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Abstract: Most current-use pesticides have short half-lives in the water column and thus 

the most relevant exposure scenarios for many aquatic organisms are pulsed exposures. 

However, it is frequently challenging to measure exposure due to rapid dissipation of 

contaminants from water and reduced bioavailability. Therefore, my objective was to 

evaluate methods for measuring environmentally-relevant exposures associated with 

pulsed events. The first study utilized a modeling approach to compare the effectiveness 

of discrete verses integrative sampling methods for predicting toxicologically-relevant 

pulsed concentrations. Differences between discrete point samples and integrative 

samples were highest at low sampling frequencies where discrete point samples required 

higher sampling frequencies to ensure median values > 50% and no sampling events 

reporting < 10%  of the true 96-h time-wighted average concentration as compared to 

integrative methods. The second study implemented a biomonitoring approach using 

Helisoma trivolvis snail tissue residues to predict fungicide water concentrations. 

Although snails have high fungicide tolerance and tissue resides can be detected long 

after water concentrations drop below detection limits, passive elimination means that 

residues can only be used to assess whether exposure has occurred. Integrative sampling 

methods that continuously sample freely dissolved contaminants over time intervals (such 

as integrative passive samplers) have been demonstrated to be a promising measurement 

technique. Three different integrative passive sampler configurations were evaluated 

under different flow and pulsed exposure conditions for measurement of current-use 

pesticides (n=19), polyaromatic hydrocarbons (n=10), and personal care products (n=5). 

Results show that reducing membrane limitations allowed for rapid, integrative 

accumulation of analytes spanning a broad range of hydrophobicities (log Kow 1.5-7.6) 

even under pulsed conditions. The consequence of reducing membrane limitation was 

that sampling rates became flow dependent. As such, the last study evaluated various 

performance reference compounds (PRCs) as methods for in-situ flow corrections for 

analyte accumulation. Results suggested that multiple PRCs may be required to account 

for a wide range of flow dependencies. Additionally, although PRC corrections reduced 

the variability when in-situ conditions differed from laboratory calibrations (e.g. static 

verses moderate flow), applying PRC corrections under similar flow conditions increases 

variability in estimated values.
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CHAPTER I 
 

 

INTRODUCTION 

Surface waters may become contaminated through inputs from a variety of sources 

including application of agrochemicals, surface runoff, chemical spills, or discharge of industrial 

effluents (Allan et al., 2008; Ashauer and Brown, 2013). Toxicological responses are driven by 

the magnitude and frequency of exposure to the bioavailable fraction of contaminants (i.e. freely 

dissolved in water). Predicting the intensity and length of these episodic events is challenging 

because complex environmental factors influence exposure kinetics (Hickie et al., 1995; Landrum 

et al., 2013). As such, aquatic exposures are frequently pulsed, episodic, fluctuating, or 

intermittent rather than continuous concentrations (Ashauer and Brown, 2013; Reinert et al., 

2002). This is also true for hydrophobic contaminants that are considered persistent in the 

environment yet have short aquatic half-lives and readily partition to sediments (Morrison et al., 

2013; Yang et al., 2006) and other organic matter resulting in a pulsed exposure to aquatic 

organisms residing above the benthos (Landrum et al., 1984; Maul et al., 2008). Despite short 

exposure periods, pulsed exposures can elicit significant toxicological responses (Morrison et al., 

2013; Reinert et al., 2002). Therefore, developing effective sampling technologies capable of 

measuring short-term exposures (eight days or less) is important for providing toxicologically-

relevant exposure concentrations for contaminants that rapidly pulse through aquatic systems. 

Traditionally, monitoring of aquatic systems entails discrete sampling of surface waters, 

which provides information on current contaminant levels; however, these discrete or “snapshot”  
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measurements may not be accurate indicators of exposure for compounds that pulse through the 

system (Stuer-Lauridsen, 2005). Additionally, each grab sample typically requires extensive 

extraction (potentially including cleanup steps), transport, and analysis of large volumes to achieve 

detection limits of trace contaminants (Stuer-Lauridsen, 2005; Vrana et al., 2005). Differences in 

apparent freely dissolved, bioavailable fractions, of contaminants can also be observed based on 

whether or not the samples are pre-treated (i.e. filtered versus whole water samples) and can be 

dependent on the type of dissolved organic carbon (Landrum et al., 2013). Thus, high frequency water 

sampling is usually resource prohibitive and the results may be hard to interpret. By accounting for 

intra- and inter- day contaminant fluctuations, time-weighted average (TWA) measurements may 

provide better estimates of exposure concentrations as compared to discrete sampling of surface 

waters. Discrete sampling can provide estimates of TWA concentrations; however, for contaminants 

that rapidly dissipate or pulse through the water column, extensive spot or automated sampling is 

required (Alvarez et al., 2004; Alvarez et al., 2005; Morrison et al., 2013; Vrana et al., 2014). 

Biomonitoring is an alternative method to grab sampling where body residue concentrations 

are measured in biological samplers (i.e. organisms) collected from field sites to predict 

environmental exposure. Organism body burdens are frequently used in standardized sediment quality 

tests (OECD, 2010; USEPA, 2000) and biomonitoring (Coogan and La Point, 2008; Druart et al., 

2011; Goldberg, 1986; Sabaliunas et al., 1998; Smalling et al., 2015) especially for contaminants 

known to persist and bioaccumulate in the environment. Although synthetic passive samplers have 

recently had the advantage over measuring chemical residues in organisms due to cleaner sample 

matrices, the development of better analytical extraction and cleanup protocols and increased 

instrumentation sensitivity has greatly enhanced our ability to measure tissue concentrations 

(Anastassiades et al., 2003). Previous work has demonstrated that tissue concentrations can be 

analyzed in mussels (Liscio et al., 2009; Sabaliunas et al., 1998) and snails (Coogan and La Point, 

2008; Druart et al., 2011) to indicate environmental pollution. Mussels receive greater attention in 

biomonitoring programs (as compared to snails) because they actively filter water, resulting higher 
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contaminant accumulation rates. However, their use is limited to coastal waters and streams due to 

absence of indigenous populations in ephemeral water bodies (e.g. depressional wetlands). Snails may 

provide a reasonable alternative in these systems. 

Deployment of passive sampling devices is also becoming a viable alternative to discrete 

sampling due to its ability to measure bioavailable water fractions over time (Alvarez et al., 2004; 

Harman et al., 2012; Stuer-Lauridsen, 2005). Current integrative passive samplers such as polar 

organic chemical integrative samplers (POCIS) continuously accumulate freely dissolved 

contaminants throughout their deployment and have been demonstrated to be a reliable technique for 

providing time-weighted average (TWA) concentrations of some organic contaminants (Alvarez et 

al., 2004; Vrana et al., 2005). Assuming an infinite sink, two processes primarily regulate uptake of 

an integrative sampler: 1) Diffusion through the aqueous boundary layer (ABL) and 2) Permeation 

through the sampler membrane. The thickness of the ABL changes with flow across the sampler thus 

sampling rates can be highly influenced by variations in flow (Harman et al., 2012; Vrana et al., 

2005). Ultimately, whichever process has the slowest kinetics determines the sampling rate 

(Seethapathy et al., 2008). 

The classical POCIS configuration utilizes microporous polyethersulfone (PES) membranes 

(0.1 μm pore size) which Alvarez et al. (Alvarez et al., 2004) selected over several other membranes 

based on high sampling rates of polar substances, minimal biofouling, and durability. This membrane 

has helped establish POCIS as a valuable tool for providing TWA concentrations of polar 

contaminants; however, limitations of diffusion limiting membrane cause inherent problems for 

accumulation of hydrophobic contaminants. First, the properties of the PES membranes generally 

restricts accumulation to hydrophilic chemicals with octanol-water partitioning coefficients (log Kow) 

less than four due to low accumulation coefficients for more hydrophobic substances (i.e. log Kow > 

4) (Ahrens et al., 2015; Alvarez et al., 2004; Belles et al., 2014a; Harman et al., 2008). Although 

some hydrophobic chemicals accumulate in POCIS, the diffusion limiting membrane generally causes 

a lag-effect in the initial accumulation kinetics (Belles et al., 2014a). This is particularly problematic 
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for hydrophobic chemicals because they have the greatest potential to pulse through the water column 

and partition to sediment and biota. As such, the classical POCIS configuration may under predict 

actual exposure concentrations for more hydrophobic contaminants due to limited or delayed 

accumulation. Second, POCIS are typically deployed for 30 (or more) days and have long integration 

times with linear accumulation of many polar contaminants greater than 28 d (Alvarez et al., 2004; 

Belden et al., 2015). Although this is beneficial for polar contaminants that tend to stay in the water 

column, the opposite is true for contaminants that are acutely toxic and quickly pulse through aquatic 

systems. For these compounds, 4-8 d TWA concentrations would likely be more comparable to 

toxicological endpoints. Collectively, the lag-effect phenomenon and long deployment times present 

major challenges for predicting water concentrations of hydrophobic substances using the classical 

POCIS configuration. 

One of the challenges for utilizing POCIS-style samplers is that changes in flow across 

sampler membranes can dramatically effect analyte sampling rates (Birch et al., 2013; Booij et al., 

1998; Charlestra et al., 2012; Harman et al., 2012; Li et al., 2010a; Li et al., 2010b; Vermeirssen et 

al., 2008; Vermeirssen et al., 2009; Vrana et al., 2005). Performance reference compounds (PRCs) 

have been suggested as a viable method to improve calibration for POCIS-style samplers by 

providing in-situ flow calibrations has been (Belles et al., 2014a; Belles et al., 2014b; Harman et al., 

2012; Mazzella et al., 2010). Equilibrium-based passive samplers have benefitted from PRCs as 

stable isotope compounds can be spiked into samplers prior to deployment and dissipation occurs 

proportional with uptake (Huckins et al., 2002). However, the integrative nature of POCIS-style 

samplers presents a challenge for PRCs due to minimal fugacity out of stable isotope compounds 

(Harman et al., 2012; Mazzella et al., 2010). Regardless, several PRCs have been suggested to have 

sufficient fugacity out of classical POCIS devices including desisopropyl atrazine-d5 (Belles et al., 

2014a; Belles et al., 2014b; Mazzella et al., 2007; Mazzella et al., 2010) and caffeine-C13 (Belden et 

al., 2015; Belles et al., 2014a). These PRCs are especially important for adjusting Rs when analyte 
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accumulation controlled by the aqueous boundary layer rather than diffusion through the membrane 

(Belles et al., 2014a; Belles et al., 2014b). 

The following research chapters (Chapters II, III, IV, and V) describe my research exploring 

methods for measuring pulsed aquatic exposures in the environment and some of the challenges faced 

with implementing different sampling methodologies. The overall research question arose from my 

Master’s Thesis where our results suggest that despite short persistence in the water column, 

environmentally-relevant pulsed exposures can still elicit significant toxicity (Morrison et al., 2013). 

Regardless, interpretation of environmental fate and toxicological responses demonstrated that 

changes in water concentration over time described toxicity and TWA concentrations of measured 

water concentrations produced the similar LC50 (median lethal concentration) values as water-only 

exposures. As such, my PhD research has focused on methods to accurately quantify TWA water 

concentrations of pulsed exposures to facilitate measurement of toxicologically-relevant exposure 

concentrations. 

The first research chapter (Chapter II) lays the ground work by comparing the effectiveness 

of discrete point sampling and integrative sampling methods predicting the peak 96-h TWA water 

concentrations while varying sampling frequencies and a range of contaminant water half-lives (t50 = 

0.5, 2, and 8 d). These comparisons were accomplished through simulations (coded in R 3.2.2) which 

assumed sampling frequencies and timing for both discrete and integrative samples based on a study 

designs that would likely be used to monitor and predict peak exposure concentrations. 

Investigations detailed in Chapter III took a biomonitoring approach for measuring pulsed 

exposures using Helisoma trivolvis pond snails. This snail species is a pulmonate snail species 

ubiquitously found throughout North America, inhabiting a variety of moderately eutrophic, 

permanent, and ephemeral freshwaters (Russell-Hunter et al., 1984). Due to their ubiquitous presence 

and abundance in areas of interest throughout the typical growing season, snails are good candidate 

organisms for biomonitoring of shallow, ephemeral water bodies (e.g. embedded cropland wetlands). 

This chapter focuses on evaluating the effectiveness of snails for biomonitoring of current-use 
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fungicides (i.e. pyraclostrobin and metconazole) by describing chemical sensitivities (i.e. acute 

toxicological responses) and toxicokinetic modeling (i.e. accumulation and elimination). 

Finally, Chapters IV and V evaluate the use of integrative passive samplers for measuring 

pulsed aquatic exposures. Previous research has suggested that adjustment of sampler design to 

reduce diffusion membrane limitations is possible (Belles et al., 2014a). Specifically, replacing the 

microporous-PES membrane with nylon mesh screens with 30 µm openings allows greater flow 

through the sampler and reduced diffusion membrane limitations (Belles et al., 2014a). Belles et al. 

(Belles et al., 2014a) called this sampler configuration the “Nylon POCIS”; however we will refer to 

this design as the Nylon Organic Chemical Integrative Sampler (NOCIS) to emphasize the obvious 

advantage of this modification for increased sampling rates for hydrophobic contaminants. As 

opposed to the classical POCIS configuration, nylon configuration could be used for integrative 

measurement of hydrophobic contaminants pulsing through the water column; ultimately expanding 

the utility of the sampler by providing toxicologically relevant exposure data and better risk 

assessments for more hydrophobic substances. Results in Chapter IV describe the calibration of two 

NOCIS configurations in addition to the newly developed Sentinel Sampler (ABSMaterials, Inc., 

Wooster, OH). The objective was to confirm linear accumulation and integration of analytes during 

short-term exposures (i.e. < 8 d). Chapter V expands from this research to evaluate in-situ methods 

for estimating flow across sampler membranes. This research is critical for environmental 

applications to account for variations in flow that could occur when samplers are deployed in the 

field. 
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CHAPTER II 
 

 

COMPARISONS OF DISCRETE AND INTEGRATIVE SAMPLING ACCURACY IN 

ESTIMATING PULSED AQUATIC EXPOSURES 

The following chapter appears as submitted to Environmental Pollution: 

Morrison, S.A., B. Luttbeg, and J.B. Belden (2016). Comparisons of discrete and integrative 

sampling accuracy in estimating pulsed aquatic exposures. Environ Pollut (Submitted).  

Abstract 

Most current-use pesticides have short half-lives in the water column and thus the most relevant 

exposure scenarios for many aquatic organisms are pulsed exposures. Quantifying exposure using 

discrete water samples may not be accurate as few studies are able to sample frequently enough to 

accurately determine time-weighted average (TWA) concentrations. Integrative sampling 

methods that continuously sample freely dissolved contaminants over time intervals (such as 

integrative passive samplers) have been demonstrated to be a promising measurement technique. 

We conducted several modeling scenarios to test the assumption that integrative methods may 

require many less samples for accurate estimation of peak 96-h TWA. We compared the 

accuracies of discrete point samples and integrative samples while varying sampling frequencies 

and a range of contaminant water half-lives (t50 = 0.5, 2, and 8 d). Simulated results suggest that 

regardless of sampling methodology, increased sample frequency resulted in better estimates of 

the peak 96-h TWA. Differences between discrete point samples and integrative samples were 
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greatest at low sampling frequencies where discrete point samples required higher sampling 

frequencies to ensure median values > 50% and no sampling events reporting < 10% of the true 

96-h TWA as compared to integrative methods. Additionally, integrative samples reduced the 

frequency of extreme values < 10% of the true value and never exceeded the actual peak 96-h 

TWA. Overall, integrative methods are the more accurate method for monitoring contaminants 

with short water half-lives due to reduced frequency of extreme values, especially with 

uncertainties around the timing of pulsed events. 

Key Words: Environmental Monitoring, Integrative Sampling, Pulsed Exposure, Spot Sampling 

Capsule 

Integrative methods provided better predictions of the true 96-h TWA concentration when water 

dissipation was rapid, especially with uncertainties around the timing of pulsed events. 

1. Introduction 

Surface waters may become contaminated through inputs from a variety of sources 

including application of agrochemicals, surface runoff, chemical spills, or discharge of industrial 

and municipal effluents (Allan et al., 2008; Ashauer and Brown, 2013). The reality of monitoring 

surface waters is that contamination frequently occurs through pulsed, episodic, fluctuating, or 

intermittent exposures rather than continuous concentrations (Ashauer and Brown, 2013; Reinert 

et al., 2002). Predicting the intensity and length of these episodic events is challenging because 

complex environmental factors influence exposure kinetics (Hickie et al., 1995; Landrum et al., 

2013). Aquatic risk assessments typically entail discrete sampling of surface waters, which 

provides information on current contaminant levels; however, these discrete or “snapshot” 

measurements may not be accurate indicators of exposure under fluctuating water concentrations 

(Soderstrom et al., 2009; Stuer-Lauridsen, 2005). Exposure assessments generally relate predicted 

environmental exposure concentrations to biological effects obtained from laboratory 

experiments that are conducted with relatively stable water concentrations; however, 
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environmentally-relevant exposures rarely occur under stable contaminant regimes (Boxall et al., 

2002). 

By accounting for intra- and inter- day contaminant fluctuations, time-weighted average 

(TWA) measurements may provide better estimates of exposure concentrations as compared to 

discrete sampling of surface waters. Discrete sampling can provide estimates of TWA 

concentrations; however, for contaminants that rapidly dissipate or pulse through the water 

column, extensive spot or automated sampling is required (Alvarez et al., 2004; Alvarez et al., 

2005; Morrison et al., 2013; Soderstrom et al., 2009; Vrana et al., 2014). Integrative passive 

sampling devices are becoming valuable alternatives to discrete sampling by providing TWA 

measurements of bioavailable water fractions (Alvarez et al., 2004; Harman et al., 2012; Stuer-

Lauridsen, 2005). Integrative passive sampling devices like the Polar Organic Chemical 

Integrative Sampler (POCIS) are promising tools for providing estimates of TWA concentrations 

because they continuously accumulate freely dissolved contaminants throughout their deployment 

(Allan et al., 2008; Alvarez et al., 2004). We will not delve into a lengthy review of passive 

sampling technologies because several published reviews already exist covering numerous 

sampler configurations, applications, and principles (Harman et al., 2012; Miege et al., 2015; 

Mills et al., 2014; Namiesnik et al., 2005; Seethapathy et al., 2008; Stuer-Lauridsen, 2005; Vrana 

et al., 2005).  

It is generally assumed that TWA measurements provide better monitoring data; 

however, discrete point samples may provide suitable measurements under relatively stable 

contaminant concentrations. Moreover, long-term TWA measurements (i.e. 14-28 days), which 

are frequently collected with POCIS, may have the unintended consequence of diluting out 

shorter pulses (i.e. 12-96 hours) that could be of toxicological significance. Although integrative 

passive sampling devices have been extensively used in field monitoring scenarios for TWA 

water concentrations, limited investigations have focused on quantitatively evaluating the 

performance of discrete point samples as compared to integrative samples for measuring pulsed 
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aquatic exposures. The overall objective of this research was to investigate the impact of 

sampling methods (e.g. discrete verses integrative) and sample frequency on the accuracy and 

precision of measured concentrations obtained during simulated pulsed exposures. A modeling 

exercise was conducted to provide quantitative comparisons between discrete point samples and 

integrative samples. Varying water dissipation rates and sampling frequencies were programed to 

evaluate the prediction accuracy of three sampling methods compared to the actual peak 96-h 

TWA. 

2. Methods 

2.1 Exposure scenario description 

We made several assumptions pertaining to physiochemical properties, toxicity, sample 

preparation, and analysis. The environmental impact of the contaminants was considered to occur 

through acute toxicity with the primary exposure route via water. The peak 96-h TWA 

concentration was chosen as the best metric of exposure as it closely relates to toxicological 

values obtained from standard toxicity tests that frequently report the 96-h LC50 (median lethal 

concentration) (USEPA, 2000). Thus, the sampling method that accurately and consistently 

estimated this value would be considered the best method for exposure assessments. We assumed 

that technology was available to collect both discrete (i.e. grab) and integrative (i.e. TWA) 

samples. Sample processing and analysis was considered as the limiting step in collecting the 

environmental data. Thus, the number of analytical measurements was compared across sampling 

methods and frequencies. All technologies were considered to have similar analytical accuracies 

following the collection event. Other considerations (potentially two trips to deploy an integrative 

sampler versus a single trip for a grab sample) were not considered. 

We assumed that a contamination pulse would start at a random point within a 10-d time 

period and thus the peak 96-h TWA would be finished by 14 d, which is the time frame during 

which monitoring would occur (Fig. 1). The pulsed water concentrations were created using a 

first order elimination model so that 
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Ct = C0 exp(−𝑘𝑒𝑡)          (1) 

where Ct is the water concentration at time (t), C0 is the peak concentration of the pulse, and ke is 

dissipation rate from water. Three water dissipation rates were chosen to be representative of a 

range of contaminants. The three dissipation rates increased by factors of four and corresponded 

to water half-lives (t50) of 0.5, 2, and 8 d. Therefore, the exact value varied in accordance with the 

water dissipation rate within the given scenario. 

2.2 Sampling design 

For the simulations (coded in R 3.2.2) we divided the 14 d window into one-minute 

intervals. The starting point of the contamination was randomly drawn from a uniform 

distribution ranging from 1 to 14,400 minutes (the end of day 10). Initial concentration of the 

contaminant was 100 and exponentially decayed each minute. The actual peak 96-h TWA was 

calculated by taking the average of the concentration over the 5760-minute interval starting at the 

initial release of the contaminant. The actual peak 96-h TWA concentrations for 0.5, 2, and 8 d 

water half-lives (t50) were 18.0, 54.1, and 84.5 µg/l, respectively (Table 1). 

During each pulsed scenario, three types of sampling methods were considered (i.e. one 

discrete point sample and two integrative) as well as four different sampling frequencies (1, 2, 3, 

or 7 data points collected; Fig. 1). Sampling frequencies and timing for both discrete and 

integrative samples were based on a study designs that would likely be used to monitor and 

predict peak exposure concentrations. For the discrete sampling and single sample case, the 

sampling was done at the end of day 10 to assure that sampling occurred after contamination 

occurred. For the two-sample scenario, discrete sampling occurred at the end of days 5 and 10. 

For the three-sample scenario, discrete sampling occurred at the end of days 4, 8, and 12. And for 

the seven-sample scenario, discrete sampling occurred at the end of days 2, 4, 6, 8, 10, and 12. 

For each sample, the concentration measured was taken from the actual concentration of the 

contaminant at that time point with no error. 
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Fig. 1. Graphical representation showing placement of discrete point samples (X), fixed duration 

integrative samples (black), and full integrative samples (grey). Water half-lives increase from left two 

right and sampling frequencies increase from top to bottom. Initiation of the pulse was allowed to occur 

within the first 10-d of exposure (vertical dashed line). Numbers depicting time represent the beginning of 

the indicated day. 
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The first integrative method, defined as full integrative sampling (FIS), sampled the 

entire 14 d window with no overlap. Therefore, for scenarios with more than one sample, 

consecutive sampling periods evenly divided the 14 d interval with no overlap (Fig. 1). The 

measured concentration was the average real concentration across the range of the measurement 

with no error. 

The second integrative method, defined as fixed duration integrative sampling (DIS), 

consisted of 96-h periods. These windows were arranged within the 14 d exposure window to 

provide the best coverage based on the number of measurements within the sampling regime (Fig. 

1). This resulted in overlapping samples when seven samples were taken. For the one-sample 

scenario, the DIS measurement was taken from the beginning of day 4 through the end of day 7. 

The two-sample scenario measured from beginning of day 3 through the end of day 6 and day 8 

through day 11. The three-sample scenario measured from beginning of day 2 through the end of 

day 5, day 6 through 9, and day 11 through 14. The seven-sample scenario had samples evenly 

distributed over the entire 14-d exposure (Fig. 1). In each case, the measured concentration was 

the average real concentration across the range of the measurement with no error. 

2.3 Estimating the actual 96-h TWA 

When sampling regimes consisted of one, two, or three measurements, the highest 

singular value obtained for each sampling method was used as the 96-h TWA estimate. Increased 

sampling regimes to seven measurements resulted in the frequency of discrete point samples and 

FIS measurements exceeding 96-h intervals; therefore, the highest two values were averaged. The 

seven sample regimes also resulted in overlapping intervals for DIS measurements (i.e. 96-h 

integration). The highest single DIS measurement was compared against the actual peak 96-h 

TWA.  

2.4 Data analysis 

To visualize differences resulting from changes in water half-lives and sampling 

frequencies, estimate values from modeled scenarios (n=1,000 replicates) were provided as box 
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and whisker plots using SigmaPlot 10.0 (Systat Software, CA, USA) with median (solid 

horizontal line), mean (dotted horizontal line), inner quartile range (25th and 75th percentiles; 

box), the 10th and 90th percentiles (whiskers), and outliers (dots). Environmental data sets with 

few high values and many low values are typically positively skewed which can influence the 

mean and standard deviation; however, median values are largely unaffected by outliers (Helsel, 

2005). Due to the high numbers of non-detect values at lower sampling frequencies (Table 1), 

median values are the most appropriate summary statistic to evaluate sampling methodologies 

(Helsel, 2005). 

 

Table 1. Median estimates from model runs (n=1,000) for all sampling methodologies and frequencies with 

quantitative comparisons to the actual peak 96-h time-weighted average (TWA). DIS = Fixed Duration 

Integrative Samples; FIS = Full Integrative Samples. 

 
Actual 

Peak 

96-h 

TWA 

 Discrete Point 

Samples 

 
DIS 

 
FIS 

Sample 

Frequency 

 

Median 

Percent 

of 96-h 

TWA 

(%) 

 

Median 

Percent 

of 96-h 

TWA 

 (%) 

 

Median 

Percent 

of 96-h 

TWA 

 (%) 

 Water half-life: t50 = 0.5 d 

n=1 17.96  0 0  3.5 19.5  5.1 28.4 

n=2 17.96  2.9 16.1  16 89.1  10 55.7 

n=3 17.96  3.7 20.6  16 89.1  15 83.5 

n=7 17.96  13 72.4  17.8 99.1  17.8 99.1 

 Water half-life: t50 = 2 d 

n=1 54.10  0 0  18 33.3  15 27.7 

n=2 54.10  42 77.6  38 70.2  31 57.3 

n=3 54.10  44 81.3  41 75.8  40 73.9 

n=7 54.10  53 98.0  49 90.6  49 90.6 

 Water half-life: t50 = 8 d 

n=1 84.51  0 0  32 37.9  24 28.4 

n=2 84.51  81 95.8  57 67.4  48 56.8 

n=3 84.51  81 95.8  63 74.5  60 71.0 

n=7 84.51  84 99.4  75 88.7  74 87.6 
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3. Results  

Predicted TWA median, mean, and concentration distributions varied substantially 

between sampling methods and frequencies (Fig. 2). Predictably, estimated TWA concentrations 

became more accurate and had less variability with higher sampling frequencies and longer 

aquatic half-lives.  

3.1 Discrete point samples 

Short water half-lives (t50 = 0.5 d) resulted in higher chances of underestimating the peak 

96-h TWA as compared to longer half-lives, especially at sampling frequencies less than seven 

(Fig. 2). Additionally, discrete point samples were the only sampling methodology to yield values 

greater than the peak 96-h TWA (Fig. 2, Table 2).  

 Discrete point samples had the greatest variance; however, this variation was 

substantially decreased as both sampling frequency and aquatic half-lives (t50) increased (Fig. 2). 

Across all water half-lives, decreasing the sampling frequency to one sample resulted in median 

predictions of zero (Table 1). Moreover, scenarios with only one collected sample produced the 

most results (> 59%) that were less than 10% of the peak 96-h TWA, which suggests a strong 

chance of receiving a false negative when predicting the presence of a toxicologically significant 

exposure event (Table 2). Conversely, sample frequencies of seven provided much better 

predictions (median values > 72%) of the true value (Table 1) and always yielded results > 10% 

of the peak 96-h TWA (Table 2). If threshold values of acceptance were set for median values > 

50% and no sampling events reporting < 10%, then required sampling frequencies for each 

aquatic half-life (i.e. 0.5, 2, and 8 d) would be 7, 3, and 3, respectively.   
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Fig. 2. Summary statistics resulting from modeling scenarios (n = 1,000) comparing discrete point samples 

(Discrete), fixed duration integrative samples (DIS), and full integrative samples (FIS) with varying 

sampling frequencies. Model estimates provided as box and whisker plots with median (solid horizontal 

line), mean (dotted horizontal line), inner quartile range (25th and 75th percentiles; box), the 10th and 90th 

percentiles (whiskers), and outliers (dots). Graphs are arranged to mirror the graphical representation of 

modeled scenarios as depicted in Figure 1 with water half-lives of t50 = 0.5 d (left column), t50 = 2 d 

(middle column), and t50 = 8 d (right column). Sample frequency increases from top to bottom.  
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Table 2. Evaluation of measurement distributions all replicate model runs (n=1,000). The sample 

frequency (expressed as percentage of values) are given for the total values below 10% of the peak 96-h 

time-weighted average (TWA), total greater than the peak, and the total of non-detect values for each 

sampling methodology and frequency. DIS = Fixed Duration Integrative Samples; FIS = Full Integrative 

Samples. 

 

Percentage of non-detect 

(i.e. zero) values 
 

Percentage of values 

<10% peak 96-h TWA 
 

Percentage of values 

greater than peak 96-h 

TWA 

 (%)  (%)  (%) 

Sample 

Frequency 

Discrete 

Point 

Sample 

DIS FIS  

Discrete 

Point 

Sample 

DIS FIS  

Discrete 

Point 

Sample 

DIS FIS 

 Water half-life: t50 = 0.5 d 

n=1 60.2 30.2 0  71.3 45.0 0.0  10.8 0 0 

n=2 20.3 0 0  42.4 3.8 0  23.8 0 0 

n=3 0 0 0  33.8 0 0  25.0 0 0 

n=7 0 0 0  0 0 0  38.0 0 0 

 Water half-life: t50 = 2 d 

n=1 59.3 30.8 0  59.3 32.9 0  18.1 0 0 

n=2 21.3 0 0  21.3 0 0  35.2 0 0 

n=3 0 0 0  0 0 0  33.5 0 0 

n=7 0 0 0  0 0 0  46.9 0 0 

 Water half-life: t50 = 8 d 

n=1 60.9 29.1 0  60.9 32.7 0  19.1 0 0 

n=2 20.1 0 0  20.1 0 0  39.6 0 0 

n=3 0 0 0  0 0 0  39.3 0 0 

n=7 0 0 0  0 0 0  47.4 0 0 

 

3.2 Fully integrative samples (FIS) 

Across all water half-lives investigated, variation in model estimates for FIS methods 

decreased as sampling frequency increased (Fig. 2). Moreover, decreasing the sampling 

frequency to one sample resulted in the lowest median predictions (28%) of the peak 96-h TWA 

(Table 1). Because FIS methods covered the entire 14-d exposure window, FIS methods always 

yielded values greater than 10% of the peak 96-h TWA for all sampling frequencies, even under 

short aquatic half-lives and reduced sample frequencies (Table 2). Sampling frequencies of seven 

always resulted in median values of greater than 87% of the peak 96-h TWA (Table 1). If 

threshold values of acceptance were set for median values > 50% and no sampling events 
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reporting < 10%, then required FIS sampling frequencies for each environmental half-life (0.5, 2, 

and 8 d) would be 2, 2, and 2, respectively.   

