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Abstract: During wet weather automobiles traveling on pavements may experience 

hydroplaning that would cause out-of-control accidents. Annually 14% of all accidents 

with fatalities occur on wet pavements. However, not many studies have been conducted 

on identifying pavement sections with hydroplaning risks for pavement safety survey 

purpose. This is primarily due to two facts: 1) that it is difficult to acquire the high-

quality texture and geometry data which serve as basis data for hydroplaning study; 2) 

that the existing hydroplaning speed prediction models may not be applicable on irregular 

pavement sections e.g. pavements with large slopes or long rutting track. To overcome 

these limitations, in this study PaveVision3D Ultra is used to collect 1mm 3D texture 

data with full lane coverage at highway speed. Inertial Measurement Unit (IMU) system 

is used to measure the geometry feature of pavements such as cross slope and 

longitudinal grade. ANalysis Of VAriance (ANOVA) test results indicated the collected 

texture data have good reliabilities if the data collection is conducted at a constant speed, 

while IMU data have the good repeatability regardless of data collection speed. 

Subsequently the existing prediction models are evaluated by validating the predicted 

water film depth (WFD) and hydroplaning speed with the measured values from eTape 

liquid level sensor and Dynamic Friction Tester (DFT). Results indicate the predicted 

values from Gallaway and University of South Florida (USF) models have good 

agreements with the ground truth. However, the two models only functions well on 

regular pavement. For pavements with large slopes or long rutting track, the models 

might work properly since effects of large slope and rutting on hydroplaning are not 

considered. In this study impacts of large slopes on vertical load are considered and 

incorporated the existing models. A new model named as 3S-WFD model is developed in 

the research to estimate water film depth of rutting pavement under three scenarios. 

Finally case studies are provided for hydroplaning evaluation on regular pavements, large 

sloping pavements, and rutting pavements, respectively. Results indicate the data and 

models used in this study can efficiently identify pavement segments with potential 

hydroplaning risks so that pavement engineers can take remedial measures to minimize 

potential traffic accidents. The methodologies proposed in the research would be 

beneficial in complementing the network level pavement safety survey by highway 

agencies.  

 



vi 

 

TABLE OF CONTENTS 

Chapter          Page 
 

CHAPTER 1. INTRODUCTION .................................................................................... 1 
 

1.1 Background ............................................................................................................... 1 
1.2 Problem Statement .................................................................................................... 4 
1.3 Hydroplaning Risk Evaluation Approach ................................................................. 5 
1.4 Study Objectives ....................................................................................................... 7 

 

 

CHAPTER 2. LITERATURE REVIEW ......................................................................... 8 
 

2.1 Hydroplaning Phenomenon ...................................................................................... 8 
2.2 Intervening Factors on Pavement Hydroplaning ...................................................... 9 

2.2.1 Pavement Texture ......................................................................................... 9 
2.2.2 Pavement Geometry .................................................................................... 14 

2.2.3 Pavement Rutting ........................................................................................ 22 
2.3 Hydroplaning-related Measurements ...................................................................... 26 

2.3.1 Water Film Depth Measurement Approaches ............................................. 26 
2.3.2 Hydroplaning Speed Estimation Approaches ............................................. 28 

2.4 Hydroplaning Prediction Models ............................................................................ 29 

2.4.1 NASA Hydroplaning Model ....................................................................... 29 
2.4.2 Road Research Laboratory (RRL) Model ................................................... 29 

2.4.3 Gallaway Model .......................................................................................... 30 
2.4.4 Sight Distance Model .................................................................................. 31 

2.4.5 PAVDRN Model ......................................................................................... 31 
2.4.6 USF Model .................................................................................................. 32 

2.4.7 Browne's Hydroplaning Model ................................................................... 33 
2.4.8 Yang's Hydroplaning Model ....................................................................... 33 

2.5 Summary ................................................................................................................. 34 
 

 

CHAPTER 3. EVALUATION OF WATER FILM DEPTH AND HYDROPLANING 

SPEED PREDICTION MODELS .............................................................................. 35 
 

3.1 Validation of Water Film Depth Models ................................................................ 35 

3.1.1 Water Film Depth Models .......................................................................... 35 
3.1.2 Data Collection Instruments ....................................................................... 39 
3.1.3 Evaluation of WFD Estimation Models ...................................................... 44 

3.2 Validation of Hydroplaning Speed Prediction Models ........................................... 50



vii 

 

3.2.1 Hydroplaning Speed Prediction Models ..................................................... 50 
3.2.2 Data Collection Instruments ....................................................................... 52 
3.2.3 Evaluation of Hydroplaning Speed Prediction Models .............................. 53 

3.3 Summary ................................................................................................................. 56 

CHAPTER 4. DATA ACQUISTION AND PREPARATION ...................................... 58 
4.1 Data Acquisition System ........................................................................................ 58 

4.1.1 Digital Highway Data Vehicle (DHDV) ..................................................... 58 
4.1.2 Inertial Measurement Unit (IMU) ............................................................... 59 
4.1.3 PaveVision3D Ultra Technology ................................................................ 60 

4.2 Data Preparation ..................................................................................................... 61 
4.2.1 Repeatability Test of the Collected Data .................................................... 62 

4.2.2 Estimated Mean Texture Depth (EMTD) ................................................... 68 
4.2.3 Cross Slope Calibration .............................................................................. 69 
4.2.4 Horizontal Curve Measurement .................................................................. 71 
4.2.5 Pavement Rutting Measurement ................................................................. 75 

4.3 Summary ................................................................................................................. 76 
 

 

CHAPTER 5. HYDROPLANING SPEED PREDICTION ON REGULAR 

PAVEMENTS............................................................................................................. 78 

 

5.1 Model Preparation ................................................................................................... 78 
5.2 Case Study .............................................................................................................. 79 

5.2.1 Test Sites ..................................................................................................... 79 

5.2.2 Local Rainfall Intensity............................................................................... 79 
5.2.3 MTDs and WFDs at the Two Sites ............................................................. 80 

5.2.4 Potential Hydroplaning Segment Detection................................................ 81 
5.3 Summary ................................................................................................................. 83 

 

 

CHAPTER 6. HYDROPLANING SPEED PREDICTION ON PAVEMENTS WITH 

LARGE SLOPES ........................................................................................................ 85 

 

6.1 Model Preparation ................................................................................................... 85 
6.1.1 Effects of Pavement Slope on Wheel Load ................................................ 85 

6.1.2 Modified Gallaway and USF Models ......................................................... 88 
6.1.3 Sensitivity Analysis of the Modified Models ............................................. 88 

6.2 Case Study .............................................................................................................. 90 
6.2.1 Test Site ...................................................................................................... 90 
6.2.2 Local Rainfall Intensity............................................................................... 90 

6.2.3 Horizontal Curve Safety Evaluation ........................................................... 91 
6.2.4 Cross Slope and Longitudinal Grade .......................................................... 98 
6.2.5 EMTDs and WFDs ..................................................................................... 99 

6.2.6 Hydroplaning Speed Estimation ............................................................... 100 
6.2.7 Potential Hydroplaning Segment Detection.............................................. 100 

6.3 Summary ............................................................................................................... 102 



viii 

 

 

 

CHAPTER 7. HYDROPLANING SPEED PREDICTION ON RUTTING 

PAVEMENTS........................................................................................................... 104 

 

7.1 Model Preparation ................................................................................................. 104 
7.1.1 Effects of Cross Slope on Rutting Ponding .............................................. 104 
7.1.2 Rutting Water Film Depth Calculation ..................................................... 106 
7.1.3 Hydroplaning Speed Estimation ............................................................... 110 

7.2 Case Study ............................................................................................................ 110 
7.2.1 Test site ..................................................................................................... 110 

7.2.2 Local Rainfall Intensity............................................................................. 111 
7.2.3 Cross Slope and Longitudinal Grade ........................................................ 112 
7.2.4 EMTDs and Rutting Depth Calculation .................................................... 113 
7.2.5 Rutting Water Film Depth Calculation ..................................................... 114 

7.2.6 Estimation of Hydroplaning Speeds ......................................................... 117 
7.2.7 Identification of Potential Hydroplaning Segments .................................. 119 

7.3 Summary ............................................................................................................... 121 
 

 

CHAPTER 8. CONCLUSIONS ................................................................................... 123 

REFERENCES  ............................................................................................................... 127 

 

 



ix 

 

LIST OF TABLES 

Table           Page 

Table 2.1 Total and Partial Hydroplaning according to the Three Zones Model (Aps 

2006) ................................................................................................................................... 9 

Table 2.2 Classification of Pavement Texture (ASTM E-867) ........................................ 10 

Table 2.3 Minimum Lane Width (AASHTO, 2004) ......................................................... 14 

Table 2.4 Maximum Grade (%) for Specified Design Speed (AASHTO 2004) .............. 15 

Table 2.5 Super-elevation Rates for Curves (AASHTO 2004) ........................................ 16 

Table 2.6 Five Methods for Pavement Rutting Measurement (MnROAD 2011)............. 25 

Table 2.7 Summary of Water Film Depth Measurement .................................................. 26 

Table 3.1 Summary of Tested Water Film Depth Model ................................................. 36 

Table 3.2 LS-40 Surface Texture Analyzer Specification ................................................ 43 

Table 3.3 Summary of the Six Test Sites .......................................................................... 45 

Table 3.4 Summary of Pavement Characteristics at Six Test Sites .................................. 47 

Table 3.5 Summary of Hydroplaning Speed Models........................................................ 51 

Table 3.6 Summary of Road Characteristics at Four Test Sites ....................................... 54 

Table 3.7 Hydroplaning Speeds from Predictive Models and DFT .................................. 56 

Table 4.1 Application of the Raw DHDV for Pavement Characteristics Measurement .. 62 

Table 4.2 Example of EMTD and IMU Data of Test Site 1 ............................................. 63 

Table 5.1 Summary of Test Sites (Hydroplaning Evaluation for Straight Road Sections)

........................................................................................................................................... 79 

Table 5.2 Precipitation (90% Confidence Intervals) in Stillwater Station (NOAA 2015) 80 

Table 6.1 Precipitation (90% Confidence Intervals) in Spavinaw Station (NOAA 2015) 91 

Table 6.2 Example of IMU Data for Curve Radius Calculation....................................... 92 

Table 6.3 ANOVA test results for three horizontal curve measuring methods ................ 95 

Table 6.4 Curve Safety Evaluation for Test Sites ............................................................. 97 

Table 6.5 Part of 3D Imaging Data and IMU Data for Hydroplaning Speed Calculation

......................................................................................................................................... 100 

Table 7.1 Allowable wheel path depression (Balmer and Gallaway 1983) .................... 105 

Table 7.2 Precipitation (90% Confidence Intervals) in Los Angeles Station (NOAA 2015)

......................................................................................................................................... 111 

Table 7.3 Example of Reference Rainfall Intensity and WFDs on Test Site ................. 116 

 



x 

 

LIST OF FIGURES 

Figure           Page 

Figure 1.1 Historical timeline of significant pavement safety-related activities (Larson 

2010) ................................................................................................................................... 3 

Figure 1.2 The diagram for network level pavement hydroplaning evaluation .................. 6 

Figure 2.1 Three zone concept (Okano 2001) .................................................................... 9 

Figure 2.2 Ranges of texture and anticipated effects (Henry 2000) ................................. 11 

Figure 2.3 Apparatus for measuring surface macro-texture depth (ASTM E 965) .......... 12 

Figure 2.4 Segments of the Circular Track Tester (ASTM E 2157) ................................. 13 

Figure 2.5 Outflow Meter (ASTM E 2380) ...................................................................... 13 

Figure 2.6 Composition of roadway curve (AASHTO 2004)........................................... 16 

Figure 2.7 Super-elevation design for roadway curve (AASHTO 2004) ......................... 16 

Figure 2.8 Pavement flow path ......................................................................................... 17 

Figure 2.9 Manual cross slope measurement (Tsai 2012) ................................................ 19 

Figure 2.10 Non-deformed and deformed configurations on inclined plane (Bolzon 2007)

........................................................................................................................................... 19 

Figure 2.11 IMU Mounted on LIDAR and test results (Vemulapalli 2009) .................... 20 

Figure 2.12 Automotive laser sensor (Bolzon 2007) ........................................................ 20 

Figure 2.13 Manual ball-bank indicator (Carlson 2008) .................................................. 21 

Figure 2.14 Wheel path definition from LTPP (Miller 2003) .......................................... 23 

Figure 2.15 Pavement rutting track ................................................................................... 24 

Figure 2.16 Instruments for pavement rutting measurement: (a) Dipstick (b) Six foot 

straight edge (c) Automated laser profile system (MnROAD 2011) ................................ 25 

Figure 2.17 Equipment for water for depth measurement: (a) Electric probe (Kulakowski 

1990) (b) Limnimeter probe (Coiret 2005) (c) Vaisala condition patrol DSP310 

(Campbell Scientific INC 2007) (d) Electric prod with digital display (Vogt 2013) ....... 27 

Figure 3.1 Definition of water film thickness, mean texture depth, and total flow in 

current hydroplaning prediction model (Anderson 1998) ................................................ 36 

Figure 3.2 Sensitivity tests for four WFD models to their variables ................................ 39 

Figure 3.3 Water film depth and rainfall intensity measurement ..................................... 40 

Figure 3.4 Standard plastic rain gauge .............................................................................. 41 

Figure 3.5 eTape liquid level sensor and FLUKE 289 true RMS multi-meter ................. 41 

Figure 3.6 LS-40 Surface Texture Analyzer in operation................................................. 42 

Figure 3.7 SurPro3500 walking profiler in operation ....................................................... 44 

Figure 3.8 Six test sites in google map ............................................................................. 45 

Figure 3.9 Pavement Texture of (a) Test Site 1; (b) Test Site 2; (c) Test Site 3; (d) Test 

Site 4; (e) Test Site 5; (f) Test Site 6 ................................................................................ 46 

Figure 3.10 Water film depth during storm events on (a) test site 1; (b) test site 2; (c) test 

site 3; (d) test site 4; (e) test site 5; (f) test site 6 .............................................................. 48



xi 

 

Figure 3.11 Estimated WFD by models and ground truth by eTape at (a) test site 1; (b) 

test site 2; (c) test site 3; (d) test site 4; (e) test site 5; (f) test site 6 ................................. 50 

Figure 3.12 Sensitivity test for hydroplaning speed models to WFD ............................... 52 

Figure 3.13 Hydroplaning speed verification: (a) DFT; (b) the pool with graduation ..... 53 

Figure 3.14 Locations of the DFT test sites ...................................................................... 54 

Figure 3.15 DFT test results for: (a) test site 1; (b) test site 2; (c) test site 3; (d) test site 4

........................................................................................................................................... 55 

Figure 3.16 Comparison of predicted and measured hydroplaning speeds ...................... 56 

Figure 4.1 Photographs of (a) DHDV exterior appearance; (b) Pavevision3D working 

principle. ........................................................................................................................... 59 

Figure 4.2 Transformed IMU coordinate axes .................................................................. 60 

Figure 4.3 A laser imaging sensor (Wang, 2011) ............................................................. 61 

Figure 4.4 Statistics analysis of EMTD data at (a) test site 1; (b) test site 2 .................... 64 

Figure 4.5 Data collection speeds of three runs at (a) test site 1; (b) test site 2 ................ 66 

Figure 4.6 Survey vehicle body roll under three runs at (a) test site #1; (b) test site #2 .. 68 

Figure 4.7 Estimation of cross slope from IMU roll angle and laser measurement ......... 71 

Figure 4.8 Geometry method for curve radius measurement ........................................... 74 

Figure 4.9 Rutting depth and width measurement ............................................................ 76 

Figure 5.1 EMTDs at two sites ......................................................................................... 81 

Figure 5.2 WFDs at two sites ............................................................................................ 81 

Figure 5.3 Predicted hydroplaning speed at: (a) test site 1; (b) test site 2 ........................ 82 

Figure 5.4 Potential hydroplaning segments at: (a) test Site 1; (b) test Site 2 .................. 83 

Figure 6.1 Vehicle travelling on (a) pavements segments with longitudinal grade; (b) 

pavement segment with horizontal curve ......................................................................... 86 

Figure 6.2 Sensitivity test for two improved models: (a) longitudinal grade vs. 

hydroplaning speed; (b) cross slope vs. hydroplaning speed. ........................................... 89 

Figure 6.3 Raw and calibrated super-elevation data on (a) curve1; (b) curve2; (C) curve3; 

(D) curve4; (e) curve 5 ...................................................................................................... 93 

Figure 6.4 Start-end points determination using change of heading ................................ 95 

Figure 6.5 Curve radius calculated from four methods at: (a) curve 1; (b) curve 2; (c) 

curve 3; (d) curve 4; (e) curve 5........................................................................................ 96 

Figure 6.6 Pavement geometry of test site: (a) longitudinal grade; (b) cross slope.......... 98 

Figure 6.7 EMTDs and WFDs of test site: (a) EMTDs; (b) WFDs. ................................. 99 

Figure 6.8 Potential hydroplaning detection: (a) hydroplaning speed; (b) hydroplaning 

hazardous segments. ....................................................................................................... 101 

Figure 7.1 Wheel path pavement depression geometry .................................................. 105 

Figure 7.2 Rutting water film depth at the onset of storm event .................................... 107 

Figure 7.3 Rutting water film depth during storm event ................................................ 108 

Figure 7.4 Rutting water film after storm events (a) with standing water; (b) without 

standing water ................................................................................................................. 110 

Figure 7.5 Test sites on Los Angeles, California ............................................................ 111 

Figure 7.6 Longitudinal grade at the test site .................................................................. 112 

Figure 7.7 Raw and calibrated cross slope at test site ..................................................... 113 

Figure 7.8 EMTD at test site ........................................................................................... 113 

Figure 7.9 The rutting depth distribution on test section ................................................ 114 

Figure 7.10 Local and reference rainfall intensity along test section ............................. 115 



xii 

 

 

Figure 7.11 WFDs calculated by Gallaway WFD model and 3S-WFD model .............. 116 

Figure 7.12 Predicted hydroplaning speed under scenarios 1 and 2 ............................... 118 

Figure 7.13 Predicted hydroplaning speed with Gway_WFD ........................................ 119 

Figure 7.14 Predicted hydroplaning speed under scenario 3 .......................................... 119 

Figure 7.15 Potential hydroplaning segment detection for Scenarios 1 and 2................ 120 

Figure 7.16 Potential Hydroplaning Segment Detection for Scenario 3 ........................ 121 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1. INTRODUCTION 

 

 

 

 

 

1.1 Background 

When vehicle or aircraft tires roll over water-covered or -flooded pavements, a layer of 

water film would be developed between tires and pavement surface. The resulting uplift 

force or pressure from water film would raise a portion of the tire off the pavement. 

Typically water pressure increases with the increase of vehicle velocity. The water film 

would separate larger portions of contact areas between tires and pavements until a 

critical speed termed hydroplaning speed is reached. At the hydroplaning speed, the tire 

is only supported by the water and thereby loses all contact with the pavement. The 

automobiles or aircraft under hydroplaning condition would pose substantial danger to 

traveling public as the vehicle would have a high level of possibility of losing control. 

Hydroplaning risk evaluation has become a useful tool for pavement safety 

management. Substantial research efforts indicated prediction of pavement hydroplaning 

speed primarily depends on three factors: tire properties, pavement subsurface drainage, 
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and pavement surface drainage (Gallaway 1971). Tire characteristics research includes 

studies on tire thread pattern, tire width, tire footprint, traffic load, vehicle speed, and 

inflation pressure (Kumar 2010, Jenq 2011, Ong 2008, Cao 2011, and Okano 2001). 

Studies on pavement subsurface drainage primarily involve pavement types, layer 

structure, and layer penetration (Ahmed 1997, Christorpher 1997, and Mallela 2000). 

Surface drainage ability is closely related to the pavement geometric design (pavement 

width, cross slope, and longitudinal slope), rainfall intensity, and surface texture 

properties (Kumar 2010, Ong 2008, Ong 2007, Okano 2001, Christorpher 1997, and 

Mallela 2001). 

