 

using R package lmer, (N=153). 2011 and 2012 had average temperature springs with 

monarchs arriving with regularity by April 5. In 2013, unseasonably low temperatures 

(April was 3.89°C cooler than the 30 year average) (Mesonet, 2013) kept monarchs south 

(Journey North, 2013), and although monarchs were sporadically encountered from April 

15 until May 22, low temperatures on May 22 reached 8.3°C, well below the minimum 

temperature monarch caterpillars can survive (11.5°C; Zalucki, 1982). Monarchs were 

not seen again until June 1, 2013. Three models were created to test if sex ratios were 

explained by arrival time (Bolker et al., 2009). Our models treated each week as a fixed 
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effect and treated the year and site of collection as random effects. We tested if sex was 

dependent on week or year or a combination of the two, or if the collection site could 

explain our observations using the following three models: 1) sex ~ week + (1 | Site), 2) 

sex ~ week + year (1| Site). 3) sex ~ (1| Site). Sex data were transformed into binomial 

data; weeks, site, and year were used as categorical data.  

Chi-square tests were used to evaluate whether infection rates of OE varied 

between generations, and whether capture technique biased results for sex ratios or OE 

infections. Differences of OE infections between years were not compared because 

infections are known to vary between years within populations (Bartel et al., 2011). We 

ran two separate Chi-square tests for OE; one comparing OE infected individuals (more 

than 100 spores), and a second test for spore carrying monarchs (more than 2 spores) to 

evaluate if OE infections significantly differed between generations. Wing wear for the 

first generation of monarchs was grouped into excellent condition, moderate damage, or 

poor condition for 2011 and 2012. Using a Chi-square test we evaluated if changes were 

observed in the percent of each population comprising each wing wear group. 

Results 

A significant trend was found between sex ratio and week in our linear mixed 

effects model (P < 0.05). In all 3 years a similar trend was observed with more males 

arriving in the first week (> 60%) than in subsequent weeks, with the lowest abundance 
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of males (< 50%) occurring in the third week. The average male to female ratio was 

67:33 the first week, 58:42 the second week, and 45:55 the third week (Figure 1). 

OE infection for the first and second 3-week periods (the two generations) did not 

exhibit a similar trend between years. In 2012 infection decreased between generation 1 

and generation 2 (χ2= 4.44, df= 1, P < 0.05) and in 2013 infection did differ significantly 

between generations (χ2= 1.18, df= 1, P > 0.05).  Heavy infection rates, individuals with a 

score of 4 or 5, in the first generation varied between years with a range from 3.4% to 

11.1% (Table 1).  

Wing wear results showed that more than 10% of the first-week monarchs 

arriving in Oklahoma in both 2011 and 2012 were in poor condition (e.g., old) and less 

than 20% were in excellent condition (i.e., young or newly emerged), with the majority of 

monarchs having moderate damage to their wings (Figure 2). No significant differences 

were found in the percent of samples in each category between years (χ2= 0.37, df=3, P > 

0.05). Data from 2013 were omitted from this analysis due to the nearly 2 month 

difference in arrival of monarchs compared to 2011 and 2012. 

Capture technique did not show a significant bias for sex (χ2= 0.06, df= 1, P > 

0.05). Netting, or active capture, collected significantly more non-spore carrying 

individuals (χ2= 3.84, df= 1, P < 0.05), with higher proportions of individuals captured 

passively on sticky traps being spore carrying (i.e., having more than 2 spores). Heavy 
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infections (more than 100 spores) did not significantly differ between trapping methods 

(χ2= 0.19, df= 1, P > 0.05). 

Discussion 

Initial re-colonization of Oklahoma during spring migration comprises a high 

male abundance which declines over the course of 3 weeks to a slightly female bias. Due 

to the lack of scent attractiveness of the sticky traps and lack of milkweed in the cropland 

areas where the sticky traps collected the majority of our first 3 weeks of data in 2011 

and 2012 we make the following assumptions: OE infected individuals are as equally 

likely to be captured on the sticky traps as non-infected individuals; both males and 

females utilize these areas (crop fields and pasturelands) equally and with similar levels 

of activity. Sticky traps are more likely to be encountered by more active individuals 

(Rhainds & Shipp, 2003) and males are known to be more active in areas with milkweed 

(Knight et al., 1999), so it is possible males are more likely to be captured than females. 

In our analysis we assume males and females, and OE-infected and uninfected 

individuals, will have the same activity in the agricultural areas with monocultures of B. 

napus (and an absence of milkweed) because floral resources are abundant. We also 

expect similar male and female activity levels in B. napus fields because males are only 

known to patrol areas with milkweed. If our assumptions are correct, these data should 

represent the sex ratios present during spring migration in Oklahoma through agricultural 

areas. It is possible a bias exists if males and females utilize areas without milkweed 
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differently during migration, or exhibit different activity levels, but additional research is 

necessary to evaluate these possibilities. 