3.3 Fixed duration integrative samples (DIS) 

Similar to FIS methods, variation in model estimates for DIS methods decreased as 

sampling frequency increased, across all water half-lives (Fig. 2). Across all aquatic half-lives, 

decreasing sampling frequency to one sample resulted in the lowest prediction accuracy (i.e. < 

40%) of the peak 96-h TWA (Table 1). Regardless of aquatic half-life, sample frequency of one 

resulted in the greatest number of non-detect values (30%) and values registering < 10% of the 

peak 96-h TWA (> 32%; Table 2). Sampling frequencies containing seven samples provided 

better estimates (> 88%) of the true value (Table 1) and always yielded results > 10% of the peak 

96-h TWA (Table 2). Moreover, as sampling frequency decreased, estimates obtained from DIS 

methods produced slightly better predictions of the peak 96-h TWA than FIS methods across all 

water dissipation rates (Table 1). Regardless, similar sample frequencies would be required to 

achieve acceptable median values of  > 50% and no sampling events reporting < 10%, where DIS 

sampling frequencies for each environmental half-life (0.5, 2, and 8 d) would be 2, 2, and 2, 

respectively.   

4. Discussion 

Maximum contaminant exposure concentrations occur immediately following release into 

aquatic systems (Ashauer and Brown, 2013; Reinert et al., 2002). Obtaining toxicologically-

relevant measurements is difficult because aquatic exposures are dynamic with rapidly fluctuating 

concentrations and uncertainties regarding timing of contamination events (Ashauer and Brown, 

2013; Boxall et al., 2002; Reinert et al., 2002). Current monitoring practices employ discrete 

point sampling, integrative sampling, or a combination of the two methods (Alvarez et al., 2005). 

Although discrete point sampling is a common monitoring practice, we found it produced 

the highest variability in estimates. Specifically, discrete point samples had the highest frequency 

of non-detect measurements (i.e. zero), the highest frequency of estimates < 10% of the peak 96-h 



25 
 

TWA, and the highest frequency of values greater than peak 96-h TWA (Fig. 2, Table 2). This 

wide variation in exposure estimates should be expected given that modeled scenarios consisted 

of a single pulsed exposure and realistic sampling regimes. Consequently, discrete point samples 

have the highest probability of completely missing a pulse while simultaneously being the most 

likely to provide an estimate exceeding the peak 96-h TWA. As compared to integrative methods 

that only required two samples, discrete point estimates required greater sampling frequencies (7, 

3, 3 samples) to ensure median values > 50% and no sampling events reporting < 10% (Table 1 

and Table 2). Although these trends apply across all aquatic half-lives investigated (i.e. 0.5, 2, 

and 8 d), differences between discrete point samples and integrative methods were most evident 

under short aquatic half-lives.  

Alvarez et al. (2005) investigated streams receiving agricultural, municipal, and industrial 

wastewaters and compared contaminant detection frequency for integrative (i.e. POCIS) and 

discrete methods (i.e. standard water-column sampling) and reported 32 analytes accumulated in 

POCIS; however, only 24 analytes were detected in discrete point samples. Although POCIS 

samples accumulated ten unique contaminants, discrete point sample extracts also yielded six 

contaminants not detected in POCIS (Alvarez et al., 2005). Regardless, the integrative nature of 

POCIS devices provided the most consistent identification of contaminants from water, most 

likely due to contaminant pre-concentration from the water to yield residues greater than method 

detection limits (Alvarez et al., 2005). Modeled scenarios described herein also suggest 

integrative samples provided better prediction of the peak 96-h TWA than discrete water samples, 

especially for short aquatic half-lives (Table 1). Although median values for integrative samples 

were consistently below the peak 96-h TWA, the frequency of extreme values < 10% of the true 

value or exceeding the true value were reduced as compared to discrete point samples (Table 1 

and Table 2). Collectively, modeled data present herein and field data suggest integrative 

sampling methods likely provide more consistent measurements as compared to discrete point 
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samples due to inter- and intra- day variations in water concentrations that occur during pulsed 

exposures. 

Results from modeled scenarios also suggest that that discrete point samples can be semi-

integrative provided enough samples are obtained and there is adequate contaminant persistence 

in the water column (Fig. 2, Table 1). This observation is true for all sampling methods 

investigated. Assuming a single pulsed exposure, contaminants with long water half-lives can be 

appropriately measured using discrete point samples; however, more than one sample should be 

obtained within the anticipated exposure window (spaced near the beginning and end) to 

contaminant detection. This is particularly important because results from modeling scenarios 

suggest sampling frequency had the greatest influence on the total number of non-detect values as 

compared to contaminant dissipation rates (Table 2). Although the investigated modeling 

scenarios implemented single pulsed exposures, scenarios involving continuous contaminant 

release could cause stable water concentrations even for substances with fast water dissipation. 

Regardless, integrative sampling technologies (e.g. POCIS) provide a concentrated sample with 

lower background matrices and typically yield lower detection limits without the need to collect, 

extract, and filter large water volumes (Alvarez et al., 2004). Logically, increased sample 

frequency provides a better estimate of the true value (i.e. peak 96-h TWA); however, in practice 

there is a tradeoff between increased sampling frequency and expense. Increased sampling 

frequency is even more challenging when investigating sites distributed across a landscape. 

 The decision to use a particular sampling method should be driven by contaminant-

specific physicochemical properties to ensure adequate sampling occurs. Contaminants with 

shorter water half-lives in the water column should be sampled using integrative methods (Table 

1). For short water half-lives, integrative samples provided better estimates of the peak 96-h 

TWA, fewer values < 10% of the peak, and fewer non-detect values as compared to discrete point 

samples (Table 1). Moreover, integrative samples measuring a 96-h interval (DIS) generally 

provided better estimates than integration periods exceeding 96-h (FIS; Table 1). Although DIS 
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methods provided better estimates at low sampling frequencies (i.e. 1-2), estimates from FIS 

measurements were the only predictions consistently > 10% of the peak 96-h TWA (Table 1). 

Conversely, when substances have long aquatic half-lives, discrete point sampling methods 

produced higher median estimates as compare to both integrative methods. Similar results have 

been reported for antibiotic concentrations in wastewaters comparing residues in organic 

chemical diffusive gradient thin film (o-DGT) samplers with automated and discrete grab samples 

(Chen et al., 2013). Chen et al. (2013), reported grab sample concentrations approximately 3x 

higher than concentrations found in integrative samples obtained wastewaters with frequent to 

continuous discharge. Therefore, polar hydrophilic contaminants with long water half-lives that 

do not readily partition to sediment or other organic matter may not require integrative sampling 

to obtain toxicologically-relevant concentrations. 

Although aquatic pulses are frequently considered for compounds with a short half-life 

due to hydrolysis or photolysis, other factors can also contribute to rapidly declining water 

concentrations. For example, contaminant concentrations in aquatic systems are continuously in 

flux due to intermittent inputs, contaminant dissipation, and flow variations (Ashauer et al., 2006; 

Edwards and Moore, 2014; Reinert et al., 2002) where pulsed exposures can occur simply by 

contaminants being diluted in the water column and being transported downstream. Moreover, 

hydrophobic contaminants (e.g. current use pesticides, polyaromatic hydrocarbons, and some 

personal care products) that have large octanol-water partitioning coefficients (Kow) rapidly 

partition to organic matter (Landrum et al., 1984; Maul et al., 2008; Morrison et al., 2013; Yang 

et al., 2006). Hydrophobic contaminants with Log Kow > 4 have limited accumulation in classical 

POCIS configurations due to interactions with the diffusion limiting membrane (Alvarez et al., 

2004); however, POCIS-Nylon modifications may facilitate integrative sampling of these 

substances due to decreased membrane limitation of analyte accumulation (Belles et al., 2014). 

Collectively, results from modeled scenarios suggest that regardless of sampling 

methodology, better estimates of the actual peak 96-h TWA were obtained at higher sampling 
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frequencies. Across all aquatic half-lives investigated (i.e. 0.5, 2, and 8 d), differences between 

discrete point samples and integrative samples were greatest at low sampling frequencies where 

discrete point samples required higher sampling frequencies to ensure median values > 50% and 

no sampling events reporting < 10% as compared to integrative methods. Therefore, discrete 

point samples may be appropriate for monitoring contaminants with long water half-lives; 

however, when pulse initiation is unknown, sufficient samples should be taken to ensure 

sampling occurs. Integrative samples reduced the frequency of extreme values < 10% of the true 

value and exceeding the actual peak 96-h TWA. Moreover, FIS measurements provided the only 

predictions consistently greater than 10% of the peak 96-h TWA. As such, integrative methods 

may be most appropriate for monitoring contaminants with short water half-lives, especially 

when monitoring sites are distributed across a landscape and the exact timing of pulsed events is 

uncertain.  
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CHAPTER III 
 

 

DEVELOPMENT OF HELISOMA TRIVOLVIS POND SNAILS AS BIOLOGICAL SAMPLERS 

FOR BIOMONITORING OF CURRENT-USE PESTICIDES 

The following chapter appears as accepted to Environmental Toxicology and Chemistry: 

Morrison, S.A. and J.B. Belden (2016). Development of Helisoma trivolvis pond snails as 

biological samplers for biomonitoring of current-use pesticides. Environ Toxicol Chem DOI 

10.1002/etc.3400 

Abstract 

Non-target aquatic organisms residing in wetlands are commonly exposed to current-use 

pesticides through spray drift and runoff. However, it is frequently challenging to measure 

exposure due to rapid dissipation of pesticides from water and reduced bioavailability. Our 

hypothesis is that freshwater snails can serve as bioindicators of pesticide exposure based on their 

capacity to passively accumulate tissue residues. Helisoma trivolvis snails were evaluated as 

biomonitors of pesticide exposure using a fungicide formulation that contains pyraclostrobin and 

metconazole and is frequently applied to crops surrounding depressional wetlands. Exposure-

response studies indicate that H. trivolvis are tolerant of pyraclostrobin and metconazole at 

concentrations >10x those lethal to many aquatic species with a median lethal concentration 

based on pyraclostrobin of 441 µg/L (95% CI of 359-555 µg/L). Bioconcentration factors ranged 

from 137-211 mL/g and 39-59 mL/g for pyraclostrobin and metconazole, respectively.
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Elimination studies suggested one-compartmental elimination and snail tissue half-lives (t50) of 

approximately 15 h and 5 h for pyraclostrobin and metconazole, respectively. Modeling derived 

toxicokinetic parameters in the context of an environmentally-relevant pulsed exposure suggests 

residues can be measured in snails long after water concentrations fall below detection limits. 

With high fungicide tolerance, rapid accumulation, and slow elimination, H. trivolvis may be 

viable for biomonitoring of pyraclostrobin and should be investigated for other pesticides.   

Key words: Biomonitoring, toxicokinetics, pesticide, Helisoma trivolvis 

Introduction 

Traditionally, monitoring of aquatic systems entails discrete sampling of surface waters, 

which provides information on current contaminant levels; however, these discrete or “snapshot” 

measurements may not be accurate indicators of exposure for compounds that pulse through the 

system [1]. The major complicating factor is dissipation rate from water to suspended sediments 

[2], sediment beds [3], and other natural organic matter sources such as dissolved organic carbon 

[4] and detritus [5]. As such, obtaining environmentally-relevant concentrations of pulsed 

exposures necessitates understanding chemical fate and effective sampling protocols, thus 

ensuring accurate measurement of the bioavailable fractions [6]. For instance, Morrison et al. [3] 

demonstrated significant mortality of amphipods (Hyalella azteca) following a pulsed exposure to 

high fungicide concentrations, despite rapid sediment partitioning that resulted in approximately 

70% reduction of mass applied to the system within four hours of water column application. 

Accurate estimation of water concentrations was only possible by making repeated measurements 

(3, 12, 96, 168 h) of the overlying water throughout the exposure. This level of resolution is 

difficult to obtain in the field, especially when investigating numerous sites distributed across a 

landscape. Additionally, many current-use pesticides have short aquatic half-lives and thus the 

most relevant exposure scenarios for many aquatic organisms are pulsed exposures [7]. Predicting 

intensity and length of episodic events is challenging because complex environmental factors 

influence exposure kinetics [6-8].  
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Deployment of passive sampling devices (PSDs) is becoming a viable alternative to 

discrete sampling due to its ability to measure bioavailable water fractions over time [1, 9, 10]. 

Biomonitoring is another alternative method where body residue concentrations are measured in 

biological samplers (i.e. organisms) collected from field sites to predict environmental exposure. 

Synthetic PSDs have had the advantage over measuring chemical residues in organisms due to 

cleaner sample matrices; however, the development of better analytical extraction and cleanup 

protocols and increased instrumentation sensitivity has greatly enhanced our ability to measure 

tissue concentrations [11]. Organism body burdens are frequently used in standardized sediment 

quality tests [12, 13] and biomonitoring [14-18] especially for contaminants known to persist and 

bioaccumulate in the environment. Previous work has demonstrated that tissue concentrations can 

be analyzed in mussels [17, 19] and snails [14, 15] to indicate environmental pollution. Mussels 

receive greater attention in biomonitoring programs (as compared to snails) because they actively 

filter water, resulting higher contaminant accumulation rates. However, their use is limited to 

coastal waters and streams due to absence of indigenous populations in ephemeral water bodies 

(e.g. depressional wetlands). Conversely, sustained colonization of ephemeral waters can be 

maintained by pulmonate snails through waterfowl dispersal [20] and their innate ability to 

burrow into moist soil and estivate using atmospheric air for respiration [21].  

Helisoma trivolvis (also known as Planorbella trivolvis) is a pulmonate snail species 

ubiquitously found throughout North America, inhabiting a variety of moderately eutrophic, 

permanent, and ephemeral freshwaters [22]. Coogan and La Point [14] successfully demonstrated 

that H. trivolvis bioaccumulate antimicrobial agents from wastewater treatment plant effluents, 

which suggests that these snails may also be useful for the biomonitoring of other pollutants. To 

be considered a viable option for biomonitoring of pesticides in aquatic systems, these snails 

would need to satisfy several criteria. First, the snails must be tolerant of pesticides at 

environmentally-relevant concentrations, which would allow collection and subsequent analysis 

of body residues even if a pulsed exposure significantly impacted other (more sensitive) non-
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target species. Second, to account for declining water concentrations, pesticide accumulation 

would need to occur rapidly. These two criteria must be met to satisfy the requirements of an 

acceptable organism for biomonitoring, provided that the ultimate goal is to simply assess if prior 

exposure has occurred. However, if the objective were to estimate water concentrations for risk 

assessment, pesticide concentrations would also need to be retained for long durations (i.e. slow 

elimination phase) so that body burdens are easily measurable after water concentrations have 

approached or fallen below detection limits.  

Due to their ubiquitous presence and abundance in areas of interest throughout the typical 

growing season, snails are good candidate organisms for biomonitoring of shallow, ephemeral 

water bodies (e.g. embedded cropland wetlands). Because most wetlands within the midcontinent 

of North America are adjacent to row-crop agriculture [23], aquatic organisms inhabiting these 

wetlands are at risk for pesticide exposure due to spray drift or unintentional direct spraying. The 

spray drift model (AgDrift, Stewart Agricultural Research Services) predicts that under certain 

circumstances (e.g. wind speed, height of pesticide release, etc.), up to 20% of aerially applied 

agrochemicals can occur 15 m downwind from application [24]. This model prediction was 

supported in a recent field investigation where 20-30% of the nominal application rate was 

detected above corn canopies located 15 m outside of the spray zone [25]. Indeed, over a half 

billion pounds of fungicides, herbicides, and insecticides were applied annually from 1992 to 

2011 in attempt to increase crop production and reduce diseases [26]. For example, strobilurin 

fungicides have been the only effective means of controlling outbreaks of soybean rust 

(Phakopsora pachyrhizi) despite cultural practices of varying planting date, row width, and crop 

rotation [27, 28]. Despite documented increases in fungicide application and reports of 

environmentally-relevant toxicity to non-target organisms [3, 29-33], detailed studies pertaining 

to environmental exposure concentrations are lacking. 

The overall goal of this investigation was to evaluate the use of H. trivolvis body burdens 

for assessing aquatic pesticide exposure. This conceptual premise was tested using Headline 
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AMP fungicide formulation, which contains two active fungicide ingredients, pyraclostrobin and 

metconazole that make up 13.64% and 5.14% of the formulation, respectively [34]. H. trivolvis 

were evaluated for their biomonitoring capacity through three experiments, each of which was 

designed to test the previously outlined criteria. First, a toxicity test was performed to investigate 

fungicide tolerance following a single pulsed exposure. Second, uptake studies were conducted to 

determine tissue accumulation rates and steady-state concentrations. Finally, elimination studies 

were conducted to investigate compartmental half-lives, elimination rates, and excretion potential 

of parent fungicide compounds. In order to frame the results within an environmental context, a 

modeling exercise was performed, using toxicokinetic parameters characterized in this study, to 

describe how tissue concentrations change based on an environmentally-relevant pulsed exposure 

scenario using data obtained from sediment-water microcosms. 

Materials and Methods 

Test Organisms 

Juvenile Helisoma trivolvis pond snails (5-8 mm in length) were haphazardly selected 

from cultures maintained at Oklahoma State University. Cultures were kept in static renewal 

systems with dechlorinated tap water, coarse coral substrate, and a 16:8 light:dark cycle. Cultured 

organisms were fed Algae Wafers (Kyorin Inc., NJ, USA) and small broccoli florets ad libitum. 

Mean (± standard deviation) of lipids for cultured snails was 7.0±2 µg/mg (0.8±0.3 % lipid by 

weight) as determined by a modified method put forth by Van Handel [35] and gravimetrically 

confirmed using a modified method from Hara and Radin [36]. Refer to Supporting Information 

for additional method details. 

Overall Experimental Design 

Experimental units in each study (i.e. toxicity, toxicokinetic, and mass balance 

investigations) consisted of stainless steel steaming trays (17.8 cm × 10.8 cm × 10.2 cm), 800 mL 

of dechlorinated tap water, and ten (n=10) snails. Snails were haphazardly collected from 

cultures, sorted into size classes, and randomly divided amongst experimental units prior to 
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treatment. Formulation dosing suspensions were mixed (i.e. rigorously vortexed) with deionized 

water to achieve expected environmental concentrations based on maximum label application 

rates. Desired exposure concentrations were achieved by adding either 100 µL of suspended 

fungicide formulation into treated units or 100 µL of deionized water into control units. Water 

was gently stirred with a glass rod to evenly distribute fungicides within experimental units. The 

light cycle was kept at 16:8 light:dark and water quality measurements were taken every 24 h for 

the duration of the experiments. To remove the complication of analyte exposure and 

accumulation through ingestion, organisms were only provided food during elimination phases of 

investigations. Temperature averaged 24(±2) °C, pH ranged from 6.9-7.6, hardness 190-220 mg/L 

as calcium carbonate. Dissolved oxygen concentrations in toxicity tests, accumulation studies, 

and elimination studies ranged from 6.5-8.7 mg/L. During the parallel mass-balance elimination 

study where water exchanges were not possible (see Elimination studies below), dissolved 

oxygen was lower, ranging from 4.6-8.6 mg/L, but still above levels expected to cause stress to 

snails. Mortalities were assessed daily throughout each experiment. Mortality was defined using 

the following criteria: a) Failure to respond (retract into shell) after gentle prodding with a glass 

rod, b) Floating or laying on side with no response to gentle prodding, and c) Hemorrhage or 

bleeding [37]. Snails found dead during any assessment were removed from experimental units 

and were not included in any toxicokinetic analysis. Snails collected from individual 

experimental units at designated takedown points were combined and stored frozen at -30 °C 

until analysis. As such, combined snails from any one experimental unit (i.e. snails remaining at a 

designated takedown point) constituted one sample. 

Toxicity tests 

Toxicity tests (96-h in length) were conducted using five exposure concentrations of 

Headline AMP fungicide, one control treatment, three replicates (n=3) per treatment, and ten 

snails (n=10) per replicate. A single pulsed exposure was used during toxicity exposures, as 

opposed to static renewal or flow through systems, to match exposure scenarios established 
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during previous investigations for determining acute toxicity [3, 29, 31]. Nominal concentrations 

for pyraclostrobin were 0, 86, 160, 300, 700, and 1000 µg/L which correspond to nominal 

metconazole concentrations of 0, 32, 60, 111, 260, and 372 µg/L. These exposure concentrations 

are well below the water solubility for both pyraclostrobin 1,900 µg/L and metconazole 1,600 

µg/L [38, 39]. Water concentrations were measured at 4, 24, 48, 72, and 96 h after initial 

exposure using 15 mL aliquots from each experimental unit. At the conclusion of the study, 

remaining snails were combined from individual experimental units and sacrificed by freezing in 

polyethylene test tubes at -30 °C until further analysis. Mortality observed throughout acute 

toxicity tests resulted in variable number of individuals remaining between treatment levels at the 

end of the study. Thus, snail wet-weight (not the number of individuals) utilized for body residue 

analysis is the most important metric. As such in relation to the acute toxicity test, snail weights 

provided in the Supporting Information correspond to de-shelled wet-weight of snails (living and 

dead) combined from a single experimental unit within the treatment level at the 96-h mortality 

assessment. 

Accumulation Studies 

Two accumulation studies were conducted to determine accumulation rates and steady-

state concentrations. Each accumulation study was conducted using Headline AMP fungicide 

with a constant nominal exposure concentration of 86 µg/L pyraclostrobin and 32 µg/L 

metconazole. This concentration was chosen based on water-only toxicity test results, which 

demonstrated minimal mortality at this concentration. Coincidentally these concentrations align 

with expected maximum environmental concentrations, based on a direct overspray of a shallow 

wetland (approximately 16 cm deep) and assuming full water incorporation using the maximum 

application rate for North American corn. During the first study (24-h in length), experimental 

units were taken down at 2, 4, 7, 14, and 24 h. During designated takedown points, water samples 
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(15 mL) were extracted from each experimental unit and snails (n=9-10 per unit) were recovered 

from four treated (n=4) and two control (n=2) replicate unit and stored at -30 C until analysis.  

To fully characterize accumulation and measure steady-state tissue residues, a second 

study was conducted by extending the exposure duration to last 96 h with takedown points at 3, 6, 

12, 24, 48, 72, and 96 h. To ensure stability of water concentrations throughout the extended 

study, static renewals were performed every 24 h by decanting and gently refilling experimental 

units with aerated dechlorinated water and immediately re-spiking with Headline AMP. Three 

treated (n=3) and one control (n=1) experimental unit(s) were sacrificed during designated 

takedown points. From these experimental units, water samples (20 mL) were extracted and 

recovered snails (n=9-10 per unit) were stored at -30 C until analysis.  

Elimination Studies 

Elimination studies were conducted to determine compartmental half-lives and the 

duration of time that snail residues remained detectable for Headline AMP fungicides. Control 

units (n=8) and treated units (n=24) exposed to Headline AMP fungicides with nominal exposure 

concentrations of 86 µg/L pyraclostrobin and 32 µg/L metconazole were exposed for 96 h to 

achieve steady-state tissue concentrations based on results from previous accumulation 

experiments. Each experimental unit contained ten snails (n=10) and daily static water renewals 

were performed as described above. Following the accumulation phase, snails (n=10) from each 

experimental unit were collected, rinsed, and transferred to clean experimental units until 

designated takedown points at 0, 6, 12, 24, 48, 96, 168, and 240 h. During the elimination phase, 

snails were provided small pieces of algae wafers. Water exchanges were conducted daily to 

maintain minimal fungicide water concentrations, and ensure that no reuptake occurred as 

elimination progressed. Three treated (n=3) and one control (n=1) experimental unit(s) were 

sacrificed during designated takedown points. From these experimental units, water samples (400 

mL) were extracted and recovered snails (n=10 per unit) were stored at -30 C until analysis.  
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A parallel mass balance elimination study was conducted to evaluate fungicide excretion 

and potential detoxification pathways. The mass balance of both pyraclostrobin and metconazole 

was determined by monitoring changes in tissues residues and water concentrations throughout 

the elimination phase. Similar to the previous elimination study, the 96-h accumulation phase was 

conducted with daily water exchanges and was immediately followed by an elimination phase. 

However, unlike the previous elimination study, daily water exchanges were not performed 

during the elimination phase, which lasted 168 h (seven days). Following the accumulation phase, 

snails (n=10) were collected, rinsed, and transferred to clean experimental units until designated 

takedown points at 0, 6, 12, 24, 48, 96, and 168 h. Three treated (n=3) and one control (n=1) 

experimental unit(s) were sacrificed during designated takedown points. From these experimental 

units, water samples (400 mL) were extracted and recovered snails (n=10 per unit) were stored at 

-30 C until analysis. Due to the toxicokinetic differences of this study caused by reuptake from 

water, resulting body residues were only used during this mass balance investigation and were not 

included in any of the toxicokinetic models described below.  

Analyte Extraction and Analysis 

During designated takedown points, acquired water samples were passed through 

SampliQ solid phase extraction (SPE) cartridges (Agilent Technologies, CA, USA) immediately 

following collection. The QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method 

was used for analytical determination of pyraclostrobin and metconazole body resides for all 

snails recovered during designated takedown points [11, 40]. Analysis of chemical residues was 

performed using gas chromatography / mass spectrometry (GC/MS; Agilent 5975c), electron 

ionization, select ion monitoring, matrix matched standards, and deuterated polycyclic aromatic 

hydrocarbons (chrysene-d12 and perylene-d12) as internal standards. Supporting Information 

provides additional detail for quality control, extraction, and analysis methods. 
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Mean (± standard deviation; SD) percentage of SPE water recoveries for pyraclostrobin 

and metconazole were 117.8 ± 12.4% and 102.7 ± 5.0%, respectively. Method recovery for 

QuEChERS extracts was performed at 15,000 (n=8), 6,000 (n=8), and 600 ng/g (n=8) to ensure 

quantitative accuracy over a range of fortification levels. Mean (±SD) percentage of recoveries 

for pyraclostrobin were 80.5 ± 5.0%, 110.3 ± 5.0% and 104.9 ± 8.1% for 15,000, 6,000, and 600 

ng/g fortification levels, respectively. Metconazole had similar recoveries with 94.3 ± 16.8%, 

102.2 ± 3.4%, and 87.6 ± 5.6% for 15,000, 6,000, and 600 ng/g fortification levels, respectively. 

Method detection limits for pyraclostrobin and metconazole were 11.2 ng/g and 14.0 ng/g, 

respectively. Helisoma trivolvis body residues for all control (n=28) and laboratory blanks (n=8) 

were below method detection limits. Mean (±SD) percentage of expected concentrations for all 

dosing solutions was 110 ± 19% and 102 ± 17% for pyraclostrobin and metconazole, 

respectively. 

Data Analysis 

Snail LC50 (median lethal concentration) were calculated using IBM SPSS Statistics 

Data Editor Version 21 (IBM Corp., NY, USA), which uses Probit algorithms developed for 

exposure-response analysis by Finney [41]. Metconazole was not considered when calculating the 

LC50 because previous investigations demonstrated that active strobilurin fungicide ingredients 

(e.g. pyraclostrobin) were responsible for observed toxicity for both amphipods [3] and 

amphibians [31] when concurrently applied with environmentally-relevant concentrations of an 

azole fungicide (e.g. metconazole). As such, calculated LC50s were based solely on time-

weighted average (Equation 1) pyraclostrobin concentrations. Time-weighted average water 

concentrations (CTWA) were achieved by fitting a first order exponential decay function through 

average water concentrations measured over time and taking the average of the curve, so that 

    CTWA=
∫ f(x)dxb
a

(b-a)
         (1) 
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where a = 0 h, b = 96 h and f(x) = first order exponential decay function [3]. Differences in H. 

trivolvis mortalities and bioconcentration factors (BCFs) were determined with IBM SPSS 

Statistics Data Editor. Bioconcentration factors obtained from each exposure level of toxicity 

tests and toxicokinetic investigations were compared using an univariate general linear model to 

conduct analysis of variance and a Tukey’s Honestly Significant Differences test (α=0.05) was 

used for post hoc analysis.  

Accumulation rates of fungicides by H. trivolvis snails were calculated by fitting body 

residue data across time to an one-compartment first-order kinetics model [42] (Sigmaplot 12.0, 

Systat Software, CA, USA) so that  

  Ca = CSS(1 − exp(−𝑘𝑒𝑡))        (2)  

where, Ca is the amount of fungicide accumulated in snail tissue (ng/g), CSS is the fungicide 

concentration (ng/g) when the tissue is at steady-state with the water, and t is the exposure 

duration (h). After sufficient exposure duration, CSS and bioconcentration factors (BCFs) are 

described by  

  BCF = 
CSS

CW
 =  

𝑘𝑢

𝑘𝑒
         (3) 

where CW is the water concentration (time-weighted average or otherwise; ng/mL), ku and ke are 

accumulation (mL/g/h) and elimination (h-1) rate coefficients. Results obtained from Sigmaplot 

accumulation regressions were used to calculate ku, ke, and “modeled” BCFs for the 96 h uptake 

experiment using parameter estimates. Equation 3 was also used to calculate “measured” BCF 

results from analyzed body residue and average water concentration data from the toxicity study, 

the 96 h uptake study, and the 0 h assessment point for the elimination study. Data from replicate 

experimental units were averaged and reported with 95% confidence intervals (CI). During 

elimination, the first-order elimination model (Equation 4) describes the total fungicide 

concentration in snails at any given time 

  Ca = CSS exp(−𝑘𝑒𝑡)          (4) 
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where t is the elimination time (h) post exposure. Equation 5 was used to calculate elimination 

half-lives (t50) for compartments based on ke parameter estimates from model fitting 

   t50=
ln(0.5)

𝑘𝑒
          (5) 

Integrating H. trivolvis toxicokinetic data, as described above, with previous water 

concentration trends observed for pyraclostrobin in sediment-water microcosm studies (Table S1) 

[3], provided an opportunity to model tissue concentrations under a simplified, but 

environmentally-relevant, exposure scenario. For environmental realism, the initial CW was set at 

the maximum environmentally-relevant concentration of pyraclostrobin (150 µg/L) based on 

maximum application rates of Headline EC fungicide to North American corn [29]. Water 

measurements obtained from the sediment-water microcosm exposures reported by Morrison et 

al. [3] were fit with a first order exponential decay model to determine an environmentally-

relevant dissipation rate (kd) from water (h-1). Water concentration values were generated using 

Equation 6 while accounting for dissipation rate from water so that 

   CW(𝑡) = CW(𝑡 − 1) × QW        and        QW = (1 − 𝑘𝑑) × ∆𝑡    (6) 

where CW(t) is the water concentration at time t (h), CW(t-1) is the previous water concentration, 

and QW is the quantity of analyte remaining in the water for accumulation (i.e. the bioavailable 

fraction). Modeled snail tissue values were determined using Equation 7 by applying 

toxicokinetic parameters controlling accumulation from water (ku) while accounting for 

elimination (ke) over time so that 

  Ca(𝑡) = CW(𝑡) × 𝑘𝑢 + Ca(𝑡 − 1) × Qa        and        Qa = (1 − 𝑘𝑒) × ∆𝑡  (7) 

where Ca is dependent on accumulation (ku) from CW (Equation 6), Ca(t-1) is the past exposure 

history (i.e. previous tissue concentration), and the quantity of analyte remaining (Qa) from the 

total fraction previously accumulated (i.e. the net body residue after elimination). Modeled tissue 

and water values were generated pointwise with one-hour increments using Microsoft Excel; 
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therefore, ∆t = 1 h for both equations. The model assumes that the system is sufficiently large 

enough so that uptake and elimination from snail tissues does not influence water values. 

