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Abstract: In large-scale exploratory data analysis one objective is to discover interesting attributes
that are worthy of further study. Standard statistical analysis employs a multiple testing procedure
which aims to discover as many attributes as possible subject to the constraint that an error rate,
such as the false discovery rate (FDR), is controlled at a prespecified level. However, the objective of
this statistical protocol need not be in line with the objectives of the study at hand since discovered
attributes need not be interesting (worthy of further study), and likewise, interesting attributes
need not be discovered. This work provides a new statistical method that allows for the nature
of the follow-up analysis to be considered when determining which attributes are discovered. The
methodology is illustrated on a dataset in which the objective is to discover bacterial species near
the roots of wheat plants that are associated with plant health and to classify discovered species into
groups based on the nature (positive or negative) and degree (strong or weak) of their association.
This definition of interesting leads to a procedure that ranks attributes according to their local
misclassification rates (LMCR). Theoretical and numerical results illustrate that the proposed LMCR
procedure outperforms the current standard procedure in that it has a smaller misclassification rate
among discoveries and still controls the FDR. The new method also performs favorably over the
traditional approach when applied to real-world datasets, including the aforementioned plant health
data, where expectation-maximization (EM) algorithms are used to estimate unknown parameters.
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Chapter 1

Introduction

High throughput technology, such as sequencing and imaging technology, is now routinely used to

generate so called “high dimensional” (HD) data sets. The first stage in the analysis of HD data is

often to identify which among thousands of variables or attributes are worthy of more exploration

using some multiple testing procedure. For example, in genome-wide association studies the goal

is to determine which among thousands of single nucleotide polymorphisms are associated with a

trait (Roeder and Wasserman, 2009) while in fMRI analysis the objective is to identify which voxels

or regions of the brain are associated with a stimulus (Lindquist, 2008). In this HD setting, a

false discovery rate (FDR) (Benjamini and Hochberg, 1995; Farcomeni, 2008; Dudoit and van der

Laan, 2008) controlling multiple testing procedure is typically employed. The FDR is the expected

proportion of false discoveries among discoveries, or from a multiple hypothesis testing perspective,

is the expected proportion of type I errors among rejected null hypotheses. The FDR is formally

defined below and will be used throughout this dissertation. But first we consider an example of a

multiple testing problem.

1.1 A Simple Multiple Testing Example

A common situation requiring large scale multiple testing is that of microarray data. A microarray

is used in biomedical settings to measure gene expressions simultaneously. Such studies may include

thousands, tens of thousands, or even millions of genes.
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For example, Efron (2010) discussed an analysis of prostate cancer data consisting of M = 6033

genes obtained from 50 healthy men and 52 men with prostate cancer. As with most microarray

analyses, the goal was to determine which genes showed statistically different expression levels

between the two groups. This information could then be used to guide future study.

Formally, for each m = 1, 2, ..., 6033, let xmj be the gene expression level for gene m and patient

j. Further, let group 1 be the control (healthy) group with population mean µ1
m and corresponding

sample mean x̄1m, and let group 2 be the cancer group with population mean µ2
m and corresponding

sample mean x̄2m. A standard two sample t-test can be applied to each gene, with null hypothesis

Hm : µ1
m = µ2

m.

The test statistic is now

tm =
x̄2m − x̄1m

sm
,

where

sm =

√∑50
j=1(xmj − x̄1m)2 +

∑102
j=51(xmj − x̄2m)2

50 + 52− 2

(
1

50
+

1

52

)
,

and has a Student’s t distribution with 100 degrees of freedom under Hm. For convenience, Efron

then converts each t statistic into a corresponding z statistic using

Zm = Φ−1(F100(tm)),

where Φ and F100 are the cdfs for the standard normal distribution and t distribution with 100

degrees of freedom, respectively.

Each null hypothesis is that Zm has the standard normal distribution (Z ∼ N(0, 1)). For more

details on the creation of the z-values, as well as a brief discussion on the selection of an alternative

hypothesis, consult Efron (2010).

If we control the type I error rate at level α = 0.05 by rejecting Hm when |Zm| ≥ 1.96, we find

478 statistically significant genes. However, we can reasonably expect that many of these rejected

2



nulls will be incorrectly rejected. These incorrect rejections will be type I errors, also known as

“false discoveries.”

In multiple hypothesis testing, there are two main forms of error control: control of the familywise

error rate (FWER) and control of the false discovery rate (FDR). The notion of the FDR has its

roots in Simes (1986) but was popularized by Benjamini and Hochberg (BH) in 1995 as an alternative

to the FWER.

To define these error rates, first suppose that we have M hypotheses of interest. The state of

each null hypothesis is unknown (it can be either true or false), so the researcher tests each one and

claims it as either statistically significant or nonsignificant, which leads to four possibilities: true

claims of significance and nonsignificance, as well as, false claims for each. Table 1.1 shows this

relation, using notation similar to that presented in Storey et al. (2004). Similar tables can be found

in Benjamini and Hochberg (1995), Cai and Sun (2009), Efron (2010), and elsewhere throughout

FDR literature.

Claimed Nonsignificant Claimed Significant Total

Null U V M0

Nonnull T S M −M0

Total W R M

Table 1.1: Possibilities for a tested hypothesis.

The FDR and FWER can be defined as

FDR = E

[
V

R

∣∣∣∣R > 0

]
Pr(R > 0) and FWER = Pr(V ≥ 1).

While the FDR is the expected proportion of false discoveries among all discoveries, the FWER is

the probability of committing at least one type I error. A good introduction to the FDR can be

found in Efron (2010), and a good overview of multiple hypothesis testing methodology in general

can be found in Farcomeni (2008).

For the prostate cancer data discussed above, we can control the FWER by applying the Bon-

ferroni procedure (formally defined in Section 2.1), which leads to 6 rejected nulls. FDR control can

3



be achieved by applying the BH procedure (outlined in Subsection 2.3.2) to the p-values associated

with the given z-values. Doing so, we now have 21 rejected null hypotheses.

1.2 A Major Deficiency in Standard Methods

Standard FDR methods are aimed at maximizing the expected number of rejections or discoveries

subject to the constraint of FDR control. Recent work has shown that, while this approach is rea-

sonable in most exploratory analyses, quite often it may provide misleading inference. For example,

Sun and McLain (2012) sought to identify schools in California where student performance was

associated with socio-economic status, but standard FDR methods tended to identify the largest

schools rather than those schools whose performance was strongly associated with socio-economic

status. In Habiger et al. (2015) the goal was to identify species of bacteria living near the roots of

wheat plants that are associated with plant health or productivity, but standard procedures tended

to identify the most abundant species rather than those with the strongest association. As pointed

out by Ruppert et al. (2007), the problem with standard approaches is that a discovery need not be

“interesting” scientifically.

In this dissertation, we demonstrate that these procedures fail because they are designed to

maximize the expected number of discoveries (interesting or not) or minimize some type II error rate,

when this objective may not be appropriate for the study at hand. For example, in Anderson and

Habiger (2012), one objective was to discover species of bacteria that are correlated with productivity

and to classify bacteria into groups based on the nature (positive or negative) and degree (strong

or weak) of their association. The standard, or naive approach, which would first apply an FDR

procedure to discover associated species and then classify the discovered species, fails for two reasons.

First, discovered species can be classified into the “null” group, i.e. the classification procedure

identifies them as not being associated with productivity. Second, classification error among the

discovered/classified species can be high. The problem here is that the multiple testing procedure

failed to consider the manner in which discovered species would be explored in follow up analysis.

For more details on this two-stage protocol see Sun and Wei (2015) and references therein.

4



1.3 Proposed Research

This work focuses on the first stage of the analysis. Specifically, we provide an FDR method that

allows for the manner in which the discovered data are to be explored to be incorporated into the

initial discovery process. The idea is to allow the attributes to be ranked from most significant to least

significant using arbitrary statistics, which could include but are not limited to p-value statistics,

posterior probabilities, or what we call the “local misclassification rate.” Then a threshold is defined

along the rankings for providing FDR control.

Relevant FDR research will be more fully developed in the literature review of Chapter 2. Chap-

ter 3 provides the general framework and illustrates how the rankings are related to the optimality

criteria for two common procedures, while Chapter 4 introduces a local misclassification rate proce-

dure aimed at accomplishing the objectives of Anderson and Habiger (2012), outlined above. Chap-

ter 5 directly compares the new procedure with the naive two stage approach in practice. Chapter 6

considers the new procedure under various test scenarios with known parameters, whereas Chapter 7

examines the performance of the new procedure when parameters are estimated. Chapter 8 provides

a brief summary of this work.
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Chapter 2

Literature Review

Multiple hypothesis testing has a rich history throughout the literature, one that can be traced

back to the late 1950s (Dunn, 1958, 1959), but has roots that stretch back even farther. Since

then, many approaches have been developed to try to control the error inflation inherent to the

simultaneous testing of hypotheses. Part of the proposed research will look to combine a FDR

controlling methodology with a classification based group structure. Some of the work most relevant

to this goal will be explored below.

2.1 Decision Functions

Let θm ∈ {0, 1}, m ∈ M = {1, 2, ...,M} index the state of null hypothesis Hm so that θm =

I(Hm false) where I(· ) is the indicator function. For short, denote the collection of null hypotheses

by H = (Hm, m ∈ M), and the state of H by θ = (θm, m ∈ M). Consider testing Hm with test

statistic Tm where T = (Tm, m ∈M) is the collection of test statistics.

The decision to reject or retain Hm using Tm is denoted by δm = I(Tm ≤ tm) where tm represents

a threshold which is to be specified by the multiple testing procedure of interest. Here, δm = 1 when

hypothesis m is rejected and 0 otherwise. For example, if the procedure is based on p-values, for

m ∈ M we may define tm = α such that δm = I(Pm ≤ α). The well known Bonferroni procedure

can be based on p-values and uses threshold tm = α/M for each m. It is formally defined as

δm = I(Pm ≤ α/M).
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The collection of decision functions, also called a multiple decision function (MDF), is denoted

δ = (δm, m ∈M). The basic multiple testing strategy is to define δm so as to control an error rate.

2.2 Error Rates

For a single hypothesis test, there are two main types of error considered: type I errors and type II

errors. Type I errors occur when a true null hypothesis is incorrectly deemed nonnull, whereas a type

II error occurs when a nonnull hypothesis is incorrectly deemed null. In the context of Table 1.1,

the single hypothesis case corresponds to M = 1. That is, either M0 or M −M0 equals 1, with the

other quantity necessarily being 0. Here, we can define the standard notions of type I and type II

error rates as Pr(V = 1|M0 = 1) and Pr(T = 1|M −M0 = 1), respectively. Using decision function

notation, these two error rates can be written as Pr(δm = 1 | θm = 0) and Pr(δm = 0 | θm = 1),

respectively.

To define multiple testing error rates, let V =
∑
m∈M δm[1 − θm] denote the number of type

I errors (false discoveries) and let R =
∑
m∈M δm denote the number of rejected null hypotheses

(discoveries). These quantities correspond to the V and R values in Table 1.1, respectively. Further,

let R = {m : δm = 1} be the set of indices corresponding to rejected hypotheses (for convenience,

referred to as a rejection set), such that the cardinality of R is |R|= R.

The familywise error rate (FWER) is now

FWER = Pr(V ≥ 1),

and the false discovery proportion is

FDP =
V

R ∨ 1
,

where R ∨ 1 denotes the maximum of R and 1. We force the denominator to be positive so as to

avoid dividing by 0 since there can be no false discoveries when there are no discoveries. The false

discovery rate (FDR) is then defined as FDR = E[FDP], where E[·] is the expectation operator.
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Note that an alternative form for the FDR is

FDR = E

[
V

R

∣∣∣∣R > 0

]
Pr(R > 0) (2.1)

where this equality holds because of iterated expectation. Here, we see

E

[
V

R ∨ 1

]
= E

[
V

R ∨ 1

∣∣∣∣R > 0

]
Pr(R > 0) + E

[
V

R ∨ 1

∣∣∣∣R = 0

]
Pr(R = 0)

= E

[
V

R

∣∣∣∣R > 0

]
Pr(R > 0)

since V
R∨1 = 0 when R = 0 since V ≤ R.

2.3 Classic Multiple Testing Procedures

Perhaps the simplest method for controlling the FWER at significance level α in multiple testing

is the Bonferroni approach, as defined in Section 2.1. This method ensures that the FWER ≤ α,

as is desired, but when M = 10, 000 and α = 0.05, the threshold for rejection is 0.000005, which

is quite restrictive. Thus, there have been many improvements and alternatives to the Bonferroni

procedure, including those by Šidák (1967), Holm (1979), Hommel (1988), as well as several others.

2.3.1 The Simes Procedure

With the goal of eventually implementing FDR control, the most relevant methodology developed

for FWER control is the Simes (1986) procedure. Simes suggested a modification to the Bonferroni

approach based on the ordered p-values P(1) ≤ P(2) ≤ ... ≤ P(M). He defined the global null

hypothesis as H : θ = 0, i.e. it assumes that all null hypotheses are true. The Simes procedure is

not focused on testing individual null hypotheses, but instead is focused on the rejection of H. It

rejects H if

P(i) ≤
iα

M
for any i = 1, 2, ...,M.

Simes then suggested that decisions could be made for the individual hypothesesH(1), H(2), ...,H(M),
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where H(m) corresponds to P(m), by rejecting those hypotheses H(1), H(2), ...,H(j) where

j = max
{
m : P(m) ≤

mα

M

}
,

if the global null had already been rejected. He made this suggestion as an exploratory approach

only and believed that subsequent studies would need to be performed to provide confirmation.

It must be noted that the Simes procedure only controls FWER weakly at a given significance

level, as opposed to strong control. Strong control occurs when FWER ≤ α, regardless of which (or

how many) null hypotheses are true. Weak control, on the other hand, occurs when FWER ≤ α

only when all null hypotheses are true.

2.3.2 The BH Procedure

In their 1995 article Controlling the False Discovery Rate: a Practical and Powerful Approach to

Multiple Testing, Benjamini and Hochberg (BH) note that classical FWER control procedures have

several practical difficulties. These include: concerns over distributional assumptions, the fact that

most analyses yielded much lower power for multiple testing when compared to per comparison pro-

cedures, and the general belief that control of FWER may not truly be needed in all circumstances.

As a result, BH focused on the FDR and identified two important properties associated with this

error rate:

1. When all null hypotheses are true, FDR control implies weak FWER control.

2. When M0 < M , FDR ≤ FWER. Thus, in such cases, control of only the FDR could lead to a

gain in power because it is less restrictive.

To provide some intuition on why FDR control is less strict than FWER control, suppose a

researcher has 10, 000 hypotheses to test, of which 1, 000 are rejected. Even one incorrect rejection

is unacceptable for FWER controlling procedures. However, by focusing on the number of rejections,

the FDP is still only 0.05 even if 50 discoveries are false (50/1000 = 0.05).

To formally define the BH procedure, reconsider the situation where we are testing H =
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(Hm, m ∈ M) using the ordered p-values P(1) ≤ P(2) ≤ ... ≤ P(M), and denote H(m) as the

hypothesis corresponding to P(m). The BH procedure can be defined (see Storey et al. (2004)) by

δm = I(Pm ≤ αj/M), where j is defined as

j =


0 if P(m) ≥ mα/M ∀ m ∈M

max
{
m : P(m) ≤ mα/M

}
otherwise

.

Note that the first case of j = 0 corresponds to the situation when there will be no rejections and

the second case leads to j rejections. BH showed that FDR ≤ αM0/M if p-values corresponding

to true null hypotheses are independent of one another and independent of p-values from false null

hypotheses.

In the years since BH popularized their methodology for controlling the FDR, much work has

been done expanding and generalizing the uses of FDR controlling procedures. For instance, adaptive

procedures often operate by incorporating an estimate of π0 = M0/M into the BH procedure. As

an example, consider the adaptive procedure in Storey (2002) and Storey et al. (2004) which uses

α/π̂0 in place of α in the BH procedure, where π̂0 is some estimate of π0. Storey showed that this

procedure controls the FDR at α if all p-values are independent and if π̂0 is appropriately defined.

Other examples of FDR research include: an empirical Bayes interpretation, as well as the esti-

mation of an empirical null distribution (Efron et al., 2001; Efron, 2004, 2008b, 2010); the definition

of a positive false discovery rate (pFDR), as well as exploration of optimality and other concerns

(Storey, 2002, 2003, 2007; Storey et al., 2004); the exploration of weighted p-value schemes (Ben-

jamini and Hochberg, 1997; Genovese et al., 2006; Roeder et al., 2006); adaptive procedures for FDR

control (Benjamini and Hochberg, 2000; Genovese and Wasserman, 2004; Blanchard and Roquain,

2009); the estimation of the proportion of null and nonnull hypotheses (Efron, 2004; Nettleton et al.,

2006; Jin and Cai, 2007); a link between p-value based procedures and decision theoretic approaches

(Habiger, 2012); and a compound p-value approach (Habiger and Peña, 2014). There has also been

significant work regarding FDR control and dependence (Benjamini and Yekutieli, 2001; Farcomeni,

2007; Finner et al., 2007; Sarkar, 2008; Wu, 2008; Sun and Cai, 2009).
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Figure 2.1: Illustration of the multiple group model defined by Model 1.