We predicted females would arrive first in Oklahoma because females leave 

overwintering sites prior to males (Van Hook, 1996). Our data show that male monarchs 

arrive first in north-central Oklahoma, but the mechanism behind this sex ratio bias is not 

clear. Previous studies have shown a male bias in recent overwintering populations in 

Mexico (Davis & Rendón-Salinas, 2010) but do not fully explain the extent of the 

observed bias. Furthermore, this pattern occurs in all years, including 2013 when 

temperatures kept monarchs south until 1-June, at which time all re-colonizing monarchs 

likely represented the first spring generation (and not over-wintering individuals). Our 

data suggest monarchs arriving in Oklahoma during average temperature springs are 

comprised of monarchs both recently and not recently emerged, evidenced by minimal to 

extensive wing wear, respectively (Figure 2). Assuming the older individuals represent 

the overwintering population that reaches Oklahoma, this could explain some of the bias 

seen in average temperature years (i.e., the documented male bias in recent overwintering 

populations; Davis & Rendón-Salinas, 2010). If the sampled individuals represent 

subsequent generations (offspring of the overwintering population), then a sex ratio 

closer to 1:1 would be expected in all three weeks. We also would expect to see different 

patterns in years with colder spring temperatures that keep monarchs south for longer, 

since under these conditions re-colonizing monarchs in Oklahoma would likely have few, 



109 

 

to no overwintering monarchs represented and be primarily comprised of the first spring 

generation of the year. Our data show a male bias in the first week of arrival in both 

warm and cold springs, followed by a shift to female dominance by the third week, 

suggesting males move north faster than females.  

Female bias in the third week may be caused by females having longer residence 

times than males in areas along the spring migration route (Knight et al., 1999) which 

may lead to females not migrating as far per day as males. Monarchs mate year round, 

and mating in the spring could also explain the male bias observed in the individuals re-

colonizing Oklahoma and the transition to female bias in the population by the third 

week. Monarchs emerge at a 1:1 ratio (Urquhart, 1960; Frey & Leong, 1995), and as the 

overwintering monarchs die off the population should return to equal numbers of males 

and females. The time frame used to estimate the 1:1 male to female ratio reported by 

Urquhart (1960) and Frey & Leong (1995) is not clear so it is also possible that 

generations have biased sex ratios over short periods of time. Many insects exhibit 

protandry where males emerge more often than females in the first few days, followed by 

more females in subsequent days (Wiklund & Fagerström, 1977) which could explain our 

observations. However, additional research is needed to clarify sex ratios over different 

time periods and generations.  

Journey North reports first monarch sightings in Texas and other Gulf Coast states 

after March 15, 2011, and after March 10, 2012. These first sightings represent the first 



110 

 

observations of monarchs in the area, and occur when abundances are relatively low. Our 

data collection began on April 5, 2011, 21 days after the first 2011 sighting reports for the 

study area and April 6, 2012, 27 days after the first 2012 sightings. Considering monarch 

development from egg to adult takes a minimum of 23 days, it is plausible that it is more 

common than initially thought for monarchs to re-migrate further north than the Gulf 

Coast states.  Further research using cardeneloid and/or stable isotope analysis or tracking 

of marked individuals should be conducted to evaluate this possibility. 

Other factors may also contribute to the observed sex ratio bias. Male-male 

competition within areas with milkweed may lead to some males (those without 

territories) migrating further north than females each day until males encounter a 

milkweed patch not patrolled by other males. Males are known to have area-restricted 

search patterns when searching for mates, whereas females will move in and out of areas 

in a more linear fashion when searching for host plants to oviposit on (Knight et al., 

1999). Females also do not prefer milkweed areas when males are absent (Zalucki & 

Suzuki, 1986; Knight et al., 1999) which may contribute to males re-colonizing areas first 

and intercepting migrating females. Another possible contributing factor is the amount of 

time females spend ovipositing could reduce distance traveled by females per day 

compared to males once females reach areas suitable for oviposition. Oberhauser (1989) 

documented that mating multiple times leads to higher egg production, although mating 

too often can have negative consequences for females (e.g., ruptured bursa, increased 
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wing damage). Furthermore, Svärd and Wiklund (1988) showed that males will induce 

and hold females in copulation during the day with sperm transfer and copula termination 

occurring after dark. This time held in copulation would delay both males and females, 

but if males are more abundant than females then some males (those not involved in 

copulations) may be more likely to move further north. 