Results and Discussion 

Toxicity Study 

Analyte water concentrations were relatively stable during the 96 h static exposure. 

Measured concentrations for pyraclostrobin and metconazole decreased from initial (4 h) 

concentrations by 26 ± 10% and 23 ± 11%, respectively. Time-weighted average water 

concentrations were within 20% of nominal concentrations for pyraclostrobin; however, 

metconazole concentrations decreased 30-40% from nominal (Table S2). Measured body residues 

taken at the 96 h assessment are provided in the Supporting Information (Table S3). Control 

mortality was less than 5% during toxicity tests and no adverse effects were observed within 

treated units until 72 h into the exposure. This is a stark contrast to previous research using 

Hyalella azteca amphipods and Bufo cognatus tadpoles, in which greater than 80% of observed 

toxicity occurred within 8 h of exposure [3, 29, 31]. The LC50 (95% CI) based on time-weighted 

average pyraclostrobin concentrations was 441 µg/L (359-555 µg/L; Figure 1). Estimated LC10 

(concentration required to induce 10% mortality) was 150 µg/L (97-197 µg/L; Figure 1). Lethal 

concentration thresholds were calculated based on pyraclostrobin (not metconazole) 

concentrations because previous investigations demonstrated that the active strobilurin fungicide 

ingredients were responsible for observed toxicity when concurrently applied with an azole 

fungicide [3, 31]. Data suggesting minimal metconazole toxicity to non-target organisms as 

compared to pyraclostrobin data may be attributed to different modes of action (MOA). The 

MOA for pyraclostrobin (and other strobilurin fungicides) is a non-specific inhibition of cellular 

respiration at the mitochondria by binding the Quinone Outside Inhibitors (Qol) and blocking 

electron transfer between cytochrome b and c complexes [34, 43]. Metconazole inhibits 

demethylation of sterol biosynthesis, thus disrupting cell membrane synthesis [34, 44]. Although 

this remains unconfirmed for snails, indirect effects on pyraclostrobin toxicity could occur from 
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metconazole and/or the additional formulation adjuvants. Regardless, previous investigations 

have demonstrated that the additional adjuvants of the commercial formulations did not 

significantly contribute to toxicity compared to individual strobilurin ingredients [3, 31]. 

 

 
 

Figure 1. Mean (± standard deviation) percentage of mortality for Helisoma trivolvis pond snails following 

a single pulsed water-only exposure of Headline AMP. Time-weighted average water concentrations are 

provided for the active strobilurin ingredient, pyraclostrobin. Provided mortalities correspond to the 96-h 

assessment. Each treatment concentration consisted of three replicates (n=3) and 10 individual snails per 

experimental unit. Categorical letters represent statistical differences between treatment concentrations (p < 

0.05).  

 

The estimated LC50 in this study is magnitudes greater than thresholds reported for other 

aquatic organisms. Bringolf et al. [30] reported 96 h EC50 (the median effective concentration) in 

freshwater mussels (Lampsilis siliquoidea) to be 30 µg/L. LC50s have also been reported for 

water fleas (Daphnia magna) ranging from 14-120 µg/L [33], and amphipods (H. azteca) at 21 

µg/L [3]. Aquatic vertebrates have also shown sensitivity to pyraclostrobin: bluegills (Lepomis 

macrochirus) have reported LC50s of 11 µg/L [32], while LC50s for Great Plains Toad (B. 

cognatus) tadpoles range from 3.7-10 µg/L [29, 31]. Maximum environmentally-relevant 
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concentrations of pyraclostrobin are expected to be less than 150 µg/L based on direct overspray 

of Headline EC fungicide into a shallow wetland (i.e. 16 cm water depth), assuming full water 

incorporation [29]. Using the same reasoning for the formulation used in this study, Headline 

AMP fungicide, 86 µg/L is the maximum environmentally-relevant concentration. These 

concentrations are at or below the LC10 reported in this study. As such, H. trivolvis snail 

populations will persist at any environmentally-relevant concentration of pyraclostrobin while 

populations of other sensitive species may be adversely affected.   

Although limited toxicological studies have been performed using Helisoma trivolvis 

snails, relatively high tolerance has been reported for some current-use pesticides. For instance, 

exposure to malathion resulted in 24-h LC50s of 268 mg/L (95% CI: 237-297) and 479 mg/L 

(95% CI: 417-536) for H. trivolvis juveniles (3-5 mm) and adults (8-10 mm), respectively [37]. 

These values are magnitudes greater than the 48-h EC50 (0.011 mg/L) reported for D. magna 

exposed to malathion [45]. No significant change in H. trivolvis behavior or survival following a 

28 d fenvalerate exposure up to 0.79 µg/L; however, toxicity was observed for more sensitive 

species within the same system with LC50s for juvenile amphipods (Gammarus 

pseudolimnaeus), mayflies (Ephemeralla sp.), and Rhagoinid flies (Atherix) of 0.05, 0.022, and 

0.12 µg/L, respectively [46]. Similarly, Spehar et al. [47] reported no significant reduction in H. 

trivolvis survival following exposure to permethrin at concentrations up to 0.33 µg/L. Permethrin 

exposure results in 21-d LC50 and EC50s of 0.03 µg/L and 0.042 µg/L for caddisflies 

(Brachycentrus americanus) and stoneflies (Pteronarcys dorsata), respectively [46]. Collectively, 

data suggests that H. trivolvis would likely survive environmentally-relevant fungicide exposures 

and many other current-use pesticides, whereas other more sensitive species may be affected and 

potentially absent from the aquatic system. 

Toxicokinetic Studies 

Based on initial toxicity testing results, 86 µg/L was chosen for accumulation and 

elimination experiments because less than 10% mortality was observed (Figure 1). Additionally, 
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tissue residues were well within quantitation limits (Table S3). Daily water renewals provided 

stable water concentrations for all accumulation phases during toxicokinetic investigations. 

Measured water concentrations were within 20% of nominal concentrations during accumulation 

phases for accumulation studies and the accumulation phases of elimination studies (Table S2). 

By conducting daily water exchanges during the 240 h elimination study, measured water 

concentrations remained below three percent of accumulation-phase water concentrations for both 

fungicides. Control mortality was less than 10% throughout uptake experiments, and no mortality 

was observed during elimination phases of experiments.  

Toxicokinetic uptake results from both accumulation experiments are reported together 

for pyraclostrobin (Figure 2A) and metconazole (Figure 2B). Measured body residues used for 

modeling are reported in Supporting Information (Table S4). The one-compartment first-order 

kinetics model (Equation 2) described accumulation well for both pyraclostrobin (R2 = 0.943, 

F(1, 10) = 648, p < 0.0001; Figure 2A; Table 1) and metconazole (R2 = 0.913, F(1, 39) = 410, p < 

0.0001; Figure 2B; Table 1). Using model parameter estimates (ke), snails reach CSS within 60 h 

of exposure for pyraclostrobin and within 9 h for metconazole (Figure 2).  

Toxicokinetic elimination results are reported for pyraclostrobin (Figure 2C) and 

metconazole (Figure 2D) with measured body residues used for modeling reported in Supporting 

Information (Table S5). The first-order elimination model (Equation 4) described elimination 

well for both pyraclostrobin (R2 = 0.991, F(1, 23) = 2426, p < 0.0001; Figure 2C; Table 1) and 

metconazole (R2 =0.990, F(1, 10) = 960, p < 0.0001; Figure 2D; Table 1). Estimated depuration 

coefficients were similar between accumulation and elimination studies for both fungicides 

(Table 1), resulting in compartmental half-lives (t50) of approximately 15 h and 5 h for 

pyraclostrobin and metconazole, respectively (Figure 2). Detection of pyraclostrobin was 

achieved up to 240 h (10 d) after exposure (Figure 2C; Table S5) which exceeded predictions of 

reaching detection limits by 168 h based on the predicted half-life in snail tissue. Metconazole 

was predicted to fall below detection limits by 35 h post exposure; however, detection was only 
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achieved up to 24 h due to the spacing of takedown points (Figure 2D, Table S5). The 

discrepancy between actual and predicted detection of pyraclostrobin could suggest elimination 

occurs via multiple compartments with different elimination rates; however, a single-

compartment model was chosen because fitting residue data with a double-compartment 

bioconcentration model produced non-significant parameter estimates (p > 0.05) for the second 

compartment.  

 

 
 

Figure 2. Tissue concentrations of pyraclostrobin (A, C) and metconazole (B, D) in Helisoma trivolvis 

pond snails during accumulation (A, B) and elimination (C, D) studies. Toxicokinetic data was fit with 

SigmaPlot using Equation 2 for accumulation and Equation 4 for elimination. Parameter estimates obtained 

during model fitting are provided in Table 1. Each data point corresponds to residues obtained from snails 

(n=9-10) collected from a single experimental unit. During elimination, metconazole residues fell below 

quantitation limits by 24 h. Measured tissue concentrations used for modeling accumulation and 

elimination data are reported in Supporting Information (Table S4 and Table S5). 
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Table 1. Toxicokinetic parameters (± standard error) for pyraclostrobin and metconazole fungicides in 

Helisoma trivolvis pond snails estimated from fitting accumulation and elimination data in SigmaPlot using 

Equations 2 and 4, respectively. Additional parameters were calculated from model-estimated parameters 

using Equation 3. Measured tissue concentrations used for modeling accumulation and elimination data are 

reported in Supporting Information (Table S4 and Table S5). Tissue concentration at steady-state (CSS), 

elimination (ke) and accumulation (ku) coefficients, bioconcentration factor (BCF). 

Parameter estimates from accumulation studies 

Fungicide R-squared 
CSS 

(ng/g) a 

ke 

(h-1) a 

ku 

(mL/g/h) b 

BCF 

(mL/g) b 

Pyraclostrobin 0.9433 14605 (± 452) 0.049 (± 0.004) 7.60 154 

Metconazole 0.9131 1480 (± 31) 0.144 (± 0.009) 6.44 44.6 

Parameter estimates from elimination study 

Fungicide R-squared 
CSS 

(ng/g) a 

ke 

(h-1) a 

ku 

(mL/g/h) b 

BCF 

(mL/g) b 

Pyraclostrobin 0.9906 16005 (± 288) 0.041 (± 0.002) 6.38 154 

Metconazole 0.9897 1246 (± 30) 0.157 (± 0.008) 6.86 43.7 
a Model estimated parameter ± standard error (p < 0.0001). 
b Calculated from modeled parameters estimates using Equation 3. 

 

No significant differences (p > 0.05) were observed between measured BCFs across all 

experiments (Table 2) or BCFs modeled from parameter estimates (Table 1) for either 

pyraclostrobin or metconazole. Mean (± SD) measured BCFs across all studies were 173.6 ± 21 

mL/g (range: 136.8-210.8 mL/g) and 49.5 ± 7 mL/g (range: 39.4-59.1 mL/g) for pyraclostrobin 

and metconazole, respectively. Estimated BCF values are magnitudes less than would be 

predicted from methods proposed by Veith et al. [48] based on partitioning coefficients (log P) 

for organic compounds in fish. Specifically, BCFs for pyraclostrobin (log P = 3.99) [38] were 

27% of predicted (634 mL/g). Similarly, BCFs for metconazole (log P = 3.85) [39] were 10% of 

predicted (497 mL/g). This disparity in BCF values can be expected due to the magnitude of 

difference between lipid content in snails (i.e. 7.0 ± 2 µg/mg or 0.8 ± 0.3% lipid by weight) 

compared to the whole body lipid content of fish (i.e. 10% by weight) used by Veith et al. [48]. 

Similar trends have been reported in literature where BCFs for snail species are lower than fish 

species. For instance, H. trivolvis are reported to have lower BCFs than fathead minnows 

(Pimephales promelas) following exposure to permethrin [47]. Legierse et al. [49] also reported 

lower BCFs in snails (Lymnaea stagnalis) as compared to guppies (Poecilia reticulate) for 
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chlorobenzenes. Regardless, data present herein combined with literature data suggest 

hydrophobic pesticides (log P ranges 3.8-7.6) accumulate in H. trivolvis. Specifically, H. trivolvis 

accumulate triclocarban and triclosan with bioaccumulation factors of 1,600 and 500, respectively 

[14], fenvalerate with a BCF range of 356-1,167 mL/g [46], and permethrin with BCFs ranging 

from 700-1,000 mL/g [47]. 

 

Table 2. Measured water concentrations and mean (± 95% CI) bioconcentration factor (BCF) in Helisoma 

trivolvis pond snails during all experiments following exposure to Headline AMP fungicides (i.e. 

pyraclostrobin and metconazole). Time-weighted water concentrations (Equation 1) are reported for 

exposure-response experiment and were used for calculation of measured BCFs (Equation 3). Average (± 

standard deviation) water concentrations are reported for 96-h accumulation and 0-h elimination as 

measured from samples taken prior to daily static renewals. Measured BCFs were calculated using 

measured water concentrations and correspond to 96-h takedown points (toxicity and accumulation studies) 

or the 0-h takedown of elimination.  

 

Experiment 
Pyraclostrobin  Metconazole 

Measured water 

concentration 

(µg/L) 

 
Measured BCF 

(mL/g) 

 Measured water 

concentration 

(µg/L) 

 
Measured BCF 

(mL/g) 

Exposure 1 83.9 
 164 

(137 – 190) 

 
22.5 

 43.8 

(37.5 – 50.1) 

Exposure 2 153 
 189 

(162 – 216) 

 
39.4 

 50.3  

(44.4 – 56.2) 

Exposure 3 284 
 180 

(154 – 207) 

 
78.0 

 47.2 

(41.3 – 53.1) 

Exposure 4 629 
 169 

(142 – 195) 

 
160 

 43.9 

(37.9 – 49.8) 

Exposure 5 842 
 181 

(154 – 208) 

 
280 

 56.7 

(50.8 – 62.7) 

Accumulation 94.9 ± 14.2 
 159 

(132 – 186) 

 
33.2 ± 4.9 

 46.5 

(40.6 – 52.4) 

Elimination 103.9 ± 13.8 
 156 

(131 – 181) 

 
28.5 ± 1.3 

 43.8 

(38.1 – 49.4) 

 

Results from the mass balance elimination study (where daily water exchanges were not 

performed), may suggest differential fungicide metabolism by H. trivolvis. Based on measured 

water and tissue concentrations across elimination takedown points, the mass balance for 

pyraclostrobin remained within 20% of initial (0 h) throughout the 168 h elimination, and water 

concentrations came to equilibrium within 12 h of elimination commencement (Figure 3A, Table 

S6). Based on this mass balance stability, H. trivolvis do not appear capable of breaking down or 
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biotransformation of pyraclostrobin. In contrast, the metconazole mass balance gradually declined 

to 38% of initial after 168 h and water concentrations never reached equilibrium (Figure 3B, 

Table S6). Although we did not monitor for metabolites, this could suggest that H. trivolvis is 

capable of breaking down or biotransformation of metconazole. Mass balance water 

concentration trends were consistent with measurements obtained during the 96-h static toxicity 

test where recoveries for pyraclostrobin were within 20% of nominal and metconazole recoveries 

dropped to 30-40% of nominal (Table S2). Measured body residues from the mass balance 

elimination study are reported in Supporting Information (Table S7). 

 
Figure 3. Mean (±SD) tissue and water concentrations of pyraclostrobin (A) and metconazole (B) from the 

mass balance elimination study conducted without water exchanges. Each takedown point consisted of 

three replicate (n=3) experimental units with ten (n=10) snails per replicate unit.  

 

Previous studies have successfully demonstrated environmental exposure to current-use 

pesticides using residues in amphibians [18, 50] and land snails [15]. Although, these studies 

provide data indicative of exposure, toxicokinetic parameters were not measured; therefore, 

preventing any estimate of exposure extent. Progressing investigations by describing 

toxicokinetic parameters of organisms is the foundation towards using biomonitoring to predict 

water concentrations. The combination of broad pesticide tolerance and toxicokinetic data 

demonstrating the capacity of H. trivolvis to accumulate and retain tissue concentrations over 

time (Figure 2), snail tissue residues can be, at the very least, an indication that exposure has 
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occurred. Additionally, our results show that the QuEChERS method provides accurate 

recoveries from snail tissues over multiple fortification levels and yields low detection limits.  

Using the toxicokinetic parameters characterized in this study in conjunction with data 

from an environmentally-relevant pulsed exposure scenario in sediment-water microcosms [3], 

provided an environmental context to quantify the accuracy of snail tissue residues to predict 

water concentrations. Analysis of pyraclostrobin water concentrations (Table S1) obtained from 

sediment-microcosm exposures yielded a mean (± SD) dissipation rate (kd) from water of 0.232 ± 

0.03 h-1 (range: 0.174-0.276 h-1) and corresponding to a mean (± SD) water half-life of 3.0 ± 0.5 h 

(range: 2.5-4 h) [3]. As such, the elimination rate of pyraclostrobin from snail tissues (0.041-

0.049 h-1 or t50 = 15 h; Table 1) was approximately 80% slower than dissipation from water 

within a sediment-microcosm. Under this pulsed exposure scenario, the peak and 12-h time-

weighted average water values (TWA; Equation 1) were 150 µg/L and 45.4 µg/L, respectively. 

Modeled water values quickly declined to 30% of the initial exposure concentration within four 

hours (Figure 4). This rapid loss would present a challenge for analyzing water samples; however, 

a 2,000x concentration using one liter of surface water would yield measurable concentrations up 

to 40 h after the initial pulse, especially with lower detection limits of tandem mass spectrometry 

(MS/MS) technologies. Modeled snail tissues reached 3400 ng/g within six hours of initial 

exposure and remained above detection limits (assuming no extract concentration) for 126 h (5.3 

d) post exposure (Figure 4). This is significantly shorter than the observed 240 h observed during 

elimination studies; however, this should be expected due to the shorter exposure duration that 

resulted in tissue residues below steady-state concentrations.  

Modeled tissue values (Figure 4) can be expressed as water concentrations using 

dimensional analysis by dividing the modeled tissue values by snail-pyraclostrobin BCF (154 

mL/g; Table 1).  For instance, six hours after the initial pulse, modeled snail values resulted in 

predictions that were 14% and 48% of the actual peak and 12-h TWA average concentrations, 

respectively (Table 3). These predictions were similar to discrete water values that were 21% and 
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68% of the peak and 12-h TWA average concentration, respectively (Table 3). Although, discrete 

water values provided better predictions initially, modeled tissue values provided more reliable 

predictions of the actual peak and 12-h TWA average water values over time (Table 3). Accurate 

exposure predictions are important because biological effects are related to peak concentrations 

rather than peak duration [3, 7, 51]. These short-term measurements are important because 

significant mortality can occur before bioavailable fractions partition from surface waters [3, 29, 

51]. Due to rapid accumulation and slow tissue elimination rates, as compared to dissipation from 

water, snail tissues provide better predictions of exposure concentrations than discrete water 

values.  

 
Figure 4. Modeled pyraclostrobin tissue (ng/g) and water concentrations (µg/L) based on toxicokinetic 

parameters (Table 1), water concentration trends in sediment-water microcosm studies reported by 

Morrison et al. [3], and maximum environmentally-relevant pyraclostrobin concentration (150 µg/L) using 

Headline EC [29]. Water and tissue concentrations were modeled using Equation 6 and Equation 7, 

respectively. 
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Table 3. Model prediction analysis evaluating the capacity of using either single time point water (i.e. Modeled water concentration) or predicted water 

concentrations (generated from Modeled tissue values) to accurately predict both the peak and 12-h time-weighted average (TWA) water concentrations. The 

peak and 12-h TWA concentrations were 150 µg/L and 45.4 µg/L, respectively. 

Time Post 

Exposure 

(h) 

Modeled 

water 

(µg/L)a 

 Percentage of (%)  
Modeled 

tissue 

(ng/g)b 

 Predicted 

water 

concentration 

(µg/L)c 

 Percentage of (%) 

 Peak water 

concentration 

 12-h TWA 

water 

concentration 

   Peak water 

concentration 

 12-h TWA water 

concentration 

6 31  21  68  3330  21.6  14.4  48 

12 6.3  4.2  14  3147  20.4  13.6  45 

24 0.27  0.18  0.59  1854  12.0  8.0  27 

36 0.011  0.0075  0.025  1020  6.6  4.4  15 
a Modeled water values calculated using Equation 6. 
b Modeled tissue values calculated using Equation 7. 
c Generated by dividing Modeled tissue concentration by bioconcentration factor (154 mL/g; Table 1). 
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For the purposes of monitoring water concentrations, deployment of passive sampling 

devices (PSDs) may be preferred over measuring organism residues due to simplistic extraction, 

well-defined analyte accumulation, and integration [1, 9, 10]. However, suitable organisms are 

often already present within aquatic systems and their tissue residues represent bioavailable 

contaminant fractions. Collectively, results demonstrate many analogous characteristics between 

analyte accumulation in H. trivolvis and PSDs. Although many PSD variations are available, 

analyte accumulation is always described as occurring either kinetically, (i.e. linearly) or based on 

thermodynamic equilibrium [52]. Our results show that snails are best described as equilibrium 

samplers due to the short linear accumulation phase as defined by the compartmental half-lives 

(t50) of approximately 15 h and 5 h for pyraclostrobin and metconazole, respectively (Figure 2). 

As such, snail tissues provide a larger window in which water exposure concentrations can be 

predicted as compared to discrete water values (Figure 4, Table 3).  

Although sediments readily accumulate pesticides and tissue residues are easily detected, 

concentrations often provide little information pertaining to bioavailable water concentrations 

responsible for adverse effects to non-target organisms [3, 6]. For instance, Morrison et al. [3] 

showed significant toxicity to H. azteca amphipods following a simulated overspray in a 

sediment-water microcosm. Significant mortality was observed following the application of 300 

µg/L pyraclostrobin to the overlying water, which corresponded to a sediment concentration of 

1,550 µg/kg seven days after application. However, direct sediment application of the same 

pyraclostrobin mass 24 h prior to water inundation did not induce mortality, despite sediment 

concentrations of 2,090 µg/kg. Although pesticide partitioning from the water can ameliorate 

pesticide toxicity [2, 3, 5], caution should be used when trying to predict exposure concentrations 

from sediment residues. 

H. trivolvis (and other) snails have other benefits to consider for biomonitoring. For 

instance, their ubiquitous distribution across ephemeral water bodies (e.g. depressional wetlands, 
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headwater streams, or other drainage areas) allows for easy collection at many field locations. 

Although BCF models predict fish to accumulate pesticides to greater levels than snails [47, 49], 

ephemeral wetlands are frequently colonized by snail species but not fish species [53]. This study 

demonstrates that H. trivolvis snails are tolerant to fungicides at environmentally-relevant 

concentrations and are more tolerant than other species reported in literature. Moreover, results 

from other investigations suggest that tolerance and accumulation potential extends to other 

current-use pesticides [14, 37, 45-47]. The data also shows accumulation potential where one 

gram of snail tissue is equivalent to 140-200 mL of water when based on the BCF of 

pyraclostrobin for snails (Table 1 and Table 2). Toxicokinetic parameters in combination with 

pyraclostrobin water concentrations obtained from a sediment-water microcosms exposures show 

that snails can accumulate bioavailable fractions to significant levels even under pulsed exposures 

(Figure 3). Collectively, our results and literature data suggest that further research is warranted 

to develop freshwater snails as biomonitoring tools for current-use pesticides. Future 

investigations should focus on testing snail accumulation in more complex sediment-water 

systems including mesocosms and field sites. Despite most of the discussion herein relating to 

ephemeral wetlands, snails may be useful biomonitoring tools in other aquatic systems due to 

their ubiquitous presence. Snails may provide an important link to demonstrating exposure and 

subsequent risk of current-use pesticides to other (more sensitive) non-target organisms due to 

relatively high tolerance, accumulation, and retention of bioavailable fractions. As such, H. 

trivolvis body burdens may be useful for assessing exposure for more sensitive species that could 

be absent from affected areas. 
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Supporting Information 

Additional methodology information is available in the Supporting Information including 

description of test chemicals, lipid analysis, detailed procedures for tissue and water extractions, 

instrumental parameters, and quality control. Select values are also provided for measured tissue 

and water concentrations as they pertain to reported modeling exercises. 
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Additional Experimental Detail 

Test Chemicals 

Headline AMP fungicide formulation (US EPA Reg. 7969-291; BASF) was purchased 

from a local distributor. Pyraclostrobin and metconazole are the two active fungicidal ingredients 

of this formulation and make up 13.64% and 5.14% of the formulation, respectively [1]. 

Formulation dosing suspensions were mixed with deionized water to achieve expected 

environmental concentrations based on maximum label application rates. Based on a shallow 

wetland system (approximately 16 cm deep), the maximum application rate for North American 

corn, and assuming full water incorporation, the maximum environmental concentrations of 

Headline AMP fungicides would be 86 µg/L and 32 µg/L for pyraclostrobin and metconazole, 

respectively. Analytical-grade pyraclostrobin (99.9% purity) and metconazole (99.5% purity) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA) for calibration standards. Analytical-

grade deuterated polycyclic aromatic hydrocarbons (chrysene-d12 and perylene-d12) were 

purchased from Accustandard (New Haven, CT, USA) as internal standards. All solvents used in 

reagent make-up or sample preparation were at least pesticide grade. Dechlorinated water was 

obtained by carbon filtration of Oklahoma State University tap water (pH: 7.5-7.7; hardness: 190-

220 mg/L as calcium carbonate; dissolved oxygen: 6.7-9.0 mg/L) and was used to carry out all 

experiments.  

Lipid analysis 

Analysis for percent lipid was performed using a modified method by Van Handel [2]. 

Individual snails (n=4) were thawed, weighed (approximately 130 mg), and placed in 12 mL test 

tubes. Lipids were extracted from tissues by adding 500 µL chloroform: methanol (1:1 v/v) 

solution to each vessel and gently prodding with a glass rod. Sample extracts were quantitatively 

transferred to clean tubes and evaporated to dryness under a gentle stream of nitrogen. A short 

acid digestion was performed by adding 200 µL of concentrated sulfuric acid to each tube and 

heating at 95 °C for 10 min then allowed to cool to room temperature. After reaching room 
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temperature, 5 mL of vanillin-phosphoric acid reagent (600 mg vanillin dissolved in 100 mL of 

hot deionized water and 400 mL concentrated phosphoric acid) was added to each vessel and left 

to stand for 8 min. When a red color was established, sample extracts were transferred to a 96 

well plate and analyzed immediately using SPECTRAmax 190 Microplate Spectrophotometer 

(Molecular Devices Coup., Sunnyvale, CA, USA) at 522 nm. Calibration and blank standards 

were prepared and analyzed concurrently with samples. Calibrations standards were prepared 

from canola oil using the same method. The linear range (R2 = 0.995) of lipid standards was as 

follows 31.25, 62.5, 125, 250, 500, and 1000 µg. An initial recovery study was performed using 

canola oil (n=6) as a lipid surrogate. Recoveries ranged from 95-105 % with a mean (± standard 

deviation) of 102% (± 5). Percent lipid was gravimetrically confirmed using a modified method 

from Hara and Radin [3]. Lipids were extracted from tissues (~6.0 g wet weight, n=3) using 30 

mL of a 3:2 hexane/isopropanol (v/v) solvent mixture, homogenized with a T10 Ultra-Turrax 

homogenizer (IKA, Wilmington, NC, USA), and allowed to incubate at room temperature for 15 

minutes. To facilitate adequate separation of lipid extract from excess tissue water, approximately 

4.0 g of magnesium sulfate and 1.0 g of sodium chloride salts were added to each sample. 

Samples were immediately vortexed for two minutes followed by centrifugation at 3,000x g for 

eight minutes. Gravimetric analysis was performed in pre-weighed aluminum weigh pans using 

25 mL aliquots of lipid suspensions. Extracts were slowly evaporated on a hot plate and 

reweighed after reaching room temperature. Percent lipid for each sample was determined by 

dividing the lipid weight for each sample (adjusted by 16.7% to account for the 5 mL of 

unevaporated lipid suspension) by the initial weight of each individual sample. An initial study 

(n=4) using canola oil as a lipid surrogate resulted in mean (± standard deviation) recoveries of 

93% (± 0.3). 

Analytical Determination of Fungicides in Water and Snail Tissues 

Acquired water samples were passed through SampliQ solid phase extraction (SPE) 

cartridges (Agilent Technologies) immediately following collection. Small water volumes (15-20 
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mL) were extracted onto 100 mg C18 cartridges whereas larger water volumes (400 mL) were 

extracted onto 500 mg C8 cartridges. Cartridges were conditioned with 6 mL methanol and 10 

mL deionized water and samples were extracted at a rate of approximately 2.5 mL/min. Loaded 

cartridges were centrifuged at 3,000x g for 5 min to remove excess water. Analytes were eluted 

with 8 mL ethyl acetate, dried with approximately 1.0 g sodium sulfate, and evaporated to 500 µL 

under a gentle stream of nitrogen. Individual spiking solutions used for treating experimental 

units were analyzed following each dosing event to confirm that proper spike delivery was 

maintained throughout all experiments. For ease of calibration, dosing solutions were diluted to 

approximately the same concentration based on the amount of formulation added and the 

resulting concentration expected.   

To simplify body residue analysis, extraction and cleanup steps utilized the QuEChERS 

(Quick, Easy, Cheap, Effective, Rugged, and Safe) method developed by Anastassiades et al. [4], 

which has been demonstrated to be effective for analysis of pesticides in tissue [5]. Snails 

collected from individual experimental units at designated takedown points were combined and 

stored frozen at -30 °C until analysis. As such, combined snails from any one experimental unit 

(i.e. snails remaining at a designated takedown point) constituted one sample. Frozen snails were 

thawed, de-shelled, weighed (wet weight ranged from 340-1347 mg), and placed in 50 mL 

centrifuge tubes. Prior to homogenization, internal standards including chrysene-d12 and perylene-

d12 were added to each sample to correct for analyte recoveries and partial volume transfers. 

Snails were then homogenized into a suspension with 3 mL acetonitrile using an ULTRA-

TURRAX homogenizer. Approximately 2.0 g magnesium sulfate and 500 mg of sodium chloride 

was added to each sample and the samples were immediately vortexed on high for 2 min to 

prevent clumping. Following this salting out procedure, samples were centrifuged for 5 min at 

3,000x g to further facilitate recovery of acetonitrile extracts. Extract cleanup was achieved by 

transferring a 1 mL aliquot from the centrifuged sample to a preassembled QuEChERS tube 

(Restek Corporation, Bellefonte, PA, USA) containing 150 mg magnesium sulfate, 50 mg 
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primary secondary amine, and 50 mg C18. Samples were vortexed on high for 1 min, followed by 

5 min centrifugation at 7,200x g. Finally, 500 μL of each sample extract was evaporated to 

dryness under a gentle stream of nitrogen, reconstituted with 500 µL of ethyl acetate, and 

analyzed via GC/MS.  