Numerous field studies were dedicated to develop hydroplaning prediction models in 

the past decades (Horne 1963). The existing models can be grouped into two categories: 

empirical models and analytical models (Chesterton 2006). The empirical methods use 

experimental data and equations to predict hydroplaning, including Road Research 

Laboratory (RRL) equations to estimate water film depth (WFD) (Russam 1968), 

National Aeronautics and Space Administration (NASA) models developed based on 

aircraft tire and airport pavement data (Horne 1963), and Gallaway model to predict 

roadway hydroplaning (Gallaway 1979). The analytical methods attempt to 

mathematically model hydroplaning of the sheet flow and its interaction with a tire, 

including analytical PAVDRN computer program developed by Pennsylvania State 

University (Huebner 1996), and the University of South Florida (USF) model based on 

Ong and Fwa's numerical prediction (Gunaratne 2012). 

Figure 1.1 shows a timeline of some significant pavement safety-related studies and 

events (Smith 2011) on hydroplaning research. Several years after the First International 
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Skid Prevention Conference (Charlottesville, Virginia) in 1958 and 1 year after the 

historic Highway Safety Act of 1966 which authorized states to use federal funds to 

develop and strengthen their traffic safety programs, the first major guidance in the U.S. 

on pavement surface friction was published in National Cooperative Highway Research 

Program (NCHRP) Report 37 (Larson and Smith 2010). Although responsibility for 

highway safety was given to the states in 1971, a considerable amount of work on 

pavement skid resistance and friction was conducted in the early1970’s, culminating in 

various Highway Research Board (HRB) workshops and syntheses, a symposium on skid 

resistance sponsored by the American Society for Testing and Materials (ASTM), and the 

publication of AASHTO’s Guidelines for Skid Resistant Pavement Design (Larson 

2010). 

                          1970                                           1980                                          1990                                           2000                                       2010     

1966
Highway Safety Act 
of 1966 (first major 
national legislation)

1971
Highway safety 
responsibility 

given to states

1976
AASHTO Guidelines 
for Skid-Resistant 
Pavement Design

1980
FHWA Technical Advisory 
T 5040.17: Skid Accident 

Reduction Program

1996
FHWA Safety Management 

Systems: Guidance after 
Congress made SMSs optional

2005
FHWA Technical Advisory T 

5040.36: Surface Texture for 
Asphalt and Concrete Pavement

2000
NCHRP Synthesis 291: 

Evaluation of Pavement 
Friction Characteristics

2008
FHWA Updated Position 

Paper: Asset Management 
and Safety

AASHTO Guide for 
Pavement Friction

2010
FHWA Technical Advisory 

T 5040.38: Pavement 
Friction Management

2011
FHWA Relationship 

between Pavement Surface
Characteristics and Crashes

1967
NCHRP Report 37: 

Tentative Skid Resistance 
Requirements for Main 

Rural Highway

1977
FHWA Ad Hoc Report: 
Pavement Texture and 

Available Skid Resistance

1979
FHWA Technical Advisory T 
5140.10: Texturing and Skid 

Resistance of Concrete 
Pavement and Bridge Decks

2004-Present
FHWA Pooled-Fund Study TPF-5 (099): 

Low Cost Safety Improvements 
(including surface friction treatments 

on curves and ramps)

2006-Present
FHWA TPF-5(141): Pavement 

Surface Properties Consortium
FHWA IDIQ Contracts for Pavement 

Surface Characteristics Program

2008-Present
FHWA Splash-Spray 

Assessment Tool 
Development Program

2009-Present
FHWA Surface 

Enhancements at 
Horizontal Curves (SEAHC), 

High Friction Surfaces

2010-Present
FHWA Development and 

Demonstration of 
Pavement Friction 

Management Program

Figure 1.1 Historical timeline of significant pavement safety-related activities (Larson 

2010) 
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1.2 Problem Statement 

Past studies on pavement surface drainage focus on the drainage facility design, while 

limited research work has been conducted to evaluate the capability of existing pavement 

surface drainage at network levels due to limitations such as the existing data acquisition 

systems being incapable of continuously measuring surface texture at high speeds.  

For pavement texture measurement systems, the traditional manual methods such as 

Sand Patch Method (SPM) is time consuming and labor intensive, and the collected 

texture data are usually restricted on a small area. The high-speed inertial profiling 

systems enable to produce one line-of-sight profile at high speeds in the traveling 

direction, but still cannot represent the entire pavement, especially for the irregular 

pavement surface. Due to unavailability of pavement texture data, several studies on 

pavement drainage capacities assumed the pavement surface to be smooth and uniform, 

and effects of pavement texture on pavement drainage was ignored (Ong 2008, Wang 

2011, and ASTM 2005). However, pavement texture should not be negligible since it is 

an important contributing factor for water film depth calculation. Usually pavement 

texture properties are different on wheel path area and non-wheel path area due to 

pavement abrasion or wear of wheels, and therefore texture data collected in high 

resolution and full lane coverage is important in water film depth calculation and the 

subsequent hydroplaning speed prediction. 

Pavement geometry measurement systems can be grouped into categories. The 

manual methods need traffic control and present a potential hazard to operators, therefore 

the automated methods are proposed as the promising alternative for pavement cross 

slope and longitudinal grade measurement. The widely used equipment including laser 
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based measurement device and Inertial Measuring Unit (IMU) are always mounted on the 

survey vehicle for road geometry measurement. The automated methods are based on the 

assumption that the survey vehicle floor is parallel with pavement surface during 

travelling (Bolzon 2007, Caroti 2010). However, in real world the vehicle floor is not 

parallel with pavement surface during travelling, which can be caused by: 1) uneven 

gravity distribution of the vehicle; 2) vibration of the vehicle during travelling; 3) 

pavement surface geometry and condition. Therefore, the current automated methods 

have a limitation. 

In the past decades numerous field studies were conducted to develop hydroplaning 

prediction models to integrate all the intervening factors on hydroplaning evaluation 

(Chesterton 2006). The rainfall intensity, tire inflation pressure, tire thread properties, 

pavement texture characteristics, and pavement geometry are considered as important 

factors in these models. To validate the capability of the models, the flat and straight 

pavements with good condition are selected as test beds. However, these models cannot 

produce accurate results on pavement sections on horizontal curves, and with large 

longitudinal slopes, and pavement rutting since some important factors (e.g. impacts of 

pavement slope on vertical load and rutting on water film depth) are not considered in 

these models.  

1.3 Hydroplaning Risk Evaluation Approach 

Digital Highway Data Vehicle (DHDV), developed by the WayLink Systems 

Corporation with collaborations from the University of Arkansas and the Oklahoma State 

University, has been have evolved into the sophisticated systems to conduct full lane data 

collection on roadways as highway speed up to 60mph. With the latest PaveVision3D 
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Ultra (3D Ultra for short), the collected data includes 2D/3D data, Right of Way (ROW), 

profile and texture data, and Inertial Measurement Unite (IMU) data. In this study two 

data sets are mainly considered: IMU data and 3D texture data since the drainage 

capacity of pavement surface is primarily related to pavement texture properties, cross 

slope, longitudinal grade, and pavement rutting. The implementation for the network-

level pavement hydroplaning evaluation can be schematically described by Figure 1.2. 

WFD

Pavement Features

DHDV Data Collection

IMU 3D PaveVison Technology

Roll 
Angle

Pitch 
Angle
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Figure 1.2 The diagram for network level pavement hydroplaning evaluation 



7 

 

 

In DHDV the signal or pulses to acquire 3D texture data is controlled and triggered 

by Distance Measurement Instrument (DMI). The signal to capture the IMU data is 

controlled and triggered by GPS receiver. Matching the IMU data set with the 3D 

imaging data set is critical for the following hydroplaning speed prediction since they are 

triggered by different signal sources. Subsequently the Mean Texture Depth (MTD) is 

calculated with 1mm 3D texture data, and geometry features are measured with 3D 

profiling data and IMU data. Finally the water film depth and hydroplaning speed can be 

estimated by incorporating the MTD, cross slope, and longitudinal grade into 

hydroplaning prediction models. By comparing the posted speed limit with the predicted 

hydroplaning speed, the potential hazardous locations on test sections can be identified so 

that the remedial measures can be taken to reduce the hydroplaning risk related accidents. 

1.4 Study Objectives 

The main objectives of the dissertation are presented as follows: 

 Analyze intervening factors on hydroplaning and evaluate the current 

hydroplaning prediction models; 

 Match the 1mm 3D texture data and IMU data, based on which the MTD is 

calculated and geometry features are calibrated; 

 Improve the current models to estimate hydroplaning speed on road sections with 

horizontal curve, large longitudinal slope, or long rutting track; 

 Develop a software to process 3D texture and IMU data so that hydroplaning 

speeds can be estimated with various models; 

 Identify the hazardous locations with the predicted hydroplaning speeds for the 

purpose of network level pavement safety evaluation. 
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CHAPTER 2. LITERATURE REVIEW 

 

 

 

 

 

2.1 Hydroplaning Phenomenon 

Hydroplaning phenomenon might occur when a vehicle drives on a wet road covered by 

water film since the developed water film would diminish the frictional force between 

tires and pavement surface. According to Negrini (2003), the phenomenon of 

hydroplaning may occur in three forms: 

 Dynamic Hydroplaning: it occurs when the water film on the track presents a 

height superior to 0.25 cm, which is associated to high intensity precipitations; 

 Viscous Hydroplaning: it occurs when the water film has thickness of hundredths 

of millimeter, condition where the viscous properties of the water make it act as a 

lubricant, generating enough hydrostatic pressures to raise the tires; 

 Reverted Rubber Hydroplaning: it is a rare phenomenon in road traffic accidents, 

but not uncommon in aircraft accidents. It occurs when, as a result of a long 

sideslip of a tire, there is the generation of high temperatures. 
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One study conducted by the National Aeronautics and Space Administration 

(NASA) demonstrated that there are three distinct zones of tire-wet pavement contact 

areas, where the percentage of occurrence of hydroplaning in these areas depends on the 

vehicle speed, pavement texture, and tire inflation pressure, as presented in Figure 2.1 

(Okano 2001). Table 2.1 shows the relationship between the hydroplaning form and three 

zones. 

 

Figure 2.1 Three zone concept (Okano 2001) 

Table 2.1 Total and Partial Hydroplaning according to the Three Zones Model (Aps 

2006) 

Parameter Total Hydroplaning Partial Hydroplaning Contact 

Zone A B C 

Condition of Pavement Wet Humid Dry 

Type of Interaction Skid Partial Contact Rolling 

Relevant Property Macro-texture Micro-texture Macro & Micro 

Occurring Phenomenon Dynamic Hydroplaning Viscous Hydroplaning Friction 

2.2 Intervening Factors on Pavement Hydroplaning 

2.2.1 Pavement Texture 

The irregularities of pavement surface from its smooth horizontal plane surface are 

known as surface textures (Wambold 1995). The available surface textures depend on 

aggregate mineralogy, aggregate size and gradation in the surface mix, voids in surface 
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mix, pavement finishing and texturing techniques, and surface wear. The surface textures 

are classified into micro-texture, macro-texture, mega-texture and unevenness 

(roughness) based on texture sizes as indicated by texture amplitude (depth) and 

wavelength (Wambold 1995; ASTM E 867), as given in Table 2.2. 

Table 2.2 Classification of Pavement Texture (ASTM E-867) 

Domain 
Interval of Dimensions 

Horizontal Vertical 

Micro-texture 0 -- 0.5 mm 0 -- 0.2 mm 

Macro-texture 0.5 mm -- 50 mm 0.2 mm -- 10 mm 

Mega-texture 50 mm -- 500 mm 1 mm -- 50 mm 

Irregularity 0.5 m -- 50 m 1 mm -- 20 cm 

2.2.1.1 Effects on Pavement Drainage 

Pavement texture depth affects the water accumulation and water dispersion. Well-

textured pavements can provide flow paths to allow water in front of the tire to be forced 

out under pressure. Panie's study (1969) shows the relation between four types of 

concrete pavement surface treatment and hydroplaning potential, including dragged with 

wire, dragged with broom, dragged with burlap, and grooving. The results shows the 

pavement surfaces of grooving texture and dragged texture with wire have the better 

drainage efficiency. Henry's study (2000) summarizes the relationships between texture 

properties and tire-pavement interaction effects (Figure 2.2): 1) an increased texture 

depth is desired for increased and durable friction, and thereby safety and economy; 2) 

increased texture depth may affect the driver/residents comfort and economy in terms of 

noise, vehicle vibration, fuel consumption, and tire and vehicle wear. 
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2.2.1.2 Texture Measurement Methods 

The methodologies for texture measurements can be roughly grouped into two categories: 

static and high-speed methods. The static test methods contain SPM which is commonly 

used for determining Mean Texture Depth (MTD) (ASTM E965), Circular Track Meter 

(ASTM E 2157), and Outflow Meter (ASTM E 2380). The static methods are conducted 

on the marked small areas, not suitable for project and network level applications. As for 

the high-speed test techniques e.g. the laser based data acquisition systems (ASTM 

E1845), their measurements mainly conducted on one longitudinal profile or line-of-

sight, and the produced texture index is termed as the Mean Profile Depth (MPD).  

 

Figure 2.2 Ranges of texture and anticipated effects (Henry 2000) 

ASTM E 965 describes a procedure to determine the average depth of pavement 

surface macro-texture by the use of a known volume of material on test surface and 

subsequent measurement of the total area covered. This measurement of surface texture 

depth reflects the pavement macro-texture characteristics. Equations 2.1 and 2.2 
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mathematically describe the average pavement macro-texture depth, and Figure 2.3 

shows the instruments for sand patch method. 

𝑉 =
𝜋𝑑2ℎ

4
 (2.1) 

𝑀𝑇𝐷 =
4𝑉

𝜋𝐷2
 (2.2) 

Where V: internal cylinder volume, in3; d: internal cylinder diameter, in; h: cylinder 

height, in; MTD: mean texture depth of pavement macro-texture, in; D: average diameter 

of the area covered by the material, in. 

 

Figure 2.3 Apparatus for measuring surface macro-texture depth (ASTM E 965) 

ASTM E 2157 describes the procedure for obtaining pavement macro-texture 

properties using the Circular Track Meter (CT-Meter). The CT-Meter consists of a 

Charge Coupled Device (CCD) laser displacement sensor mounted on an arm. When the 

arm rotates, the displacement sensor collects the profile data follows a circular track, as 

Figure 2.4 shows. Equation 2.3 shows the recommended relationship for the estimation of 

the MTD from the MPD by the CT-Meter. 
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𝑀𝑇𝐷 = 0.947𝑀𝑃𝐷 + 0.069 (2.3) 

Where, MTD: mean texture depth of pavement macro-texture, mm; MPD: mean profile 

depth of pavement macro-texture, mm. 

 

Figure 2.4 Segments of the Circular Track Tester (ASTM E 2157) 

ASTM E 2380 describes the connectivity of the textures it relates to the drainage 

capability of the pavement through its surface and subsurface voids. For the test, the 

outflow meter is placed on the pavement with the plunger sealing the water discharge 

opening. Sufficient water is then poured into the cylinder to raise the switch floats to their 

raised or top position, which will prevent the timer from operating, as Figure 2.5 shows.  

 

Figure 2.5 Outflow Meter (ASTM E 2380) 
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For each test section, the arithmetic average from all outflow meter test times will be 

determined and recorded to the 0.01 s. The Equation 2.4 is used to estimate the mean 

texture depth in this method. 

𝑀𝑇𝐷 =
3.114

𝑂𝐹𝑇
+ 0.636 (2.4) 

Where MTD: volumetric texture depth defined in Terminology; OFT: outflow meter test 

times. 

2.2.2 Pavement Geometry 

Roadway design features are highly associated with the drainage capacity of pavement 

surfaces, including pavement lane width, cross slope, longitudinal grade, and curve 

radius. The minimum lane width from AASHTO geometric design are shown in Table 

2.3. 

Table 2.3 Minimum Lane Width (AASHTO, 2004) 

Type of Roadways Minimum Lane Width (feet) 

Freeway 12 

Major Arterials 11 

Minor Arterials 11 

Collectors (Major and Minor) 11 

Local Roads 10 

Auxiliary Lanes 10 

It is more important to maintain a minimum longitudinal grade on curbed pavements 

than on uncurbed pavements in order to avoid undue spread of storm water on the 

pavement. Table 2.4 shows the maximum longitudinal grade design for different types of 

roadways. 
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The selection of pavement cross slope should be a tradeoff of surface drainage 

capacity and pavement ride quality requirements. On the straight road section, the 

recommended pavement cross slope is 0.02 feet per foot, and it shall not be less than 

0.015 feet per foot or great than 0.04 feet per foot. The change in cross slope between 

adjacent through travel lanes should not exceed 0.04 feet per foot (AASHTO 2004). 

Table 2.4 Maximum Grade (%) for Specified Design Speed (AASHTO 2004) 

Flat Terrain Design Speed (mph) 

Type of Roadway 15 20 25 30 35 40 45 50 55 60 65 70 

Freeway -- -- -- -- -- -- -- 4 4 3 3 3 

Arterial 
Rural -- -- -- -- -- 5 5 4 4 3 3 3 

Urban -- -- -- 8 7 7 6 6 5 5 -- -- 

Collector 
Rural -- 7 7 7 7 7 7 6 6 5 -- -- 

Urban -- 9 9 9 9 9 8 7 7 6 -- -- 

Local 9 8 7 7 7 7 7 6 6 5 -- -- 

Industrial -- -- -- 4 4 4 4 3 3 3 -- -- 

Rolling Terrain Design Speed (mph) 

Type of Roadway 15 20 25 30 35 40 45 50 55 60 65 70 

Freeway -- -- -- -- -- -- -- 5 5 4 4 4 

Arterial 
Rural -- -- -- -- -- 6 6 5 5 4 4 4 

Urban -- -- -- 9 8 8 7 7 6 6 -- -- 

Collector 
Rural -- 10 10 9 9 8 8 7 7 6 -- -- 

Urban -- 12 12 11 10 10 9 8 8 7 -- -- 

Local 12 11 11 10 10 10 9 8 7 6 -- -- 

Industrial -- -- -- 5 5 5 5 4 4 4 -- -- 

Horizontal curve are designed for vehicle driving direction transition, which consists 

of lead-in/lead out, transition curve, and tangent, as Figure 2.6 shows. The lead-in and 

lead-out play a major role in gradually adjusting the super-elevation from the regular 

cross slope on a straight roadway to the maximum super-elevation at the curve, which is 
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also known as super-elevation (Figure 2.7). Table 2.7 shows the relation between the 

super-elevation and radius of roadway. 

 

Figure 2.6 Composition of roadway curve (AASHTO 2004) 

 

Figure 2.7 Super-elevation design for roadway curve (AASHTO 2004) 

Table 2.5 Super-elevation Rates for Curves (AASHTO 2004) 

 Design Speed (mph) 

 10 15 20 25 30 35 40 45 

Minimum Super-elevation Rate 0 0 0.02 0.04 0.06 0.08 0.09 0.1 

Minimum Radius (feet) 25 50 90 150 230 310 430 540 
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2.2.2.1 Effects on Pavement Drainage 

The road geometry such as cross slope and longitudinal grade are important indexes for 

flow path slope and flow path length calculations. Longer flow paths mean more time to 

accumulate rainfall and results in thicker film depth. Changes in cross slope and 

longitudinal grade can help short the flow path length and reduce the time of water 

running on pavement surface (Chesterton 2006). Figure 2.8 shows relationships of the 

drainage path and pavement geometric features including cross slope, longitudinal grade, 

and pavement width. 

 

Figure 2.8 Pavement flow path  

The flow of water across the surface of a paved roadway is controlled to a large 

extent, by the longitudinal grade of the roadway and its cross slope. The length of the 

flow path, L, can be expressed in Equation 2.6, and the slope of the flow path, S, can be 

evaluated using the Equation 2.7. 

L = W√1 + (
g

Sc
)

2

 (2.6) 



18 

 

 

𝑆 = √𝑆𝑐
2 + 𝑔2 (2.7) 

Where L: the length of the flow path, ft; S: the slope of the flow path, %; W: the width of 

the drainage layer, ft; G: longitudinal grade of the roadway, %; Sc: roadway cross 

slope, %. 

