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CHAPTER 1

INTRODUCTION

1.1 What is a Bose-Einstein condensate?

Atomic Bose-Einstein condensates (BECs) are gases which are so cold that all the

atoms collapse into the same quantum state, becoming essentially indistinguishable

from one another. In other words, all atoms in BECs have a single collective wave-

function for their spatial degrees of freedom. BEC research started from early 1920s.

In 1924, Bose sent Einstein a paper to show his idea on deriving the Plank distri-

bution law using the statistical mechanics of photons. Einstein soon realized the

importance of this work and extended Bose’s idea to the quantum theory of bosonic

particles. They predicted a new phase transition, Bose-Einstein condensation, which

should happen at an extremely low temperature.

The process of an atomic system undergoing a phase transition from a thermal

gas to a BEC can be simply described as follows: a) At high temperature, the system

can be understood in a particle picture characterized by the inter-particle distance

d or particle density; b) When the temperature of the system is lowered, d becomes

smaller and the system can be well characterized by individual matter wave packet

with deBroglie wavelength λdB; c) At the BEC transition temperature, d is compa-

rable to λdB and a large fraction of particles start to occupy in the same quantum

state. The macroscopic occupation in the lowest energy state is called a Bose-Einstein

condensation. At zero-temperature, a pure condensate with all particles being in the

ground state can be realized.

1



1.1.1 Experimental realization of Bose-Einstein condensates

Scientists underwent a long road to experimentally achieve a temperature as low as

possible in the last century, and each advance towards the absolute zero temperature

led to newer and richer physics. In July 1908, the Netherland physicist Heike Kamer-

lingh Onnes was the first to successfully liquefy helium and achieved a temperature

of ∼1.5 K, which was the coldest temperature on earth at that time. Three years

later, with the temperature in Kelvin regime, Onnes discovered the superconductiv-

ity in Mercury samples. Onnes was awarded a Nobel prize in physics in 1913 for his

investigations on the properties of matter at low temperatures. In 1938, superfluid-

ity in helium-4 was reported by Kapitsa, Allen, and Misener at the temperature of

2.2 K [1, 2]. In the same year, Fritz London and Laszlo Tisza provided an expla-

nation for superfluid helium by using the ideas of Bose-Einstein condensation [3, 4],

which indicated the macroscopic quantum behavior of a BEC. In 1972, superfluidity

in helium-3 was revealed by Lee, Richardson, and Osheroff at the temperature of

2 mK [5, 6].

In 1975, the idea of laser cooling technique was first proposed by Wineland and

Dehmelt [7], and Hänsh and Schawlow [8], which showed that laser light could be

used to cool atoms and ions. Three years later, this idea was first demonstrated by

Wineland, Drullinger, and Walls [9]. In 1980s, laser cooling and trapping techniques

experienced a rapid development and many well-known innovations were invented to

further cool down the atoms. In 1982, W. D. Phillips and his colleagues at NIST

developed a Zeeman slower to effectively slow down the sodium atoms [10]. In 1985,

optical molasses was realized at Bell Labs by Steven Chu and his co-workers to further

low down the temperature of sodium atoms to ∼240 μK [11], which approached the

Doppler cooling limit. In 1987, a Magneto-optical trap was first demonstrated by

Rabb and co-workers [12]. A year later, Cohen-Tannoudji [13] and Steven Chu [14]

revealed the first sub-Doppler cooling. Laser cooling was awarded a Nobel prize in

2



physics in 1997.

It took scientists almost 70 years to experimentally realize BECs after Bose and

Einstein made the prediction. The first BEC of rubidium atoms was achieved by

Eric Cornell and Carl Wieman in 1995, while the first sodium BEC was created by

Wolfgang Ketterle in the same year [15, 16, 17]. They shared the Nobel prize in

Physics in 2001. The realization of BECs is an important breakthrough in physics,

not only because a BEC represents a new form of matter, but also because it makes

the observation of microscopic quantum effects on a macroscopic scale possible. Up to

now, BECs have been successfully realized in Rubidum [15], Sodium [16], Lithium [17],

Potassium [18], Cesium [19], Ytterbium [20], Calcium [21], Strontium [22, 23]. The

first degenerate Fermi gases was achieved in JILA in 1999 [24] and molecular BECs

were demonstrated four years later in 2003 [25, 26, 27].

1.1.2 A brief review of experiments with ultracold atoms

Ultracold quantum gases have led to a revolutionary change to AMO (atomic, molecu-

lar, and optical) physics community. And BECs have been applied to a lot of research

areas, such as many-body physics, precision measurements, quantum information sci-

ence, and quantum optics. The research of ultracold atoms underwent a fast growth

since its first experimental realization. Here some representative experiments are

listed. The beauty of a BEC is that it provides scientists a highly controllable ex-

perimental system that can be applied to investigate interactions among atoms and

reveal quantum behaviors in a macroscopic scale. Weak atomic interactions are re-

sponsible for non-linear phenomena such as the pioneering BEC vortices experiments,

which indicate a signature of the superfluidity of BECs [28, 29, 30]. After the first

observation of Feshbach resonances that can tune the interaction between atoms [31],

Feshbach resonances have been extended to form various molecular BECs from paired

fermions and enriched the study of BEC-BCS crossover region [32]. In addition, the
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matter-wave nature of a BEC makes it possible to produce a coherent beam of Bose-

condensed atoms instead of photons, which is known as the atom laser. The first

atom laser was developed by Ketterle’s group in MIT [33] and the pursuit of a truly

continuous wave (CW) atom laser never stops [34, 35, 36]. Besides this, since BECs

are highly controllable on the phase and amplitude of matter waves, they have been

applied to generate new atom interferometry for high precision measurements, for

example, measuring the Newtonian gravitational constant [37]. The Cold Atom Lab-

oratory of NASA will even be launched into the International Space Station to study

ultracold quantum gases in the microgravity environment in 2016.

Another active field in the BEC research is to investigate ultracold quantum gases

in optical lattices. An optical lattice is a standing wave formed by the interference

of a pair of laser beams. If multiple pairs of laser beams are applied in an exper-

imental system, it is possible to mimic different crystal structure of a material by

simply changing the geometric parameters of the lattice laser beams. Up to now,

many different types of optical lattices have been achieved, such as a cubic optical

lattice [38], a triangular optical lattice [39], a honeycomb optical lattice [40], and a

Kagome optical lattice [41]. One of the most famous experiments performed with a

BEC in optical lattices was the demonstration of a superfluid (SF) to Mott-insulator

(MI) phase transition [42]. The phase transition was realized by changing the lattice

laser beam intensity, which tuned the tunneling rate and the on-site interactions. SF-

MI quantum phase transitions were also demonstrated in one-dimensional (1D) and

two-dimensional (2D) systems [43, 44]. Furthermore, the detection of SF-MI phase

transitions was improved to single-atom level in 2010 [45]. Studying quantum compu-

tation with neutral atoms trapped in optical lattices being qubits has also attracted

a lot of interest. The single-site addressability in optical lattices has been carried

out and plays an important role in realizing a quantum computer [46, 47, 48]. More-

over, an optical lattice clock has been experimentally achieved and its measurement
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is based on the frequency of an optical transition within atoms trapped in optical

lattices [49]. An world record optical lattice clock with accuracy and stability at the

10−18-s level was achieved in JILA one year ago [50].

There are many BEC research groups worldwide. It is expected that a lot of

exciting applications with BECs will be realized in the near future, such as atom

lasers, high precision magnetometers, and quantum computers.

1.2 Spinor condensates

A spinor condensate is a BEC with multiple spin components among which coherent

interconversions must exist. In early BEC experiments, magnetic traps were used

to confine atoms in one Zeeman sub-level, which froze the spin degree of freedom of

atoms. By using an optical trap to release the spin degree of freedom, the first spinor

condensate was experimentally demonstrated by Stamper-Kurn with F=1 sodium

atoms in 1998 [51]. Three years later, the first rubidium spinor condensate was

realized in Georgia Tech by using an all-optical BEC production method [52].

For F=1 spinor condensates, such as those realized in our experimental system,

their wavefunctions have a vector order parameter and their Hamiltonian in an ex-

ternal field may be expressed as

H =
N∑
i=1

[
p2i
2m

+ Vext(	ri) + EZ

]
+

1

2

N∑
i=1

Uint. (1.1)

Here Vext, EZ , and Uint represent external trapping potential such as an optical dipole

trap, Zeeman energy shift due to an external field, and the interaction between two

atoms during collisions, respectively. N is the number of atoms in the condensate

and m is the mass of the atoms.

A F=1 spinor condensate consists of three spin components, mF = −1, 0,+1

states, reflecting its three magnetic Zeeman sublevels. The atomic interactions are

dominated by two-body s-wave collisions in a spinor condensate. According to Ref. [53,
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54], the general form of the contact interaction between two identical bosons due to

s-wave collisions may be expressed as

Uint(	r1 − 	r2) = δ(	r1 − 	r2)

2F∑
f=0

(gfPf). (1.2)

The strength of the interaction is

gf =
4π�2af

m
, (1.3)

where af is the s-wave scattering length in the total spin f channel and 	f = 	F1 + 	F2,

Pf is the projection operator which projects a pair of atoms into a total hyperfine spin

f state and
∑2F

f=0Pf = 1 for identical bosons. Because of the symmetry requirements

for identical Bosons, only f = 0 or 2 channels are allowed for a F=1 spinor condensate.

From the composition law of spin operators, we can obtain [55, 56]

	F1 · 	F2 =
	f 2 − 	F1

2 − 	F2

2

2
=

f(f + 1)− 2F (F + 1)

2
, (1.4)

where 	Fi is the spin operator for atom i. Thus we can have the relation 	F1 · 	F2 =∑2F
f=0 λfPf , where λf = 1

2
[f(f + 1)− 2F (F + 1)]. For F=1 atoms,

	F1 · 	F2 =

2F∑
f=0

λfPf = P2 − 2P0, (1.5)

and
2F∑
f=0

Pf = 1 = P2 +P0. (1.6)

Together with Eq. (1.5) and Eq. (1.6), it is possible to rewrite Eq. (1.2) as [53, 54],

Uint = δ(	r1 − 	r2)

2F∑
f=0

(gfPf)

= δ(	r1 − 	r2)(g0P0 + g2P2)

= δ(	r1 − 	r2)(c0 + c2 	F1 · 	F2).

(1.7)

The contribution to the Hamiltonian of a spinor condensate due to contact interac-

tions can thus be illustrated by two terms: the spin-independent term c0 and the
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spin-dependent term characterized by c2. c0 and c2 are given by

c0 =
2g2 + g0

3
=

4π�2

m

2af=2 + af=0

3
, (1.8)

and

c2 =
g2 − g0

3
=

4π�2

m

af=2 − af=0

3
. (1.9)

The spin-dependent interaction c2 couples different Zeeman states, which leads to in-

teresting spinor dynamics. The ground state features of the atoms are also dependent

of the sign of c2. Traditionally, F=1 spinor condensates are divided into two different

categories based on the sign of c2: a ferromagnetic spinor BEC with c2 < 0 (i.e.,

af=2 < af=0), for example, a rubidium system; and an antiferromagnetic spinor BEC

with c2 > 0 (i.e., af=2 > af=0), for example, a sodium spinor condensate.

The Zeeman energy term also plays an important role in the spin-mixing dynamics.

During the coherent interconversions, the linear Zeeman shift remains the same while

the quadratic Zeeman energy is different. The net quadratic Zeeman energy qnet is

resulted from external magnetic fields (qB) and/or microwave dressing fields (qM )

experimentally [57, 58].

A spinor BEC has provided exciting opportunities to study quantum magnetism,

superfluidity, strong correlations, spin-squeezing, and massive entanglement [55, 56,

59, 60, 61]. One of the known results in spinor BECs is the spin-mixing dynamics,

which means that different spin components can exchange population coherently. For

instance, two |F = 1, mF = 0〉 atoms can collide into one |F = 1, mF = −1〉 atom and

one |F = 1, mF = +1〉 atom. Spin-mixing dynamics and phase diagrams of spinor

BECs in free space, due to the interplay of the spin-dependent interaction and qnet,

have been well studied using sodium [58, 62, 63, 64, 65, 66, 67] and rubidium atoms [68,

69, 70, 71, 72]. In these experiments, the relationship between the spin oscillation

period and qnet was investigated, a transition from a running phase to an oscillating

phase was observed, and the equilibrium states of spinor BECs were studied. In
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this thesis, our efforts are focused on the study of spin-mixing dynamics and the

phase diagram of antiferromagnetic sodium spinor condensates in free space. We

have developed a novel method, and demonstrated that many previously unexplored

regions in the phase diagram of F=1 spinor BECs can be investigated by this new

method.

1.3 Atomic properties of sodium atoms

Alkali metal and alkali earth atoms are popular choices in BEC experiments due to

their well studied spectra and a relatively strong magnetic moment. In our exper-

imental system, we choose sodium atoms as the atomic source. Since the required

cooling and trapping beams for sodium atoms are visible (yellow), optical alignments

and optimizations in a sodium system may be much easier than those using invisible

laser beams (e.g., a rubidium system). Unlike the rubidium systems, sodium spinor

BECs are antiferromagnetic spinor BECs which have some unique advantages [55].

Here some basic atomic properties of sodium atoms used in our experiments and this

thesis are listed. Most of them are derived from Ref. [73].

Atomic Number Z 11

Total Nucleons Z +N 23

Atomic Mass M 22.989 769 280 7(28) amu

Density at 25 ◦C ρ 0.97 g/cm3

Melting Point TM 97.8 ◦C

Boiling Point TB 883 ◦C

Nuclear Spin I 3/2

Table 1.1: Some physical properties of sodium atoms.
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Transition 32S1/2 → 32P3/2

Frequency ωa 2π × 508.8487162(13) THz

Transition Energy �ωa 2.104 429 011(51) eV

Wavelength (Vacuum) λ 589.158 326 4(15) nm

Wavelength (Air) λair 589.000 226(18) nm

Lifetime τ 16.2492(77) ns

Natural Linewidth Γ 2π × 9.7946(46) MHz

Recoil Velocity vr 2.9461 cm/s

Recoil Energy ωr 2π × 25.002 kHz

Recoil Temperature Tr 2.3998 μK

Doppler Temperature TD 235.03 μK

Saturation Intensity Isat 6.2600(21) mW/cm2

Resonant Cross Section (σ± light) σ0 1.6573163925(60)× 10−9 cm2

Table 1.2: Some properties of the sodium D2 line transitions.
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1.4 Thesis outline

In this thesis, I report the first production of a sodium spinor BEC in Oklahoma.

The spin-mixing dynamics and the phase diagram of F=1 antiferromagnetic spinor

BECs are also studied.

The first chapter introduces some basic definitions and knowledge of a BEC and a

spinor BEC as well as a short review of experiments using ultracold atoms. Chapter

2 reviews the underlying physics involved in laser cooling and trapping techniques,

which are applied in our daily experiment.

Chapter 3 to Chapter 5 describe one of the major achievements of my PhD study:

the production of the first sodium spinor condensates in Oklahoma. Since I spent

almost 2/3 of my PhD career on building this magic machine from every small pieces,

detailed designs, setups, and alignment procedures for various apparatuses are de-

scribed. Chapter 3 illustrates our ultra-high vacuum system with a pressure in the

10−12 Torr range. Chapter 4 elaborates our novel BEC apparatus and designs, which

include the optical setup, a Zeeman slower, a magneto-optical trap, imaging systems,

and a crossed optical dipole trap. Chapter 5 presents our optimum ODT loading

scheme, which demonstrates that the number of atoms in a pure BEC can be greatly

boosted by a factor of 5 over some widely used schemes. Our model for evaporative

cooling is also shown in this chapter. With our optimum scheme, a pure F=1 BEC of

1.2× 105 sodium atoms at the temperature of 50 nK is achieved. In addition, Chap-

ter 5 describes our experimental results on the spin-mixing dynamics of F=1 spinor

condensates due to the interplay of spin-dependent interactions and the quadratic

Zeeman energy.

Chapter 6 studies the equilibrium states of F=1 spinor condensates with the phase

diagram of sodium spinor condensates being mapped. Two types of quantum phase

transitions in a sodium spinor condensate immersed in a microwave dressing field

are observed. In addition, we demonstrate that many previously unexplored regions
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in the phase diagram can be investigated by a novel method, i.e., by adiabatically

tuning the microwave field across one of the observed quantum phase transitions. This

method overcomes two major experimental challenges associated with some widely

used methods, and is applicable to other atomic species. Agreements between our

data and the mean-field theory for spinor Bose gases are also discussed.

In the end, Chapter 7 summarizes the work accomplished in this thesis, and pro-

poses to study the first-order SF-MI phase transitions in spinor condensates confined

by optical lattices.
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CHAPTER 2

Laser cooling and trapping

Laser cooling and trapping techniques play important roles in realizing BECs. In this

chapter, I review some widely used laser cooling and trapping techniques (such as

Doppler cooling, magneto-optical trap (MOT), optical dipole trap (ODT), evapora-

tive cooling) and discuss their applications in our system.

2.1 Doppler cooling

For a two level atomic system, if a laser frequency is close to the atomic resonance,

the absorption of a photon leads the atom to its excited state and results in a corre-

sponding momentum kick between them. An atom at its excited state cannot further

absorb light and has to return to the ground state by a spontaneous emission. The

resulting fluorescence also has a momentum kick, but in a random direction, which

leads to an average zero total momentum transfer during the spontaneous emission.

The force in this momentum transfer process can be described as [74]

	F = d	p/dt = �	kγa, (2.1)

where �k is a momentum kick for one photon. The absorption rate is

γa =
s0Γ/2

1 + s0 + ( δ+ωD

Γ/2
)2
. (2.2)

Here Γ is the natural linewidth of the atomic transition, ωD = −	k · 	v is the Doppler

shift, δ is the detuning of the laser light from the atomic resonance, s0 = I/Isat is the

laser intensity saturation parameter, and Isat = 6.26 mW/cm2 for sodium atoms.
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In order to cool down the atoms, we need the force exerted on the atoms always

to be opposed to their moving direction and act as a friction force. We now consider

atoms traveling in a pair of identical laser beams in opposite directions with their

frequencies detuned below the atomic resonance (which is called “red-detuned”). Be-

cause of the Doppler effect, atoms traveling towards the laser beam will see it shifted

upward and thus are closer to the atomic resonance. On the other hand, atoms mov-

ing away from the other beam will see it shifted downward and therefore are out of

resonance. As a result, atoms absorb more photons from the laser beam opposite to

their traveling direction, and experience a viscous force to slow down their velocity.

The force resulted from two counter-propagating laser beams can be described as:

	Ftotal = 	F+ + 	F− =
�	kΓ

2

s0

1 + s0 + ( δ−kv
Γ/2

)2
− �	kΓ

2

s0

1 + s0 + ( δ+kv
Γ/2

)2

=
�	kΓ

2

s0 · 16δkv
Γ2

(1 + s0)2 + (1 + s0)
8(δ2+k2v2)

Γ2 + 16(δ2−k2v2)
Γ4

(2.3)

By neglecting the high order terms, Eq. (2.3) can be simplified as:

	Ftotal
∼= 8�k2δs0/Γ

(1 + s0 + (2δ/Γ)2)2
	v = −α	v (2.4)

This optical force is proportional to the atoms’ velocity and behaves like a friction

force. Noting that, we have to use red-detuned laser beams to decrease the velocity

of the atoms. With three pairs of intersecting, orthogonal, and counter-propagating

laser beams, atoms moving in different directions can be confined and cooled in a

small region, which is well known as the optical molasses [11].

2.2 Doppler and sub-Doppler cooling limit

In the Doppler cooling process, atoms continuously absorb and scatter photons so

that cooling and heating both occur in the system. The heating due to spontaneous

emissions leads to a lowest temperature that can be achieved with Doppler cooling.

The system reaches equilibrium when cooling and heating equal to each other. The
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Doppler cooling limit is thus reached, and can be described as [74]

TD =
�Γ

2kB
. (2.5)

For 23Na atoms, the Doppler cooling limit is 235 μK.

Right after the optical molasses was introduced, scientists in NIST found a sur-

prising result that the temperature of a gas of sodium atoms released from optical

molasses was much lower than the Doppler limit [75]. A new theory, known as the

polarization gradient cooling, was proposed by Claude Cohen-Tannoudji [13] and

Steven Chu [14] in 1989. This theory includes laser polarization gradients due to the

interference and different ground-state sublevels of the alkali atoms, which mainly

contains two models. The first uses a pair of orthogonal linearly-polarized beams,

which is called Linear ⊥ Linear configuration. While the second is described by two

orthogonal circularly-polarized beams and is known as σ+ − σ− configuration. De-

tailed and well explained cooling mechanisms are given by Ref. [13, 14, 74]. Although

the viscous damping in sub-Doppler cooling is much larger than that of the Doppler

cooling, there is still a limitation due to spontaneous emissions. The sub-Doppler

cooling limit is determined by the recoil energy of a photon and can be expressed

by [74]

Tr =
�
2k2

kBM
. (2.6)

For 23Na atoms, the recoil limit is 2.4 μK.

2.3 Magneto-optical trap (MOT)

Laser is a powerful tool to cool the atoms, however, it is not sufficient to trap the atoms

only by using laser light alone. Because the scattering force is heavily dependent

on the velocity of the atoms, atoms may inevitably diffuse out of the system. To

confine the atoms, a magnetic quadrupole field is applied to the optical molasses to

provide an additional position dependent force. Such a trap is well known as the
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magneto-optical trap (MOT). MOT was first invented in 1987 [12] and various types

of MOTs have been introduced such as a pyramidal MOT [76, 77], a 2-dimensional

(2D) MOT [78, 79, 80], and a surface MOT [81, 82]. Here we mainly focus on the

widely used 3-dimensional (3D) MOT, which is also an essential part of our BEC

system.

σ+
 beam σ-

 beam
ωLaser

δ

δ+

δ-

| 1, -1 >

| 1, 0 >

| 1, +1>

| 0, 0 >

Energy

z (position)
z’

B magnetic field gradient

0

F’=1 excited

state

F=0 ground

state
B = 0 ∆

Figure 2.1: Illustration of a MOT along one dimension. Because of the Zeeman effect

and σ+ to σ− laser polarization configuration, atoms are driven to the center of the

trap.

Figure 2.1 shows the basic principle of a MOT in one dimension (1D). For sim-

plicity, we consider an atomic transition from F = 0 → F ′ = 1 in the presence of

a magnetic quadrupole field where B = B(z) = Az. Here A is the magnetic field

gradient. The excited state would split into three sub-levels due to the Zeeman effect,

which are Me = −1 (|1,−1〉), Me = 0 (|1, 0〉), and Me = +1 (|1,+1〉) states. Two

red-detuned (δ < 0) laser beams with opposite circular polarizations (σ+ and σ−)
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counter propagate to each other. For example, when an atom is at position z = z
′

in Fig. 2.1, its Me = −1 state is closer to the resonance with the σ− laser beam

traveling from right to left, which means that more photons are absorbed from this

beam. As a result, atoms are driven toward the center of the trap. On the other side,

since Me = +1 state is closer to the resonance with the σ+ beam, similarly, atoms

are again pushed to the center of the trap. With three pairs of lase beams counter

propagating in three orthogonal directions, a 3D MOT can be achieved.

After taking the magnetic field effect into account, we can express the total force

acting on an atom in a MOT as follows,

	FMOT = 	F+ + 	F− =
�	kΓ

2

s0

1 + s0 + ( δ−kv+μ′B/�
Γ/2

)2
− �	kΓ

2

s0

1 + s0 + ( δ+kv−μ′B/�
Γ/2

)2
. (2.7)

Here μ
′

= (geMe − ggMg)μB is the effective magnetic moment, g is the Landé g-

factor, and μB is the Bohr magneton. After expanding Eq. (2.7) and solving for small

Doppler and Zeeman shifts, we can obtain a both velocity and position dependent

force similar to a damped harmonic oscillator

	FMOT (v, z) = −α	v − β	z, (2.8)

where α and β are two damping coefficients.