Gas Chromatography Analysis 

Analysis of chemical residues was performed using gas chromatography / mass 

spectrometry (GC/MS; Agilent 5975c, Santa Clara, CA, USA) using electron ionization (70 eV). 

The GC inlet temperature was 260 °C and the oven program started at 130 °C and increased over 

16 min to 295 °C. Ultra inert, splitless, single taper inlets with glass wool packing were used 

(Agilent). Separation was achieved using a 15 m × 250 µm × 0.25 µm HP-5 capillary column 

(Agilent). Quantitation was performed using select ion monitoring with the following ions 

(Quantitation: Qualification): pyraclostrobin (132:164, 325) and metconazole (125:250, 319). The 

two qualitative ions had to be within 20% of expected ratio, relative to the quantitative ions 

response, to report the analyte without flagging the data as qualitatively uncertain. Internal 

standards (chrysene-d12 and perylene-d12) were added to all samples and calibration standards. To 

correct for matrix effects during analysis of QuEChERS body residue extracts, matrix-matched 

standards were made by subjecting previously unexposed snail tissues to the QuEChERS method. 

Resulting extracts were spiked with analytical grade fungicide ingredients made from neat 

material to create a standard curve. Continuous calibration verification was performed during 

each analytical run by randomly reanalyzing low, intermediate, and high ranges of calibration 

standards.  

Quality Control 

SPE water extraction was verified by fortifying deionized water with fungicide 

concentrations of 25 ng/mL (n=4). The QuEChERS technique was verified by analyzing 

previously unexposed snail tissues fortified with individual fungicide ingredients at 15,000 (n=8), 

6,000 (n=8) and 600 (n=8) ng/g. An additional MDL study was conducted (n=8) at a spike level 



68 
 

of 60 ng/g, which resulted in a final matrix concentration approximately 30% lower than the 

lowest calibration standard. All unexposed snail tissues were less than the detection limit of 11 

ng/g (wet weight) and 14 ng/g (wet weight) for pyraclostrobin and metconazole, respectively. 

Data from replicate method spikes were averaged and reported with standard deviations (SD) for 

both pyraclostrobin and metconazole.  
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Table S1: Pyraclostrobin water concentrations obtained from Morrison et al. [6] used for modeling snail 

accumulation during a simplistic, but environmentally-relevant pulsed exposure. Water measurements 

obtained from sediment-water microcosm exposures during fate and toxicity investigations. N/A = no 

measurements taken; QL = quantitation limit 

Time 

(h) 

 Pyraclostrobin water concentration during sediment-water microcosm investigations 

(ng/mL) 

 Fungicide fate investigation  Fungicide toxicity test 

0  300  5 14 39 107 284 

0  300  5 14 39 107 284 

0  300  N/A N/A N/A N/A N/A 

5  110  1.3 4.8 9.4 36.5 76.9 

5  101  1.7 3.5 9.7 23.9 89.9 

5  115  N/A N/A N/A N/A N/A 

24  80.1  1.2 4.9 7.8 28.6 68.7 

24  79.6  1.1 4.2 11.4 26.4 64.2 

24  104  N/A N/A N/A N/A N/A 

48  N/A  < QL 3.1 7.4 24.7 65.3 

48  N/A  < QL 3.8 7.4 21.8 66.2 

96  33.6  < QL 2.0 7.0 16.6 49.9 

96  59.9  < QL 2.2 6.1 14.6 59.8 

96  41.6  < QL N/A N/A N/A N/A 

168  34.0  < QL 1.1 3.0 13.8 42.6 

168  33.0  < QL 1.8 3.5 10.4 43.3 

168  34.8  < QL N/A N/A N/A N/A 

  

 

Table S2: Quality control results obtained from analysis of experimental unit water samples taken during 

accumulation phases of each experiment. Time-weighted water concentrations (Equation 1) are reported for 

dose-response experiment and were used for calculation of measured BCFs (Equation 3). Average water 

concentrations are reported for 96 h accumulation and 0 h elimination as measured from samples taken 

prior to daily static renewals. 

Treatment/ 

Experiment 

Pyraclostrobin  Metconazole 

Target 

(µg/L) 
 

Measured 

(µg/L) 
 

Percent 

of target 

(%) 

 
Target 

(µg/L) 
 

Measured 

(µg/L) 
 

Percent 

of target 

(%) 

Exposure 1 86  84  98  32  23  72 

Exposure 2 160  153  96  60  39  66 

Exposure 3 300  284  95  111  78  70 

Exposure 4 700  629  90  260  160  61 

Exposure 5 1000  842  84  372  280  75 

Accumulation 86  95  110  32  33  104 

Elimination 86  104  121  32  28  89 
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Table S3: Fungicide tissue residues in Helisoma trivolvis snails following a 96 h toxicity test. Nominal (i.e. 

target), and time-weighted average (i.e. measured) water concentrations of pyraclostrobin and metconazole 

at each treatment level are provided in Table S2.  

Treatment 

Level 
Replicate Snail wet weight (mg) 

Pyraclostrobin 

(ng/g) 

Metconazole 

(ng/g) 

Exposure 1 A 376 11331 889 

Exposure 1 B 423 15307 924 

Exposure 1 C 653 14537 1149 

Exposure 2 A 636 27844 1870 

Exposure 2 B 558 27088 1929 

Exposure 2 C 500 31802 2136 

Exposure 3 A 390 50848 3467 

Exposure 3 B 505 43556 3207 

Exposure 3 C 502 59401 4371 

Exposure 4 A 340 106511 6649 

Exposure 4 B 385 118908 7997 

Exposure 4 C 584 92894 6374 

Exposure 5 A 561 160783 16677 

Exposure 5 B 491 159579 15421 

Exposure 5 C 719 137079 15617 
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Table S4: Fungicide tissue residues in Helisoma trivolvis snails throughout accumulation studies. 

Takedown points with four replicates (A-D) originated from 24 h accumulation study whereas takedown 

points with three replicates (A-C) originated from the 96 h study. Asterisked replicates differentiate 

replicates for the 24 h point that occurred during both studies. Measured residues were used within 

toxicokinetic models. 

Takedown point 

(h) 
Replicate 

Snail wet weight 

(mg) 
Pyraclostrobin (ng/g) Metconazole (ng/g) 

2 A 766 1756 497 

2 B 586 2558 488 

2 C 621 2242 446 

2 D 778 2382 500 

3 A 762 3487 696 

3 B 870 2217 507 

3 C 669 2920 586 

4 A 882 2795 696 

4 B 614 3433 694 

4 C 818 3460 708 

4 D 628 3201 684 

6 A 790 4223 794 

6 B 649 4211 799 

6 C 790 4531 918 

6 D 777 4636 911 

7 A 598 5154 1046 

7 B 727 4459 1058 

7 C 885 4584 980 

12 A 654 6463 1044 

12 B 782 5760 1021 

12 C 760 6433 1148 

12 D 874 5677 1064 

14 A 821 7039 1225 

14 B 806 7553 1033 

14 C 808 7336 1245 

24 A 738 8240 1365 

24 B 637 8083 1256 

24 C 678 8955 1399 

24 D 673 9950 1583 

24 A* 751 11577 1446 

24 B* 905 9914 1372 

24 C* 963 10398 1304 

48 A 878 15431 1443 

48 B 1018 12931 1671 
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48 C 784 11307 1465 

72 A 797 15425 1608 

72 B 721 12333 1592 

72 C 1030 14307 1580 

96 A 929 13256 1387 

96 B 762 16529 1610 

96 C 872 15445 1634 

 

Table S5: Fungicide tissue residues in Helisoma trivolvis snails measured throughout elimination study 

conducted with daily water exchanges to ensure minimal analyte water concentrations. Measured residues 

were used within toxicokinetic models. 

Quantitation limits = QL. 

Takedown 

point (h) 
Replicate Snail wet weight (mg) 

Pyraclostrobin 

(ng/g) 

Metconazole 

(ng/g) 

0 A 724 15603 1144 

0 B 958 16454 1346 

0 C 613 16607 1256 

6 A 754 11791 489 

6 B 734 12190 494 

6 C 409 13095 446 

12 A 822 9221 155 

12 B 820 9861 207 

12 C 918 9237 220 

24 A 783 5452 54 

24 B 840 5419 53 

24 C 780 7242 54 

48 A 982 3218 < QL 

48 B 690 2321 < QL 

48 C 694 1435 < QL 

96 A 814 774 < QL 

96 B 643 235 < QL 

96 C 735 1551 < QL 

168 A 914 104 < QL 

168 B 993 81 < QL 

168 C 1206 183 < QL 

240 A 1011 26 < QL 

240 B 1144 25 < QL 

240 C 1347 34 < QL 

240 D 1056 38 < QL 
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Table S6: Mean fungicide recovery during the mass balance elimination study conducted without water 

exchanges. Each takedown point consisted of three replicate (n=3) experimental units. The amount of 

fungicide entering the elimination system corresponded to steady-state concentration obtained from the 0 h 

tissue assessment. QL = Quantitation limit 

Sampling 

period  

(h) 

Pyraclostrobin water and tissue 

concentrations during elimination 

 Metconazole water and tissue 

concentrations during elimination 

Water 

(ng/mL) 

Tissue 

(ng/g) 

Mass 

balance 1 

(%) 

 
Water 

(ng/mL) 

Tissue 

(ng/g) 

Mass 

balance 1 

(%) 

0 < QL 14000 100  < QL 1258  100  

6 6.3  9851 117  0.7 574  98 

12 9.6  7125 127  0.9  285  98 

24 11.4  5000  121  0.8 299  89 

48 10.3  4353  102  0.8 179  72 

96 9.9  2690  94  0.5  56  47 

168 9.3  2313  85  0.4  33  38 

1 Mass balance =
([water cocentration × 0.8 L]+[tissue concentration × snail mass])

steady−state snail concentration
× 100 
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Table S7: Fungicide tissue residues in Helisoma trivolvis snails throughout the mass balance elimination 

study conducted without daily water exchanges. Due to differences in toxicokinetics, provided body 

residues were only used for the mass balance investigation and were not utilized during any toxicokinetic 

modeling procedures. QL = Quantitation limit 

Takedown 

point (h) 
Replicate Snail wet weight (mg) 

Pyraclostrobin 

(ng/g) 

Metconazole 

(ng/g) 

0 A 856 11424 1214 

0 B 773 12597 1390 

0 C 549 8990 1171 

6 A 800 9069 513 

6 B 804 10124 483 

6 C 792 10359 727 

12 A 894 7367 217 

12 B 947 8006 430 

12 C 831 6001 208 

24 A 989 5040 302 

24 B 842 6043 284 

24 C 722 3915 310 

48 A 854 4135 89 

48 B 602 2596 378 

48 C 634 4335 72 

96 A 903 2193 64 

96 B 894 2455 46 

96 C 871 3091 58 

168 A 847 2841 47 

168 B 788 2838 < QL 

168 C 721 2348 46 
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CHAPTER IV 
 

 

CALIBRATION OF NYLON ORGANIC CHEMICAL INTEGRATIVE SAMPLERS AND 

SENTINEL SAMPLERS FOR QUANTITATIVE MEASUREMENT OF PULSED AQUATIC 

EXPOSURES 

The following chapter appears as submitted to the Journal of Chromatography A: 

Morrison, S.A. and J.B. Belden (2016). Calibration of nylon organic chemical integrative 

samplers and Sentinel samplers for quantitative measurement of pulsed aquatic exposures. J 

Chromatogr A (Submitted).  

Abstract 

Environmental exposures often occur through short, pulsed events; therefore, the ability to 

accurately measure these toxicologically relevant concentrations is important. Three different 

integrative passive sampler configurations were evaluated under different flow and pulsed 

exposure conditions for measurement of current-use pesticides (n=19), polyaromatic 

hydrocarbons (n=10), and personal care products (n=5) spanning a broad range of 

hydrophobicities (log Kow 1.5-7.6). Two modified POCIS-style samplers were investigated using 

macroporous nylon mesh membranes (35 µm pores) and two different sorbent materials (i.e. 

Oasis HLB and Dowex Optipore L-493). A recently developed design, the Sentinel Sampler 

(ABS Materials) utilizing Osorb media enclosed within stainless steel mesh (145 µm pores), was 

also investigated. Relatively high sampling rates (Rs) were achieved for all sampler 

configurations during the short eight-day exposure (4,300 – 27 mL/d). Under flow conditions, 
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median Rs were approximately 5 to 10 times higher for POCIS-style samplers and 27 times 

higher for Sentinel Samplers as compared to static conditions. The ability of samplers to rapidly 

measure hydrophobic contaminants may be a trade off with increased flow dependence. Analyte 

accumulation was integrative under pulsed and continuous exposures for POCIS-style samplers 

with mean difference between treatments of 11% and 33%; however, accumulation into Sentinel 

Samplers was more variable. Collectively, results show that reducing membrane limitations 

allows for rapid, integrative accumulation of a broad range of analytes even under pulsed 

exposures. As such, these sampler designs may be suitable for monitoring environmental 

substances that have short aquatic half-lives. 

Key Words: Calibration, Passive Sampling, Pesticides, PAHs, Personal Care Products, Pulsed 

Exposure 

1. Introduction 

Toxicological responses are driven by the magnitude and frequency of exposure to the 

bioavailable fraction of contaminants (i.e. freely dissolved in water). This basic principle 

becomes complicated in aquatic systems because contaminant concentrations are continuously in 

flux due to intermittent inputs, contaminant dissipation, and flow variations [1-3]. In the case of 

many current-use pesticides, possessing short aquatic half-lives, the major complicating factor is 

dissipation rate from water due to sorption to sediments [4, 5] and other organic matter [6, 7]. 

These complicating factors also extend to other anthropogenic contaminants of concern with 

intermittent inputs such as polyaromatic hydrocarbons (PAHs), and personal care products 

(PCPs) which can be flushed into aquatic systems from rainwater runoff or municipal discharge. 

Regardless of short exposure periods, intermittent exposures can elicit significant toxicological 

responses [1, 5]. Therefore, developing effective sampling technologies capable of measuring 

short-term exposures (eight days or less) is important for providing toxicologically relevant 

exposure concentrations for contaminants that rapidly pulse through aquatic systems. 
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Current integrative passive samplers such as polar organic chemical integrative samplers 

(POCIS) continuously accumulate freely dissolved contaminants throughout their deployment 

and have been demonstrated to be a reliable technique for providing time-weighted average 

(TWA) concentrations of some organic contaminants [8, 9]. Continuous sampling allows for 

better detection and identification of contaminants while providing TWA concentrations, which is 

particularly important for contaminants that rapidly dissipate or degrade following release into the 

environment [8, 10]. Typically, exchange kinetics follow a first-order, one-compartmental model 

consisting of an initial linear (or kinetic) integrative phase followed by a curvilinear phase 

indicative of chemical equilibrium [8, 9]. Assuming an infinite sink, two processes primarily 

regulate uptake of an integrative sampler: 1) Diffusion through the aqueous boundary layer 

(ABL) and 2) Permeation through the sampler membrane. The thickness of the ABL changes 

with flow across the sampler thus sampling rates can be highly influenced by variations in flow 

[9, 11]. Ultimately, whichever process has the slowest kinetics determines the sampling rate [12]. 

The classical POCIS configuration utilizes microporous polyethersulfone (PES) 

membranes (0.1 μm pore size) which Alvarez et al. [8] selected over several other membranes 

based on high sampling rates of polar substances, minimal biofouling, and durability. This 

membrane has helped establish POCIS as a valuable tool for providing TWA concentrations of 

polar contaminants; however, limitations of diffusion limiting membrane cause inherent problems 

for accumulation of hydrophobic contaminants. First, the properties of the PES membranes 

generally restricts accumulation to hydrophilic chemicals with octanol-water partitioning 

coefficients (log Kow) less than four due to low accumulation coefficients for more hydrophobic 

substances (i.e. log Kow> 4) [8, 13-15]. Although some hydrophobic chemicals accumulate in 

POCIS, the diffusion limiting membrane generally causes a lag-effect in the initial accumulation 

kinetics [15]. This is particularly problematic for hydrophobic chemicals because they have the 

greatest potential to pulse through the water column and partition to sediment and biota. As such, 

the classical POCIS configuration may under predict actual exposure concentrations for more 
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hydrophobic contaminants due to limited or delayed accumulation. Second, POCIS are typically 

deployed for 30 (or more) days and have long integration times with linear accumulation of many 

polar contaminants greater than 28 d [8, 16]. Although this is beneficial for polar contaminants 

that tend to stay in the water column, the opposite is true for contaminants that are acutely toxic 

and quickly pulse through aquatic systems. For these compounds, 4-8 d TWA concentrations 

would likely be more comparable to toxicological endpoints. Collectively, the lag-effect 

phenomenon and long deployment times present major challenges for predicting water 

concentrations of hydrophobic substances using the classical POCIS configuration. 

Previous research has suggested that adjustment of sampler design to reduce diffusion 

membrane limitations is possible [15]. Specifically, replacing the microporous-PES membrane 

with nylon mesh screens with 30 µm openings allows greater flow through the sampler and 

reduced diffusion membrane limitations [15]. Belles et al. [15] called this sampler configuration 

the “Nylon POCIS”; however we will refer to this design as the Nylon Organic Chemical 

Integrative Sampler (NOCIS) to emphasize the obvious advantage of this modification for 

increased sampling rates for hydrophobic contaminants. As opposed to the classical POCIS 

configuration, nylon configurations could be used for integrative measurement of hydrophobic 

contaminants pulsing through the water column; ultimately expanding the utility of the sampler 

by providing toxicologically relevant exposure data and better risk assessments for more 

hydrophobic substances. 

However, there are some notable issues with the nylon configuration that should be 

addressed. First, the increased pore size increases membrane permeation; resulting in increased 

sampling rates and may reduce linear accumulation phases to weeks or days as compared to the 

long integration times of the classical POCIS configuration for most compounds. This potential 

weakness may not be problematic for most applications as shorter-term exposures (8 d or less) are 

typically a more useful measure of toxicity as it relates better to exposure scenarios used in 

standard 96-h acute toxicity tests. Regardless, linear accumulation should be confirmed for short-
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term exposures. Second, removal of the diffusion-limiting PES membranes may increase flow 

sensitivity of these samplers thus affecting contaminant-sampling rates. As such, accumulation in 

NOCIS designs may be more flow dependent and require more calibrations under different flow 

conditions or use of other flow correction mechanisms. 

Investigating new sampler configurations, whether it be modifications of previously 

described samplers or designs entirely new to literature, is important for expanding our 

knowledge base and utility passive samplers for environmental monitoring. For instance, Oasis 

HLB is well established as the classical POCIS receiving phase; however, other sorbents (e.g. 

Dowex Optipore L-493) have been incorporated in ceramic passive samplers and could provide a 

comparable performance within POICS-style samplers [17]. Moreover, a new sampler design was 

recently developed called the Sentinel Sampler (ABSMaterials, Inc., Wooster, OH) which 

encapsulates Osorb media (ABSMaterials, Inc.) within stainless steel mesh. The combination of 

the high capacity Osorb media and 145-μm stainless steel mesh openings suggests that this 

sampler configuration could be conducive for rapid sampling of a broad range of contaminants 

and warrants investigation. 

The overall objective of this research was to evaluate options for optimization of 

integrative passive samplers with the goal of maintaining integrative accumulation over 

toxicologically relevant periods (i.e. 8 d) and obtaining high sampling rates for organic 

contaminants with a broad range of hydrophobicities (log Kow range: 1.5-7.6). During our 

investigations, we used two NOCIS configurations incorporating either Oasis HLB (Waters 

Corp., Milford, MA) or Dowex Optipore L-493 (The Dow Chemical Co., Midland, MI) which are 

both water-wettable sorbents. Sentinel Samplers (ABSMaterials, Inc., Wooster, OH) were also 

deployed through all experiments; however, the Osorb media is not water-wettable and requires 

pretreatment with polar organic solvent. The first step in evaluating the performance of these 

sampler configurations was to perform a controlled laboratory calibration using an eight-day 

deployment period and two flow conditions. The second investigation evaluated the integrative 
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nature of these samplers by comparing accumulation under different exposure scenarios. 

Specifically, we evaluated eight-day sampling rates of sampler configurations continuously 

exposed compared to samplers that experienced a four-day pulse immediately followed by four 

days in clean water.  

2. Experimental 

2.1 Test chemicals 

Selected analytes included current-use pesticides (i.e. fungicides, herbicides, and 

insecticides), polyaromatic hydrocarbons (PAHs), and personal care products (PCPs). Relevant 

chemical properties of all analytes of interest (n=34) are listed in Table 1. Analytical-grade 

standards of current-use pesticides and PCPs were of the highest available purity (>98%) from 

Sigma-Aldrich (St. Louis, MO, USA). An expanded PAH mixture was purchased from 

Accustandard (New Haven, CT) and was used for analytical standards and spiking solutions. 

Atrazine-d5 and benzo(a)anthracene-d16 were used as surrogate standards and a semi-volatile 

internal standard mixture, containing deuterated PAHs, was purchased from Accustandard. All 

solvents (acetone, dichloromethane, ethyl acetate, and methanol) were analytical grade or better. 

The tap water source at Oklahoma State University is Lake Carl Blackwell (Stillwater, OK) and 

was used for all experiments. Hardness ranged from 180-200 mg/L as calcium carbonate, pH 

ranged from 6.9 – 7.3, and experimental unit temperature was maintained at 20 °C (±1 °C).  
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Table 1. Selected analytes (n=34) and relevant physicochemical properties. 

Analyte  Type a  CAS Number b  Log Kow b  
Water Solubility 

(mg/L) b 

Acetochlor  H  34256-82-1  3.05  700 

Atrazine  H  1912-24-9  2.64  69 

Azoxystrobin  F  131860-33-8  5.68  0.25 

Benzo(a)anthracene  PAH  56-55-3  5.73  0.015 

Benzo(a)pyrene  PAH  50-32-8  6.19  0.0019 

Benzo(b)fluoranthene  PAH  205-99-2  6.19  0.005 

Benzo(g,h,i)perylene  PAH  191-24-2  6.65  0.0016 

Benzo(k)fluoranthene  PAH  207-08-9  6.19  0.0033 

Bifenthrin  I  82657-04-3  7.31  0.076 

Chlorothalonil  F  1897-45-6  3.04  1.6 

Chlorpyrifos  I  2921-88-2  5.00  1.6 

Chrysene  PAH  218-01-9  5.73  0.0096 

Cis-permethrin  I  61949-76-6  7.64  0.038 

Cyfluthrin  I  68359-37-5  6.42  0.017 

λ-Cyhalothrin  I  68085-85-8  6.00  0.054 

DEET  PCP  134-62-3  2.41  7500 

Desethyl atrazine  M  6190-65-4  1.51  660 

Dibenz(a,h)anthracene  PAH  53-70-3  6.91  0.0007 

Fluoranthene  PAH  206-44-0  5.00  0.13 

Galaxolide  PCP  1222-05-5  5.04  24 

Indeno(1,2,3-cd)pyrene  PAH  193-39-5  6.65  0.0019 

Metconazole  F  125116-23-6  3.72  45 

Metolachlor  H  51218-45-2  3.03  510 

Musk ketone  PCP  81-14-1  2.51  14 

Musk tonalid  PCP  21145-77-7  5.06  18 

Octinoxate  PCP  5466-77-3  5.92  6.4 

Pendimethalin  H  40487-42-1  5.20  1.8 

Propiconazole  F  60207-90-1  3.65  10 

Pyraclostrobin  F  175013-18-0  3.14  12 

Pyrene  PAH  129-00-0  5.00  0.044 

Tebuconazole  F  107534-96-3  3.77  30 

Trans-permethrin  I  61949-77-7  7.64  0.038 

Trifloxystrobin  F  141517-21-7  4.78  0.65 

Trifluralin  H  1582-09-8  4.56  1.1 
a  F = fungicide, H = herbicide, I = insecticide, M = metabolite, PAH = polyaromatic hydrocarbon, PCP = 

personal care product. 
b  Values obtained from Scifinder (http://scifinder.cas.org; accessed 2015 September 8) and calculated using 

Advanced Chemistry Development Software V11.02 (ACD/Labs). Conditions were modeled at 25 °C and 

pH 7. 
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2.2 Sampler design and assembly 

Three passive sampler configurations were investigated and each configuration contained 

a different type of sorbent media. The nylon organic chemical integrative sampler (NOCIS) 

configurations were constructed in house containing 200 mg (± 5 mg) of either Oasis HLB or 

Dowex Optipore L-493 sorbents, held between porous nylon mesh screening (35 μm openings; 

Pentair Aquatic Ecosystems) which were secured between two stainless steel washers. Similar to 

classical POCIS configurations, the stainless steel washers contained circular openings with 5.5 

cm internal diameter, resulting in approximately 48 cm2 of exposed surface area per sampler. 

Oasis HLB sorbent was removed from Oasis solid phase extraction (SPE) cartridges and the 

Dowex sorbent was graciously provided by Dow Water and Process Solutions (The Dow 

Chemical Company, Midland, MI). Prior to use, sorbents were cleaned with methanol, dried 

under a vacuum, and baked at 40 °C overnight. The Sentinel Sampler, graciously provided by 

ABSMaterials, Inc. (Wooster, OH), was the third sampler configuration tested. The Sentinel 

Samplers are maintained in ethanol prior to deployment and its construction utilizes stainless steel 

mesh (145 µm openings) to encapsulate Osorb media (ABSMaterials, Inc.), swellable organically 

modified silica particles, with strong affinity for a wide range of organic contaminants. Ethanol 

absorption leads to a 1.6x increase in the particle diameter and a 4x increase in pore volume. 

After deployment, the ethanol in the pore structure is rapidly exchanged for aqueous solution 

preserving expanded swollen state of the sorbent [18]. Details pertaining to passive sampler 

designs and physical properties of the three passive sampling sorbents are provided in Table 2. 
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Table 2. Sorbent physical properties as reported by manufacturers for media contained within each 

integrative passive sampler configuration. 

Sorbent 
  Dowex Optipore  

L-493 
 Oasis HLB  Osorb media 

Passive sampler 

configuration 

  Nylon Organic 

Chemical 

Integrative 

Sampler 

 

Nylon Organic 

Chemical 

Integrative 

Sampler 

 
Sentinel Passive 

Sampler 

Matrix structure 

  
Macroporous 

styrenic polymer 
 

Hydrophilic-

lipophilic balanced 

copolymer 

 

Swellable 

organically 

modified silica 

Membrane 

material 

  
Nylon screen  Nylon screen  Stainless steel 

Membrane pore 

size 

  
35 µm  35 µm  145 µm 

Sorbent mass per 

sampler 

  
200 mg  200 mg  500 mg 

Particle size   20-50 µm  60 µm  250-500 µm (dry) 

Specific surface 

area 

  
1,100 m2/g  800 m2/g  736 m2/g 

Specific pore 

volume 

  
1.16 mL/g  1.3 mL/g  0.65 mL/g 

Average pore 

diameter 

  
46 Å  80 Å  60 Å (dry) 

 

2.3 General design of experimental unit 

Passive samplers were exposed to analytes of interest using experimental units consisting 

of stainless steel pots (inner diameter: 40 cm, height: 30.5 cm) containing 30 L of tap water 

(Figure 1). To achieve laminar flow, smaller stainless steel pots (inner diameter: 15 cm, height 

17.7 cm) were secured to an aluminum crossbar and suspended in the center of each unit. The 

bottoms were removed from the small pots, resulting in a stainless steel cylinder projecting into 

the upper portion of the water column. Flow was generated by securing circulation pumps (water 

pumping portion of Aqueon Model AT10) to stainless steel threaded rods so that the pump head 

was 7.6 cm below the water surface and 3.8 cm above the bottom of the central cylindrical insert. 

The mean (± standard deviation) of flow achieved in flowing experimental units was 9.33 (± 

0.99) cm/s measured by timing the movement of a float in replicate experimental units. 
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Experimental units with static flow were similarly constructed except the aquarium pump head 

was excluded. Each experimental unit contained three passive samplers (i.e. one sampler of each 

configuration). Nylon samplers were secured to stainless steel threaded rods horizontally in the 

water column with 3.1 cm of clearance between the top and the bottom sampler to ensure 

adequate and even flow across the nylon membranes. Sentinel Samplers were suspended at the 

same depth in the water column with nylon fishing line as suggested by the packaging 

instructions.  

 

 

Fig. 1. Schematic of experimental unit with flow treatment. The circulation pump was omitted from static 

experimental units. To eliminate galvanic reactions within the experimental units, all fastening/structural 

components (i.e. pots, threaded bar, fastening nuts, washes, and clamps) were stainless steel. 

 

2.4 Sampler calibration 

The first experiment was designed to determine analyte sampling rates for the three 

sampler configurations under two flow conditions and an eight-day continuous exposure. For 

most analytes target water concentrations were 1 ng/mL; however, nominal concentrations for 

PAHs and insecticides were 0.2 ng/mL due to lower water solubility. Target analytes 

concentrations were achieved by adding 1 mL of the spiking solution to the center of the 

cylindrical sleeve protruding into the depths of the experimental unit. Experimental units with 
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static flow were stirred with a solvent rinsed stainless steel spoon for 2 min after fortification to 

facilitate analyte diffusion. To maintain water concentrations throughout the study, a 100% static 

renewal regimen was conducted daily. Experimental units (containing one of each sampler type) 

were destructively taken down for both flow treatments at 2, 4, and 8 d to determine sampling 

rates. Three replicate samplers were analyzed for each time point and both flow treatment (15 

samplers of each configuration). After removal from exposure units samplers were stored frozen 

at -80°C until further analysis. To monitor water concentrations throughout, one-liter aliquots 

were obtained daily before (n=8 per treatment) and 5 h after (n=8 treatment) water exchanges 

from duplicate experimental units for each flow condition. 

2.5 Influence of pulsed exposure 

The second experiment was designed to evaluate integrative nature of the passive sampler 

configurations by measuring the accumulation and retention of target analytes under a short term 

pulsed exposure. Two exposure scenarios (i.e. continuous and pulsed) were established, each with 

four replicate (n=4) experimental units containing three passive samplers (i.e. n=1 for each 

configuration) in each replicate exposure tank. Based on the results of the first experiment, the 

9.33 (± 0.99) cm/s flow treatment was chosen for all experimental units. The continuous exposure 

scenario replicated the eight-day exposure from the initial calibration experiment; however, target 

analyte concentrations were 0.5 ng/mL or 0.1 ng/mL depending on analyte water solubility. The 

pulsed exposure scenario entailed a four-day continuous exposure immediately followed by four 

days in contaminant free water. Target analyte concentrations during the initial pulsed exposure 

were 1 ng/mL or 0.2 ng/mL depending on analyte water solubility. During the uncontaminated 

depuration period, activated carbon water filters were placed in the bottom of the experimental 

units to help maintain minimal water concentrations. Daily static renewals were conducted as 

described above; however, the experimental units were not refortified during the second half of 

the eight-day exposure. Passive samplers were removed from experimental units at the end of the 

eight-day exposure and stored frozen at -80°C until further analysis. To confirm water 
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concentrations throughout, 2 L of water were obtained prior to water exchanges at 2, 4, 6, and 8 d 

by combining aliquots of 500 mL from each of the replicate experimental units (n=4) for each 

exposure scenario.   