2.4 Classification Into One of Several Groups

As mentioned above, part of the proposed research will look to combine the notion of FDR control

for groups with a data driven procedure for defining those groups. Classification and clustering

analysis has been a big topic of research in many disciplines (see Xu and Wunsch (2009), Duda et al.

(2001), or Hastie et al. (2009) for examples in computer science and data mining, among others) and

this work will use both types of analysis to examine the performance of the procedure developed in

Chapter 4.

When the desired group structure is known, classification is often based on a mixture model

(see, for example, Scott and Symons (1971), Anderson (1984), or Fraley and Raftery (2002)). In the

following mixture model, we let Gm take on values in K = {0, 1, ...,K} to emphasize that Gm = 0

indicates that Hm is true (null). If Gm 6= 0 then Hm is false (nonnull). Figure 2.1 illustrates this

model which will be used throughout the remainder of this manuscript.

Model 1. Let (Xm, Gm) ∈ X × {0, 1, ...,K} be independent and identically distributed random

vectors. Assume Xm has mixture

f(x) =
∑
k∈K

πkfk(x) (2.2)

where fk(x) is the probability mass function (pmf) or probability density function (pdf) of x given

Gm = k, πk = Pr(Gm = k), and K = {0, 1, ...,K}.

Classification analysis calculates an estimate for Gm, denoted Ĝm, using data Xm, or classifies
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Xm as belonging to group k if Ĝm = k. Anderson (1984) demonstrates that if the cost of incorrectly

classifying Xm into group k given that Gm = j 6= k is the same across all j, k then the admissible

classification rule is defined as

Ĝm = Ĝm(xm) = argmax
k∈K

{πkfk(xm)}. (2.3)

Note that the event [Ĝm = k] can equivalently be written as [xm ∈ Ak] for some Ak ⊂ X where

A = {A0, A1, ..., AK} is a partition of X .

2.5 Cluster Analysis

Formally, classification requires a known number of groups or classes into which a new observation

may be placed. That is, classification essentially applies a label to a datum. On the other hand,

cluster analysis looks to identify groups of observations that are similar within each group and yet

distinct from observations within other groups. In the context of machine learning, classification is

a common supervised learning methodology, whereas cluster analysis is an example of unsupervised

learning.

In this work, classification analysis will be used throughout Chapter 6 to illustrate the properties

of the proposed procedure in simulations where the data structure and corresponding parameters are

known. Cluster analysis will then be used in Chapter 7 to consider the performance of the proposed

procedure when dealing with data that has unknown parameter values.

2.5.1 General Clustering Techniques

Cluster analysis (and general pattern recognition as a whole) has a rich and varied history in many

disciplines, including biology, psychiatry, psychology, archeology, geology, geography, and marketing,

as mentioned in Jain et al. (1999). Specifically, there have been many books published on the topic,

including those of Anderberg (1973), Hartigan (1975), Jain and Dubes (1988), Duda et al. (2001), and

Xu and Wunsch (2009). For a statistical treatment of machine learning in general, including cluster

analysis, consult Hastie et al. (2009). There are many hundreds (if not thousands) of techniques for
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identifying groups of elements based on some form of similarity. For the most part though, there

are two main types of clustering, hierarchical and partitional.

Hierarchical clustering is an iterative methodology based on nests of clusters. The nested struc-

ture (often presented graphically as a dendrogram) can be defined in one of two main ways, either

through agglomeration or division. Agglomerative clustering begins with each data point in its own

cluster, and during each step of the process, two clusters are merged based on some criterion (often

some notion of distance or variance). For an early yet popular example of agglomerative clustering,

see Ward (1963). Divisive clustering (also known as top-down clustering) begins with all of the data

contained in a single cluster. Each step of a divisive algorithm looks to divide each cluster into two

smaller clusters, again based on some criterion (often distance based). For specific details on the

types of criteria used to determine clusters, see Jain et al. (1999) or one of the books mentioned

above.

While hierarchical clustering seeks a way of combining or dividing elements of a dataset, itera-

tively, partitional clustering looks to form the clusters simultaneously (thus forming a partition of

the data), often based on some metric. There are a multitude of partitional clustering algorithms,

but perhaps one of the most popular techniques is known as k-means clustering (MacQueen, 1967).

In k-means clustering, k elements are randomly selected to serve as centers for each cluster, at

which point, all other elements are assigned to the nearest cluster center. Once all elements have

been assigned, new centers are calculated. This process is then repeated until some convergence

criterion is satisfied (often based on a squared error measurement or based on whether or not cluster

membership has changed from one iteration to the next). The next subsection will detail a second

partitional clustering method that will be the focus of Chapter 7.

2.5.2 Model-Based Clustering

Model-based clustering often uses a finite mixture of probability models to determine clusters (see

Bock (1996), Fraley and Raftery (1998), McLachlan and Peel (2000), or Fraley and Raftery (2002),

among many others, for details). When performing model-based clustering, we must first establish

an appropriate mixture model. For our application, Model 1 defines such a model using convenient
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notation. Specifically, Equation (2.2) defines a K + 1 group mixture model where πk is the mixture

proportion for group k with corresponding density fk(x). In fact, the only thing that should be

included notationally is a reference to the parameters within each density. So, let η = (ηk, k ∈ K)

be a collection of parameters where ηk represents the parameters of density fk. Equation (2.2) can

then be written as

f(x|η) =
∑
k∈K

πkfk(x|ηk). (2.4)

In this context, given X = x, the likelihood of the mixture model is

L(η;π | x) =
∏
m∈M

∑
k∈K

πkfk(xm|ηk), (2.5)

where π = (πk, k ∈ K).

To determine a good clustering solution, our objective is to maximize the likelihood of the

mixture model in Equation (2.5) by finding estimates for η and π. Unfortunately, in this likelihood,

each observation is composed of two pieces of information, the actual data value and the group

membership value. To account for both pieces, let zm = (xm,ym) represent the complete data,

where xm is observed and ym = (ym0, ym1, ..., ymK) is the unobserved group membership. Here, for

k ∈ K, let ymk = I(zm is from group k).

For a mixture model, we assume that each ym is a single iid realization from a K + 1 group

multinomial distribution with probabilities defined by π. Given the group information, ym, the

density of xm is then
∏
k∈K fk(xm|ηk)ymk , so that the complete data likelihood is

L(η,π,y|z) =
∏
m∈M

∏
k∈K

[πkfk(xm|ηk)]
ymk (2.6)

where z = (zm, m ∈M) and y = (ym, m ∈M).

2.5.3 Parameter Estimation and the EM Algorithm

To estimate the parameters of Equation (2.6), we will use a maximum likelihood estimation (MLE)

approach coupled with the expectation-maximization (EM) algorithm. MLEs are discussed at length
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in Cramér (1946), Bain and Engelhardt (2000), Lehmann and Casella (2003), and elsewhere. Among

the many desirable properties of MLEs is the fact that, under suitable regularity conditions, MLEs

are consistent estimators of the parameters they estimate. That is, the maximum likelihood estimate

converges in probability to the value of the parameter of interest as the sample size increases. See

Corollary 3.5 in Chapter 6 of Lehmann and Casella (2003) or section 33.3 of Cramér (1946) for

details. When determining the MLEs of Equation (2.6), it is often easier to maximize the complete

data log-likelihood

l(η,π,y|z) =
∑
m∈M

∑
k∈K

ymk log[πkfk(xm|ηk)]. (2.7)

The EM algorithm for incomplete data, proposed in Dempster et al. (1977) and discussed at

length in McLachlan and Peel (2000) and McLachlan and Krishnan (2008), offers us a convenient

way to determine the MLEs of η and π in Equation (2.7). In general, the EM algorithm alternates

between the expectation of a likelihood function (the E-step) and the subsequent estimates of the

parameters that maximize that expectation (the M-step).

More specifically, suppose that we have an initial estimate of group membership for each obser-

vation, say ŷm = (ŷmk, k ∈ K), and we want estimates of ηk and πk, say η̂
(1)
k and π̂

(1)
k to signify

that this is the first iteration. The next iteration begins by finding the expected value of ŷm given

η̂
(1)
k and π̂

(1)
k . The updated values η̂

(2)
k and π̂

(2)
k are then calculated, and the process repeats until

some convergence criterion is satisfied (often either a maximum number of iterations is reached or

there is not a significant change in the likelihood value, within some tolerance).

Formally, the E-step is ŷmk = E[ymk|xm, ηk, πk], which is the conditional expectation that ob-

servation m is a member of group k given the data and parameters. This expectation is equivalent

to the probability that observation m belongs to group k. In the context of Model 1, we have

ŷmk = Pr(Gm = k|Xm = xm) =
Pr(Gm = k,Xm = xm)

Pr(Xm = xm)
=

π̂kfk(xm|η̂k)∑
k∈K π̂kfk(xm|η̂k)

, (2.8)

where η̂k and π̂k are estimates of the corresponding parameters. With a value of ŷmk in hand,

the M-step looks to find the MLEs by differentiating Equation (2.7) with respect to η and π. A
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specific derivation of the components of the EM algorithm for a univariate normal mixture model is

presented in Section 7.1.

To facilitate much of the analysis in the chapters to come, R software (R Core Team, 2015) was

used. Two useful R functions that implement the EM algorithm are the Mclust function from the

mclust package (Fraley and Raftery, 2002; Fraley et al., 2012) and the normalmixEM function from

the mixtools package (Benaglia et al., 2009). The dataset in Subsection 5.2.1 will be analyzed with

the Mclust function whereas the simulations in Chapter 7 will utilize the normalmixEM function.

In general, the Mclust function is much faster than normalmixEM and includes an automatic

selection of the best variance structure for the model. Thus, some of the parameter estimates may

seem unusual (for example, a non-standard normal null group with equal variance across all five

groups, as seen in Table 5.3) but they are in fact associated with the best model (for a given number

of groups) as determined by the Bayesian information criterion (BIC). The main advantage of using

the normalmixEM function is its flexibility in restricting the range of possible values on a parameter by

parameter basis. This is especially useful when dealing with unusual datasets or when implementing

a parameter constraint.
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Chapter 3

A Method for Defining Procedures

for FDR Control

The analysis to follow is based on a random mixture model which assumes that the states of null

hypotheses to be tested are random. This framework was perhaps first introduced within the context

of the FDR in Efron et al. (2001); Genovese and Wasserman (2002); Storey (2003).

Let M = {1, 2, ...,M}, and let (X,θ) = ((Xm, θm), m ∈M) be random vectors with support

X × {0, 1}M and distribution F ∈ F , where F is a model for F . Suppose that each θm is an unob-

servable Bernoulli random variable defined by θm = 1− I(Hm true) where Hm is a null hypothesis

and I(· ) is the indicator function. Here, Hm is of the form Hm : F ∈ Fm ⊆ F for Fm a submodel

of F , and the collection of null hypotheses is denoted H = (Hm, m ∈ M). Denote the decision

to reject or retain Hm by δm : X 7→ {0, 1} or δm(X) or δm for short, where δm = 1(0) means Hm

is rejected (retained). The multiple decision function (MDF) is δ : X 7→ {0, 1}M and is denoted

δ(X) = (δm(X), m ∈M) or δ for short.

To define decision rules (and subsequent rejection setsR = {m : δm = 1}), we adopt the approach

formally outlined in Storey (2007) and Benjamini and Bogomolov (2014), where the basic strategy

is to

1. rank the hypotheses from most significant to least significant using statistics Tm = Tm(X),

say T(1) ≤ T(2) ≤ ... ≤ T(M), where T(1) is the most significant, T(2) the next most significant,
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and so on. Then,

2. reject the R null hypotheses corresponding to T(1), T(2), ..., T(R).

Formally, we define δm = I(Tm ≤ T(R)), m ∈ M and denote the corresponding rejection index set

as

R(T , R) =
{
m ∈M : Tm ≤ T(R)

}
. (3.1)

where we recall that T is the collection of test statistics and R is the cardinality of the set (|R|).

Traditional FDR methods focus on choosing T so as to maximize R or minimize some type II error

rate subject to the constraint that the FDR ≤ α. For example, the BH procedure of the previous

chapter uses the ordered p-values (P(1), P(2), ..., P(M)) to choose R = maxj
{
P(j) ≤ αj/M

}
and define

δm = I(Pm ≤ P(R)). The corresponding rejection set is then R(P , R) = {m ∈ M : Pm ≤ P(R)}

where P = (Pm, m ∈M) is the collection of p-values.

Theorem 3.1 below provides a general route for choosing R such that the FDR ≤ α.

Theorem 3.1. Let R = {m : δm = 1} ⊆ M index the collection of discoveries with |R|= R and

denote posterior probabilities by Qm = Pr(θm = 0|X = x) for m ∈M. If

1

R

∑
m∈R

Qm ≤ α (3.2)

then FDR ≤ α.

Proof of Theorem 3.1. This proof is a generalized version of the proof for Theorem 1 in Cai and Sun

(2009). First note that

E [V |X = x] = E

[ ∑
m∈M

δm[1− θm] | X = x

]
=
∑
m∈M

δmE [I(θm = 0)|X = x]

=
∑
m∈R

Pr(θm = 0|X = x) =
∑
m∈R

Qm.

(3.3)

The first and second equalities are due to the definition of V and the fact that δm is a function of

X only. For the third equality, note that the set of hypotheses is reduced to R by δm and that
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the expectation of an indicator function is the probability of its argument. The fourth equality

substitutes the definition of Qm. Thus, we have

FDR = E

[
V

R

∣∣∣∣R > 0

]
Pr(R > 0) = E

[
E

[
V

R

∣∣∣∣R > 0,X = x

]]
Pr(R > 0)

= E

[
1

R
E[V |X = x]

]
Pr(R > 0) = E

[
1

R

∑
m∈R

Qm

]
Pr(R > 0)

≤ α Pr(R > 0) ≤ α.

The second equality is a consequence of the law of iterated expectation. With X known, R is

known, since R is a function of X through δ. Thus, the third equality holds and the fourth equality

substitutes Equation (3.3). The first inequality is due to the supposition of Equation (3.2) and the

final inequality is obvious since Pr(R > 0) ≤ 1.

The rest of this chapter illustrates how this theorem can be used to verify FDR control in a

variety of settings considered in the literature and shows that proposed test statistics for rankings

arise out of optimality criteria not originally considered. Chapter 4 develops a specific application

of the two step strategy by introducing an alternative optimality criterion. The proposed approach

will lead to a different ranking of hypotheses which will then form the basis of the rest of the current

work.

3.1 Procedures that Rank the Local FDR

Consider a two group mixture model composed of a single null and a single nonnull group. This

model, defined as Model 1 with K = 1, has previously been considered within the context of FDR

control in Efron et al. (2001), Genovese and Wasserman (2002), Sun and Cai (2007), and Cai and

Sun (2009).

When K = 1, Equation (2.2) becomes f(x) = π0f0(x) +π1f1(x), where we note that the nonnull

component (π1f1(x)) may itself be a mixture of nonnull (Gm 6= 0) distributions. Define the local
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false discovery rate (Lfdr), introduced by Efron et al. (2001), as

Lfdr(x) = Pr(θm = 0|Xm = x) =
π0f0(x)

f(x)
. (3.4)

Further, we define the Lfdr statistic for Hm as Lfdrm = Lfdr(Xm) and let Lfdr = (Lfdrm, m ∈M)

be the corresponding collection.

Now consider the Lfdr procedure of Sun and Cai (2007), which in our notation chooses

RSC = max
j

1

j

∑
m∈RSC(Lfdr,j)

Lfdrm ≤ α

 (3.5)

with corresponding decision functions δSCm = I
(
Lfdrm ≤ Lfdr(RSC)

)
if j > 0 (that is, when there

is at least one rejection) and defines RSC = 0 when j = 0 (thus, RSC = ∅). Note that the Lfdr

procedure ranks the hypotheses using the Lfdr statistic through the definition of RSC(Lfdr, j) (as

in step 1 of the general protocol defined above). Also note that FDR control is now an immediate

consequence of Theorem 3.1. In context, Corollary 3.1 states that FDR control can be achieved for

any rejection set R if the average Lfdr value is controlled within that set.

Corollary 3.1. The Lfdr procedure in Equation (3.5) has FDR ≤ α under Model 1.

Proof of Corollary 3.1. The proof follows from Theorem 3.1 by defining θm = I(Gm 6= 0) and

observing that Qm = Lfdr(xm). The inequality in Equation (3.2) is satisfied by construction.

The next proposition provides a simplified form for the expected number of false discoveries

for any rejection set R given the data X. This result is important because it will be used in the

following theorem to associate an optimality criterion to the choice of statistic T for use in the two

step process defined above.