2.2.2.2 Geometry Measurement Methods 

(1) Cross slope and longitudinal grade measurement 

The measurements of cross slope and longitudinal grade are important for pavement 

safety. The too small slope and grade can cause hydroplaning issues, while the too large 

slope and grade may cause vehicle handling problems. The methods for cross slope and 

longitudinal grade measurements are summarized as follows:  

(a). Manual Measurement Method 

Currently most highway agencies conduct cross slope and longitudinal grade 

measurement manually with a digital level (Tsai 2012), as Figure 2.9 shows. However, 

this method is time-consuming and needs traffic control, and it is not suitable for a 

network-level survey. 
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Figure 2.9 Manual cross slope measurement (Tsai 2012) 

(b) Inertial Navigation Systems (INS)/Inertial Measuring Unit (IMU) 

 INS/IMU, widely used in cross slope measurement, is mounted on a road survey 

vehicle to measure the vehicle deflection. INS/IMU is a self-contained sensor consisting 

of three accelerometers and three fiber-optic gyroscopes. The accelerometers are used to 

establish a vertical position reference of the vehicle, while gyroscopes are used to 

determine vehicle orientation as well as longitudinal grade and cross-slope (Vemulapalli 

2009). Bolzon (2007) assumed that the suspensions have a linear elastic behavior 

consisting of a two-dimensional (mass-springs) system, in which the mass is a rigid body 

subject to rotation. With the model lying on an inclined plane and subject to gravity and 

to a transversal force, a vehicle going along a curvilinear road section with a cross slope α 

can be measured (Figure 2.10). Due to the deflection of vehicle, the cross slope measured 

by IMU needs to be calibrated (Figure 2.11). 

 

Figure 2.10 Non-deformed and deformed configurations on inclined plane (Bolzon 2007) 
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Figure 2.11 IMU Mounted on LIDAR and test results (Vemulapalli 2009) 

 (c). Laser based Device 

Laser based device is also used for the cross slope measurement through calibrating IMU 

measurements in this research, as Figure 2.12 shows. The distance meter has been 

overhung on the rear end of the vehicle to survey the cross section of the road. The 

vehicle’s position and trim at each scan time can be obtained via an independent circuit, 

generating a pulse of adequate amplitude at even intervals (Bolzon 2007).

 

Figure 2.12 Automotive laser sensor (Bolzon 2007) 

(2) Horizontal curve measurement 
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Aside from the cross slope and longitudinal grade measurements, another geometry 

feature namely horizontal curve radius needs to be measured as well. Generally three 

approaches are available and summarized as follows: 

(a). Ball Bank Indicator (BBI) Method 

The BBI (Figure 2.13) measures the combination of lateral acceleration, vehicle 

body roll and super-elevation, and its calculation is described in Equation 2.8 (Carlson 

2008). Each term in Equation 2.8 cannot be individually determined from the BBI 

reading alone. If body roll is neglected, the BBI reading in degrees would be a direct 

measure of lateral acceleration, and the radius can be estimated using the point–mass in 

Equation 2.9. 

 

Figure 2.13 Manual ball-bank indicator (Carlson 2008) 

𝐵𝐵𝐼 = 𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑠𝑢𝑝𝑝𝑒𝑟𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝑏𝑜𝑑𝑦𝑟𝑜𝑙𝑙 (2.8) 

𝑅 =
𝑣2

127(𝑒 + 𝑓)
 (2.9) 

Where, R: road curve radius, ft; v: vehicle speed (mph); e: average full supper-

elevation, %; f: side friction factor. 

(b). Chord Length method 
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The chord length method is conducted based on a line that touches the circumference 

of a circle at two points. With the chord method, a technician stretches a string of known 

length so that each end just touches the lane edge-line of the horizontal curve (Carlson 

2005). After the string is stretched, an offset distance is measured from the middle of the 

string to the lane edge line. With the string length and offset known, the curve radius can 

be calculated by Equation 2.10. 

𝑅 =
𝐶2 + 4𝑀2

8𝑀
 (2.10) 

Where, R: road curve radius, m; C: length of string, m; M: offset distance, m. 

(c). Compass method 

The compass method uses the measured length of the curve and the compass heading 

of each tangent approach to calculate the radius of the curve. The length of the curve is 

considered to be the average of the lengths measured along the inside and outside lane 

edge-line paint stripes, and the compass heading is recorded for each tangent approach of 

the curve. The difference of the two compass headings is calculated in degrees, and the 

curve radius is calculated by Equation 2.11 (Carlson 2005). 

𝑅 =
57.3 × 𝐿

∆
 (2.11) 

Where, R: roadway curve radius, m; L: length of curve, m; ∆: difference in compass 

headings, degrees. 

2.2.3 Pavement Rutting 

Pavement rutting is the accumulation of permanent deformation in all or a portion of the 

layers in a pavement structure that results in a distorted pavement surface. Rutting occurs 
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only on flexible pavements, as indicated by the permanent deformation along the wheel 

path. The width and depth of rut are affected by structural property of pavement layers 

(thickness and material quality), traffic loads, and environmental conditions. Based on the 

wheel path definition from LTPP (Figure 2.14), the width of lane is assumed as 12ft, and 

the width of inner and outer wheel path are defined as 2.5ft with their center lines 2.5ft 

away from the lane edge (Miller, 2003). 

 

Figure 2.14 Wheel path definition from LTPP (Miller 2003) 

2.2.3.1 Effects on pavement drainage 

Pavement surface rut can be regarded as a small reservoir during rainy weather (Figure 

2.15). The trapped water may separate tires from pavement surface, resulting in the 

decrease of skid resistance and the increase of potential hydroplaning risks. In addition, 

the ponding water along the rutting track would be trapped for a long time before they are 

evaporated into the air or penetrate into the ground, which extends their impacts on safety 

driving. It should be emphasized that splash and spray from the trapped water would 

reduce visibility, leading to driving-related safety issues as well  
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2.2.3.2 Methods for Transverse profile measurement 

Five methods have been used to measure pavement rutting depths, as summarized in 

Table 2.6. The manual methods include dipstick, six foot straight edge, and Roll-O-

Matic. The dipstick method (Figure 2.16a) may miss a local maximum rut depth due to 

the 1 foot intervals of measurement. The six foot straight edge method (Figure 2.16b) 

only provided the maximum rut depth, not the lateral location or volume of the water a 

rut might hold. The pavement management vans only provide an average rut depth for the 

entire length of the cell, and may not capture the local maximum rut depth as it travels 

along each test cell. However, only the Roll-O-Matic and Automated Laser Profile 

System methods (Figure 2.16c) provide enough data to determine both the maximum rut 

and volume of the water a rut might hold. 

 

Figure 2.15 Pavement rutting track 
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Table 2.6 Five Methods for Pavement Rutting Measurement (MnROAD 2011) 

Measurement Device Type of Measurement 

Six Foot Straight Edge Determines maximum rut depth manually 

Dipstick Measures transverse surface profile at 1ft intervals 

Roll-O-Matic 
Obtains continuous trace of transverse surface profile on 

paper 

Pavement Management Van Measures average rut depth along entire length of test cell 

Laser Profile System Measures transverse profile at 0.25 inch intervals with a laser 

 

Figure 2.16 Instruments for pavement rutting measurement: (a) Dipstick (b) Six foot 

straight edge (c) Automated laser profile system (MnROAD 2011) 
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2.3 Hydroplaning-related Measurements 

2.3.1 Water Film Depth Measurement Approaches 

The measurement of water film depth during storm event is important for the 

development of hydroplaning prediction models. Table 2.7 summarizes the current 

researches on water film depth measurement. Figure 2.17 shows the relevant instruments 

for water film depth measurement. 

Table 2.7 Summary of Water Film Depth Measurement 

Source Equipment Description Accuracy 

Ross and 

Russam 

(1968) 

Steel bar 

with studs 

Use a steel bar placed on the road surface with studs 

set at intervals. The water depth was manually read 

from this bar. 

0.05 mm 

Gallawaty 

et al. (1971) 

Leupold & 

Stevens 

point-gauge 

Use a manually operated Leupold & Stevens point-

gauge to take measurements of the water depth from 

a datum line. 

0.2mm 

Kulakowski 

and 

Douglas 

(1990) 

Electric 

probe 

(Figure 

2.18a) 

When the probe is lowered, a circuit is closed, and 

when the probe contact with water, the electric 

motor stops and a micrometer reading is taken. By 

lowering the probe further until it strikes the 

pavement surface, a second reading can be taken, 

and the water depth can be calculated. 

0.025mm 

Coiret 

(2005) 

Limnimeter 

(Figure 

2.18b) 

The device uses a pair of metal needles lowered 

automatically until the water surface closes the 

circuit between them. 

N/A 

Roe et al. 

(1997) 

Twin metal 

wire probe 

The resistance measured between the two probe 

wires, which are at a fixed distance apart, could be 

used to calculate the water depth. 

N/A 

Coiret 

(2005) 
Light ray 

A light ray is directed onto a wet pavement and 

analyzed after having been altered in the liquid 

medium and retro-reflected by the road surfacing. 

Reliable 

from 

1mm to 5 

mm 

Campbell 

Scientific 

INC, (2007) 

Vaisala 

remote road 

surface state 

sensor 

(Figure 

2.18c) 

Use reflection-based water detection principle to 

measure the presence of water or ice on a pavement.  

Reliable 

from 0 to 

2 mm 

Vogt and 

Fevrier 

(2013) 

Electric prod 

(Figure 

2.18d) 

When the measurement prod has contact with the 

water film of the road, an electric circuit is closed, 

and an LED sign is shining. The digital display 

shows the measured water depth. 

0.1mm 



27 

 

 

 

Figure 2.17 Equipment for water for depth measurement: (a) Electric probe (Kulakowski 

1990) (b) Limnimeter probe (Coiret 2005) (c) Vaisala condition patrol DSP310 

(Campbell Scientific INC 2007) (d) Electric prod with digital display (Vogt 2013) 
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2.3.2 Hydroplaning Speed Estimation Approaches 

Hydroplaning speed measurement is important for both the development of empirical 

hydroplaning models and the verification of analytical hydroplaning models. Past studies 

indicated the methods for hydroplaning speed estimation can be classified into three 

categories: field test, hydroplaning simulation by Finite Element Method (FEM), and 

crash data. 

Gallaway's (1979) hydroplaning speed model is an empirical model, and developed 

based on the field friction test data. The tests were performed with the TTI research 

trailer. Combined with the capability of measuring ASTM E274 locked-wheel skid 

numbers, the tests can measure test wheel rotational speed referenced to a fifth wheel on 

the TTI research trailer. When the horizontal force for a given speed is not dependent on 

whether the vehicle is accelerating or decelerating through the speed, or traveling at a 

constant speed, the speed of fifth wheel is considered as hydroplaning speed. 

Kumar and FWA (2009) presented a verified hydroplaning simulation model for rib 

tire and the solutions for hydroplaning speeds using the finite element method. The 

hydroplaning characteristics of the standard ASTM E501 rib tire were studied for 

different tire groove widths, spacing and depths at fixed water depth of 5 mm. 

Jayasooriya's study (2014) captured the hydroplaning speed from the crash database. 

In this research the hydroplaning crash data was extracted from five databases provided 

by Florida Department Of Transportation (FDOT), which are Crash analysis and 

reporting system database, Pavement condition survey database, Geographical 

information system database, Vehicle passenger and driver information database, and 

Police long-form database. 
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2.4 Hydroplaning Prediction Models 

Substantial efforts has been devoted to the development of formulas and criteria to 

identify the precise speed at which hydroplaning occurs. The most common approaches 

have been used to calculate the critical speed required for dynamic hydroplaning. Some 

of these equations are simple relationships which define the hydroplaning speed as a 

function of one or two variables. Others are considerably more complex. As might be 

expected, the task of predicting when hydroplaning will occur, or of identifying a 

particular wet-weather accident as a hydroplaning incident, is rather difficult and involves 

in a substantial degree of uncertainty. 

2.4.1 NASA Hydroplaning Model 

In 1962 the NASA Langley Research Center published a formula for hydroplaning based 

on the hydrodynamic forces experienced by an aircraft tire (Horne 1962). Equation 2.12 

was derived by balancing the vehicle down force with the hydrodynamic up force. This 

formula is still used today as an indicator of the relationship between tire pressure and 

hydroplaning speed. The average water film depth is limited to 7.62 mm in this model.  

𝑉𝑃 = 𝐾√𝑃 (2.12) 

Where, Vp: Tire hydroplaning speed, mph; K: Constant dependant on fluid and flow 

dynamics determined from experimental data for specific tire and road combinations; P: 

Tire inflation pressure, psi. 

2.4.2 Road Research Laboratory (RRL) Model 

This method was developed by Road Research Laboratory (RRL) in 1968. The 2yr return 

period storm with duration of 5min is recommended for obtaining rainfall intensity. 
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Equation 2.13 indicates the water film depth calculation, and this method did not include 

any allowance for pavement texture depth. It is recommended that maximum WFD 

should be no more than 4 mm (NAASRA 1974, Russam 1968). 

𝑑 = 0.046
(𝐿𝑓𝐼)

1

2

𝑆
𝑓

1

5

 (2.13) 

Where, d: Depth of flow or water film thickness at the end of the flow path, mm; Lf: 

Length of flow path, m; I: Rainfall intensity, mm/hr; Sf: Flow path slop, m/m. 

2.4.3 Gallaway Model 

Gallaway B. M. et al developed an empirical method in 1979 on hydroplaning prediction 

for the US Department of Transportation. The method was outlined in the Texas 

Department of Transportation Hydraulic Design Manual, as described by Equations 2.14 

to 2.18. The local rainfall intensity and road geometry is used in Equation 2.18 to obtain 

the water film depth. This depth is then used to predict the hydroplaning velocity 

(Equation 2.14) (Gallaway, 1979). 

𝑉 = 0.9143𝑆𝐷0.04𝑃0.3(𝑇𝐷 + 0.794)0.06𝐴 (2.14) 

𝑆𝐷 = (
𝑊𝑑 − 𝑊𝑤

𝑊𝑑
) 100 (2.15) 

𝐴 =
12.639

𝑊𝐹𝐷0.06
+ 3.507 (2.16) 

𝐴 = [
22.351

𝑊𝐹𝐷0.06
− 4.97] ∙ 𝑇𝑋𝐷0.14 (2.17) 

𝑊𝐹𝐷 = 𝑧 {
𝑇𝑋𝐷0.11𝐿0.43𝐼0.59

𝑆0.42
} − 𝑇𝑋𝐷 (2.18) 
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Where, V: Vehicle speed at which aquaplaning occurs, km/hr; SD: Spin down speed 

(10%at initiation of aquaplaning); Wd: Rotational velocity of wheel on dry surface; Ww: 

Rotational velocity of wheel after spindown due to contact with flooded surfaces; P: Tire 

pressure, Kpa (165Kpa recommended design value); TD: Tire tread depth, mm (0.5mm 

recommended design value); A: The greater of the equation 16 and 17; TXD: Pavement 

texture depth, mm (0.5mm recommended); WFD: Water film depth on pavement surface, 

mm; z: 0.01485 (Constant); L: Pavement flow path length, m; I: Rainfall intensity, 

mm/hr; S: Pavement cross slope, m/m. 

2.4.4 Sight Distance Model 

Ivey et al (1975) proposed an empirical relationship between rainfall intensity, driver 

visibility and speed. The Equation 2.19 is usually rearranged to give the rainfall intensity 

for a specific design speed. Sight distance may also be substituted in form a geometric 

design manual such as AASHTO, and the maximum rainfall intensity calculated for 

hydroplaning WFD calculations. 

𝑆𝑣 =
2000

𝑖0.68
∙

40

𝑉𝑖
 (2.19) 

Where Sv: Sight distance, ft; i: Rainfall intensity, in/hr; Vi: Vehicle velocity, m/hr. 

2.4.5 PAVDRN Model 

PAVDRN is a computer program that was developed by the University of Pennsylvania 

in 1998 with funding from the National Cooperative Highway Research Program 

(AASHTO, 2004). It uses a one-dimensional steady state form of the kinematic wave 

equation (Equation 2.20) to calculate the water film depth. The program also uses a 
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condensation of formulas to determine a relationship between velocity at which 

hydroplaning initiates and WFD, as Equation 2.23 shows.  

𝑊𝐹𝐷 = [
𝑛𝐿𝐼

105.425𝑆0.5
]

0.6

− 𝑀𝑇𝐷 (2.20) 

𝑛 =
1.49𝑆0.306

𝑁𝑅
0.424  (𝑃𝑜𝑟𝑜𝑢𝑠 𝑎𝑠𝑝ℎ𝑎𝑙𝑡) (2.21) 

𝑁𝑅 =
𝑞

𝑣
 (2.22) 

𝐻𝑃𝑆 = 26.04𝑊𝐹𝐷−0.259 (𝑊𝐹𝐷 (𝑖𝑛) <  0.095𝑖𝑛 𝑜𝑟 2.4𝑚𝑚) (2.23) 

Where, WFD: Water Film Depth, mm; MTD: Mean Texture Depth, mm; S: Slope, m/m; I: 

Rainfall intensity, mm/hr; f: Infiltration rate or permeability of pavement, mm/hr; n: 

Manning’s roughness coefficient; NR: Reynold’s number; q: Quantity of flow per unit 

width, m3/s/m; v: Kinematic viscosity of water; HPS: Hydroplaning Speed, km/h. 

2.4.6 University of South Florida (USF) Model 

The USF model is an analytical hydroplaning prediction model developed at the 

University of South Florida. The method was developed based on Ong and Fwa's 

comprehensive numerical prediction, shown in Equation 2.24. The USF model can be 

used to predict the hydroplaning speeds for different light vehicles that employ tires 

compatible with the locked-wheel tester tires (Gunaratne 2012). 

𝑣𝑝 = 𝑊0.2 × 𝑃𝑡
0.5 × [(

0.82

𝑊𝐹𝐷0.06
) + 0.49] 

(2.24) 

Where, WFD: Water film depth, mm; vp: Hydroplaning speed, km/h; Pt: Inflation 

pressure, Kpa; W: Wheel load, N. 
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2.4.7 Browne's Hydroplaning Model 

Browne 1975 developed a model to describe the minimum hydroplaning speed for a 

pavement surface with slight micro-texture. Equation 2.25 is the formula of this method 

for the hydroplaning speed estimation. However, this formula is not applicable to 

dynamic hydroplaning.  

𝑉𝐻 ≥
𝐿

∆𝑇𝑠𝑓
 (2.25) 

Where, VH: The minimum viscous hydroplaning speed, km/h; L: The length of the tire 

footprint region, m; ∆Tsf: The time required for sufficient reduction of the fluid film for 

contact between the tread rubber and the pavement asperities. 

2.4.8 Yang's Hydroplaning Model 

Yang (1972) has proposed an analytical equation to define hydroplaning as part of an 

effort to develop design criteria for runway pavement grooving. The underlying principle 

for Equation 2.26 is that hydroplaning will occur when the water escape velocity due to 

an external force, the tire pressure, is less than the speed at which the surface water 

travels sideways. 

𝑐𝑝
1

2⁄ =
𝜋𝑎/4

2𝑏/𝑣
 (2.26) 

Where, c: A constant; p: The tire inflation pressure, lbf/in2; a: The width of the tire 

footprint region, in; b: The length of the tire footprint region, in; v: The vehicle velocity, 

in/sec. 
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2.5 Summary 

This chapter firstly summarizes pioneering studies on factors affecting hydroplaning 

including surface texture, pavement geometry features, and pavement rutting. These 

factors can be measured using static or dynamic methods with different accuracies. For 

the network-level survey purpose, these factors would be continuously measured using 

DHDV at highway speeds, including texture data, cross slope, longitudinal grade, 

horizontal radius curves, and rutting depth and width. 

The existing methods for water film depth calculation are presented. Past studies 

indicates that the risk of hydroplaning increases with the exaltation of the water film 

depth which is dependent on surface texture properties, flow path slope, flow path length, 

rainfall intensity, and pavement surface type. The development of formulas and models to 

estimate water film depth and the onset of dynamic hydroplaning for pneumatic tires has 

been going on for approximately 50 years. However, some important intervening factors 

on water film depth calculation has been ignored in these models, such as effects of large 

slope and pavement rutting on water film depth.  