2.6 Passive sampler and water extractions 

Passive samplers were removed from the freezer and allowed to thaw on aluminum foil at 

room temperature. Sorbents were removed from passive samplers by cutting the membranes with 

a solvent rinsed stainless steel scalpel (nylon membranes) or solvent rinsed stainless steel scissors 

(Sentinel Samplers) and rinsing the sorbents into empty SPE cartridges with deionized water. 

Water samples obtained throughout both experiments and were spiked with surrogate standards, 

mixed on a stir plate for one hour, and extracted via Oasis HLB solid phase extraction (SPE) 500 

mg cartridges containing HLB at approximately 15 mL/min. Prior to extraction, cartridges were 

conditioned with 8 mL ethyl acetate, 8 mL of methanol, and 15 mL of deionized water. Loaded 

passive samplers and water cartridges were dried via a vacuum for five minutes and centrifuged 

at 3,000x g for 8 min to remove excess water. Cartridges containing recovered media from 

passive samplers were spiked with surrogate standards prior to elution. Analytes were eluted with 

1.5 mL acetone followed by 10 mL dichloromethane, dried with anhydrous sodium sulfate, and 

evaporated under a gentle stream of nitrogen. During evaporation, all samples were solvent 

exchanged to ethyl acetate. Sample final volumes ranged from 500 µL to 2,000 µL with few 

samples needing additional dilutions to ensure that analyte responses fell within the calibration 

range.  

2.7 Gas chromatography analysis 

Analysis of analyte residues will be performed using gas chromatography / mass 

spectrometry (GC/MS; Agilent 5975c, Santa Clara, CA, USA) using electron ionization (70 eV). 

Separation was achieved using a 15 m × 250 µm × 0.25 µm HP-5 capillary column (Agilent). The 

GC inlet was configured with an ultra inert, splitless single taper inlet with glass wool packing 

and the temperature was set at 260 °C. To accommodate the large analyte list and reduce 
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degradation of analytes sensitive to cool starting temperatures and lengthy chromatographic runs, 

two different oven programs were utilized. The oven programming for the first method was held 

at the initial temperature of 80 °C for 1 min, ramped at 11 °C/min to 170 °C, ramped at 7 °C/min 

to 190 °C, ramped at 10 °C/min to 255 °C, ramped at 12 °C/min to 295 °C, and held for 2 min. 

The oven programming for the second method was held at the initial temperature of 140 °C for 1 

min, ramped at 11 °C/min to 170 °C, ramped at 7 °C/min to 190 °C, ramped at 7 °C/min to 255 

°C, ramped at 12 °C/min to 295 °C, and held for 2 min. Analyte quantitation was achieved using 

three ion select ion monitoring (SIM; Table S1). The two qualitative ions had to be within 20% of 

expected ratio, relative to the quantitative ion response, to report the analyte without flagging the 

data as qualitatively uncertain. Semi-volatile internal standards were added to all samples and 

calibration standards. Analytes were paired to internal standards based on nearest retention time. 

Continuous calibration verification was performed during each analytical run by reanalyzing low, 

intermediate, and high ranges of calibration standards throughout.  

2.8 Data analysis 

Integrative samplers are typically calibrated in controlled laboratory studies [11] to 

accurately predict water concentrations (Cw) as described by Equation 1 

CW=
N

RS × t
          EQ 1 

where, N is the amount of the chemical accumulated by the sampler (ng), RS is the sampling rate 

(mL/day), and t is the exposure time (day). To confirm accumulation linearity, linear regressions 

were performed by plotting N as a function of time while forcing the intercept at the origin for 

each sampler configuration and flow treatment. Sampling rates were calculated for each sampler 

configuration using the mean measured water concentration for each flow treatment. Sampling 

rates were determined pointwise using Equation 1 are reported with standard deviations for each 

sampler configuration and flow treatment based on statistical analysis. Comparisons in Rs values 

were conducted in IBM SPSS Statistics Data Editor Version 21 (IBM Corp., NY, USA) using a 
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univariate general linear model for analysis of variance and a Tukey’s Honestly Significant 

Differences test (α=0.05) was used for post hoc analysis. Results obtained from sampler 

calibration tests used flow verses static as fixed effects; whereas, results from comparing the 

influence of a pulsed exposure used continuous verses pulsed as fixed effects.  

3. Results and Discussion 

3.1 Quality control 

Mean (± standard deviation; SD) percentage of analyte recoveries from sorbents and 

water are reported in Table S2. Expected recoveries are based on analysis of spiking solutions 

(n=9 per experiment) conducted throughout. Recovery of analytes from fortified sorbent quality 

control samples (n=4 per sorbent) averaged 90% (range: 66-127%), 91% (range: 66-135%), and 

96% (range: 63-127%), respectively for Dowex Optipore L-493, Oasis HLB, and Osorb media. 

Mean (SD) percentage of surrogate standard recovery from water and sorbents was 100% (8) and 

69% (9) for atrazine-d5 and benzo(a)anthracene-d16, respectively. Recoveries of PAHs were 

corrected by benzo(a)anthracene-d16 recoveries for each sample. Analyte residues in blank 

sorbent extract concentrations (n=5 per sorbent) were below quantitation limits for all analytes; 

therefore, the limit of detection was set at the lowest calibration standard within the linear range 

for each analyte. Trace levels of ten target analytes (atrazine, DEET, desethyl atrazine, 

fluoranthene, galaxolide, metolachlor, musk ketone, octinoxate, pendimethalin, and pyrene) were 

detected in blank water samplers (n=8) due to presence in the water source. The median 

background concentration was 15 ng/L (range: 6-81 ng/L) with atrazine being the highest. Mean 

recovery of analytes directly from fortified water samples (n=15) was 102% (range: 45-148%; 

Table S2).  

Measured experimental unit water concentrations were consistent throughout calibration 

and the pulsed studies (Table S3 and Table S4) and were not blank corrected as background 

concentrations were in the water source. On average, measured water concentrations were 

approximately 70% of expected based on analysis of spiking solutions (n=18). Furthermore, 
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measured concentrations decreased as log Kow increased (R2 = 0.35; p < 0.001; Table S3 and 

Table S4) where the more hydrophobic insecticides and PAHs had lower than expected 

concentrations. Although measurements were below expected concentrations, these data likely 

represent actual experimental concentrations based on the overall success of laboratory quality 

control spikes (Table S2). Since daily water renewals were performed in an attempt to maintain 

stable water concentrations, the most probable explanation for analyte loss in the system is 

adsorption to the plastic circulation pumps used to generate flow (Fig. 1) or volatility for a few 

analytes such as galaxolide, musk tonalid, and trifluralin.   

3.2 Sampler calibration 

All sampler configurations readily accumulated measureable levels target analytes with 

the exception of benzo(a)pyrene and cyfluthrin in Sentinel Samplers (Table 3). These analytes 

were excluded from Sentinel Samplers due to matrix interferences at the GC/MS detector, which 

were not present in standards, water extracts, or other sorbent extracts. Linear regression analysis 

of sampler accumulation as a function of exposure time provided good correlations with the data 

where R-square ranged from 0.7722 – 0.9968 across all sampler configurations and flow 

treatments (Table 3). For NOCIS configurations, 129 of 136 calibration regressions had R-square 

greater than 0.900; whereas, regression fitting for Sentinel Samplers was more variable with 31of 

68 R-square values greater than 0.900 (Table 3). As such, each passive sampler configuration 

displayed linear (kinetic) accumulation of target analytes under both flow and static conditions 

(Table 3, Fig. S1, Fig. S2). As previously discussed, analyte uptake follows a first-order, one-

compartmental model with an initial linear (or kinetic) phase followed by a curvilinear 

equilibrium partitioning phase [8, 9]. Despite increased sampling rates (Rs) for even some of the 

more polar compounds, uptake remained within the kinetic accumulation range for all sampler 

configurations. These accumulation trends are most significant for measuring pulsed exposures 

where substances quickly pulse through aquatic systems.
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Table 3. Statistical results from linear regression (i.e. ng/sampler verses time) of the calibration study. Slope (standard error, SE) and R-square fittings are 

provided with the y-intercept set at the origin. N.D. = non-detect 

 Dowex Optipore L-493 Oasis HLB Osorb media 

Analyte Slope (SE) 
R-square 

Slope (SE) 
R-square 

Slope (SE) 
R-square 

 (ng/sampler/d) (ng/sampler/d) (ng/sampler/d) 

 Flow Static Flow Static Flow Static Flow Static Flow Static Flow Static 

Acetochlor 719 (34) 77 (4) 0.9841 0.9810 988 (31) 154 (5) 0.9931 0.9915 2109 (282) 60 (4) 0.8890 0.9717 

Atrazine 748 (39) 78 (4) 0.9814 0.9832 937 (26) 148 (4) 0.9945 0.9950 1715 (252) 62 (3) 0.8683 0.9810 

Azoxystrobin 971 (54) 84 (5) 0.9786 0.9780 1327 (43) 180 (6) 0.9928 0.9931 2569 (491) 64 (5) 0.7966 0.9522 

Benzo(a)anthrancene 60 (2) 5 (1) 0.9918 0.9359 90 (7) 17 (1) 0.9542 0.9816 203 (25) 10 (1) 0.9072 0.9137 

Benzo(a)pyrene 9 (0) 2 (0) 0.9860 0.9283 13 (2) 5 (0) 0.8763 0.9614 N.D. N.D. N.D. N.D. 

Benzo(b)fluoranthene 52 (2) 3 (0) 0.9925 0.8924 77 (9) 8 (0) 0.9118 0.9761 220 (25) 10 (1) 0.9168 0.9260 

Benzo(g,h,i)perylene 14 (1) 3 (0) 0.9677 0.9333 23 (4) 7 (1) 0.8344 0.9407 103 (15) 7 (1) 0.8682 0.8681 

Benzo(k)fluoranthene 32 (1) 3 (0) 0.9850 0.9196 50 (8) 8 (1) 0.8558 0.9471 159 (23) 8 (1) 0.8706 0.8749 

Bifenthrin 27 (1) 16 (2) 0.9893 0.9373 38 (3) 29 (1) 0.9622 0.9862 65 (7) 7 (1) 0.9158 0.7775 

Chlorothalonil 1025 (49) 111 (9) 0.9840 0.9546 1420 (44) 252 (6) 0.9933 0.9955 3035 (390) 55 (8) 0.8965 0.8815 

Chlorpyrifos 122 (7) 26 (2) 0.9762 0.9727 184 (6) 55 (4) 0.9916 0.9661 330 (41) 10 (1) 0.9028 0.9474 

Chrysene 74 (3) 5 (1) 0.9895 0.9112 112 (10) 16 (1) 0.9472 0.9769 246 (31) 10 (1) 0.8989 0.9072 

Cis-permethrin 48 (1) 11 (0) 0.9935 0.9878 75 (4) 26 (1) 0.9768 0.9933 153 (20) 8 (1) 0.8906 0.8383 

Cyfluthrin 47 (2) 16 (1) 0.9873 0.9772 68 (5) 36 (1) 0.9673 0.9932 N.D. N.D. N.D. N.D. 

λ-Cyhalothrin 38 (1) 17 (1) 0.9928 0.9658 60 (5) 34 (2) 0.9570 0.9752 109 (14) 7 (1) 0.8938 0.7787 

DEET 732 (39) 79 (4) 0.9807 0.9846 820 (23) 144 (5) 0.9943 0.9929 1771 (238) 62 (4) 0.8874 0.9704 

Desethyl atrazine 534 (40) 77 (4) 0.9616 0.9839 356 (28) 118 (3) 0.9579 0.9947 210 (33) 28 (3) 0.8511 0.9304 

Dibenz(a,h)anthracene 11 (1) 4 (0) 0.9428 0.9305 15 (2) 8 (1) 0.8722 0.9291 65 (10) 8 (1) 0.8650 0.8385 

Fluoranthene 138 (8) 21 (1) 0.9741 0.9692 201 (9) 57 (6) 0.9871 0.9287 367 (41) 16 (2) 0.9209 0.9255 

Galaxolide 491 (24) 130 (6) 0.9835 0.9834 714 (26) 251 (19) 0.9907 0.9625 1287 (144) 49 (6) 0.9196 0.9096 

Indeno(1,2,3-cd)pyrene 15 (1) 5 (1) 0.9544 0.9376 19 (3) 10 (1) 0.8557 0.9338 71 (10) 6 (1) 0.8701 0.8682 

Metconazole 768 (39) 61 (4) 0.9826 0.9737 1144 (43) 148 (4) 0.9902 0.9941 2015 (260) 47 (4) 0.8955 0.9551 
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Metolachlor 706 (33) 75 (4) 0.9847 0.9793 986 (31) 151 (5) 0.9931 0.9933 2053 (289) 57 (3) 0.8784 0.9742 

Musk ketone 736 (35) 135 (5) 0.9848 0.9888 1083 (38) 280 (11) 0.9914 0.9901 2120 (279) 66 (6) 0.8920 0.9476 

Musk tonalid 550 (25) 120 (5) 0.9853 0.9892 817 (32) 250 (10) 0.9893 0.9878 1563 (203) 52 (5) 0.8947 0.9289 

Octinoxate 316 (41) 57 (7) 0.8965 0.9040 468 (40) 142 (14) 0.9520 0.9390 822 (169) 34 (6) 0.7722 0.7969 

Pendamethalin 737 (33) 144 (6) 0.9861 0.9887 1088 (38) 307 (13) 0.9915 0.9879 1997 (254) 60 (5) 0.8984 0.9465 

Propiconazole 749 (35) 71 (5) 0.9853 0.9712 1098 (43) 152 (6) 0.9894 0.9887 2037 (256) 50 (4) 0.9002 0.9601 

Pyraclostrobin 985 (35) 141 (5) 0.9913 0.9896 1384 (51) 307 (7) 0.9907 0.9968 2576 (426) 80 (7) 0.8392 0.9514 

Pyrene 122 (7) 17 (1) 0.9775 0.9706 180 (9) 46 (3) 0.9842 0.9775 335 (37) 15 (2) 0.9198 0.9202 

Tebuconazole 815 (43) 74 (6) 0.9810 0.9547 1172 (46) 160 (6) 0.9892 0.9905 1947 (336) 43 (6) 0.8273 0.8937 

Trans-permethrin 55 (1) 15 (1) 0.9958 0.9852 87 (7) 31 (1) 0.9515 0.9893 182 (26) 10 (2) 0.8795 0.8439 

Trifloxystrobin 700 (28) 129 (5) 0.9887 0.9878 1019 (45) 265 (12) 0.9867 0.9869 1882 (233) 55 (5) 0.9032 0.9417 

Trifluralin 393 (25) 93 (2) 0.9728 0.9962 577 (28) 213 (8) 0.9835 0.9900 1051 (124) 38 (4) 0.9118 0.9186 
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Relatively high Rs were achieved for all sampler configurations during the short eight-

day exposure (Table 4, Fig. 2), especially under flowing conditions. Under flow conditions, 

median Rs were highest for Sentinel Samplers (2300 mL/d) followed by NOCIS containing Oasis 

HLB (1100 mL/d) and Dowex Optipore L-493 (970 mL/d; Fig. 2). All analytes followed this 

trend with the exception of desethyl atrazine, which had the opposite trend (Figure S3). However, 

normalizing Rs by sorbent weight (200 mg for NOCIS and 500 mg for Sentinel Samplers), the 

median Rs are similar between all three sampler configurations under flow conditions (Fig. 2). 

Under static conditions, median Rs were highest for nylon samplers containing Oasis HLB (220 

mL/d) followed by Dowex Optipore L-493 (100 mL/d) and the Sentinel Sampler (85 mL/d; Fig. 

2). Due to relatively low Rs during static conditions, this trend was not affected when normalized 

by sorbent weights (Fig. 2).  
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Fig. 2. Box-whisker-plots summarizing analyte sampling rates for each passive sampler configuration 

during flow (white) and static (grey) exposure scenarios. The top chart corresponds to sampling rates listed 

in Table 4 and the bottom chart represents sampling rates normalized for sorbent weights (i.e. 200 mg for 

DOWEX and HLB and 500 mg for OSORB). 
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Table 4. Mean (standard deviation, SD) sampling rates obtained during the initial calibration experiment. Summary results are depicted in Figure 3 and full for 

ANOVA comparisons are supplied in the Supporting Information. N.D. = non-detect 

Sorbent 
Dowex Optipore L-493  Oasis HLB  Osorb media 

Sampling rate (SD)  Sampling rate (SD)  Sampling rate (SD) 

 (mL/d)  (mL/d)  (mL/d) 

Analyte Flow  Static  Flow  Static  Flow  Static 

Acetochlor 959 (180)  93 (15)  1088 (224)  179 (22)  2294 (1019)  71 (20) 

Atrazine 960 (193)  91 (18)  1001 (198)  163 (15)  1820 (845)  68 (18) 

Azoxystrobin 949 (156)  71 (15)  1077 (243)  144 (19)  1836 (1067)  53 (19) 

Benzo(a)anthrancene 988 (168)  83 (25)  1147 (434)  220 (31)  2872 (1101)  159 (69) 

Benzo(a)pyrene 351 (70)  64 (18)  420 (270)  151 (32)  N.D.  N.D. 

Benzo(b)fluoranthene 652 (86)  43 (16)  720 (384)  81 (17)  2561 (946)  107 (46) 

Benzo(g,h,i)perylene 180 (59)  27 (9)  223 (174)  56 (20)  1191 (659)  76 (42) 

Benzo(k)fluoranthene 409 (75)  45 (16)  475 (316)  79 (18)  1772 (811)  96 (43) 

Bifenthrin 305 (34)  175 (45)  370 (120)  280 (54)  656 (264)  94 (54) 

Chlorothalonil 1149 (192)  106 (22)  1349 (273)  230 (26)  3086 (1400)  39 (24) 

Chlorpyrifos 1212 (249)  292 (74)  1516 (312)  608 (173)  2640 (1029)  111 (36) 

Chrysene 903 (122)  67 (26)  1053 (416)  152 (25)  2614 (1034)  133 (60) 

Cis-permethrin 614 (59)  117 (40)  775 (230)  231 (41)  1610 (663)  87 (49) 

Cyfluthrin 563 (87)  152 (39)  700 (190)  301 (47)  N.D.  N.D. 

λ-Cyhalothrin 445 (64)  148 (36)  598 (239)  285 (78)  1126 (551)  67 (44) 

DEET 979 (203)  96 (22)  936 (180)  169 (20)  1953 (842)  72 (26) 

Desethyl atrazine 647 (174)  77 (11)  426 (132)  125 (16)  209 (130)  27 (10) 

Dibenz(a,h)anthracene 113 (52)  35 (14)  137 (92)  63 (22)  643 (391)  71 (38) 

Fluoranthene 1057 (200)  179 (59)  1266 (262)  476 (139)  2338 (874)  136 (45) 

Galaxolide 1295 (180)  523 (317)  1554 (343)  848 (202)  2920 (1177)  173 (68) 

Indeno(1,2,3-cd)pyrene 172 (68)  49 (17)  198 (137)  86 (27)  798 (437)  75 (36) 

Metconazole 1026 (201)  73 (16)  1245 (295)  161 (14)  2117 (877)  58 (20) 

Metolachlor 996 (187)  96 (16)  1144 (239)  183 (20)  2373 (1076)  70 (19) 
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Musk ketone 1162 (203)  208 (26)  1392 (298)  432 (59)  2737 (1166)  109 (37) 

Musk tonalid 1321 (182)  362 (65)  1616 (378)  735 (120)  3174 (1365)  166 (60) 

Octinoxate 1838 (608)  284 (112)  2218 (769)  627 (195)  4382 (2148)  172 (97) 

Pendimethalin 1044 (168)  195 (20)  1263 (287)  440 (68)  2275 (914)  83 (29) 

Propiconazole 1044 (198)  97 (27)  1250 (299)  190 (28)  2255 (932)  64 (20) 

Pyraclostrobin 870 (103)  118 (14)  1023 (234)  254 (22)  1739 (870)  65 (22) 

Pyrene 1221 (216)  176 (40)  1480 (339)  444 (76)  2839 (1090)  156 (54) 

Tebuconazole 1007 (209)  76 (17)  1198 (287)  163 (19)  2037 (923)  59 (31) 

Trans-permethrin 494 (32)  126 (30)  643 (241)  230 (42)  1353 (639)  103 (57) 

Trifloxystrobin 1113 (189)  216 (50)  1337 (350)  431 (82)  2441 (983)  95 (38) 

Trifluralin 1695 (313)  521 (33)  2048 (607)  1276 (202)  4002 (1755)  246 (104) 
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Direct comparisons with previous studies are limited as Belles et al. [15] is the only 

previous publication to investigate nylon samplers and analyte accumulation by Sentinel 

Samplers have yet to be described in peer review literature. Belles et al. [15] compared POCIS-

nylon and classic POCIS configurations (i.e. PES membranes) and found that Rs were 

approximately 2.6 times faster in nylon samplers. Moreover, nylon membranes allowed for 

accumulation of more hydrophobic substances without a lag effect that normally occurs for 

classical POCIS configurations. For instance, using classical POCIS configurations, Ahrens et al. 

[14] reported no accumulation of cyfluthrin and limited sampling (50 mL/d) of chlorpyrifos. 

Similarly, Belles et al. [15] reported lag effects (no appreciable analyte accumulation) for 

bifenthrin and chlorpyrifos. Although the target analyte list presented herein covered a broad 

range of hydrophobicities (log Kow range: 1.5-7.6; Table 1), the primary interest was 

hydrophobic substances. Physiochemical properties of hydrophobic substances make integrative 

sampling challenging due to rapid dissipation from the water column and poor accumulation in 

integrative passive samplers [14, 15]. As such, the classical POCIS configuration (i.e. PES 

membranes encapsulating Oasis HLB) was not investigated in the present study. Instead, 

investigations focused on new sampler configurations (Sentinel Sampler) and integrative sampler 

designs shown to accumulate hydrophobic analytes and have increased Rs compared to classical 

POCIS configurations [15]. Sampling rates reported herein were within range of Rs reported by 

Belles et al. [15] for POCIS-nylon samplers when comparing overlapping chemicals (n=9). 

Specifically, similar Rs values were reported for atrazine (1100 mL/d), azoxystrobin (870 mL/d), 

and propiconazole (2700 mL/d) [15]. Results reported herein suggest Rs approximately ten times 

greater for bifenthrin (30 mL/d), chlorpyrifos (150 mL/d), and tebuconazole (380 mL/d); 

however, Belles et al. [15] report higher sampling rates for acetochlor (2800 mL/d), desethyl 

atrazine (1200 mL/d), and metolachlor (1800 mL/d). Unfortunately, direct comparisons are still 

challenging because flow across samplers was not explicitly explained in previous work and data 

herein suggests that the flow can significantly influence Rs for these sampler configurations. 
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3.2.1 Influence of flow 

Median Rs were higher under flow conditions for each sampler configuration (Fig. 2). 

Median Rs values were 9.5 times greater under flow conditions for NOCIS containing Dowex 

Optipore L-493 and 4.8 times greater for samplers containing Oasis HLB (Fig. 2). The difference 

was even greater for Sentinel Samplers with median Rs values 26.6 times higher under flow 

conditions as compared to static conditions (Fig. 2). This significant treatment effect for flow was 

evident for most analytes with higher Rs under flowing conditions as compared to static 

conditions (p < 0.05; Table 4, Fig. 2, Fig. S3). Specifically, there was a significant flow effect on 

Rs for all analytes detected in Sentinel Samplers (n=32). Flow also affected Rs for most analytes 

within NOCIS configurations with Dowex Optipore L-493 (n=27) and Oasis HLB (n=26); 

however, the affect was much lower resulting in statically similar (p > 0.05) Rs for a few analytes 

(Table 4, Fig. S3). The magnitude of the flow affect suggests that diffusion through and thickness 

of the aqueous boundary layer is the rate-limiting step of accumulation as opposed to 

permeation/diffusion through the macroporous nylon and stainless steel membrane. 

Simplistically, increased flow decreases the aqueous boundary layer thickness, resulting in 

increased analyte mass transfer and ultimately sampling rates. Similar influence of variable 

hydrodynamic conditions on Rs have been previously observed for several passive sampler 

configurations [9, 11, 19-25]. For instance, two- to three-fold differences in Rs have been 

reported classical POCIS configurations when comparing flow and static exposures and field 

evaluations spanning 2.6 – 37 cm/s [19, 20]. Similarly, Charlestra et al. [21] reported 

approximately two-fold differences in Rs for several pesticides under static, mixed, and flow (i.e. 

0.32 cm/s) systems using the classical POCIS configuration. Even greater Rs flow dependencies 

have been observed for some Chemcatcher configurations with five-fold differences reported for 

pharmaceuticals experiencing 30 – 370 cm/s flow scenarios [24, 25]. Comparison of our NOCIS-

HLB flow dependency (median difference of 5x) to the 2-3 fold affect in magnitude for classical 
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POCIS configurations [19, 20] suggests that the ability to measure hydrophobic contaminants is a 

trade off with increased flow dependence [9, 11]. 

Recently, the use of performance reference compounds (PRCs) for in-situ flow 

calibrations has been presented as viable method to improve calibration for POCIS-style samplers 

[10, 11, 15, 26]. Performance reference compounds have been effective for equilibrium-based 

passive samplers as stable isotope compounds can be spiked into samplers prior to deployment 

and dissipation occurs proportional with uptake [27]. However, the use of PRCs is more 

problematic for POCIS-style samplers because the integrative nature restricts fugacity out of 

stable isotope compounds [10, 11]. Regardless, several analytes have been suggested to have high 

fugacity out of classical POCIS samplers including desisopropyl atrazine-d5 [10, 15, 26] and 

caffeine-C13 [15, 16]. These PRCs are especially important for adjusting Rs when analyte 

accumulation controlled by the aqueous boundary layer rather than diffusion through the 

membrane [15]. Further investigation using several hydrodynamic conditions is warranted to 

increase the utility of these PRCs with the NOCIS configurations investigated herein; however, 

the Osorb media contained within Sentinel Samplers complicates PRC incorporation because the 

samplers are stored in ethanol prior to deployment and the media is not water-wettable. 

Regardless, Sentinel Samplers were the most affected by flow variations and would therefore 

benefit from in-situ flow calibrations.  

3.2.2 Influence of physiochemical properties 

Data suggests two distinct trends of analyte accumulation based on physiochemical 

properties (i.e. log Kow). Specifically, log Rs increased as log Kow increased for fungicides, 

herbicides, and personal care products (log Kow < 6.0); however, log Rs for insecticides and 

PAHs (log Kow: 5-7.6), decreased as log Kow increased (Fig. 3). Similar trends were observed in 

static systems; however, regressions for insecticides and PAHs were not significant (p > 0.05) for 

NOCIS samplers (Fig. S4). Regressions are provided to better understand observed Rs trends but  
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Fig. 3. Linear regression analysis between log Rs with log Kow for each passive sampler sorbent under 

flow conditions. Results for fungicides (●), herbicides (○), and personal care products (▼) are displayed in 

the left panel while insecticides (■) and PAHs (□) are in the right panel. 
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are not meant to provide a predictive model to estimate analyte Rs based on log Kow. Despite 

widespread use, contaminant uptake mechanisms for POCIS remains poorly understood [28]. 

Although nylon membranes should offer simpler transport mechanisms compared to PES 

membranes, uptake is likely more complicated than simple diffusion and should be researched 

further and compared with other sampler types. For instances, although our results suggest two 

distinct trends, Ahrens et al. [14] reported a single linear trend for silicone rubber and an analyte 

list with log Kow range from -2.6 to 7.0 where log Rs values where directly proportional to 

hydrophobicity. Therefore, it remains important to conduct laboratory calibration experiments to 

determine analyte Rs due to data gaps in literature describing predictive accumulation models for 

POICS-style passive samplers based on analyte physiochemical properties [29]. 

3.3 Influence of pulsed exposure 

Analyte accumulation into passive samplers was determined at 8 d for each treatment 

under flowing conditions, including 8 d continuous exposure, and the 4 d pulsed exposure 

followed by 4 d in clean water. Accumulation is expressed as sampling rates for both exposure 

scenarios (Fig. 4, Table S5). Comparison of Rs values under the two exposure conditions 

provides an assessment tool to determine if integrative sampling is occurring. Samplers should 

yield similar Rs under various exposure conditions to be considered integrative. Median Rs for 

NOCIS containing Dowex Optipore L-493 were 908 mL/d and 870 mL/d under continuous and 

pulsed exposures, respectively. Similarly, median Rs for NOCIS containing Oasis HLB were 992 

mL/d and 1028 mL/d under continuous and pulsed exposures, respectively. These Rs values were 

also consistent with Rs values from the flow treatment of the calibration study (Fig. 2). Moreover, 

ANOVA results determined accumulation was similar (p > 0.05) for all analytes under both 

continuous and pulsed exposure scenarios for NOCIS containing Dowex Optipore L-493 and 

Oasis HLB (Table S4). Although no statistical differences in Rs were observed on an analyte 

basis, analysis of percent differences between analyte Rs obtained under continuous and pulsed 

scenarios suggest slight variations occurred (Table S4). On an analyte basis, the mean (±SD) 
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percent difference of Rs between continuous and pulsed exposures (calculated by %diff = 

[continuous – pulse]/continuous) were -11 ± 2% (range: -69% to 35 %) and -33 ± 46% (range: -

186% to 11%) for NOCIS samplers containing Dowex Optipore L-493 and Oasis HLB, 

respectively (Table S4, Fig. 4). Negative values indicate higher Rs during the pulsed exposure 

scenario. Linear regression analysis plotting pulsed exposure Rs as a function of continuous 

exposure Rs values yielded slopes of m = 0.96 and m = 1.01 for Dowex Optipore L-493 (R2 = 

0.95, p < 0.0001) and Oasis HLB (R2 = 1.01, p < 0.0001), respectively (Fig. 4). In contrast, 

Sentinel Samplers demonstrated differences in Rs values between exposure scenarios with 

median Rs values of 1300 mL/d and 740 mL/d for continuous and pulsed exposures, respectively 

(p < 0.05; Table S4, Fig. 4). Moreover, median sampling rates were reduced approximately 50% 

from median Rs of the flow treatment calibration study (Fig. 2). Analysis of variance showed 

statistically similar Rs (p > 0.05) between exposure scenarios for twelve analytes that consisted of 

octinoxate, pyrethroid insecticides (n=5) and heavier PAHs (n= 6; Table S4). On an analyte basis, 

the mean (±SD) percent difference of Rs between continuous and pulsed exposures for Sentinel 

Samplers (calculated by %diff = [continuous – pulse]/continuous) was 38 ± 21% (range: -17% to 

63%; Table S4). Positive values indicate higher Rs during the continuous exposure scenario. For 

Sentinel Samplers with Osorb media, linear regression analysis plotting pulsed exposure Rs as a 

function of continuous exposure Rs values yielded  a slope of m = 0.51 (R2 = 0.84, p < 0.0001; 

Fig. 4).  