Proposition 3.1. For any rejection set R with cardinality |R|= R and corresponding decision

functions δ, under Model 1,

E

[ ∑
m∈M

δmθm|X = x

]
= R−

∑
m∈R

Lfdrm. (3.6)
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Proof of Proposition 3.1. First note that

E

[ ∑
m∈M

δmθm | X = x

]
= E

[ ∑
m∈M

δmI(θm 6= 0) | X = x

]
=
∑
m∈R

E [I(θm 6= 0) | X = x]

=
∑
m∈R

Pr(θm 6= 0|X = x) =
∑
m∈R

[1− Pr(θm = 0|X = x)]

=
∑
m∈R

[1− Pr(θm = 0|Xm = xm)] = R−
∑
m∈R

Lfdrm.

The second equality comes from knowing δm since it is a function of X (thus, we are restricted

to the rejection set R). The third equality is an application of the definition of expectation and the

fourth equality rewrites the equation in terms of the probability for the null group. The fifth equality

is due to the independence of the model and the sixth equality simplifies the summation.

Theorem 3.2. Let R be any rejection set with corresponding decision functions δ satisfying Equa-

tion (3.2). Further, let RSC(Lfdr, RSC) be the rejection set defined as in Equation (3.5) with

corresponding decision functions δSC . Then, under Model 1,

E

[ ∑
m∈M

δmθm

]
≤ E

[ ∑
m∈M

δSCm θm

]
. (3.7)

Proof of Theorem 3.2. We first note that, for any R and corresponding decision functions δ,

E

[ ∑
m∈M

δmθm

]
= E

[
E

[ ∑
m∈M

δmθm | X = x

]]
= E

[
|R|−

∑
m∈R

Lfdrm

]

as a consequence of the law of iterated expectation and an application of Proposition 3.1.

Thus, it suffices to show that

RSC(Lfdr, RSC) = argmax
R:

∑
m∈R Lfdrm≤α|R|

{
|R| −

∑
m∈R

Lfdrm

}
.

21



From Equation (3.1), for any R with |R|= r, we establish the following:

argmax
R:

∑
m∈R Lfdrm≤α|R|

{
|R| −

∑
m∈R

Lfdrm

}

≤ argmax
R(Lfdr,r):

∑
m∈R(Lfdr,r) Lfdrm≤α|R(Lfdr,r)|

|R(Lfdr, r)| −
∑

m∈R(Lfdr,r)

Lfdrm


= RSC(Lfdr, RSC).

The inequality is satisfied because for any R with cardinality r we have

|R| −
∑
m∈R

Lfdrm = r −
∑
m∈R

Lfdrm ≤ r −
r∑
j=1

Lfdr(j) = r −
∑

m∈R(Lfdr,r)

Lfdrm.

The equality holds because |R(Lfdr, r)| −
∑
m∈R(Lfdr,r) Lfdrm is nondecreasing in r and by the

definition of RSC(Lfdr, RSC).

Theorem 3.2 shows that the Lfdr procedure maximizes the expected number of true positives

subject to Equation (3.2). This extends the result of Sun and Cai (2007), where they showed that

the Lfdr procedure minimizes the missed discovery rate or MDR under a monotone likelihood ratio

(MLR) condition (Cao et al., 2013). The MDR is defined as the proportion of the expected number

of retained nonnull hypotheses among the expected number of retained hypotheses, that is,

MDR =
E
[∑

m∈M[1− δm]θm
]

E
[∑

m∈M[1− δm]
] .

Note that here the MLR condition is not required.

3.2 Procedures that Rank the Conditional Lfdr

This section considers a situation where X is known to come from many heterogeneous groups. Such

cases have previously been considered in the context of FDR control in Efron (2008b); Cai and Sun

(2009); Hu et al. (2010). The multiple group model used in Cai and Sun (2009) is formally defined

by Model 2 and is illustrated in Figure 3.1. Note that a superscript asterisk (*) is used for several
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Data

Group 1

Nulls Nonnulls

Group K

Nulls Nonnulls

.......

.......

π∗1

1− p1 p1

π∗K

1− pK pK

Figure 3.1: Illustration of the multiple group mixture model of Cai and Sun (2009), defined by
Model 2.

variables to help distinguish them from similar variables used above.

Model 2. Let (Xm, G
∗
m, θm) ∈ X × {1, 2, ...,K} × {0, 1} be independent and identically distributed

random vectors. Define π∗m = Pr(G∗m = k) and assume (Xm, G
∗
m) has mixture f(x, k) = (1 −

pk)fk0(x)+pkfk1(x) where pk = Pr(θm = 1|G∗m = k) and fk0 and fk1 are the null and nonnull pmfs

or pdfs of x given G∗m = k, respectively.

In conditional analysis, we assume that G∗ = (G∗m, m ∈ M) is observable, with realization g∗.

Define the conditional Lfdr (CLfdr) by

CLfdr(x, k) = Pr(θm = 0|G∗m = k,Xm = x) =
(1− pk)fk0(x)

f(x, k)
. (3.8)

We also define CLfdrm = CLfdr(Xm, G
∗
m), so that CLfdr = (CLfdrm, m ∈ M) is a collection

of CLfdr statistics. Here, the terminology “conditional” was introduced by Cai and Sun (2009) to

emphasize the fact that we are conditioning on G∗m = k, in addition to Xm = x. Defining posterior

probabilities “conditionally” will be revisited in Subsection 5.2.3.

In a manner similar to that seen in the previous section, the CLfdr procedure of Cai and Sun
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(2009) chooses

RCSC = max
j

1

j

∑
m∈RCSC(CLfdr,j)

CLfdrm ≤ α

 (3.9)

with corresponding decision functions δCSCm = I
(
CLfdrm ≤ CLfdr(RCSC)

)
if j > 0 and defines

RCSC = 0 when j = 0 (thus, RCSC = ∅). Again, we see that FDR control is an immediate

consequence of Theorem 3.1. In context, we achieve FDR control for any rejection set if the average

CLfdr value is controlled within that set.

Corollary 3.2. The CLfdr procedure in Equation (3.9) has FDR ≤ α under Model 2.

Proof of Corollary 3.2. The proof follows from Theorem 3.1 by observing that Qm = CLfdr(xm, g
∗
m).

Again, the inequality in Equation (3.2) is satisfied by construction.

In a manner similar to that seen in Proposition 3.1, the following proposition will give a simplified

form for the expected number of false discoveries for any rejection set R given the data X and the

group information G∗. Similarly, the following theorem illustrates that the CLfdr procedure maxi-

mizes the expected number of true positives subject to the constraint given by Equation (3.2). Again,

this extends the result in their paper, which demonstrated that the CLfdr procedure minimized the

overall MDR across all groups. As before, the MLR condition is not needed.

Proposition 3.2. Under Model 2, for any rejection set R with cardinality |R|= R and corresponding

decision functions δ,

E

[ ∑
m∈M

δmθm| G∗ = g∗,X = x

]
= R−

∑
m∈R

CLfdrm. (3.10)
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Proof of Proposition 3.2. Similar to the process seen in the proof of Proposition 3.1, we have

E

[ ∑
m∈M

δmθm| G∗ = g∗,X = x

]
= E

[ ∑
m∈M

δmI(θm 6= 0) | G∗ = g∗, X = x

]

=
∑
m∈R

E [I(θm 6= 0) | G∗ = g∗, X = x] =
∑
m∈R

Pr(θm 6= 0 | G∗ = g∗, X = x)

=
∑
m∈R

[1− Pr(θm = 0 | G∗ = g∗, X = x)] =
∑
m∈R

[1− Pr(θm = 0 | G∗m = g∗m, Xm = xm)]

= R−
∑
m∈R

CLfdrm.

The justification for each step is similar to that seen in the proof of Proposition 3.1.

Theorem 3.3. Let R be any rejection set with corresponding decision functions δ satisfying Equa-

tion (3.2). Further, let RCSC(CLfdr, RCSC) be the rejection set defined as in Equation (3.9) with

corresponding decision functions δCSC . Then, under Model 2,

E

[ ∑
m∈M

δmθm

]
≤ E

[ ∑
m∈M

δCSCm θm

]
. (3.11)

Proof of Theorem 3.3. As seen in the proof of Theorem 3.2, we note that, for any R and correspond-

ing decision functions δ,

E

[ ∑
m∈M

δmθm

]
= E

[
E

[ ∑
m∈M

δmθm | G∗ = g∗, X = x

]]
= E

[
|R|−

∑
m∈R

CLfdrm

]

by the law of iterated expectation and by applying the results of Proposition 3.2.

Hence it suffices to show that

RCSC(CLfdr, RCSC) = argmax
R:

∑
m∈R CLfdrm≤α|R|

{
|R| −

∑
m∈R

CLfdrm

}
.
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From Equation (3.1), for any R with |R|= r, we establish the following:

argmax
R:

∑
m∈R CLfdrm≤α|R|

{
|R| −

∑
m∈R

CLfdrm

}

≤ argmax
R(CLfdr,r):

∑
m∈R(CLfdr,r) CLfdrm≤α|R(CLfdr,r)|

|R(CLfdr, r)| −
∑

m∈R(CLfdr,r)

CLfdrm


= RCSC(CLfdr, RCSC).

Here, the inequality is satisfied since for any R with cardinality r we have

|R| −
∑
m∈R

CLfdrm = r −
∑
m∈R

CLfdrm ≤ r −
r∑
j=1

CLfdr(j) = r −
∑

m∈R(CLfdr,r)

CLfdrm.

The equality holds because |R(CLfdr, r)| −
∑
m∈R(CLfdr,r) CLfdrm is nondecreasing in r and by

the definition of RCSC(CLfdr, RCSC).
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Chapter 4

A New Approach

As mentioned in the previous chapter, this chapter will provide an application of the two step

strategy for defining procedures that provide FDR control by considering Model 1 coupled with a

new optimality criterion. Specifically, the tools of Chapter 3 will be used to define a procedure that

accomplishes the objectives of Anderson and Habiger (2012) which recall are to

1. identify nonnull hypotheses, Gm 6= 0 under Model 1, subject to FDR control, and

2. classify nonnull hypotheses into one of several groups, Ĝm = k ∈ {1, 2, ...,K}.

The idea is to use Equation (3.2) to ensure that the proposed procedure provides FDR control,

and results similar to Theorems 3.2 and 3.3 to ensure that the proposed procedure maximizes the

expected number of correctly classified elements.

Before proceeding, recall that Model 1 defines a K+1 group mixture model composed of a single

null group (Gm = 0) and K nonnull groups (Gm = k ∈ K∗ = {1, 2, ...,K}) with marginal density

f(x) =
∑
k∈K πkfk(x) where fk(x) is the pmf or pdf of x given Gm = k, πk = Pr(Gm = k), and

K = {0, 1, ...,K}. The basic structure of Model 1 was shown in Figure 2.1.

4.1 The Local Misclassification Rate Procedure

The proposed procedure looks to maximize the number of correctly classified nonnull rejections.

Recall from Section 2.4 that, under Model 1, Xm may be classified into group k using the classification

rule Ĝm = argmaxk∈K{πkfk(Xm)} (or equivalently, Ĝm = k whenXm ∈ Ak whereA = {Ak, k ∈ K}
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is a partition of X ). We begin by considering the local correct classification rate (LCCR) for each

x ∈ Ak, k ∈ K∗, defined as

LCCR(x, k) = Pr(Gm = k | Ĝm = k,Xm = x) =
πkfk(x)

f(x)
. (4.1)

Although Pr(Gm = k|Ĝm = k,Xm = x) = Pr(Gm = k|Xm = x) when x ∈ Ak, we prefer the former

to emphasize that any observed Xm can be classified. With the LCCR defined, we may now define

the local misclassification rate (LMCR) as

LMCR(x, k) = Pr(Gm 6= k | Ĝm = k,Xm = x) = 1− LCCR(x, k). (4.2)

Define the LMCR statistic for Hm as LMCRm = LMCR(Xm, Gm). The LMCR procedure is imple-

mented as follows. Given each Xm = xm,

Step 1: calculate the collection of classifications Ĝ = (Ĝm, m ∈ M), the collection of LMCR

statistics LMCR = (LMCRm, m ∈ M), and the corresponding collection of posterior

probabilities Q = (Qm, m ∈M), where Qm = Pr(θm = 0|Xm = xm).

Step 2: Define the rejection set RLMCR(LMCR, j) = {m ∈ M1 : LMCRm ≤ LMCR(j)} where

j is the cardinality of RLMCR and M1 = {m : Ĝm 6= 0}. For j > 0, define the number of

hypotheses to reject by

RLMCR = max
j

1

j

∑
m∈RLMCR(LMCR,j)

Qm ≤ α

 , (4.3)

and define decision functions δLMCR
m = I(LMCRm ≤ LMCR(RLMCR)) and rejection set

RLMCR(LMCR, RLMCR) = {m ∈M1 : δLMCR
m = 1}. When j = 0, RLMCR is defined to

be 0 and RLMCR(LMCR, RLMCR) = ∅.

Step 3: For each m ∈ RLMCR(LMCR, RLMCR), report Ĝm.

Observe that for each m ∈ R(LMCR, RLMCR), we have δm = 1 and Ĝm = k 6= 0. That is, we

have identified Xm as nonnull and classified it into group k. Note that the main difference between
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Steps 1 and 2 above and the procedures in Sections 3.1 and 3.2 is that two sets of statistics were

used in determining which attributes to discover. The LMCR statistics were used in Step 1 to rank

hypotheses while the Qm’s were used in Step 2 to determine how many hypotheses could be rejected.

The previous procedures used only Qm’s throughout.

4.2 Characteristics of the LMCR Procedure

This section will follow the basic structure of Sections 3.1 and 3.2 in showing that the LMCR

procedure maximizes the expected number of correctly classified nonnull discoveries (CCND), defined

as CCND = E
[∑

m∈M δmI(Gm = Ĝm 6= 0)
]
, subject to FDR control. We first verify that it controls

the FDR.

Corollary 4.1. The LMCR procedure has FDR ≤ α under Model 1.

Proof of Corollary 4.1. The proof follows from Theorem 3.1 by defining θm = I(Gm 6= 0). Again,

the inequality in Equation (3.2) is satisfied by construction.

The next proposition provides a simplified form for the expected number of false discoveries for

any rejection set R, given the data, when accounting for classification. The following theorem illus-

trates that the LMCR procedure maximizes the CCND, subject to the constraint of Equation (3.2).

Proposition 4.1. Under Model 1, for any rejection set R with cardinality |R|= R and corresponding

decision functions δ,

E

[ ∑
m∈M

δmI(Gm = Ĝm 6= 0) | X = x

]
= R−

∑
m∈R

LMCRm. (4.4)

Proof of Proposition 4.1. This proof follows logic similar to that seen in the proofs of Propositions 3.1
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and 3.2. Here, we see

E

[ ∑
m∈M

δmI(Gm = Ĝm 6= 0) | X = x

]
=
∑
m∈R

E
[
I(Gm = Ĝm 6= 0) | X = x

]
=
∑
m∈R

Pr(Gm = Ĝm 6= 0 | X = x) =
∑
m∈R

Pr(Gm = k | Ĝm = k,X = x)

=
∑
m∈R

[1− Pr(Gm 6= k | Ĝm = k,X = x)] = R−
∑
m∈R

Pr(Gm 6= k | Ĝm = k,Xm = xm)

= R−
∑
m∈R

LMCRm.

In the first equality, we are restricted to the rejection set R since δm is a function of X. The

second equality is an application of the definition of expectation, and the third equality rewrites the

equation in terms of the known information, in that, Ĝm is known when Xm is known. The fourth

equality introduces the notion of misclassification rate (Gm 6= k). The fifth equality is due to the

independence of the model, and the sixth equality simplifies the summation.

Theorem 4.1. Let R be any rejection set with corresponding decision functions δ satisfying Equa-

tion (3.2). Further, let RLMCR(LMCR, RLMCR) be the rejection set defined by the LMCR procedure

with corresponding decision functions δLMCR. Then, under Model 1,

E

[ ∑
m∈M

δmI(Gm = Ĝm 6= 0)

]
≤ E

[ ∑
m∈M

δLMCR
m I(Gm = Ĝm 6= 0)

]
. (4.5)

Proof of Theorem 4.1. As in the proofs of Theorems 3.2 and 3.3, we observe that, for any R and

corresponding decision functions δ,

CCND = E

[ ∑
m∈M

δmI(Gm = Ĝm 6= 0)

]
= E

[
E

[ ∑
m∈M

δmI(Gm = Ĝm 6= 0) | X = x

]]

= E

[
|R|−

∑
m∈R

LMCRm

]

by the law of iterated expectation and by applying the results of Proposition 4.1.
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Thus, it suffices to show that

RLMCR(LMCR, RLMCR) = argmax
R:

∑
m∈R Lfdrm≤α|R|

{
|R| −

∑
m∈R

LMCRm

}
.

From Equation (3.1), for any R where |R|= r, we establish the following:

argmax
R:

∑
m∈R Lfdrm≤α|R|

{
|R| −

∑
m∈R

LMCRm

}

≤ argmax
R(LMCR,r):

∑
m∈R(LMCR,r) Lfdrm≤α|R(LMCR,r)|

|R(LMCR, r)| −
∑

m∈R(LMCR,r)

LMCRm


= RLMCR(LMCR, RLMCR).