Therefore the current hydroplaning speed prediction models are malfunctioned on 

pavement sections with horizontal curve, large longitudinal slope, or rutting. In addition, 

there were few research studies conducted on detecting and identifying hydroplaning risk 

sections in a network level pavement safety survey. This is primarily due to two facts: 1) 

that it is difficult to acquire the high-quality texture and geometry data which are served 

as the basis for hydroplaning study; 2) that the existing hydroplaning speed prediction 

models might be malfunctioned on the irregular pavement sections e.g. pavements with 

large slopes or long rutting track.  
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CHAPTER 3. EVALUATION OF WATER FILM DEPTH AND HYDROPLANING SPEED 

PREDICTION MODELS 

 

 

 

 

 

3.1 Validation of Water Film Depth Models  

Currently the water film depth prediction models can be classified into two categories: 

empirical model developed from field test data and analytical model deduced from FEM 

simulation methods (Anderson 1998). This section attempts to estimate the water film 

depths under various models during storm event. Finally, the comparisons are made 

between the collected and estimated WFDs so that the better and much reliable models 

for WFD calculation can be determined. 

3.1.1 Water Film Depth Models 

3.1.1.1 Existing Water Film Depth Models 

Four types of water film depth estimation models are examined in this study, including 

empirical form of PAVDRN model, Gallaway Model, NZ Modified Equation, and 

analytical form of PAVDRN model, as shown in Table 3.1. The definition of the
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variables in these models, such as water film depth (water film thickness), thickness of 

total flow, and mean texture depth are illustrated in Figure 3.1. 

Table 3.1 Summary of Tested Water Film Depth Model 

Source 
Model 

Structure 
Equation Form Variables 

Empirical 

form of 

PAVDRN 

Empirical 𝑊𝐹𝐷 =
0.00372𝐿0.519𝐼0.562𝑀𝑇𝐷0.125

𝑆0.364
− 𝑀𝑇𝐷 𝐼: Rainfall intensity 

(in/hr); 

𝑀𝑇𝐷: Mean texture depth 

(in); 

𝐿: Longest flow path 

length (ft); 

𝑆: Drainage slope (ft/ft); 

𝑛: Manning’s roughness 

coefficient. 

Gallaway Analytical 𝑊𝐹𝐷 = 0.0034 (
𝑀𝑇𝐷0.11𝐿0.43𝐼0.59

𝑆0.42 ) − 𝑀𝑇𝐷 

NZ 

modified 

Equation 

Empirical 𝑊𝐹𝐷 =
0.0502𝐿0.316𝐼0.2712

𝑆0.3
− 𝑀𝑇𝐷 

Analytical 

form of 

PAVDRN 

Analytical 𝑊𝐹𝐷 = (
𝑛𝐿𝐼

36.1𝑆0.5
)0.6 − 𝑀𝑇𝐷 

 

Figure 3.1 Definition of water film thickness, mean texture depth, and total flow in 

current hydroplaning prediction model (Anderson 1998) 

3.1.1.2 Sensitive Analysis of WFD Models 

Water film forms on the pavement surface during natural rainfall. Its thickness is related 

to the effectivity of pavement drainage and dimensions of flow path. Usually rainfall 

intensity, pavement texture, cross slope, and longitudinal grade are considered as the 
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contributing factors on water film depth. The sensitive tests are provided in this section to 

verify the sensitivity of four WFD models to their variables. In this test the reference 

variable are assumed as follows: 

o Rainfall Intensity: ′𝑖′ = 6𝑖𝑛/ℎ𝑟 

o Texture Depth: ′𝑀𝑇𝐷′ = 0.06𝑖𝑛 

o Cross Slope: ′𝑆𝑐′ = 2% 

o Longitudinal grade: ′𝑆𝑙
′ = 5 % 

The sensitivity of the WFD models to their variables are analyzed, as shown in 

Figure 3.2. The rainfall intensity, mean texture depth, cross slope and longitudinal grade 

are each varied by ± 25%, ± 50%, and ± 75% individually while maintaining the other 

variables at the reference value. The resulting change in WFD is calculated for rainfall 

intensity, MTD, cross slope and longitudinal grade. It can be seen that the resulting 

change in WFD is apparent along the increase of rainfall intensity, MTD, cross slope, and 

longitudinal grade. In the four WFD models, the water film depth increases with increase 

of rainfall intensity and longitudinal grade, while with decrease of MTD and cross slope. 

The rainfall intensity is most sensitive in analytical PAVDRN model, and followed by 

NZ modified model, empirical PAVDRN model, and Gallaway model, as Figure 3.2a 

shows. Figure 3.2b shows that there is no obvious difference between four WFD models 

for the sensitivity of the WFDs to MTD. In Figure 3.2c, the NZ modified model is more 

sensitive in cross slope than the other models. However, the sensitivity of four models to 

longitudinal grade is not obvious, as Figure 3.2d shows. 
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(d) 

Figure 3.2 Sensitivity tests for four WFD models to their variables 

3.1.2 Data Collection Instruments 

Figure 3 shows the general principle of the rainfall intensity and actual WFD test in this 

study. During the storm events, the rain gauge is placed on the test site to record rainfall 

intensity (water volume on the rain gauge is recorded every five minutes), meanwhile the 

eTape Liquid Level Sensor linked with FLUKE 289 RMS Multi-meter is applied to 

measure the water film depth on the pavement surface (the WFD is recorded every 5 

second). In order to avoid the equipment wetting by rain, the eTape Liquid Level Sensor 

and FLUKE 289 RMS Multi-meter are fixed in the box, and a small hole on the box 

bottom make the eTape sensor touching the pavement surface. After storm events, the 

WFD related pavement features including pavement texture and pavement slope are 

measured by LS-40 Surface Texture Scanner and SurPro3500 walking profiler 

respectively. 
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Figure 3.3 Water film depth and rainfall intensity measurement 

3.1.2.1 Rainfall Intensity and WFD Test  

A rain gauge, as shown in Figure 3.4, is a type of instrument used by meteorologists and 

hydrologists to gather and measure the amount of liquid precipitation over a set period of 

time (Wikipedia 2015). The standard plastic rain gauge used in this study has four inch 

outer cylinder for rain collection, and 0.98 inch inner cylinder to fill the rain. After the 

inner cylinder is filled, the amount insider it is discarded, then filled with the remaining 

rainfall in the outer cylinder until all the fluid in the outer cylinder is gone, adding to the 

overall total until the outer cylinder is empty. In this study the water volume in rain gauge 

is recorded every five minutes, and the unit in millimeter per five minutes is transferred 

to the unit in millimeter per hour. 
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Figure 3.4 Standard plastic rain gauge 

eTape liquid level sensor is a solid-state sensor with a resistive output that varies 

with the level of fluid (MILONE 2015). It results in a change in resistance that 

corresponds to the distance from the top of the sensor to the surface of the fluid. The 

sensor's resistive output is inversely proportional to the height of the liquid. It does away 

with clunky mechanical floats, and easily interfaces with electronic control systems. The 

eTape liquid level sensor combine with the FLUKE 289 true RMS multi-meter (FLUKE 

2015), as Figure 3.5 shows, can measure water film depth, and the data is recorded every 

5 seconds. 

 

Figure 3.5 eTape liquid level sensor and FLUKE 289 true RMS multi-meter 
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After the storm event, the corresponding texture data and flow path slope are 

measured by LS-40 Surface Texture Analyzer and SurPro3500 walking profiler, 

respectively. 

3.1.2.2 LS-40 Surface Texture Analyzer 

LS-40 Surface Texture Scanner (Figure 3.6) is a high resolution surface measurement and 

analysis device. It scans a 4.25” by 6” or 10” areas and produces a high resolution digital 

surface structure with an intensity image and a surface depth related range image. Its 3D 

graphic display allows users to view detailed structure from different angles. LS-40 

provides accurate and stable texture MPD by processing thousands of profiles over the 

entire surface (Table 3.2), with optional processing modules of measuring other surface 

features (Bergstrom 2001). 

 

Figure 3.6 LS-40 Surface Texture Analyzer in operation 
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Table 3.2 LS-40 Surface Texture Analyzer Specification 

Scan area 4.25” x 4” (108mm x 101mm), LS-40-6 model 4.25” x10” (108mm x 254 

mm), LS-40-12 model 

No. of 

profiles 

Up to 5120 profile lines in a single measurement 

Data/scan 

line 

2048 samples per scan line 

X Y 

Resolution 

0.002” (0.052mm) or 0.004” (0.1mm) for both x and y. 

Z Resolution 0.01 mm/ 0.0004 inch at depth range of 0.75” (19.05mm) 

Accuracy 0.002” (0.05 mm) 

Test Time 85 profiles per second. 25 second for a full scan of 2048 profiles 

Power Battery operation (3 hour) 

Dimension 13”(381mm)W x 8.5”(165mm)D x 10”(254mm)H , model 6 18”(457mm)W x 

8.5”(165mm)D x 10”(254mm)H , model 12 

Function: Primary function: Surface texture analysis  

Optional functions: 1) Crack or concrete joint faulting measurement; 2) 

Aggregate shape and surface feature measurement 

Controller Controlled and processed by a laptop computer for virtually unlimited data 

storage. 

3.1.2.3 SurPro500 Walking Profiler 

The SurPro3500 (Figure 3.7) is a rolling surface profiler intended for a wide range of 

applications on roads, structures, runways and floors. It is inclinometer-based profiling 

devices and can automatically collect runway unfiltered true elevation profiles with high 

accuracy and repeatability at speeds up to 4 km/h (International Cybernetics 2015). As 

one of the most advanced walking surface profiler, it is widely accepted as the industry 

reference ("gold") profiling device. It has co-linear wheels (no side wheels or outrigger) 

which enable accurate profiling in wheel ruts and easy to steer following chalk line. Its 

wheel spacing of 250 mm, 12" and 300 mm support several ASTM Standards. 

SurPro3500 saves profiling data in several widely used profiling data formats including 

PPF, ERD and PRO formats. 
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Figure 3.7 SurPro3500 walking profiler in operation 

3.1.3 Evaluation of WFD Estimation Models 

3.1.3.1 Test Sites 

Six test sites, located in Stillwater Oklahoma, are chosen for WFD model evaluation, as 

shown in Figure 3.8, among which three are asphalt pavements and the other three are 

concrete pavements. Pavement texture properties are illustrated in Figure 3.9. In addition, 

pavement type, site geometry feature, drainage facility, and pavement condition for these 

six test sites are summarized in Table 3.3.  
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Figure 3.8 Six test sites in google map 

Table 3.3 Summary of the Six Test Sites 

Test 

Site 
Pavement Type Flat/Sloping 

Drainage 

Facility 

Pavement 

Condition 

1 Asphalt Pavement Sloping Ditch Good 

2 Asphalt Pavement Sloping Gutter Good 

3 Asphalt Pavement Flat Ditch Excellent 

4 
Concrete 

Pavement 
Sloping Gutter Good 

5 
Concrete 

Pavement 
Sloping Gutter Good 

6 
Concrete 

Pavement 
Flat Gutter Good 
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Figure 3.9 Pavement Texture of (a) Test Site 1; (b) Test Site 2; (c) Test Site 3; (d) Test 

Site 4; (e) Test Site 5; (f) Test Site 6 

3.1.3.2 Data Collection and Analysis 

The longitudinal grade and cross slope are collected by SurPro3500 walking profiler. 

Pavement texture data is collected with LS 40 Surface Texture Analyzer. The measured 

longitudinal grade, cross slope, MPD, and MTD at six test sites are summarized in Table 

3.4. It can be seen that test sites 1, 2, and 4 have the large longitudinal grade, and the 

other test sites are located in relatively flat road section. At the six test sites, the measured 

cross slope is ranged from 1.083% to 3.734%; the calculated MTDs are around 1.2 mm 
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for the flexible pavement test sites (test site 1, 2, and 3), and around 0.93 mm for the rigid 

pavement test sites (test site 4, 5, and 6). 

Table 3.4 Summary of Pavement Characteristics at Six Test Sites 

Test Site 1 2 3 4 5 6 

Longitudinal grade (%) 4.4 3.072 0.063 4.385 -1.087 -1.942 

Cross slope (%) -1.083 2.415 -1.15 -3.302 -3.734 1.298 

MPD (mm) 1.14 1.03 1.045 0.83 0.79 0.843 

MTD (mm) 1.415 1.125 1.235 0.93 0.927 0.943 

The water volume from the rain gauge is recorded every 5 minutes. For each test site, 

four set of data are recorded, and thereby 20 minutes rainfall data are collected in total. 

The water film depth variation in storm events is recorded by FLUKE 289 true RMS 

multi-meter. Figure 3.10a to Figure 3.10f shows the variation of water film depth and the 

rainfall intensity at six test sites. It can be seen that the peak water film depth sometimes 

appears after the peak rainfall intensity since the accumulated water on pavement surface 

cannot drain off immediately, which lead the offsets between peak water film depth and 

he peak rain fall intensity. By comparing the water film depths of flexible pavements (test 

sites #1, #2, and #3) and rigid pavements (test sites #4, #5, and #6), it can be found that 

the drainage of flexible pavement is better than rigid pavement due to the penetration of 

the flexible pavement.  
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   (a)      (b) 

 

   (c)      (d) 

 

    (e)      (f) 

Figure 3.10 Water film depth during storm events on (a) test site 1; (b) test site 2; (c) test 

site 3; (d) test site 4; (e) test site 5; (f) test site 6 
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3.1.3.3 Result Validation  

In this case the measured cross slope, longitudinal grade, MTD, and rainfall intensity are 

loaded into the WFD prediction models, and the estimated water film depth can be 

obtained, as shown in Figure 3.11a to Figure 3.11f. The actual WFD measured by eTape 

liquid level sensor is marked by red line. By comparing the actual WFD with estimated 

WFDs from the four models, it can be found that the estimated WFD from Gallaway 

model and empirical PAVDRN model are closer to the ground truth than other models. 

Therefore, the Gallaway WFD estimation model is used for the following research in this 

study. 
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(e)      (f) 

Figure 3.11 Estimated WFD by models and ground truth by eTape at (a) test site 1; (b) 

test site 2; (c) test site 3; (d) test site 4; (e) test site 5; (f) test site 6 

3.2 Validation of Hydroplaning Speed Prediction Models 

The various empirical and analytical models have been developed to estimate pavement 

hydroplaning speed based on a series of factors. However, it is still unsolved problem to 

determine the most efficient model for hydroplaning speed prediction for researchers, in 

this paper the predicted hydroplaning speeds from different model would be validated 

with the ground truth so that the more reasonable and reliable model can be determined. 

3.2.1 Hydroplaning Speed Prediction Models 

3.2.1.1 Existing Hydroplaning Speed Prediction Models 

The predicted hydroplaning speed is served as basis to evaluate the potential 

hydroplaning risks on test pavement section by comparing with the posted speed limit. As 

stated above, pavement hydroplaning speed is highly associated with water film depth, 

mean texture depth, tire inflation pressure, and tire tread depth. In this study four 
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hydroplaning speed prediction models namely Agrawal model, PAVDRN model, 

Gallaway model, and USF model, are investigated, as summarized in Table 3.5. 

Table 3.5 Summary of Hydroplaning Speed Models 

Source Model 

Structure 

Equation Form Variables 

Agrawal Empirical 𝑣𝑝 = 37.5 + 5.28𝑊𝐹𝐷−0.5 𝑊𝐹𝐷: Water 

film depth 

(in); 

𝑀𝑇𝐷: Mean 

texture depth 

(in); 

𝑃𝑡: Inflation 

pressure 

(Kpa); 

𝑆𝐷: Spin 

down ratio; 

𝑇𝐷: Tire 

tread depth 

(in); 

𝑊: Wheel 

load; 

PAVDRN Analytical 𝑣𝑝 = 96.3𝑊𝐹𝐷−0.259, 𝑖𝑓 𝑊𝐹𝐷 ≥ 2.4𝑚𝑚 

Otherwise 

𝑣𝑝 = 4.94𝐴 

𝐴

= 𝑀𝑎𝑥. 𝑜𝑓 {
(

12.64

𝑊𝐹𝐷0.06
) + 3.507

35.15

𝑊𝐹𝐷0.06
− 7.817(0.0393𝑀𝑇𝐷)0.14

 

Gallaway Analytical 𝑣𝑝 = 𝑆𝐷0.04𝑃𝑡
0.3(𝑇𝐷 + 1)0.06𝐴 

𝐴 = 𝑀𝑎𝑥. 𝑜𝑓 {
(

10.409

𝑊𝐹𝐷0.06
) + 3.507

[(
28.952

𝑊𝐹𝐷0.06
) − 7.817]𝑀𝑇𝐷0.14

 

USF - 

Gunaratne et 

al. 

Empirical / 

Finite 

Element 

𝑣𝑝 = (𝑊)0.2(𝑃𝑡)0.5(
0.82

𝑊𝐹𝐷0.06
+ 0.49) 

3.2.1.2 Sensitive Analysis of Hydroplaning Speed Prediction Models 

Since the water film depth is the key parameter to predict hydroplaning speed in these 

four models, the sensitive tests of the four models to water film depth are conducted. In 

the test the reference variables are assumed as follows: 

o Texture Depth: ′𝑀𝑇𝐷′ = 0.06𝑖𝑛 

o Inflation pressure: '𝑃𝑡 ' = 165 Kpa 

o Wheel load: 'W' = 4800 N 

o Water film depth: 'WFD'= 0.08 in 
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The texture depth, inflation pressure, and wheel load are assigned to the assumed 

values, and the WFD is assumed to be varied by ± 25%, ± 50%, and ± 75%, based on 

which the four hydroplaning speed prediction models are used to calculate the 

hydroplaning speeds, as shown in Figure 3.12. It can be seen that the resulting change in 

hydroplaning speed is apparent with the increase of WFD. Generally the estimated 

hydroplaning speeds decrease with the increase of WFD. Results also indicated that 

PAVDRN and Agrawal models are much sensitive to WFD than other two models. 

 

Figure 3.12 Sensitivity test for hydroplaning speed models to WFD 

3.2.2 Data Collection Instruments 

In order to validate the accuracy of hydroplaning speeds predicted from these four 

models, the Dynamic Friction Tester (DFT) is used as a reference device to measure the 

potential hydroplaning speeds. The DFT is a portable instrument to measure pavement 

surface friction as a function of speed and under various conditions (ASTM E1911), as 

Figure 3.13a shows. This instrument uses a disk that spins with its plane parallel to the 
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test surface, and subsequently the friction coefficient and test speed are recorded. When 

the friction number is infinitely close to zero, the wheel speed at that time can be 

considered as hydroplaning speed. However, the maximum water thickness produced by 

this instrument is only 1mm, which cannot meet the requirement of the hydroplaning 

simulation test. Therefore a water pool with graduation is designed to maintain constant 

water film depth during test in Figure 3.13b. The collected data in this test includes 

friction coefficient, wheel speed, and fixed water film depth in the pool. 

 

Figure 3.13 Hydroplaning speed verification: (a) DFT; (b) the pool with graduation 

3.2.3 Evaluation of Hydroplaning Speed Prediction Models 

3.2.3.1 Test Sites 

Four test sites, located in Stillwater Oklahoma, are chosen for the predicted hydroplaning 

speed validation, as shown in Figure 3.14. The four test sites belong to asphalt pavements 

and have good condition. Table 3.6 summaries the road geometry features, pavement 

texture, cross slope, longitudinal grade, and fixed WFD at the four test sites. 
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Figure 3.14 Locations of the DFT test sites 

Table 3.6 Summary of Road Characteristics at Four Test Sites 

DFT Test Site 1 2 3 4 

Geometry Curve/Flat Straight/Slope Straight/Flat Straight/Slope 

Fixed WFD (mm) 1.65 3.64 10.48 0.84 

MTD (mm) 1.04 1.10 1.17 1.11 

Cross Slope (%) -2.11 -0.90 0.33 -3.54 

Longitudinal Grade (%) 3.04 4.41 12.00 0.70 

3.2.3.2 Data Collection and Analyses 

Prior to field tests, the water should be poured into the built-up pool and make sure the 

test area are totally wet, and subsequently the DFT is used on wetted pavements to 

measure the dynamic friction number at four test sites, as shown Figure 3.15. Generally 

the moment of friction coefficient that is infinitely close to zero can be considered as the 

time of occurrence of hydroplaning risks, and the corresponding test speed for occurrence 
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of hydroplaning risk is taken as hydroplaning speed, which is marked with red points in 

Figure 3.15. In Figure 3.15, it can be observed that the measured hydroplaning speed at 

four test sites are 84.98 km/h, 80.97 km/h, 68.99 km/h, and 91.98 km/h, respectively. 