 Despite some variability between experiments, ANOVA results and regression analysis 

with slopes approximating one suggest that analyte accumulation for both NOCIS configurations 

will be integrative during pulsed exposures, provided that analyte accumulation occurs linearly 

and assuming the pulse duration does not exceed the kinetic phase of the sampler. Although this 

concept is theoretically understood, few studies have investigated pulsed exposures with 

integrative samplers [16, 30, 31]. Overall analyte accumulation in NOCIS configurations under 

both continuous and pulsed exposures were in good agreement between treatments (i.e. ± 30%). 



102 
 

Collectively, data suggests Rs values for Sentinel Samplers were the most sensitive to flow 

variations (Table 4, Fig. 2), which could account for differences in Rs values between 

experiments. It is plausible that subtle variations in deployment depth and/or sampler orientation 

between and throughout experiments could result in flow variations across the sampler and 

ultimately higher variation in Rs values. As such, observed variations could be an artifact of 

deployment method of these samplers based on the a priori decision to follow directions provided 

by the manufacturer and suspend samplers using a nylon tether rather than securely bolt the 

samplers in place (as done for NOCIS configurations). As a result, Sentinel Samplers were 

subject to subtle movement within experimental units that could result in subtle changes in flow 

across the sampler throughout all experiments. 

 
Fig. 4. Linear regression comparing analyte sampling rates (Rs) obtained from continuous 8 d exposure 

verses pulsed exposure (i.e. 4 d contamination + 4 d clean water). A slope of m = 1 indicates agreement 

between experiments and suggests analyte accumulation is integrative. 
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4. Conclusions 

The three integrative sampler configurations investigated integratively accumulated 

fungicides, herbicides, insecticides, PAHs, and PCPs that spanned a broad range of 

hydrophobicities (log Kow range: 1.5-7.6). Moreover, integrative sampling occurred under two 

hydrodynamic conditions and during 4 d pulsed exposure followed by 4 d in clean water. The 

highly porous membranes increased sampling rates and capacity to integratively measure 

hydrophobic contaminants; however, these characteristics translated to flow dependent sampling 

rates for each sampler configuration investigated. Due to the high degree of flow dependence 

observed for most analytes sampling rates, future investigation should focus on the use of PRCs 

or other flow adjustment strategies under several hydrodynamic conditions. Regardless, this 

tradeoff seems reasonable to achieve integrative measurements of pulsed exposures of 

hydrophobic contaminants typically missed by classical POCIS configurations. Moreover, 

obtaining time-weighted average concentrations over shorter durations may be more comparable 

when comparing data obtained from field investigations to thresholds of concern established in 

standard 96-h and 10 d toxicity tests.  
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Appendix 

Supporting Information: 

CALIBRATION OF NYLON ORGANIC CHEMICAL INTEGRATIVE PASSIVE SAMPLERS 

AND SENTINEL PASSIVE SAMPLERS FOR QUANTITATIVE MEASUREMENT OF 

PULSED AQUATIC EXPOSURES  

 

Summary of Contents: 

Table S1: Analysis methods, retention times, and ions monitored 

Table S2: Quality control extraction recoveries from sorbents and water 

Table S3: Measured water concentrations from integration study 

Table S4: Measured water concentrations from the pulse study 

Table S5: Sampling rates (Rs) obtained from continuous and pulsed exposures 

Figure S1: Linear integration curves under flow conditions 

Figure S2: Linear integration curves under static conditions 

Figure S3: Statistical representation of sampling rates (Rs) 

Figure S4: Linear regression of Rs as a function of log Kow under static conditions  
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Table S1. Analyte analysis method, retention time (RT), select ions monitored (SIM). The two qualitative 

(Qual) ions had to be within 20% of expected ratio, relative to the quantitative (Quant) ion response, to 

report the analyte without flagging the data as qualitatively uncertain. 

 GC 

Method 

RT SIM ions 

Analyte (min) 
Quantitative: Qualitative 

(m/z) 

DEET 1 6.85 119:190, 191 

Desethyl atrazine 1 7.76 172:174, 187 

Trifluralin 1 7.98 306:264, 290 

Atrazine-d5 (surrogate) 1 8.69 205:178, 220 

Atrazine 1 8.72 200:173, 215 

Chlorothalonil 1 8.99 266:264, 268 

Galaxolide 1 9.56 243:258, 213 

Musk tonalid 1 9.66 243:258, 187 

Acetochlor 1 9.89 146:162, 223 

Metolachlor 1 10.79 162:238, 240 

Musk ketone 1 10.82 279:128, 294 

Chlorpyrifos 1 10.88 197:258, 314 

Pendimethalin 1 11.58 252:253, 281 

Fluoranthene 1 11.68 202:200, 203 

Pyrene 1 12.22 202:200, 203 

Octinoxate 1 14.50 178:161,179 

Tebuconazole 1 14.91 125:163, 250 

Propiconazole 2 9.75 259:173, 191 

Trifloxystrobin 2 9.94 116:131, 222 

Benzo(a)anthracene-d16 (surrogate) 2 10.82 240 

Benzo(a)anthracene 2 10.75 228:226 

Chrysene 2 10.84 228:226 

Bifenthrin 2 11.27 181:165, 166 

Metconazole 2 11.41 125:250, 319 

λ-Cyhalothrin 2 12.66 181:141, 197 

Trans-permethrin 2 13.58 183:163, 164 

Cis-permethrin 2 13.78 183:163, 165 

Benzo(b)fluoranthene 2 13.88 252:253 

Benzo(k)fluoranthene 2 13.96 252:254 

Cyfluthrin 2 14.71 163:165, 226 

Benzo(a)pyrene 2 14.83 252:250 

Pyraclostrobin 2 16.06 132:164, 325 

Azoxystrobin 2 17.14 344:388, 403 

Benzo(g,h,i)perylene 2 17.14 276:277 

Dibenz(a,h)anthracene 2 17.72 278:276 



110 
 

Indeno(1,2,3-cd)pyrene 2 18.02 276:277 

 

Table S2. Mean (standard deviation) analyte extraction recoveries from fortified quality control samples 

for the three sorbent medias and water. Expected recoveries are based on analysis of spiking solutions 

(n=18) conducted throughout all experiments.  

  Percentage of expected (SD) 

Analyte 

 Dowex 

Optipore  

L-493 

(n=4) 

 
Oasis HLB 

(n=4) 
 

Osorb media 

 

(n=4) 

 

Water 

 

(n=15) 

Acetochlor  94 (10)  88 (12)  80 (2)  88 (11) 

Atrazine  96 (9)  90 (12)  82 (2)  105 (9) 

Azoxystrobin  96 (27)  94 (9)  110 (17)  137 (14) 

Benzo(a)anthracene  85 (9)  100 (11)  109 (16)  105 (9) 

Benzo(a)pyrene  83 (8)  109 (9)  nd  89 (13) 

Benzo(b)fluoranthene  97 (15)  121 (9)  123 (11)  69 (10) 

Benzo(g,h,i)perylene  87 (19)  119 (11)  118 (21)  117 (15) 

Benzo(k)fluoranthene  74 (3)  100 (14)  90 (16)  99 (14) 

Bifenthrin  83 (8)  77 (15)  108 (11)  94 (14) 

Chlorothalonil  127 (14)  114 (16)  103 (11)  148 (11) 

Chlorpyrifos  85 (7)  80 (13)  92 (3)  93 (15) 

Chrysene  82 (6)  98 (9)  93 (26)  91 (12) 

Cis-permethrin  94 (15)  89 (12)  105 (19)  122 (12) 

Cyfluthrin  96 (17)  87 (13)  nd  123 (11) 

λ-Cyhalothrin  103 (16)  89 (14)  112 (14)  111 (13) 

DEET  100 (14)  82 (14)  86 (7)  105 (19) 

Desethyl atrazine  97 (9)  89 (16)  63 (1)  123 (11) 

Dibenz(a,h)anthracene  115 (18)  135 (18)  127 (21)  119 (10) 

Fluoranthene  95 (7)  99 (13)  107 (7)  92 (15) 

Galaxolide  91 (13)  81 (12)  80 (2)  45 (7) 

Indeno(1,2,3-cd)pyrene  75 (9)  109 (11)  103 (21)  114 (14) 

Metconazole  68 (7)  71 (12)  73 (20)  114 (14) 
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Metolachlor  94 (10)  86 (13)  77 (3)  106 (16) 

Musk ketone  91 (10)  85 (13)  78 (2)  103 (14) 

Musk Tonalid  88 (12)  80 (12)  74 (2)  69 (11) 

Octinoxate  85 (7)  83 (10)  99 (6)  75 (12) 

Pendimethalin  83 (8)  79 (13)  89 (4)  85 (11) 

Propiconazole  76 (5)  77 (12)  99 (9)  96 (13) 

Pyraclostrobin  95 (16)  81 (17)  101 (15)  144 (14) 

Pyrene  93 (6)  100 (13)  108 (7)  93 (10) 

Tebuconazole  66 (7)  66 (9)  76 (8)  118 (13) 

Trans-permethrin  102 (18)  96 (11)  115 (12)  126 (12) 

Trifloxystrobin  77 (4)  74 (14)  96 (8)  100 (13) 

Trifluralin  92 (15)  80 (13)  88 (4)  46 (8) 

 

Table S3. Mean (standard error) measured and percentage of expected of water concentrations in 

experimental units during the calibration study for both flow and static treatments. For each flow treatment, 

water samples were obtained daily before water exchanges (n=8) and after 5-h after exchanges (n=8). 

Expected recoveries are based on analysis of spiking solutions (n=18) conducted throughout all 

experiments. 

Treatment Flow (n=16)  Static (n=16) 

Analyte 
Measured 

(ng/mL) 

 Percent of 

expected  

 Measured 

(ng/mL) 

 Percent of 

expected 

Acetochlor 0.876 (0.023)  96.6 (2.5)  0.922 (0.010)  101.7 (1.1) 

Atrazine 0.921 (0.019)  107.5 (2.3)  0.954 (0.011)  111.4 (1.3) 

Azoxystrobin 1.157 (0.038)  122.3 (4.0)  1.204 (0.038)  127.4 (4.1) 

Benzo(a)anthracene 0.066 (0.005)  37.6 (2.8)  0.074 (0.007)  42.4 (4.0) 

Benzo(a)pyrene 0.021 (0.003)  13.3 (2.1)  0.031 (0.007)  19.2 (4.2) 

Benzo(b)fluoranthene 0.079 (0.005)  45.7 (3.0)  0.093 (0.007)  54.3 (4.1) 

Benzo(g,h,i)perylene 0.063 (0.007)  34.3 (3.8)  0.092 (0.011)  50.0 (6.1) 

Benzo(k)fluoranthene 0.072 (0.005)  40.2 (2.7)  0.091 (0.008)  50.4 (4.2) 

Bifenthrin 0.084 (0.005)  44.6 (2.7)  0.101 (0.010)  53.9 (5.1) 
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Chlorothalonil 1.022 (0.047)  155.4 (7.2)  1.086 (0.074)  165.1 (11.3) 

Chlorpyrifos 0.121 (0.004)  64.7 (2.3)  0.111 (0.005)  59.7 (2.6) 

Chrysene 0.088 (0.004)  51.3 (2.5)  0.098 (0.006)  57.3 (3.5) 

Cis-permethrin 0.085 (0.006)  44.9 (3.4)  0.112 (0.011)  59.2 (5.6) 

Cyfluthrin 0.090 (0.006)  48.1 (3.1)  0.121 (0.012)  64.2 (6.4) 

λ-Cyhalothrin 0.076 (0.006)  42.4 (3.2)  0.101 (0.012)  55.9 (6.6) 

DEET 0.891 (0.022)  97.9 (2.4)  0.923 (0.013)  101.4 (1.5) 

Desethyl atrazine 1.045 (0.015)  121.3 (1.8)  1.034 (0.011)  120.0 (1.3) 

Dibenz(a,h)anthracene 0.069 (0.008)  39.7 (4.7)  0.107 (0.014)  61.4 (8.1) 

Fluoranthene 0.155 (0.004)  88.4 (2.5)  0.149 (0.006)  85.0 (3.7) 

Galaxolide 0.423 (0.024)  47.9 (2.8)  0.357 (0.010)  40.4 (1.2) 

Indeno(1,2,3-cd)pyrene 0.064 (0.007)  35.7 (4.0)  0.095 (0.012)  53.3 (6.7) 

Metconazole 0.882 (0.020)  92.9 (2.1)  0.918 (0.015)  96.7 (1.6) 

Metolachlor 0.827 (0.019)  94.8 (2.2)  0.870 (0.011)  99.7 (1.3) 

Musk ketone 0.731 (0.021)  83.0 (2.4)  0.714 (0.026)  81.1 (2.9) 

Musk Tonalid 0.459 (0.023)  48.8 (2.4)  0.381 (0.015)  40.6 (1.6) 

Octinoxate 0.241 (0.041)  21.6 (3.7)  0.299 (0.036)  26.9 (3.2) 

Pendimethalin 0.804 (0.029)  78.3 (2.8)  0.776 (0.048)  75.6 (4.7) 

Propiconazole 0.835 (0.021)  85.2 (2.2)  0.874 (0.013)  89.1 (1.4) 

Pyraclostrobin 1.231 (0.032)  123.9 (3.2)  1.187 (0.035)  119.5 (3.5) 

Pyrene 0.116 (0.005)  67.6 (3.0)  0.115 (0.006)  67.2 (3.4) 

Tebuconazole 0.951 (0.033)  94.1 (3.3)  1.031 (0.025)  102.0 (2.5) 

Trans-permethrin 0.106 (0.007)  55.4 (3.5)  0.124 (0.012)  64.8 (6.0) 

Trifloxystrobin 0.715 (0.030)  70.2 (3.0)  0.692 (0.029)  68.0 (2.8) 

Trifluralin 0.251 (0.023)  28.6 (2.7)  0.183 (0.009)  20.9 (1.1) 

 



113 
 

Table S4. Mean measured and percentage of expected of water concentrations in experimental units during 

integration study (i.e. pulsed and continuous exposures) for both flow and static treatments. Values are 

provided with standard error. During the depuration period of the pulsed exposure, water concentrations 

were less than 10% of fortified concentrations (n=3). Expected recoveries are based on analysis of spiking 

solutions (n=18) conducted throughout all experiments. 

Treatment Continuous (8 d, n=4)  Pulsed (4 d, n=3) 

Analyte 
Measured 

(ng/mL) 

 Percent of 

expected  

 Measured 

(ng/mL) 

 Percent of 

expected 

Acetochlor 0.358 (0.018) 
 

80.9 (4.2) 
 

0.776 (0.066) 
 

87.7 (7.5) 

Atrazine 0.464 (0.025)  98.8 (5.4)  0.949 (0.055)  100.9 (5.9) 

Azoxystrobin 0.531 (0.019)  111.2 (4.0)  1.091 (0.031)  114.4 (3.3) 

Benzo(a)anthracene 0.016 (0.002)  18.9 (1.9)  0.030 (0.003)  17.5 (2.0) 

Benzo(a)pyrene 0.004 (0.000)  5.2 (0.5)  0.008 (0.001)  4.9 (0.7) 

Benzo(b)fluoranthene 0.037 (0.006)  49.7 (5.8)  0.046 (0.012)  39.1 (1.2) 

Benzo(g,h,i)perylene 0.040 (0.005)  41.8 (6.7)  0.064 (0.002)  26.2 (6.9) 

Benzo(k)fluoranthene 0.031 (0.004)  37.6 (4.5)  0.049 (0.003)  29.5 (1.7) 

Bifenthrin 0.099 (0.024)  107.4 (26.4)  0.213 (0.018)  114.9 (9.7) 

Chlorothalonil 0.518 (0.026)  146.6 (7.2)  1.116 (0.024)  157.8 (3.4) 

Chlorpyrifos 0.054 (0.002)  57.1 (2.6)  0.118 (0.008)  62.7 (4.2) 

Chrysene 0.042 (0.004)  50.9 (4.3)  0.073 (0.005)  44.1 (3.0) 

Cis-permethrin 0.083 (0.014)  91.0 (14.9)  0.159 (0.000)  87.4 (0.2) 

Cyfluthrin 0.076 (0.013)  77.3 (13.5)  0.136 (0.009)  68.6 (4.3) 

λ-Cyhalothrin 0.090 (0.020)  97.6 (22.2)  0.162 (0.001)  88.1 (0.6) 

DEET 0.383 (0.018)  86.5 (4.0)  0.807 (0.075)  91.1 (8.5) 

Desethyl atrazine 0.485 (0.029)  102.8 (6.2)  1.017 (0.095)  107.7 (10.1) 

Dibenz(a,h)anthracene 0.038 (0.007)  45.2 (8.5)  0.098 (0.025)  58.4 (15.1) 

Fluoranthene 0.079 (0.012)  92.3 (14.5)  0.145 (0.034)  85.0 (20.1) 

Galaxolide 0.200 (0.014)  44.8 (3.2)  0.484 (0.031)  54.1 (3.5) 

Indeno(1,2,3-cd)pyrene 0.039 (0.008)  46.2 (9.0)  0.083 (0.028)  48.8 (16.5) 

Metconazole 0.398 (0.025)  84.0 (5.3)  0.895 (0.115)  94.4 (12.1) 
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Metolachlor 0.359 (0.020)  79.1 (4.4)  0.800 (0.068)  88.3 (7.5) 

Musk ketone 0.329 (0.020)  71.8 (4.3)  0.711 (0.048)  77.4 (5.2) 

Musk tonalid 0.213 (0.011)  47.1 (2.5)  0.508 (0.045)  56.3 (5.0) 

Octinoxate 0.236 (0.017)  45.3 (3.3)  0.501 (0.041)  48.0 (3.9) 

Pendimethalin 0.298 (0.022)  62.7 (4.6)  0.620 (0.045)  65.3 (4.7) 

Propiconazole 0.430 (0.027)  87.5 (5.4)  0.921 (0.169)  93.6 (17.2) 

Pyraclostrobin 0.568 (0.006)  113.5 (1.2)  1.194 (0.021)  119.4 (2.1) 

Pyrene 0.041 (0.003)  47.9 (3.8)  0.082 (0.014)  47.8 (7.9) 

Tebuconazole 0.472 (0.031)  99.3 (6.4)  1.058 (0.196)  111.2 (20.6) 

Trans-permethrin 0.089 (0.015)  98.0 (16.3)  0.167 (0.000)  92.0 (0.1) 

Trifloxystrobin 0.361 (0.018)  75.8 (3.7)  0.774 (0.111)  81.2 (11.6) 

Trifluralin 0.143 (0.017)  30.7 (3.6)  0.381 (0.023)  40.9 (2.4) 
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Table S5. Mean (SD) sampling rates (Rs) obtained from continuous and pulsed experiments. Average percentage of difference between the two studies is 

provided as an evaluation of agreement between exposure scenarios. 

 Dowex Optipore L-493 Oasis HLB Osorb media 

Analyte Rs (SD) Percent 

difference 

Rs (SD) Percent 

difference 

Rs (SD) Percent 

difference 
 (mL/d) (mL/d) (mL/d) 

 Continuous Pulse (%) Continuous Pulse (%) Continuous Pulse (%) 

Acetochlor 944 (264) 931 (146) 1.4 1019 (110) 1034 (193) -1.4 1625 (199) 756 (72) 53.5 

Atrazine 929 (243) 954 (150) -2.6 994 (110) 1009 (161) -1.6 1049 (116) 553 (31) 47.3 

Azoxystrobin 1120 (374) 1074 (187) 4.1 1110 (163) 1286 (330) -15.9 1129 (120) 568 (87) 49.7 

Benzo(a)anthrancene 1340 (436) 1622 (279) -21.0 1530 (527) 2252 (720) -47.2 2589 (1239) 1606 (212) 38.0 

Benzo(a)pyrene 575 (348) 588 (64) -2.2 684 (306) 1208 (612) -76.6    

Benzo(b)fluoranthene 481 (263) 697 (169) -45.1 368 (302) 1010 (388) -174.3 1196 (630) 1083 (311) 9.4 

Benzo(g,h,i)perylene 105 (68) 151 (53) -43.7 101 (56) 288 (176) -186.1 438 (297) 428 (176) 2.3 

Benzo(k)fluoranthene 560 (370) 670 (162) -19.7 550 (181) 877 (402) -59.6 1320 (753) 1051 (303) 20.4 

Bifenthrin 66 (53) 93 (18) -41.1 88 (55) 137 (28) -55.4 128 (94) 142 (41) -11.2 

Chlorothalonil 996 (338) 864 (171) 13.2 1158 (165) 1055 (243) 8.9 2105 (344) 873 (126) 58.5 

Chlorpyrifos 1012 (232) 1061 (173) -4.8 1328 (49) 1417 (346) -6.7 1558 (299) 751 (142) 51.8 

Chrysene 734 (99) 870 (148) -18.6 875 (204) 1267 (468) -44.8 1553 (475) 1045 (214) 32.7 

Cis-permethrin 230 (153) 352 (60) -53.1 295 (166) 468 (108) -58.5 473 (311) 424 (91) 10.4 

Cyfluthrin 254 (165) 431 (57) -69.5 332 (174) 569 (132) -71.5    

λ-Cyhalothrin 124 (85) 209 (34) -67.8 163 (98) 313 (65) -91.7 272 (151) 320 (68) -17.7 

DEET 912 (244) 922 (150) -1.1 936 (99) 931 (139) 0.5 1264 (117) 645 (47) 49.0 

Desethyl atrazine 640 (170) 641 (81) 0.0 574 (58) 511 (46) 11.0 55 (14) 20 (4) 63.0 

Dibenz(a,h)anthracene 61 (38) 40 (10) 35.1 73 (36) 80 (40) -9.6 303 (179) 122 (48) 59.6 

Fluoranthene 941 (178) 1028 (189) -9.2 1034 (93) 1341 (325) -29.7 1475 (223) 967 (120) 34.5 

Galaxolide 1162 (301) 1213 (189) -4.3 1348 (24) 1448 (303) -7.5 2043 (165) 1089 (86) 46.7 

Indeno(1,2,3-cd)pyrene 74 (43) 57 (10) 23.6 89 (48) 120 (60) -34.9 251 (158) 131 (54) 48.0 

Metconazole 907 (280) 834 (159) 8.0 1016 (122) 1023 (221) -0.7 1305 (163) 573 (44) 56.1 

Metolachlor 947 (260) 906 (151) 4.4 1050 (114) 1020 (197) 2.9 1609 (192) 720 (64) 55.3 
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Musk ketone 1053 (268) 1046 (163) 0.7 1190 (104) 1236 (242) -3.9 1771 (197) 882 (88) 50.2 

Musk tonalid 1190 (309) 1213 (192) -2.0 1393 (47) 1475 (312) -5.9 2074 (158) 1111 (98) 46.4 

Octinoxate 691 (263) 877 (120) -26.8 890 (328) 1123 (280) -26.1 1215 (523) 830 (119) 31.7 

Pendimethalin 982 (232) 1053 (162) -7.3 1162 (124) 1324 (308) -13.9 1639 (263) 899 (97) 45.2 

Propiconazole 809 (250) 800 (173) 1.1 916 (92) 946 (199) -3.3 1198 (182) 556 (51) 53.5 

Pyraclostrobin 1088 (359) 1041 (157) 4.3 1144 (161) 1343 (339) -17.4 1409 (169) 823 (100) 41.6 

Pyrene 1483 (298) 1472 (249) 0.8 1600 (186) 1921 (475) -20.1 2392 (448) 1398 (147) 41.6 

Tebuconazole 851 (212) 791 (154) 7.1 990 (122) 930 (178) 6.1 1253 (182) 489 (105) 61.0 

Trans-permethrin 202 (146) 304 (57) -50.7 259 (140) 420 (94) -61.8 426 (276) 398 (91) 6.5 

Trifloxystrobin 909 (272) 908 (156) 0.1 1018 (99) 1090 (242) -7.0 1389 (233) 698 (61) 49.8 

Trifluralin 1393 (374) 1442 (229) -3.5 1634 (80) 1772 (402) -8.4 2484 (185) 1396 (143) 43.8 
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Fig. S1. Passive sampler linear regressions for each analyte under flow conditions. Regression fitting 

provided in Table 3.  
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Fig S2. Passive sampler linear regression for each analyte under static conditions. Regression fitting 

provided in Table 3. 
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Fig S3. Mean (standard deviation, SD) sampling rates (Rs) obtained during sampler calibration experiments 

under both flowing (black) and static (grey) conditions. Categorical letters represent statistical differences 

in Rs for each sorbent and flow treatment combination (p < 0.05). Summary results are depicted in Fig. 3 

and actual values are provided in Table 4.  
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Fig. S4. Linear regression analysis between log Rs with log Kow for each passive sampler sorbent under 

static conditions. Results for fungicides (●), herbicides (○), and personal care products (▼) are displayed in 

the left panel while insecticides (■) and PAHs (□) are in the right panel. 
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CHAPTER V 
 

 

CHARACTERIZATION OF PERFORMANCE REFERENCE COMPOUND KINETICS AND 

ANALYTE SAMPLING RATE CORRECTIONS UNDER THREE FLOW REGIMES USING 

POCIS-STYLE NYLON ORGANIC CHEMICAL INTEGRATIVE SAMPLERS 

Abstract 

Performance reference compounds (PRCs) can be spiked into passive samplers prior to 

deployment. If the dissipation kinetics of PRCs from the sampler corresponds to analyte 

accumulation kinetics, then PRCs can be used to estimate in-situ sampling rates. Under controlled 

laboratory conditions, the effectiveness of PRC corrections on prediction accuracy of water 

concentrations were evaluated using nylon organic chemical integrative samplers (NOCIS). 

Results from PRC calibrations suggest that PRC elimination occurs faster under higher flow 

conditions; however, minimal differences were observed for PRC elimination between fast flow 

(9.3 cm/s) and slow flow (5.0 cm/s) conditions. Moreover, minimal differences were observed for 

PRC elimination from Dowex Optipore L-493; therefore, PRC corrections did not improve results 

for NOCIS configurations containing Dowex Optipore L-493. Regardless, results suggest that 

PRC corrections were beneficial for NOCIS configurations containing Oasis HLB; however, due 

to differences in flow dependencies of analyte sampling rates and PRC elimination rates across 

the investigated flow regimes, the use of multiple PRC corrections was necessary. As such, a 

“Best-Fit PRC” approach was utilized for Oasis HLB corrections using caffeine-13C3, DIA-d5, or 

no correction based on the relative flow dependencies of analytes and these PRCs. Although PRC  
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corrections reduced the variability when in-situ conditions differed from laboratory calibrations 

(e.g. static verses moderate flow), applying PRC corrections under similar flow conditions 

increases variability in estimated values.  

1. Introduction 

Passive sampling devices are promising environmental monitoring tools for the aquatic 

environment, capable of measuring trace and fluctuating contaminant concentrations under 

numerous environmental conditions. Analytes accumulate following first-order, one-

compartmental models consisting of an initial linear (or kinetic) integrative phase followed by a 

curvilinear phase indicative of chemical equilibrium [1, 2]. During the initial linear phase, 

accumulation is integrative and time-weighted average concentrations can be obtained [3, 4]. 

Contaminant sampling rates (Rs) can be empirically determined under controlled laboratory 

calibrations [5]; however, environmental exposures rarely occur under stable conditions due to 

intermittent inputs, contaminant dissipation, and flow variations [6-9]. Fluctuating contaminant 

concentrations can be compensated for using integrative samplers such as Chemcatchers [10] or 

the Polar Organic Chemical Integrative Sampler (POCIS) [3, 11]; however, these samplers may 

accumulate target analytes at different rates when there is variation in flow across the sampler 

membrane [2, 5, 12-18]. Theoretically, the changes in flow across the sampler causes variations 

in the thickness of aqueous boundary layer (ABL); therefore, contaminant diffusion rates across 

this boundary layer is highly influenced by flow. This is especially true when the limiting step of 

accumulation is diffusion across the ABL rather than diffusion/permeation through the sampler 

membrane [2, 5, 19]. 

Performance reference compounds (PRCs) have been suggested as a viable method to 

improve calibration for POCIS-style samplers by providing in-situ flow calibrations [5, 19-21]. 

Equilibrium-based passive samplers have benefitted from PRCs as stable isotope compounds can 

be spiked into samplers prior to deployment and dissipation occurs proportional with uptake [22]. 

However, the integrative nature of POCIS-style samplers presents a challenge for PRCs due to 
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minimal fugacity out of stable isotope compounds [5, 21]. Regardless, several PRCs have been 

suggested to have sufficient fugacity out of classical POCIS devices including desisopropyl 

atrazine- d5 [19-21, 23] and caffeine-C13 [3, 19]. These PRCs are especially important for 

adjusting Rs when analyte accumulation controlled by the aqueous boundary layer rather than 

diffusion through the membrane [19, 20]. 

Previous investigations have evaluated modified configurations of POCIS-style passive 

samplers, in attempt to increase analyte Rs, reduce lag-phase accumulation, and ultimately 

provide integrative sampling of hydrophobic contaminants [19](Chapter IV). Samplers were 

constructed similarly to classical POCIS specifications; however, polyethersulfone (PES) 

membranes (0.1 μm pore size) were replaced with high porosity nylon mesh screening (30-35 μm 

pore sizes). These POCIS-Nylon configurations are hereafter referred to as Nylon Organic 

Chemical Integrative Samplers (NOCIS) (Chapter IV). Although this modification successfully 

increased Rs and the ability to measure hydrophobic contaminants, analyte accumulation was 

governed by diffusion through the aqueous boundary layer resulting in increased flow sensitivity 

as compared to standard POCIS configurations (Chapter IV). Specifically, NOCIS configurations 

were shown to be highly flow sensitive with five- to ten-fold differences in median Rs between 

static and flow (9.3 cm/s) treatments (Chapter IV). In contrast, accumulation in classical POCIS 

configurations is generally limited by permeation through the diffusion membrane where POCIS 

only have a two- to three-fold differences in Rs under different flow conditions [12, 13]. These 

differences suggest that PRC dissipation should also be evaluated over a range of flow conditions 

to ensure satisfactory flow corrections. Moreover, these data suggest that finding a PRC approach 

that adequately corrects for in-situ flow differences may be more important for NOCIS 

configurations that experience greater flow sensitivities as compared to classical POCIS 

configurations. 

Belles et al. [19] investigated PRC elimination from classical POCIS configurations and 

NOCIS configurations and suggested the approach was promising with three PRCs including 
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desisopropyl atrazine-d5, caffeine-C13, and salbutamol-d3. All three PRCs demonstrated similar 

eliminate rates from samplers, thus illustrating the potential of relating PRC elimination to 

analyte accumulation. However, dissipation was only investigated under a single flow regime, 

thus not testing the PRC approach to the full capacity. 