The inequality holds because for any R with cardinality r we have

|R| −
∑
m∈R

LMCRm = r −
∑
m∈R

LMCRm ≤ r −
r∑
j=1

LMCR(j) = r −
∑

m∈R(LMCR,r)

LMCRm.

The equality is satisfied since |R(LMCR, r)| −
∑
m∈R(LMCR,r) LMCRm is nondecreasing in r and

by the definition of RLMCR(LMCR, RLMCR).
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Chapter 5

Comparing the Lfdr and LMCR Pro-

cedures

This chapter considers the Lfdr and LMCR procedures using two illustrative scenarios and three

real data applications.

5.1 Illustrating Each Procedure

This section compares the proposed procedure to the standard approach, which seeks to make as

many discoveries as possible subject to FDR control and then classifies those discoveries. As men-

tioned in the Introduction, the main difference is that the proposed procedure considers classification

error when ranking the hypotheses from most to least significant, while the standard ranks hypothe-

ses using the Lfdr statistic, which recall is ideal if the objective is to maximize the expected number

of true discoveries (see Theorem 3.2), but not necessarily ideal otherwise. The two main advantages

of the LMCR procedure are: (1) it provides a built-in safeguard that prevents the rejection of hy-

potheses that would be classified as null (Ĝm = 0) and (2) rejects hypotheses that have the smallest

LMCR. The rest of this section uses Figure 5.1 and Tables 5.1 and 5.2 to further compare the two

procedures.

Figure 5.1a presents a two group model where Xm ∼ 0.8N(0, 1) + 0.2N(2, 1), so that A0 = {x <

1.7} and A1 = {x > 1.7}. Suppose that M = 5 hypotheses are tested with x1 = 1.4, x2 = 2.2,
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Figure 5.1: Examples of different normal mixture configurations with vertical lines representing
realizations of X1, X2, ..., X5: (a) two group mixture and (b) non-symmetric three group mixture.

x3 = 3.2, x4 = 3.9, x5 = 4.6. Column one of Table 5.1 lists these values along with the corresponding

Lfdr and LMCR ranks (from most significant to least significant).

Rejected by Lfdr/LMCR

Procedure for α value:

xm
Lfdr

(Rank)

LMCR

(Rank)
0.005 0.01 0.05 0.10 0.20

1.4 0.643 (5) NA N/N N/N N/N N/N Y/N

2.2 0.266 (4) 0.266 (4) N/N N/N N/N Y/Y Y/Y

3.2 0.047 (3) 0.047 (3) N/N N/N Y/Y Y/Y Y/Y

3.9 0.012 (2) 0.012 (2) N/N Y/Y Y/Y Y/Y Y/Y

4.6 0.003 (1) 0.003 (1) Y/Y Y/Y Y/Y Y/Y Y/Y

Table 5.1: Summary of x values, Lfdr, LMCR, and rejection information for the five points indicated
in Figure 5.1a. For the rejection columns, a Y (N) indicates that a given hypothesis is rejected (not
rejected) by the Lfdr/LMCR procedure at the specified α level.

Here, both procedures yield the same set of rejected hypotheses for α ≤ 0.10 since, as you move

from left to right in Figure 5.1a, the Lfdr decreases as the LMCR decreases. That is, we are more

sure of having correctly classified (and are more likely to reject) hypotheses with higher x values.

33



Formally, for k ∈ K∗ = {1} and x ∈ A1,

LMCR(x, k) = LMCR(x, 1) = 1− π1f1(x)

π0f0(x) + π1f1(x)
=

π0f0(x)

π0f0(x) + π1f1(x)
= Lfdr(x). (5.1)

When α = 0.20, the LMCR procedure automatically retains theHm corresponding to xm = 1.4 ∈ A0,

thus illustrating the rejection safeguard. The Lfdr procedure rejects this hypothesis even though it

will be classified into the null group. This behavior will be discussed further in Chapter 6.

Figure 5.1b illustrates a situation where Xm ∼ 0.6N(0, 1) + 0.2N(2, 1) + 0.2N(4, 1), so that

A0 = {x ≤ 1.5}, A1 = {1.5 < x ≤ 3.0}, and A2 = {x > 3.0}. Again, suppose that M = 5

hypotheses are tested with x1 = 1.4, x2 = 2.0, x3 = 2.4, x4 = 3.1, x5 = 4.5. In Table 5.2, observe

that the Lfdr values decrease as x increases, as expected. But, as we can see here, the LMCR values

need not follow this pattern. For example, xm = 3.1 is near the boundary for classification into

one of the two nonnull groups, so its LMCR is 0.461 which the LMCR procedure ranks as 4th most

significant even though it has the 2nd smallest Lfdr. However, xm = 2.4 is further from the boundary

of A1 and A2, so the LMCR procedure ranks its LMCR = 0.326 as 2nd most significant.

Rejected by Lfdr/LMCR

Procedure for α value:

xm
Lfdr

(Rank)

LMCR

(Rank)
0.005 0.01 0.05 0.10 0.20

1.4 0.564 (5) NA N/N N/N N/N N/N Y/N

2.0 0.263 (4) 0.351 (3) N/N N/N N/N N/N Y/Y

2.4 0.123 (3) 0.326 (2) N/N N/N Y/N Y/Y Y/Y

3.1 0.020 (2) 0.461 (4) N/N Y/N Y/N Y/N Y/Y

4.5 <0.001 (1) 0.048 (1) Y/Y Y/Y Y/Y Y/Y Y/Y

Table 5.2: Summary of x values, Lfdr, LMCR, and rejection information for the five points indicated
in Figure 5.1b. For the rejection columns, a Y (N) indicates that a given hypothesis is rejected (not
rejected) by the Lfdr/LMCR procedure at the specified α level.

In general, the LMCR procedure discovers Xm’s that are “most easily” classified, which need not

correspond to the largest x values or smallest Lfdr values. For example, when α = 0.10 the LMCR

procedure rejects the Hm’s corresponding to xm = 4.5 and xm = 2.4 since the LMCRs are 0.048 and

0.326, but retains the Hm corresponding to xm = 3.1 since its LMCR = 0.461. In short, the LMCR
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procedure focuses on discovering attributes that are most easily classifiable, as per the objectives of

Anderson and Habiger (2012).

5.2 Applying Both Procedures to Real Data

In this section, we consider three examples that directly apply the LMCR procedure of Section 4.2

and the competing procedure discussed above. For the first two examples, normal mixture models

are considered using Z statistics, statistics that have been transformed such that they have a mean

of 0 and a variance of 1, for convenience. The third example uses a multinomial mixture model.

5.2.1 Cancer Data

The first dataset is the p53 data discussed in Chapter 9 of Efron (2010). This dataset consists of

information for 33 mutated and 17 unmutated cell lines of the p53 gene, as collected by the National

Cancer Institute. In total, there are 10,100 gene expressions measured for each cell line.

Formally, for each m = 1, 2, ..., 10100, let xmj be the gene expression level for gene m and cell

line j. Further, let group 1 be the unmutated group with population mean µ1
m and corresponding

sample mean x̄1m, and let group 2 be the mutated group with population mean µ2
m and corresponding

sample mean x̄2m. A standard two sample t-test can be applied to each gene, with null hypothesis

Hm : µ1
m = µ2

m. (5.2)

The test statistic is then

tm =
x̄2m − x̄1m

sm
, (5.3)

where

sm =

√∑17
j=1(xmj − x̄1m)2 +

∑50
j=18(xmj − x̄2m)2

17 + 33− 2

(
1

17
+

1

33

)
, (5.4)

and has a Student’s t distribution with 48 degrees of freedom under Hm. For convenience, we then
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convert each t statistic into a corresponding z statistic using

Zm = Φ−1(F48(tm)), (5.5)

where Φ and F48 are the cdfs for the standard normal distribution and t distribution with 48 degrees

of freedom, respectively. Figure 5.2 presents the histogram of these z-values, the fitted density

curves, and the procedure results when α = 0.05.

For this dataset, the Mclust function (as discussed in Subsection 2.5.3) was used to find a five

group normal mixture model whose parameter estimates (π̂, µ̂, and σ̂) are given in Table 5.3. The

groups were labeled based on their position relative to the assigned null group. Loosely, the lower

extreme group (Gm = 1) can be interpreted as consisting of those hypotheses that are most likely to

be highly significant on the low end, whereas the upper extreme group (Gm = 4) consists of those

hypotheses that are most likely highly significant on the high end. The intermediate groups are

meant to signify those hypotheses that are likely nonnull, but their effects are not as pronounced as

those in the extreme groups (Gm = 2 for the lower intermediate group and Gm = 3 for the upper

intermediate group). Gm = 0 is reserved for the null group. In the context of this dataset, the

distinction between intermediate and extreme effects may be of interest.

Lfdr/LMCR Rejections

Group = k π̂k µ̂k σ̂k |Ak| α = 0.05 α = 0.10 α = 0.15 α = 0.20

Gm = 1 0.087 -1.556 0.651 554 554/248 554/262 554/385 554/554

Gm = 2 0.304 -0.629 0.651 4050 732/0 1741/0 2776/1974 3934/3935

Gm = 0 0.219 0.054 0.651 861 0/0 0/0 0/0 0/0

Gm = 3 0.316 0.744 0.651 4245 821/195 1881/850 2938/2346 4139/4138

Gm = 4 0.074 1.643 0.651 390 390/165 390/169 390/243 390/390

Total number of rejections 2497/608 4566/1281 6658/4948 9017/9017

Average Lfdr among rejections 0.05/0.05 0.10/0.10 0.15/0.15 0.20/0.20

Average LMCR among rejections 0.37/0.23 0.35/0.27 0.36/0.34 0.41/0.41

Table 5.3: Parameters and select results for the five group normal mixture model applied to the
p53 dataset. The |Ak| column represents the number of Zm values that were classified into each
group. The Lfdr/LMCR rejection columns show the number of hypotheses that were rejected for
each group for different levels of α.

While the null group is not a true standard normal, N(0, 1), this example does illustrate a stark
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contrast between the rejection sets of the LMCR and the Lfdr procedures, echoing the results of the

example in the previous section. Table 5.3 also provides information on the number of hypotheses

classified into each group (the cardinality of Ak = |Ak|), and the rejection results for each procedure.

Neither procedure rejects all hypotheses classified as nonnull for any given α, thus there are

zero rejections for hypotheses classified as null, in each case. For the nonnull groups, we see that

the Lfdr procedure rejects more hypotheses per group than the LMCR procedure for each given

α 6= 0.20. This behavior is expected, in that, the LMCR procedure is focused on rejecting only those

hypotheses with the smallest LMCR rather than rejecting the maximum number of hypotheses, as

the Lfdr procedure does. This behavior is also seen in the average LMCR among rejections values,

in that the LMCR procedure provides rejection sets with lower average LMCR values, especially for

α = 0.05, as Theorem 4.1 suggests. Because of the orientation of the distributions, when α = 0.20

the rejection sets for both procedures are virtually the same (with a single difference on both the

high and low ends).

Figure 5.2: The histogram of z-values with fitted densities for the p53 dataset. The rows of points
near the bottom represent the pattern of rejections for the LMCR procedure (A), the original Lfdr
procedure (B), and the Lfdr procedure with clustering information included (C) when α = 0.05.
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In Figure 5.2, the three rows of points/lines below the histogram, labeled A-C, illustrate the re-

jection sets for the LMCR, the Lfdr, and the clustered Lfdr methods, respectively. As defined above,

the clustered Lfdr results show the current state of FDR analyses when coupled with classification.

Namely, a rejection set is defined (as in row B) and then hypotheses are assigned to groups while

ignoring the possibility of misclassification.

In row A, we see that there is a very narrow band of rejected hypotheses from the upper inter-

mediate group near 1.1. This band and the corresponding gap in the set of rejections is the behavior

described in the discussion of Figure 5.1b. Based on the specifics of this mixture model, we can be

fairly certain that the hypotheses in that band are correctly classified as nonnull with an interme-

diate level of significance. Unfortunately, the close proximity of the null distribution exhausts our

ability to reject any more than the 195 hypotheses listed in the table. This closeness also explains

why there are no LMCR rejections from the lower intermediate group at all. The B row illustrates

the Lfdr procedure’s indifference toward classification with 1286 consecutive rejections on the lower

end and 1211 consecutive rejections on the upper end. Row C shows the effects of classification for

the Lfdr rejection set where we again mention that the Lfdr procedure rejects more hypotheses in

each and every nonnull group, as compared to the LMCR procedure.

5.2.2 Productivity Associated Microbiome Data: Normal Mixture Model

For a second example, consider the dataset shown in Table 5.4 and described below. The main goal

here is to identify and correctly classify the association between bacterial species abundance and

shoot biomass in wheat plants. For more information on the characterization and analysis of this

“productivity associated microbiome” see Anderson and Habiger (2012) and Habiger et al. (2015).

For this dataset, we let ymn be the abundance of species m in productivity group n where

m = 1, 2, ...,M and i = 1, 2, ..., N where M = 778 and N = 5. Here, a productivity group

represents the shoot biomass measured in grams and is defined to be x = (x1, x2, ..., x5)T =

(0.86, 1.34, 1.81, 2.37, 3.00)T , where superscript T is the transpose operator. For bacterial species

m, its abundance in each productivity group is denoted by ym = (ym1, ym2, ..., ym5)T and its total

abundance is defined as nm =
∑5
i=1 ymi. We then denote the associated random vector and random
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Shoot Biomass Groups

Bacterial Species m ym1 ym2 ym3 ym4 ym5 Total (nm)

1 2 1 3 0 2 8

2 0 0 2 3 7 12
...

...
...

...
...

...
...

777 9 1 4 0 6 20

778 1 0 2 3 1 7

Table 5.4: Overview of the productivity associated microbiome dataset showing the species identifi-
cation number, prevalence within each biomass group, and row total. The shoot biomass values are
measured in grams and are given by x = (0.86, 1.34, 1.81, 2.37, 3.00)T .

sample size by Y m and Nm, respectively. The matrix of observed data can then be written as

y = (yT1 ,y
T
2 , ...,y

T
778)T and the corresponding random matrix as Y = (Y T

1 ,Y
T
2 , ...,Y

T
778)T .

The analysis begins by assuming that Ymi ∼ Pois(µmi) where log(µmi) = αm + βmxi. Here,

both αm and βm are parameters with values in R and all Ymi are mutually independent. As we are

testing whether or not species m is associated with shoot biomass, the null hypothesis of interest

is Hm : βm = 0. We say that species m is positively (negatively) associated with productivity if

βm > 0 (< 0).

To simplify the analysis, estimation of αm can be avoided by implementing a procedure based

on the conditional distribution Y m|Nm = nm. This distribution has multinomial pmf

f(ym|βm, nm) =
nm!∏5
i=1 ymi!

5∏
i=1

pi(βm)ymi (5.6)

where

pi(βm) =
exp(βmxi)∑5
i=1 exp(βmxi)

for i = 1, 2, ..., 5. (5.7)

For additional details, see McCullagh and Nelder (1989).

If we let p(βm) = [p1(βm), p2(βm), ..., p5(βm)]
T

be the multinomial probability vector defined by

Equation (5.7), we see that E[Y m|βm, nm] = nmp(βm) and

Cov[Y m|βm, nm] = nm[D(p(βm))− p(βm)p(βm)T ],
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where D(p(βm)) is a 5 × 5 diagonal matrix with diagonal elements pi(βm), i = 1, 2, ..., 5. Now, if

we consider the sufficient statistic Tm = xTY m, under Equation (5.6), we can define

µ(βm, nm) = E[Tm|βm, nm] = xTE[Y m|βm, nm] = nmx
Tp(βm)

and

σ2(βm) = Var[Tm|βm, nm] = xTCov[Y m|βm, nm]x = nmx
T
[
D(p(βm))− p(βm)p(βm)T

]
x.

We are now able to define Z-scores under the null hypothesis (Hm : βm = 0) as

Zm =
Tm − µ(0, nm)

σ(0)
.

To consider this situation in the context of a mixture model as defined in Model 1, suppose we

are interested in modeling these Z-values using K + 1 groups (one null and K nonnull groups). For

k ∈ K, let γ0, γ1, ..., γK represent the distinct values of βm where Pr(βm = γk) = πk, and define

E[Zm|βm = γk, nm] = E

[
Tm − µ(0, nm)

σ(0)

∣∣∣∣βm = γk, nm

]
=
µ(γk, nm)− µ(0, nm)

σ(0)

and

Var[Zm|βm = γk, nm] = Var

[
Tm − µ(0, nm)

σ(0)

∣∣∣∣βm = γk, nm

]
=

Var[Tm|βm = γk, nm]

σ2(0)
=
σ2(γk)

σ2(0)
.

So that,

Zm|βm = γk, nm ∼ N
(
µ(γk, nm)− µ(0, nm)

σ(0)
,
σ2(γk)

σ2(0)

)
, (5.8)

where it is important to note that the mean of this normal distribution depends on nm. This reliance

on nm is important because each unique value of nm will create a unique distribution for each γk.

While the definition of σ2(γk) also depends on nm, the ratio of σ2 values in Equation (5.8) removes
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this dependence. See Habiger et al. (2015) for details.