 

Figure 3.15 DFT test results for: (a) test site 1; (b) test site 2; (c) test site 3; (d) test site 4 

3.2.3.3 Results Validation 

Once the measured WFD and MTD are incorporated into the four hydroplaning speed 

prediction models, the hydroplaning speeds can be estimated, as given in Table 3.7. In 

this case the actual hydroplaning speed is measured by DFT and is given in Table 3.7 as 

well. By comparing the ground truth with the estimated hydroplaning speeds (Figure 

3.16), it can be seen that the estimated hydroplaning speeds from the Gallaway and USF 

models are much closer to the ground truth than that from other two models. Therefore, 
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in this study the Gallaway and USF models are selected for the following hydroplaning 

speed prediction. 

Table 3.7 Hydroplaning Speeds from Predictive Models and DFT 

Hydroplaning Speed (km/h) Site #1 Site #2 Site #3 Site #4 

Agrawal Model 58.21608 51.44762 45.71997 66.53423 

PAVDRN Model 188.9017 159.277 121.1169 232.8571 

Gallaway Model 71.01632 67.27121 62.36373 75.5103 

USF Model 101.9068 98.77193 94.8078 104.702 

DFT Test 84.98 80.97 68.99 91.98 

  

Figure 3.16 Comparison of predicted and measured hydroplaning speeds  

3.3 Summary 

This chapter mainly presents the validation of WFD estimation models and hydroplaning 

speed prediction models. For the validation of WFD estimation models, four models 

namely empirical PAVDRN, Gallaway model, NZ modified model, and analytical 

PAVDRN are involved and their sensitivity to mean texture depth, cross slope, 

longitudinal grade, and rainfall intensity are investigated respectively. The rain gauge and 

eTape liquid level sensor are used to measure the actual WFD. The LS-40 Surface 

Texture Analyzer and SurPro3500 Walking Profiler are used to measure pavement 
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geometry feature and surface texture property on test sites, respectively. Finally six test 

sites are applied to investigate the reliability of the four WFD estimation models. 

Findings indicate the predicted WFDs from Gallaway model produces the best agreement 

with the ground truth, and thereby it would be served as the basis for the following 

hydroplaning speed prediction. 

To examine the reliability of the hydroplaning speed prediction models, four models 

namely Agrawal model, Gallaway model, PAVDRN model, and USF model are tested. In 

this study the DFT is used to collect the potential hydroplaning speed on test areas with 

the built-up pool. Four AC pavement sites are chosen to validate which model would 

produce the better agreement with the ground truth. Results show the Gallaway and USF 

model are more accurate in hydroplaning speed prediction than other models. 

Accordingly the Gallaway and USF model are chosen for the following hydroplaning 

speed prediction in this study. 
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CHAPTER 4. DATA ACQUISTION AND PREPARATION 

 

 

 

 

 

4.1 Data Acquisition System 

As stated in Chapter 2, the factors that influence hydroplaning speeds include rainfall 

intensity, tire inflation pressure, tire tread depth, pavement width, pavement texture, cross 

slope, and longitudinal grade. In order to predict the potential hydroplaning speeds for 

network level pavement survey, pavement texture data, cross slope, and longitudinal 

grade should be continuously measured. In this study Inertial Measurement Unit (IMU) 

and PaveVision3D Ultra technology are mounted on DHDV to acquire pavement 

geometry and texture data respectively. 

4.1.1 Digital Highway Data Vehicle (DHDV) 

DHDV, developed by the WayLink Systems Corporation with collaborations from the 

University of Arkansas and the Oklahoma State University, has been evolved into the 

sophisticated system to conduct full lane data collection on roadways at highway speed 

up to 60 mph (about 100 km/h). Figure 4.1a shows the exterior appearance of the DHDV 

equipped with the 3D Ultra technology. With the high power line laser projection system
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and custom optic filters, DHDV can work at highway speed during daytime and 

nighttime and maintain image quality and consistency. The camera and laser working 

principle is shown in Figure 4.1b. 

 

Figure 4.1 Photographs of (a) DHDV exterior appearance; (b) Pavevision3D working 

principle. 

4.1.2 Inertial Measurement Unit (IMU) 

Inertial Measurement Unit (IMU) is a self-contained sensor consisting of accelerometers 

and fiber-optic gyroscopes (XSENS 2015). The physical principle of gyroscope operation 

is analogous to the Doppler Effect, which involves determination of the phase shift 

between two counter propagating light beams.  

Currently the IMU system have been integrated and synchronized into the DHDV 

vehicle. The accelerometer and fiber-optic gyroscopes within the IMU are mounted such 

that their sensor coordinate axes are not aligned with those of the vehicle. Figure 4.2 

illustrates the orientation with which the IMU is mounted in the electronics module. 

Cross slope and longitudinal grade data are collected by IMU in this study. 
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Figure 4.2 Transformed IMU coordinate axes 

4.1.3 PaveVision3D Ultra Technology 

With the latest PaveVision3D Ultra (3D Ultra in short), the resolution of surface texture 

data in vertical direction is about 0.3 mm and in the longitudinal direction is 

approximately 1 mm at 60 mph data collection speed. 3D Ultra is able to acquire both 2D 

and 3D laser imaging data from pavement surface through two separate left and right 

sensors. Each sensor in the rear of the vehicle consists of two lasers and five special-

function cameras. For the two lasers, one is for providing 2D visual illumination and the 

other one is for providing the 3D data illumination. For the five cameras, four cameras 

are for capturing 3D laser illumination and the other one is for capturing 2D laser 

illumination (Wang 2011).  

Figure 4.3 show the sensor system configuration of PaveVision3D in a DHDV. Each 

sensor case covers half of a lane and contains two sensor assemblies: 2D laser imaging 

for 1mm visual images, and 3D laser imaging for 1mm surface information. The 

PaveVision3D hybrid system can display surface texture in a visual and realistic format, 

which is used to obtain mean texture depth and transvers profile in this study.  
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Figure 4.3 A laser imaging sensor (Wang, 2011) 

4.2 Data Preparation 

The collected raw data includes IMU roll angle, IMU pitch angle, IMU heading angle, 

vehicle speed, transverse acceleration, 3D laser imaging data, and Distance Measurement 

Instrument (DMI) pulse. The 3D imaging data collected is stored on computer hard disk 

in the form of raw images. Each raw image has a size of 4096 pixel wide by 2048 pixel 

long. The raw images are served as the basic sampling elements for mean texture depth 

calculation. The IMU data set has different sample size with 3D imaging data, but the 

two data sets can be matched by DMI pulse. The data source, sample size, and their 

applications are described in Table 4.1, and thus the data preparation covers the 

calculation of Estimated MTD, calibration of cross slope, horizontal curve radius 

measurement, and rutting measurement. 
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Table 4.1 Application of the Raw DHDV for Pavement Characteristics Measurement 

Application Raw Data Source Sample 

size 

EMTD 3D Laser Imaging Data PaveVision3D Ultra 

Technology 

7.5ft 

Cross Slope IMU Roll Angle IMU 0.625ft 

Transverse Profiling Data PaveVision3D Ultra 

Technology 

7.5ft 

Longitudinal 

Grade 

IMU Pitch Angle IMU 0.625ft 

Horizontal Curve IMU Heading Angle IMU 0.625ft 

IMU Roll Angle IMU 0.625ft 

Transverse Acceleration IMU 0.625ft 

Transverse Profiling Data PaveVision3D Ultra 

Technology 

7.5ft 

Distance Measurement 

Instrument (DMI) pulse 

DMI 0.625ft 

Pavement Rutting Transverse Profiling Data PaveVision3D Ultra 

Technology 

7.5ft 

4.2.1 Repeatability Test of the Collected Data  

To verify the reliability of the calculated EMTD, cross slope, and longitudinal grade, the 

repeatability test is conducted. In this study The Analysis of Variance (ANOVA) method 

is used for data analysis. 

4.2.1.1 Test Design 

Two 1500ft road sections (sites #1 and #2) that are located at E Lakeview Road and W 

32nd Street in Stillwater, Oklahoma are chosen as test bed. Three repetitive measurements 

are conducted on each test site. The test sites #1 and #2 are respectively constructed with 

grooved texture and the dragged texture. In this study the 3D texture and IMU data are 

sampled with a length of 7.5 feet, and thus there are 200 samples for each measurement 
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pass. For each pass, the EMTD, calibrated cross slope, and longitudinal grade are 

calculated, as shown in Table 4.2. 

Table 4.2 Example of EMTD and IMU Data of Test Site 1 

Mileage 

(ft) 

Pass 1 Pass 2 Pass 3 

EMTD 
Cross 

Slope 

Long 

Grade 
EMTD 

Cross 

Slope 

Long 

Grade 
EMTD 

Cross 

Slope 

Long 

Grade 

75 1.943 1.382 -1.3 1.897 1.448 -1.21 1.871 1.464 -1.22 

150 1.987 1.479 -1.5 1.975 1.477 -1.43 1.963 1.505 -1.43 

225 1.861 1.364 -1.49 1.918 1.38 -1.44 1.861 1.434 -1.42 

300 1.753 1.368 -1.49 2.072 1.341 -1.44 1.691 1.398 -1.43 

375 1.935 1.372 -1.47 1.987 1.336 -1.43 1.89 1.405 -1.42 

450 1.867 1.366 -1.21 1.894 1.339 -1.18 1.758 1.375 -1.2 

525 1.692 1.248 -0.65 1.721 1.233 -0.63 1.618 1.291 -0.64 

600 1.798 1.262 9.933 1.953 1.233 9.856 1.848 1.285 9.72 

675 1.556 1.241 0.18 1.951 1.247 0.214 1.828 1.24 0.197 

750 1.583 1.263 0.28 1.969 1.272 0.306 1.872 1.274 0.271 

825 1.519 1.153 0.414 1.938 1.176 0.42 1.771 1.196 0.409 

900 1.411 1.191 0.791 1.788 1.218 0.792 1.616 1.171 0.789 

975 1.591 1.189 1.288 1.802 1.224 1.282 1.813 1.233 1.286 

1050 1.482 1.362 1.398 1.539 1.406 1.401 1.743 1.395 1.405 

1125 1.379 1.18 1.415 1.495 1.238 1.418 1.769 1.224 1.419 

1200 1.408 1.052 1.291 1.49 1.083 1.283 1.797 1.103 1.313 

1275 1.496 1.034 1.433 1.576 1.082 1.465 1.841 1.096 1.444 

1350 1.479 1.073 1.331 1.701 1.123 1.355 1.9 1.145 1.357 

1425 1.541 1.028 0.86 1.988 1.062 0.865 1.901 1.079 0.853 

1500 1.565 1.073 0.2 2.012 1.094 0.212 1.84 1.087 0.205 

4.2.1.2 ANOVA Analyses 

Analysis of Variance (ANOVA) is a common statistical technique for hypothesis test to 

check the equality of variations among two or more groups (Park 2009). In this study this 

technique is applied to test the repeatability of EMTD and IMU data of different runs or 
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passes at the each test site. There are five distinct of levels (α) in scale for P-values: 0-

0.001, 0.001-0.01, 0.01-0.05, 0.05-0.1, and 0.1-1. α = 0.05, the mostly widely used 

distinct level, is selected as distinct level, and the significant difference is considered as 

“existence” if the distinct of level is smaller than 0.05. 

Based on the ANOVA test results at test site #1, significant difference exists among 

the three EMTD data sets ( 𝛼 = 0.05, 𝐹2,600 = 5.23, 𝑃 = 0.0056), while the IMU data 

sets appear in good repeatability (𝛼 = 0.05, Cross_slope: 𝐹2,600 = 2.79, 𝑃 = 0.0623, 

Longitudinal_grade: 𝑡_𝑣𝑎𝑙𝑢𝑒 = 0.57, 𝑃 = 0.5703). The EMTD distributions under 

different runs for test site #1 are plotted in Figure 4.4a. Note that EMTD from the first 

run is distinctively different from others. After removing EMTD data from the first run, 

ANOVA test shows there is good repeatability between data set #2 and #3 (𝛼 =

0.05, 𝐹1,400 = 0.69, 𝑃 = 0.4057). 

 

Figure 4.4 Statistics analysis of EMTD data at (a) test site 1; (b) test site 2 

Similar analysis is performed at test site #2. It is found that significant difference 

exists among the three EMTD data sets (𝛼 = 0.05, 𝐹2,600 = 7.34, 𝑃 = 0.0007), while the 
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difference among the three IMU data sets are not significant (𝛼 = 0.05,  Cross_slope: 

 𝐹2,600 = 0.50, 𝑃 = 0.60, Longitudinal_grade: 𝑡_𝑣𝑎𝑙𝑢𝑒 = 0.34, 𝑃 = 0.7357). The 

EMTD under different runs for test site 2 are plotted in Figure 4.4b. It is determined that 

the EMTD data set from the third run should be removed. Again, ANOVA test for the 

data set #1 and #2 indicates that these two data set have good repeatability (𝛼 =

0.05, 𝐹1,400 = 0.06, 𝑃 = 0.8075). 

4.2.1.3 Influences of Test Speed on Repeatability 

ANOVA test result indicated the 3D texture data is not as good as IMU data in terms of 

the repeatability, which might be caused by two factors: (1) data collection are conducted 

under different test speed; (2) influences of the vehicle vibration on data quality are not 

suppressed. In this study influences of the traveling speed and body roll angle of survey 

vehicle on data quality are investigated to attempt to find the reasons that cause the 

unexpected errors in EMTD data. Finally a recommendation would be made to suppress 

factors affecting data quality, and thereby the high quality 3D texture data can be 

collected. 

Figure4.5a shows the data collection speed distribution along the IMU data sample at 

test site #1. The test speed from run #1 is named as speed1, the similar name conversion 

is also used for the other two runs. Note that the speed of the three runs range from 

20mph to 30 mph, and the standard deviation of data collection speed of 3 runs at test site 

1 are 1.37, 2.47, and 2.60 respectively. The variation of the speed is not large to cause 

unexpected errors in EMTD data. 
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(a) 

 

(b) 

Figure 4.5 Data collection speeds of three runs at (a) test site 1; (b) test site 2 

Figure 4.5b shows the data collection speeds along the IMU data sample at test site 

#2. The standard deviation of test speed at three runs are 2.94, 2.97, and 3.90, 

respectively. In addition, the range of speed3 is larger (from 30mph to 43mph) than the 

speed1 and spee2. It can be estimated that the EMTD from run#3 may be not have the 

good repeatability with the EMTDs from the other two runs, which has a good agreement 

with the ANOVA test result. 
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4.2.1.4 Influences of Vehicle Vibration on Data Repeatability 

Figure 4.6a shows the body roll of survey vehicles under three runs at test site #1. The 

body roll are calculated from 3D transvers profiling data (200 samples for each run). The 

average values from the three runs are 1.87, 0.26, and 0.29, respectively. Note that the 

vehicle body roll angle from the run #1 is around seven times larger than the values from 

run #2 and #3. The large difference between run#1 and the other two runs might be 

caused by vehicle vibration during data collection, which agree with the results from 

ANOVA test. 

Figure 4.6b shows the body roll of survey vehicles under three runs at test site #2. 

The average values of the vehicle body roll from the three runs are 0.35, 0.37, and 0.34, 

respectively. Note that the variations of vehicle body roll angle are pretty small for the 

three passes, and their impacts on data quality can be overlooked in this case. However, 

due to the impacts of test speed, the EMTD from run#3 still have the poor repeatability 

with that from the other two runs. 
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(b) 

Figure 4.6 Survey vehicle body roll under three runs at (a) test site #1; (b) test site #2 

Based on the abovementioned analysis, it is recommended that the data collection 

should be conducted at constant speeds and avoid vehicle vibration, through which the 

impacts of test speeds and the vehicle vibration on data quality can maximally 

suppressed.  

4.2.2 Estimated Mean Texture Depth (EMTD) 

In this study the 1mm 3D texture data is used to calculate mean texture depth by 

simulating sand patch method, and the calculated index is termed as Estimated Mean 

Texture Depth (EMTD). As a volumetric method, the calculation of EMTD is based on 

1mm 3D laser imaging data of the entire lane, as shown in Equation 4.1 (Wang 2011). 

EMTD and MTD are assumed to be equivalent in this research. 

EMTD =
1

K
× ∑

∬ [F0 − F(x, y)]dxdy
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Where, F(x, y) The pixel depth at point (x, y); D: The integral or gridded area containing 

of M×N pixels; F0: The maximum peak in each area D; K: The number of grids within 

the test sample. 

4.2.3 Cross Slope Calibration  

A properly designed and constructed cross slope is important since it allows water to 

drain off the pavement surface as rapidly as possible, and thereby reduce hydroplaning 

and traffic accidents. Too small slope may cause low efficiency of drainage, while too 

large slope may cause vehicle handling problems. IMU mounted on the data vehicle can 

measure the Euler angles, which are termed as roll (Euler angle about x-axis), pitch 

(Euler angle about y-axis) and yaw (Euler angle about z-axis) (Bancroft 2011).  

Typically the roll angle is widely accepted to represent pavement cross slope, and 

pitch angle is widely used to represent the pavement longitudinal grade. Their 

measurements were conducted on the assumption that the vehicle floor is parallel with 

the pavement surface during the travelling. However, in real word the vehicle floor is 

unparalleled with the pavement surface during data collection (Figure 4.7) with the 

following reasons: 1) the uneven gravity distribution of vehicle; 2) the vibration of the 

vehicle during the traveling; 3) surface condition of pavement. 

This paper attempts to measure the survey vehicle body roll angle (angle γ) using the 

transverse profiling data collected by PaveVision 3D Ultra technology. The instruments 

used in measuring the cross slope include IMU system and the 3D Ultra sensors. The 

IMU is mounted in the middle of DHDV, and the four 3D laser cameras are overhung on 

the rear end of DHDV (two for each side). These four 3D laser cameras cover the entire 

lane, and the transverse profiling data from the 3D sensors are directly related to the 
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distance between the pavement surface and the 3D sensors. The “true” cross slope of the 

road way can be approximately determined based on two values: the tilt of the vehicle 

floor and the slope of the road surface visualized by the lasers. 

Due to roughness and distress of pavement, the road surface does not appear as 

straight line in transverse direction. Therefore, a method, the Least Squares 

Approximation (LSA) of the laser sensor readings, is used to solve this problem. The 

LSA lines fit could be given by Equation 4.2. 

𝑦 = 𝑎𝑥 + 𝑏 (4.2) 

As Figure 4.7 shows, the IMU provides angle of the vehicle relative to a level datum, 

as shown by angle θ, and the difference in laser measured height y1 and y2 over distance 

L is equal to the slope of the vehicle relative to the pavement (Equation 4.3). Therefore, 

the cross slope can be obtained by the Equation 4.4. 

γ = act tan (
y2 − y1

L
) 

(4.3) 

α = tan(θ − γ) (4.4) 

Since the angle θ and γ are very small, the cross slope equals to the slope of IMU 

roll angle minus the slope of vehicle relative to the pavement, as Equation 4.5 shows 

(Mekemson 2002). 

α = tan (θ) − tan (γ) (4.5) 

Where α: Cross slope of pavement, m/m; γ: Angle measured by the laser sensors with 

respect to the roadway surface, degree; θ: Roll angle measured by the IMU, degree; L: 

The distance between left and right laser, m; y1: The vertical distance from left sensor to 
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the least-square approximation line of pavement, m; y2: The vertical distance from right 

sensor to the least-square approximation line of pavement, m. 

 

Figure 4.7 Estimation of cross slope from IMU roll angle and laser measurement 

4.2.4 Horizontal Curve Measurement 

Typically the special design is used at horizontal curve segments of roadways, and the 

resulting hydroplaning risk would be different with that on straight road section. The 

cross slope at the horizontal curves is known as super-elevation. The lead-in and lead-out 

play a major role in gradually adjusting the super-elevation from the regular cross slope 

on a straight roadway to the maximum super-elevation at the curve. The design values of 

super-elevation depend on the radius of horizontal curve, as Table 2.5 shows. Therefore, 

measuring the horizontal curve radius is necessary for hydroplaning risk evaluation. 