2.4 Optical dipole trap (ODT)

An Optical dipole trap (ODT) is a powerful tool to realize BECs. Compared to

magnetic traps in which only atoms at weak-field-seeking states can be confined, an

ODT can simultaneously trap all spin components, and thus can be applied to a wider

range of atomic species. The potential of an ODT is caused by AC Stark shift and

can be expressed by [83]

U(r) = −3πc2

2ω3
a

(
Γ

ωa − ωL
+

Γ

ωa + ωL

)
I(r), (2.9)
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and the scattering rate that induces heating can be described as

Γsc(r) =
3πc2

2�ω3
a

(
ωL

ωa

)3(
Γ

ωa − ωL
+

Γ

ωa + ωL

)2

I(r). (2.10)

Here ωa is the atomic resonance, ωL is the frequency of the laser beam, Γ is the natural

linewidth (2π× 9.8 MHz for sodium atoms), and I(r) is the laser beam intensity. We

define Δ = ωL − ωa as the laser frequency detuning, and assume |Δ| 	 ωa if ωL is

tuned close to the resonance ωa. By applying the rotating-wave approximation [84]

and assuming ωL/ωa ≈ 1, Eq. (2.9) and Eq. (2.10) can be further simplified as [83]

U(r) =
3πc2

2ω3
a

Γ

Δ
I(r), (2.11)

Γsc(r) =
3πc2

2�ω3
a

(
Γ

Δ

)2

I(r). (2.12)

These two expressions clearly show two important points for optical dipole traps.

First, the sign of the detuning determines the interaction induced by the trap. For

a red-detuned (Δ < 0) trap, the trap potential is negative so that atoms will be

attracted into the trap’s potential minimum. On the other hand, a blue-detuned

(Δ < 0) trap generates a positive energy shift, therefore atoms will be repelled from

the trap. The second point is that the potential depth scales as I/Δ while the

scattering rate scales with I/Δ2. A higher laser beam intensity or a smaller detuning

can provide a tighter confinement for atoms according to Eq. (2.11). However, since

the scattering rate Γsc would increase faster if we decrease Δ than increasing the

intensity I. As a result, in order to reduce the scattering rate to minimize the heating,

it is useful to apply a laser beam with a large detuning combined with a high intensity

for an ODT.

A red-detuned and tightly-focused Gaussian laser beam can generate a simple

ODT. The radial direction of the beam offers the tight confinement while its axial

direction has the weaker confinement. The intensity profile of a focused Gaussian
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beam with a total power P can be expressed by

I(r, z) =
2P

πw2(z)
exp

(−2r2

w2(z)

)
, (2.13)

where r represents the radial coordinate. w(z) is the 1/e2 beam radius along the axial

direction (z axis), which is given by

w(z) = w(0)

√
1 +

(
z

zR

)2

. (2.14)

Here w0 is known as the beam waist and zR = πw2
0/λ is the Rayleigh length where

the beam radius increases to
√
2w0.

The trap depth is defined as the U = |U(r = z = 0)|. If U is much larger than the

thermal energy of the atomic cloud, the optical dipole potential can be approximated

with a cylindrical harmonic oscillator by expanding the intensity profile to the first

order, which is expressed by

U(r) ≈ −U

[
1− 2

(
r

w0

)2

−
(

z

zR

)2
]
, (2.15)

where the corresponding trap depth U is

U =
3πc2

2ω3
a

(
Γ

ωa − ωL

+
Γ

ωa + ωL

)
I0 > 0. (2.16)

I0 is the peak intensity at the center of the trap, which is given by I0 = 2P/(πw2
0).

Then both the radial and axial trap frequencies can be derived as

ωr =

√
4U

mw2
0

, (2.17)

ωz =

√
2U

mz2R
, (2.18)

where m is the mass of the atom.

By using two orthogonally crossed laser beams, we can create an ODT with tight

confinements in all dimensions. The resultant potential can be obtained by summing

two individual trap potential given by Eq. (2.9) together, which is UCB(r) = U1(r) +
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U2(r). Note that we ignore the effect such as the influence of the gravity here. In our

case, our first ODT beam (input beam) is along the x axis while the second beam

(return beam) travels along the y axis. Thus we can express the trap frequencies in

all three directions as follows

ωx =

√
4U2

mw2
2

, (2.19)

ωy =

√
4U1

mw2
1

, (2.20)

ωz =

√
4U2

mw2
2

+
4U1

mw2
1

. (2.21)

The depth of the crossed ODTs can also be described by UCB = U1 + U2, where U1

and U2 are individual trap depths derived from Eq. (2.16). If two laser beams have

the same geometrical parameters and are set at the same power, one can find that

UCB = 2U (twice of the single beam) and the aspect ratio ωz/ωx,y would be
√
2.

2.5 Evaporative cooling

Evaporative cooling is the last step for achieving the quantum degeneracy in most

BEC experiments. Similar to cooling a cup of coffee in our daily life, evaporation

allows atoms with the highest energy to leave the trap. Because of the Maxwell-

Boltzmann distribution, atoms at the tail of the thermal distribution will have energy

much higher than their average energy. With those atoms removed from the trap, the

energy of the atomic cloud is thus reduced. The temperature of the atomic system is

also decreased after the rethermalization of the remaining atoms via elastic collisions.

One primary requirement for the evaporative cooling is that the thermalization time

should be short enough compared to the lifetime of the system. Because the lifetime is

limited by inelastic collisions while the thermalization time relies on elastic collisions,

the ratio between these two plays an important role in the evaporative cooling. I will

explain this in details in Chapter 5.
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Harald Hess originally proposed the idea of the evaporative cooling and used it

to capture the hydrogen atoms in magnetic traps [85, 86, 87]. Evaporative cooling

in an ODT was first achieved in 1998 [88]. The main idea for evaporation in an

ODT is that the trap depth is lowered, which is simply done by lowering down the

power of the ODT laser beams [88]. Therefore, atoms with high energy cannot stay in

the trap and should be evaporated. After one continuously decreases the laser beam

power, the atomic density increases, the temperature of the system is reduced, and

thus the phase space density is greatly increased, which finally leads to the quantum

degeneracy.

In the evaporative cooling process, the total number of atoms, the collision rates,

and the phase space density are important parameters to characterize the cooling

efficiency. A simple model based on scaling laws is widely used to describe the relation

between the optical trap depth U and these parameters [89, 90]. Based on this model,

a detailed explanation of our evaporative cooling process is illustrated in Chapter 5.

20



CHAPTER 3

The vacuum system

A good vacuum system plays a crucial role in generating BECs. Since the back-

ground gas pressure can affect the lifetime of trapped atoms, we need to minimize

collisions between background gas atoms and trapped atoms by keeping the pressure

of the vacuum system as low as possible. Thus an ultra-high vacuum (UHV) sys-

tem is necessary for preventing large atom number loss and prolonging the lifetime

of trapped atoms to a few seconds. In this chapter, I first elaborate the layout of

our UHV vacuum system with a pressure in the 10−12 Torr range, its designs, and

useful installation procedures including a procedure for baking the system. Then, our

standard sodium metal change procedure as well as the procedure for maintaining a

good vacuum system are described.

3.1 Overview of our vacuum system

Our novel vacuum system are designed to satisfy the following two important require-

ments. First, the atomic flux arriving at the main chamber must be large enough and

the atom loading rate must be sufficiently quick. So the total length of the system

cannot be too long. Second, the pressure inside the main chamber must be low enough

to create a BEC, which indicates the main chamber should be separated from other

high vacuum pressure areas of the apparatus.

Our final vacuum system design is divided into three major sections, which are

the sodium oven chamber, the intermediate chamber, and the main chamber, as

shown in Fig. 3.1. The sodium oven chamber is where the atomic source locates,
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and is heated up to a high temperature to provide continuous and stable atomic flux.

The intermediate chamber is separated from other chambers by two differential pump

tubes, which enable us to pump down the pressure by almost two orders of magnitude.

The main chamber, where BECs are created and new physics starts, sits at the end

of the Zeeman slower tubing. The final vacuum pressure inside our main chamber is

∼ 5 × 10−12 Torr. In order to keep the pressure low in our vacuum system, we use

three ion pumps to daily pump the system. Two gate valves are installed before and

after the intermediate chamber and always leave at the closed position when we are

not running the experiment.

(a)

  Zeeman Slower

  Ion

Pump

   Main

Chamber

 Gate

Valve

  Ion

Pump
 Gate

Valve

  Ion

Pump

Turbo

Pump

Sodium

  Oven

(b)

Cold atoms

Figure 3.1: (a) Schematic of our experimental setup. (b) Actual apparatus in our

lab.
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3.2 The sodium oven chamber

The first part of our vacuum system is the sodium oven chamber, which contains the

sodium oven, a 6-way cross attached with a 75 liter/second ion pump, and a 4.5”

4-way cross with a turbo pump, as shown in Fig. 3.2. The sodium oven is made by

a half nipple and a 90◦ elbow, where 25 g solid sodium metal is heated up by band

heaters to 260 ◦C, 270 ◦C, and 310 ◦C, respectively. Note that the temperature at the

half nipple should be set at the lowest temperature, (260 ◦C), since Na atoms tend

to deposit at the cold surface. This is also the reason why we heat up the bottom of

the 6-way cross (a 2.75” blank) to 120 ◦C, which is higher than the sodium melting

point 98 ◦C, and thus can prevent sodium metal clog in the oven chamber. In order

to collimate the atomic beam, a double-sided flange with a 6 mm diameter center

hole is inserted after the elbow. Then the oven part is attached to the 6-way cross

with a conical adapter. A square cooper cold plate with a 9 mm centering hole is

placed along the atomic beam path to collect hot scattered atoms. A pneumatic

atomic shutter controlled by an air solenoid valve is inserted to shutter the atomic

beam during the experiment. A 75 liter/second ion pump and a custom-made baffle

are placed on the top of the 6-way cross to pump down the pressure.

We then connect our 4.5” 4-way cross to the remaining port of the 6-way cross.

A rough gauge is installed there to daily monitor the vacuum pressure. An angle

valve is placed on the opposite side of the rough gauge to seal the system or open the

system when sodium change is needed. We then attach a turbo pump and our Ar gas

line (see details in section 3.4) to the angle valve. Finally, an AR-coated window is

connected to the 4-way cross to view the atomic beam and enable a daily alignment

of the slower beam.
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Figure 3.2: Isometric view of the sodium oven chamber.

3.3 UHV chambers

UHV refers to a vacuum pressure lower than ∼ 10−9 Torr. In our system, the UHV

chambers are intermediate chamber and main chamber, as shown in Fig. 3.3. The

intermediate chamber is equipped with two differential pumping tubes (DFT) to

separate main chamber area from atomic oven chamber that is low pressure area.

The DFT is custom made by welding a stainless steel vacuum tube onto the thorough

center of a 2.75” double-sided flange, as shown in the inset of Fig. 3.3. The two

24



DPTs have different parameters: the first DPT is made with a 5” long and 0.25”

OD stainless steel vacuum tubing, while the second DPT has a 2.5” long and 0.375”

OD vacuum tubing. With the combination of these two DFTs and a 55 liter/second

ion pump, we are able to achieve a pressure ratio of ∼500 between the intermediate

chamber and the main chamber. Two gate valves are used before the main chamber

for preventing potential contaminations/leaks when the experiment is not running or

during sodium metal changes. An ion gauge that can measure up to 10−13 Torr is

located at the bottom of the 2.75” six way cross to monitor the vacuum pressure.

Ion pump

Ion pump

Ion
gauge

Ion
gauge

Main
chamber

Ti-sublimation
pump

Zeeman slower

Schematic of the DFT

Gate
valve

Gate
valve

Figure 3.3: Isometric view of the intermediate chamber and the main chamber. Inset:

schematic of the differential pumping tube (DFT).

Right after the intermediate chamber is the Zeeman slower, which slows sodium

atoms down. The main chamber where BEC occurs is at the end of the Zeeman slower.

It is equipped with 7 pairs of AR-coated quartz viewports (whose ODs are 1.33, 2.75,
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4.5, and 6 inches) along different directions, which provides optical accesses for our

MOT, ODT, and optical lattice setups. A titanium sublimation pump is located next

to the main chamber, for further improving the pressure in the main chamber. At

the end of the 5-way cross is an viewport for the slower beam. This viewport is kept

at 70 ◦C to eliminate the sodium deposition on the viewport surface.

3.4 Procedures for cleaning, baking, and installing vacuum parts

In order to reach the desired pressure as quickly as possible, the vacuum system must

be installed with extra care. Thorough cleaning all vacuum parts is the first necessary

step. Typical contaminants in the vacuum system include: 1) oil and grease left on

the vacuum components, bolts, and gaskets; 2) small particles and dust; 3) condensed

vapors such as water vapor absorbed on the walls of the vacuum system and air inside

the vacuum chambers. To eliminate the major contaminants on the surface of the

vacuum parts, we develop a 4-step cleaning procedure to ensure our system is grease

and dust free.

• Ultrasonically clean metal vacuum parts in a solution consisting of 50% sim-

ple green solution (degreaser) and 50% distilled water for one hour at a high

temperature of around 70 degrees of Celsius.

• Rinse the vacuum parts with distilled water and ultrasonically clean them in

distilled water for one hour at a high temperature of around 70 degrees of

Celsius.

• Rinse the vacuum parts with Acetone (HPLC grade) and ultrasonically clean

them in Acetone for 30 minutes at the room temperature.

• Rinse the vacuum parts with Methanol (HPLC grade) and ultrasonically clean

them in Methanol for 30 minutes at the room temperature.
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It is important to note that all fragile vacuum parts, such as viewports, gate valves,

ion gauges, and vacuum pumps, can NOT be ultrasonically cleaned. Also Acetone

can NOT be used to clean any vacuum part consisting of rubber components.

All the metal vacuum parts are then wrapped with aluminum foils for the pre-

liminary air bake-out. The air bake-out serves as an essential procedure before the

UHV system installation, which can significantly increase the desorption and diffu-

sion rates, and thus greatly shortens the final vacuum pumping-down time. In our

system, we baked clean metal vacuum parts in a custom-made oven covered with

fiber glass insulation tapes and aluminum foils. The temperature inside the oven was

raised to 320 ◦C (the maximum baking temperature for most of our metal vacuum

parts is 450 ◦C) with the temperature gradient of 50 ◦C/hr and kept at this value for

a week. After the air bake-out, the color of metal surfaces would change from silver

to shiny gold. If the color tends to be violet, it indicates over baking and the baking

temperature should be lowed down.

The assembling process for the vacuum system is straightforward but extra care

must be taken. First, clean grease-free and powder-free gloves must be worn during

the whole assembling, and one should change the gloves frequently. All the gaskets,

bolts, and nuts used in our vacuum system are silver-plated to avoid using anti-seize

grease. During the installation process, gaskets should be aligned well into the flanges,

and all the bolts were hand tighten first and then fully tighten by a wrench one by

one in a diagonal direction until little gap can be seen between the flanges. Extra

attention should be paid when one tightening viewports since they may break easily

if force applied on them is not uniform.

After the system was fully assembled, we started to pump down the pressure.

However, the final pressure was limited in the 10−11 Torr range after several days and

decreased very slowly, which was not good enough for generating BECs. This may be

due to the fact that large amounts of air was left in the system and other residual gases
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could be trapped in the metal vacuum parts, which limited desorption and diffusion

rates, and thus made the pumping process hard. So it was necessary to apply a final

system bake-out to increase the pumping rate and improve the final vacuum pressure.

We applied band heaters and heating tapes to the system and raised the temperature

to 150 ◦C slowly, and baked the system for several days. All the three ion pumps were

turned off first for nearly two days at the beginning of the baking to avoid damaging

the pumps. During the baking process, we also degassed ion gauges for about one

hour to pumped dirts out. The Ti-sublimation pump was operated as well for one

hour to force the hydrogen gas escaping from the metals, which improved the vacuum

pressure inside the main chamber (Note that the Ti-sublimation pump can be turned

on only when the pressure is less than 10−8 Torr). We began to switch off the heaters

and cooled down our system after the pressure inside the main chamber stayed stable

at 2 × 10−10 Torr for a few days. After cooling the apparatus down to the room

temperature and using the Ti-sublimation pump for 10 more minutes at the end, our

vacuum system finally reached a UHV of < 5 × 10−12 Torr, which means that the

lifetime of the trapped atoms could be as long as tens of seconds. Fig. 3.4 shows the

change of vacuum pressure before, during, and after the baking.

3.5 Sodium change

An ampoule of 25 g sodium metal can be used for about half an year in our lab before

we have to break the vacuum and do a sodium metal change. The lifetime of the

sodium metal is also closely related to the temperature applied to the atomic oven.

The higher the temperature is, the more atomic flux would be generated, however,

the lifetime of the sodium metal would decrease. In our system, the typical lifetime

of a 25 g sodium metal is ∼ 800 hours when the oven is set at 260 ◦C. In order to

pump the vacuum pressure from the atmosphere back to the UHV quickly, we have

developed a standard sodium change procedure.
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Figure 3.4: Vacuum pressure in two chambers before, during, and after the baking.

Figure. 3.5 shows the setup used during sodium changes, which includes a gas line

filled with pure Argon (Ar) gas to vent the system, a roughing ramp, and a Turbo

pump. First, before a sodium change, the entire apparatus should be cooled down to

the room temperature, the two gate valves should be closed, and the ion pump in the

oven chamber should be switched off. Second, we clean all the parts before the all-

metal angle valve (i.e., the Ar gas line, the roughing pump, rough valves, connectors,

and the Turbo pump) by repeating the following procedure a few times: turn on the

roughing pumping and the Turbo pump for 20 minutes or until the reading of the

rough gauge stays at its minimum value; turn off the two pumps; and then fill pure

Ar gas into the system until the rough gauge reads 1 atm. Third, we turn off the

two pumps, open the rough and angle valves in the oven chamber, and vent the oven

chamber with pure Ar gas. Fourth, we leave the Ar gas flowing in the oven chamber,

while breaking the vacuum of the chamber by removing the half nipple of the sodium

oven first, then taking the cold plate and atomic shutter out and thoroughly cleaning

them. To avoid unnecessary contaminations, we seal all openings with either a 4.5”

or a 2.75” blank. Fifth, while leaving the Ar gas flowing in the oven chamber, we put
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back the cleaned cold plate and atomic shutter, and reload the sodium oven with a

new ampoule of 25 g sodium metal as quick as possible to avoid oxidizing the sodium

metal. After the sodium metal change, our system can usually get back to the UHV

after a 2-day vacuum pumping-down.

Rough valve

Rough gauge

Ar gas

fill in

Connect to

roughing pump

Angle valve

Figure 3.5: Setup for the sodium metal change.
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CHAPTER 4

A refrigerator: Experimental setups for laser-cooled atoms

This chapter presents our novel experimental setups for a sodium spinor BEC. Two

papers related to these topics were published:

• J. Jiang, L. Zhao, M. Webb, N. Jiang, H. Yang, and Y. Liu, Simple and efficient

all-optical production of spinor condensates, Phys. Rev. A 88, 033620 (2013).

• L. Zhao, J. Jiang, Y. Liu, Optimizing a spin-flip Zeeman slower, arXiv:1401.7181.

Laser cooling and trapping technique is a powerful tool to create cold atoms. In

this chapter, I will explain some necessary experimental setups for achieving sodium

BECs, such as optical setups, a spin-flip Zeeman slower, a magneto-optical trap

(MOT), and a crossed optical dipole trap (ODT). In our system, hot sodium atoms

are first slowed by a spin-flip Zeeman slower, captured in a standard MOT, cooled

through a polarization gradient cooling process to 40 μK, loaded and evaporatively

cooled in a crossed ODT.

4.1 Optical layout

A stable and efficient optical system is an essential component of a BEC apparatus.

In our system, all laser beams except the ODT and optical lattice beams are derived

from a Matisse dye laser. This dye laser uses a mixture of 2 g Rhodamine 590 laser

dye (Exciton, inc) and 4 Liter Ethylene Glycol, and is pumped by a 10 W laser beam

at 532 nm. The typical operating pressure for the dye circulator is set at 15 Bar. The

output power of 620 mW at λ = 589.159 nm from the dye laser is sufficient for our
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experiments. In general, fresh laser dye can be used to run experiments continuously

for about 21 days. To prevent a long-term frequency drift, we use the saturated

absorption spectroscopy technique with a sodium vapor cell to externally lock our

laser at 100 MHz below the sodium D2 line (see details in section 4.4).

All laser beams necessary for the laser cooling and trapping process in our system

are shown in Fig. 4.1. The cooling beam is red detuned by δcooling=20 MHz below

the 32S1/2|F = 2〉 → 32P3/2|F ′ = 3〉 transition. This transition is known as a cycling

transition. In this transition, atoms are first excited to the 32P3/2 |F ′ = 3〉 state

and then back to the 32S1/2|F = 2〉 state due to the spontaneous emission. These

atoms can be recycled and pumped back to the excited state again for further cooling.

However, in fact, some atoms may be pumped to the different excited states and decay

to the 32S1/2|F = 1〉 state, which can not be recycled, and thus accumulate at the

32S1/2|F = 1〉 state. In order to overcome this problem, a repumping beam, which is

1708 MHz detuned from the cycling transition, is used to pump these atoms back to

the 32P3/2|F ′ = 2〉 excited state to ensure the atoms can be recycled in the cooling

process. Our F = 2 imaging beam is set at -2 MHz below the 32S1/2|F = 2〉 →
32P3/2|F ′ = 3〉 transition and the slowing beam is red detuned by 542 MHz from the

cycling transition.

Figure 4.2 shows the optical layout to generate a number of laser beams at differ-

ent frequencies for a laser cooling and trapping process in our system. By utilizing a

polarizing beam-splitting (PBS) cube and a half-wave (λ/2) plate, one laser beam is

split into two orthogonal paths and the power of each beam can be adjusted by rotat-

ing the λ/2 plate before the PBS. It is worthy to note that PBS1 and PBS2 are used

to align all laser beams back to their original positions after a dye change. M1 and

M2 are the two mirrors that finely adjust the imaging beams. We use one commer-

cial acousto-optic modulator (AOM) from IntraAction to detune the laser frequency

for different optical paths. All the actual center frequencies of the AOMs, labeled in
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Figure 4.1: Schematic of various laser beams used in laser cooling and trapping sodium

atoms.

Fig. 4.2, can be set on front panels or modulated by analog signals controlled with our

PC. A double-pass AOM scheme is applied to modulate frequencies or amplitudes of

a few laser beams (e.g., the MOT cooling beam) within a wide range in an experimen-

tal sequence (see details in the next section). A custom-made EOM from Newfocus

is used to apply a 1.7 GHz sideband to the slowing beam, which pumps atoms in

the slowing process to the F=2 state. All laser beams with proper frequencies are

then delivered to the main chamber with single-mode polarization-maintaining (PM)

optical fibers. These PM fibers minimize laser pointing fluctuations as well as purify

beams’ spatial modes. A special fiber we use in the MOT setup is an optical fiber

array made by Evanescent Optics Inc, which has two inputs and six outputs. This

fiber array allows a perfect overlapping of the MOT cooling and repumping beams.

All the fibers are well aligned with coupling efficiencies above 50% by choosing a

proper telescope to match a laser beam with individual fiber’s core size. Commercial

fiber collimation packages from Thorlabs (e.g., F230FC-A, etc) are also used for each

fiber to reduce the difficulty during the alignment and output well defined collimated
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beam. A λ/2 waveplate is applied before each PM fiber to align the polarized laser

beam into the slow axis of the fiber. An optical shutter with 3 ms response time

(Uniblitz LS series and VMM-D4 controller) is inserted in each optical path in order

to quickly extinguish unnecessary laser beams during an experimental sequence. Each

element in Fig. 4.2 is automatically controlled by a digital or analog signal generated

by NI or Spincore DAQ cards. Figure 4.3 shows our dye laser and optical setup.