Suppose we are interested in fitting a four group (one null and three nonnull) mixture model to

the data presented in Table 5.4. Under Model 1, the mixture density is given by

f(z) =
∑
k∈K

πkφk(z|γk, n) (5.9)

as in Equation (2.2), where K = {0, 1, 2, 3} and φk(z|γk, n) is the normal pdf associated with

Equation (5.8).

An EM algorithm was developed to get maximum likelihood estimates for πk and γk, the details

of which are partially discussed in Subsection 2.5.3 and Section 7.1. To initialize the EM algorithm,

the ga function was used from the GA package (Scrucca, 2013) in R. The ga function is an imple-

mentation of a genetic algorithm which is a type of evolutionary stochastic search. For details of

and multiple references for genetic algorithms, see Scrucca (2013).

Table 5.5 shows the results of the convergent EM algorithm (initially a five group model was

considered, but the algorithm failed to converge). The group labels are assigned based on the values

of γ̂k, relative to the null group (where γk = 0 is fixed). We note that there are two groups that

show negative association with shoot biomass, an extreme group (γ̂1 = −1.216) and an intermediate

group (γ̂2 = −0.821), and a single group with a positive association (γ̂3 = 0.705).

Lfdr/LMCR Rejections

Group = k π̂k γ̂k |Ak| α = 0.05 α = 0.10 α = 0.15 α = 0.20

Gm = 1 0.120 -1.216 68 48/29 57/39 68/54 68/68

Gm = 2 0.054 -0.821 21 13/9 18/12 21/14 21/21

Gm = 0 0.650 0 597 0/0 0/0 3/0 15/0

Gm = 3 0.176 0.705 92 32/37 56/62 72/82 92/92

Total number of rejections 93/75 131/113 164/150 196/181

Average Lfdr among rejections 0.05/0.05 0.10/0.10 0.15/0.15 0.20/0.18

Average LMCR among rejections 0.14/0.08 0.19/0.15 0.24/0.21 0.28/0.26

Table 5.5: Parameters and select results for the four group normal mixture model applied to the
bacteria dataset. The |Ak| column represents the number of bacterial species that were classified into
each group. The Lfdr/LMCR rejection columns show the number of hypotheses that were rejected
for each group for different levels of α.
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Table 5.5 also presents the results of the classification analysis where the |Ak| column signifies how

many bacterial species are assigned to each group. The Lfdr/LMCR rejection columns present the

number of rejections per group when the Lfdr/LMCR procedures are applied for α = 0.05, 0.10, 0.15,

and 0.20. First, note that when α = 0.20, the LMCR procedure’s safeguard effect prevents the

discovery of species that are most likely not associated with productivity. Thus, the average Lfdr

among rejections for the LMCR procedure is 0.18 < α = 0.20.

Next, observe that the Lfdr procedure makes more discoveries for all values of α, as suggested

by Theorem 3.2. For example, when α = 0.10, the LMCR procedure discovers 113 species while

the Lfdr procedure discovers 131. However, as Theorem 4.1 suggests, the rejection set defined by

the LMCR procedure has smaller average LMCR. For example, when α = 0.10, the average LMCR

among rejections for the LMCR procedure is 0.15 whereas the average LMCR among rejections

is 0.19 for the Lfdr procedure. This means that the 39 species identified as strongly negatively

associated with plant health by the LMCR procedure are more likely to be correctly identified as

such.

5.2.3 Productivity Associated Microbiome Data: Multinomial Mixture

Model

Here, consider the dataset shown in Table 5.4 and described above. Rather than analyzing the

data using an approximate normal mixture model, we now implement an exact multinomial mixture

model developed using Equation (5.6).

As above, to fit into the context of Model 1, let γ0, γ1, ..., γK represent the distinct possible values

of βm, so that for k ∈ K = {0, 1, ...,K}, when βm = γk we say Gm = k and thus Pr(βm = γk) = πk.

Now, our mixture pmf is

f(ym|γ,π, nm) =
∑
k∈K

πkf(ym|γk, nm)

where γ = (γk, k ∈ K) and π = (πk, k ∈ K). Here, the appropriate posterior probability is

Qm = Pr(θm = 0|ym,γ,π, nm) =
π0f(ym|γ0, nm)

f(ym|γ,π, nm)
. (5.10)
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Another EM algorithm was used to obtain maximum likelihood estimates for the parameters π

and γ (see Habiger et al. (2015) for the specifics of implementation). Table 5.6 shows the results of a

five group model (representing strongly negative, weakly negative, null, weakly positive, and strongly

positive associations). Table 5.6 also presents the results of the classification analysis, where the |Ak|

column signifies how many bacterial species are assigned to each group as per Equation (2.3). The

Lfdr/LMCR rejection columns present the number of rejections per group when the Lfdr/LMCR

procedures are applied for α = 0.05, 0.10, 0.15, 0.20, and 0.25. The α = 0.25 case is included here

to again illustrate the LMCR procedure’s safeguard effect. Note that the LMCR procedure rejects

all bacteria classified into one of the nonnull groups before reaching the threshold (the average Lfdr

among rejections is 0.24 < α = 0.25).

Lfdr/LMCR Rejections

Group = k π̂k γ̂k |Ak| α = 0.05 α = 0.10 α = 0.15 α = 0.20 α = 0.25

Gm = 1 0.028 -2.686 23 23/13 23/18 23/20 23/21 23/23

Gm = 2 0.146 -1.018 102 50/46 74/76 87/83 100/90 102/102

Gm = 0 0.480 0 483 0/0 0/0 0/0 0/0 17/0

Gm = 3 0.292 0.246 127 9/9 21/16 49/40 84/75 124/127

Gm = 4 0.054 1.344 43 32/19 43/24 43/27 43/32 43/43

Total number of rejections 114/87 161/134 202/170 250/218 309/295

Average Lfdr among rejections 0.05/0.05 0.10/0.10 0.15/0.15 0.20/0.20 0.25/0.24

Average LMCR among rejections 0.18/0.10 0.24/0.18 0.28/0.22 0.32/0.28 0.35/0.34

Table 5.6: Parameters and select results for the five group multinomial mixture model applied to the
bacteria dataset. The |Ak| column represents the number of bacterial species that were classified into
each group. The Lfdr/LMCR rejection columns show the number of hypotheses that were rejected
for each group for different levels of α.

First, observe that the Lfdr procedure makes more discoveries for all values of α, which is con-

sistent with Theorem 3.2. For example, when α = 0.10, the LMCR procedure discovers 134 bacteria

while the Lfdr procedures discovers 161. However, the LMCR procedure has smaller average LMCR,

as Theorem 4.1 suggests. For example, when α = 0.10, the average LMCR among rejections is 0.18

for the LMCR procedure while the average LMCR among rejections is 0.24 for the Lfdr procedure.

This means, for example, that the 18 bacteria declared to be strongly negatively associated with

productivity by the LMCR procedure are more likely correctly declared as such, thereby allowing
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for more rigorous soil science theories to be posited and tested in future studies.

Next, observe that both the Lfdr and LMCR procedures make more total discoveries when using

the multinomial mixture model as compared to the normal mixture model seen in the previous

subsection. For example, when α = 0.05, the Lfdr procedure under the normal mixture discovers

93 bacteria whereas the Lfdr procedure under the multinomial mixture discovers 114 bacteria. The

corresponding number of LMCR discoveries is 75 and 87, respectively. However, we note that the

change in models increases the average LMCR among rejections. In going from the normal mixture

to the multinomial mixture, the average LMCR among rejections increases from 0.14 to 0.18 for the

Lfdr procedure and from 0.08 to 0.10 for the LMCR procedure when α = 0.05.
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Chapter 6

Simulation

This chapter compares the numerical performance of the LMCR procedure with the competing pro-

cedure mentioned in Sections 5.1 and 5.2. Recall that the current standard method for incorporating

classification information involves applying the Lfdr procedure first and then classifying the resulting

rejections.

Consider a three group normal mixture model defined by:

Xm ∼ π0N(0, σ2
0) + π1N(µ1, σ

2
1) + π2N(µ2, σ

2
2). (6.1)

Note that these three groups are oriented non-symmetrically as in Figure 5.1b and that the mean

of the null group (µ0) will always be 0. Also note that the upper intermediate and upper extreme

groups are labeled as group 1 and group 2, respectively (that is, 0 < µ1 < µ2).

The following sections focus on adjustments to the α value; the value of M ; the locations of µ1 and

µ2; the mixing proportions π0, π1, and π2; and the standard deviations σ0, σ1, and σ2. Specifically,

the two procedures will be compared with respect to the average number of rejected hypotheses,

the calculated false discovery proportion (FDP), the false nondiscovery proportion (FNP), and the

misclassification proportion among rejected hypotheses (MP) for 1, 000 repetitions of the specified

simulation settings. Here, the FNP is defined as the number of nonnull hypotheses that are claimed

nonsignificant divided by the total number of hypotheses claimed nonsignificant and the MP is

defined as the number of hypotheses that are incorrectly classified (Ĝm 6= G) and rejected divided
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by the total number of hypotheses rejected. That is,

FNP =

∑
m∈M(1− δm)I(Gm 6= 0)∑

m∈M(1− δm)
and MP =

∑
m∈R δmI(Ĝm 6= Gm)∑

m∈R δm
.

6.1 Illustrating the LMCR Procedure’s Safeguard Behavior:

The Effect of α

In this section, we consider Equation (6.1) where π0 = 0.8, π1 = π2 = 0.1, µ1 = 2, µ2 = 4,

σ0 = σ1 = σ2 = 1, and M = 10, 000 hypotheses with varying α levels. The simulation results of

1, 000 repetitions are presented in Figure 6.1.

Figure 6.1: The Effect of α: The top row compares the LMCR (4) and Lfdr (+) procedures with
respect to the number of rejections (a) and the FDP (b). The bottom row shows the FNP (c) and
the MP (d).

In each plot we see that the LMCR procedure exhibits the previously mentioned safeguard effect

when α ≥ 0.10. Recall that the LMCR procedure, by design, only tests those hypotheses that

have been classified as nonnull (contrary to the Lfdr procedure). So, for α approximately greater

than or equal to 0.10, the LMCR procedure rejects all such hypotheses and automatically retains

all remaining hypotheses. At this point, the rejection set is fixed so that the average number of
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rejections, FDP, FNP, and MP are also fixed.

As an example, consider the case when α = 0.15, as presented in Figure 6.2. Here, the LMCR

procedure rejects every hypothesis classified as either upper intermediate or upper extreme, but

must then stop. The Lfdr procedure, on the other hand, is able to continue rejecting hypotheses (an

additional 205, in fact). Hence, we now have a new symbol in row C signifying those rejected hy-

potheses that were classified as null. This figure highlights one of the main advantages of the LMCR

procedure, as compared to the standard approach, by directly illustrating the built-in safeguard that

prevents researchers from rejecting hypotheses that are more likely null.

Figure 6.2: The histogram of 10,000 simulated x-values for the α simulation settings when α = 0.15,
along with fitted densities. The rows of points near the bottom represent the pattern of rejections for
the LMCR procedure (A), the original Lfdr procedure (B), and the Lfdr procedure with clustering
information included (C).

To understand this behavior mathematically, we first recall that Ak, k ∈ {0, 1, 2} represents the

classification region for group k as defined in Section 2.4. Thus, the probability that a hypothesis is

classified as nonnull is

Pr(Xm ∈ A1

⋃
A2, Gm = 0)+Pr(Xm ∈ A1

⋃
A2, Gm = 1)+Pr(Xm ∈ A1

⋃
A2, Gm = 2) = 0.162.
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Now, the FDP becomes a measure of the misclassification rate for the null group (Pr(Xm ∈

A1

⋃
A2, Gm = 0) = 0.017). So, the probability that a null hypothesis is classified as nonnull

(and thus rejected) is approximately 0.102.

This logic also explains the behavior of the LMCR procedure in plots (c) and (d). Again, when

all hypotheses classified as nonnull are then rejected, the FNP becomes

Pr(Xm ∈ A0, Gm = 1) + Pr(Xm ∈ A0, Gm = 2))

Pr(Xm ∈ A0, Gm = 0) + Pr(Xm ∈ A0, Gm = 1) + Pr(Xm ∈ A0, Gm = 2)
=

0.054

0.838
= 0.065.

As for the MP for the LMCR procedure, it becomes a measure of the misclassification rate in the

rejection region. Here, the probability of misclassification is

Pr(Xm ∈ A1

⋃
A2, Gm = 0) + Pr(Xm ∈ A2, Gm = 1) + Pr(Xm ∈ A1, Gm = 2) = 0.046.

So, the probability of misclassification given rejection becomes 0.046/0.162 = 0.282.

The separation between the two curves in plots (a), (c), and (d), for α < 0.1, arises from the

different rejection sets selected by the two procedures. When the α threshold is achieved before

rejecting all hypotheses classified as nonnull, the LMCR procedure rejects hypotheses in the right

tail of group 2 and/or in a band centered in group 1, thus creating a gap in the rejection set near

the intersection of the densities for groups 1 and 2 where misclassification is likely to occur. This

type of behavior can be seen in Figure 5.2 above. Since the Lfdr procedure has no such gap in the

rejection set, it introduces that misclassification likelihood. Therefore, we see a greater number of

rejections for the Lfdr procedure, as well as a greater MP, as compared to the LMCR procedure

(as Theorem 4.1 suggests). The separation between the FNP curves can also be explained by the

larger number of rejections. As more hypotheses are rejected, the likelihood of claiming a nonnull

hypothesis as nonsignificant decreases.

To reiterate, the band of hypotheses in group 1, rejected by the LMCR procedure, and the

corresponding gap in rejections centered around the intersection of groups 1 and 2 is important

in understanding the real difference between the two procedures (accounting for misclassification
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versus ignoring it). More specifically, the Lfdr procedure was developed to minimize the FNP while

controlling the FDP, thus it outperforms the LMCR procedure in this regard. Likewise, the LMCR

procedure was developed to minimize the misclassification rate of rejected hypotheses (thus making

them more interpretable) so it dominates.

6.2 The Effect of the Number of Hypotheses

In this section, we consider Equation (6.1) where π0 = 0.8, π1 = π2 = 0.1, µ1 = 2, µ2 = 4,

σ0 = σ1 = σ2 = 1, and α = 0.05 with varying M levels. The simulation results of 1, 000 repetitions

are presented in Figure 6.3.

Figure 6.3: The Effect of M : The top row compares the LMCR (4) and Lfdr (+) procedures with
respect to the number of rejections (a) and the FDP (b). The bottom row shows the FNP (c) and
the MP (d).

In Figure 6.3 we note that the number of rejections increases for both procedures, as expected,

but again, the number of LMCR rejections is less than or equal to those for the Lfdr procedure. As

for the FDP plot, we see that neither procedure reaches the α threshold among the first couple of

M levels, but it seems to stabilize after that. Despite this, it seems that the LMCR procedure’s

performance is comparable to that of the Lfdr procedure in controlling the FDP. The initial dip for

both procedures can be explained by the relatively small number of hypotheses for the M = 100
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and M = 250 cases.

In plots (c) and (d), we see the asymptotic effects of increasing M , in that, both the FNP and

MP curves seem to approach a limiting value defined by their respective probability regions. In the

case of the LMCR, the region of rejection is not easily defined because of the banding and gapping

behavior discussed previously. Here, the band of rejections for group 1 will be a window centered

around the intersection of the density curves for the null group and group 2 (approximately 2.040).

Thus, a simple probability argument cannot be used to verify the limiting behavior at this time.

The banding and gapping also explain the significant difference in the magnitude for the FNP

and MP plots. This simulation setting corresponds to the α = 0.05 level of the previous section, thus

as seen in Figure 6.1, we should expect separation between the two curves. The scale of each plot

explains the sizable nature of this difference. Regardless, we see that the Lfdr procedure performs

best in terms of the FNP, whereas the LMCR procedure dominates with respect to the MP, as

expected.

6.3 The Effect of Differing Alternative Means

In this section, we consider Equation (6.1) where π0 = 0.8, π1 = π2 = 0.1, σ0 = σ1 = σ2 = 1,

M = 10, 000 and α = 0.05. The alternative means µ1 and µ2 are defined such that (µ1 + µ2)/2 = 2,

3, or 4 with µ1 < µ2. For instance, the simulation results presented in Figure 6.4 are plotted such

that the x-axis represents µ2 − 2. That is, a value of 0.5 on the x-axis corresponds to a mixture

model where µ1 = 1.5 and µ2 = 2.5. Similar x-axes represent µ2 − 3 and µ2 − 4 in Figures 6.6 and

6.8, respectively.

6.3.1 Alternative Means Centered at 2

Each plot of Figure 6.4 indicates that the LMCR and Lfdr procedures behave similarly, for each value

of µ2−2. In fact, for separation values 0.1 through 1.7, they produce the exact same set of rejections.