Three methods namely Kinematics method, Geometry method, and Lateral acceleration 

method are employed to compute horizontal curve radius based on both IMU and 3D 
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transverse profiling data. To examine effectiveness of the three methods in radius 

calculation, the ground truth measured by satellite pictures is used.  

4.2.4.1  Kinematics Method 

The kinematic method uses the velocity in the longitudinal direction and the centrifugal 

acceleration of survey vehicle for curve radius calculation (Beer 1977), as Equation 4.6 

shows. Both "v" and "a" are directly obtained by IMU: "v" is the north velocity in IMU 

data set, and "a" is the transverse acceleration in IMU data set. 

𝑅 =
𝑣2

𝑎
 (4.6) 

Where, R: curve radius, m; v: the velocity of the vehicle in the longitudinal (body X) 

direction measured by IMU, km/h; a: the centrifugal acceleration of the vehicle on a 

horizontal plane measured by IMU, m/s2. 

4.2.4.2 Geometry Method 

The geometry method plots the actual vehicular horizontal trajectory using the velocity 

vector and then determines the radius (Duminda 2007), as Figure 4.8 shows. Due to the 

presence of high resolution data, the error associated with the linear approximation can be 

ignored for the vehicular horizontal trajectory.  

The longitudinal displacement of the vehicle between two consecutive data points i 

and (i+1) can be calculated by Equation 4.7 using the average velocities at those two 

points. In this method, the vehicle trajectory on the x-y plane is described by the function 

y = f(x), and the curve radius can be calculated by Equation 4.8. Since x and y 

coordinates are found in terms of time as discrete quantities (Equation 4.9 and 4.10), the 
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second order Forward Difference formulae can be obtained by Equation 4.11-4.14, and 

the numerical forms of the derivatives can be obtained by Equation 4.15 and 4.16.  

𝑑𝑠 =
1

2
(𝑣𝑖 + 𝑣𝑖+1)𝑑𝑡 (4.7) 

𝑅 =
(1 + (

𝑑𝑦𝑖

𝑑𝑥𝑖
)2)3/2

(
𝑑2𝑦𝑖

𝑑𝑥𝑖
2)

 (4.8) 

𝑥𝑖 = x(i−1) + 1.0161 × (Di − D(i−1)) × 𝑐𝑜𝑠(αh ×
3.14

180
) (4.9) 

𝑦 = y(i−1) + 1.0161 × (Di − D(i−1)) × 𝑠𝑖𝑛(αh ×
3.14

180
) (4.10) 

𝑥′ =
(−𝑥(𝑖+2) + 4𝑥(𝑖+1) − 3𝑥𝑖)

2ℎ
 (4.11) 

𝑦′ =
(−𝑦(𝑖+2) + 4𝑦(𝑖+1) − 3𝑦𝑖)

2ℎ
 (4.12) 

x′′ =
(−x(i+3) + 4x(i+2) − 5x(i+1) + 2xi)

h2
 (4.13) 

y′′ =
(−y(i+3) + 4y(i+2) − 5y(i+1) + 2yi)

h2
 (4.14) 

dyi

dxi
=

y′

x′
 (4.15) 

d2yi

dxi
2 =

(y′′x′ − x′′y′)

(x′)2
 (4.16) 

Where, R: curve radius, m;ds: the longitudinal displacement that occurs when the vehicle 

travels between the points i and (i+1); vi: the respective velocities at points i, km/h; dt: 

the time elapsed during the travel between points i and (i+1); Di: Distance Measurement 

Instrument (DMI) pulse at point i from IMU; αh: IMU heading angle, degree.  
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Figure 4.8 Geometry method for curve radius measurement 

4.2.4.3 Lateral Acceleration Method 

The lateral acceleration method uses the same equation as BBI method (Equation 4.17: 

point-mass equation) for curve radius calculation (Carlson 2008). Different from BBI 

method, the lateral acceleration, vehicle speed, and the super-elevation are measured by 

IMU and PaveVision 3D Ultra technology. In IMU data set, the lateral acceleration, "a", 

is the transverse acceleration, and the "v" is the vehicle speed.  

𝑅 =
𝑣2

127(𝑒 + 𝑎)
 (4.17) 

Where, R: curve radius, m;  v: vehicle speed, km/h; e: super-elevation, m/m; a: lateral 

acceleration measured by IMU, m/s2. 

4.2.4.4 Chord Offset Method in Field 

The chord offset method is a common method for roadway curve radius calculation 

(Carlson 2008). In this study the chord length and offset distance of road curve are 

measured on satellite pictures. Firstly, an electric tape is used held on either end at the 
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precise edge of the road way in the satellite picture, and then an electric comparing rule is 

used at the middle of the tape to measure the distance between the edge of the tape and 

the edge of the roadway. The curve radius can be calculated by Equation 4.18. The curve 

radius measured by this method is considered as ground truth in this study.  

𝑅 =
𝐿2

8M
+

M

2
 (4.18) 

Where, R: curve radius, m; L: the chord length, m; M: Offset distance, m. 

4.2.5 Pavement Rutting Measurement 

In this study the transverse profile data extracted from 3D texture data is applied for 

rutting measurement in compliance with the standard procedures specified in AASHTO 

PP69 (AASHTO, 2010). The rutting depth and width are important factors for rutting 

water film depth calculation.  

To measure rutting dimension (e.g. depth and width), a dedicated software is 

developed. Figure 4.9 shows the measured rutting dimension and their calculation 

process based on one transverse profile. The calculated rut depth and width are displayed 

in the left side of the interface. The first curve at the top left side shows the raw 

transverse profile extracted from 1mm 3D texture data. The second chart at the top right 

side shows the filtered transverse profile in compliance with AASHTO PP-69. The third 

chart at the bottom left side show the calibrated transverse profile by combining with 

IMU roll data. The fourth curve at the bottom right side shows the rotated transverse 

profile in horizontal level. Finally, the rutting depth and width are measured in 

accordance with the AASHTO PP-69 calculation standards. 
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Figure 4.9 Rutting depth and width measurement 

4.3 Summary 

This chapter presents two subsystems mounted on Digital Highway Data Vehicle 

(DHDV), namely IMU and PaveVision3D Ultra. PaveVision3D Ultra is used to acquire 

1mm 3D texture data and IMU system is used to collect the longitudinal grade and cross 

slope data. The repeatability test of the collected data are conducted on two test sites. The 

repeatability of IMU data are analyzed using ANOVA statistical method, and findings 

indicate the good repeatability exist among the three repetitive passes. The repeatability 

of 3D texture data is represented with EMTD, and findings indicate a fair agreement exist 

among three repetitive passes. Results also indicate the quality of 3D texture data is 

susceptible to test speeds and vehicle vibration. Therefore, during data collection the 

constant test speeds and avoiding vibration are recommended to guarantee data quality. 

EMTD is used to describe pavement texture properties and calculated by simulating 

sand path method with 3D image texture data. To obtain the accurate cross slope data, the 

roll data from IMU systems are calibrated with the transverse profile data, and thereby 

the actual cross slope can be measured. The horizontal curve radius measurement plays 

an important role in predicting hydroplaning speed at horizontal curve segments. Three 

IMU data based approaches namely kinematic method, Geometry method, and Lateral 
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acceleration method are presented to determine the radius of horizontal curves. The 

pavement rutting measurement is conducted based on AASHTO PP 69 standard.  

The chapter are served as the basis for the hydroplaning speed prediction under 

various scenarios such as on the regular pavement surface, on the horizontal curve 

segments, and on the rutting pavements. 
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CHAPTER 5. HYDROPLANING SPEED PREDICTION ON REGULAR PAVEMENTS 

 

 

 

 

 

5.1 Model Preparation 

In this study the regular pavement surface are defined as pavement sections without the 

horizontal curve, the large longitudinal slope, and the pavement rutting, based on which 

the hydroplaning risk evaluation can be conducted. The model evaluation results in 

Chapter 3 indicate the predicted values from Gallaway model has the best agreements 

with the ground truth, and thus it would be chosen for hydroplaning risk evaluation in this 

study. 

Prior to using hydroplaning speed prediction models, several key parameters should 

be determined first, including rainfall intensity, MTD, cross slope, and longitudinal 

grade. In this study the rainfall intensity is obtained from official government agencies. 

The MTD in the Gallaway model is substituted by EMTD derived from the volumetric 

measuring method using 3D texture data. The cross slope is substituted by the calibrated 

cross slope that are calculated from the IMU roll data and 3D texture data. The 
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longitudinal grade is directly calculated from the IMU pitch data. Subsequently water 

film depth can be calculated using Equation 2.18, based on which the hydroplaning speed 

can be predicted using Equation 2.14. By comparing predicted hydroplaning speeds with 

the posted speed limit, pavement segments with the potential hydroplaning risk can be 

identified out so that pavement engineers can take a series of maintenance activities to 

avoid the occurrence of traffic accident due to hydroplaning. 

5.2 Case Study 

5.2.1 Test Sites 

Two field test sites are located at E Lakeview Road and W 32nd Street in Stillwater, 

Oklahoma. Lakeview Road and the 32nd Street are constructed with grooved texture and 

the dragged texture respectively. The test section length, lane width, and surface 

condition are given in Table 5.1. 

Table 5.1 Summary of Test Sites (Hydroplaning Evaluation for Straight Road Sections) 

Site 

No 
Location Test Length 

Lane 

Width 
Texture Type 

Surface 

Condition 

1 Lakeview Rd 1500ft 12ft Grooved, random spacing Good 

2 W 32nd Ave 1500ft 12ft Broom dragged texture Good 

5.2.2 Local Rainfall Intensity 

The local rainfall intensity at the test site is obtained from National Oceanic and 

Atmospheric Administration's (NOAA) National Water Service database (NOAA 2015). 

Table 5.2 shows the precipitation in Stillwater Station Oklahoma from NOAA database. 

The two-year return period storm with duration of five minus is used for rainfall intensity 

acquisition. In this section the local average and maximum rainfall intensity are chosen to 

predict WFD. Based on precipitation data from NOAA'S National Water Service (NOAA 
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2015), the average and maximum rainfall intensity in Stillwater OK are 6 in/h and 6.972 

in/h, respectively. 

Table 5.2 Precipitation (90% Confidence Intervals) in Stillwater Station (NOAA 2015) 

Duration 

(in inches) 

Average recurrence interval (years) 

1 2 5 10 

5 min 0.428 

(0.376-0.498) 

0.499 

(0.437-0.581) 

0.615 

(0.537-0.717) 

0.710 

(0.616-0.832) 

10 min 0.627 

(0.550-0.729) 

0.731 

(0.640-0.850 

0.900 

(0.786-1.05) 

1.04 

(0.903-1.22) 

15 min 0.765 

(0.671-0.889) 

0.891 

(0.781-1.04) 

1.10 

(0.958-1.28) 

1.27 

(1.10-1.49) 

30 min 1.14 

(0.997-1.32) 

1.33 

(1.16-1.54) 

1.64 

(1.43-1.91) 

1.89 

(1.64-2.21) 

60 min 1.51 

(1.32-1.75) 

1.76 

(1.54-2.05) 

2.17 

(1.90-2.53) 

2.51 

(2.18-2.94) 

2 hr 1.88 

(1.66-2.17) 

2.19 

(1.93-2.54) 

2.71 

(2.38-3.13) 

3.13 

(2.73-3.64) 

3 hr 2.09 

(1.85-2.41) 

2.44 

(2.16-2.81) 

3.01 

(2.65-3.47) 

3.49 

(3.05-4.04) 

5.2.3 MTDs and WFDs at the Two Sites 

Figure 5.1 shows the EMTDs at two test sections. Since the pavement surface at test site 

1 is constructed with transverse grooves, the EMTD at this site is approximately 1.5 mm, 

which is 0.6 greater than the EMTD at test site 2 which is constructed with dragged 

texture. Typically MTDs at grooved sections are greater than the MTDs at dragged 

sections with the exception that pavement has been worn out with very shallow grooves. 

The MTD, longitudinal grade, cross slope, and rainfall intensity are incorporated into 

the Gallaway model to predict the WFD. In this section the local average and maximum 

rainfall intensity are chosen to predict WFD. Results indicate that the dragged texture 

pavement section has greater WFDs than that with grooved texture. In other words, 

pavement section with dragged texture has worse pavement surface drainage performance 

than grooved pavement section, as shown in Figure 5.2. 
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Figure 5.1 EMTDs at two sites 

 

Figure 5.2 WFDs at two sites 

5.2.4 Potential Hydroplaning Segment Detection 

Predicting the pavement hydroplaning speed and identifying the segments that are 

susceptible to hydroplaning are very practical for pavement management. Figure 5.3 

shows the predicted hydroplaning speeds based on Gallaway model at two test sections. 

At test section 1, the speed limit is 35 mph. The predicted hydroplaning speeds across the 

entire section are much greater than the speed limit, which entails there is no potential 

hydroplaning at this section if drivers abide by the speed limit, as illustrated in Figure 

5.3a and Figure 5.4a. At test section 2, the speed limit is 45 mph. Hydroplaning might 

occur within the segment ranging from 1080ft to 1185ft, as shown in Figure 5.3b where 
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the predicted hydroplaning speed is lower than 45 MPH. It should be noted that there is a 

high hydroplaning risk at the segments marked with the yellow circle in Figure 5.4b. 

Highway agency may post a reduced speed traffic sign at that location to minimize the 

traffic accident caused by hydroplaning. In addition, pavement engineers may also take 

other measures such as constructing superior grooving texture to increase the potential 

hydroplaning speed. 

 

(a) 

 

(b) 

Figure 5.3 Predicted hydroplaning speed at: (a) test site 1; (b) test site 2 
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(a) 

 

(b) 

Figure 5.4 Potential hydroplaning segments at: (a) test Site 1; (b) test Site 2 

5.3 Summary 

This chapter presents the application of Gallaway model in hydroplaning speed 

prediction. The four key parameters used in Gallaway model namely MTD, cross slope, 

longitudinal grade, and rainfall intensity need to be determined first. In this study the 3D 

texture data and IMU data are continuously collected on the test section. The local 

rainfall intensity data are obtained from National Oceanic and Atmospheric 

Administration's (NOAA) National Water Service database. 

Once the values of four parameters are determined, the following task is to estimate 

the WFD by incorporating them into the Gallaway model. Subsequently the hydroplaning 

speed can be predicated based on the Gallaway prediction model. In order to identify the 

pavement segments have the potential hydroplaning risk issues, the comparisons between 



84 

 

 

the predicted hydroplaning speeds and the posted speed limit are made. Once the 

potential hydroplaning segments of the test sections are detected, pavement engineers can 

take a series of maintenance activities on hazardous segments, and further to avoid the 

occurrence of traffic accident due to hydroplaning. 
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CHAPTER 6. HYDROPLANING SPEED PREDICTION ON PAVEMENTS WITH LARGE 

SLOPES 

 

 

 

 

 

6.1 Model Preparation 

Pavement slope includes the cross slope and longitudinal grades. Its main objective is to 

ensure the rapid removal of rain, melting snow and ice from pavement surface. The 

increase of the cross slope of roadways would short drainage time and flow path length, 

and thereby reducing the risk of hydroplaning occurrence. Longitudinal grade or slope is 

also an important factor that is associated with surface drainage. It can shorten or extend 

the water runoff time on pavement surface depending on flow path length. Therefore, the 

presence of longitudinal grade may decrease or increase the risk of hydroplaning 

occurrence. 

6.1.1 Effects of Pavement Slope on Wheel Load 

In Chapter 5, effects of cross slope and longitudinal grade have been incorporated into 

the WFD and hydroplaning prediction models. However, the cross slope and longitudinal 

grade not only affect WFD, but also affect the vertical load on pavement surface. 
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Typically cross slope and longitudinal grade would reduce the vertical wheel load of 

vehicles on pavement surface. Hydroplaning occurs when the vertical wheel load is 

equivalent to the uplift force by water (Equation 6.1), and the steering and traction force 

would be lost during hydroplaning.  

 

Figure 6.1 Vehicle travelling on (a) pavements segments with longitudinal grade; (b) 

pavement segment with horizontal curve 

Figure 6.1a shows the pavement section with a large longitudinal grade. When the 

vehicle travels on this pavement segment, the vehicle gravity would be partitioned into 
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two components of forces: one (wheel load) is perpendicular with the travelling surface, 

and the other one (traction force) is parallel with pavement surface. The wheel load 

would decrease with the increase of longitudinal grade (Equation 6.2), and the reduced 

wheel load would increase the hydroplaning risk.  

Figure 6.1b shows the pavement section with horizontal curves or large cross slope. 

Similarly, the vehicle gravity is partitioned into two components of forces when the 

vehicle travels on the horizontal curve. One component of force is the wheel load, and the 

other one is the centripetal force shown in Figure 6.1b. The wheel load on horizontal 

curve would decrease with the increase of super-elevation (Equation 6.3). Finally the 

wheel load can be calculated with flow path slope by combining the cross slope and 

longitudinal grade, as given in Equation 6.4. 

𝐹𝑈𝑝 = 𝑊 (6.1) 

𝑊𝐿 = 𝐺 × 𝑐𝑜𝑠(β) (6.2) 

𝑊𝐶 = 𝐺 × 𝑐𝑜𝑠(α) (6.3) 

𝑊 = 𝐺 × 𝑐𝑜𝑠(ρ) (6.4) 

Where, FUp -- Minimum uplift force causing hydroplaning, N; W -- Wheel load, N; WL -- 

Wheel load in longitudinal section, N; WC -- Wheel load in cross section, N; G -- Gravity 

of vehicle, N; β -- Angle of longitudinal grade, degree; α-- Angle of cross slope, degree; 

ρ -- Angle of flow path slope, degree. 

Note that the effects of pavement slope on vehicle traction force and wheel load 

cannot be ignored when the large pavement slope appears, and their effects on wheel load 

and traction forces should be reflected in WFD and hydroplaning speed prediction 
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models as well. Accordingly in this study the original WFD and hydroplaning would be 

modified based on the mechanic theory. 

6.1.2 Modified Gallaway and USF Models 

Two hydroplaning prediction models, the Gallaway model (Equation 2.14-2.18) and USF 

model (Equation 2.24) are chosen for hydroplaning risk evaluation. The influences of 

flow path slope on vertical wheel load are neglected in the original hydroplaning speed 

prediction models since the development of these models are based on the flat and 

straight pavement sections. For pavements with larger slopes, the reliable models for 

hydroplaning speed prediction are still missing. To overcome this limitation, this study 

aims at modifying the existing Gallaway and USF models by taking account into the 

effects of flow path slope on vertical wheel loads, as shown in Equations 6.5 and 6.6 

respectively. The WFD calculation in this section is based on Gallaway WFD model. 

𝑣𝑝 = 0.9143 × 𝑆𝐷0.04 × (𝑃𝑡 × 𝑐𝑜𝑠𝜌)0.3 × (𝑇𝐷 + 0.794)0.06 × 𝐴 (6.5) 

𝑣𝑝 = (𝑊 × 𝑐𝑜𝑠𝜌)0.2 × (𝑃𝑡 × 𝑐𝑜𝑠𝜌)0.5 × (0.82 𝑊𝐹𝐷0.06⁄ + 0.49) (6.6) 

Where, W -- Wheel load, N; WFD -- Water film depth, mm; Pt -- Inflation pressure, Kpa; 

SD -- Spin down ratio; TD -- Tire tread depth, mm; A -- Maximum value of Equation 16 

and 17; ρ -- Angle of flow path slope, degree. 

6.1.3 Sensitivity Analysis of the Modified Models 

To explore the sensitivity of modified models to cross slope and longitudinal grade, the 

cross slope and longitudinal grade change by ± 25%, ± 50%, and ± 75% individually 

while the other variables are maintained constant values, as provided as follows: 
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 Cross slope: 𝑆𝑐 = 1.53% 

 Rainfall intensity: 𝐼 = 148.4 𝑚𝑚/ℎ𝑟 

 Mean texture depth: MTD = 1.2 mm 

 Longitudinal grade: Sl = 1.32% 

The results of sensitivity analysis from the modified Gallaway and USF models to 

cross slope and longitudinal grade are given in Figure 6.2. It can be seen that the resulting 

change in hydroplaning speed, "Vp", is apparent along the increase of cross slope and 

longitudinal grade.  