4.2 Double-pass AOM

AOMs are widely used in the laser cooling and trapping experiments since they can

conveniently detune frequencies of laser beams. When an rf signal with frequency

of Ω is sent into the AOM, sound waves at the speed of vs would be created, and

thus the index of refraction of the crystal is modulated at Λ = vs/Ω. At this time,

the incoming laser light passes through the “phase grating” like media would lead to

interference patterns similar to Bragg diffractions.

In our setup, we mainly use the single-pass and double-pass AOMs to detune

the laser frequencies, switch on/off the light, and modulate the laser beam intensity.

First, the single-pass AOM can easily detune the laser frequency to a fixed desired

value, which is good for some laser beams, such as the imaging beam whose fre-

quency detuning is kept unchanged during an experimental sequence. Normally, the

diffraction efficiency is above 80% by using a proper telescope. However, for other

laser beams such as the MOT cooling beams, their frequency needs to be changed

during one experimental cycle. The frequency change leads to laser beams being mis-

aligned from their corresponding fibers. In order to eliminate this problem, we apply

a double-pass AOM scheme to maintain the laser beam pointing as well as provide a

large frequency detuning [91].

Figure 4.4 shows a typical scheme for a double-pass AOM. The diffracted beam (+1

order away from the AOM’s SMA connector) is retro-reflected by a mirror and passed
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Figure 4.2: Optical layout for generating laser beams of different frequencies. These

beams are used to construct a 3D MOT. PBS, M, L, λ/2, λ/4 and AOM correspond

to a polarizing beamsplitting cube, a mirror, a lens, a half-wave plate, a quarter-wave

plate, and an acousto-optic modulator, respectively.
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Figure 4.3: A photo to show the dye laser and optical setup in our lab.

through the AOM again, which means that its frequency detuning is also doubled.

The second pass beam counter-propagates along with the original zero order beam

and can be changed by π in polarization by using a cube and a λ/4 waveplate. A lens

is placed at its focal length after the AOM to ensure that the retro-reflected beam

remains the same size when passing back through the AOM, which can maximize

the AOM’s efficiency. The typical efficiency for a double pass AOM is ∼60% in

our system. With a double-pass AOM scheme, the final diffracted beam (+2 order)

overlaps with the incident beam no matter whether there is a frequency modulation

or not, which is important for laser cooling and trapping experiments.

4.3 Polarization of laser beams

To enhance the performance of the system, it is important to set the correct polar-

ization for each different laser beam. First, the linearly-polarized laser beam should

pass through the slow axis of the PM fiber. The slow axis alignment is a popular
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Figure 4.4: Schematic of a double-pass AOM setup.

choice in fiber optics technology nowadays. The better the polarized light is aligned

along the slow axis, the longer time the polarization would be maintained. The good

position can be found by measuring the distinguish ratio of the fiber output beam.

In our system, we put a λ/2 waveplate and a PBS after the output fiber and used

a power-meter to detect the laser beam power after the PBS. By rotating the two

λ/2 waveplates before and after the fiber, we found the maximum distinguished ratio

where polarization drifts the least. At this point, the fiber output beam’s polarization

should stay stable regardless of the change in the room temperature or small external

stresses applied on the fiber. In addition, in order to continuously measure the dis-

tinguished ratio, we built a motorized rotatable polarizer, which was assembled with

a computer fan and a linear polarizer. This polarizer replaced the role of the λ/2

waveplate after the fiber. With the light signal collected by a photodetector and sent

to an oscilloscope, we could easily change the input λ/2 waveplate to achieve the best

distinguished ratio.

Second, the polarization of the six MOT beams and the slowing beam should be

either σ+ or σ− polarized. Figure 4.5 shows the schematic to set up the σ+ or σ−

polarized laser beam. The laser beam after the fiber is set to be linearly (horizontally)

polarized by using a λ/2 and a PBS. The first λ/4 waveplate, acting as an analyzer,

is used to transform this beam into the circular polarization, which can be achieved
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by rotating the waveplate until the power ratio of the laser beams passing along two

orthogonal axes (transmitting axis and absorbing axis) of the final linear polarizer is

1:1. The second λ/4 waveplate is then inserted into the beam path to determine σ+

or σ− polarization. The laser beam would be changed back to linear polarization after

the analyzer now. Rotating the second λ/4, the laser beam is σ+ (or σ−) polarized

when the power after the linear polarizer is minimum (or maximum). In the end, the

analyzer (the first λ/4) should be removed from the beam path.

λ/2 PBS Linear polarizer

Powermeter

Analyzer

(Remove at the end)

2nd λ/4 1
st

 λ/4

Figure 4.5: Schematic to set up the σ+ or σ− polarized laser beam.

4.4 Frequency stabilization

The natural linewidth of 23Na atoms is 9.8 MHz, which requires the linewidth of our

dye laser to be much narrower than this value. Although the specified linewidth of our

dye laser is ∼1 MHz, its center frequency can drift by a significant amount over long

time due to room temperature changes or piezo actuator relaxation processes in the

reference cell. To compensate this frequency drift, we apply the saturated absorption

spectroscopy technique with a sodium vapor cell to externally lock our laser.

Each atom has unique absorption frequencies according to its hyperfine structure,

but its related spectral lines are not resolved due to the Doppler broadening. The

reason is that the atoms obey Maxwell-Boltzmann temperature distribution of veloc-

ities at a given temperature. Thus, some atoms would stay stationary, while others
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moving with different velocities. If one laser beam at the atomic resonance ν0 is used

in the system, only those atoms with zero velocity along the laser beam can interact

with it. Other atoms with a speed of υz can only be resonant with the laser beam

when its frequency is tuned to ν = ν0(1 ± c/υz), which satisfies the Doppler shift

condition. Here c is the speed of light. This gives us a Doppler broadened spectrum.

In order to eliminate the Doppler broadening, the saturated absorption spectroscopy

was developed [92]. In this technology, two laser beams (the pump beam and the

probe beam) counter propagate through the vapor cell. When the laser frequency is

tuned to one of the two resonances, the pump and the probe beams both compete

for the zero velocity class atoms and the absorption of the probe beam is reduced,

which creates the transmission peaks in the Doppler-broadened profile. Additionally,

crossover peaks occur when the laser is at the half way between the two resonances.

The pump beam puts more atoms in resonance with the probe beam. So the pump

beam will actually increase the population of the ground state that the probe is

resonant with, and the absorption of the probe beam will be enhanced.

Figure 4.6 shows the schematic of our saturated absorption spectroscopy. The

intensive pump beam and weak probe beam counter propagate through the sodium

vapor cell, and the absorption signal is collected by a photodetector from Thorlabs

(PDA36A). In order to lock the laser with this absorption signal, we use a lock-in

amplifier (Stanford Research Systems SR810) to produce an error signal. A reference

sine wave generated by the lock-in amplifier with a frequency of 20.31 kHz and an

amplitude of 0.39 V is used to modulate the frequency of the pump beam AOM. Then

this sine wave along with the absorption signal are mixed by the lock-in amplifier to

generate an error/dispersion signal, which is digitized with one AI channel by a NI

USB6008 DAQ card and processed by the Matisse software. Finally, the Matisse laser

controller would feed it back on the reference cell piezo actuator and keep the Matisee

laser at the desired atomic resonance frequency. We scanned the power ratio between
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Figure 4.6: Schematic of our saturated absorption spectroscopy.
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the pump and probe beams as well as the temperature of the sodium cell. The best

power ratio for pump/probe beam is ∼2:1 in our system. In our daily routine, the

pump beam power is often set at ∼2.3 mW while the power of the probe beam is

∼1.4 mW. Two long focal lenses are placed in each beam path to shrink down the

beam size. The sodium vapor cell is wrapped with fiber glass insulation tapes and

aluminum foils, and is heated up to ∼180 ◦C with two band heaters, as shown in

Fig. 4.7. Note that heating must be uniform over the cell, since sodium metals tend

to be deposit on cold surfaces. Sodium depositions may block the laser beam paths

and result in an unstable lock-in signal. The vapor cell is kept at 140 ◦C when we do

not run experiments. A typical absorption signal collected by the photodetector as

well as its dispersion signal recorded in an oscilloscope are shown in Fig. 4.8. Our laser

is locked 100 MHz below the F=2 to F ′=3 transition with a typical RMS frequency

deviation of ∼60 KHz.

Sodium vapor cell

Pump beam

(~2.3 mW)

Probe beam

(~1.4 mW)

Photodetector

Figure 4.7: Our sodium vapor cell.
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F=1 to F’=2
F=2 to F’=3

(a)

(b)

Figure 4.8: (a). Measured absorption and dispersion Doppler free spectral features.

The absorption signal from a photodiode (purple line), and the dispersion signal

from the lock-in amplifier (blue line) are recorded on a digital oscilloscope. (b). An

expanded view of our F=2 to F ′=3 peak.
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4.5 Spin flip Zeeman slower

A MOT can only capture atoms whose velocities are smaller than vc, its maximum

capture velocity, which is vc = 55 m/s in our system. To improve the MOT capture

efficiency, a number of slowers have been invented to significantly slow hot atoms

down before they overlap with the MOT [10, 74, 93, 94, 95, 96, 97]. In a slower,

atoms and a resonant laser beam of frequency ω counter-propagate along the x axis.

The longitudinal velocity and Doppler shift of these atoms decrease after they absorb

resonant photons. These slowed atoms are thus no longer resonant with the laser beam

and cannot be further slowed down. To continuously reduce the atoms’ velocity along

the beam path, one can vary ω accordingly as with the frequency chirp method [98] or

by using broadband lasers [99]. Another convenient method is to keep ω unchanged,

while compensating differences in the Doppler shift with a spatially varying magnetic

field generated by a Zeeman slower [10, 74, 93, 94, 95, 96, 97].

When the alkali atoms pass through the Zeeman slower, only the atoms whose

velocities satisfy kv(x) + 2πδ + μB(x)/� = 0 are on resonance with the slowing laser

beam, where μ is the magnetic moment, k is the wavevector of the laser beam, δ

is the frequency detuning of the laser beam from atomic resonance, and � is the

reduced Planck’s constant. In other words, only the atoms with velocity v(x) =

−[2πδ+μB(x)/�]/k can be slowed by the slower [94]. The corresponding acceleration

as can be expressed as

dB(x)

dx
= −as

�k

μv
, (4.1)

where as = ηamax is the actual acceleration provided by the slower, amax =
�kΓ
2M

is the

maximum achievable acceleration, Γ is the natural linewidth of the atomic transition,

M is the atom mass, and η is a safe factor to account for magnetic field imperfections

in a given slower and the finite intensity of the laser beam.

In our system we choose a spin-flip Zeeman slower, which consists of three different
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sections along the x axis (i.e., a decreasing field coil, a spin-flip section, and an

increasing field coil), as shown in Fig. 4.9. The first section produces a magnetic field

with decreasing magnetic field strength B. Because B is very large (∼ 650 Gauss) at

the entrance of the slower, ω only needs to be red-detuned by δ of a few hundred MHz

from the D2 line of 23Na atoms. This frequency detuning is easily achieved with an

AOM, but is still large enough to avoid perturbing MOT laser beams. The spin-flip

section contains no coils as to maintain B = 0. The increasing field coil creates a

magnetic field with increasing B but in the opposite direction to the decreasing field

section. Because the magnetic field quickly dies off outside the slower, the slower can

be placed close to the MOT, which results in more atoms being captured.

Our Zeeman slower is wound on a stainless steel tube that measures 22.5 mm in-

ner diameter and 25.5 mm outer diameter, which is similar to the design of Ref. [97].

Compared to the single-layer Zeeman slower with variable pitch coils [100], the ad-

vantage of this design is that it provides enormous flexibilities to optimize magnetic

fields with large enough B for slowing atoms with high initial velocities (e.g., sodium

and lithium atoms). Figure 4.9 shows the schematic of the Zeeman slower and the

real setup in our lab. The slower coil we use is a Kapton tape coated hallow copper

wire with 0.3175 cm×0.323 cm outer dimension and 0.155 cm inner dimension. The

first layer of our decreasing field coil has 188 turns and its length is 0.60 m. Its sec-

ond layer is 0.57 m long and wrapped on the surface of the first layer. Similarly, the

following layers are wrapped on the surface of its corresponding previous layer. The

increasing field coil is constructed in a similar way and is divided into two parts. The

two parts both have five layers, with the electric current flowing in the opposite direc-

tion through the top two layers of the second part. These two layers are compensation

field coils to minimize the residual magnetic field strength generated by the slower in

the main chamber. The spin-flip section is simply a bellow, which allows atoms to be

fully re-polarized and damps out mechanical vibrations generated by vacuum pumps.
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To precisely adjust magnetic field strength inside the slower, the total 22 layers are

divided into six groups, and different layers in each group are connected in series and

controlled by one DC power supply with our fast feedback circuit. Since more than

20 A current would flow through the slower, we connect coils in each different section

with a water cooling system to lower down the temperature. The water cooling sys-

tem consists of a heater exchanger, a boost pump with the pressure of 150 psi, and

two manifolds to split chilling water into tubes for different devices such as Zeeman

slower coils, MOT coils, ODT beam dampers, etc.

  (2 layers) 
Compensation coils

Increasing field

 coils (8 layers)

Spin

 flip

Decreasing field

 coils (12 layers)

0.25   0-0.60

Position along the x-axis (m)

(a)

x

(b)

Figure 4.9: (a) Schematic of the spin-flip Zeeman slower setup. (b) The actual Zeeman

slower setup in our lab.

In order to improve the efficiency of a slower, different parameters such as the

slowing laser beam’s intensity and frequency detuning, current flow in each magnetic
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coil, and the length of each section in the slower can be tuned for optimization. The

detailed optimization procedure can be found in Ref. [101] or my labmate Lichao’s

dissertation.

4.6 3D MOT

4.6.1 MOT setup

After sodium atoms being slowed down with our Zeeman slower, we use a Magneto-

optical trap (MOT) to further cool down the atoms. In our experimental setup, the

3D MOT is constructed with six cooling beams in three orthogonal directions and

a pair of 24-turn anti-Helmholtz coils, as shown in Fig. 4.10(a). Each MOT cooling

beam is detuned by δcooling = −20 MHz from the cycling transition, has a power of

4.6 mW, and combines with one 2.2 mW MOT repumping beam in a same single-

mode fiber. Every MOT repumping beam is detuned by δrepump = −5 MHz from

the |F = 1〉 to |F′ = 2〉 transition. Since we have a two in six out fiber array (as

mentioned in section 4.1), overlapping for the cooling and repumping beams would be

perfect. One additional advantage of this fiber array is that it allows us to individual

control each different MOT beam easily. As shown in Fig. 4.10(b), every MOT beam

is expanded to 1.2” in diameter by using a cage system from Thorlabs, which is a

less-costly replacement of a translation stage. A λ/4 waveplate is placed along each

beam path to make the polarization either σ+ or σ−.

A pair of anti-Helmholtz coils made with hallow copper coils (the same coil used

for our Zeeman slower) is located inside the 8” top and bottom viewports, which

provides the necessary magnetic field gradient (∼480 mG/cm/A) to the MOT trap.

The coils have total 6 layers with 4 turns in each layer and the average diameter for

each coil is about 4”. The MOT coils are also applied to generate a small magnetic

field gradient during evaporative cooling in order to fully purify all atoms of a BEC

to one Zeeman sub-level. In addition, the magnetic field gradient generated by the
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MOT coils is used in Stern-Gerlach detections to separate multiple spin components

in spinor condensates. Each coil is also connected to the water cooling system, which

allows for applying a high current of up to 350 A through the coils.

(a)

Cage

system

λ/4

(b)

σ+

σ+

σ+ σ-

σ-

σ-

Current

Current

Magnetic
field lines

Magnetic
field lines

Anti-Helmholtz

coils

Anti-Helmholtz

coils

Figure 4.10: (a). Schematic of the MOT. Six circularly polarized laser beams shine

from three orthogonal directions. Two anti-Helmholtz coils provide an inhomogeneous

magnetic quadrupole field. (b). A cage system used to expand the MOT beam.

4.6.2 MOT alignments

The alignment of a MOT depends on the following parameters: 1) the intensity

and frequency detuning of the MOT cooling beams; 2) the intensity and frequency

detuning of the repumping beams; 3) a perfect overlap of all beams; 4) the polarization

of each beam; 5) the magnetic field gradient. In the initial alignment, it is helpful

to use laser beams of high powers. In our system, the initial laser beam powers

were set at ∼25 mW and ∼4.5 mW for each cooling beam and repumping beam,

respectively. Since the top and bottom MOT laser beams were Doppler-free with

atoms, we first optimized the alignment for this pair of beams and slightly scanned

their laser frequency by looking at the brightness of trapped atoms. When they were
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overlapped well, one beam would pass through the other beam’s optical path and be

seen on its fiber mount. Note that the initial overlap position for each pair of beams

should be at the center of viewports. The top and bottom MOT beams provided us

a reference to align the side MOT beams. We slightly detuned the laser frequency

from this reference and overlapped two pairs of side beams with top and bottom

beams. We also scanned the currents of the slower coils, which changed the velocities

of the atoms entering the MOT. We then further optimized the six MOT beams by

adjusting their intensities until a weak MOT appeared. Top and bottom MOT beams

capture all atoms, which provide strong confinement. Side MOT beams only capture

slowed atoms, which have relative weak confinement. It is worth to mention that the

polarizations of each MOT beam and the slowing beam play an important role in

the MOT alignment. If the polarization or the MOT alignment is not right, MOT

would be weak and trapped atoms can escape toward the direction of the misaligned

beam. In our system, the optimum MOT occurred when all horizontal MOT beams

were set at the σ− polarization and vertical MOT beams were σ+ polarized. This was

due to the fact that the σ+ to σ− polarization configuration was also related to the

the direction of the magnetic field, which set the quantization axis. One useful tip

we found was that the position of the side beams should be slightly higher than the

center of the viewports. After optimizing all parameters, we typically collect 2×109

sodium atoms in a MOT in 8.5 s, at peak density of > 1011 cm−3. Figure. 4.11 shows

an actual photo of our first MOT.

4.7 Polarization gradient cooling

In our system, we apply a three-step polarization gradient cooling process after 8.5 s

of MOT loading to efficiently cool 3×108 atoms to 40 μK, as shown in our experiment

sequence in Fig. 5.7. The first polarization gradient cooling step, the strong MOT

stage, compresses the MOT for 20 ms by increasing the power of each cooling beam
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Figure 4.11: An actual photo of our MOT.

to 12 mW while changing δcooling to −15 MHz. In this step, the power of each MOT

repumping beam is also drastically reduced to 45 μW. Then during a 5 ms pre-

molasses step, every cooling beam is further red detuned in addition to its power

being increased to 11 mW. This is followed by a 18 ms optical molasses, in which

a cooling beam is detuned to δcooling = −45 MHz and its power linearly drops to

5.6 mW. The magnetic field gradient is also reduced to 3 G/cm over the 18 ms. To

depump atoms into the F=1 hyperfine states, the repumping beams are extinguished

1 ms before cooling beams and MOT coils are turned off. Table 4.1 shows the laser

beam power budget we need in our MOT loading and cooling process.

Since both the slowing beam and repumping beam only need little power during

the polarization gradient cooling, we redistribute a large amount of their power to

the MOT beams by modulating the amplitude of the AOM 428 MHZ 1 and the AOM

250 MHZ 1. With this trick, we can provide enough power to each optical path at

different cooling stages without increasing the laser output power. This prolongs the

lifetime of the laser dye.
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Stage Slowing beam MOT cooling beam MOT repumping beam

Power check 25 mW 4.4 mW 2.15 mW

MOT Loading 100 mW 3.6 mW 2.15 mW

Strong MOT 0 9.1 mW 45 μW

PreMolasses1 0 11 mW 45 μW

PreMolasses2 0 10.2 mW 45 μW

Molasses 0 5.6 mW 45 μW

Table 4.1: Laser beam power for slowing beam and each MOT beam after the fiber.

4.8 Absorption imaging

4.8.1 Imaging system setup

We use absorption imaging preceded by a few milliseconds time-of-flight (TOF) to

detect a MOT or a BEC. In a TOF, an atomic cloud is released from an optical or

a magnetic trap and then expands ballistically. As shown in Fig. 4.12, the atomic

cloud absorbs the resonant imaging light, and leaves a shadow area in an absorption

image which is collected by a charge-coupled device (CCD) camera. This image is

then sent to the computer for post quantitative analysis.

f
focusing

f
imaging

CCDfocusing lens imaging lens

Figure 4.12: Schematic of absorption imagimg.
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Figure 4.13 shows the schematic of our side absorption imaging setup. There

are two imaging beam paths traveling through different viewports, which allow us to

detect trapped atoms from two directions. The F=2 imaging beam delivered by a

PM fiber passes through a λ/2 waveplate, a PBS, and a λ/4 waveplate, which lead

the imaging beam to being circularly polarized. A telescope is used to expand and

collimate the beam to a diameter of ∼10 mm. The laser beam power required for the

imaging is usually low since overwhelming power would result in optical bleaching and

blackout. For our current setup, a power of ∼100 μW is enough and can be measured

through our imaging LabVIEW program. The two flipper mirrors (Newport 9891)

allow us to select a desired imaging path. With flipper mirror 1 standing up and

flipper mirror 2 laying down, our side imaging path-A passing through the 2.75”

viewports is chosen. On the other hand, we can detect cold atoms from the side

imaging path-B from the two 4.5” viewports. In the experiment, different imaging

magnifications are used to detect a MOT or a BEC. For instance, along the side

imaging path-A, we use a small magnification of M=1.5 to detect a MOT and a large

magnification of M=3.5 for a BEC measurement. This can be done by using different

combinations of lens. For example, we can detach the 750 mm imaging lens to make

M=1.5 in order to detect a MOT. For the imaging path alignment, it is important

to note that a lense should be located away from the atomic cloud by a distance

exactly equaling to its focal length, and the distance between the imaging lens and

the CCD chip should equal the focal length of the imaging lens. The CCD camera

in our system is made by PointGrey (GRAS-14S3M-C) with a pixel size of 4.65 μm

when M=1. In our system, there is an imaging path along the vertical direction as

well. Compared to the side imaging, the advantage of this top imaging is that we

do not need to worry about atoms fly out of the region of the CCD chip during the

time-of-flight (TOF).

To detect F=1 atoms, it is necessary to turn on a repumping light originated
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Figure 4.13: Schematic of our imaging system. Two side imaging paths at the same

frequency are illustrated in yellow and red color for the clarification purpose only.
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from the MOT repumping beam for 50 μs to pump the atoms to the F=2 state. The

atoms are then probed by the F=2 imaging light for 80 μs. To improve the imaging

efficiency, the repumping light is kept on during the 80 μs probe period. Absorption

images are captured by the CCD camera. A TTL logic signal is used to trigger the

camera. Note that since the response time of optical shutters is around 3 ms, we

use an AOM to provide a sufficiently fast control to the imaging beam. The interval

between three different pictures is 300 ms, which ensures that the system have enough

time to transfer and process the data.

4.8.2 Image analysis

For an absorption imaging process, the intensity I(x, y, z) of an imaging beam trav-

eling in the vertical direction (z-axis) would decrease after the beam passes trough

the atomic cloud, which can be expressed as

dI(x, y, z)

dz
= −σn(x, y, z)I(x, y, z). (4.2)

Here n(x, y, z) is the atomic density and σ is the absorption cross section.