The overall objective of this research was to build from previous work to improve the 

utility of NOCIS configurations by evaluated PRC dissipation under several hydrodynamic 

conditions to provide Rs flow corrections for organic contaminants with a broad range of 

hydrophobicities (log Kow range: 1.5-7.6). This was accomplished using two experimental 

designs. First, to calibrate elimination rates under several flow conditions, PRC dissipation was 

evaluated as a function of time using fast (9.3 cm/s), slow (5.0 cm/s), static (0 cm/s) flow 

treatments. Second, analyte Rs and PRC dissipation were concurrently measured to quantitatively 

evaluate the prediction accuracy of known water concentrations based on PRC corrections and 

previously described analyte calibration studies (Chapter IV).  

2. Experimental 

2.1 Test chemicals 

Selected analytes (n=34) included current-use pesticides (i.e. fungicides, herbicides, and 

insecticides), polyaromatic hydrocarbons (PAHs), and personal care products (PCPs). Relevant 

chemical properties of all analytes of interest are listed in Table 1. Analytical-grade standards of 

current-use pesticides and PCPs were of the highest available purity from Sigma-Aldrich (St. 

Louis, MO, USA). An expanded PAH mixture was purchased from Accustandard (New Haven, 

CT) and was used for analytical standards and spiking solutions. Performance reference 

compounds included atrazine-d5, caffeine-13C3, cotinine-d3, desisopropyl atrazine-d5 (DIA-d5; 

Santa Cruz Biotechnology, Dallas, TX), fluoranthene-d10, and lindane. Benzo(a)anthracene-d16, 

dibutyl chlorendate, and tetrachloro-m-xylene were used as surrogate standards and a semi-

volatile internal standard mixture, containing deuterated PAHs, was purchased from 

Accustandard. All solvents (acetone, dichloromethane, ethyl acetate, and methanol) were  
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Table 1. Selected analytes (n=34) and relevant physicochemical properties. 

Analyte  Type a  CAS Number b  Log Kow b  
Water Solubility 

(mg/L) b 

Acetochlor  H  34256-82-1  3.05  700 

Atrazine  H  1912-24-9  2.64  69 

Azoxystrobin  F  131860-33-8  5.68  0.25 

Benzo(a)anthracene  PAH  56-55-3  5.73  0.015 

Benzo(a)pyrene  PAH  50-32-8  6.19  0.0019 

Benzo(b)fluoranthene  PAH  205-99-2  6.19  0.005 

Benzo(g,h,i)perylene  PAH  191-24-2  6.65  0.0016 

Benzo(k)fluoranthene  PAH  207-08-9  6.19  0.0033 

Bifenthrin  I  82657-04-3  7.31  0.076 

Chlorothalonil  F  1897-45-6  3.04  1.6 

Chlorpyrifos  I  2921-88-2  5.00  1.6 

Chrysene  PAH  218-01-9  5.73  0.0096 

Cis-permethrin  I  61949-76-6  7.64  0.038 

Cyfluthrin  I  68359-37-5  6.42  0.017 

λ-Cyhalothrin  I  68085-85-8  6.00  0.054 

DEET  PCP  134-62-3  2.41  7500 

Desethyl atrazine  M  6190-65-4  1.51  660 

Dibenz(a,h)anthracene  PAH  53-70-3  6.91  0.0007 

Fluoranthene  PAH  206-44-0  5.00  0.13 

Galaxolide  PCP  1222-05-5  5.04  24 

Indeno(1,2,3-cd)pyrene  PAH  193-39-5  6.65  0.0019 

Metconazole  F  125116-23-6  3.72  45 

Metolachlor  H  51218-45-2  3.03  510 

Musk ketone  PCP  81-14-1  2.51  14 

Musk tonalid  PCP  21145-77-7  5.06  18 

Octinoxate  PCP  5466-77-3  5.92  6.4 

Pendimethalin  H  40487-42-1  5.20  1.8 

Propiconazole  F  60207-90-1  3.65  10 

Pyraclostrobin  F  175013-18-0  3.14  12 

Pyrene  PAH  129-00-0  5.00  0.044 

Tebuconazole  F  107534-96-3  3.77  30 

Trans-permethrin  I  61949-77-7  7.64  0.038 

Trifloxystrobin  F  141517-21-7  4.78  0.65 

Trifluralin  H  1582-09-8  4.56  1.1 
a  F = fungicide, H = herbicide, I = insecticide, M = metabolite, PAH = polyaromatic hydrocarbon, PCP = 

personal care product. 
b  Values obtained from Scifinder (http://scifinder.cas.org; accessed 2015 September 8) and calculated using 

Advanced Chemistry Development Software V11.02 (ACD/Labs). Conditions were modeled at 25 °C and 

pH 7. 
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analytical grade or better. The tap water source at Oklahoma State University is Lake Carl 

Blackwell (Stillwater, OK) and was used for all experiments. Hardness ranged from 180-200 

mg/L as calcium carbonate, pH ranged from 6.9-7.6, and experimental unit was maintained at 20 

°C (±1 °C). 

2.2 Sorbent fortification 

Oasis HLB sorbent was removed from Oasis solid phase extraction (SPE) cartridges and 

the DOWEX sorbent was graciously provided by Dow Water and Process Solutions (The Dow 

Chemical Company, Midland, MI). Prior to use, sorbents were cleaned with methanol, dried 

under a vacuum, and baked at 40 °C overnight. Sorbents were fortified with performance 

reference compounds (PRCs) using modified methods proposed by Mazzella et al. [23]. Aliquots 

(10 g) of both sorbents were weighed out in 200 mL French Square glass bottles, covered with 30 

mL of methanol, and fortified with PRC stock solutions. Fortified bottles were placed on a 

rotating table and shaken at 125 rpm for 4 h to evenly distribute PRCs across the sorbents. 

Solvent was allowed to evaporate by removing the lids and rotating overnight (~12 h) at 125 rpm 

at 30 °C. Four 200 mg aliquots were immediately analyzed to determine PRC fortification levels 

and homogeneity. The remaining fortified sorbents were used to construct samplers for PRC 

dissipation studies (n=27 per sorbent), in-situ analyte uptake and PRC loss studies (n=9 per 

sorbent), and additional quality control samples (n=6 per sorbent). Quality control samples were 

weighed into glass vials, stored frozen at -30 °C, and analyzed with passive samplers to determine 

PRC stability. 

2.3 Sampler design and assembly 

The nylon organic chemical integrative sampler (NOCIS) configurations were 

constructed in house containing 200 mg (± 3 mg) of either Oasis HLB or Dowex Optipore L-493 

that were fortified with PRC as previously described. Similar to the classical POCIS 

configuration, stainless steel washers contained circular openings with 5.5 cm internal diameter, 

resulting in approximately 48 cm2 of exposed surface area per sampler; however, the standard 



133 
 

polyethersulfone (PES) membranes (0.1 μm pore size) were replaced with nylon mesh screening 

(35 μm openings; Pentair Aquatic Ecosystems). Physical properties of sorbents and NOCIS 

configurations were previous described (Chapter IV). 

2.4 General design/layout of experimental unit 

Experimental units were construct as described in a previous investigation (Chapter IV); 

however, additional flows were investigated. Passive samplers were exposed to analytes of 

interest using experimental units consisting of stainless steel pots (inner diameter: 40 cm, height: 

30.5 cm) containing 30 L of tap water (Figure 1). To achieve laminar flow, smaller stainless steel 

pots (inner diameter: 15 cm, height 17.7 cm) were secured to an aluminum crossbar and 

suspended in the center of each unit. The bottoms were removed from the small pots, resulting in 

a stainless steel cylinder projecting into the upper portion of the water column. Flow was 

generated by securing aquarium pump heads (Aqueon Model AT10) to stainless steel threaded 

rods so that the pump head was 7.6 cm below the water surface and 3.8 cm above the bottom of 

the central cylindrical insert. Flow rate was determined for fast and slow flows by timing the 

movement of a float in replicate experimental units with mean (± standard deviation) of 9.33 (± 

0.99) cm/s and 5.01 (± 0.49), respectively. Experimental units with static flow were similarly 

constructed except the aquarium pump head was excluded. Each experimental unit contained two 

passive samplers (i.e. one sampler of each configuration). Nylon samplers were secured to 

stainless steel threaded rods horizontally in the water column with 3.1 cm of clearance between 

the top and the bottom sampler to ensure adequate and even flow across the nylon membranes.  
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Fig. 1. Schematic of experimental unit with flow treatment. The circulation pump was omitted from static 

experimental units. To eliminate galvanic reactions within the experimental units, all fastening/structural 

components (i.e. pots, threaded bar, fastening nuts, washes, and clamps) were stainless steel. Adapted from 

Morrison and Belden (Chapter IV).  

 

2.5 Calibration of performance reference compound (PRC) dissipation 

The first experiment was designed to determine PRC dissipation rates from both NOCIS 

configurations under fast, slow, and static flow conditions. Complete static renewals were 

conducted daily to minimize PRC reuptake by completely draining the water from each 

experimental unit into reservoirs containing activated carbon, refilling with tap water. Calibration 

tests lasted eight days and triplicate (n=3) experimental units were destructively taken down for 

all flow treatments at 2, 4, and 8 d. Passive samplers were removed from experimental units at the 

designated periods and stored frozen at -80°C until further analysis. To confirm water 

concentrations throughout, one-liter aliquots were obtained prior to water exchanges every 24 h 

from replicate experimental units for each flow condition.  

2.6 PRC validation study 

The second experiment was conducted to evaluate if differential PRC dissipation across 

flow rates improved the accuracy of water concentration estimates when applying Rs obtained 

single flow regime across multiple flow regimes. Similar to the PRC calibration study, three 

replicate units (n=3) were constructed for each flow rate. To maintain stable analyte water 
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concentrations throughout the eight day study, a daily static renewal regimen was used by 

completely draining the water from each experimental unit into reservoirs containing activated 

carbon, refilling experimental units with tap water, and immediately fortifying with target 

analytes. Target analytes concentrations were achieved by adding 0.5 mL of spiking solution to 

the center of the cylindrical sleeve protruding into the depths of the experimental unit to achieve 

target analyte concentrations of 0.5 ng/mL or 0.1 ng/mL depending on analyte water solubility. 

Experimental units with static flow were stirred with a solvent rinsed stainless steel spoon for 2 

min after fortification to facilitate analyte dilution. Target analyte concentrations during the initial 

pulsed exposure were 0.5 ng/mL or 0.1 ng/mL depending on analyte water solubility. Passive 

samplers were removed from experimental units at the end of the eight-day exposure and stored 

frozen at -80°C until further analysis. To confirm water concentrations throughout, 1 L of water 

was obtained from replicate experiments for each flow treatment. On alternate days, water was 

obtained either pre- or post- (5 h) water exchanges so that four measurements (n=4) were taken 

pre and post exchange.  

2.7 Passive sampler and water extractions 

Passive samplers were removed from the freezer and allowed to thaw on aluminum foil at 

room temperature. Sorbents were removed from passive samplers by cutting the membranes with 

a solvent rinsed stainless steel scalpel and rinsing the sorbents into empty SPE cartridges with 

deionized water. Water samples obtained throughout both experiments and were spiked with 

surrogate standards, mixed on a stir plate for one hour, and extracted via Oasis HLB solid phase 

extraction (SPE) 500 mg cartridges containing HLB at approximately 15 mL/min. Prior to 

extraction, cartridges were conditioned with 8 mL ethyl acetate, 8 mL of methanol, and 15 mL of 

deionized water. Loaded passive samplers and water cartridges were dried via a vacuum for five 

minutes and centrifuged at 3,000x g for 8 min to remove excess water. Cartridges containing 

recovered media from passive samplers were spiked with surrogate standards prior to elution. 

Analytes were eluted with 1.5 mL acetone followed by 10 mL dichloromethane, dried with 
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anhydrous sodium sulfate, and evaporated under a gentle stream of nitrogen. During evaporation, 

all samples were solvent exchanged to ethyl acetate. Water samples were concentrated 5,000x to 

achieve detection limits. Sample final volumes for water samples, sorbent-PRC, and sorbent-

analytes ranged from 200 µL to 1,000 µL. 

2.8 Gas chromatography analysis 

Analysis of analyte residues will be performed using gas chromatography / mass 

spectrometry (GC/MS; Agilent 5975c, Santa Clara, CA, USA) using electron ionization (70 eV). 

Separation was achieved using a 15 m × 250 µm × 0.25 µm HP-5 capillary column (Agilent). The 

GC inlet was configured with an ultra inert, splitless single taper inlet with glass wool packing 

and the temperature was set at 260 °C. To accommodate the large analyte list, maintain sensitivity 

within analyte windows, and reduce degradation of analytes sensitive to cool starting 

temperatures and lengthy chromatographic runs, three different oven programs were utilized. 

Performance reference compounds were analyzed separately from contaminants to minimize the 

number of ions within quantitation windows. The oven programming for PRCs was held at the 

initial temperature of 90 °C for 1 min, ramped at 10 °C/min to 255 °C, ramped at 12 °C/min to 

295 °C, and held for 2 min. The oven programing and GC/MS parameters for target analytes were 

previously described (Chapter IV). Analyte quantitation was achieved using three ion select ion 

monitoring (SIM) with the following ions (Table S1). The two qualitative ions had to be within 

20% of expected ratio, relative to the quantitative ion response, to report the analyte without 

flagging the data as qualitatively uncertain. Semi-volatile internal standards were added to all 

samples and calibration standards. Analytes were paired to internal standards based on nearest 

retention time. Continuous calibration verification was performed during each analytical run by 

randomly reanalyzing low, intermediate, and high ranges of calibration standards.  

2.9 Theory and modeling 

Analyte accumulation in passive samplers generally follows a kinetic (i.e. linear) uptake 

period followed by a curvilinear equilibrium regime [1, 2] so that 
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   CPSD = CTWA × (
𝑘𝑢

𝑘𝑒
) × (1 − exp(−𝑘𝑒 × 𝑡))     EQ 1 

where CPSD is the sorbent analyte concentration (ng/g) within the passive sampling device (PSD), 

CTWA is the time-weighted average concentration (TWA; ng/mL) of the water, and ku and ke are 

accumulation (mL/g/d) and elimination (d-1) rate coefficients. However, POCIS-style samplers 

generally have long integration periods [1, 3] which simplifies Equation 1 so that 

   CPSD = CTWA × 𝑅𝑠 × 𝑡        EQ 2 

where RS is the sampling rate (mL/d) and t is the exposure time (d); therefore, the TWA water 

concentrations can be estimated for each analyte by rearranging Equation 2 so that 

   CTWA = 
CPSD

𝑅s×𝑡
          EQ 3 

Sampling rates for the 34 target analytes were determined for static and fast flow conditions in a 

previous publication (Chapter IV). Sampling rates corresponding to fast flow (i.e. 9.3 cm/s) were 

used as the RScal throughout calculations present study. 

Performance reference compound (PRC) desorption can be used to correct laboratory 

calibrated Rs values. Assuming exchange kinetics are similar between PRCs and target analytes, 

the PRC elimination rate constant kePRC can be derived using a first order elimination model 

   CPRC(𝑡) = CPRC0 × exp(−𝑘𝑒PRClab × 𝑡)      EQ 4 

where CPRC0 is the initial fortified PRC concentration (ng/g) and CPRC(t) is the remaining PRC 

concentration after an exposure of time (t) [21]. Similar to analyte RS, PRC elimination is 

determined in controlled laboratory conditions (kePRClab). Rearrangement of Equation 4 allows for 

determination of PRC elimination during in situ (kePRCval) deployments so that  

   𝑘𝑒PRCinsitu = 
ln(CPRC0 CPRC(𝑡)⁄ )

𝑡
       EQ 5 

Once calibrated, kePRClab can be used to normalize kePRCval, thus providing a means to correct 

laboratory derived analyte sampling rates (RScal) resulting in-situ corrected sampling rates (RScorr)  
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   𝑅Scorr = 𝑅Scal × (
𝑘𝑒PRCval

𝑘𝑒PRClab
)         EQ 6 

2.10 Data analysis 

All graphics were constructed using SigmaPlot 10.0 (Systat Software, CA, USA). 

Sampler PRC concentrations obtained during dissipation rate calibration were normalized to 

CPRC0 to provide a visual for the total percentage lost for each PRC investigated. Regression 

analysis of PRC loss was performed in SigmaPlot by fitting a first order exponential model (EQ 

4) for the data plotted as percentage of CPRC0 as a function of exposure time. The initial quality 

control samples (n=4 per sorbent) were included in the regression analysis as day zero.  

Flow dependencies of analyte Rs were determined individually for each analyte and 

sorbent. Analyte Rs for fast, slow, and static flow conditions were estimated from eight-day time 

point during the PRC validation experiment using Equation 3. Flow dependencies were 

determined for fast and slow conditions by normalizing estimated Rs to static conditions; 

therefore, calculating the magnitude of difference compared to static conditions. Flow 

dependencies were similarly calculated for PRC dissipation for compounds exhibiting first order 

release from NOCIS configurations. Using PRC elimination rates from the same experiment 

calculated using Equation 5, elimination rates from fast and slow conditions were normalized by 

static conditions to determine the magnitude of difference in PRC loss compared to static 

conditions. When considering multiple PRC corrections, the PRC flow dependencies from fast 

flow conditions were used to determine which PRC corrections should be applied to individual 

analytes.  

Since different PRCs may more accurately correct the Rs of any given analyte, a process 

was developed to assign each analyte a PRC a priori based on flow dependencies. The “Best-Fit 

PRC” was thus selected by matching the analyte flow dependencies from fast flow conditions to 

the PRC that had the most similar flow dependency. If the analyte had limited flow dependency, 

no PRC correction was made.  
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To visualize differences RScal and RScorr, box and whisker plots were constructed with 

median (solid horizontal line), mean (dotted horizontal line), inner quartile range (25th and 75th 

percentiles; box), and the 10th and 90th percentiles (whiskers). In-situ sampling rates were 

calculated using Equation 6 and RS previously published using fast flow conditions (Chapter IV). 

The fast flow condition (i.e. 9.3 cm/s) was chosen as the calibration flow rate due to higher RS 

and more importantly higher PRC dissipation as compared to static flow conditions. 

3. Results and Discussion 

3.1 Quality control 

Method accuracy and precision was determined based on analysis of laboratory fortified 

samples including both sorbents and tap water throughout chemical analysis procedures and were 

compared against measured values of spiking solutions (n=10) conducted throughout. Mean (± 

standard deviation; SD) percentage of analyte recoveries from fortified quality control samples 

are reported in Table S2. Recovery of analytes from fortified sorbent quality control samples (n=6 

per sorbent) averaged 93% (range: 74-205%) and 93% (range: 77-143%), respectively for Dowex 

Optipore L-493 and Oasis HLB. Chlorothalonil recoveries were high in both sorbents. Similarly, 

recovery of PRCs from fortified sorbents (n=6 per sorbent) averaged 100% (range: 88-105) and 

102% (range: 94-114%), respectively for Dowex Optipore L-493 and Oasis HLB (Table S3). 

Analysis of fortified water samples (n=4) yielded mean recoveries of 87% (range: 33-167%) and 

98% (range: 71-115%), respectively for all contaminants (n=7; Table S2) and PRCs (n=4; Table 

S3).  

Mean (± standard deviation; SD) initial PRC concentrations (CPRC0) for Dowex Optipore 

L-493 (n=4) were 4.52 ± 0.34 µg/g (atrazine-d5), 6.32 ± 0.62 µg/g (caffeine-13C3), 4.67 ± 0.39 

µg/g (cotinine-d3), 3.41 ± 0.13 µg/g (DIA-d5), 6.60 ± 0.35 µg/g (fluoranthene-d10), and 5.74 ± 

0.30 µg/g (lindane). Similarly, initial PRC concentrations for Oasis HLB (n=4) were 4.51 ± 0.34 

µg/g (atrazine-d5), 4.62 ± 0.30 µg/g (caffeine-13C3), 4.01 ± 0.08 µg/g (cotinine-d3), 3.87 ± 0.24 

µg/g (DIA-d5), 4.42 ± 0.16 µg/g (fluoranthene-d10), and 4.65 ± 0.14 µg/g (lindane). These results 
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indicate that uniform sorbent fortification was achieved for all PRCs prior to sampler construction 

and exposures.  

Performance reference compound concentrations in water obtained from experimental 

units and unfortified tap water were below quantitation limits. Analyte residues in blank sorbent 

extract concentrations (n=6 per sorbent) were below quantitation limits for all PRCs and target 

analytes; therefore, the limit of detection was set at the lowest calibration standard within the 

linear range for each analyte. Trace levels of ten target analytes (atrazine, DEET, desethyl 

atrazine, fluoranthene, galaxolide, metolachlor, musk ketone, octinoxate, pendimethalin, and 

pyrene) were detected in blank water samples (n=4) due to presence in the water source. The 

median background concentration was 4 ng/L (range: 1-21 ng/L) with atrazine being the highest. 

Laboratory method blanks (n=6) were below detection limits for all analytes and PRCs. Mean 

(SD) percentage of surrogate standard recovery from water and sorbents was 69% (12), 85% (6), 

and 84% (6) respectively for benzo(a)anthracene-d16, dibutyl chlorendate, and tetrachloro-m-

xylene. Recoveries of PAHs were corrected by benzo(a)anthracene-d16 recoveries for each 

sample. 

During the PRC validation study, measured experimental unit water concentrations were 

consistent across all flow treatments for all target analytes (Table S4) and were not blank 

corrected as background concentrations were in the water source. On average, measured water 

concentrations were approximately 79.4% of expected based on analysis of spiking solutions 

(n=10). Expected concentrations of several analytes were consistently below 50% of expected 

(i.e. benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoranthene, octinoxate, and trifluralin; Table 

S4) across all flow regimes.  

3.2 Calibration of performance reference compound (PRC) dissipation 

First order elimination from NOCIS configurations was demonstrated for caffeine-13C3, 

cotinine-d3, and DIA-d5; however, no discernable loss was observed for atrazine-d5, fluoranthene-

d10, or lindane (Fig. 2, Table 2). Therefore, sorbent residues of the three PRCs with no elimination 
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were monitored throughout as a metric of sorbent recovery with average recoveries within 30% of 

expected for both sorbents, suggesting stability of fortified analytes and good sorbent recoveries 

during sample processing. For PRCs exhibiting first order elimination, regression analysis of 

PRC elimination as a function of exposure time provided good correlations with the data where 

R-square averaged 0.7290 and 0.9507 for NOCIS configurations containing Dowex Optipore L-

493 and Oasis HLB, respectively (Table 2). Lower R-square values were observed for PRC 

elimination from Dowex Optipore L-493 due to lower overall dissipation out as flow rate 

decreased (Table 2). R-square values for PRC elimination from NOCIS configurations containing 

Oasis HLB were more consistent across all flow conditions, despite lower overall elimination 

rates in static conditions as compared to flowing conditions (Table 2).  

 

Table 2. Performance reference compound (PRC) parameter estimates and regression fitting results from 

the initial loss-out calibration study for the three PRCs that demonstrated first order release (EQ 4) from 

both sorbents.  

 Dowex Optipore L-493  Oasis HLB 

PRC 

Percent 

CPRC0 

(%) 

 
kPRClab 

(d-1) 
 R2  p-value  

Percent 

CPRC0 

(%) 

 
kPRClab 

(d-1) 
 R2  p-value 

 Fast flow conditions (9.3 cm/s) 

Caffeine-13C3 94.98  0.0827  0.7964  <0.0001  99.29  0.3504  0.9737  <0.0001 

Cotinine-d3 96.86  0.1359  0.9000  <0.0001  99.99  0.5974  0.9952  <0.0001 

DIA-d5 98.67  0.2061  0.9328  <0.0001  99.92  0.2449  0.9692  <0.0001 

 Slow flow conditions (5.0 cm/s) 

Caffeine-13C3 97.47  0.0572  0.7596  0.0001  99.50  0.3262  0.9775  <0.0001 

Cotinine-d3 99.2  0.1020  0.8854  <0.0001  99.94  0.5275  0.9896  <0.0001 

DIA-d5 95.83  0.1475  0.8914  <0.0001  101.55  0.2342  0.9566  <0.0001 

 Static flow conditions (0 cm/s) 

Caffeine-13C3 94.42  0.0293  0.3974  0.0209  99.39  0.0949  0.9471  <0.0001 

Cotinine-d3 93.61  0.0446  0.4879  0.0079  102.12  0.1451  0.9633  <0.0001 

DIA-d5 89.67  0.0697  0.5098  0.0061  103.88  0.0547  0.7837  <0.0001 
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Fig. 2. Performance reference compound (PRC) elimination from Dowex Optipore L-493 (left column) and 

Oasis HLB (right column) under fast (A,B), slow (C,D), and static (E,F) flow conditions. Elimination rates 

were normalized to the initial sorbent fortification level to visually demonstrate the total percentage loss 

over the exposure time. Regression fitting values for PRCs demonstrating first order elimination are 

reported in Table 2. Symbol key: desisopropyl atrazine-d5 (●), cotinine-d3 (○), caffeine-13C3 (■), atrazine-d5 

(∆), lindane (▼), and fluoranthene-d10 (□). 
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Dissipation from NOCIS devices differed between PRCs for each sorbent (Fig. 2, Table 

2). Across all flow treatments, the order of PRC elimination (fastest to slowest) from Dowex 

Optipore L-493 was DIA-d5 > cotinine-d3 > caffeine-13C3 (Fig. 2, Table 2). Mean percentage of 

initial PRC concentrations in Dowex Optipore L-493 at the conclusion of the eight-day 

calibration was 38.9% (3.1), 49.4% (3.6), and 70.2% (6.4) for fast, slow, and static flow 

conditions, respectively (Fig. 2). In contrast, the order of PRC elimination (fastest to slowest) 

from Oasis HLB was cotinine-d3 > caffeine-13C3 > DIA-d5 (Fig. 2, Table 2). Mean percentage of 

initial PRC concentrations in Oasis HLB at the conclusion of the eight-day calibration was 10.8% 

(1.5), 9.2% (2.0), and 46.4% (3.6) for fast, slow, and static flow conditions, respectively (Fig. 2). 

Notably, PRC elimination was lower from Dowex Optipore L-493 as compared to Oasis HLB 

across all flow conditions (Fig. 2).   

Direct comparisons with previous studies are limited as Belles et al. [19] is the only 

previous publication to investigate PRC release from nylon-POCIS configurations and this is the 

first investigation to evaluate PRC elimination from Dowex Optipore L-493. Regardless, DIA-d5 

[19-21, 23] and caffeine-13C3 [3, 19] have been suggested as promising PRCs for POCIS-style 

samplers. Using Oasis HLB nylon-POCIS configurations and classical POCIS configurations, 

Belles et al. [19] reported similar dissipation rates for caffeine-13C3 (ke = 0.047 d-1) and DIA-d5 (ke 

= 0.044 d-1); however, direct comparisons are still challenging because flow across samplers was 

not explicitly explained in previous work and data herein suggests that the flow can significantly 

influence elimination. Using classical POICS configurations and a flow rate of approximately 2-3 

cm/s, Mazzella et al. [21] reported a similar dissipation rate for DIA-d5 (ke = 0.044 d-1) while also 

reporting dissipation of atrazine (ke = 0.020 d-1). Similar dissipation rates reported for caffeine-

13C3 and DIA-d5 using both nylon- and classical-POCIS configurations suggest that diffusion out 

is not membrane limited. Therefore, for these particular PRCs, diffusion through and thickness of 

the aqueous boundary layer is likely the rate-limiting step of PRC elimination as opposed to 

membrane permeation/diffusion. Consequently, PRC elimination rates should differ based on 
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flow across sampler membranes due to changes within the aqueous boundary layer. Changes in 

analyte mass transfer based on the thickness of the aqueous boundary layer also influence 

sampling rates [12, 13], which is the primary benefit for using PRCs for in-situ flow calibrations. 

3.3 Influence of flow 

Elimination of PRCs occurred faster at higher flow conditions for both NOCIS 

configurations (Fig. 2, Table 2). For NOCIS configurations containing Dowex Optipore L-493, 

average PRC elimination occurred 2.9x and 2.1x faster under fast and slow flow conditions, 

respectively compared to static conditions (Table 2). For NOCIS configurations containing Oasis 

HLB, average PRC elimination occurred 4.1x and 3.8x faster under fast and slow flow conditions, 

respectively compared to static conditions (Table 2). Although elimination rates from Dowex 

Optipore L-493 decreased with decreasing flow conditions, the overall range and extent of 

elimination was minimal compared to Oasis HLB (Table 2). In contrast, elimination rates from 

Oasis HLB were greatest between static and flow conditions, despite the negligible differences 

between fast and slow flow treatments. Moreover, better regression fittings were maintained for 

PRC elimination from Oasis HLB under static conditions with R-square values of 0.78 or better 

(Table 2). Few other investigations have calibrated PRC elimination under more than one flow 

condition [20]. Belles et al. [20] reported DIA elimination rates from classical POCIS 

configurations of 0.245 d-1 and 0.145 d-1 for fast and slow stirred conditions, respectively. These 

elimination rates align well with results reported in Table 2 for DIA-d5 elimination from NOCIS 

configurations containing Oasis HLB.  

Differences in PRC elimination rates between flow treatments were best described by 

calculating flow dependence where the elimination rates observed for both fast and slow 

conditions are normalized based on elimination rates obtained from static conditions (Fig. 3). 

This calculation demonstrates the magnitude of difference between static elimination rates as 

compared to elimination rates observed under flow conditions. Regardless of sorbent, flow 

dependence for each PRC was greatest under fast conditions as compared to slow conditions (Fig. 
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3). Due to greater differences in PRC elimination between static and flow conditions (Fig. 2, 

Table 2), PRC flow dependence was greater for NOCIS configurations containing Oasis HLB 

(Fig. 3). For example, mean flow dependence for DIA-d5 was 2.4 and 5.4 for Dowex Optipore L-

493 and Oasis HLB, respectively. 

 

 

Fig. 3. Mean (standard deviation) flow dependence of performance reference compounds (PRCs) 

demonstrating first order elimination from samplers containing Dowex Opitpore L-493 and Oasis HLB. 

Flow dependence for fast and slow flow conditions were calculated by normalizing the respective 

elimination rates (ke) by elimination rates obtained from static conditions.  

 

It has been well documented that changes in hydrodynamic conditions can significantly 

influence contaminant uptake for various passive sampler configurations, especially when uptake 

is controlled by changes in the aqueous boundary layer [2, 5, 12-18] (Chapter IV). Sampling rate 

variations were also observed for NOCIS configurations during the validation study as calculated 

from the 8-d time point of the in-situ exposure using Equation 2 (Table S5). Similar to variations 

in PRC elimination, flow dependency can also be used to express differences in analyte sampling 

rates across flow treatments (Fig. 4, Table S6). Therefore, expressing this variation as flow 

dependency can provide a normalized metric for comparison across different sampler designs. 
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Fig. 4. Mean (standard deviation) flow dependence of analyte sampling rates (RS) under fast (black) and slow (white) flow conditions for samplers containing 

Dowex Opitpore L-493 (A) and Oasis HLB (B). Flow dependence for fast and slow flow conditions were calculated by normalizing the respective RS by rates 

obtained from static conditions. Sampling rates were calculated from the 8-d time point of the validation study using Equation 2. 
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Mean flow dependence of sampling rates for Dowex Optipore L-493 was 13.9 (range: 2.3-65.0) 

and 5.8 (range: 1.1-17.9) for fast and slow flow conditions, respectively (Fig. 4, Table S5). Mean 

flow dependence of sampling rates for Oasis HLB was 4.8 (range: 1.0-11.2) and 3.4 (range: 0.9-

7.4) for fast and slow flow conditions, respectively (Fig. 4, Table S5). These values are similar to 

previously reported values where sampling rates under fast flow conditions were 9.5x and 4.8x 

greater than static conditions for NOCIS configurations containing Dowex Optipore L-493 and 

Oasis HLB, respectively (Chapter IV). The flow dependency of many analytes is much greater 

than found for PRCs (Fig. 3 and Fig. 4), especially for Dowex Optipore L-493. 