 

Figure 6.2 Sensitivity test for two improved models: (a) longitudinal grade vs. 

hydroplaning speed; (b) cross slope vs. hydroplaning speed. 

The increase in longitudinal grade would diminish the vertical wheel load and extend 

the flow path length. Both the decrease in vertical load and the increase in flow path 

length would reduce the hydroplaning speed. Therefore, as Figure 6.2a shows the 

hydroplaning speed goes shown with the increase of the longitudinal grade. 
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Typically the increase in cross slope would diminish the vertical wheel load and 

shorten the flow path length. These two results have contrary effect on hydroplaning 

speed: the diminished vertical load reduce the hydroplaning speed, while the shortened 

flow path length increase the hydroplaning speed. Figure 6.2b shows that hydroplaning 

speed goes up with the increase of the cross slope, indicating the effect of flow path 

length on hydroplaning speed is greater than that of wheel load. 

6.2 Case Study 

6.2.1 Test Site 

A flexible pavement section located in Spavinaw, Oklahoma is chosen to demonstrate the 

hydroplaning speed prediction on pavements with large slopes. The chosen test section 

with a length of 2.7 mile has five horizontal curves, starting from the GPS coordinates 

(36.329175, -95.081696) and ending with the GPS coordinates (36.351066, -95.062796). 

In addition, the test lane is in excellent condition, with a width of 12ft. 

6.2.2 Local Rainfall Intensity 

The local rainfall intensity is obtained from National Oceanic and Atmospheric 

Administration's (NOAA) National Water Service database (NOAA 2015). Table 6.1 

shows the precipitation in Spavinaw Station of Oklahoma from NOAA database. The 

two-year return period storm with duration of five minutes is used in Gallaway WFD 

model for rainfall intensity acquisition. Based on NOAA database, the rainfall intensity 

of 5.84in/h is used for the test site. 
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Table 6.1 Precipitation (90% Confidence Intervals) in Spavinaw Station (NOAA 2015) 

Duration  

(in inches) 

Average recurrence interval (years) 

1 2 5 10 

5 min 0.428 

(0.343-0.542) 

0.487 

(0.390-0.618) 

0.587 

(0.468-0.745) 

0.671 

(0.532-0.855) 

10 min 0.627 

(0.502-0.794) 

0.713 

(0.571-0.905) 

0.859 

(0.685-1.09) 

1.16 

(0.890-1.51) 

15 min 0.764 

(0.612-0.969) 

0.870 

(0.696-1.10) 

1.05 

(0.835-1.33) 

1.20 

(0.950-1.53) 

30 min 1.13 

(0.906-1.44) 

1.29 

(1.03-1.64) 

1.56 

(1.25-1.98) 

1.79 

(1.42-2.28) 

60 min 1.52 

(1.22-1.92) 

1.74 

(1.39-2.20) 

2.10 

(1.68-2.67) 

2.42 

(1.92-3.08) 

2 hr 1.90 

(1.54-2.38) 

2.18 

(1.76-2.73) 

2.65 

(2.13-3.32) 

3.05 

(2.44-3.83) 

3 hr 2.15 

(1.75-2.67) 

2.46 

(2.00-3.06) 

3.00 

(2.43-3.73) 

3.46 

(2.79-4.32) 

6.2.3 Horizontal Curve Safety Evaluation 

Curve radius measurement needs the combination of IMU data and the transverse profile 

data (extracted from 3D texture data). In DHDV system, IMU and 3D texture data are 

triggered from different sources, so they have different data interval and report format. In 

order to establish a relationship between IMU and 3D texture data, the common property 

between them should be identified first.  

Note that both of data sets are associated with Distance Measurement Instrument 

(DMI) pulse, and thereby they can be roughly matched through the recorded DMI pulses. 

Table 6.2 shows the part of the IMU data such as heading direction, roll, and test speed. 

Figure 6.3 shows the cross slope or super-elevation at five horizontal curves: the orange 

line represents the raw data; and the green line represents the calibrated cross slope or 

super-elevation. By comparing those two values, it can be found that calibrated data is 

smoother than the raw data, which means the noise (e.g. the abrupt drop) derived from 

the vehicle body roll is suppressed after calibration. 
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Table 6.2 Example of IMU Data for Curve Radius Calculation 

DDMI 
αheading 

(Degree) 

𝛼𝑅𝑜𝑙𝑙  
(Degree) 

Speed 

(km/h) 

N_Ve

l 

(m/s) 

E_ Vel 

(m/s) 

L_Acc 

(m/s2) 

T_Acc 

(m/s2) 

D_Acc 

(m/s2) 

737980

3 
88.06 1.48 53.37 1.59 78.25 0.18 0.03 -0.71 

737980

3 
88.06 1.49 53.36 1.6 78.24 -0.8 0.5 0.39 

738044

5 
88.07 1.5 53.36 1.6 78.24 -0.3 -0.1 0.28 

738108

9 
88.07 1.53 53.37 1.59 78.26 1.23 1.87 0.81 

738194

9 
88.09 1.57 53.37 1.56 78.26 -0.7 0.69 -2.04 

738194

9 
88.09 1.57 53.37 1.55 78.26 -0.2 -0.5 -2.76 

738280

4 
88.1 1.58 53.36 1.51 78.24 1.35 2.32 -0.05 

738280

4 
88.1 1.59 53.36 1.52 78.25 0.58 -0.1 0.08 

738301

9 
88.1 1.6 53.37 1.53 78.26 0.35 -1.2 0.85 

738323

5 
88.11 1.61 53.38 1.55 78.27 0.49 -1.1 -1.39 

738388

1 
88.11 1.61 53.37 1.53 78.26 -1.2 0.14 -1.47 

738388

1 
88.11 1.62 53.36 1.51 78.25 -0.8 3.73 -0.57 

Note: N_Vel=North velocity; E_Vel=East velocity; L_Acc=Longitudinal acceleration; 

T_Acc=Transverse acceleration; D_Acc=Down acceleration. 
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Figure 6.3 Raw and calibrated super-elevation data on (a) curve1; (b) curve2; (C) curve3; 

(D) curve4; (e) curve 5 

6.2.3.1 Curve Identification and Length Measurement 

The start-end points (PC and PT) of a curve are the most paramount factors for a curve 

identification and curve length calculation. In this study the start-end points of each curve 

are determined by the change of heading angle. Figure 6.4 shows the heading angles of 

DHDV traveling on five curves, which is measured with the IMU system. As a rule of 
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thumb, the simple horizontal curve can be identified when the heading angles linearly 

increase or decrease, and the two points that start and end the changes are considered as 

the PC and PT of the simple curve, respectively. For example, the change of heading 

angles at curve 1 starts at the sample #73 and ends with sample #209, so sample #73 and 

#209 are considered as the PC and PT of the curve and the curve length is computed with 

a length of 310m since each sample length is 2.28m. Similarly, the curve lengths at curve 

2, 3, 4, and 5 are computed as well, with values of 187m, 198m, 264m, and 262m, 

respectively. 

6.2.3.1 Curve Radius Estimation 

Figure 6.5 shows curve radius estimated from four abovementioned methods. Herein, the 

ground truth of the radius of five curves measured by Chord Length method are 168m, 

153m, 183m, 143m, and 111m, respectively. Analysis of Variance (ANOVA) is used to 

test the accuracy of Kinematic method, Geometry method, and Lateral Acceleration 

method for curve radius measurement, and the curve radius measured by satellite pictures 

is considered as control variable. The mostly widely used distinct level, α = 0.05, is 

selected as distinct level in this study. The significant difference is considered as 

“existence” if the distinct of level is smaller than 0.05.  

Table 6.3 shows the ANOVA test results for three methods. According to the distinct 

level (α = 0.05), the difference between the control variable and the measurements of 

three methods are not significant, which means all of three methods have good accuracy 

in curve radius measurement. It can be observed that the radius calculated from 

Kinematic method has the least difference with the ground truth, and followed by 

Geometry method and Lateral Acceleration method. 
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Figure 6.4 Start-end points determination using change of heading 

Table 6.3 ANOVA test results for three horizontal curve measuring methods 

Method T-value P-value Significant Difference 

Kinematic Method 0.34 0.7357 No 

Geometry Method 0.57 0.5703 No 

Lateral Acceleration Method 0.69 0.4057 No 
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Figure 6.5 Curve radius calculated from four methods at: (a) curve 1; (b) curve 2; (c) 

curve 3; (d) curve 4; (e) curve 5. 



97 

 

 

6.2.3.2 Curve Safety Analysis 

A curve safety analysis model developed by Fitzpatrick et al is applied to predict the safe 

driving speeds and crash rate of the curves. This model describe the relationships 

between curve radius and crash frequency based on the crash data on two-lane rural 

highways (Fitzpatrick et al 2000). Equations 6.7-6.9, are used to compute the curve total 

crash rate and safe driving speeds. In this study the tangent speed limit (65mph) of the 

test site is considered as the 85th percentile tangent speed of passenger cars. 

CR = CRb × AMFsr (6.7) 

AMFsr = e0.078(Vt,85,pc−Vc,85,pc) (6.8) 

Vc,85,pc = 104.77 −
3576

R
 (6.9) 

Where: CR: the total curve crash rate, crashes/million-vehicle-km, crashes/mvk; CRb: the 

base crash rate (=0.42), crashes/million-vehicle-km; AMFsr: the accident modification for 

curve speed reduction; Vt,85,pc: the 85th percentile tangent speed of passenger cars, km/h; 

Vc,85,pc: the 85th percentile curve speed of passenger cars, km/h; R: the curve radius (m). 

Table 6.4 Curve Safety Evaluation for Test Sites 

 Curve 1 Curve 2 Curve 3 Curve 4 Curve 5 

Vc,85,pc (km/h) 83.47722 81.38989 85.22237 79.75505 72.5441 

R (m) 168 153 183 143 111 

AMFsr 5.358996 6.30655 4.676991 7.164268 12.5731 

CR (crashes/mvk) 2.250778 2.648751 1.964336 3.008992 5.280704 

The safety evaluation results at the five curves are shown in Table 6.4. The safe 

driving speeds at the five curves are estimated to be around 80km/h, and the estimated 
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crash rates at five curves are ranked as follows from low to high: Curve3, Curve1, 

Curve2, Curve4, and Curve5. 

6.2.4 Cross Slope and Longitudinal Grade 

As Figure 6.6a shows, the maximum longitudinal grade is 12.03%, and the standard 

deviation is 2.48. Figure 6.6b shows the calibrated cross slopes. The cross slope presents 

negative values at left turn curves and positive values at right turn curves. 

 

(a) 

 

(b) 

Figure 6.6 Pavement geometry of test site: (a) longitudinal grade; (b) cross slope. 

In this test site, curves #1, #4, and #5 belong to left turn curve, while curves #2 and 

#3 belong to right turn curve. The statistical results of the calibrated cross slopes on test 

site are given as follows: (1) the average cross slope on the straight road segments is 
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1.94%; (2) the average cross slope of curve #1, #2, #3, #4, and #5 are -2.06%, 4.96%, 

5.80%, -3.81%, and -5.01%, respectively. The results confirm that there are larger cross 

slopes at road curves than on straight road segments. 

6.2.5 EMTDs and WFDs  

Figure 6.7a shows the EMTDs with an average value of 1.20 mm, and Figure 6.7b shows 

the corresponding WFDs with an average value of 1.73mm and the maximum value of 

8.52 mm. The WFD is calculated with Gallaway WFD model based on pavement texture 

depth, flow path slope, and local rainfall intensity.  

 

(a) 

 

(b) 

Figure 6.7 EMTDs and WFDs of test site: (a) EMTDs; (b) WFDs. 
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6.2.6 Hydroplaning Speed Estimation 

Part of the calculated WFD, EMTD and IMU data for hydroplaning speed prediction is 

given in Table 6.5. Gallaway model, USF model, the modified Gallaway model, and the 

modified USF model are utilized to predict hydroplaning speed, respectively, as shown in 

Figure 6.8a. Results indicate the predicted hydroplaning speeds from original Gallaway 

and USF model are around 87mph and 165km/h, respectively, which are approximately 

30mph higher than those predicted from the modified Gallaway model (60mph) and 

modified USF model (56mph). The results also show as expected that the hydroplaning 

speeds at curves of the five horizontal curves in Figure 6.8a are lower than that on the 

straight road sections. 

Table 6.5 Part of 3D Imaging Data and IMU Data for Hydroplaning Speed Calculation 

Sample ID WFD (mm) EMTD (mm) Cross Slope (%) Longitudinal Grade (%) 

1 1.64 1.12 2.07 3.27 

2 1.51 1.11 2.26 3.18 

3 1.35 1.11 2.54 3.10 

4 1.30 1.10 2.68 3.12 

5 1.23 1.11 2.82 3.07 

6 1.21 1.09 2.87 2.89 

7 1.13 1.12 2.95 2.78 

8 1.05 1.17 3.05 2.77 

9 1.03 1.14 3.23 2.72 

10 1.00 1.10 3.44 2.67 

11 0.93 1.12 3.64 2.71 

12 0.94 1.11 3.74 2.81 

13 0.94 1.10 3.76 2.85 

14 0.86 1.17 3.79 2.79 

15 0.92 1.10 3.83 2.76 

6.2.7 Potential Hydroplaning Segment Detection 

Identification of hazardous locations with hydroplaning potential is based on the 

comparison of estimated hydroplaning speed with posted speed of the road section (Luo 
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et al. 2014). At the test site, speed limits are 50mph on straight sections and 35mph on 

road curves. The average values of estimated hydroplaning speeds from the modified 

Gallaway and USF models are used to detect potential hydroplaning segments, as shown 

in Figure 6.8a.  

 

Figure 6.8 Potential hydroplaning detection: (a) hydroplaning speed; (b) hydroplaning 

hazardous segments. 

Since the predicted hydroplaning speeds at the five curves are higher than posted 

speed limit, there is low hydroplaning risk at the five curves for vehicles operating at 
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speed limit. However, for several segments of the test site, the predicted hydroplaning 

speeds are lower than posted speed limit. Therefore, these segments can be identified as 

potential hazardous segments for hydroplaning risk, as marked with red line in Figure 

6.8b. To minimize traffic accidents caused by hydroplaning, highway agencies can post a 

reduced speed sign at these locations, or take other remedial actions, such as installing 

High-Friction Surface Treatment (HFST) (Shah et al. 2014). 

6.3 Summary 

This chapter presents the application of modified Gallaway and USF models on 

hydroplaning speed prediction. The original prediction models do not consider effects of 

super-elevation and large longitudinal grade on vertical wheel load, however, the change 

of vertical wheel load would result in the change of the predicted hydroplaning speeds. 

To overcome this limitation, the original models would be modified based on mechanic 

theory. 

In this study the IMU heading data is used to identify the locations of the potential 

horizontal curves. The curve lengths are estimated based on the start-end points of the 

identified horizontal curves. The horizontal curve radius are estimated with three 

approaches namely kinematic method, Geometry method, and Lateral acceleration 

method. The ground truth of curve radius is obtained by satellite pictures. ANOVA test 

results indicate all three methods have good accuracy in curve radius measurement, 

among which the result from Kinematic method has the best agreement with the ground 

truth. Finally, the Fitzpatrick's model is applied for curve safety analysis on horizontal 

curves. 



103 

 

 

The EMTD is computed on test section with 1mm 3D texture data on the entire lane. 

IMU data and 3D laser image data are combined together to eliminate impacts of vehicle 

vibration on cross slope measurement. The rainfall intensity used in prediction models is 

obtained from NOAA database. WFD and hydroplaning prediction models are modified 

based on the fact that effects of cross slope and longitudinal grade on wheel load and 

flow path length should be considered, it is found that hydroplaning speed decrease with 

the increase of the longitudinal grade, but increase with the increase of the cross slope. 

Results also indicate the predicted hydroplaning speeds from original Gallaway and USF 

models are approximately 30mph higher than those predicted from the modified 

Gallaway and USF models. In addition, the predicted hydroplaning speeds at horizontal 

curves are lower than that on the straight road sections. 

By comparing estimated hydroplaning speed with posted speed, pavement segments 

having potential hydroplaning risk can be identified. As a result, highway agencies can 

post a reduced speed sign at these locations, or take other remedial actions to avoid 

hydroplaning related traffic accidents. 
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CHAPTER 7. HYDROPLANING SPEED PREDICTION ON RUTTING PAVEMENTS 

 

 

 

 

 

7.1 Model Preparation 

The presence of pavement rutting is hazardous to drivers and road users since the rutting 

would be functioned as the reservoir or small puddle during rainy weather. The ponding 

water on pavement rutting might cause a series of hydroplaning related safety issues. 

However, the effects of pavement rutting on water film depth are negligible in the 

currently used hydroplaning speed prediction models. In this study, effects of pavement 

rutting on water film depth would be examined on the chosen test section during- and 

after- precipitation, and subsequently a new WFD prediction model is developed. Based 

on new WFD model, the hydroplaning speeds on rutting pavements can be predicted. 

7.1.1 Effects of Cross Slope on Rutting Ponding  

Wheel path depressions or rutting interrupt the normal flow pattern of water and can, if 

excessive, completely alter the drainage pattern on pavement surfaces. Ponding of water 

is prevalent in the depressions that may cause hydroplaning or less of vehicle control.
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Studies indicate hydroplaning can occur in rutting areas when the length of the rut is 

9.144m (30ft) or greater. However, with normal cross slope (≤ 2.5%), rut depths of 

0.61cm (0.24 in) or less do not significantly contribute to a higher risk of hydroplaning 

(Balmer and Gallaway 1983). In addition, the ponding can be partially or fully relieved 

through drainage if the pavement cross slope or longitudinal grade is large enough. Based 

on the two assumptions: (1) the minimum cross slope to provide decent drainage capacity 

is 0.5 percent and (2) the wheel-path depression width is 600 mm (24 in) (Balmer and 

Gallaway 1983), the allowable wheel-path depressions are calculated by Equation 7.1.  

𝑊𝑃𝐷 = 𝑆
𝑊

2
− 0.005

𝑊

2
 

(7.1) 

Where, WPD: wheel-path depression, mm (in), as shown in Figure 7.1; S: cross slope, 

m/m; W: Width of the wheel track, mm (in), as shown in Figure 7.1. 

 

Figure 7.1 Wheel path pavement depression geometry 

Table 7.1 Allowable wheel path depression (Balmer and Gallaway 1983) 

Pavement Cross Slope, % 
Maximum Wheel Path Depression 

mm In. 

1 1.5 0.06 

2 4.5 0.18 

3 7.5 0.30 

4 10.5 0.41 
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Table 7.1 shows the admissible values when the influence of cross slope on drainage 

is considered. Pavement maintenance, resurfacing, or rehabilitation is required whenever 

the depressions exceed these depth. 

7.1.2 Rutting Water Film Depth Calculation 

Based on intensity and duration of the storm, the water film depth within wheel path can 

be estimated under three scenarios: 1) the onset of storm events: water film on non-

rutting areas has not been formed yet; 2) during storm events: the rutting pond have been 

filled up, and the water film on non-rutting areas have been formed, and 3) after storm 

events: the water on non-rutting areas have been drained off, but some water may be still 

trapped by the pavement rutting. Therefore, the rutting water film depth can be calculated 

under these three scenarios. The model developed for water film depth calculation on 

rutting pavement is termed as 3S-WFD model. 

7.1.2.1 Onset of Storm Event 

At the onset of storm events, the rainy water would discharge into the rutting pond before 

they start to develop a water film on pavement surface, so the rutting water film depth 

would increase along with the storm event. This period before the storm event starts to 

develop water film on non-rutting areas, can be considered as the “onset of storm event”. 

In this scenario, the maximum rutting water film depth would be equivalent to the rutting 

depth, as shown in Equation (7.2). 

 𝑊𝐹𝐷𝑜 ≤ 𝐷𝑟𝑢𝑡 (7.2) 

Where, 𝑊𝐹𝐷𝑜: rutting water film depth at the onset of store event, mm; 𝐷𝑟𝑢𝑡: rutting 

depth, mm. 
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Figure 7.2 Rutting water film depth at the onset of storm event 

7.1.2.2 During storm events  

Once the rutting ponds are filled up, the redundant rainy water would start to flow on 

pavement surface so that the water film are developed. The rainfall intensity is the 

important factor to determine whether the water film have been formed or not on non-

rutting areas. Typically the minimum rainfall intensity that is required to develop water 

film on non-rutting areas can be determined based on the Gallaway WFD model with the 

assumption of water film depth equivalent to zero. In this study the minimum rainfall 

intensity forming water film on non-rutting areas are termed as the reference rainfall 

intensity, and it can be calculated by Equation 7.3.  