If we define I0(x, y) as the light intensity before the imaging beam passes through

the atomic cloud, the light intensity after the absorption is

I(x, y) = I0(x, y)exp[−σ

∫
n(x, y, z)dz]. (4.3)

The optical density profile of the atomic cloud can be calculated as

OD(x, y) = − ln
I(x, y)

I0(x, y)
. (4.4)

This can be done by taking two pictures, the absorption image with atoms I(x, y)

and the probe image without atoms I0(x, y). We take an additional picture without

the imaging light and atoms to extract the background noise intensity Ibg(x, y). Then

OD(x, y) can be rewritten as follows,

OD(x, y) = − ln
I(x, y)− Ibg(x, y)

I0(x, y)− Ibg(x, y)
. (4.5)
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Some experimental factors such as distortion, effects due to imperfect optical ele-

ments, and uneven intensity distributions of the imaging lights can be eliminated in

the calculation since the absorption imaging takes count of the relative transmission

of the imaging light as long as the position of the CCD camera is fixed. We can thus

extract information of the atomic cloud such as its atom number and temperature

from the absorption images as described below.

Atom number Based on the optical density profile, the total number of atoms

Ncount can be calculated by Eq. (4.5) by summing up all the absorption signals col-

lected by the CCD camera in TOF images, which is given by

Ncount =
Apix

σ

∑
pixels

OD(x, y). (4.6)

Here Apix is the effective pixel area at different magnification M , and σ is the absorp-

tion cross-section. Note that Apix = AM=1B
2/M2, where AM=1 is (4.65 μm)2 for our

camera and B represents the number of pixels binned together in the Igor program.

Atom temperature TOF images show momentum distributions of atomic clouds.

In free expansion, the momentum distribution of atoms would be changed to spatial

distribution, which can be used to measure the temperature. By applying a 2D gaus-

sian fit, we can extract the width of the atomic cloud. The expansion of the atomic

cloud as a function of time follows x(t) =
√

x2(0) + υ2t2. Here x(t) is the size of the

atomic cloud after an expansion, x(0) represents the initial size, and υ is the velocity

of the atoms. According to the equipartition theorem, the temperature of the atomic

cloud can be found by x(t) =
√
x2(0) + (kBT/M)t2 at different TOF. Figure 4.14

shows a typical fit to extract the temperature of a MOT.

4.9 Crossed optical dipole traps

An optical dipole trap (ODT) is one of the most important setups in our system since

we use all-optical method to create BECs. The laser cooled atoms are loaded into
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Figure 4.14: A typical fit to extract the temperature of a MOT.

the ODT and then a forced evaporative cooling is applied to achieve BECs.

4.9.1 Setup of a crossed ODT

In our system, a crossed ODT consists of two far-detuned beams which originate from

an infrared (IR) laser (IPG photonics YLR-50-1064-LP) with an outputting power of

15 W at 1064 nm. The power of the ODT laser beam is controlled by an AOM. A

custom-made high power single-mode PM fiber (Toptica, Inc) is used to deliver the

laser beam power to the main chamber. The advantage of using a fiber is to polish

the beam mode and minimize pointing fluctuations due to imperfections of the IR

laser and thermal contractions of an AOM. The typical coupling efficiency for this

high power fiber is above 70% after we choose a proper telescope. Care must be taken

when dealing with this fiber since any small misalignment may cause the fiber to be

burned. According to my own experience, a F220FC-1064 fiber collimation package

from Thorlabs would be a good choice to align this fiber because its core size is a

little larger than those of our yellow fibers. Also the optimized distance between the
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lenses would be slightly different when the laser output power changed. In order to

achieve a desired beam waist of our ODT with as few optics as possible, we use a

combination of one Thorlabs F810FC-1064 collimation package and a single IR lens

to focus down the laser beam. Atoms which are transferred from the MOT into the

tightly-focused crossed ODT demonstrate a long lifetime of 8 s and a large collision

rate. These are essential for all-optical BEC approaches. Figure. 4.15 shows the

schematic of our crossed ODT setup. The trap potential of the crossed ODTs can be

described as P = P1 + P2 + Pg, where P1 and P2 are trap potentials of the two single

beam ODTs, and Pg is due to the influence of gravity, as shown in Fig. 4.16.
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Figure 4.15: Schematic of the crossed ODT setup around the main chamber. The

positive z-axis represents the direction of gravity.
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Figure 4.16: The definition of the ODT trap depth U . The solid red line and dashed

blue line represent the crossed ODT’s trap potential energy P as a function of posi-

tion along the z-axis with or without taking into account of the influence of gravity,

respectively. Here x = y = 0 and the ODT laser power is 60 mW.
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4.9.2 ODT beam alignment

It is not an easy task to find the initial signal for the ODT beam, so we developed a

procedure to align the ODT beam with the help of our yellow laser light. First, we

mimicked the desired optical beam path traveling through the atoms on an optical

table and used a beam profiler (Thorlabs BC106N-VIS) to roughly calibrate the

beam waist, which provided us a general idea of the choice of the focusing lens and

the output fiber collimator. Second, we constructed the ODT beam path with all

IR-coating optics but with a resonant yellow beam. In other words, we replaced our

high power IR fiber with a yellow light fiber for a rough alignment. Here the F=2

imaging light was chosen since it could easily tell us whether we successfully align

the beam to the atomic cloud or not. Once the MOT was “killed” by the imaging

beam, this indicated that this beam path passed through the atomic cloud. Then

at least two apertures should be accurately set before and after the chamber as two

references for the following IR laser beam alignment. To improve the accuracy of the

alignment, we generally located a third aperture or left a mark on the wall in a far

field along the beam path.

Now the Toptica IR fiber could be switched back to align the ODT beam pass

through the two apertures, and the focusing lens should be located at the position

estimated by the beam profiler. With the IR laser set at a high power, the position

of the ODT beam in our MOT could be observed from absorption images. The ODT

beam was then aligned to the MOT center in both horizontal and vertical directions

by the pictures taken from side and top CCD cameras, as shown in Fig. 4.17(a).

After this initial rough alignment, some evaporative cooling was applied to locate the

intersection point of the two ODT beams. The focus of the ODT beam could be

found by recording the center position of the trapped atoms after a short or long hold

time inside the ODT, since atoms tend to be attracted to the beam waist position.

In addition, the polarization of the ODT beam was found to also contribute to the
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alignment: the best crossed ODT is only achieved when the input ODT beam is

horizontally linearly-polarized. If the input ODT beam was vertically polarized, it

was hard to find a cross point from the two ODT beams. Last but not the least, I

would emphasize the importance of a well focused imaging system since one might

not be able to identify the initial signal of the ODT beam if the imaging system was

defocused too much. In this situation, the ODT beam in the absorption image would

tend to be very wide and blur although the MOT picture still looked good. After a

careful alignment for our two ODT beams, a crossed ODT was achieved, as shown in

Fig. 4.17(b).

Crossed ODT

(a) (b)

Figure 4.17: (a). A typical side view absorption image of our crossed ODT with the

presence of MOT. (b). A typical side view absorption image of our crossed ODT after

some evaporation.

4.9.3 Calibration of the waist of an ODT beam

We determine the waist of an ODT beam by measuring its trap frequency with two

methods. First, we measure the radial frequency of a single ODT beam with the well-

known parametric heating method [102]. In this method, we recorded the number of

atoms in the ODT after sinusoidally modulating U at various modulation frequency

fm. The number of atoms exhibits parametric resonances at fm = l ·fODT, where fODT

is the ODT’s radial frequency and l is a positive integer number. By knowing the trap

frequency and laser power, we can derive the value of the beam waist according to
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Eq. (2.17) and Eq. (2.18). In our experiment, we lowed down the power of our ODT

beam to 0.8 W during the evaporative cooling process and applied a ∼20% sinusoidal

amplitude modulation for 50 ms. After scanning the different modulation frequencies

and recording the atom number with TOF pictures, we found that fODT ≈ 900 Hz,

as shown in Fig. 4.18.

1.0

0.8

0.6

0.4

0.2

0.0

N
o

rm
al

iz
ed

 a
to

m
 n

u
m

b
er

 i
n

 a
n

 O
D

T

25002000150010005000

 Frequency fm for modulating the ODT trap depth (Hz)

radial trap frequency 

fODT
 ≈ 900 Hz

Figure 4.18: The normalized number of atoms in a single beam ODT as a function

of fm in the parametric heating method. Here the ODT beam power is 0.8W.

In the second method, we kick atoms in the single-beam ODT with a magnetic field

gradient and then record the position of atoms after holding the atoms in the ODT for

a variable length of time. It appears that atoms experienced a harmonic oscillation

with a frequency equal to the ODT’s axial frequency, as shown in Fig. 4.19. It turns

out that the values of the ODT’s beam waist provided by these two methods are very

close to each other, which are 33 μm. (Note that we also applied the same methods

to measure the beam waist for our second crossed ODT beam, and got a beam waist

of 28 μm in our current system.) In addition, we implement high-resolution imaging

with a resolution of 1-2 micron in three orthogonal directions. This ensures the two
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ODT beams were well intersected at their focal points.
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Figure 4.19: A harmonic oscillation which atoms experienced after being kicked by a

magnetic field gradient in the second method, when the ODT beam power is 13W.

The solid line is a fit with a damped sinusoid.

4.10 Computer control

A computer control program is essential for generating BECs in the experiment. It

precisely controls timing sequences in the experiment as well as provides digital and

analog signals for various devices, such as optical shutters, AOMs, and MOSFETs.

In our system, we use a 24 channels Spincore PulseBlaster (PB24-100-64k) card to

produce digital signals and three 16-Bit NI PCI-6733 DAQ cards for outputting analog

signals. A NI shielded cable (SH68-68-EPA) and a connector block (SCB-68A) are

used with each PCI card to provide robust and low-noise signal termination. The

digital and analog cards are synchronized with a RTSI cable. By using the LabVIEW

program, we can output all the necessary signals and easily modify them during an

experiment sequence. In addition, we have built some buffer boxes to isolate and
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amplify our output signals before sending them to different devices. Our design of

various servo control circuits can be found in the dissertation of Lichao Zhao, one of

my labmates.
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CHAPTER 5

All-optical production of sodium spinor BECs

This chapter presents an all-optical production of a sodium spinor BEC and an exper-

imental study on the spin-mixing dynamics in antiferromagnetic spinor BECs. Two

papers related to these topics were published:

• J. Jiang, L. Zhao, M. Webb, N. Jiang, H. Yang, and Y. Liu, Simple and efficient

all-optical production of spinor condensates, Phys. Rev. A 88, 033620 (2013).

• L. Zhao, J. Jiang, T. Tang, M. Webb, and Y. Liu, Dynamics in spinor conden-

sates tuned by a microwave dressing field, Phys. Rev. A 89, 023608 (2014).

In the last two decades, many techniques have been developed to reliably generate

a BEC of more than 104 atoms. Almost every one of these techniques requires evap-

orative cooling in a trapping potential, including a magnetic trap, an optical dipole

trap (ODT), or a combined magnetic and optical potential [15, 16, 17, 103, 104].

Among these techniques, all-optical methods have been proven to be versatile and

popularly applied in producing quantum degenerate gases of both bosonic [19, 52,

88, 105, 106, 107, 108, 109, 110] and fermionic [111] species. ODTs have tight con-

finement which allows for fast evaporation with a duty cycle of a few seconds [52].

Unlike magnetic potentials that only trap atoms in the weak-field seeking spin state,

an ODT can confine all spin components. This is crucial for creating vector (spinor)

BECs with a spin degree of freedom [112]. ODTs can also be applied to a wider

variety of atomic species (e.g., Ytterbium, alkaline earth metals, and Cesium) which

cannot be feasibly condensed in a magnetic trap [19, 109]. In addition, optical trap-
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ping does not require magnetic coils around trapped atoms, which not only provides

better optical access but also reduces residual magnetic fields. The simplicity and

versatility of ODTs widen the accessibility of BEC research on many-body physics,

precision measurements, and quantum information science [55].

We develop an optimal ODT ramp and evaporation sequence for an all-optical

production of sodium BECs. With this optimal scheme, the number of atoms in a pure

BEC is greatly boosted by a factor of 5 over some popular schemes and evaporation

efficiency γ = −d(lnD)/d(lnN) can be 3.5 in a crossed ODT. Here D is the phase

space density and N is the number of atoms. We also show an upper limit for γ at a

given truncation parameter η = U/kBT, and demonstrate that a constant η does not

yield more efficient evaporative cooling. This optimal experimental scheme allows us

to avoid technical challenges associated with some all-optical BEC approaches.

5.1 Efficiently loading laser-cooled atoms to an ODT

A couple of ODT ramp sequences were proposed to improve the ODT capture ef-

ficiency by finding a reasonable balance between two competing ODT-induced ef-

fects [52, 88, 105, 106, 108, 109, 110, 113, 114], as shown in Fig. 5.1. First, a larger

U enables more atoms to be captured in the ODT if the ODT beams do not interact

with the MOT. The number of atoms loaded in the ODT is NrampA ∼ ∫ U

0
ρ(ε)f(ε)dε,

where ρ(ε) and f(ε) are the density of states and occupation number at energy ε,

respectively. This is confirmed by our data (blue triangles in Fig. 5.2) taken with

the scheme-A, in which the ODT depth is linearly ramped in 5 ms from 0 to U0

immediately after MOT beams are switched off. On the other hand, there are some

advantages to turn on intense ODT beams in the presence of MOT beams. For ex-

ample, this allows the ODT to capture a larger number of cold and dense atoms by

using MOT beams to prevent the gas from expanding. However, atoms experience

non-negligible AC Stark shifts in regions where the ODT beams and the MOT over-
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lap. As a result, the MOT’s cooling capability is impaired in the MOT and ODT

overlapping regions, and the number of atoms loaded into the ODT decreases when

the ODT becomes too deep. N is thus not a monotonic function of U .

MOT
0

U0

Scheme D

Scheme A

Umax

Scheme B

Scheme C

Figure 5.1: Different ODT ramping sequences of all-optical BEC production ap-

proaches.

The scheme-B (green squares in Fig. 5.2) is a popular scheme used to improve

the ODT capture efficiency, in which ODT beams overlap with a MOT for a very

short amount of time (20 ∼ 200 ms) before the MOT beams are switched off [108,

110, 113, 114]. The scheme-C (black crosses in Fig. 5.2) is another widely-applied

scheme, which keeps the ODT beam at its maximum power during the entire MOT

stage [52, 88, 106, 109]. Figure 5.2 clearly shows that there is an optimal scheme

which can increase the number of atoms loaded into the crossed ODT by a factor of

2.5 over the above two popular schemes. This optimal scheme is the best scenario of

our scheme-D. As shown in Fig. 5.1, the ODT in the scheme-D is kept at a small trap

depth U0 during the entire laser cooling process and then linearly ramped to Umax

in tramp = 5 ms. Umax ≈ kB × 800 μK is the maximal trap depth used in this work

and 0 ≤ U0 ≤ Umax. The number of atoms loaded into the ODT in the scheme-

D may be expressed as NrampD ∼ A · ξ(U0)
∫ U0

0
ρ(ε)f(ε)dε +

∫ Umax

U0

ρ(ε)f(ε)dε. Here

ξ(U0) = exp(−(δODT(U0))
2/ω2

0) is a correction factor due to the ODT-induced shift

δODT(U0), while A and ω0 are fitting parameters. Our data collected with the scheme-
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D (red circles in Fig. 5.2) can be well fit by this model. The fit value of ω0 is 1.2Γ,

where Γ/2π = 9.7 MHz is the natural linewidth of sodium. The number of atoms

in the ODT reaches its peak when the optimal ramp sequence with U0 � Umax/2 is

applied. Compared to the two popular schemes, the optimal scheme allows us to use

ODT beams with smaller waists while loading the same amount of laser-cooled atoms

to the ODT. The resulted high initial atom density and high collision rates from the

optimal scheme enable very efficient evaporative cooling. This greatly boosts the

number of atoms in a BEC by a factor of 5 over the two popular schemes for our

apparatus, as shown in the inset of Fig. 5.2.

Our optimal scheme leads to a better ODT capture efficiency at every given fre-

quency of the MOT beams within a wide range (i.e., -24 MHz ≤ δcooling ≤ −10 MHz

and -15 MHz ≤ δrepump ≤ 6 MHz), as shown in Fig. 5.3. Two important results can

be found from Fig. 5.3: a) our optimal scheme (red circles in the figure) leads to

a better ODT capture efficiency than the scheme-B at every given frequency of the

MOT beams; b) this enhanced ODT capture efficiency cannot be achieved by only

changing the frequency detuning of the MOT beams. One mechanism may explain

this phenomenon: well-aligned crossed ODT beams have a much larger intensity in

the intersection region than that in the “wing” (non-intersecting) region. In other

words, the light shift induced by the ODT beams is not uniform, i.e., a big shift in

the intersection region and a small shift in the “wing” region. These ODT induced

non-uniform shifts cannot be mimicked by simply varying the frequencies of the MOT

cooling and repumping beams. Because this mechanism does not depend on atomic

species, our optimal scheme may thus be applicable to rubidium and other optical

trappable atomic species.
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Figure 5.2: The number of atoms captured in the crossed ODT as a function of U0

with the four ODT ramp sequences. Our optimal scheme is the best scenario of the

scheme-D when U0 � Umax/2. The dashed (blue) line and the solid (red) line are fits

based on NrampA and NrampD, respectively (see text). Inset: the number of atoms in

a BEC as a function of U0, when one of the three schemes (i.e., schemes B-D) and

a same evaporation curve are applied. The dashed (red) line is a Gaussian fit to the

data.
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of δrepump. Red circles are data taken with our optimal scheme, while green squares

are data taken with the scheme-B which was used in Ref. [113]. δrepump is the fre-

quency detuning of MOT repumping beams with respect to the |F = 1〉 to |F′ = 2〉
transition. Lines are Gaussian fits to the data. Inset: N as a function of δcooling

with our optimal scheme (red circles) and the scheme-B (green squares). δcooling is

the frequency detuning of MOT cooling beams with respect to the cycling transition.

Lines are polynomial fits to the data to guide the eye.
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5.2 Optimizing the efficiency of an evaporative cooling in an ODT

Forced evaporation in an ODT can be performed by simply reducing its trap depth

U (e.g., lowering the trapping laser power). In this process, collision rates decrease

with U , which leads to slow rethermalization and eventually stagnation in evapora-

tive cooling. Several methods have been reported to overcome this difficulty, includ-

ing tilting an ODT with a magnetic field gradient [115], using a misaligned crossed

ODT [108, 110], compressing an ODT with a mobile lens [107], or applying multiple

ODTs for staged evaporation [19, 106]. However, we show that these methods may

not be necessary for some atomic species, in particular, sodium atoms.

To optimize evaporation efficiency γ, we need to understand the time evolution of

the system energy E and the atom number N during an evaporation process. Similar

to Refs. [90, 110, 116, 117], we use κkBT ≈ (η − 5)/(η − 4)kBT to represent the

average kinetic energy taken by an atom when it is removed from the ODT. And we

assume the mean kinetic energy and mean potential energy to be E/2 when η is large.

By taking account of inelastic loss, the time evolution of E and N is thus given by

Ė =− 2(η − 4)e−ηN

τ2
(U + κkBT) +

U̇

U

E

2
+ Ė|loss ,

Ṅ =− 2(η − 4)e−ηN/τ2 + Ṅ |loss , (5.1)

where τ2 is the time constant of the two-body elastic collision. In Eq. (5.1), Ė|loss and
Ṅ |loss are due to various inelastic loss mechanisms and may be expressed as,

Ė|loss =ksN − k1N(3kBT)− k3n
2N(2kBT) ,

Ṅ |loss =− k1N − k3n
2N , (5.2)

where k1 and k3 are one-body and three-body loss rates, respectively. ks represents

heating introduced by ODT beams via a number of different mechanisms, such as

pointing fluctuations of the ODT beams, bad laser beam mode, and spontaneous

light scattering. The term 2kBT in Eq. (5.2) accounts for the fact that atoms in

69



the ODT’s center have higher density and thus are more affected by the three-body

inelastic loss [108].

In our apparatus with the UHV pressure in the 10−12 Torr range, background

collisions are negligible. Since the ODT beams are delivered via a single-mode polar-

ization maintaining fiber, heating induced by the ODT beams is minimized. k1 and

ks are thus very small. If we ignore k1 and ks, Eq. (5.1) can be simplified to

Ė = ṄηeffkBT+
U̇

U

E

2
, (5.3)

where ηeff = η+κ−R(η+κ−2). We define R = (Ṅ |loss)/Ṅ = 1/(1+2(η−4)e−ηRgTb)

to represent the portion of atom losses due to inelastic collisions, where RgTb is the

ratio of inelastic collision time constant to τ2. From solving the above equations, γ

may be expressed as,

γ = −d(lnD)/d(lnN) = ηeff − 4 = η + κ−R(η + κ− 2)− 4 , (5.4)

The evaporation efficiency γ is an important parameter to quantify the efficiency

of an evaporative cooling. The phase space density D must increase in every atom-

loss step to ensure an effective evaporation, which leads to a positive γ. Figure 5.4

shows a typical relationship between D and N . Evaporation efficiency γ is extracted

from a fit based on Eq. (5.4), as shown by the red line in Fig. 5.4.

The value of η in many publications on optical productions of BECs was held

constant with Δη = 0 [52, 105, 107, 108, 110, 111, 115]. Our data in Fig. 5.5,

however, shows that a constant η does not lead to better evaporation or a larger γ.

The values of γ in this figure are extracted from 36 evaporation processes in which

the forced evaporation speed and the hold time at Umax are changed independently,

although they all start with the same initial number of cold atoms in the crossed ODT.

Δη = ηf − ηi is the change of η during forced evaporation, where ηi and ηf are the

values of η at Umax (i.e., the beginning of forced evaporation), and at Uf , respectively.

In order to avoid overestimating γ due to the Bosonic enhancement near the BEC
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Figure 5.4: Phase space density D as a function of atom number N . Both axes are in

logarithmic scale. Evaporation efficiency γ is extracted from a fit based on Eq. (5.4).

transition temperature, we choose Uf = kB × 30 μK where no BEC appears. We find

that Δη tends to be a non-negative value when the forced evaporation time is longer

than 1 s (solid black squares in Fig. 5.5), which is a good indication of sufficient

rethermalization. We also find that γ is too small to yield a BEC when Δη < −2.5.

We compare the evaporation efficiency at different values of ηi, as shown in the

inset of Fig. 5.5. γbest (the best achieved value of γ at a given ηi in our system) does

not show a strong dependence on ηi if 8 < ηi < 10, while γbest sharply diminishes when

ηi becomes too large or too small. In the inset of Fig. 5.5, the similar relationship

between γ and ηi is also predicted by the solid (blue) line, which is a result based on

Eq. (5.4) by ignoring k1 and ks and by applying a non-zero R (i.e. RgTb = 4000 [103]).

All of our data lie below the solid line in this figure, which may indicate that k1 and

ks are larger than 0 and cannot be ignored. Therefore, based on Fig. 5.5, we need

to choose a value between 8 and 10 for ηi and keep Δη larger than -0.5 in order to
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optimize evaporation efficiency γ.
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Figure 5.6: ηmax as a function of the ODT depth U , when atoms are held at a fixed

U for 8 s. The solid line is a fit based on Eqs. (5.1-5.2). Inset: the time evolution of

η at two typical ODT depths. Solid lines are fits based on the same model applied in

the main figure.

The maximum achievable value for ηi appears to be 10.8, as shown in the inset

of Fig. 5.5. To understand this, we monitor the time evolution of η and find that η

has a maximal value (ηmax) at a given ODT depth U . The value of ηmax decreases

exponentially with U and ηmax at Umax is 10.8, which agrees well with our theoretical

prediction (solid red line in Fig. 5.6). Therefore, if one wishes to keep η unchanged

during forced evaporation, η must be limited to 10.8 even though ηmax can be much

higher at low ODT depths (e.g., ηmax > 13 for U/kB < 100 μK). This may be one

reason why a constant η does not yield more efficient evaporative cooling. We also

find that the time evolution of η at every U discussed in this report can be well fit

with our model. Two typical fitting curves are shown in the inset of Fig. 5.6.
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5.3 An optimum scheme to generate sodium Bose-Einstein condensates

Figure 5.7 shows a typical experimental sequence for our all-optical BEC approach.