This is because A1 = ∅ since 0.1φ(x;µ1, 1) < max{0.8φ(x; 0, 1), 0.1φ(x;µ2, 1)} where φ(x; a, b)

denotes the normal probability density function with mean a and variance b. The equivalence of

rejection sets in the two group scenario was verified in Equation (5.1). As an example, consider the
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Figure 6.4: The Effect of Alternative Mean Placement when (µ1 +µ2)/2 = 2: The top row compares
the LMCR (4) and Lfdr (+) procedures with respect to the number of rejections (a) and the FDP
(b). The bottom row shows the FNP (c) and the MP (d). In each plot, the x-axis represents µ2− 2.

single repetition shown in Figure 6.5 where we have a separation of 0.5. Note that both procedures

reject the same 580 hypotheses.

However, there is a caveat that must be mentioned. Upon close examination, we see that there is

a slight discrepancy in the FDP values in plot (b) when the separation is 1.9. The Lfdr and LMCR

procedures only behave identically when they are acting on the same rejection set. As mentioned

above, in cases where the LMCR procedure rejects all hypotheses classified as nonnull without

reaching the desired α threshold, the Lfdr procedure may begin rejecting hypotheses classified as

null until it reaches that threshold (as seen in Figure 6.2). Though here the difference is quite small,

this behavior will be seen repeatedly in the simulations that follow.

The FNP values are again behaving as expected, with greater separation leading to lower false

nondiscovery proportions. We see a similar trend in the MP values also. More separation between

the null group and the one remaining nonnull group leads to lower misclassification proportions.
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Figure 6.5: The histogram of 10,000 simulated x-values when we have a nonnull mean separation of
0.5 when centered at 2, along with fitted densities. The rows of points near the bottom represent
the pattern of rejections for the LMCR procedure (A), the original Lfdr procedure (B), and the Lfdr
procedure with clustering information included (C).

6.3.2 Alternative Means Centered at 3

For Figure 6.6, the top row indicates that the LMCR and Lfdr procedures behave similarly for the

first two separation values. In fact, for separation values 0.1 and 0.3, they are almost identical. This

can be explained by noting that groups 1 and 2 are very close to one another at those settings. They

are close not only to each other, but also to the null group. This situation leads each procedure to

select the same rejection set (as seen in Figure 6.7, where the separation is 0.3). That is, despite

there being three distinct groups and added misclassification likelihood, only the right tail values are

rejected with no gap in the set of rejections for the LMCR procedure. This may seem strange with

regard to the LMCR since one may expect the uncertainty of classification near the intersection of

the densities for groups 1 and 2 to exclude certain data points. However, because of the orientation

of the three groups, these values are more likely to be classified correctly (about 50-50) than points

that are closer to the null (where there are three potentially correct groups to choose from rather

than just two). With more separation, this is no longer the case. The band of rejected hypotheses
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Figure 6.6: The Effect of Alternative Mean Placement when (µ1 +µ2)/2 = 3: The top row compares
the LMCR (4) and Lfdr (+) procedures with respect to the number of rejections (a) and the FDP
(b). The bottom row shows the FNP (c) and the MP (d). In each plot, the x-axis represents µ2− 3.

contained in group 1 becomes more prominent, thus, we see a dip in the number of rejections, as

well as pronounced separation between the curves of FNP and MP.

Plot (b) shows that both procedures achieve the desired threshold in most instances, though we

again see a slight discrepancy for the final separation value. Plot (c) shows that the FNP values

have actually changed direction from those in Figure 6.4. Here, as the separation between groups 1

and 2 gets larger, there is more overlap between group 1 and the null group (group 1 is again being

absorbed by the other two groups). Thus, we have an increased likelihood of false nondiscoveries

for both procedures. In contrast, the FNP of Figure 6.4 decreased, not because group 1 increased

its overlap with the null group, but because group 2 started very close to the null and withdrew

(note the difference in the magnitude of the FNP for each). Plot (d) decreases with separation, as

expected, for the same reasons as discussed above. As group 2 moves further away from group 1,

the likelihood of misclassification between those two groups goes down, just as the pool of potential

rejections shifts more and more toward group 2.
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Figure 6.7: The histogram of 10,000 simulated x-values when we have a nonnull mean separation of
0.3 when centered at 3, along with fitted densities. The rows of points near the bottom represent
the pattern of rejections for the LMCR procedure (A), the original Lfdr procedure (B), and the Lfdr
procedure with clustering information included (C).

6.3.3 Alternative Means Centered at 4

In Figure 6.8, we see results in plots (a), (c), and (d) similar to those in Figure 6.6, just to a lesser

degree. In plot (a) we note that the first few separation settings yield comparable rejection values,

but once enough separation is achieved, we begin to see the familiar dip. Again, the effect of the

gap in the set of rejected hypotheses for the LMCR procedure is seen in plots (a), (c), and (d).

In plot (b), we see a significant difference between the FDP values for the two procedures. Here,

the first four LMCR values are actually exhibiting the safeguard behavior as discussed in Section 6.1,

only to a much larger degree. As described above, the Lfdr procedure is not restricted to the set

of hypotheses classified as nonnull, so it is more likely to reach the desired α level (as illustrated

by Figure 6.2). Once the LMCR procedure exhausts the set of nonnulls, it must stop rejecting

hypotheses. Thus, not only can the LMCR procedure fail to reach the α threshold, at times it may

not even get particularly close.
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Figure 6.8: The Effect of Alternative Mean Placement when (µ1 +µ2)/2 = 4: The top row compares
the LMCR (4) and Lfdr (+) procedures with respect to the number of rejections (a) and the FDP
(b). The bottom row shows the FNP (c) and the MP (d). In each plot, the x-axis represents µ2− 4.

6.4 The Effect of Differing Alternative Proportions

In this section, we consider Equation (6.1) where µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 1, M = 10, 000

and α = 0.05. In this section, the nonnull proportions are defined such that π1 + π2 = 0.1, 0.2, and

0.3. For instance, in Figure 6.9 the x-axis represents the proportion of group 2 (our π2 value) when

π1 +π2 = 0.1, so that a value of 0.02 on the x-axis corresponds to a mixture model where π0 = 0.90,

π1 = 0.08, and π2 = 0.02.

6.4.1 Total Nonnull Contribution = 0.1

Plot (a) of Figure 6.9 shows that, as the value of π2 increases, the number of rejections for the Lfdr

and LMCR procedures begin to converge to one another. This makes intuitive sense, in that, as π2

increases and π1 decreases, the contribution of group 1 lessens. Thus, as π2 approaches 0.1, we are

left with the two group case discussed above. Note that when π2 = 0.005, there were times when

no hypotheses were rejected. Out of the 1000 repetitions, five left us with an empty rejection set.

Those trials have been ignored in this analysis.
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Figure 6.9: The Effect of π2 when π1 + π2 = 0.1: The top row compares the LMCR (4) and Lfdr
(+) procedures with respect to the number of rejections (a) and the FDP (b). The bottom row
shows the FNP (c) and the MP (d).

Plot (b) seems to show significant disparity between the two procedures with respect to the FDP.

However, for small π2, the differences are again due to the small rejection sets mentioned above.

With such a small set of rejections on average (around 14 rejected hypotheses when π2 = 0.005),

there were many trials where there were no false discoveries at all. When π2 nears 0.1, the two group

case has effectively taken over and the α safeguard behavior becomes apparent. Here, A1 is empty

for large π2 because π1φ(x; 2, 1) < max{π0φ(x; 0, 1), π2φ(x; 4, 1)}.

Plot (c) is behaving as expected, in that, as π1 decreases (since π2 is increasing), the likelihood

of a false nondiscovery should decrease as well, regardless of the procedure used. On the other

hand, plot (d) exhibits a somewhat parabolic behavior that we have yet to see. But, if we think

about the effect of shifting proportional weight from group 1 to group 2, it is intuitive that the

misclassification proportion increases as the groups become more equal. When π2 is small and π1 is

large, the LMCR is large for larger x-values, say x > µ2, whereas the Lfdr is small for such values.

Consequently, the Lfdr procedure tends to reject hypotheses when xm is large, despite possible

misclassification. Thus, the LMCR procedure has smaller MP, as suggested by Theorem 4.1. As π2
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Figure 6.10: The histogram of 10,000 simulated x-values when we have a cumulative nonnull pro-
portion of 0.1 with a π2 contribution of 0.04, along with fitted densities. The rows of points near the
bottom represent the pattern of rejections for the LMCR procedure (A), the original Lfdr procedure
(B), and the Lfdr procedure with clustering information included (C).

increases, the misclassification proportion should decrease as group 2 dominates and the influence

of group 1 becomes negligible. The fact that the highest MP value for the LMCR procedure is near

π2 = 0.04, rather than a 50-50 split near 0.05 is due to the orientation of the groups and the close

proximity of group 1 to the null group, as can be seen in Figure 6.10 (where π2 = 0.04). Again,

recall that the MP contains contributions from misclassified hypotheses that are rejected, regardless

of whether Gm = 0, 1, or 2.

6.4.2 Total Nonnull Contribution = 0.2

For Figure 6.11, plots (a) and (c) behave just as they did in the previous case. The main difference

between these results and the corresponding results of Figure 6.9 is the scale of the y-axis. Note

that in each case, the number of rejections and the FNP values have increased as π1 + π2 has

increased. This is to be expected, since the shift of proportional weight from the null to the set

of nonnull groups increases the number of hypotheses likely to be classified as nonnull. Thus, the

corresponding number of rejections and likelihood of a false nondiscovery increase.
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Figure 6.11: The Effect of π2 when π1 + π2 = 0.2: The top row compares the LMCR (4) and Lfdr
(+) procedures with respect to the number of rejections (a) and the FDP (b). The bottom row
shows the FNP (c) and the MP (d).

Plot (b) shows us that, as we have seen above, the FDP for both procedures is very similar

until we reach the last two separation values. As shown, when π2 ≥ 0.16 (though likely somewhere

between 0.14 and 0.16) we see a familiar dip in the FDP value for the LMCR procedure indicating

the α safeguard effect. For instance, when π2 = 0.16 (and π1 = 0.04), A1 is empty, as seen in

Figure 6.12. We are again left with the two group situation where the set of rejection candidates

is exhausted before reaching our desired α threshold (and thus, the Lfdr procedure begins rejecting

hypotheses classified as null, 68 this time). As noted in the discussion of Figure 6.8, we see that

this problem can be quite severe, in that, the FDP does not reach 0.04, let alone α = 0.05. In plot

(d), we see the same parabolic shapes as were discussed previously. Again we note that the LMCR

procedure dominates the Lfdr procedure, as Theorem 4.1 suggests.

6.4.3 Total Nonnull Contribution = 0.3

Figure 6.13 shows the same general trends as those discussed in the previous subsection. One

noticeable difference is the dip in the number of rejections when π2 = 0.03. This can be explained

by noting that, when π2 = 0.015, the contribution of group 2 is largely negligible as compared to
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Figure 6.12: The histogram of 10,000 simulated x-values when we have a cumulative nonnull pro-
portion of 0.2 with a π2 contribution of 0.16, along with fitted densities. The rows of points near the
bottom represent the pattern of rejections for the LMCR procedure (A), the original Lfdr procedure
(B), and the Lfdr procedure with clustering information included (C).

the contributions of the null group (π0 = 0.70) and group 1 (π1 = 0.285). Thus, most of the LMCR

rejections will be those hypotheses that are correctly classified as coming from group 1. We see

this in Figure 6.14. As π2 increases to 0.03, as in Figure 6.15, the proportions shift so that, while

there still aren’t many hypotheses coming from group 2, there are now far fewer rejected hypotheses

coming from group 1 (a much narrower band), thus we see a dip. As π2 increases beyond 0.03, the

proportional weight shifts more and more to group 2, so that we see a generally increasing trend

similar to the one we have seen in the previous sections. Plots (b), (c), and (d) are very much like

those of Figure 6.11 and can be explained in much the same way.

6.5 The Effect of σ

In this section, we consider Equation (6.1) where π0 = 0.8, π1 = π2 = 0.1, µ1 = 2, µ2 = 4,

M = 10, 000 and α = 0.05. The σ value will be varied in one of three ways: where σ0 = σ1 = σ2 = σ,

where σ0 = σ2 = 1 and σ1 varies, and where σ0 = σ1 = 1 and σ2 varies. For example, in Figure 6.16,

an x-axis value of 0.7 indicates that σ0 = σ1 = σ2 = 0.7 whereas in Figure 6.18, an x-axis value of
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Figure 6.13: The Effect of π2 when π1 + π2 = 0.3: The top row compares the LMCR (4) and Lfdr
(+) procedures with respect to the number of rejections (a) and the FDP (b). The bottom row
shows the FNP (c) and the MP (d).

Figure 6.14: The histogram of 10,000 simulated x-values when we have a cumulative nonnull propor-
tion of 0.3 with a π2 contribution of 0.015, along with fitted densities. The rows of points near the
bottom represent the pattern of rejections for the LMCR procedure (A), the original Lfdr procedure
(B), and the Lfdr procedure with clustering information included (C).
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Figure 6.15: The histogram of 10,000 simulated x-values when we have a cumulative nonnull pro-
portion of 0.3 with a π2 contribution of 0.03, along with fitted densities. The rows of points near the
bottom represent the pattern of rejections for the LMCR procedure (A), the original Lfdr procedure
(B), and the Lfdr procedure with clustering information included (C).

0.7 indicates that σ1 = 0.7 while σ0 = σ2 = 1.

6.5.1 Equal Standard Deviations: σ0 = σ1 = σ2

Plots (a) and (c) of Figure 6.16 exhibit patterns similar to those seen in Figures 6.6 and 6.8 with

their separation in the middle. Though here we see that in both plots, as the value of σ increases,

the number of rejections for the Lfdr and LMCR procedures begin to converge to one another. In

fact, for σ ≥ 1.3, the rejection sets are identical and are composed only of hypotheses classified as

coming from group 2. This makes intuitive sense, in that, as σ increases, the influence of group 2

increases relative to the contribution of group 1 which is largely being absorbed by the other two

groups.

Plot (b) again exhibits the safeguard behavior discussed previously. Here, when σ ≤ 0.7, the

LMCR procedure rejects all hypotheses classified as nonnull before reaching the desired α. Fig-

ure 6.17 illustrates this issue when σ = 0.5. Note that the classification regions A1 and A2 are well

defined because of the orientation of the means. Plot (d), shows a parabolic pattern similar to that
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Figure 6.16: The Effect of Equal Standard Deviations: The top row compares the LMCR (4) and
Lfdr (+) procedures with respect to the number of rejections (a) and the FDP (b). The bottom row
shows the FNP (c) and the MP (d).

seen in the previous section. Here, when σ is small, the groups are separated enough to avoid major

misclassification (as seen in Figure 6.17), but as σ increases the overlap between the groups becomes

more severe. When σ is large, A1 is small since 0.1φ(x; 2, σ) < max{0.8φ(x; 0, σ), 0.1φ(x; 4, σ)}.

Once A1 is empty, the contribution of group 1 to the MP value becomes fixed and the increased

spread of the null group and group 2 causes a slight decrease in MP.

6.5.2 The Effect of σ1

In Figure 6.18, plots (a), (c), and (d) look similar to those of Figure 6.6 only now they are trending in

the opposite direction (the number of rejections and the MP are increasing from left to right, while

the FNP is decreasing). Plot (b) shows that the desired threshold was achieved for both procedures,

as Theorem 3.1 suggests.

Here, the distinct separation in the rejection and FNP curves can be attributed to the location

of the means, relative to one another. When σ1 is less than one, the group 1 density is narrower

and more compact, and has a significant influence on the histogram of the test statistics because of

µ1’s placement between µ0 and µ2. This contribution can be seen in Figure 6.19 where σ1 = 0.5.
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Figure 6.17: The histogram of 10,000 simulated x-values when we have σ0 = σ1 = σ2 = 0.5, along
with fitted densities. The rows of points near the bottom represent the pattern of rejections for
the LMCR procedure (A), the original Lfdr procedure (B), and the Lfdr procedure with clustering
information included (C).

Observe that the intersection of the densities for groups 1 and 2 is near the x-axis (and near the

null group density), thus causing the large gap in the LMCR rejection set shown in line A. As σ1

increases, A1 shrinks which reduces the gap in the LMCR rejection set, thus increasing the number

of rejections and decreasing the FNP.

The MP increases as σ1 increases because, as the group 1 density flattens (and A1 shrinks),

the overlap between group 1 and the other two groups increases which increases the likelihood of

misclassification. For σ1 > 1.6, A1 is essentially empty which leads to the same rejection sets for

both the LMCR and Lfdr procedures. This explains the convergence we see in the right tail of each

plot.

6.5.3 The Effect of σ2

The most striking part of Figure 6.20 is the large separation between the LMCR and Lfdr curves in

plots (a), (c), and (d). This behavior can be explained by the placement of µ2 relative to the null

group. Regardless of the value of σ2, since µ2 = 4 is extreme relative to a null group that is N(0,1),
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Figure 6.18: The Effect of σ1: The top row compares the LMCR (4) and Lfdr (+) procedures with
respect to the number of rejections (a) and the FDP (b). The bottom row shows the FNP (c) and
the MP (d).