I = [
(WFD + TXD) × Sc

0.42

z × TXD0.11Lf
0.43 ]1.695 

(7.3) 

Where, WFD: Water film depth in mm on pavement surface (0mm); TXD: Pavement 

texture depth, mm; z: 0.01485 (Constant); Lf: Pavement flow path length, m; Sc: 

Pavement cross slope, m/m. 

When the actual rainfall intensity is larger than the reference rainfall intensity, the 

redundant water cannot rapidly run off pavement surface so that the water film are 

formed, as Figure 7.3 shows.  
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Figure 7.3 Rutting water film depth during storm event 

In this case the rutting water film depth is the result of rutting depth plus the water 

film depth on non-rutting area, as mathematically described in Equation 7.4. In this 

Equation, the water film depth on non-rutting area is calculated by Gallaway WFD 

model. 

𝑊𝐹𝐷𝑑 = 𝑊𝐹𝐷𝑁𝑅 + 𝐷𝑟𝑢𝑡 (7.4) 

Where, 𝑊𝐹𝐷𝑑: rutting water film depth during storm event, mm; 𝐷𝑟𝑢𝑡: rutting depth, 

mm; 𝑊𝐹𝐷𝑁𝑅: water film depth on non-rutting area, which is calculated by Gallaway 

WFD model, mm. 

7.1.2.3 After storm events 

When the storm event stops, most of rainy water can drain off the pavement surface 

except some are trapped by pavement rutting, as illustrated in Figure 7.4a. In this case 

effects of cross slope on rutting pond should be considered. Typically the cross slope and 

the calculated rut depth are combined together to determine whether there is the trapped 

water within rutting areas after storm event, as calculated by Equation 7.5.  

𝑊𝐹𝐷𝑎 = 𝐴𝐵 − 𝐿 × 𝑐𝑟𝑜𝑠𝑠 𝑠𝑙𝑜𝑝𝑒 (7.5) 
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Where, 𝑊𝐹𝐷𝑎:  rutting water film depth after storm event; 𝐴𝐵: see Figure 7.4a 

(approximate to the rut depth) ; 𝐿: see Figure 7.4a (approximate to the half of the rut 

width). 

If the rutting water film depth from Equation (7.5) is greater than zero, as shown in 

Figure 7.4a, which indicates the rutting ponding is partially relieved or discharged by the 

cross slope and there is still some redundant water within rutting areas. The trapped water 

might cause the potential hydroplaning risks. If the calculated rutting water film depth is 

no larger than zero, as shown in Figure 7.4b, which represents the rutting ponding is fully 

relieved or discharged due to effects of cross slope, and thus there is no hydroplaning 

risks in this situation. 

 

(a) 
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(b) 

Figure 7.4 Rutting water film after storm events (a) with standing water; (b) without 

standing water 

7.1.3 Hydroplaning Speed Estimation 

Once the rutting water film depth are determined, the following task is to incorporate the 

calculated WFDs into the Gallaway model to predict hydroplaning speeds. In this study 

the hydroplaning speeds under the three scenarios are exported for safety evaluation 

purpose. By comparing the posted speed limit with estimated hydroplaning speed, these 

segments with potential hydroplaning risks are identified out. To reduce rutting-related 

crashes, the surface maintenance measures can be taken on the hazardous segments. 

7.2 Case Study 

7.2.1 Test site 

A flexible pavement section located in Alameda Street Los Angeles, California is chosen 

as the test bed for hydroplaning related safety evaluation. This section starts from the 

GPS coordinates (34.02497, -118.240549), and ends with the GPS coordinates 
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(34.011067, -118.23974), with a length of 4 miles, as marked in Figure 7.5. The test lane 

are in poor condition and has a width of 12ft. Severe rutting occurs on some short 

segments. 

7.2.2 Local Rainfall Intensity 

The local rainfall intensity at the test site is obtained from National Oceanic and 

Atmospheric Administration's (NOAA) National Water Service database (NOAA 2015). 

Table 7.2 shows the precipitation in Los Angeles Station California from NOAA 

database. The two-year return period storm with duration of five minutes is used for 

rainfall intensity acquisition. Based on NOAA database, the maximum rainfall intensity 

of 2.8in/hour is used for the test site. 

 

 

Figure 7.5 Test sites on Los Angeles, California 

Table 7.2 Precipitation (90% Confidence Intervals) in Los Angeles Station (NOAA 2015) 
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Duration 

(in inches) 

Average recurrence interval (years) 

1 2 5 10 

5 min 0.151 

(0.126-0.182) 

0.194 

(0.162-0.234) 

0.252 

(0.210-0.306) 

0.302 

(0.249-0.369) 

10 min 0.216 

(0.181-0.261) 

0.277 

(0.232-0.335) 

0.361 

(0.301-0.438) 

0.433 

(0.357-0.529) 

15 min 0.261 

(0.219-0.316) 

0.336 

(0.280-0.406) 

0.437 

(0.364-0.530) 

0.523 

(0.432-0.640) 

30 min 0.350 

(0.293-0.422) 

0.449 

(0.375-0.543) 

0.585 

(0.487-0.709) 

0.700 

(0.578-0.856) 

60 min 0.502 

(0.420-0.607) 

0.645 

(0.539-0.780) 

0.840 

(0.700-1.02) 

1.00 

(0.830-1.23) 

7.2.3 Cross Slope and Longitudinal Grade 

The longitudinal grade and cross slope of test site are shown in Figure 7.6 and Figure 7.7 

respectively. As Figure 7.6 shows, the maximum longitudinal grade is 2% and the 

minimum longitudinal grade is -2.18%, which means the test site is in a flat road 

segment.  

 

Figure 7.6 Longitudinal grade at the test site 

Figure 7.7 shows the raw cross slope and calibrated cross slopes. Comparing the raw 

cross slope data and calibrated cross slope, the calibrated cross slope is much smoother 

than the raw cross slope since the errors from survey vehicle body roll has been 
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eliminated. The cross slope in test site is around 1.5%, and the maximum cross slope in 

test site is 5.11%. 

 

Figure 7.7 Raw and calibrated cross slope at test site 

7.2.4 EMTDs and Rutting Depth Calculation 

The EMTD on test site are calculated as well and almost all EMTDs are ranged from 0.6-

0.8mm with some exceptions such as some EMTD up to 1.44mm, as Figure 7.8 shows.  

 

Figure 7.8 EMTD at test site 
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The occurrence of hydroplaning is dependent on the deepest water film that separate 

pavement surface and vehicle tires, and thus in this case the maximum value of the left 

and right rutting depths is used for hydroplaning risk evaluation, as shown in Figure 7.9. 

Note that the majority of rutting depth for hydroplaning related safety evaluation is 

around 15mm, with some exceptions such as sample 53, 54, 101, and 632 to 637. 

 

Figure 7.9 The rutting depth distribution on test section 

7.2.5 Rutting Water Film Depth Calculation 

Figure 7.10 shows the reference rainfall intensity calculated from Gallaway model. The 

local rainfall intensity of the test site is 2.8 in/h. Note that at several segments (e.g. 

samples175 to 217) the local rainfall intensity is no less than the reference rainfall 

intensity during storm event, and thus the water film depth under scenarios 1 and 2 

should be considered. However for most segments (e.g. samples 10 to 50), the local 

rainfall intensity is less than the reference rainfall intensity, and so the water film depth 

under scenario 1 needs be considered since the water film under scenario 2 would not be 

developed during store event. 
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Figure 7.10 Local and reference rainfall intensity along test section 

After storm event, the water film depth under scenario 3 would be investigated. 

Whether developing water film on rutting areas or not depends on the two factors: the 

rutting depth and the corresponding cross slope. The water film depth calculated from 

Gallaway WFD model and 3S-WFD model are shown in Figure 7.11.  

The Gway_WFD denotes water film depth at non-rutting areas during storm events. 

The negative Gway_WFD indicates that the rainy water can drain off the pavement 

surface rapidly under the local rainfall intensity in this area so that the water film will not 

be developed, as Table 7.3 shows, that is, there is no hydroplaning risks for segments 

with the negative WFDs. 
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Figure 7.11 WFDs calculated by Gallaway WFD model and 3S-WFD model 

In Figure 7.11, WFD1 represents the water film depth at the onset of storm events; 

WFD2 denotes the water film depth during the rainfall events; and WFD3 stands for the 

rutting water film depth after the storm events. The presence of rutting increases the 

water film depth during the storm events, so the WFDs calculated from Gallaway WFD 

model are smaller than the WFDs calculated from 3S-WFD model under scenarios 1 and 

2. Once the storm event stops, Gway_WFD would be reduced to 0. However, due to the 

presence of wheel depression, some water might be trapped in rutting area. In some road 

sections the pavement cross slope is large enough to discharge all the ponding in rutting, 

resulting in the WFD3 is equivalent to 0, as Table 7.3 shows. 

Table 7.3 Example of Reference Rainfall Intensity and WFDs on Test Site 

Sample ID Ref_RainFall Gallaway_WFD WFD1 WFD2 WFD3 

39 0.53 0.37 3.23 3.6 1.99 

40 0.04 1.96 2.52 4.47 0 

41 0.98 0.3 4.01 4.31 4.08 

42 0.29 0.82 3.12 3.94 4.5 

43 2.55 0.03 2.66 2.69 10.26 
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44 0.25 0.96 2.6 3.56 14.59 

45 2.75 -0.01 1.97  12.55 

46 1.15 0.13 2.53 2.66 16.06 

47 1.16 0.12 2.23 2.35 6.25 

48 13.33 -0.3 0.96  0 

49 1.03 0.2 5.12 5.32 0 

50 0.55 0.42 45.27 45.69 27.76 

51 3.01 -0.19 47.75  36.01 

52 4.11 -0.15 112.83  96.68 

53 2.45 -0.01 109.63  88.79 

54 9.79 -0.22 1.07  0 

55 5.89 -0.18 0.75  0 

56 11.3 -0.28 0.68  0 

57 9.62 -0.2 1.34  0 

7.2.6 Estimation of Hydroplaning Speeds  

Once the water film depths under the three scenarios are calculated, the following task is 

to predict the hydroplaning speeds with Gallway models. Figure 7.12 shows the 

hydroplaning speed estimation under the scenarios 1 and 2. Due to the low local rainfall 

intensity (2.8in/h), for some segments the water film will not be formed on non-rutting 

area during storm event, indicating only situation 1 would happen on these segments. As 

Figure 7.12 shows, at the onset of the storm events the predicted hydroplaning speeds are 

lower than speed limits for most segments (e.g. samples 70-180), which means there is 

high hydroplaning risk on these segments. During the storm event, only several short 

segments presents the potential hydroplaning risks such as samples 350-500. 
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Figure 7.12 Predicted hydroplaning speed under scenarios 1 and 2 

Figure 7.13 shows the predicted hydroplaning speeds with the Gway_WFD. 

Apparently the predicted speeds are greater than those presented in Figure 7.12. By 

comparing the speed limits with the predicted values, it can be found that there is almost 

no hydroplaning risk on this section, which are inconsistent with the findings presented in 

Figure 7.12. The disagreement might be caused by the calculation of Gway_WFD that is 

exclusive of effects of rutting depth, while effects of rutting depth on WFD are 

considered in scenarios 1 and 2.  

 

50

52

54

56

58

60

62

64

66

68

70

0 100 200 300 400 500 600 700

H
yd

ro
p

la
n

in
g 

Sp
e

e
d

 (
km

/h
)

Sample ID along Test Section

Hydro_Speed1 Hydro_Speed2 Speed Limit

50

55

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700

H
yd

ro
p

la
n

in
g 

Sp
e

e
d

 (
km

/h
)

Sample

Gallaway_Hydro_Speed Non-Hydro_Area Speed Limit



119 

 

 

Figure 7.13 Predicted hydroplaning speed with Gway_WFD 

Past studies assumed that all rainy water would drain off pavement surface 

immediately after storm, and thus there is no water film and the resultant hydroplaning 

risk. However, the presence of wheel depression would make some water trapped in 

rutting areas after storm events. The trapped water may form a film and cause the 

hydroplaning risks. Figure 7.14 shows the predicted hydroplaning speeds under scenario 

3. Note that the hydroplaning risk is still high on some segments (e.g. samples 272-279) 

after storm due to effects of the trapped water in pavement rutting. 

 

Figure 7.14 Predicted hydroplaning speed under scenario 3 

7.2.7 Identification of Potential Hydroplaning Segments  

Identification of hazardous locations with hydroplaning potential is based on the 

comparison of estimated hydroplaning speed with posted speed of the road section (Luo 

et al. 2014). At the test site, speed limit is 60km/h. During the storm event, if the 

predicted hydroplaning speed on the road segment is lower than posted speed, the 

segments can be identified as potential hazardous segments for hydroplaning risk. The 
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potential hydroplaning segments during storm events are marked with red line in the map 

(Figure 7.15).  

 

Figure 7.15 Potential hydroplaning segment detection for Scenarios 1 and 2 
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Figure 7.16 Potential Hydroplaning Segment Detection for Scenario 3 

Similar with the scenarios 1 and 2, after storm event the potential hazardous 

segments for hydroplaning are marked with red line in google map (Figure 7.16). To 

minimize traffic accidents caused by hydroplaning, highway agencies can post a reduced 

speed sign at these locations, or corrective actions are made for the rutting. 

7.3 Summary 

This chapter presents the application of Gallway hydroplaning speed prediction model on 

rutting pavements. To take into account effects of rutting resulting hydroplaning speeds, 

the water film depth on rutting pavement are examined under three scenario: (1) at the 

onset of storm events: rainy water hasn’t developed a layer of film on non-rutting 

pavements but start to accumulate in rutting areas; (2) during storm events: the water film 

has been formed on non-rutting pavement surface; (3) after storm events: the trapped 
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water in rutting area may develop a layer of water film that might cause hydroplaning 

risks. The WFD estimation model developed under the three scenarios is termed as 3S-

WFD model. 

In this study the reference rainfall intensity is defined to examine which pavement 

segment may present the hydroplaning risks. It can be back calculated with Gallaway 

model. During storm event, both scenarios 1 and 2 need to analyzed if the local rainfall 

intensity is greater than the reference rainfall intensity. However, only scenario 1 need to 

be analyzed if the rainfall intensity is less than the reference rainfall intensity since the 

water film would be not developed on the non-rutting areas. 

To demonstrate the application of Gallaway model on hydroplaning speed prediction 

for rutting pavements, pavement section with a length of 4 miles is chosen. EMTD, cross 

slope, and longitudinal are calculated with the same procedures used in Chapter 5 and 6. 

The local rainfall intensity is obtained from NOAA database. The Gallway model and 3S-

WFD model are used to calculate the WFDs under the three scenarios. In addition, the 

effects of cross slope on rutting ponding is also analyzed in this study, and used in 

scenario 3. The findings indicate different evaluation results are observed when the 

different scenarios are used for analysis. The effect of rutting on hydroplaning related 

safety evaluation cannot be negligible, or unexpected traffic accidents may occur.  
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CHAPTER 8. CONCLUSIONS 

 

 

 

 

 

This study presents a comprehensive methodology for hydroplaning related safety 

evaluation with IMU and 1mm 3D texture data. The presented hydroplaning evaluation 

methods can be implemented for evaluating pavements in various conditions (e.g. with or 

without rutting), various surface types (e.g. concrete or asphalt), and various geometry 

features (e.g. straight road, with horizontal curve, or with large longitudinal slope). The 

presented models enable to integrate the 1mm 3D texture and IMU data to predict 

hydroplaning speed, and subsequently the predicted hydroplaning speeds can be 

compared with the posted speed limits to identify the pavement segments with potential 

hydroplaning, so that pavement engineers may take remedial measures to decrease 

hydroplaning potential and minimize potential traffic accidents. 

In Chapter 3 the existing WFD estimation models and hydroplaning prediction 

models are evaluated based on field tests. The WFD estimation models include empirical 

PAVDRN model, analytical PAVDRN model, Gallaway model, and NZ modified model. 

The hydroplaning speed prediction models contain Agrawal model, Gallaway model, 
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PAVDRN model, and USF model. To validate the various models, pavement texture is 

collected by LS-40 Surface Texture Analyzer. Cross slope and longitudinal grade data are 

measured with SurPro3500 Walking Profiler. The rainfall intensity and water film depth 

is measured by rain gauge and eTape. The friction coefficients are measured with DFT. 

Once the parameter values used in WFD and hydroplaning models are obtained, they can 

be incorporated into WFD and hydroplaning speed prediction models to calculate the 

estimated WFD and hydroplaning speed. By comparing the predicted and measured 

WFDs, the findings of the study indicate that the WFDs from Gallway model and 

empirical PAVDRN model have a good agreement with the measured values from eTape. 

Similarly, findings also indicate the predicted hydroplaning speeds from Gallaway model 

and USF model have an acceptable agreement with the measured values from DFT. 

Two data acquisition technologies namely 3D Ultra and IMU system are presented in 

Chapter4 to acquire 3D texture data and IMU data. Both systems are mounted on DHDV 

to conduct data collection at highway speeds up to 60mph. Generally four key parameters 

are included in hydroplaning speed prediction models, namely MTD, cross slope, 

longitudinal grade, and rainfall intensity. Different from traditional methods, the MTD 

calculation is conducted on 3D texture image by simulating sand patch method, and the 

estimated MTD called EMTD is used to replace the MTD in this study. The 3D texture 

data are also used to calibrate pavement cross slope along with the IMU roll data. The 

calibrated cross slope can help suppress the effects of vehicle vibration on the collected 

IMU data. Longitudinal grade is directly derived from IMU pitch data. The local rainfall 

intensity data can be obtained from NOAA database. Three approaches namely kinematic 

method, Geometry method, and Lateral acceleration method are employed to determine 
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the horizontal curve radius. Pavement rutting dimension is measured in accordance with 

AASHTO PP 69 standard. 

In addition, the repeatability test is conducted to validate the quality of DHDV data 

including IMU data and 3D pavement texture data. Two test sections are chosen as test 

bed and three repetitive measurements are conducted on each section. ANOVA test 

results indicate the IMU data has the good reliability regardless of the data collection 

speed and vehicle vibration. However, the data quality of 3D texture data is not as good 

as IMU data. Findings indicate the data collection speed and vehicle vibration greatly 

affect the quality of 3D texture quality. It is recommended that the data collection should 

be conducted at constant speeds to avoid vehicle vibration to guarantee the quality of 3D 

texture data.  

Chapter 5 presents the application of the original Gallaway model in hydroplaning 

speed prediction on the regular pavements. Based on the comparison between the 

predicted speeds with the posted speed limit, pavement segments with potential 

hydroplaning risks can be identified. As a result, the corrective measures can be taken on 

the hazardous sections to prevent the hydroplaning related accidents. 

Chapter 6 presents the use of the modified Gallaway and USF model in the 

hydroplaning speed prediction on pavements on horizontal curve or with large 

longitudinal grade. The effects of flow path slope on vertical wheel load are investigated, 

based on the modified Gallaway and USF models. Subsequently the modified models are 

used for hydroplaning speed predictions on pavements with horizontal curve or large 

longitudinal grade. As a result, pavement segments with potential hydroplaning risk can 

be identified. 
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Chapter 7 presents the use of the 3S-WFD model developed in this study and 

original Gallaway hydroplaning speed model in hydroplaning speed prediction on rutting 

pavements. In this chapter the water film depths of rutting pavement are examined under 

three scenarios: 1) at the onset of storm event: the water film hasn’t been formed on non-

rutting areas; 2) during the storm event: the water film has been formed on non-rutting 

areas; 3) after storm event. A new model named as 3S-WFD model is developed to 

calculate the rutting water film depth under the three scenarios. In addition, the effects of 

cross slope on rutting ponding is also analyzed in this study, and used in scenario 3. The 

findings indicate different evaluation results are observed when the different scenarios 

are used for analysis. The effects of rutting on hydroplaning related safety evaluation 

cannot be ignored in pavement safety evaluation.  
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