A pure F=1 BEC of 1.2 × 105 sodium atoms at 50 nK is created from a 0.45 s free

evaporation at Umax followed by a 5 s forced evaporation in which U is exponentially

reduced. This evaporation curve provides two important parameters for efficient

evaporative cooling: ηi is between 8 and 10, and the forced evaporation time is long

enough for sufficient rethermalization but short enough to avoid excessive atom losses.

A series of time-of-flight absorption images taken with a same evaporation curve is

shown in Fig. 5.8(a). Three 10 ms time-of-flight absorption images in Fig. 5.8(b) show

a typical change of the condensate fraction (CF) after interrupting the evaporation

curve at various U . We also apply the above all-optical approach to evaporate atoms

in a single-beam ODT. A similar result can also be achieved in the single-beam ODT

as long as its beam waist is smaller than 16 μm to provide a high enough collision

rate. The resulted number of condensed atoms in the single-beam ODT, however, is

four times smaller than that in the crossed ODT.

5.4 Spin-mixing dynamics in a sodium spinor BEC

The interesting interactions in spinor BECs are interconversion among multiple spin

states and magnetic field interactions characterized by the quadratic Zeeman effect.

Such a system can be described with a simple two-dimensional phase space that

we can manipulate to some degree by changing the magnetic field strength or the

density of the BEC [55, 65]. We experimentally study spin-mixing dynamics in a F=1

sodium spinor condensate starting from a nonequilibrium initial state, as a result

of antiferromagnetic spin-dependent interactions and the quadratic Zeeman energy

induced by magnetic fields. When a F=1 spinor BEC is taken out of equilibrium at a

non-zero magnetic field, we observe spin population oscillations resulted from coherent

74



    43 ms polarization

      gradient cooling

 8.5 s

MOT

5 ms ODT 

     ramp

 0.45 s free

evaporation

 5 s forced 

evaporation

ODT depth U

( k
B 

× 1μK )

magnetic field

gradient (G/cm)

repumping beam

power (mW)

cooling beam

power (mW)

δcooling (MHz)

0

10

0

2.3

0

13

0

-15

-45

U0800
Umax

Figure 5.7: Experimental sequence of creating sodium BECs with the all-optical

approach. Each MOT cooling beam is detuned by δcooling from the cycling transition.

All axes are not to scale.

collisional interconversion among two |F = 1, mF = 0〉 atoms, one |F = 1, mF = +1〉
atom, and one |F = 1, mF = −1〉 atom, as shown in Fig. 5.9(b).

Similar to Ref. [55, 118], we take into account the conservation of m and the

total atom number. The SMA (single spatial-mode approximation) assumes all spin

states share the same spatial wavefunction, which has been a successful model to

understand spinor microcondensates [58, 64, 65, 66, 67, 68, 118, 119, 120]. The

fractional population ρmF
and the phase θmF

of each mF state are thus independent

of position in SMA, and m = ρ+1−ρ−1. Spin-mixing dynamics in a F=1 spinor BEC

can thus be described with a two-dimensional (ρ0 vs θ) phase space. The BEC energy

E and the time evolution of ρ0 and θ may be expressed as [55, 118]

E = qB(1− ρ0) + cρ0[(1− ρ0) +
√

(1− ρ0)2 −m2 cos θ],

ρ̇0 = −(2/�)∂E/∂θ, θ̇ = (2/�)∂E/∂ρ0 . (5.5)

Here qB is the quadratic Zeeman energy shift, θ = θ+1+θ−1−2θ0 is the relative phase
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panel. (b) Absorption images taken after interrupting an optimized evaporation curve

at various U followed by a 10 ms time-of-flight. OD stands for the optical density.

Dashed black lines and solid blue lines are fits to the column densities based on a

Gaussian distribution and a bimodal distribution, respectively. CF = ñc/(ñth + ñc),

where ñth and ñc are column densities for the thermal cloud and the condensate,

respectively.
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among the three mF spin states, and � is the reduced Planck constant. The induced

linear Zeeman shift remains the same during the collisional spin interconversion and

is thus ignored. The spin-dependent interaction energy is c = c2〈n〉, where 〈n〉 is the
mean BEC density and c2 is the spin dependent interaction coefficient. The total

magnetization is m = ρ+1 − ρ−1. It is well known that qB ∝ B2 > 0, and c2 > 0 (or

c2 < 0) in F=1 23Na (or 87Rb) spinor BECs. Spin-dynamics in F=1 antiferromagnetic

and ferromagnetic spinor BECs have been studied in magnetic fields where qB > 0

with 23Na and 87Rb atoms, respectively [55].

To fully polarize atoms in a F=1 BEC to the |F = 1, mF = 1〉 state, a weak

magnetic field gradient is applied during forced evaporation, as shown in Fig. 5.7.

We then ramp up a magnetic bias field with its strength B between 100 mG and

700 mG after turning off the field gradient. We can prepare an initial state with

any desired combination of three mF states by altering the amplitude and duration

of a resonant rf-pulse and/or a resonant microwave pulse at the end of the forced

evaporation. A Stern-Gerlach separation followed by absorption imaging is used to

measure the populations of different spin states, as shown Fig. 5.9(a).
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Figure 5.9: (a) Three spin components of a F=1 spinor BEC are spatially separated

in a 3D Stern-Gerlach absorption image. (b) A typical time evolution of ρ0 at B =

431 mG, m = 0, and θ = 0 when the spinor BEC is held in the crossed ODT. The

solid blue line is a sinusoidal fit to the data.
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The time evolution of ρ0 is fit by a sinusoid to extract the spin oscillation period

T and amplitude A at a given B. The value of T as a function of B is plotted

in Fig. 5.10 for m = 0. The spin oscillation is harmonic except near the critical

values (i.e., B = 370 mG) where the period diverges. The energy contour Esep

where the oscillation becomes anharmonic is defined as a separatrix in phase space,

as shown in the inset of Fig. 5.10. A point on the separatrix satisfies the equation

ρ̇0 = θ̇ = 0 according to the mean-field SMA theory. In fact for our sodium system

with c > 0, Esep = qB. The period T decreases rapidly with increasing B when B

is large, which corresponds to the “Zeeman regime” with running phase solutions.

In the opposite limit, the period only weakly depends on B, which represents the

“interaction regime” with oscillatory phase solutions. The value of θ is (or is not)

restricted in the regions with oscillatory (or running) phase solutions. The data can

be well fit by a prediction derived from Eq. (5.5) (solid black line in Fig. 5.10) [55]

with only one fitting parameter (i.e., the mean BEC density). Figure 5.10 may thus

be a good way to measure the mean BEC density and to check the values of the

crossed ODT’s trap frequency and trap depth.
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Figure 5.10: The period of spin population oscillations as a function of B at m = 0.

The solid black line is a fit based on Eq. (5.5) with m = 0, ρ0|t=0 = 0.48, θ|t=0 = 0,

and c/h = 38 Hz. Inset: Equal-energy contour plots generated from Eq. (5.5) at

B = 285 mG when m = 0 and c/h = 38 Hz. Dashed red line represents the energy

of atoms with ρ0|t=0 = 0.48 and θ|t=0 = 0. Heavy blue line represents the energy of

the separatrix (Esep) between oscillating and running phase solutions. Darker colors

represent lower energies.
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CHAPTER 6

Mapping the phase diagram of spinor condensates via adiabatic quantum

phase transitions

This chapter presents our experimental results on the phase diagram of F=1 sodium

antiferromagnetic spinor condensates. We developed a novel technique which enabled

us to map the phase diagram by adiabatically tuning a microwave field across one of

the quantum phase transitions observed in our system. Two papers related to these

topics were published:

• J. Jiang, L. Zhao, M. Webb, and Y. Liu, Mapping the phase diagram of spinor

condensates via adiabatic quantum phase transitions, Phys. Rev. A 90, 023610

(2014).

• L. Zhao, J. Jiang, T. Tang, M. Webb, and Y. Liu, Dynamics in spinor conden-

sates tuned by a microwave dressing field, Phys. Rev. A 89, 023608 (2014).

Several groups demonstrated the mean-field (MF) ground states of spinor BECs by

holding BECs in a fixed magnetic field and letting spin population oscillations damp

out over a few seconds [64, 65, 66, 67]. The required damping time, determined by

energy dissipation, may in some cases exceed the BEC lifetime. The exact mechanism

involved in energy dissipation requires further study, although it has been shown

that energy dissipates much faster in high magnetic fields [66]. For F=1 BECs, a

magnetic field introduces only a positive net quadratic Zeeman energy qnet, while a

microwave field has a distinct advantage since it can induce both positive and negative

qnet [55, 57, 58, 63, 121]. As shown in Ref. [58], the same physics model explains spin-
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mixing dynamics observed in both microwave fields and magnetic fields. One would

assume that, if given a long enough exposure to a microwave field, a spinor BEC could

also reach its MF ground states. However, experimental studies on ground states of

spinor BECs in microwave fields have proven to be very difficult, since these fields

are created by near-resonant microwave pulses. Two major experimental challenges

associated with microwave fields are atom losses and variations in magnetizationm. A

different inelastic collision rate in each hyperfine state may be one of possible reasons

to account for these challenges. Microwave-induced changes in both m and the atom

number N can be detrimental, especially when a spinor BEC is exposed to a large

microwave field for a prolonged time [58, 63]. As a result, the phase diagram of F=1

BECs has not been well explored in the qnet ≤ 0 region, where applying microwave

fields may be necessary.

In this chapter, I demonstrate a new method to overcome the aforementioned

experimental challenges and report the observation of two types of quantum phase

transitions in a spinor BEC [122]. In this method, we quickly prepare an initial

equilibrium state at a very high magnetic field to minimize the damping time for

spin population oscillations and prevent unnecessary exposure to microwave pulses.

Equilibrium states at a desired qnet are then created by adiabatically sweeping an

additional microwave field. Using this method, we are able to investigate many pre-

viously unexplored regions in the phase diagram of antiferromagnetic spinor BECs

and observe three distinct quantum phases.

6.1 The mean-field ground states of spinor BECs

Similarly to Ref. [55, 56, 67], we define three phases in the MF ground states based

on ρ0, the fractional population of the |F = 1, mF = 0〉 state: ρ0 = 1, ρ0 = 0, and

0 < ρ0 < 1 respectively represent a longitudinal polar phase, an antiferromagnetic

(AFM) phase, and a broken-axisymmetry (BA) phase.
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After taking into account that N and m are independent of time t and neglecting

all constant terms in the Hamiltonian of spinor BECs, we use the SMA to express

the BEC energy E and the time evolution of ρ0 and θ as [55, 118, 119]

E(t) = cρ0(t){[1− ρ0(t)] +
√

[1− ρ0(t)]2 −m2 cos[θ(t)]}

+ qnet(t)[1− ρ0(t)] ; (6.1)

ρ̇0 =− 4π

h

∂E(t)

∂θ(t)
, θ̇ =

4π

h

∂E(t)

∂ρ0(t)
. (6.2)

Here qnet = qM+qB is the net quadratic Zeeman energy with qB (or qM) being induced

by magnetic (or microwave dressing) fields.

By minimizing Eq. (6.1), we find ρ0 in a MF ground state of F=1 spinor BECs is

zero if qnet < c(1 ± √
1−m2); or equals to one if m = 0 and qnet > −c(1 ± 1); or is

the root of the following equation at all other qnet and m,

c[1− 2ρ0 ± (1− 2ρ0)(1− ρ0)−m2√
(1− ρ0)2 −m2

]− qnet = 0 , (6.3)

where the + (or −) sign applies to ferromagnetic (or antiferromagnetic) spinor BECs.

6.2 Two experimental sequences to generate equilibrium states in

spinor BECs

The experimental setup is similar to that elaborated in previous chapters and our

recent publications [58, 62]. A F=1 BEC of 5 × 104 atoms is created by a forced

evaporation in a crossed optical dipole trap. To fully polarize atoms into the |F =

1, mF = −1〉 state, we turn on a weak magnetic field gradient and a low magnetic

bias field in the forced evaporative cooling process. A resonant rf-pulse of a proper

amplitude and duration is applied to prepare an initial state with any desired com-

bination of the three mF states. This moment is defined as the starting point (t = 0)

of our experimental sequences, as shown in Fig. 6.2. Every sequence ends at t = tf .

Populations of multiple spin states are then measured by a standard Stern-Gerlach

absorption imaging.
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6.2.1 An old and widely-used method to generate equilibrium states

We use two different methods to generate equilibrium states. The Method-O is an old

and widely-used method, which creates equilibrium states simply by holding a BEC

at a fixed qnet for a sufficiently long time. We find that the required hold time is longer

than 2 s for all positive qnet studied in this paper. This old method fails for our system

in low magnetic fields (i.e, the small positive qnet region), because energy dissipates

very slowly and the required hold time is longer than the BEC lifetime (∼ 10 s) in

this region. This old method is more problematic in the negative qnet region, because

it leads to significant atom losses and detrimental changes in m. The BEC lifetime

decreases with the absolute value of qM , the quadratic Zeeman energy induced by a

microwave field. Figure 6.1 shows a numerical example: the measured BEC lifetime

in our system reduces from 9 s to 2.2 s when |qM |/h increases from 1 Hz to 25 Hz.

Here h is the Planck constant. Changes in m and N become detrimental when a

BEC is exposed to a big |qM | for a prolonged time. This experimental challenge is

one main reason why the phase diagram in the negative qnet region had remained to

be largely unexplored, since the old method requires holding a BEC at a fixed qnet

for a few seconds.

6.2.2 Our new method to generate equilibrium states

In order to overcome these experimental challenges associated with the old method,

we have developed a new method, Method-N. A typical experimental sequence of the

new method is listed in Fig. 6.2. We first hold a spinor BEC in the optical trap for

5 s at a very high magnetic field with qB/h = 900 Hz. This step ensures the BEC

reaches its ground states, since we and Ref. [66] find that the energy dissipation rate

quickly increases with qB. Second, we adiabatically ramp the magnetic field down

to qB/h = 20 Hz in 0.1 s, keep qB at this value for 0.3 s, and then turn on a far

off-resonant microwave pulse in 0.1 s. Third, we tune only the frequency of this pulse
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Figure 6.1: Time evolution of N at two different qM . Solid lines are exponential fits

to yield the BEC lifetime (i.e., 2.2 s at qM/h = −25 Hz and 9 s at qM/h = −1 Hz).

slowly within 0.5 s, in order to adiabatically sweep its corresponding microwave field

to a desired qnet. Our approach to characterize microwave dressing fields and the

frequency tuning curve for adiabatically sweeping qnet within the range of −∞ to

+∞ are as same as those illustrated in our previous work [58].

6.2.3 Comparisons between the old and new methods

A comparison of these two methods starting from the same initial state is shown in

Fig. 6.3, which highlights the advantage of our new method. Note that m and N

may not be conserved using the old method, when a microwave field induced by a

near-resonant microwave pulse is applied. This is due to the fact that the microwave

pulse unavoidably excites some atoms in a F=1 spinor BEC to the F=2 manifold,

and more atoms are excited when the microwave pulse has a higher power or a smaller

frequency detuning with respect to the |F = 1〉 ↔ |F = 2〉 transitions.
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Figure 6.2: A typical experimental sequence of Method-N, which is our new method

to create equilibrium states via adiabatically sweeping a microwave field. In this

paper −150 Hz ≤ qnet(t = tf)/h ≤ 150 Hz. All axes are not to scale.
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Figure 6.3: m as a function of qnet at t = tf in the two methods starting from the

same initial state, i.e., m(t = 0) = −0.1. Note that tf for Method-O in this panel is

only 1 s, which is much shorter than the typical hold time for creating equilibrium

states.
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6.3 Adiabaticity check of our new method

In theory, once a BEC is prepared into its ground state, the BEC may stay in its

ground state at each qnet when a microwave field is adiabatically ramped [59]. We can

thus initially check whether the new method is applicable by comparing equilibrium

states created by both new and old methods in a region, qnet � 0, where the old

method has been proven to generate the MF ground states [64, 65, 66, 67]. Figure 6.4

shows such comparisons made at qnet(t = tf )/h = 100 Hz for various magnetization

m. The equilibrium states created by the two methods appear to be quite similar,

and they stay very close to the same black solid line which represents the MF ground

states in Fig. 6.4. This suggests that our new method is adiabatic enough to replace

the old method in studies related to the BEC phase diagrams. We also find that a

spinor BEC returns to its original state when we ramp a microwave field from qM = 0

to a fixed nonzero qM and then back to qM = 0 with this new method, although this

observation may not be sufficient to prove the process is adiabatic.

1.0

0.8

0.6

0.4

0.2

0

-1 -0.5 0 0.5 1

 Method-N
 Method-O with qM = 0
 MF ground states

 qnet (t = t
f 
)

 
/ h = 100 Hz

ρ
0

m

Figure 6.4: ρ0 as a function of m at qnet(t = tf)/h = 100 Hz in equilibrium states

created by the two methods. In this panel, Method-O prepares equilibrium states by

holding BECs for 8 s in a high magnetic field where qM = 0 and qB/h = 100 Hz. The

solid black line represents the MF ground states.
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6.4 Mapping the phase diagram of spinor condensates

We then apply our new method to a much wider range of qnet and m, especially in the

negative and small positive qnet regions which cannot be easily explored by the old

method, as shown in Fig. 6.5. We find two interesting results from this figure. First,

our data in Fig. 6.5(a) show a quantum phase transition between a BA phase and an

AFM phase at each m. This BA-AFM phase transition appears to occur at a larger

qnet when |m| gets bigger, which can be well explained by the MF theory (i.e., dashed

lines in the inset in Fig. 6.5(a)). Another interesting result is that this new method

does allow us to access many previously unexplored regions in the phase diagram,

although there is a visible discrepancy between the MF ground states and our data

at a small m in the negative qnet region, as shown in Fig. 6.5(b). To understand this

phenomenon, we simulate the experimental processes based on Eq. (6.2) by taking a

proper formula to account for the time evolution of qnet during an adiabatic ramping

of microwave fields. Figure 6.5 shows that the simulation results can well resemble

the experimental data, while the differences between our simulation results and the

MF ground states are emphasized by a shaded area at each m in the two insets in

Fig. 6.5. These shaded areas appear to slowly increase in the negative qnet region

when |m| approaches zero. In other words, the discrepancy between our data and the

MF ground states only becomes noticeable at a small |m| in the negative qnet region.

Due to this discrepancy, we find that the predicted quantum phase transition between

an AFM phase and a longitudinal polar phase at m = 0 and qnet = 0 is replaced by a

transition between a BA phase and a longitudinal polar phase. Since our experimental

resolution for ρ0 is around 0.02, Fig. 6.5 implies that our new method is sufficient to

map out the BEC phase diagram in the positive qnet region at each m, and in the

negative qnet as long as |m| ≥ 0.4.

Figure 6.6 clearly summarizes the improvement provided by this new method,

after comparing the theoretical MF phase diagram to an experimental phase diagram
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Figure 6.5: ρ0 as a function of qnet at t = tf for three large |m| in Panel (a) and

for two small |m| in Panel (b) in equilibrium states created by our new method.

Solid lines are simulation results for the experimental processes based on Eq. (6.2).

Insets: dashed lines are the MF ground states. Shaded areas represent the differences

between our simulation results and the MF theory at various m. The black, blue,

and red colors in Panel (a) respectively correspond to results at |m| = 0.75, 0.54, and

0.40. The blue and red colors in Panel (b) represent results at |m| = 0.20 and 0.07.
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consisting of our data taken at 153 different qnet and m. All three predicted phases

(i.e., an AFM, a polar, and a BA phases), an AFM-BA phase transition at a fixed

m, and a transition between a longitudinal polar phase and a BA phase at a certain

positive qnet are shown in the experimental phase diagram. Good agreements between

our data and the MF ground states can be found everywhere in the two phase diagrams

except in the region where |m| < 0.4 and qnet < 0. This problematic region has been

marked by red solid lines in Fig. 6.6. Ramping microwave fields at a slower rate should

help to diminish this problematic region, however, a slower rate requires holding a

BEC in microwave fields for a longer time and thus inevitably leads to more atom

losses and a bigger change in m. In fact, we tried quite a few different microwave

ramping rates, but none of them enabled a spinor BEC to reach its MF ground states

when m is very small and qnet < 0. The same problem also exists in simulation

results: our simulation program cannot suggest a reasonable ramping rate to ensure

an adiabatic sweep of qnet across a phase transition for a small m.

6.5 Feasibility of our new method

To understand the feasibility of Method-N, we need to find the exact value of ΔE,

the energy gap between the ground state and the first excited state in spinor BECs.

Similarly to Ref. [59], we can describe a spinor BEC in the Fock space. The spin-

dependent part of the Hamiltonian in a F=1 spinor BEC can be expressed as [59,

118, 123]

H =

1∑
i,j,k,l=−1

[
qnetk

2a†kak +
c

2

∑
γ

a†ka
†
i(Fγ)ij(Fγ)klajal

]
, (6.4)

since m is conserved and there are only a finite number of atoms in a typical equilib-

rium state studied in this paper. Here ak (a†k) is the annihilation (creation) operator

of the |F = 1, mF = k〉 state, and Fγ=x,y,z are the spin-1 matrices. By diagonalizing

the Hamiltonian in Eq. (6.4) and performing an exact numerical many-body calcu-

lation, we can find the energy gaps. Figure 6.7 shows numerical examples of ΔE
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at three typical |m|. It appears that ΔE drastically drops by more than three or-

ders of magnitude when |m| and qnet approach zero, as shown in the inset in Fig. 6.7.

Therefore, it is not surprising that adiabatically sweeping qnet across a quantum phase

transition point is not feasible at a very small m, especially at m = 0. We can also

calculate ΔEe, the energy gap between the highest eigenstate and the second highest

eigenstate of Eq. (6.4). The minimal value of ΔEe at m = 0 appears to be larger than

that of ΔE (the energy gap associated with the ground state) at m = 0.75. In other

words, adiabatically sweeping qnet across a quantum phase transition demonstrated

in this paper may be useful for confirming other important predictions, for instance,

realizing massive entanglement in the highest eigenstate of antiferromagnetic spinor

BECs [59]. In addition, this method can be applied to other atomic species and may

be helpful to discover interesting quantum phase transitions in other systems, for

example, revealing a BA-AFM quantum phase transition in F=1 87Rb spinor BECs

at a negative qnet.
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CHAPTER 7

CONCLUSIONS

7.1 Final remarks

This is the last chapter of my thesis and also indicates the endpoint of my PhD study.

At this point, many unforgettable moments during the past six years came into my

mind and they have became precious parts of my memory. I still remember the first

time I walked into the lab and there was just two empty optical tables and I was

curious at that time what a working system should look like. I also remember our

first sodium MOT, which was a very tiny yellow dot. I was staring at the atomic

cloud and even did not believe it with my eyes. After our 3-year hard work, we

finally achieved our sodium spinor BECs in 2013. Our robust experimental system

can routinely provide us a BEC of ∼105 sodium atoms in our daily experiments.

The major parts of this thesis are the all-optical production of a sodium spinor

BEC, and our experimental studies on the spin-mixing dynamics in spinor BECs.

Various important apparatuses and technologies for generating a sodium spinor con-

densate have been described in details in this thesis. A simple and optimal experimen-

tal scheme that can greatly boost the atom number of a BEC was also demonstrated.

We also discussed an upper limit for the evaporative cooling efficiency in all-optical

BEC approaches. Spin population oscillations have been observed in sodium spinor

BECs, which have been well explained by the SMA theory. In addition, we have in-

troduced a new experimental method to map out the phase diagram of sodium spinor

condensates via adiabatically tuning a microwave field across one of the quantum

phase transitions observed in our system. Compared to one widely used method that
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requires holding BECs in an ODT for a long time, our method overcame two major

experimental challenges. As a result, many previously unexplored regions in the phase

diagram of F=1 antiferromagnetic spinor condensates have been investigated by our

new method, and our experimental phase diagrams agree well with the mean-field

theory.