Figure 6.19: The histogram of 10,000 simulated x-values when σ1 = 0.5, along with fitted densities.
The rows of points near the bottom represent the pattern of rejections for the LMCR procedure (A),
the original Lfdr procedure (B), and the Lfdr procedure with clustering information included (C).

the Lfdr procedure will reject all hypotheses classified as coming from group 2 and many that are

classified as coming from group 1. However, the rejection set for the LMCR procedure will contain a
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gap where the group 1 and group 2 densities intersect. Again, the FDP plot shows that the desired

α threshold was achieved for each procedure.

Figure 6.20: The Effect of σ2: The top row compares the LMCR (4) and Lfdr (+) procedures with
respect to the number of rejections (a) and the FDP (b). The bottom row shows the FNP (c) and
the MP (d).

As for the trend in plots (a) and (c), as σ2 increases, A2 shrinks and the overlap between group 2

and the null group increases, thus reducing the likelihood that a hypothesis is rejected (so there are

fewer rejections) despite it being nonnull (so the FNP increases). The MP trend can be explained

similarly, in that, as the group 2 density widens, its overlap with the other two groups increases,

thus increasing the likelihood of misclassification.
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Chapter 7

Performance of the Adaptive LMCR

Procedure

Recall that the procedure defined in Section 4.2 is based on classifying data into one of K + 1 (a

null plus K nonnull) groups. However, in practice, we are often unaware of the true distribution

parameters in a particular dataset. Thus, as discussed in Sections 2.4 and 2.5, we are not technically

interested in classification, but are really interested in cluster analysis.

Section 7.1 considers the specifics of an EM algorithm applied to a univariate normal mixture.

The remainder of this chapter will use the EM algorithm to examine the performance of two forms

of the adaptive LMCR procedure (that is, when the distribution parameters are estimated from the

data) as applied to Equation (6.1). The first comparison considers the relative performance of the

oracle LMCR procedure (when all parameters are known, as examined throughout Chapter 6) versus

the theoretical LMCR procedure where µ0 = 0 and σ0 = 1 are defined but all other parameters are

estimated. The second comparison considers the relative performance of the theoretical LMCR

procedure versus the empirical LMCR procedure where the EM algorithm is used to estimate all

necessary parameters. The oracle and adaptive Lfdr procedures are also considered.

For more information on defining adaptive procedures for FDR control see Benjamini and

Hochberg (2000); Genovese and Wasserman (2004); Blanchard and Roquain (2009). For more on

empirical null distributions see Efron (2004, 2008b, 2010) and for a nonparametric perspective see
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Habiger and Peña (2011).

7.1 The EM Algorithm for a Univariate Normal Mixture

In many applications, the mixture model of interest is comprised of univariate (or multivariate)

normal distributions, as in Efron (2008a), Cai and Sun (2009), or Efron (2010). For our work, we

focus on a univariate mixture where fk in Equation (2.4) is φk and ηk = (µk, σ
2
k) for k ∈ K =

{0, 1, ...,K}. Here φk is

φk(xm|µk, σ2
k) =

1√
2πσ2

k

exp

{
− (xm − µk)2

2σ2
k

}
.

(For details of the multivariate case see Fraley and Raftery (2002)).

Now, from Equation (2.8), the E-step of the EM algorithm considers the group membership

ymk = I(zm is from group k) and is given by

ŷmk =
π̂kφk(xm|µ̂k, σ̂2

k)∑
k∈K π̂kφk(xm|µ̂k, σ̂2

k)
.

The M-step is determined by the complete data log-likelihood, which recall from Equation (2.7) is

l(η,π,y|z) =
∑
m∈M

∑
k∈K

ymk log[πkφk(xm|µk, σ2
k)]

=
∑
m∈M

∑
k∈K

ymk log

[
πk√
2πσ2

k

exp

{
− (xm − µk)2

2σ2
k

}]

=
∑
m∈M

∑
k∈K

ymk

[
log

(
πk√
2πσ2

k

)
− (xm − µk)2

2σ2
k

]

=
∑
m∈M

∑
k∈K

ymk log

(
πk√
2πσ2

k

)
−
∑
m∈M

∑
k∈K

ymk
(xm − µk)2

2σ2
k

=
∑
m∈M

∑
k∈K

ymk log(πk)− 1

2

∑
m∈M

∑
k∈K

ymk log(2πσ2
k)−

∑
m∈M

∑
k∈K

ymk
(xm − µk)2

2σ2
k

,

(7.1)

where η = (ηk, k ∈ K), π = (πk, k ∈ K) is the vector of mixing proportions, y = (ym, m ∈M) for

ym = (ymk, k ∈ K), and z = (zm, m ∈M) for zm = (xm,ym).
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Differentiating Equation (7.1) with respect to µk, for each k ∈ K, gives

∂ l(η,π,y|z)

∂µk
=

∂

∂µk

[
−
∑
m∈M

∑
k∈K

ymk
(xm − µk)2

2σ2
k

]

=
∂

∂µk

[
−
∑
m∈M

∑
k∈K

ymk
x2m − 2xmµk + µ2

k

2σ2
k

]

= − 1

2σ2
k

∑
m∈M

ymk
∂

∂µk
[x2m − 2xmµk + µ2

k]

= − 1

2σ2
k

∑
m∈M

ymk[−2xm + 2µk]

= − 1

σ2
k

∑
m∈M

ymk[−xm + µk].

Setting this equal to 0 gives

µ̂k =

∑
m∈M ymkxm∑
m∈M ymk

=

∑
m∈M ymkxm

Mk

where Mk is the estimated number of observations in group k.

Differentiating Equation (7.1) with respect to σ2
k, for each k ∈ K, gives

∂ l(η,π,y|z)

∂σ2
k

=
∂

∂σ2
k

[
−1

2

∑
m∈M

∑
k∈K

ymk log(2πσ2
k)−

∑
m∈M

∑
k∈K

ymk
(xm − µk)2

2σ2
k

]

=
∂

∂σ2
k

[
−1

2

∑
m∈M

ymk log(2πσ2
k)−

∑
m∈M

ymk
(xm − µk)2

2σ2
k

]

= −1

2

∑
m∈M

ymk
∂

∂σ2
k

[
log(σ2

k) +
(xm − µk)2

σ2
k

]

= −1

2

∑
m∈M

ymk

[
1

σ2
k

+
−(xm − µk)2

(σ2
k)2

]

= − 1

2(σ2
k)2

∑
m∈M

ymk
[
σ2
k − (xm − µk)2

]
.
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Setting this equal to 0 gives

σ̂2
k =

∑
m∈M ymk(xm − µk)2∑

m∈M ymk

=

∑
m∈M ymk(xm − µk)2

Mk
.

Differentiating Equation (7.1) with respect to πk is a little more difficult because of the added

constraint that
∑
k∈K πk = 1. For this part, we need to apply the method of Lagrange Multipliers.

That is, we look to simultaneously solve the system of K + 1 equations defined by

5l(η,π,y|z) = λ5 g(π)

g(π) = 1,

(7.2)

where 5l(η,π,y|z) is from Equation (7.1) and g(π) =
∑
k∈K πk. For each k ∈ K, the first portion

of Equation (7.2) becomes

∂

∂πk

∑
m∈M

∑
k∈K

ymk log(πk) = λ

⇒
∑
m∈M

ymk
∂

∂πk
log(πk) = λ

⇒
∑
m∈M

ymk
πk

= λ

⇒
∑
m∈M

ymk
λ

= πk.

Substituting these values into the constraint (the second portion of Equation (7.2)), we have

∑
k∈K

∑
m∈M

ymk
λ

= 1

⇒
∑
k∈K

∑
m∈M

ymk = λ

⇒ M = λ.
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Substitution of the λ value into each πk gives the estimates

π̂k =

∑
m∈M ymk

M

for each k. These estimates make intuitive sense because they represent the proportion of attributes

in group k.

Putting this all together, the EM algorithm is composed of the following:

1. Initialize ŷmk (perhaps by using an agglomerative clustering technique).

2. Use the current estimates of ŷmk to compute the MLEs of π̂k, µ̂k, and σ̂2
k. (the M-step)

3. Use the estimates from the M-step to compute an updated ŷmk. (the E-step)

4. Repeat steps 2 and 3 until some convergence criterion (often a maximum number of iterations

or a specified tolerance) is satisfied.

7.2 Numerical Comparisons of Adaptive Procedures

This section examines the asymptotic performance of the adaptive LMCR and Lfdr procedures as

the number of hypotheses increases. The results below follow the same structure as those seen in

Chapter 6, in that, data are generated from a non-symmetric three group normal mixture model

as defined in Equation (6.1). While 1, 000 repetitions of each scenario were generated, in some

situations the normalmixEM function (discussed in Section 5.2) failed to converge. The following

results present the average number of rejections, FDP, FNP, and MP for the remaining iterations.

7.2.1 Examples of Rapid Convergence

We begin by considering Equation (6.1) where π0 = 0.8, π1 = π2 = 0.1, µ1 = 4, µ2 = 8, σ0 = σ1 =

σ2 = 1 and with α = 0.05. The comparison of the oracle LMCR and Lfdr procedures versus the

theoretical LMCR and Lfdr procedures are presented in Figure 7.1. Figure 7.2 presents the results

of the theoretical versus empirical comparisons.
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Table 7.1 shows the number of usable repetitions represented in each figure. Here, a repetition

is deemed unusable if the EM algorithm did not converge or if the convergent algorithm attempted

to fit a model where µ2 < µ1. Note that, as M increases, the number of usable repetitions steadily

increases for the theoretical case whereas the empirical scenario shows much more variability.

Procedure Number of Usable Repetitions

Theoretical 744 819 867 864 921 954 982 999 998

Empirical 897 930 930 937 924 926 893 864 840

M = 100 250 500 1000 2500 5000 10000 25000 50000

Table 7.1: The number of usable repetitions for the three group model of Equation (6.1) where
π0 = 0.8, π1 = π2 = 0.1, µ1 = 4, µ2 = 8, σ0 = σ1 = σ2 = 1, and α = 0.05. The oracle procedures
used all 1, 000 repetitions.

Figure 7.1: The effect of M on theoretical and oracle convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 4, µ2 = 8, σ0 = σ1 = σ2 = 1, and α = 0.05: The oracle LMCR (©), oracle Lfdr (4),
theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the number
of rejections (a), the FDP (b), the FNP (c), and the MP (d).

In Figure 7.1, we see that each theoretical procedure’s values converge to the corresponding oracle

values quite quickly. By the time M = 5, 000, there is a slight difference between the theoretical and

oracle results for the MP, but virtually no difference in the number of rejections, FDP, or FNP. We

see similar results in Figure 7.2, only now the empirical procedures’ values seem to have converged
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Figure 7.2: The effect of M on theoretical and empirical convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 4, µ2 = 8, σ0 = σ1 = σ2 = 1, and α = 0.05: The empirical LMCR (©), empirical Lfdr
(4), theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the
number of rejections (a), the FDP (b), the FNP (c) and the MP (d).

in each plot by the time M = 2, 500. As seen in Table 7.1, at least 745 repetitions were used to

calculate the average number of rejections, FDP, FNP, and MP.

Now consider Equation (6.1) with π0 = 0.8, π1 = π2 = 0.1, µ1 = 4, µ2 = 8, σ0 = σ2 = 1,

σ1 = 0.5, and with α = 0.05. The comparison of the oracle LMCR and Lfdr procedures versus the

theoretical LMCR and Lfdr procedures are presented in Figure 7.3. Figure 7.4 shows the results of

the theoretical versus empirical comparisons. Table 7.2 provides the number of usable repetitions

represented in each figure, where we see that as M increases, the number of usable repetitions

increases for both cases.

Procedure Number of Usable Repetitions

Theoretical 914 955 977 988 1000 1000 1000 1000 1000

Empirical 981 992 997 1000 1000 1000 1000 1000 1000

M = 100 250 500 1000 2500 5000 10000 25000 50000

Table 7.2: The number of usable repetitions for the three group model of Equation (6.1) where
π0 = 0.8, π1 = π2 = 0.1, µ1 = 2, µ2 = 4, σ0 = σ2 = 1, σ1 = 0.5, and α = 0.05. The oracle
procedures used all 1, 000 repetitions.
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Figure 7.3: The effect of M on theoretical and oracle convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2, µ2 = 4, σ0 = σ2 = 1, σ1 = 0.5, and α = 0.05: The oracle LMCR (©), oracle Lfdr
(4), theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the
number of rejections (a), the FDP (b), the FNP (c), and the MP (d).

Figure 7.4: The effect of M on theoretical and empirical convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2, µ2 = 4, σ0 = σ2 = 1, σ1 = 0.5, and α = 0.05: The empirical LMCR (©), empirical Lfdr
(4), theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the
number of rejections (a), the FDP (b), the FNP (c) and the MP (d).
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As seen in Figures 7.1 and 7.2 above, Figures 7.3 and 7.4 show that convergence occurs by the

time M = 10, 000. Again, from Table 7.2 we see that at least 914 repetitions were used to calculate

the average number of rejections, FDP, FNP, and MP in each plot.

7.2.2 Examples of Slow Convergence

Consider Equation (6.1) with π0 = 0.8, π1 = π2 = 0.1, µ1 = 1.5, µ2 = 2.5, σ0 = σ1 = σ2 = 1, and

α = 0.05. The comparison of the oracle LMCR and Lfdr procedures versus the theoretical LMCR

and Lfdr procedures are presented in Figure 7.5. Figure 7.6 shows the results of the theoretical

versus empirical comparison. Table 7.3 provides the number of usable repetitions represented in

each figure.

Unlike the previous two simulations, which showed relatively quick convergence, this simulation

setting exhibits interesting behavior, particularly in Table 7.3 and Figure 7.5. Observe that the

number of usable repetitions increases then decreases for both the theoretical and empirical cases.

Of particular interest are the respective lows of 459 and 333 for the M = 50, 000 setting. Such

comparatively small numbers stem from the difficulty of classification when µ1 is so close to µ0 and

M is so large. For reference, see Figure 6.5 which presents a histogram for this simulation setting

when M = 10, 000.

Procedure Number of Usable Repetitions

Theoretical 494 583 597 623 641 669 641 546 459

Empirical 788 784 790 797 743 721 623 450 333

M = 100 250 500 1000 2500 5000 10000 25000 50000

Table 7.3: The number of usable repetitions for the three group model of Equation (6.1) where
π0 = 0.8, π1 = π2 = 0.1, µ1 = 1.5, µ2 = 2.5, σ0 = σ1 = σ2 = 1, and α = 0.05. The oracle procedures
used all 1, 000 repetitions.

In Figure 7.5 we see that the number of rejections is fairly close for each of the four procedures

presented, though the theoretical LMCR procedure seems to have the fewest. The FDP plot shows

that all procedures converge to the desired α = 0.05 level by the time M = 2, 500. However, this

behavior is not surprising since FDR control is incorporated into each procedure’s definition. The

FNP plot is much more interesting, particularly for the theoretical LMCR procedure. For M = 250
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to M = 10, 000 the theoretical LMCR procedure’s FNP values are distinctly larger than those of the

other three procedures (though the FNP scale mitigates this difference somewhat). These differences

can be attributed to the relatively small number of rejections for many of the repetitions.

Figure 7.5: The effect of M on theoretical and oracle convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 1.5, µ2 = 2.5, σ0 = σ1 = σ2 = 1, and α = 0.05: The oracle LMCR (©), oracle Lfdr (4),
theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the number
of rejections (a), the FDP (b), the FNP (c), and the MP (d).

For example, one particular run of the M = 2, 500 setting had the following estimates for the

theoretical case: π̂0 = 0.78, π̂1 = 0.21, π̂2 = 0.01, µ̂1 = 1.87, µ̂2 = 3.41, σ̂1 = 1.06, and σ̂2 = 0.36.

Based on these values, there were only eight LMCR rejections (and only 169 Lfdr rejections), which

led to an inflated FNR. To more clearly see the influence of parameter estimation, contrast these

results with those of Figure 6.4, which showed that the oracle LMCR and oracle Lfdr procedures

behaved identically for this particular scenario since A1 = ∅. By the time M = 50, 000, convergence

is very close for the FNP, but still in progress for the MP. However, observe that the theoretical

LMCR procedure’s MP is less than the theoretical Lfdr’s MP for most M values, as suggested by

Theorem 4.1.

As for Figure 7.6, the theoretical and empirical procedures are converging, though there is still

some separation even when M = 50, 000. In practice, situations like these may require very large
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Figure 7.6: The effect of M on theoretical and empirical convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 1.5, µ2 = 2.5, σ0 = σ1 = σ2 = 1, and α = 0.05: The empirical LMCR (©), empirical Lfdr
(4), theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the
number of rejections (a), the FDP (b), the FNP (c) and the MP (d).

samples to get accurate results. When such large samples (M = 50, 000+) are not possible, a

different model may need to be considered.

Now consider Equation (6.1) with π0 = 0.8, π1 = π2 = 0.1, µ1 = 2.7, µ2 = 3.3, σ0 = σ1 = σ2 = 1,

and α = 0.05. Table 7.4 gives the number of usable repetitions for this setting while Figures 7.7 and

7.8 provide the results of the theoretical versus oracle and theoretical versus empirical comparisons,

respectively.