OE infected individuals were found in the first week of capture, but our data did 

not show a correlation between OE infection and time. 2013 had unseasonably low 

temperatures in spring, which kept monarchs south, as well as the lowest population 

numbers recorded prior to 2013 at overwintering sites in Mexico (Journey North 2013), 

both of which could possibly interfere with understanding correlations in years with 

warmer temperatures and higher populations. The proportion of monarchs infected with 

OE tends to increase over the course of the breeding season (Bartel et al., 2011) with non-

migratory generations having heavier infections than migratory generations (Altizer et al., 

2000) and populations with shorter migration distances (i.e., the population that 

overwinters in California) having heavier infections than those with longer migrations 

(Bartel et al., 2011). Non-migratory populations are also known to have higher OE 

infection levels, such as the Florida and Caribbean populations (Altizer & Oberhauser, 

2000). Migratory culling is suggested to occur during fall migration (Bradley & Altizer, 

2005), but it is not clear if spring migration also removes OE infected individuals.  
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Bartel et al. (2011) report data showing the eastern North American population 

that overwinters in Mexico has lower OE infection on the overwintering grounds 

compared to other times of the year, and their data also indicate a decrease of OE from 

the overwintering site to the early spring breeding grounds. Specifically, Bartel et al. 

(2011) report less than five percent of individuals on average in the early spring 

(monarchs collected between 15-April and 30-June 2007-2009) had a heavy-OE 

infection. Our data show heavy OE infection rates ranging from 3.9% to 18.5% between 

15-April and 30-June, 2011-2013 (Table 1). Oklahoma has two migratory generations in 

the spring: the first which moves into Oklahoma from the south, arriving as early as April 

5, and a second generation which develops in Oklahoma and migrates north (Malcolm et 

al., 1987). OE infection rates in Oklahoma and other states with similar migration 

patterns should be further studied to evaluate infection patterns and if migratory culling 

also occurs during the multigenerational northern migration. 

Overall flight ability of adult monarchs is negatively affected by heavy OE 

infection (Altizer & Oberhauser, 1999). To date, studies investigating monarch 

populations have used active pursuit of adult butterflies and found equal catchability 

between males and females (Knight et al., 1999), but studies have not compared capture 

techniques for biases. We predicted that OE infected individuals would be more likely to 

be netted, since heavily infected monarchs have reduced flight ability (Altizer & 
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Oberhauser, 1999); however we did not find a difference between netting and sticky trap 

data for OE infected and non-infected monarchs.  

Although our data suggest infected individuals are not captured significantly more 

by netting or sticky traps, sticky traps did capture significantly more spore carrying 

monarchs (more than 2 spores) than netting. Netted monarchs were either heavily 

infected (more than 100 spores) or not infected with very few spore carrying monarchs 

found in these samples. It is unclear why sticky traps would capture more monarchs with 

spores transferred horizontally (i.e., the presence of few spores may represent horizontal 

transfer between individuals and not an active infection) since few spores are not 

expected to affect activity levels of monarchs. It is likely that spore counts were diluted 

by the presence of glue from the sticky traps being incorporated into the tape count 

samples and our inability to sample the ventral side of the abdomen for most individuals, 

both factors which could reduce test accuracy. If dilution of spores occurred, then it is 

possible that netting surveys underestimate OE infection levels. However, if the glue 

from sticky traps did not reduce spore density then netting surveys should accurately 

depict OE infection rates. Additional research is needed to evaluate these possibilities. 

Conclusion:  

During the first week of spring migration into Oklahoma male monarchs were 

more abundant than females within the population, but female monarchs were more 

abundant than males by the third week of migration. This shift in sex ratios suggests 
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males may leave southern areas prior to females or migrate longer distances per day. We 

also documented older male and female monarchs migrating into Oklahoma, which 

combined with the timing of first sightings of monarchs in the Gulf Coast states suggests 

some of the initial re-colonizing monarchs are from the overwintering generation and not 

solely the first spring generation from the Gulf Coast states. Neither males nor females 

were more likely to be captured by active pursuit (netting) compared to passive capture 

(sticky traps), however sticky traps did capture significantly more OE carrying 

individuals, suggesting data from netted monarchs may underestimate OE infection rates 

within populations.  
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Tables and Figures 

  2011 2012 2013 

First generation 11.1% (n = 54) 3.4% (n = 88) 9.3% (n = 22) 

15-April - 30-June 18.5% (n = 27) 3.9% (n = 51) 12.5% (n = 32) 

Table 1: Percent of population infected with OE (greater than 100 spores; score of 4 or 5) 

each year. The first generation is defined as the first 3 weeks after regular monarch 

occurrence, which starts April 5, 2011 and April 6, 2012, and on June 1 for 2013. For 

comparison to data previously published by Bartel et al. (2011), we also report our data 

from April 15-June 30 (note: this time period overlaps with the first generation data 

reported in the first row). Using this longer time frame, OE infection estimates increase in 

all 3 years. 
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Figures and legends 

 

Figure 1: Average weekly male and female sex ratios from 2011-2013 of the re-

colonizing  

generation of monarch butterflies in Oklahoma separated by week.  
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Figure 2: Wing scores based on wing wear for the first 2 weeks of arriving monarchs in 

Oklahoma during April 2011 and 2012. More heavily damaged and duller wings (Poor) 

are considered  typical of older adults, whereas undamaged and vibrantly colored wings 

(Excellent) are considered typical of newly eclosed adults.  
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