7.2 Future direction

Spinor BECs in optical lattices can systematically study, verify and optimize con-

densed matter models. For example, they provide a quantum simulator to study the

nature of entanglement of many-body wavefunctions, e.g., the Laughlin-type wave-

functions appearing in the fractional quantum Hall systems. A better understanding

of these models may directly lead to engineering revolutionary materials, which could

enable development of new generations of devices for high speed precision electronics

and telecommunications equipment. Dynamics of lattice-trapped spinor BECs have

been recently studied in both 87Rb [124, 125, 126, 127] and 23Na [128] spinor gases.

The Bose-Hubbard model which includes spin-dependent interactions will be ap-

plied to understand our system: sodium spinor BECs confined in 3D optical lattices.

We define U0 as the spin-independent on-site atom-atom interaction energy, J as the

tunneling energy, and U2 as the spin-dependent atom-atom interaction energy. U2 is

proportional to c2, so it is positive (or negative) in F=1 Na (or Rb) BECs. Atoms

held in a shallow optical lattice can tunnel freely from site to site and form a super-

fluid phase. As the lattice is made deeper, the atomic interaction is increased while

the tunneling rate between lattice sites is exponentially suppressed. A scalar BEC

system then undergoes a second-order transition from the superfluid (SF) phase to

the Mott-insulator (MI) phase [55]. Each lattice site contains nL (a definite fixed

number) atoms in the MI phase. The critical point for the SF-MI phase transition is

determined by U0/J = z[2nL+1+2
√
nL(nL + 1)], according to the mean-field theory
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for homogenous systems of atoms in the lowest band of an optical lattice [129, 130].

Here z is the number of nearest neighbors in the lattice (e.g., z=6 for a 3D/cubic lat-

tice). The SF-MI phase transition should also appear in lattice-trapped spinor BECs.

However, the mean-field theory predicts that the transition is remarkably different in

antiferromagnetic spinor BECs: the transition may be first order around the tip of

each Mott lobe for an even occupation number nL, while it is second order for an odd

nL [55]. 3D optical lattices formed by three optical standing waves, two in the hori-

zontal plane and one in the vertical plane, have been constructed in our lab recently.

We will perform a few studies related to quantum-phase-revival spectroscopy, the

mean-field phase diagram, and the first-order superfluid to Mott-insulator transitions

in the near future.
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We present a simple and optimal experimental scheme for an all-optical production of a sodium spinor
Bose-Einstein condensate (BEC). With this scheme, we demonstrate that the number of atoms in a pure BEC can
be greatly boosted by a factor of 5 over somewidely used schemes in a simple single-beamor crossed-beamoptical
trap.Our scheme avoids technical challenges associatedwith some all-optical BECmethods andmay be applicable
to other optically trappable atomic species. In addition, we discuss an upper limit for evaporative cooling efficiency
in all-optical BEC approaches and a good agreement between our theoretical model and experimental data.

DOI: 10.1103/PhysRevA.88.033620 PACS number(s): 67.85.Hj, 64.70.fm, 37.10.Jk, 32.60.+i

I. INTRODUCTION

In the last two decades, many techniques have been devel-
oped to reliably generate a Bose-Einstein condensate (BEC)
of more than 104 atoms. Almost every one of these techniques
requires evaporative cooling in a trapping potential, including
a magnetic trap, an optical dipole trap (ODT), or a combined
magnetic and optical potential [1–5]. Among these techniques,
all-optical methods have been proven to be versatile and
popularly applied in producing quantum-degenerate gases of
both bosonic [6–14] and fermionic [15] species. ODTs have
tight confinement, which allows for fast evaporation with a
duty cycle of a few seconds [6]. Unlikemagnetic potentials that
only trap atoms in the weak-field-seeking spin state, an ODT
can confine all spin components. This is crucial for creating
vector (spinor) BECswith a spin degree of freedom [16].ODTs
can also be applied to a wider variety of atomic species (e.g.,
ytterbium, alkaline-earth metals, and cesium) which cannot
be feasibly condensed in a magnetic trap [8,13]. In addition,
optical trapping does not requiremagnetic coils around trapped
atoms, which not only provides better optical access but
also reduces residual magnetic fields. The simplicity and
versatility of ODTs widens the accessibility of BEC research
on many-body physics, precision measurements, and quantum
information science [17].
Forced evaporation in an ODT can be performed by simply

reducing its trap depth U (e.g., lowering the trapping laser
power). In this process, collision rates decrease with U ,
which leads to slow rethermalization and eventually stagnation
in evaporative cooling. Several methods have been reported
to overcome this difficulty, including tilting an ODT with
a magnetic-field gradient [18], using a misaligned crossed
ODT [12,14], compressing an ODT with a mobile lens [11],
and applying multiple ODTs for staged evaporation [8,10].
In this paper, however, we show that these methods may
not be necessary for some atomic species, in particular,
sodium atoms. Good agreements between our model and
experimental data enable us to develop an optimal ODT ramp
and evaporation sequence for an all-optical production of
sodium BECs. With this optimal scheme, we find that the
number of atoms in a pure BEC is greatly boosted by a factor

*yingmei.liu@okstate.edu

of 5 over some popular schemes and evaporation efficiency
γ = −d(lnD)/d(lnN ) can be 3.5 in a crossed ODT. Here D

is the phase space density, and N is the number of atoms.
We also show an upper limit for γ at a given truncation
parameter η = U/kBT and demonstrate that a constant η does
not yieldmore efficient evaporative cooling. HereT is the atom
temperature and kB is the Boltzmann constant. This optimal
experimental scheme allows us to avoid technical challenges
associated with some all-optical BEC approaches.

II. EXPERIMENTAL SETUP

Our apparatus is divided by differential pumping tubes into
an atomic oven chamber, an intermediate chamber, and a main
chamber where a magneto-optical trap (MOT) is located [19],
as shown in Fig. 1(a). Hot atoms are slowed down by a spin-flip
Zeeman slower [21] and then collected in the MOT, which
is constructed with six cooling beams and a pair of 24-turn
anti-Helmholtz coils. Each MOT cooling beam is detuned by
δcooling = −20 MHz from the cycling transition, has a power
of 6 mW, and combines with one 3.5-mW MOT repumping
beam in a single-mode fiber. Every MOT repumping beam is
detuned by δrepump = −5 MHz from the |F = 1〉 to |F ′ = 2〉
transition.After 8.5 s ofMOT loading, a three-step polarization
gradient cooling process efficiently cools 3× 108 atoms to
40μK [19]. To depump atoms into the F = 1 hyperfine states,
the repumping beams are extinguished 1 ms before cooling
beams and MOT coils are turned off. Figure 1(b) lists a typical
experimental sequence for our all-optical BEC approach.
A crossed ODT consists of two far-detuned beams which

originate from an IR laser with a maximum power of 13 W
at 1064 nm and have a waist of 33 μm [22] at their
intersection point, as shown in Fig. 1(a). A single-mode
polarization-maintaining fiber is used to polish the beammode
and to minimize pointing fluctuations due to imperfections of
the IR laser and thermal contractions of an acoustic-optical
modulator. As a result, atoms which are transferred from the
MOT into the tightly focused crossed ODT demonstrate a long
lifetime of 8 s and a large collision rate. These are essential
for all-optical BEC approaches.
A couple of ODT ramp sequences were proposed to

improve the ODT capture efficiency by finding a reasonable
balance between two competing ODT-induced effects [6,7,
9,10,12–14,23,24]. First, a larger U enables more atoms to
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FIG. 1. (Color online) (a) Schematic of our apparatus. Inset 1:
schematic of the crossed ODT setup around the main chamber. The
positive z axis represents the direction of gravity. L1, L2, and L3 are
convex lenses. M1 and M2 are mirrors. Inset 2: the definition of the
ODT trap depth U . The solid red line and dashed blue line represent
the crossed ODT’s trap potential energy P as a function of position
along the z axis with and without taking into account the influence of
gravity, respectively [20]. Here x = y = 0 and the ODT laser power
is 60 mW. (b). Experimental sequence of creating sodium BECs with
the all-optical approach (see text). EachMOTcooling beam is detuned
by δcooling from the cycling transition. All axes are not to scale.

be captured in the ODT if the ODT beams do not interact
with the MOT. The number of atoms loaded in the ODT is
NrampA ∼ ∫ U

0 ρ(ε)f (ε)dε, where ρ(ε) and f (ε) are the density
of states and occupation number at energy ε, respectively. This
is confirmed by our data (blue triangles in Fig. 2) taken with
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FIG. 2. (Color online) The number of atoms captured in the
crossed ODT as a function of U0 with the four ODT ramp sequences
(see text). Our optimal scheme is the best scenario of scheme D when
U0 � Umax/2. The dashed blue line and the solid red line are fits
based onNrampA andNrampD, respectively (see text). Inset: the number
of atoms in a BEC as a function of U0 when one of the three schemes
(i.e., schemes B–D) and the same evaporation curve are applied. The
dashed red line is a Gaussian fit to the data.

scheme A, in which the ODT depth is linearly ramped in 5 ms
from zero to U0 immediately after MOT beams are switched
off. On the other hand, there are some advantages to turning
on intense ODT beams in the presence of MOT beams. For
example, this allows the ODT to capture a larger number of
cold and dense atoms by using MOT beams to prevent the gas
from expanding. However, atoms experience non-negligible
ac Stark shifts in regions where the ODT beams and the MOT
overlap. As a result, the MOT’s cooling capability is impaired
in the MOT and ODT overlapping regions, and the number of
atoms loaded into the ODT decreases when the ODT becomes
too deep. N is thus not a monotonic function of U .
Scheme B (green squares in Fig. 2) is a popular scheme

used to improve the ODT capture efficiency, in which ODT
beams overlapwith aMOT for a very short amount of time (20–
200ms) before theMOTbeams are switched off [12,14,23,24].
Scheme C (black crosses in Fig. 2) is another widely applied
scheme, which keeps the ODT beam at its maximum power
during the entire MOT stage [6,9,10,13]. Figure 2 clearly
shows that there is an optimal scheme which can increase the
number of atoms loaded into the crossed ODT by a factor
of 2.5 over the above two popular schemes. This optimal
scheme is the best-case scenario for our schemeD.As shown in
Fig. 1(b), the ODT in scheme D is kept at a small trap depthU0
during the entire laser cooling process and is then linearly
ramped to Umax in tramp = 5 ms. Umax ≈ kB × 800 μK is the
maximal trap depth used in this work, and 0 � U0 � Umax.
The number of atoms loaded into the ODT in scheme D
may be expressed as NrampD ∼ Aξ (U0)

∫ U0
0 ρ(ε)f (ε)dε +∫ Umax

U0
ρ(ε)f (ε)dε. Here ξ (U0) = exp{−[δODT(U0)]2/ω20} is a

correction factor due to theODT-induced shift δODT(U0), while
A andω0 are fitting parameters.Our data collectedwith scheme
D (red circles in Fig. 2) can be well fitted by this model. The
fit value of ω0 is 1.2	, where 	/2π = 9.7 MHz is the natural
linewidth of sodium. The number of atoms in the ODT reaches
its peak when the optimal ramp sequence with U0 � Umax/2
is applied. Compared to the two popular schemes, the optimal
scheme allows us to use ODT beams with smaller waists while
loading the same amount of laser-cooled atoms to the ODT.
The resulting high initial atom density and high collision rates
from the optimal scheme enable very efficient evaporative
cooling. This greatly boosts the number of atoms in a BEC by
a factor of 5 over the two popular schemes for our apparatus,
as shown in the inset in Fig. 2.
We find that our optimal scheme leads to a better ODT

capture efficiency over the two popular schemes at every
given frequency of the MOT beams within a wide range (i.e.,
−24 MHz � δcooling � −10 MHz and −15 MHz � δrepump �
6MHz). One mechanism may explain this phenomenon: well-
aligned crossedODT beams have amuch larger intensity in the
intersection region than that in the “wing” (nonintersecting)
region. In other words, the light shift induced by the ODT
beams is not uniform, i.e., a big shift in the intersection region
and a small shift in the “wing” region. These ODT-induced
nonuniform shifts cannot be mimicked by simply varying
the frequencies of the MOT cooling and repumping beams.
Because this mechanism does not depend on atomic species,
our optimal scheme may thus be applicable to rubidium and
other optical trappable atomic species.
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III. EVAPORATIVE COOLING

To optimize γ , it is necessary to understand the time
evolution of the system energy E and the atom number N

during an evaporation process. Similar to Refs. [14,25–27],
we use κkBT ≈ (η − 5)/(η − 4)kBT to represent the average
kinetic energy taken by an atom when it is removed from
the ODT, and we assume the mean kinetic energy and mean
potential energy to beE/2 when η is large. The time evolution
of E and N is thus given by

Ė = −2(η − 4)e−ηN

τ2
(U + κkBT )+ U̇

U

E

2
+ Ė|loss,

(1)
Ṅ = −2(η − 4)e−ηN/τ2 + Ṅ |loss,

where τ2 is the time constant of the two-body elastic collision.
In Eq. (1), Ė|loss and Ṅ |loss are due to various inelastic loss
mechanisms and may be expressed as

Ė|loss = ksN − k1N (3kBT )− k3n
2N (2kBT ),

(2)
Ṅ |loss = −k1N − k3n

2N,

where k1 and k3 are one-body and three-body loss rates,
respectively. ks represents heating introduced by ODT beams
via a number of different mechanisms, such as pointing
fluctuations of the ODT beams, a bad laser beam mode,
and spontaneous light scattering. The term 2kBT in Eq. (2)
accounts for the fact that atoms in the ODT’s center have
higher density and thus are more affected by the three-body
inelastic loss [12].
In our apparatus with the UHV pressure in the 10−12

Torr range, background collisions are negligible. Since the
ODT beams are delivered via a single-mode polarization-
maintaining fiber, heating induced by the ODT beams is
minimized. k1 and ks are thus very small. If we ignore k1
and ks, Eq. (1) can be simplified to

Ė = ṄηeffkBT + U̇

U

E

2
, (3)

where ηeff = η + κ − R(η + κ − 2). We define R = (Ṅ |loss)/
Ṅ = 1/[1+ 2(η − 4)e−ηRgTb] to represent the portion of atom
losses due to inelastic collisions, where RgTb is the ratio of the
inelastic collision time constant to τ2. From solving the above
equations, γ may be expressed as

γ = ηeff − 4 = η + κ − R(η + κ − 2)− 4. (4)

The value of η in many publications on optical productions
of BECs was held constant withη = 0 [6,7,11,12,14,15,18].
Our data in Fig. 3, however, show that a constant η does not
lead to better evaporation or a larger γ . The values of γ in
Fig. 3 are extracted from 36 evaporation processes in which the
forced evaporation speed and the hold time atUmax are changed
independently, although they all start with the same initial
number of cold atoms in the crossed ODT.η = ηf − ηi is the
change of η during forced evaporation, where ηi and ηf are the
values of η at Umax (i.e., the beginning of forced evaporation)
and at Uf , respectively. In order to avoid overestimating γ

due to the bosonic enhancement near the BEC transition
temperature, we choose Uf = kB × 30μK, where no BEC
appears. We find that η tends to be a non-negative value
when the forced evaporation time is longer than 1 s (solid
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FIG. 3. (Color online) Evaporation efficiency γ in 36 different
evaporation processes as a function of η. Solid black squares are
data taken with the forced evaporation time longer than 1 s. Inset: γbest
as a function of ηi extracted from themain figure. The solid line sets an
upper limit for γ based on Eq. (4) by assuming k1 = ks = 0 (see text).

black squares in Fig. 3), which is a good indication of sufficient
rethermalization. We also find that γ is too small to yield a
BEC when η < −2.5.
We compare the evaporation efficiency at different values

of ηi, as shown in the inset of Fig. 3. γbest (the best achieved
value of γ at a given ηi in our system) does not show a
strong dependence on ηi if 8 < ηi < 10, while γbest sharply
diminishes when ηi becomes too large or too small. In the
inset of Fig. 3, a similar relationship between γ and ηi is also
predicted by the solid blue line, which is a result based on
Eq. (4) by ignoring k1 and ks and by applying a nonzero R

(i.e., RgTb = 4000 [4]). All of our data lie below the solid line
in the inset, which may indicate that k1 and ks are larger than
zero and cannot be ignored. Therefore, based on Fig. 3, we
need to choose a value between 8 and 10 for ηi and keep η

larger than−0.5 in order to optimize evaporation efficiency γ .
The maximum achievable value for ηi appears to be 10.8,

as shown in the inset of Fig. 3. To understand this, we monitor
the time evolution of η and find that η has a maximal value
ηmax at a given ODT depth U . The value of ηmax decreases
exponentially with U , and ηmax at Umax is 10.8, which agrees
well with our theoretical prediction (solid red line in Fig. 4).
Therefore, if one wishes to keep η unchanged during forced
evaporation, η must be limited to 10.8 even though ηmax
can be much higher at low ODT depths (e.g., ηmax > 13 for
U/kB < 100μK). This may be one reason why a constant
η does not yield more efficient evaporative cooling. We also
find that the time evolution of η at every U discussed in this
paper can be well fitted with our model. Two typical fitting
curves are shown in the inset of Fig. 4.
A pure F = 1 BEC of 1.2× 105 sodium atoms at 50 nK is

created from a 0.45-s free evaporation at Umax followed by a
5-s forced evaporation in which U is exponentially reduced.
This evaporation curve provides two important parameters
for efficient evaporative cooling: ηi is between 8 and 10,
and the forced evaporation time is long enough for sufficient
rethermalization but short enough to avoid excessive atom
losses. Two time-of-flight absorption images in Fig. 5(a)
show a typical change in the condensate fraction (CF) after
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interrupting the evaporation curve at various U . We also
apply the above all-optical approach to evaporate atoms in
a single-beam ODT. A similar result can also be achieved in
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rupting an optimized evaporation curve at various U followed by a
10-ms time of flight (see text). OD stands for the optical density.
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densities based on a Gaussian distribution and a bimodal distribution,
respectively. CF = ñc/(̃nth + ñc), where ñth and ñc are column
densities for the thermal cloud and the condensate, respectively.
(b) The period of spin population oscillations as a function of B

at m = ρ+1 − ρ−1 = 0. Here ρmF
is the fractional population of the

mF state. The solid black line is a fit based on the mean-field theory
(see text). Inset 1: Three spin components of a F = 1 spinor BEC
are spatially separated in a 3D Stern-Gerlach absorption image. Inset
2: A typical time evolution of ρ0 at B = 431 mG and m = 0 when
the spinor BEC is held in the crossed ODT. The solid blue line is a
sinusoidal fit to the data.

the single-beam ODT as long as its beam waist is smaller
than 16 μm so that it can provide a high enough collision
rate. The resulting number of condensed atoms in the single-
beam ODT, however, is four times smaller than that in the
crossed ODT.
To fully polarize atoms in a F = 1 BEC to the |F =

1, mF = 1〉 state, a weak-magnetic-field gradient is applied
during forced evaporation, as shown in Fig. 1(b). We then
ramp up a magnetic bias field with its strength B between
100 and 700 mG while turning off the field gradient. We can
prepare an initial state with any desired combination of three
mF states by altering the amplitude and duration of a resonant
rf pulse and/or a resonant microwave pulse. A Stern-Gerlach
separation followed by absorption imaging is used to measure
the populations of different spin states, as shown in inset 1 in
Fig. 5(b).
The interesting interactions in spinor BECs are interconver-

sion amongmultiple spin states andmagnetic-field interactions
characterized by the quadratic Zeeman effect. Such a system
can be described with a simple two-dimensional phase space
that we can manipulate to some degree by changing the
magnetic-field strength or the density of the BEC [17,28].
When a F = 1 spinor BEC is taken out of equilibrium at a
nonzero magnetic field, spin population oscillations can be
observed, as shown in inset (2) in Fig. 5(b). The population
oscillations are nearly harmonic except near B = 370 mG,
a separatrix in phase space where the period diverges. The
data can be well fitted by a prediction from the mean-field
theory [solid line in Fig. 5(b)] [17] with only one fitting
parameter (i.e., the mean BEC density). Figure 5(b) may thus
be a good way to measure the mean BEC density and to
check the values of the crossed ODT’s trap frequency and trap
depth [22].

IV. CONCLUSION

In conclusion, we have presented an optimal experimental
scheme for an all-optical production of sodium spinor BECs.
For our apparatus, we have found that the number of atoms in
a pure BEC with this scheme is greatly boosted by a factor of
5 over two popular schemes in a crossed ODT. Our scheme
avoids technical challenges associated with some all-optical
BEC approaches and may be applicable to other optically
trappable atomic species and molecules [29]. We have showed
an upper limit for γ at a given η, demonstrated that a constant
η could not yield a larger γ , and discussed good agreements
between our model and experimental data. We may be able
to further improve evaporation efficiency to reach its upper
limit and thus to increase the number of atoms in a BEC by
combining our scheme with one of the clever ideas shown
in [8,12,14,18].
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We experimentally study spin dynamics in a sodium antiferromagnetic spinor condensate as a result of
spin-dependent interactions c and microwave dressing field interactions characterized by the net quadratic
Zeeman effect qnet. In contrast to magnetic fields, microwave dressing fields enable us to access both negative
and positive values of qnet. We find an experimental signature to determine the sign of qnet and observe harmonic
spin population oscillations at every qnet except near each separatrix in phase space where spin oscillation
period diverges. No spin domains and spatial modes are observed in our system. Our data in the negative qnet

region exactly resembles what is predicted to occur in a ferromagnetic spinor condensate in the positive qnet

region. This observation agrees with an important prediction derived from the mean-field theory: spin dynamics
in spin-1 condensates substantially depends on the sign of qnet/c. This work uses only one atomic species to
reveal mean-field spin dynamics, especially the remarkably different relationship between each separatrix and
the magnetization, of spin-1 antiferromagnetic and ferromagnetic spinor condensates.