Procedure Number of Usable Repetitions

Theoretical 752 780 797 768 770 719 672 502 427

Empirical 910 899 923 874 841 786 696 545 460

M = 100 250 500 1000 2500 5000 10000 25000 50000

Table 7.4: The number of usable repetitions for the three group model of Equation (6.1) where
π0 = 0.8, π1 = π2 = 0.1, µ1 = 2.7, µ2 = 3.3, σ0 = σ1 = σ2 = 1, and α = 0.05. The oracle procedures
used all 1, 000 repetitions.

Table 7.4 shows results similar to those presented in Table 7.3, only now the number of usable

repetitions is somewhat larger for each M level. That said, observe that these values still trend
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downward as M increases. As before, these relatively low numbers (less than half of the original

1, 000 repetitions) can be attributed to the difficulty in estimating parameters for distributions that

are so close together when M is large. For reference, consider the histogram in Figure 6.7 when

M = 10, 000.

Figure 7.7: The effect of M on theoretical and oracle convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2.7, µ2 = 3.3, σ0 = σ1 = σ2 = 1, and α = 0.05: The oracle LMCR (©), oracle Lfdr (4),
theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the number
of rejections (a), the FDP (b), the FNP (c), and the MP (d).

Figure 7.7 is also similar to Figure 7.5, only now the unusual theoretical LMCR procedure’s FNP

values are not as close to the oracle FNP when M = 50, 000. Here, the large FNP values can be

attributed to the same behavior as before. For example, for one run with M = 500 we had only

three LMCR rejections with the following estimates: π̂0 = 0.77, π̂1 = 0.18, π̂2 = 0.05, µ̂1 = 2.60,

µ̂2 = 3.54, σ̂1 = 0.97, and σ̂2 = 0.39. Multiple repetitions with similar values again resulted in an

inflated FNP. As for Figure 7.8, the MP values have mostly converged by the time M = 25, 000,

whereas the FNP values are still in the process of converging. As mentioned above, in practice,

reliable results may require very large samples or, in some instances, adjustments to the model

being considered.
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Figure 7.8: The effect of M on theoretical and empirical convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2.7, µ2 = 3.3, σ0 = σ1 = σ2 = 1, and α = 0.05: The empirical LMCR (©), empirical Lfdr
(4), theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the
number of rejections (a), the FDP (b), the FNP (c) and the MP (d).

7.2.3 Other Difficulties

Subsection 7.2.1 considered simulation settings that illustrated relatively fast convergence between

the theoretical LMCR and Lfdr procedures’ values and the corresponding oracle procedure values.

Subsection 7.2.2, on the other hand, presented simulation scenarios that showed very slow conver-

gence that required very large M values. This subsection will consider three cases where convergence

is so slow that it is almost imperceptible, even when M = 50, 000. Suggestions for handling such

cases will also be considered.

We begin by considering Equation (6.1) with π0 = 0.8, π1 = π2 = 0.1, µ1 = 2, µ2 = 4,

σ0 = σ1 = σ2 = 0.5, and α = 0.05. The comparison of the oracle LMCR and Lfdr procedures versus

the theoretical LMCR and Lfdr procedures are found in Figure 7.9. Figure 7.10 shows the results

of the theoretical versus empirical comparison. Table 7.5 provides the number of usable repetitions

represented in each figure.

Based solely on Table 7.5, there are no indications of EM algorithm issues, which is to be expected
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Procedure Number of Usable Repetitions

Theoretical 998 1000 1000 1000 1000 1000 1000 1000 1000

Empirical 1000 1000 1000 1000 1000 1000 1000 1000 1000

M = 100 250 500 1000 2500 5000 10000 25000 50000

Table 7.5: The number of usable repetitions for the three group model of Equation (6.1) where
π0 = 0.8, π1 = π2 = 0.1, µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 0.5, and α = 0.05. The oracle procedures
used all 1, 000 repetitions.

due to the nice separation between the three groups. For reference, see the histogram in Figure 6.17

for M = 10, 000. With the relative ease of parameter estimation, one might expect good convergence

results, however as we see in Figure 7.3, this is not the case. Neither the theoretical LMCR nor the

theoretical Lfdr procedure’s values show any indication of converging to the corresponding oracle

values. However, when comparing Figures 7.9 and 7.10, we see a similar gap pattern between them,

especially for the FNP.

Figure 7.9: The effect of M on theoretical and oracle convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 0.5, and α = 0.05: The oracle LMCR (©), oracle Lfdr (4),
theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the number
of rejections (a), the FDP (b), the FNP (c), and the MP (d).

Inspired by this similarity, Figure 7.11 considers the empirical procedures as compared to the

oracle procedures. Here, we see very good convergence results forM ≥ 2, 500. This good performance
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Figure 7.10: The effect of M on theoretical and empirical convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 0.5, and α = 0.05: The empirical LMCR (©), empirical Lfdr
(4), theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the
number of rejections (a), the FDP (b), the FNP (c) and the MP (d).

Figure 7.11: The effect of M on empirical and oracle convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 0.5, and α = 0.05: The empirical LMCR (©), empirical Lfdr
(4), oracle LMCR (�), and oracle Lfdr (+) procedures are compared with respect to the number
of rejections (a), the FDP (b), the FNP (c), and the MP (d).
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is to be expected because of the nice distribution separation discussed above. The initial poor

performance is due to the misspecification of the null distribution. There are zero false discoveries

for either theoretical procedure because, since N(0, 1) is a much wider distribution than the actual

N(0, 0.5) null, the Lfdr values increase quickly which depresses the number of rejections to the point

that no true nulls are discovered and increases the FNP. When the N(0, 1) null constraint is lifted,

the added flexibility allows the EM algorithm to identify more appropriate parameter estimates.

In practice, model misspecification may make analysis quite difficult, however in some instances,

relaxing the constraints of a given model may provide useful insights.

In other instances, imposing additional constraints on a model may provide improved results. For

example, consider Equation (6.1) with π0 = 0.8, π1 = π2 = 0.1, µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 1,

and α = 0.05. Table 7.6 gives the number of usable repetitions for this setting. Figure 7.12 and

Figure 7.13 provide the results of the theoretical versus oracle and theoretical versus empirical

comparisons, respectively.

Procedure Number of Usable Repetitions

Theoretical 777 844 855 842 904 929 945 959 983

Empirical 912 930 932 946 929 905 881 870 825

M = 100 250 500 1000 2500 5000 10000 25000 50000

Table 7.6: The number of usable repetitions for the three group model of Equation (6.1) where
π0 = 0.8, π1 = π2 = 0.1, µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 0.5, and α = 0.05. The oracle procedures
used all 1, 000 repetitions.

The results in Table 7.6 are very similar to those found in Table 7.1, in that the number of usable

repetitions tends to increase for the theoretical scenario as M increases, whereas the empirical

case shows more variability. Additionally, all values are relatively large, thus indicating few EM

algorithm convergence issues. Despite these nice results, Figure 7.12 shows multiple convergence

issues, particularly in terms of the theoretical LMCR procedure’s FNP and MP values. In both

instances, there are sizable gaps between the theoretical and corresponding oracle procedure values,

for every value of M . In Figure 7.13, we see that the empirical results seem to mostly converge to

the theoretical results, especially for the MP values.
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Figure 7.12: The effect of M on theoretical and oracle convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 1 and α = 0.05: The oracle LMCR (©), oracle Lfdr (4),
theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the number
of rejections (a), the FDP (b), the FNP (c), and the MP (d).

Figure 7.13: The effect of M on theoretical and empirical convergence when π0 = 0.8, π1 = π2 = 0.1,
µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 1 and α = 0.05: The empirical LMCR (©), empirical Lfdr (4),
theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the number
of rejections (a), the FDP (b), the FNP (c) and the MP (d).
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Unfortunately, this means that relaxing the theoretical null constraint will be ineffective for

this simulation setting. Further analysis of the results suggest that the gaps between the LMCR

curves seen in Figure 7.12 can be attributed to relatively small rejection sets, as mentioned above.

For example, consider the situation in Figure 7.14 where the parameter estimates are: π̂0 = 0.79,

π̂1 = 0.16, π̂2 = 0.05, µ̂1 = 2.40, µ̂2 = 4.32, σ̂1 = 1.40, and σ̂2 = 0.86. We note that the theoretical

LMCR procedure rejects only two out of a possible 50, 000 hypotheses in this case. Since σ̂1 is

relatively large, misclassification is much more likely in the right tail of group 2, thus reducing the

number of rejections. This, in turn, increases the FNP value to 0.202 since a large majority of

nonnull hypotheses are not being discovered. The corresponding MP value is 0.5.

Figure 7.14: The histogram of 50,000 simulated x-values, along with fitted densities defined by a
convergent EM algorithm. The rows of points near the bottom represent the pattern of rejections for
the LMCR procedure (A), the original Lfdr procedure (B), and the Lfdr procedure with clustering
information included (C).

In practice, in situations like this it is important to inspect parameter estimates to see if the

groups are separable. For the example presented in Figure 7.14, µ̂1 and µ̂2 have good separation

and, while π̂2 is relatively small, both π̂1 and π̂2 are bounded away from zero. So here, the issue

seems to be due to the fact that σ̂1 is much larger than σ̂2. To handle this, one may need to consider

fitting a model with equal alternative standard deviations. For example, suppose that a series of

83



models are considered with π̂0 = 0.79, π̂1 = 0.16, π̂2 = 0.05, µ̂1 = 2.40, and µ̂2 = 4.32, as before,

but now with fixed values for σ̂1 = σ̂2. Table 7.7 presents the number of rejections, FNP, and MP

values for the theoretical LMCR procedure with various σ̂1 = σ̂2.

σ̂1 = σ̂2 = 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Rejections 4790 4018 3271 2465 1678 1153 857

FNP 0.126 0.139 0.151 0.164 0.177 0.185 0.190

MP 0.282 0.290 0.304 0.320 0.355 0.390 0.448

Table 7.7: The number of rejections, FNP, and MP for the theoretical LMCR procedure when
applied to the dataset presented in Figure 7.14 with π̂0 = 0.79, π̂1 = 0.16, π̂2 = 0.05, µ̂1 = 2.40,
µ̂2 = 4.32, M = 50, 000, and α = 0.05.

In Table 7.7 we see that the σ̂1 = σ̂2 constraint greatly increases the number of rejections and

reduces the FNP and MP values for each standard deviation considered. Though these values are

still not quite comparable to the corresponding oracle LMCR values, they are much better than the

original theoretical LMCR values. Similar improvements would also be expected for the empirical

LMCR procedure.

Finally, consider Equation (6.1) with π0 = 0.9, π1 = 0.06, π2 = 0.04, µ1 = 2, µ2 = 4, σ0 =

σ1 = σ2 = 1, and α = 0.05. The comparison of the oracle LMCR and Lfdr procedures versus the

theoretical LMCR and Lfdr procedures are found in Figure 7.15. Figure 7.16 shows the results of

the theoretical versus empirical comparisons. Table 7.8 provides the number of usable repetitions

represented in each figure.

Procedure Number of Usable Repetitions

Theoretical 694 796 850 847 895 916 939 948 966

Empirical 865 911 922 925 908 910 859 830 821

M = 100 250 500 1000 2500 5000 10000 25000 50000

Table 7.8: The number of usable repetitions for the three group model of Equation (6.1) where
π0 = 0.9, π1 = 0.06, π2 = 0.04, µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 1, and α = 0.05. The oracle
procedures used all 1, 000 repetitions.

The results of Table 7.8 are similar to those of Tables 7.1 and 7.6 in showing that there are

relatively few EM algorithm convergence issues for this simulation setting for large M . However, as

in Figure 7.12, these results do not prevent issues in the convergence of theoretical LMCR values
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to the corresponding oracle LMCR values. In fact, while the theoretical LMCR procedure’s MP

value seems to be slowly converging in Figure 7.15, its FNP value is actually diverging from the

oracle FNP when 10, 000 ≤M ≤ 50, 000. Again, Figure 7.16 shows that the empirical LMCR values

converge to those of the theoretical LMCR, so we will focus on analyzing the theoretical situation.

Figure 7.15: The effect of M on theoretical and oracle convergence when π0 = 0.9, π1 = 0.06,
π2 = 0.04, µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 1, and α = 0.05: The oracle LMCR (©), oracle Lfdr
(4), theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to the
number of rejections (a), the FDP (b), the FNP (c), and the MP (d).

As mentioned above, the difficulties in this simulation are analogous to those of the previous

simulation, only now the clustering problem is more difficult because of the smaller alternative pro-

portions. For reference, consider the histogram in Figure 6.10, where we note that the identification

of two nonnull distributions seems to be nontrivial since there are relatively few data points in the

right tail. Further, for the M = 50, 000 case, 32 repetitions resulted in zero rejections (with 35

resulting in two or fewer rejections) whereas the previous simulation setting resulted in only 14 such

repetitions (with 23 resulting in two or fewer rejections). For the repetitions with zero rejections,

the estimated standard deviations are quite similar for both simulation settings, with σ̂2 < 1 < σ̂1.

However here, for the repetitions with zero rejections, the average π̂2 value is 0.017 (as compared

to 0.051 for the previous analysis), which indicates that the EM algorithm had difficulty identifying
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Figure 7.16: The effect of M on theoretical and empirical convergence when π0 = 0.9, π1 = 0.06,
π2 = 0.04, µ1 = 2, µ2 = 4, σ0 = σ1 = σ2 = 1, and α = 0.05: The empirical LMCR (©), empirical
Lfdr (4), theoretical LMCR (�), and theoretical Lfdr (+) procedures are compared with respect to
the number of rejections (a), the FDP (b), the FNP (c) and the MP (d).

a second nonnull group. In practice, once the parameter estimates have been examined, one may

consider applying a model with the σ1 = σ2 constraint, as discussed above, or perhaps even consider

a simplified two group model, if necessary.
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Chapter 8

Summary

In this dissertation, Chapter 3 provided a new statistical protocol for large-scale exploratory analysis

that allows for the nature of the follow-up analysis to be included in the discovery process. Contrary

to standard procedures, which are designed to maximize the expected number of discoveries or

minimize some type II error rate, the proposed protocol creates FDR controlling procedures that are

more appropriate for the study at hand by incorporating the specific statistic of interest. Chapter 4

used the protocol to develop the LMCR procedure which controls the FDR while incorporating

classification. Chapter 5 compared the LMCR procedure with the standard Lfdr based procedure

using illustrative and real data. It was shown that the LMCR procedure had two main advantages:

(1) it provides a built-in safeguard that prevents the rejection of hypotheses that are most likely null

and (2) rejects hypotheses that have the smallest LMCR. Chapters 6 and 7 then provided extensive

simulation results for the oracle and adaptive LMCR procedures, respectively.

While this work provided three specific examples (the Lfdr, CLfdr, and LMCR procedures) of

how the two step protocol of Chapter 3 could be used to create procedures that control the FDR,

the framework is general enough to incorporate any arbitrary statistic or criterion of interest. For

example, the LMCR procedure could be extended by introducing a non-uniform misclassification

penalty. In other studies, attributes may be ranked based on information criteria, effects sizes, or

some other study specific definition of “interesting.” Traditional procedures have been developed to

maximize the number of discoveries perhaps because this approach is reasonable in most exploratory
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analyses, despite not necessarily being the best approach. The proposed method allows for the

inclusion of the statistic best suited for the current study.
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Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions.

Journal of the American Statistical Association 62 (318), 626–633.

94



Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American

Statistical Association 58 (301), 236–244.

Wu, W. B. (2008). On false discovery control under dependence. The Annals of Statistics 36 (1),

364–380.

Xu, R. and D. C. Wunsch (2009). Clustering. New Jersey: Wiley.

95



VITA

David D. Watts

Candidate for the Degree of

Doctor of Philosophy

Thesis: CLASSIFYING DISCOVERIES: IMPLEMENTING A GENERALIZED MULTIPLE TEST-

ING PROTOCOL FOR EXPLORATORY DATA ANALYSIS

Major Field: Statistics

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Statistics at Oklahoma State
University, Stillwater, Oklahoma in July, 2016.

Completed the requirements for the Master of Science in Applied Mathematics at the Uni-
versity of Central Arkansas, Conway, Arkansas in August, 2008.

Completed the requirements for the Bachelor of Arts in Mathematics at the University of
Central Arkansas, Conway, Arkansas in May, 2006.

Experience:

January, 2014 - May, 2016: Graduate Research Assistant for the Department of Computer
Science at Oklahoma State University, Stillwater, Oklahoma.

August, 2011 - December, 2013: Graduate Teaching Assistant for the Department of Statis-
tics at Oklahoma State University, Stillwater, Oklahoma.

August, 2008 - December, 2010: Instructor for the Department of Mathematics at the
University of Central Arkansas, Conway, Arkansas.

August, 2006 - July, 2008: Graduate Teaching Assistant for the Department of Mathematics
at the University of Central Arkansas, Conway, Arkansas.

Professional Memberships:

American Statistical Association