DOI: 10.1103/PhysRevA.89.023608 PACS number(s): 67.85.Hj, 32.60.+i, 03.75.Kk, 03.75.Mn
I. INTRODUCTION

An atomic Bose-Einstein condensate (BEC) is a state
where all atoms have a single collective wave function for
their spatial degrees of freedom. The key benefit of spinor
BECs is the additional spin degree of freedom. Together
with Feshbach resonances and optical lattices which tune the
interatomic interactions, spinor BECs constitute a fascinating
collective quantum system offering an unprecedented degree
of control over such parameters as spin, temperature, and
the dimensionality of the system [1,2]. Spinor BECs have
become one of the fastest-moving research frontiers in the
past 15 years. A number of atomic species have proven to
be perfect candidates in the study of spinor BECs, such as
F = 1 and F = 2 hyperfine spin states of 87Rb atoms [1–7]
and F = 1 hyperfine spin manifolds of 23Na atoms [8–12].
Many interesting phenomena due to the interconversion among
multiple spin states and magnetic field interactions have
been experimentally demonstrated in spinor BECs, such as
spin population dynamics [1–9], quantum number fluctuation
[10,13], various quantum phase transitions [1,9,11,12], and
quantum spin-nematic squeezing [14]. Spinor BEC systems
have been successfully described with a classical two-
dimensional phase space [1,2,15–17], a rotor model [18], or a
quantum model [13,17].
In this paper, we experimentally study spin-mixing dy-

namics in a F = 1 sodium spinor condensate starting from
a nonequilibrium initial state, driven by the net quadratic
Zeeman energy qnet = qM + qB and antiferromagnetic spin-
dependent interactions c. Here qB and qM are the quadratic
Zeeman shifts induced by magnetic fields and microwave
dressing fields, respectively. The spin-dependent interaction
energy c is proportional to the mean BEC density and
the difference in the f = 0 and f = 2 s-wave scattering
lengths, where f is the summed spin angular momentum
in a collision. It is well known that c > 0 (or c < 0) in
F = 1 antiferromagnetic 23Na (or ferromagnetic 87Rb) spinor
BECs. In contrast to a magnetic field, a microwave dressing

*yingmei.liu@okstate.edu

field enables us to access both negative and positive values
of qnet. A method to characterize microwave dressing fields
and an approach to adiabatically sweep qnet from −∞ to
+∞ are also explained. In both negative and positive qnet
regions, we observe spin population oscillations resulting
from coherent collisional interconversion among two |F =
1, mF = 0〉 atoms, one |F = 1, mF = +1〉 atom, and one
|F = 1, mF = −1〉 atom. In every spin oscillation studied in
this paper, our data show that the population of the mF = 0
state averaged over time is always larger (or smaller) than its
initial value as long as qnet < 0 (or qnet > 0). This observation
provides a clear experimental signature to determine the sign of
qnet. We also find a remarkably different relationship between
the totalmagnetizationm and a separatrix in phase spacewhere
spin oscillation period diverges: The position of the separatrix
moves slightly with m in the positive qnet region, while the
separatrix quickly disappears when m is away from zero in
the negative qnet region. Our data agree with an important
prediction derived by Ref. [17]: The spin-mixing dynamics in
F = 1 spinor condensates substantially depends on the sign
of R = qnet/c. This work uses only one atomic species to
reveal mean-field spin dynamics, especially the relationship
between each separatrix and the magnetization, which are
predicted to appear differently inF = 1 antiferromagnetic and
ferromagnetic spinor condensates.
Because no spin domains and spatial modes are observed

in our system, the single spatial mode approximation (SMA),
in which all spin states have the same spatial wave function,
appears to be a proper theoreticalmodel to understand our data.
Similarly to Refs. [1,16], we take into account the conservation
of the total atom number and the total magnetization m. Spin-
mixing dynamics in aF = 1 spinor BEC can thus be described
with a two-dimensional (ρ0 versus θ ) phase space, where the
fractional population ρmF

and the phase θmF
of each mF state

are independent of position. The BEC energy E and the time
evolution of ρ0 and θ may be expressed as [1,16]

E = qnet(1− ρ0)

+ cρ0[(1− ρ0)+
√
(1− ρ0)2 − m2 cos θ ],

ρ̇0 = −(2/�)∂E/∂θ,θ̇ = (2/�)∂E/∂ρ0. (1)

1050-2947/2014/89(2)/023608(5) 023608-1 ©2014 American Physical Society
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Here θ = θ+1 + θ−1 − 2θ0 is the relative phase among the
three mF spin states and � is the reduced Planck constant.
The induced linear Zeeman shift remains the same during the
collisional spin interconversion and is thus ignored. The total
magnetization is m = ρ+1 − ρ−1. Spin dynamics in F = 1
antiferromagnetic and ferromagnetic spinor BECs have been
studied in magnetic fields where qnet = qB ∝ B2 > 0 with
23Na and 87Rb atoms, respectively [1]. A few methods have
been explored for generating a negative quadratic Zeeman
shift, such as via a microwave dressing field [1,11,19–21] or
through a linearly polarized off-resonant laser beam [22]. In
this paper, we choose the first method.

II. EXPERIMENTAL SETUP

The experimental setup is similar to that illustrated in our
previous work [23]. Hot 23Na atoms are slowed by a spin-flip
Zeeman slower, captured in a standard magneto-optical trap,
cooled through a polarization gradient cooling process to
40μK, and loaded into a crossed optical dipole trap originating
from a linearly polarized high-power infrared laser at 1064 nm.
After an optimized 6-s forced evaporative cooling process,
a pure F = 1 BEC of 1.0× 105 sodium atoms is created.
The spin healing length and the Thomas-Fermi radii of a
typical condensate studied in this paper are 13 μm and (6.1,
6.1, 4.3) μm, respectively. We can polarize atoms in the
F = 1 BEC fully to the |F = 1,mF = −1〉 state by applying
a weak magnetic field gradient during the first half of the
forced evaporation (or fully to the |F = 1,mF = 0〉 state by
adding a very strong magnetic bias field during the entire 6-s
forced evaporation). We then ramp up a small magnetic bias
field with its strength B being 271.5(4) mG, while turning
off the field gradient. An rf-pulse resonant with the linear
Zeeman splitting is applied to prepare an initial state with
any desired combination of the three mF states, which is
followed by abruptly switching on an off-resonant microwave
pulse to generate a proper microwave dressing field. To create
sufficiently large qnet, a microwave antenna designed for a
frequency near the |F = 1〉 ↔ |F = 2〉 transition is placed
a few inches above the center of the magneto-optical trap
and connected to a function generator outputting a maximum
power of 10 W. The actual power used in this paper is
∼8 W. After various hold times t in the optical dipole
trap, the microwave dressing fields are quickly turned off.
Populations of the multiple spin states are then measured
via the standard absorption imaging preceded by a 3-ms
Stern-Gerlach separation and a 7-ms time of flight.
The exact value of qnet is carefully calibrated from a

few experimental parameters, such as the polarization and
frequency of a microwave pulse. Similarly to Refs. [19,21],
we express the value of qnet as

qnet = qB + qM

= aB2h + δE|mF =1 + δE|mF =−1 − 2δE|mF =0
2

,

δE|mF
= h

4

∑
k=0,±1

�2
mF ,mF +k

mF ,mF +k

= h

4

∑
k=0,±1

�2
mF ,mF +k

− [(mF + k)/2− (−mF /2)]μBB
, (2)
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FIG. 1. (Color online) qnet as a function of . The residual
magnetic field is B = 271.5(4) mG. Dashed blue lines represent the
predictions derived from Eq. (2) when the microwave pulse is purely
π polarized and its corresponding on-resonance Rabi frequencies
are �−1,−2 = �0,−1 = �1,0 = �−1,0 = �0,1 = �1,2 = 0, �−1,−1 =
�1,1 = 4.2 kHz, and �0,0 = 4.9 kHz. Solid red lines represent the
predictions from Eq. (2) for a typical microwave pulse used in
this paper. The specially chosen polarization of this pulse yields
nine on-resonance Rabi frequencies as follows: �−1,−2 = 5.1 kHz,
�0,−1 = 3.6 kHz, and �1,0 = 2.1 kHz are from the σ−-polarized
component of the pulse; �−1,−1 = �0,0 = �1,1 = 0 are from the
π -polarized component of the pulse; and �−1,0 = 2.3 kHz, �0,1 =
3.9 kHz, and �1,2 = 5.5 kHz are from the σ+-polarized component
of the pulse (see text). In this paper,  is tuned within the range of
−190 kHz to 190 kHz from the |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉
transition.

where a ≈ 277 Hz/G2 (or a ≈ 71 Hz/G2) for F = 1 23Na
(or 87Rb) atoms, the microwave pulse is detuned by 

from the |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉 transition, and
h is the Planck constant. We define k as 0 or ±1 for a
π - or a σ±-polarized microwave pulse, respectively. For a
given polarization k, the allowed transition is |F = 1,mF 〉 ↔
|F = 2,mF + k〉 and its on-resonance Rabi frequency is
�mF ,mF +k ∝ √

IkCmF ,mF +k , where CmF ,mF +k is the Clebsch-
Gordan coefficient of the transition and Ik is the intensity of this
purely polarizedmicrowave pulse.We also definemF ,mF +k =
 − [(mF + k)/2− (−mF /2)]μBB as the frequency detuning
of the microwave pulse with respect to the |F = 1,mF 〉 →
|F = 2,mF + k〉 transition, where μB is the Bohr magneton.
A purely π -polarized microwave pulse has been a popular

choice in some publications [1,20,21]. However, we apply
microwave pulses of a specially chosen polarization, in order
to continuously scan qnet from large negative values to big posi-
tive values at a moderate microwave power. Figure 1 compares
microwave dressing fields induced by a typical microwave
pulse used in this paper and a purely π -polarized microwave
pulse. This comparison clearly shows that it is possible to
continuously or adiabatically sweep qnet from −∞ to +∞
simply by continuously tuning  from −190 kHz to 190 kHz
with our specially chosen microwave pulses at a power of 8W.
Another advantage of choosing such microwave pulses is to
conveniently place the microwave antenna on our apparatus
without blocking optical components. To ensure an accurate
calibration of qnet based on Eq. (2), we measure the nine
on-resonance Rabi frequencies � daily through monitoring
the number of atoms excited by a resonant microwave pulse
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FIG. 2. (Color online) (a) Time evolutions of ρ0 at qnet/h =
+93Hz > 0 (solid blue triangles) and qnet/h = −83 Hz < 0 (solid
red circles) with m = 0 and c/h = 52(1) Hz. It is important to note
that the two curves start from the same initial state with θ |t=0 = 0.
Solid lines are sinusoidal fits to the data. (b) Equal-energy contour
plots based on Eq. (1) for the two experimental conditions shown
in Fig. 2(a), i.e., qnet > 0 (left) and qnet < 0 (right). The heavy
solid blue and red lines represent the energy of the above two
experimental conditions, respectively. The dotted black horizontal
line is to emphasize the fact that the above two experiments start
with the same initial state which is marked by the solid black circles.
Dashed black lines represent the energy of the separatrix between the
running and oscillatory phase solutions. Darker colors correspond to
lower energies.

to the F = 2 state as a function of the pulse duration. A
typical example of the Rabi frequency measurement is shown
in Fig. 3(a). We find that uncertainties of � and qnet are ∼2%
and ∼5%, respectively.

III. DYNAMICS OF SPINOR CONDENSATES
IN MICROWAVE DRESSING FIELDS

We observe spin oscillations at every given value of qnet
within a wide range, i.e.,−240 Hz � qnet/h � 240 Hz. Typi-
cal time evolutions of ρ0 startingwith the same nonequilibrium
initial state at a negative and a positive qnet are shown in
Fig. 2(a). We find that these evolutions can be well fit by
sinusoidal functions of the similar oscillation period T and
amplitude A. Note that the hold time t is kept between zero
and 2T < 100 ms, in order to ensure accurate measurements
of spin dynamics and avoid significant atom losses due to the
presence of off-resonant microwave pulses. On the other hand,
our data in Fig. 2(a) show that the value of 〈ρ0〉 drastically
differs in the two spin oscillations: 〈ρ0〉 > ρ0|t=0 as long as
qnet < 0, while 〈ρ0〉 < ρ0|t=0 if qnet > 0. Here 〈ρ0〉 is the
average value of ρ0 over time in a spin oscillation and ρ0|t=0 is

the initial value of ρ0. This phenomenon is observed at every
value of qnet when spin oscillations start with the same initial
state, although the period T and amplitudeA change with qnet.
The above observations agree well with predictions from the
mean-field SMA theory [i.e., Eq. (1)] as shown by the heavy
solid lines in Fig. 2(b): ρ0 is limited between (ρ0|t=0 − 2A)
and ρ0|t=0 at qnet > 0, while it is restricted between ρ0|t=0 and
(ρ0|t=0 + 2A) at qnet < 0. We can thus use the phenomenon to
conveniently determine the sign of qnet, i.e., by comparing the
value of 〈ρ0〉 of a spin oscillation to the value of ρ0|t=0.
The value of T as a function of qnet is then plotted in

Fig. 3 for m = 0 and m = 0.2, which demonstrates two
interesting results. First, when m = 0, the spin oscillation
is harmonic except near the critical values (i.e., qnet/h =
±52 Hz) where the period diverges. This agrees with the
predictions derived from Eq. (1), as shown by the dotted red
line in Fig. 3. The energy contour Esep where the oscillation
becomes anharmonic is defined as a separatrix in phase space.
A point on the separatrix satisfies the equation ρ̇0 = θ̇ = 0
according to the mean-field SMA theory. In fact, for our
sodium system with c > 0, Esep = qnet for qnet > 0, while
Esep = 0 at m = 0 for qnet < 0. Figure 3 shows that the T

versus qnet curve is symmetric with respect to the qnet = 0
axis atm = 0. The period T decreases rapidly with increasing
|qnet| when |qnet| is large, which corresponds to the “Zeeman
regime” with running phase solutions. In the opposite limit,
the period only weakly depends on |qnet|, which represents the
“interaction regime” with oscillatory phase solutions. Here
|qnet| is the absolute value of qnet. The value of θ is (or is
not) restricted in the regions with oscillatory (or running)
phase solutions. References [8,9] reported observations of
the similar phenomena for qnet > 0 with a F = 1 antiferro-
magnetic spinor condensate; however, they did not access the
negative qnet region.
Figure 3 also demonstrates a remarkably different relation-

ship between the total magnetization m and the separatrix
in phase space: the position of the separatrix moves slightly
withm in the positive qnet region, while the separatrix quickly
disappears when m is away from zero in the negative qnet
region. Good agreements between our data and the mean-field
SMA theory are shown in the inset [Fig. 3(b)] and the main
figure in Fig. 3. Interestingly, we find that the spin dynamics
which appear in our antiferromagnetic sodium system in the
negative qnet region exactly resembles what is predicted to
occur in a ferromagnetic spinor condensate in the positive qnet
region [16,17]. Note that R = qnet/c is negative in both of
these two cases. This observation agrees with an important
prediction made by Ref. [17]: The spin-mixing dynamics in
F = 1 spinor condensates substantially depends on the sign
of R. As a matter of fact, our results in the negative qnet region
are similar to those reported with a F = 1 ferromagnetic 87Rb
spinor condensate in magnetic fields where qnet > 0 [1,3]. It is
worth noting that our data in Fig. 3 may also be extrapolated
to understand the relationship between the separatrix andm in
the ferromagnetic Rb system, although this relationship has not
been experimentally explored yet. This paper may thus be the
first to use only one atomic species to reveal mean-field spin
dynamics, especially the different relationship between each
separatrix and the magnetization of F = 1 antiferromagnetic
and ferromagnetic spinor condensates.
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FIG. 3. (Color online) The spin oscillation period as a function of qnet for m = 0 (open red circles) and m = 0.2 (open blue triangles).
The lines are fits based on Eq. (1), which yield the following fit parameters: ρ0|t=0 = 0.48, θ |t=0 = 0, and c/h = 52(1) Hz for m = 0 and
ρ0|t=0 = 0.48, θ |t=0 = 0, and c/h = 47(1) Hz for m = 0.2. The fit parameters are within the 5% uncertainty of our measurements. Note the
different scales of the left and right vertical axes. Inset (a): The number of F = 2 atoms excited by a resonant microwave pulse as a function
of the pulse duration. The solid line is a sinusoidal fit to extract the on-resonance Rabi frequency � of the pulse. Inset (b): Amplitudes A of
spin oscillations shown in the main figure as a function of qnet at m = 0. The dashed black line is a fit based on Eq. (1) with the same set of fit
parameters as that applied in the main figure.

IV. CONCLUSION

In conclusion, we have experimentally studied spin dynam-
ics of a sodium spinor condensate in a microwave dressing
field. In both negative and positive qnet regions, we have
observed harmonic spin oscillations and found that the sign
of qnet can be determined by comparing 〈ρ0〉 to ρ0|t=0. Our
data also demonstrate that the position of the separatrix
in phase space moves slightly with m in the positive qnet
region, while the separatrix quickly disappears when m is
away from zero in the negative qnet region. Our data can
be well fit by the mean-field theory and agree with one
of its important predictions: The spin-mixing dynamics in
F = 1 spinor condensates substantially depends on the sign of
R = qnet/c. This work uses only one atomic species to reveal
mean-field spin dynamics and the different dependence of each

separatrix onm inF = 1 antiferromagnetic and ferromagnetic
spinor condensates. In addition, microwave pulses used in
this paper can be applied to cancel out stray magnetic fields
and adiabatically sweep qnet from −∞ to +∞. This allows
studies on interesting but unexplored phenomena at qnet = 0,
for example, realizing a maximally entangled Dicke state with
antiferromagnetic spinor condensates through quantum phase
transitions [24].
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[19] F. Gerbier, A.Widera, S. Fölling, O.Mandel, and I. Bloch, Phys.
Rev. A 73, 041602(R) (2006).

[20] S. R. Leslie, J. Guzman,M.Vengalattore, J. D. Sau,M. L. Cohen,
and D. M. Stamper-Kurn, Phys. Rev. A 79, 043631 (2009).

[21] Sabrina R. A. Leslie, Ph.D. thesis, University of California,
Berkeley, 2008.

[22] L. Santos, M. Fattori, J. Stuhler, and T. Pfau, Phys. Rev. A 75,
053606 (2007).

[23] J. Jiang, L. Zhao, M.Webb, N. Jiang, H. Yang, and Y. Liu, Phys.
Rev. A 88, 033620 (2013).

[24] Z. Zhang and L.-M. Duan, Phys. Rev. Lett. 111, 180401
(2013).

023608-5



APPENDIX C

Mapping the phase diagram of spinor condensates via adiabatic quantum

phase transitions

This appendix includes a reprint of Ref. [122]: J. Jiang, L. Zhao, M. Webb, and Y.

Liu, Mapping the phase diagram of spinor condensates via adiabatic quantum phase

transitions, Physical Review A 90, 023610 (2014).

123



PHYSICAL REVIEW A 90, 023610 (2014)

Mapping the phase diagram of spinor condensates via adiabatic quantum phase transitions
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We experimentally study two quantum phase transitions in a sodium spinor condensate immersed in a
microwave dressing field. We also demonstrate that many previously unexplored regions in the phase diagram of
spinor condensates can be investigated by adiabatically tuning the microwave field across one of the two quantum
phase transitions. This method overcomes two major experimental challenges associated with some widely used
methods, and is applicable to other atomic species. Agreements between our data and the mean-field theory for
spinor Bose gases are also discussed.
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I. INTRODUCTION

A spinor Bose-Einstein condensate (BEC) is a multicom-
ponent BEC with an additional spin degree of freedom,
which has provided exciting opportunities to study quantum
magnetism, superfluidity, strong correlations, spin squeezing,
and massive entanglement [1–5]. The interesting interactions
in spinor BECs are interconversions among multiple spin
states and magnetic-field interactions (or microwave dressing
field interactions) characterized by qnet, the net quadratic
Zeeman energy. The interplay of these interactions leads
to oscillations among multiple spin populations, which has
been experimentally confirmed in F = 1 23Na spinor BECs
[6–12], and in both F = 1 and F = 2 87Rb spinor condensates
[13–17].
Several groups demonstrated the mean-field (MF) ground

states of spinor BECs by holding BECs in a fixed magnetic
field and letting spin population oscillations damp out over a
few seconds [8–11]. The required damping time, determined
by energy dissipation, may in some cases exceed the BEC
lifetime. The exact mechanism involved in energy dissipation
requires further study, although it has been shown that energy
dissipates much faster in high magnetic fields [10]. For
F = 1 BECs, a magnetic field introduces only a positive
qnet, while a microwave field has a distinct advantage since
it can induce both positive and negative qnet [1,7,12,18,19].
As shown in Ref. [12], the same physics model explains
spin-mixing dynamics observed in both microwave fields and
magnetic fields. Onewould assume that, if given a long enough
exposure to a microwave field, a spinor BEC could also
reach its MF ground states. However, experimental studies
on ground states of spinor BECs in microwave fields have
proven to be very difficult, since these fields are created
by near-resonant microwave pulses. Two major experimental
challenges associated with microwave fields are atom losses
and variations in magnetization m. A different inelastic
collision rate in each hyperfine state may be one of the possible
reasons to account for these challenges. Microwave-induced
changes in bothm and the atom numberN can be detrimental,
especially when a spinor BEC is exposed to a large microwave
field for a prolonged time [7,12]. As a result, the phase diagram

*yingmei.liu@okstate.edu

of F = 1 BECs has not been well explored in the qnet � 0
region, where applying microwave fields may be necessary.
In this paper, we demonstrate another method to overcome

the aforementioned experimental challenges and report the
observation of two quantum phase transitions in a spinor
BEC. In this method, we quickly prepare an initial equilibrium
state at a very high magnetic field to minimize the damping
time for spin population oscillations and prevent unnecessary
exposure to microwave pulses. Equilibrium states at a desired
qnet are then created by adiabatically sweeping an additional
microwave field. Using this method, we are able to investigate
many previously unexplored regions in the phase diagram
of antiferromagnetic spinor BECs and observe three distinct
quantum phases. Similarly to Refs. [1,2,11], we define three
phases in the MF ground states based on ρ0, the fractional
population of the |F = 1,mF = 0〉 state: ρ0 = 1, ρ0 = 0, and
0 < ρ0 < 1 respectively represent a longitudinal polar phase,
an antiferromagnetic (AFM) phase, and a broken-axisymmetry
(BA) phase. We observe two quantum phase transitions: one is
between a longitudinal polar phase and a BA phase at a fixed
positive qnet, and the other is an AFM-BA phase transition
at a given m. We also calculate the energy gap between the
ground states and the first excited states in a spinor BEC,which
provides an explanation for the feasibility of this method. In
addition, spin domains and spatial modes are not observed in
our system, and our data can be well fit by predictions of the
single spatial-mode approximation (SMA).
The SMA assumes all spin states share the same spatial

wave function, which has been a successful model to under-
stand spinor microcondensates [8–13,20–22]. The fractional
population ρmF

and the phase θmF
of each mF state are thus

independent of position in SMA, and m = ρ+1 − ρ−1. The
spin-dependent interaction energy c is proportional to the atom
density, and is positive (or negative) in F = 1 antiferromag-
netic 23Na (or ferromagnetic 87Rb) spinor BECs. For example,
c/h is 40 Hz for our 23Na system in this paper, where h is the
Planck constant. After taking into account that N and m are
independent of time t and neglecting all constant terms in the
Hamiltonian of spinor BECs, we use the SMA to express the
BEC energy E and the time evolution of ρ0 and θ as [1,20,21]

E(t) = cρ0(t){[1− ρ0(t)]+
√
[1− ρ0(t)]2 − m2 cos[θ (t)]}

+ qnet(t)[1− ρ0(t)], (1)

1050-2947/2014/90(2)/023610(5) 023610-1 ©2014 American Physical Society
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ρ̇0 = − 4π

h

∂E(t)

∂θ (t)
, θ̇ = 4π

h

∂E(t)

∂ρ0(t)
. (2)

Here qnet = qM + qB is the net quadratic Zeeman energy
with qB (or qM ) being induced by magnetic (or microwave
dressing) fields. The relative phase among the three mF spin
states is θ = θ+1 + θ−1 − 2θ0.
By minimizing Eq. (1), we find ρ0 in a MF ground state

of F = 1 spinor BECs is zero if qnet < c(1± √
1− m2), or

equal to one if m = 0 and qnet > −c(1± 1), or is the root of
the following equation at all other qnet and m:

c

[
1− 2ρ0 ± (1− 2ρ0)(1− ρ0)− m2√

(1− ρ0)2 − m2

]
− qnet = 0, (3)

where the + (or −) sign applies to ferromagnetic (or antifer-
romagnetic) spinor BECs. Typical MF ground states of spin-1
sodium BECs are shown in Figs. 1 and 2. Our experimental
phase diagram and the theoretical phase diagram based on
Eqs. (1)–(3) are also plotted in Fig. 3.

II. EXPERIMENTAL SETUP

The experimental setup is similar to that elaborated in our
recent publications [6,12]. A F = 1 BEC of 5× 104 atoms is
created by a forced evaporation in a crossed optical dipole trap.
To fully polarize atoms into the |F = 1,mF = −1〉 state, we
turn on aweakmagnetic-field gradient and a lowmagnetic bias
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FIG. 1. (Color online) (a) Typical experimental sequence of
Method-N, which is our method to create equilibrium states via
adiabatically sweeping a microwave field. In this paper −150 Hz �
qnet(t = tf )/h � 150 Hz. All axes are not to scale. (b) m as a
function of qnet at t = tf in the two methods starting from the same
initial state, i.e., m(t = 0) = −0.1. Note that tf for Method-O in
this panel is only 1 s, which is much shorter than the typical hold
time for creating equilibrium states. (c) ρ0 as a function of m at
qnet(t = tf )/h = 100 Hz in equilibrium states created by the two
methods. In this panel, Method-O prepares equilibrium states by
holding BECs for 8 s in a high magnetic field, where qM = 0 and
qB/h = 100 Hz. The solid black line represents theMF ground states
(see text).
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FIG. 2. (Color online) ρ0 as a function of qnet at t = tf for three
large |m| in panel (a) and for two small |m| in panel (b) in equilibrium
states created by our Method-N. Solid lines are simulation results for
the experimental processes based on Eq. (2) (see text). Insets: dashed
lines are theMF ground states. Shaded areas represent the differences
between our simulation results and the MF theory at various m. The
black, blue, and red colors in panel (a) respectively correspond to
results at |m| = 0.75, 0.54, and 0.40. The blue and red colors in panel
(b) represent results at |m| = 0.20 and 0.07, respectively.

field in the forced evaporative cooling process. A resonant rf
pulse of a proper amplitude and duration is applied to prepare
an initial state with any desired combination of the three mF

states. This moment is defined as the starting point (t = 0)
of our experimental sequences, as shown in Fig. 1(a). Every
sequence ends at t = tf . Populations of multiple spin states
are then measured by a standard Stern-Gerlach absorption
imaging.
We use two different methods to generate equilibrium

states. TheMethod-O is an old and widely usedmethod, which
creates equilibrium states simply by holding a BEC at a fixed
qnet for a sufficiently long time. We find that the required hold
time is longer than 2 s for all positive qnet studied in this paper.
This old method fails for our system in low magnetic fields
(i.e, the small positive qnet region), because energy dissipates
very slowly and the required hold time is longer than the
BEC lifetime (∼10 s) in this region. This old method is more
problematic in the negative qnet region, because it leads to
significant atom losses and detrimental changes inm. In order
to overcome these experimental challenges associated with the
old method, we have developed another method, Method-N. A
comparison of these twomethods starting from the same initial
state is shown in Fig. 1(b), which highlights the advantage
of our method. Note that m and N may not be conserved
using the old method, when a microwave field induced by a
near-resonant microwave pulse is applied. This is due to the
fact that the microwave pulse unavoidably excites some atoms
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FIG. 3. (Color online) (a) MF phase diagram of spin-1 antiferromagnetic spinor BECs based on Eqs. (1)–(3). Our Method-N works
everywhere except in the area marked by red solid lines, while Method-O only applies to the area filled with dots at large qnet. Panel (b) [or (c)]
is a 3D (or a contour) plot of the experimental phase diagram consisting of data taken by Method-N at 153 different qnet and m. Red solid lines
in panels (b) and (c) mark the region where our data are different from the MF ground states.

in a F = 1 spinor BEC to the F = 2 manifold, and more
atoms are excited when the microwave pulse has a higher
power or a smaller frequency detuning with respect to the
|F = 1〉 ↔ |F = 2〉 transitions.
A typical experimental sequence of our Method-N is listed

in Fig. 1(a). We first hold a spinor BEC in the optical trap
for 5 s at a very high magnetic field with qB/h = 900 Hz.
This step ensures the BEC reaches its ground states, since
we and Ref. [10] find that the energy dissipation rate quickly
increases with qB . Second, we adiabatically ramp themagnetic
field down to qB/h = 20 Hz in 0.1 s, keep qB at this value for
0.3 s, and then turn on a far off-resonant microwave pulse in
0.1 s. Third, we tune only the frequency of this pulse slowly
within 0.5 s, in order to adiabatically sweep its corresponding
microwave field to a desired qnet. Our approach to characterize
microwave dressing fields and the frequency tuning curve for
adiabatically sweeping qnet within the range of −∞ to +∞ is
the same as those illustrated in our previous work [12].
In theory, once a BEC is prepared into its ground state,

the BEC may stay in its ground state at each qnet when a
microwave field is adiabatically ramped [3]. We can thus
initially check whether our Method-N is applicable by
comparing equilibrium states created by both our method and
the old method in a region, qnet  0, where the old method has
been proven to generate the MF ground states [8–11]. Figure
1(c) shows such comparisons made at qnet(t = tf )/h = 100
Hz for various magnetization m. The equilibrium states
created by the two methods appear to be quite similar, and
they stay very close to the same black solid line which
represents the MF ground states in Fig. 1(c). This suggests
that our method is adiabatic enough to replace the old method
in studies related to the BEC phase diagrams. We also find
that a spinor BEC returns to its original state when we ramp a
microwave field from qM = 0 to a fixed nonzero qM and then
back to qM = 0 with Method-N, although this observation
may not be sufficient to prove the process is adiabatic.

III. MAPPING THE PHASE DIAGRAM OF
SPINOR CONDENSATES

We then apply our method to a much wider range of qnet
andm, especially in the negative and small positive qnet regions

which cannot be easily explored by the old method, as shown
in Fig. 2. We find two interesting results from this figure. First,
our data in Fig. 2(a) show a quantum phase transition between
a BA phase and an AFM phase at each m. This BA-AFM
phase transition appears to occur at a larger qnet when |m| gets
bigger, which can be well explained by the MF theory [i.e.,
dashed lines in the inset in Fig. 2(a)]. Another interesting result
is that Method-N does allow us to access many previously
unexplored regions in the phase diagram, although there is
a visible discrepancy between the MF ground states and our
data at a small m in the negative qnet region, as shown in
Fig. 2(b). To understand this phenomenon, we simulate the
experimental processes based on Eq. (2) by taking a proper
formula to account for the time evolution of qnet during an
adiabatic ramping of microwave fields. Figure 2 shows that
the simulation results can well resemble the experimental data,
while the differences between our simulation results and the
MF ground states are emphasized by a shaded area at each m
in the two insets in Fig. 2. These shaded areas appear to slowly
increase in the negative qnet region when |m| approaches zero.
In other words, the discrepancy between our data and the
MF ground states only becomes noticeable at a small |m|
in the negative qnet region. Due to this discrepancy, we find
that the predicted quantum phase transition between an AFM
phase and a longitudinal polar phase at m = 0 and qnet = 0 is
replaced by a transition between a BA phase and a longitudinal
polar phase. Since our experimental resolution for ρ0 is around
0.02, Fig. 2 implies that our method is sufficient to map out
the BEC phase diagram in the positive qnet region at each m,
and in the negative qnet as long as |m| � 0.4.
Figure 3 clearly summarizes the improvement provided by

Method-N, after comparing the theoretical MF phase diagram
to an experimental phase diagram consisting of our data taken
at 153 different qnet and m. All three predicted phases (i.e., an
AFM, a polar, and a BA phase), an AFM-BA phase transition
at a fixed m, and a transition between a longitudinal polar
phase and a BA phase at a certain positive qnet are shown
in the experimental phase diagram. Good agreement between
our data and the MF ground states can be found everywhere
in the two phase diagrams except in the region where |m| <

0.4 and qnet < 0. This problematic region has been marked
by red solid lines in Fig. 3. Ramping microwave fields at a
slower rate should help to diminish this problematic region;
however, a slower rate requires holding a BEC in microwave
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fields for a longer time and thus inevitably leads to more atom
losses and a bigger change in m. In fact, we tried quite a few
different microwave ramping rates, but none of them enabled
a spinor BEC to reach its MF ground states when m is very
small and qnet < 0. The same problem also exists in simulation
results: our simulation program cannot suggest a reasonable
ramping rate to ensure an adiabatic sweep of qnet across a phase
transition for a small m.
To understand this problem, we need to find the exact value

of E, the energy gap between the ground state and the first
excited state in spinor BECs. Similar to Ref. [3], we can
describe a spinor BEC in the Fock space. The spin-dependent
part of the Hamiltonian in a F = 1 spinor BEC can be
expressed as [3,20,23]

H =
1∑

i,j,k,l=−1

[
qnetk

2a
†
kak + c

2

∑
γ

a
†
ka

†
i (Fγ )ij (Fγ )klaj al

]
,

(4)

since m is conserved and there are only a finite number of
atoms in a typical equilibrium state studied in this paper.
Here ak (a

†
k) is the annihilation (creation) operator of the|F = 1,mF = k〉 state, and Fγ=x,y,z are the spin-1 matrices.

By diagonalizing the Hamiltonian in Eq. (4) and performing an

exact numericalmany-body calculation, we can find the energy
gaps. Figure 4 shows numerical examples of E at three
typical |m|. It appears thatE drastically drops by more than
three orders of magnitude when |m| and qnet approach zero, as
shown in the inset in Fig. 4. Therefore, it is not surprising that
adiabatically sweeping qnet across a quantum phase transition
point is not feasible at a very smallm, especially atm = 0. We
can also calculate Ee, the energy gap between the highest
eigenstate and the second highest eigenstate of Eq. (4). The
minimal value of Ee at m = 0 appears to be larger than that
of E (the energy gap associated with the ground state) at
m = 0.75. In other words, adiabatically sweeping qnet across
a quantum phase transition demonstrated in this paper may be
useful for confirming other important predictions, for instance,
realizing massive entanglement in the highest eigenstate of
antiferromagnetic spinor BECs [3].

IV. CONCLUSION

In conclusion, we have observed two types of quantum
phase transitions in a spin-1 antiferromagnetic spinor BEC,
and developed another method to create the equilibrium states
of spinor condensates by adiabatically sweeping a microwave
field. The biggest advantage of this method is to avoid
significant atom losses and detrimental changes in m at large
microwave fields. We have demonstrated that this method
enables us to conduct an experimental study on the phase
diagram of antiferromagnetic spinor BECs at various m in the
negative qnet region. Our experimental phase diagram agrees
with the MF theory for all m in the positive qnet region and
for all negative qnet as long as |m| � 0.4. This method can be
applied to other atomic species and may be helpful to discover
interesting quantum phase transitions in other systems, for
example, revealing a BA-AFM quantum phase transition in
F = 1 87Rb spinor BECs at a negative qnet.
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We experimentally demonstrate that spin dynamics and the phase diagram of spinor condensates can be
conveniently tuned by a two-dimensional optical lattice. Spin population oscillations and a lattice-tuned
separatrix in phase space are observed in every lattice where a substantial superfluid fraction exists. In a
sufficiently deep lattice, we observe a phase transition from a longitudinal polar phase to a broken-
axisymmetry phase in steady states of lattice-confined spinor condensates. The steady states are found to
depend sigmoidally on the lattice depth and exponentially on the magnetic field. We also introduce a
phenomenological model that semiquantitatively describes our data without adjustable parameters.
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A spinor Bose-Einstein condensate (BEC) confined in
optical lattices has attracted much attention for its abilities
to systematically study, verify, and optimize condensed
matter models [1–3]. An optical lattice is a versatile
technique to enhance interatomic interactions and control
the mobility of atoms [4–6]. Atoms held in shallow lattices
can tunnel freely among lattice sites and form a superfluid
(SF) phase. The tunneling rate is suppressed while the on-
site atom-atom interaction increases in deeper lattices. This
may result in a transition from a SF phase to a Mott-
insulator (MI) phase at a critical lattice depth, which has
been confirmed in various scalar BEC systems [4–7]. In
contrast to scalar BECs, spinor BECs have unique advan-
tages due to an additional spin degree of freedom. The
predicted SF-MI phase transition is remarkably different in
lattice-trapped antiferromagnetic spinor BECs; i.e., the
transition may be first (second) order around the tip of
each Mott lobe for an even (odd) occupation number [1,8].
Spin-mixing dynamics and phase diagrams of spinor

BECs in free space, due to the interplay of the spin-
dependent interaction U2 and the quadratic Zeeman energy
qB, have been well studied using sodium [9–16] and
rubidium atoms [17–20]. Known phenomena in spin-1
spinor BECs include spin population oscillations resulting
from coherent interconversions among two jF¼1;mF¼0i
atoms, one jF ¼ 1; mF ¼ þ1i atom, and one jF ¼ 1;
mF ¼ −1i atom. Spin oscillations are harmonic except
near a separatrix in phase space where the oscillation period
diverges. The separatrix sets a boundary between the U2-
dominated region and the qB-dominated region [1,15].
Richer spin dynamics are predicted in lattice-trapped spinor
BECs, which allow for many immediate applications.
These include constructing a novel quantum-phase-revival
spectroscopy driven by a competition between U2 and
spin-independent interaction U0, understanding quantum
magnetism, and realizing massive entanglement [1,3].
However, dynamics of lattice-trapped spinor BECs remain
less explored, and most of such experimental studies have

been conducted in ferromagnetic 87Rb spinor BECs
[21–24].
In this Letter, we experimentally demonstrate that a two-

dimensional (2D) optical lattice can conveniently tune spin
dynamics of F ¼ 1 antiferromagnetic spinor BECs. We
find that the properties of spinor BECs remain largely
unchanged in the presence of a shallow lattice, while
sufficiently deep lattices introduce some interesting
changes. First, in every lattice depth uL that supports a
substantial superfluid fraction, we observe spin population
oscillations after taking spinor BECs out of equilibrium at a
fixed qB. Second, we demonstrate a lattice-tuned separatrix
in phase space, and explain it using lattice-enhanced spin-
dependent interactions. Another remarkable result is our
observation of a phase transition from a longitudinal polar
(LP) phase to a broken-axisymmetry (BA) phase in steady
states of spinor BECs confined by sufficiently deep lattices
[25]. We find the steady states depend exponentially on qB
and sigmoidally on uL, which agrees with our phenom-
enological model.
We create a BEC of 7 × 104 sodium atoms fully

polarized into the jF ¼ 1; mF ¼ −1i state in a crossed
optical trap similar to our previous work [14]. To adia-
batically load the BEC into a 2D lattice, we decompress the
optical trap to a value which minimizes intraband excita-
tions and ensures approximately constant Thomas-Fermi
radii while linearly ramping the lattice potential within
tramp > 40 ms. We construct the 2D lattice in the x̂-ŷ
horizontal plane using two linearly polarized beams which
originate from a single-mode laser at λL ¼ 1064 nm, have a
waist of ∼90 μm at the condensate, and are retroreflected to
form standing waves. To eliminate cross interference
between different beams, the two lattice beams are fre-
quency shifted by 20 MHz with respect to each other. uL is
calibrated using Kapitza-Dirac diffraction patterns. All
lattice depths studied in this Letter are kept below
15.0ð8ÞER to avoid SF-MI phase transitions and thus
maintain a sufficient superfluid fraction in our system.
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Here ER ¼ h2k2L=ð8π2MÞ is recoil energy, kL ¼ 2π=λL is
the lattice wave number,M is the atomic mass, and h is the
Planck constant. We apply a resonant rf pulse of a proper
amplitude and duration to lattice-trapped BECs for prepar-
ing an initial state with any desired combination of the three
mF states at qB=h ¼ 42 Hz, and then quench qB to a
desired value. After holding atoms for a variable time
duration thold, we abruptly switch off all lattice and trapping
potentials. The fractional population of each mF state, ρmF

,
is measured with Stern-Gerlach absorption imaging after a
certain time of flight tTOF. The initial ρ0 is 0.46, the initial
relative phase among the three spin states is zero, and tTOF
is 6 ms unless otherwise specified. The total magnetization
m ¼ ρþ1 − ρ−1 appears to be conserved in every time
evolution studied in this Letter.
In the presence of a shallow lattice of uL < 5ER, we

observe spin population oscillations similar to those occur-
ring in free space, as shown in Fig. 1. Sharp interference
peaks are observed after we release BECs from the shallow
lattice [see Fig. 1(a) inset], which indicates coherence and
superfluid behavior in the system. As the lattice is made
deeper, the separatrix position shifts to a much higher qB,
and the spin oscillations damp out more quickly (especially
in the vicinity of each separatrix). These fast damped
oscillations make it hard to extract oscillation periods and

precisely locate each separatrix even at a moderate uL (e.g.,
4.5ER), as shown in Fig. 1(b). A typical anharmonic
spin oscillation near a separatrix is shown in the inset in
Fig. 1(b). We find our system can be understood by two
models: the Bose-Hubbard (BH) model discussed in
Ref. [3] for uL > 5ER, and the single-spatial mode approxi-
mation (SMA) defined in Ref. [26] for uL < 5ER. The BH
model has three important terms: U0, U2, and the tunneling
energy J among adjacent lattice sites. U2 is proportional to
the atomic density in each lattice site, and is positive
(negative) in F ¼ 1 23Na (87Rb) BECs. In fact, U2=U0 ≃
0.04 for our 23Na system [3], and U2 ≃ qB at each
separatrix for the initial state studied in Fig. 1 [15]. The
observed lattice-tuned separatrix in phase space (i.e., the
separatrix position shifts with uL) is thus mainly due to
the fact that U2 greatly increases with uL. Figure 1(b)
shows a good numerical example: U2=h is increased from
14 Hz to 32 Hz by changing uL from 2.5ER to 4.5ER.
Spin oscillations completely damp out and spinor BECs

reach their steady states when thold is long enough [see
Fig. 2(a)]. Sufficiently deep lattices are found to bring some
interesting changes to the steady states. Figure 2(a)
demonstrates one of such changes: once uL is sufficiently
large, the steady states undergo a phase transition from a LP
phase (where ρ0 ¼ 1) to a BA phase (where 0 < ρ0 < 1) at
m ¼ 0. We repeat the same measurements with only one
parameter changed, i.e., by blocking the retroreflected path
of each lattice beam to eliminate standing waves and
construct a crossed optical dipole trap (ODT). Its resulting
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trap depth is uODT, as illustrated in Fig. 2(b) inset. The
power of every beam in Fig. 2(b) is 4 times of that in
Fig. 2(a) to ensure uL ¼ uODT. Our data in Fig. 2(b) show
that spinor BECs atm ¼ 0 always reach the LP phase when
there are no standing waves. The dramatically different
results shown in Figs. 2(a) and 2(b) imply a necessity to
understand this LP-BA transition with lattice-modified
band structures.
We then study spin oscillations and steady states within a

much wider range of uL and m. Steady states appear to
depend sigmoidally on uL at a fixed qB, as shown in
Fig. 3(a). The inset in Fig. 3(a) demonstrates another
surprising result: the observed relationship between ρ0
and m in steady states at a sufficiently large uL is well
fit by ρ0 ¼ ð1 − jmjÞ=3, which is drastically different from
a well-known mean-field prediction (i.e., ρD≈0

0 as illustrated
by the black dotted line) [25]. This mean-field prediction
assumes quantum depletion D is negligible, where D
represents the fraction of atoms situated in non-zero
momentum states. Based on Bogoliubov theory, the
D ≈ 0 assumption is correct in free space and very shallow
lattices for our system [7]. We extract D from TOF images
(see Fig. 3 and Ref. [28]) and confirm D < 5% at
uL ≤ 3ER. Note that the trapping frequency in each lattice
site is much bigger thanU0=h. Our TOF images thus reflect
the momentum distribution at the instant of the lattice
release and enable us to directly measure D [7].
We also find that D increases with thold and uL, and

approaches one in steady states when uL > 10ER, as shown
in Fig. 3(d). This lattice-enhanced quantum depletion
mainly results from the lattice-flatten dispersion relation
and lattice-enhanced interactions, and was originally
observed in scalar BEC systems [7]. We develop one
phenomenological model to incorporate the observed D
and find this model can semiquantitatively describe our
data without adjustable parameters, as shown in Figs. 3(a)
and 4(a). In this model, the steady states are determined by
a comparison between Tðk; mF ¼ 0Þ and Tð0; mF ¼ �1Þ,

where Tðk; mFÞ is the dispersion relation of the mF state
and k is the atom’s quasimomentum. Figure 4(b) illustrates
two example comparisons. Note that only the first Brillouin
zone is considered, since the population in higher bands is
negligible. Based on Refs. [5–7], we calculate Tðk; mFÞ as
follows:

Tðk; mFÞ ¼ 4J
X
α¼x;y

sin2
�
πkα
2kL

�
þ ER

k2z
k2L

þ qBm2
F; ð1Þ

where a uniform density function is applied along the
vertical direction without a lattice (the z axis), and J is
calculated using a Wannier density function along each of
the two horizontal directions with lattices. The linear
Zeeman effect is ignored because it remains unchanged
in coherent interconversions.
We divide Tðk; mF ¼ 0Þ into two regions based on

Tð0; mF ¼ �1Þ, i.e., set the boundary of the two regions at
kc which satisfies Tðkc; mF ¼ 0Þ ¼ Tð0; mF ¼ �1Þ, as
marked by vertical dotted lines in Fig. 4(b). The dispersion
relations are significantly flattened as uL increases, since
the predicted width of the first band is ∼4J and J
exponentially reduces with uL [6,7]. To clearly explain
our model using the dispersion relations shown in Fig. 4(b),
we only considerm ¼ 0 and ky ¼ kz ¼ 0 in this paragraph.
In region 1 where 0 ≤ jkxj < jkcj, atoms in the mF ¼ 0
state always have energy smaller than those in the mF ¼
�1 states. The steady states should thus be themF ¼ 0 state
(i.e., ρ0 ¼ 1), which equals ρD≈0

0 . When D is big enough,
atoms start to occupy region 2 where jkcj ≤ jkxj ≤ kL. The
mF ¼ 0 atoms in region 2 are degenerate with mF ¼ �1
atoms at certain other momenta. This degeneracy may
account for the phenomenological relationship shown in
Fig. 3(a), i.e., ρ0 ¼ 1=3 in steady states at a big uL. Our data
and the dispersion relations thus suggest that atoms in
steady states may be equally distributed among the three
mF states at a big enough D.
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We can apply similar discussions and our model to all
nonzero m. Thus ρ0 in the steady states is expressed as

ρ0 ≈
Z
region 1

nðkÞρD≈0
0 dkþ

Z
region 2

nðkÞ 1 − jmj
3

dk: ð2Þ

The normalized atomic density in steady states, nðkÞ,
is calculated by the following phenomenological
formula: nðkÞ ¼ ð1 −DÞδk þD exp½−ðk2x=W2

x þ k2y=W2
yþ

k2z=W2
zÞ=2�=A, where Wx and Wz are the half widths of a

2D Gaussian fit to a TOF distribution within the first
Brillouin zone,Wy ¼ Wx, A is a normalization factor, and δ
is a Dirac-delta function [29]. Figure 3(d) shows that Wx
and D sigmoidally increase with uL, and saturate at their
peak values when uL > 10ER; i.e., atoms occupy all
available states and quantum depletion saturates the first
Brillouin zone in a deep lattice. In contrast, Wz appears to
be independent of uL, which implies a constant system
temperature.
The observed sigmoidal dependence of steady states on

uL and the exponential dependence on qB can be explained
by our model [Eq. (2)], as respectively shown in Figs. 3(a)
and 4(a). Quantitative agreements between our model and
data are found everywhere except in high magnetic fields
where qB=h > 1000 Hz, and in a lattice where 4ER ≤ uL ≤
6ER. Limited imaging resolutions and heating induced
by an extra magnetic coil in creating high qB may both
contribute to the discrepancy.
To better understand the LP-BA phase transition, we plot

ρ0 versus U2D=qB (a dimensionless ratio) at m ¼ 0 in
Fig. 4(c). Here U2=qB is the key factor determining the
spinor dynamics in free space, D represents the lattice-
induced effect, and both D and U2 increase with the spin-
independent interaction U0. Two interesting results are
found in Fig. 4(c): all 80 data points taken at very different
uL and qB are fit by one sigmoid function; and the critical
point of the LP-BA transition appears to be U2D=qB∼
0.01. (In contrast, each predicted separatrix locates around
U2=qB ¼ 1 based on SMA and parameters studied in
Fig. 4.) The LP-BA transition may thus result from a

competition between qB and the “effective” interaction
U2D; i.e., regions with strong enough interactions may
prefer the BA phase. In principle, we can verify this using
other methods which can efficiently tune interatomic
interactions, e.g., via Feshbach resonances.
In conclusion, we have conducted the first experimental

study on dynamics and the phase diagram of lattice-trapped
antiferromagnetic spinor BECs. A lattice-tuned separatrix
in phase space and the LP-BA phase transition in steady
states have been observed. We have found that ρ0, D,
and thus the main findings of this Letter are nearly
independent of tTOF. We have also developed a phenom-
enological model that describes our data without adjustable
parameters.
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