3.4 PRC validation study 

3.4.1 Uncorrected rates 

Estimated PRC elimination rates obtained during the eight-day PRC validation study 

(Table S7) were similar to rates obtained from regression models from the PRC calibration study 

(Table 2) and had the same order of release from both sorbents. As such, similar release kinetics 

were obtained between both studies. Mean percentage of initial PRC concentrations in Dowex 

Optipore L-493 at the conclusion of the validation study were 30% (14), 40% (14), and 53% (6) 

for fast, slow, and static flow conditions, respectively. Mean percentage of initial PRC 

concentrations in Oasis HLB at the conclusion of the validation study were 7% (4), 8% (5), and 

42% (19) for fast, slow, and static flow conditions, respectively.  

For comparison between previous investigations (Chapter IV), analyte RS were 

determined at the conclusion of the validation study using Equation 2 and average measured 

water concentrations (Table S4). Median RS estimated from the eight-day time point of the 

validation study were 696 mL/d (range: 54-1006 mL/d), 388 mL/d (range: 8-698 mL/d), and 72 

mL/d (range: 4-257 mL/d), respectively for fast, slow, and static conditions from NOCIS 

configurations containing Dowex Optipore L-493 (Table S4). Similarly for NOCIS 

configurations containing Oasis HLB, median RS were 715 mL/d (range: 59-1043 mL/d), 620 

mL/d (range: 19-992 mL/d), and 156 mL/d (range: 14-429 mL/d) for fast, slow, and static 
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conditions, respectively (Table S4). Estimated RS were 30-35% lower than sampling rates 

obtained during previous calibration studies conducted under the same fast (9.3 cm/s) and static 

(0 cm/s) conditions and exposure units (Chapter IV).  

3.4.2 Validation study sampling rate corrections 

Using Equation 6, analyte RS calibrated using fast flow conditions (Chapter IV) were 

corrected based on elimination rates determined from PRC calibration and validation studies. 

Performance reference compound correction factors applied to calibrated RS are provided in Table 

3 for all flow rates and PRCs. To evaluate the effectiveness of PRC corrections, corrected RS were 

used in Equation 2 to estimate water concentrations within the validation study. Estimates 

obtained for all analytes (n=34) are presented in Figure 5 as percentage of actual measured water 

concentration (Table S4) from the validation study. As expected, the most dramatic improvement 

in water concentration predictions occurred for static conditions, due to the greatest differences 

between in-situ and calibration flow conditions (i.e. 9.3 cm/s). The complete data set presented in 

Figure 5 is reported in the supplementary information for both Dowex Optipore L-493 (Table S8) 

and Oasis HLB (Table S9). 

 

Table 3. Mean (standard deviation) correction factors for each flow treatment applied to calibration 

sampling rates (RScal) calculated from the ratio of kePRCcal to kePRClab (EQ 6). To match analyte Rs calibration 

study flow rates (Chapter IV) correction factors were normalized by kePRClab obtained from fast flow 

conditions (Table 2). 

 Dowex Optipore L-493  Oasis HLB 

PRC Fast  Slow  Static  Fast  Slow  Static 

Caffeine-13C3 
1.212  

(0.086) 

 0.871  

(0.114) 

 0.837  

(0.090) 

 0.821  

(0.059) 

 0.772  

(0.035) 

 0.284  

(0.064) 

Cotinine-d3 
1.106  

(0.186) 

 0.941  

(0.057) 

 0.629 

(0.148) 

 0.818  

(0.051) 

 0.726  

(0.008) 

 0.334  

(0.007) 

DIA-d5 
1.199 

(0.131) 

 0.821  

(0.105) 

 0.419  

(0.039) 

 1.312  

(0.204) 

 1.298  

(0.373) 

 0.262 

(0.109) 
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For Dowex Optipore L-493, predicted water concentrations were not significantly 

improved by PRC corrections. On average, PRC corrected estimates were 13% lower, 15% 

higher, and 74% higher than uncorrected estimates, respectively for fast, slow, and static flow 

conditions as compared to estimates calculated from calibration sampling rates (Fig. 5, Table S8). 

Predictions resulting from PRC corrections had the greatest improvements across all flow rates 

using DIA-d5 where predictions averaged 65.7%, 47.2%, and 22.1% of measured concentrations 

for fast, slow, and static flows, respectively (Fig. 5, Table S8). Cotinine-d3 provided the best 

correction under fast flow conditions where predictions averaged 73.7% of measured 

concentrations; however, no PRC improved the prediction accuracy of water concentrations under 

fast flow conditions as compared to estimates generated from calibration sampling rates (Fig. 5, 

Table S8). Regardless of PRC or flow treatment, applying PRC corrections to NOCIS 

configurations containing Dowex Optipore L-493 had little effect on estimated water 

concentrations as compared to estimates generated from calibration experiments. Since PRC 

elimination had minimal flow dependence (Figure 3) as compared to analytes, little improvement 

was possible. 

Across all PRCs, average corrected water estimates for Oasis HLB were 7%, 15%, and 

273% higher than water estimates calculated from calibration sampling rates (Fig. 5, Table S9). 

Caffeine-13C3 provided the most accurate prediction across all flow conditions where estimates 

averaged 84.3%, 71.1%, and 71.9% of measured values, respectively for fast, slow, and static 

flow conditions (Fig. 5, Table S9). Cotinine-d3 provided similar prediction accuracies at fast 

(84.8%) and slow (75.6%) conditions; however, cotinine-d3 corrections provided the lowest 

accuracy (58.0%) of the three PRCs under static conditions (Fig. 5). Average water estimates 

provided by DIA-d5 were lowest under fast (53.0%) and slow (42.6%) flow conditions while 

providing the best predicted concentrations under static (87.0%) conditions (Fig. 5). These data 

demonstrate the benefits of incorporating multiple PRCs within POCIS-style samplers to provide 

accurate estimates of water concentrations over a range of flow conditions. For instance, as 



150 
 

compared to water concentrations estimates generated from calibration experiments, caffeine-13C3 

and cotinine-d3 correction provided improved estimates across all flow conditions; however, 

DIA-d5 provided the best improvements under static conditions (Fig. 5, Table S9).  

 
Fig. 5. Estimated water concentrations for 34 target analytes from the validation study for Dowex Optipore L-493 (Left 

Column) and Oasis HLB (Right Column) under fast, slow, and static conditions. White boxes represent water estimates 

based on sampling rates from the calibration study (Chapter IV), whereas grey boxes represent water estimates based 

on sample rates corrected by caffeine-13C3 (A,B), cotinine-d3 (C,D), and DIA-d5 (E,F). Estimates provided as box and 

whisker plots with median (solid horizontal line), mean (dotted horizontal line), inner quartile range (25th and 75th 

percentiles; box), the 10th and 90th percentiles (whiskers), and outliers (dots). 
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Performance reference compounds have been suggested for correcting in-situ analyte RS 

with the assumption that exchange kinetics are similar between PRC elimination and analyte 

accumulation [21]. If the mass transfer kinetics of all targeted analytes have similar responses to 

flow as a PRC, a single PRC may be applicable for correcting the entire data set [20, 21]. 

However, several studies have suggested that multiple PRCs should be incorporated into samplers 

to account for differential exchange kinetics [21, 22, 24]. Our data for NOCIS samplers 

containing Oasis HLB support these claims because no single PRC could account for the wide 

variation in flow dependencies observed for the entire targeted analyte list (Fig. 5). Therefore, we 

matched PRCs to analytes based on relative flow dependencies to present a best-fit correction 

approach. To assign PRCs to target analytes, thresholds were determined by taking the geometric 

mean of Caffeine-13C3 and DIA-d5 flow dependencies at fast flow conditions for NOCIS 

configurations containing Oasis HLB, however, this approach was not attempted with Dowex 

Optipore L-493 due to the minimal flow dependency differences in PRC elimination (Fig. 3). For 

Oasis HLB, parings were made based on fast flow conditions and were sorted by magnitude of 

flow dependence. Analytes with flow dependencies less than 1.7 were not PRC-corrected, 

analytes with flow dependencies between 1.7 and 4.0 were corrected by Caffeine-13C3 and 

analytes with flow dependencies > 4.0 were corrected by DIA-d5. A summary plot of the results 

from this best-fit approach is provided in Figure 6 for Oasis HLB and water estimates that were 

included in the best-fit PRC approach are provided as bolded numbers within Table S9. As 

compared to single PRC adjustment strategy (Fig. 5), analyte sampling rates using the best-fit 

approach (RSbest) showed improvement in estimated water concentrations during static conditions 

(Fig. 6). Significantly, the range of high outliers was reduced so that no estimates were >2x (i.e. 

200%) of the measured mean value. Similar to single PRC corrections, the frequency of estimated 

values below 50% of the true measured values was reduced to 41% (n=14) as compared to 97% 

(n=33) for estimates generated from calibration studies. As evident by outlier range, PRC 

correction did not work uniformly across all target analytes, especially when flow conditions 
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were similar to flow conditions of the calibration study (Chapter IV). The accuracy of the 

predictions were similar to that found for the individual PRCs (Fig. 5); however, the outlier range 

was slightly improved (i.e. reduced) suggesting that using multiple PRCs reduced the magnitude 

of variation (Fig. 6).  

 

Fig. 6. Estimated water concentrations for 34 target analytes from the validation study for Oasis HLB under 

fast, slow, and static conditions. White boxes represent water estimates based on sampling rates from the 

calibration study (Chapter IV), whereas grey boxes represent water estimates based on sample rates 

corrected using the best-fit PRC approach. Analytes with flow dependencies < 1.7 were not corrected, 

analytes with flow dependencies between 1.7 and 4.0 were corrected by caffeine-13C3, and analytes with 

flow dependencies > 4.0 were corrected by DIA-d5. 

 

Previous investigations evaluating the effectiveness of PRC corrections have typically 

conducted laboratory calibrations for sampling rates and PRC elimination under one flow 

condition followed by in-situ exposures at field locations [20, 21]. Our approach was similar in 

that calibration experiments were conducted separately from the PRC validation study; however, 

the in-situ validation reported herein was conducted under highly controlled conditions with 
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known flow rates and contaminant concentrations. This was done purposefully to evaluate the 

effectiveness of PRC corrections under stable conditions. 

4. Conclusions 

Our results suggest that Oasis HLB is more amenable to PRC approach as compared to 

Dowex Optipore L-493. Thus, if Dowex Optipore L-493 is used, calibration study flow 

conditions should be similar to expected field conditions. For Oasis HLB, the PRC approach has 

potential to decrease the impact of flow on sampling rate accuracy when the impact of flow is 

substantially different than calibration conditions. However, when in-situ flow conditions are 

similar to calibration conditions, PRC adjustment did not decrease variability, which is somewhat 

inherent when additional measurements are added to the system but are not necessary. In these 

situations, the benefits of PRC correction may be outweighed by error in measurement and slight 

difference among samplers, thus reducing the overall effectiveness of PRC adjustment. The 

potential to reduce major errors with PRCs greatly improves the feasibility of using NOCIS 

configurations containing Oasis HLB for environmental monitoring, especially when in-situ flow 

conditions unknown or dramatically different from calibration flow conditions. Although there is 

greater variability in measuring water concentrations with NOCIS (or integrative samplers in 

general) compared to collecting and extracting discrete water samples, this variability is much 

less than what is likely obtained from collecting a few discrete water samples (Chapter II).   
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Supporting Information: 

CHARACTERIZATION OF PERFORMANCE REFERENCE COMPOUND KINETICS AND 

ANALYTE SAMPLING RATE CORRECTIONS UNDER THREE FLOW REGIMES USING 

POCIS-STYLE NYLON ORGANIC CHEMICAL INTEGRATIVE SAMPLERS  
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Table S1. Analyte analysis method, retention time (RT), select ions monitored (SIM). The two qualitative 

(Qual) ions had to be within 20% of expected ratio, relative to the quantitative (Quant) ion response, to 

report the analyte without flagging the data as qualitatively uncertain. 

 GC 

Method 

RT SIM ions 

Analyte (min) 
Quantitative: Qualitative 

(m/z) 

DEET 1 6.85 119:190, 191 

Desethyl atrazine 1 7.76 172:174, 187 

Trifluralin 1 7.98 306:264, 290 

Atrazine-d5 (surrogate) 1 8.69 205:178, 220 

Atrazine 1 8.72 200:173, 215 

Chlorothalonil 1 8.99 266:264, 268 

Galaxolide 1 9.56 243:258, 213 

Musk tonalid 1 9.66 243:258, 187 

Acetochlor 1 9.89 146:162, 223 

Metolachlor 1 10.79 162:238, 240 

Musk ketone 1 10.82 279:128, 294 

Chlorpyrifos 1 10.88 197:258, 314 

Pendimethalin 1 11.58 252:253, 281 

Fluoranthene 1 11.68 202:200, 203 

Pyrene 1 12.22 202:200, 203 

Octinoxate 1 14.50 178:161,179 

Tebuconazole 1 14.91 125:163, 250 

Propiconazole 2 9.75 259:173, 191 

Trifloxystrobin 2 9.94 116:131, 222 

Benzo(a)anthracene-d16 (surrogate) 2 10.82 240 

Benzo(a)anthracene 2 10.75 228:226 

Chrysene 2 10.84 228:226 

Bifenthrin 2 11.27 181:165, 166 

Metconazole 2 11.41 125:250, 319 

λ-Cyhalothrin 2 12.66 181:141, 197 

Trans-permethrin 2 13.58 183:163, 164 

Cis-permethrin 2 13.78 183:163, 165 

Benzo(b)fluoranthene 2 13.88 252:253 

Benzo(k)fluoranthene 2 13.96 252:254 

Cyfluthrin 2 14.71 163:165, 226 

Benzo(a)pyrene 2 14.83 252:250 

Pyraclostrobin 2 16.06 132:164, 325 

Azoxystrobin 2 17.14 344:388, 403 

Benzo(g,h,i)perylene 2 17.14 276:277 
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Dibenz(a,h)anthracene 2 17.72 278:276 

Indeno(1,2,3-cd)pyrene 2 18.02 276:277 

Desisopropyl atrazine-d5 3 6.98 178:160, 180 

Cotinine-d3 3 7.52 179:122, 147 

Atrazine-d5 3 7.98 205:178, 220 

Lindane 3 8.02 181:219, 254 

Caffeine-13C3 3 8.67 197:111, 196 

Fluoranthene-d10 3 9.93 210:212, 213 

 

Table S2. Mean (standard deviation) analyte extraction recoveries from fortified quality control samples 

for the three sorbent medias and water. Expected recoveries are based on analysis of spiking solutions 

(n=10) conducted throughout all experiments.  

  Percentage of expected (SD) 

Analyte 

 Dowex Optipore  

L-493 

(n=6) 

 

Oasis HLB 

 

(n=6) 

  

Water 

 

(n=7) 

Acetochlor 
 

91.2 (4.2) 
 

95.5 (5.0) 
 

89.2 (7.1) 

Atrazine  91.3 (3.5)  92.2 (4.9)  96.1 (6.6) 

Azoxystrobin  110.8 (10.0)  106.5 (16.7)  167.4 (18.9) 

Benzo(a)anthracene  81.1 (4.0)  85.0 (2.7)  79.5 (12.6) 

Benzo(a)pyrene  73.7 (4.9)  85.3 (4.4)  33.0 (14.3) 

Benzo(b)fluoranthene  79.1 (4.2)  85.5 (6.5)  68.9 (5.5) 

Benzo(g,h,i)perylene  84.7 (6.7)  100.4 (9.6)  95.5 (11.8) 

Benzo(k)fluoranthene  73.9 (7.0)  82.0 (5.6)  63.4 (8.6) 

Bifenthrin  92.6 (5.0)  87.4 (5.4)  75.8 (3.9) 

Chlorothalonil  205.3 (11.8)  143.0 (17.1)  100.3 (30.8) 

Chlorpyrifos  82.1 (6.4)  83.6 (4.8)  64.5 (8.3) 

Chrysene  75.6 (4.8)  81.7 (4.7)  73.5 (9.8) 

Cis-permethrin  114.4 (6.4)  107.7 (9.5)  105.6 (6.4) 

Cyfluthrin  111.1 (6.4)  100.6 (13.3)  125.6 (12.1) 

λ-Cyhalothrin  120.1 (6.3)  103.3 (8.5)  115.4 (6.3) 

DEET  85.7 (5.8)  87.9 (6.6)  87.9 (6.3) 
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Desethyl atrazine  96.3 (4.7)  95.3 (4.3)  98.1 (7.7) 

Dibenz(a,h)anthracene  87.7 (5.6)  102.8 (8.8)  105.9 (12.8) 

Fluoranthene  86.9 (5.9)  89.1 (4.3)  92.2 (6.8) 

Galaxolide  86.1 (5.3)  88.5 (6.7)  57.6 (6.4) 

Indeno(1,2,3-cd)pyrene  77.3 (6.1)  102.3 (6.4)  92.0 (13.0) 

Metconazole  84.2 (4.2)  86.6 (5.0)  93.1 (7.0) 

Metolachlor  90.9 (3.9)  92.4 (4.9)  88.8 (6.7) 

Musk ketone  89.5 (4.1)  90.3 (5.2)  85.9 (7.0) 

Musk tonalid  85.5 (4.9)  88.3 (5.2)  61.3 (7.1) 

Octinoxate  78.3 (4.5)  77.7 (5.0)  54.0 (7.0) 

Pendimethalin  91.4 (6.1)  91.4 (4.4)  69.6 (8.3) 

Propiconazole  88.0 (4.8)  88.8 (4.5)  79.2 (5.2) 

Pyraclostrobin  99.0 (8.5)  88.0 (19.2)  141.6 (14.9) 

Pyrene  81.7 (5.4)  85.2 (3.8)  81.8 (7.2) 

Tebuconazole  75.2 (7.0)  76.6 (6.1)  84.0 (6.3) 

Trans-permethrin  112.7 (6.3)  105.2 (8.1)  99.5 (4.9) 

Trifloxystrobin  91.3 (6.1)  
95.5 (5.0) 

 77.6 (4.7) 

Trifluralin  89.4 (5.7)  92.2 (4.9)  43.6 (7.4) 
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Table S3. Mean (standard deviation) PRC extraction recoveries from fortified quality control samples for 

the three sorbent medias and water. Expected recoveries are based on analysis of spiking solutions (n=10) 

conducted throughout all experiments.  

  Percentage of expected (SD) 

Analyte 

 Dowex 

Optipore  

L-493 

(n=6) 

 

Oasis HLB 

 

(n=6) 

  

Water 

 

(n=4) 

Atrazine-d5 
 

97.3 (10.8) 
 

94.8 (8.0) 
 

103.0 (2.7) 

Caffeine-13C3  105.4 (14.2)  113.9 (8.2)  103.9 (2.1) 

Cotinine-d3  104.5 (6.6)  104.0 (10.8)  88.1 (6.8) 

Desisopropyl atrazine-d5  100.6 (4.7)  100.1 (5.4)  115.0 (8.2) 

Fluoranthene-d10  102.1 (4.7)  104.1 (8.0)  71.1 (2.9) 

Lindane  87.9 (5.5)  94.0 (4.2)  104.5 (5.8) 



162 
 

Table S4. Mean (standard deviation) measured and percentage of expected of water concentrations in experimental units during the validation study for fast, 

slow, and static treatments. For each flow treatment, water samples were obtained daily before water exchanges (n=4) and after 5-h after exchanges (n=4). 

Expected recoveries are based on analysis of spiking solutions (n=10) conducted throughout all experiments. 

 
Fast 

(9.3 cm/s) 
 

Slow 

(5.0 cm/s) 
 

Static 

(0 cm/s) 

Analyte 
Measured 

(ng/mL) 
 

Percent of 

expected (%) 
 

Measured 

(ng/mL) 
 

Percent of 

expected (%) 
 

Measured 

(ng/mL) 
 

Percent of 

expected (%) 

Acetochlor 0.46 (0.07) 
 

97.7 (14.5) 
 

0.48 (0.09) 
 

101.2 (18.0)  0.51 (0.04)  106.6 (9.2) 

Atrazine 0.54 (0.07)  110.7 (14.3)  0.57 (0.11)  117.2 (22.5)  0.60 (0.05)  122.4 (10.7) 

Azoxystrobin 0.64 (0.10)  129.0 (20.6)  0.65 (0.12)  131.5 (25.0)  0.76 (0.12)  154.8 (24.4) 

Benzo(a)anthracene 0.03 (0.01)  32.0 (10.4)  0.03 (0.00)  29.8 (4.8)  0.02 (0.01)  25.2 (13.8) 

Benzo(a)pyrene 0.01 (0.00)  7.8 (3.6)  0.01 (0.00)  6.3 (1.7)  0.01 (0.01)  10.4 (8.1) 

Benzo(b)fluoranthene 0.05 (0.01)  59.3 (10.7)  0.04 (0.01)  50.3 (12.1)  0.05 (0.02)  54.5 (26.5) 

Benzo(g,h,i)perylene 0.06 (0.02)  56.5 (17.7)  0.05 (0.01)  47.3 (8.7)  0.07 (0.04)  67.4 (38.4) 

Benzo(k)fluoranthene 0.04 (0.01)  43.8 (10.3)  0.04 (0.01)  39.4 (11.3)  0.04 (0.02)  47.2 (23.4) 

Bifenthrin 0.09 (0.03)  87.5 (34.7)  0.08 (0.03)  79.6 (29.1)  0.08 (0.03)  76.8 (32.4) 

Chlorothalonil 0.48 (0.14)  143.5 (41.0)  0.42 (0.13)  125.3 (40.1)  0.40 (0.15)  119.7 (44.5) 

Chlorpyrifos 0.07 (0.01)  79.6 (13.9)  0.07 (0.01)  74.2 (14.6)  0.06 (0.01)  62.6 (8.3) 

Chrysene 0.05 (0.01)  55.7 (11.0)  0.05 (0.01)  53.1 (11.8)  0.05 (0.02)  52.1 (25.1) 

Cis-permethrin 0.06 (0.02)  64.3 (16.5)  0.06 (0.02)  56.5 (18.3)  0.07 (0.03)  69.3 (27.2) 

Cyfluthrin 0.07 (0.01)  65.9 (9.3)  0.06 (0.02)  53.2 (17.1)  0.07 (0.03)  64.2 (23.5) 
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λ-Cyhalothrin 0.08 (0.02)  76.0 (19.7)  0.07 (0.02)  68.7 (21.5)  0.08 (0.03)  74.2 (31.9) 

DEET 0.44 (0.07)  92.7 (14.0)  0.47 (0.09)  99.2 (18.8)  0.50 (0.05)  104.9 (10.0) 

Desethyl atrazine 0.56 (0.07)  114.4 (13.5)  0.58 (0.12)  118.1 (23.7)  0.59 (0.05)  121.2 (10.8) 

Dibenz(a,h)anthracene 0.09 (0.04)  94.2 (38.6)  0.09 (0.03)  95.2 (29.9)  0.10 (0.07)  109.6 (71.3) 

Fluoranthene 0.10 (0.02)  111.2 (20.5)  0.11 (0.02)  116.2 (19.1)  0.08 (0.02)  90.9 (16.4) 

Galaxolide 0.30 (0.05)  62.1 (11.4)  0.30 (0.07)  61.8 (14.9)  0.25 (0.02)  53.1 (3.8) 

Indeno(1,2,3-cd)pyrene 0.08 (0.03)  88.8 (31.6)  0.07 (0.02)  75.4 (18.9)  0.08 (0.05)  95.0 (58.2) 

Metconazole 0.51 (0.08)  96.9 (15.7)  0.54 (0.12)  102.5 (22.3)  0.58 (0.10)  111.0 (18.5) 

Metolachlor 0.46 (0.06)  96.3 (13.2)  0.49 (0.09)  102.1 (19.2)  0.51 (0.04)  106.7 (9.1) 

Musk ketone 0.43 (0.05)  89.3 (11.3)  0.45 (0.08)  94.2 (17.7)  0.43 (0.04)  90.3 (9.0) 

Musk Tonalid 0.31 (0.06)  63.0 (12.8)  0.30 (0.07)  62.7 (15.4)  0.24 (0.03)  50.2 (5.3) 

Octinoxate 0.28 (0.06)  46.8 (9.6)  0.24 (0.05)  40.0 (7.9)  0.21 (0.06)  34.6 (9.9) 

Pendimethalin 0.39 (0.05)  75.8 (9.9)  0.39 (0.07)  76.3 (13.6)  0.30 (0.05)  58.8 (10.7) 

Propiconazole 0.48 (0.09)  87.4 (16.9)  0.51 (0.12)  93.2 (21.9)  0.55 (0.07)  100.1 (13.2) 

Pyraclostrobin 0.61 (0.11)  124.5 (23.5)  0.60 (0.13)  123.3 (26.3)  0.67 (0.12)  137.2 (23.8) 

Pyrene 0.07 (0.01)  78.0 (15.7)  0.07 (0.02)  81.7 (18.6)  0.05 (0.02)  56.4 (23.0) 

Tebuconazole 0.54 (0.12)  96.9 (22.1)  0.54 (0.11)  97.7 (19.3)  0.59 (0.06)  107.4 (11.7) 

Trans-permethrin 0.07 (0.02)  65.2 (18.4)  0.06 (0.02)  55.6 (20.7)  0.07 (0.02)  63.7 (23.3) 
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Trifloxystrobin 0.43 (0.11)  78.2 (20.0)  0.46 (0.13)  84.0 (23.4)  0.45 (0.07)  81.1 (13.2) 

Trifluralin 0.26 (0.06)  54.0 (12.0)  0.22 (0.07)  45.8 (13.4)  0.17 (0.02)  33.8 (4.9) 

 

 

Table S5. Mean (standard deviation) sampling rates (RS) for NOCIS configurations containing Dowex Optipore L-493 and Oasis HLB as calculated from the 8-d 

time point of the validation study exposure using Equation 2.  

 Analyte Sampling rates (mL/d) 

 Dowex Optipore L-493  Oasis HLB 

Analyte 
Fast 

(9.3 cm/s) 
 

Slow 

(5.0 cm/s) 
 

Static 

(0 cm/s) 
 

Fast 

(9.3 cm/s) 
 

Slow 

(5.0 cm/s) 
 

Static 

(0 cm/s) 

Acetochlor 717 (101) 
 

431 (74) 
 

67 (4) 
 

717 (60)  643 (141)  114 (14) 

Atrazine 693 (109)  421 (69)  57 (4)  671 (77)  614 (146)  99 (12) 

Azoxystrobin 651 (85)  399 (67)  49 (8)  646 (77)  576 (84)  82 (17) 

Benzo(a)anthracene 952 (211)  374 (82)  61 (10)  957 (135)  702 (260)  280 (21) 

Benzo(a)pyrene 348 (107)  109 (20)  37 (4)  377 (66)  254 (125)  254 (52) 

Benzo(b)fluoranthene 707 (230)  214 (46)  12 (1)  675 (114)  412 (199)  74 (13) 

Benzo(g,h,i)perylene 169 (53)  34 (9)  6 (1)  156 (73)  68 (25)  28 (3) 

Benzo(k)fluoranthene 676 (235)  167 (44)  11 (1)  614 (113)  344 (197)  55 (7) 

Bifenthrin 170 (23)  83 (10)  78 (13)  170 (18)  144 (51)  171 (24) 

Chlorothalonil 1006 (159)  698 (104)  84 (6)  949 (70)  992 (246)  146 (34) 

Chlorpyrifos 642 (87)  405 (79)  119 (18)  840 (24)  761 (178)  284 (55) 
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Chrysene 929 (181)  339 (63)  29 (6)  920 (156)  646 (232)  121 (11) 

Cis-permethrin 695 (120)  351 (53)  103 (7)  752 (84)  603 (180)  285 (53) 

Cyfluthrin 505 (67)  287 (39)  87 (10)  583 (26)  552 (108)  242 (45) 

λ-Cyhalothrin 290 (62)  128 (17)  82 (10)  325 (77)  251 (57)  213 (30) 

DEET 729 (119)  414 (73)  59 (5)  659 (80)  626 (164)  123 (47) 

Desethyl atrazine 514 (66)  370 (40)  61 (4)  382 (29)  384 (67)  106 (34) 

Dibenz(a,h)anthracene 54 (14)  8 (2)  4 (0)  59 (26)  19 (6)  14 (1) 

Fluoranthene 844 (172)  406 (69)  94 (3)  917 (52)  684 (170)  245 (34) 

Galaxolide 851 (143)  479 (77)  185 (2)  898 (66)  761 (205)  319 (64) 

Indeno(1,2,3-cd)pyrene 73 (20)  16 (4)  5 (1)  74 (26)  36 (13)  19 (1) 

Metconazole 618 (78)  347 (48)  34 (2)  728 (105)  619 (122)  95 (21) 

Metolachlor 697 (98)  418 (70)  64 (4)  711 (59)  622 (134)  108 (5) 

Musk ketone 831 (173)  455 (68)  122 (11)  844 (53)  715 (178)  204 (4) 

Musk Tonalid 863 (145)  473 (65)  178 (11)  925 (67)  776 (218)  294 (33) 

Octinoxate 826 (118)  533 (81)  181 (23)  850 (137)  817 (201)  338 (49) 

Pendimethalin 826 (120)  490 (63)  153 (15)  899 (63)  762 (178)  272 (16) 

Propiconazole 659 (82)  376 (59)  45 (5)  712 (104)  604 (117)  102 (21) 

Pyraclostrobin 701 (104)  416 (71)  79 (9)  759 (74)  635 (130)  143 (11) 

Pyrene 954 (200)  449 (74)  115 (7)  1043 (62)  776 (209)  332 (38) 

Tebuconazole 641 (115)  366 (52)  34 (5)  689 (145)  621 (129)  90 (26) 
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Trans-permethrin 654 (102)  331 (44)  112 (8)  703 (97)  576 (163)  306 (56) 

Trifloxystrobin 730 (84)  409 (67)  97 (16)  730 (99)  602 (137)  166 (10) 

Trifluralin 912 (152)  541 (48)  257 (24)  995 (73)  900 (243)  430 (30) 
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Table S6. Mean (standard deviation) flow dependence for Dowex Optipore L-493 and Oasis HLB. Flow 

dependence for fast and slow flow conditions were calculated by normalizing the respective RS by rates 

obtained from static conditions. Sampling rates were calculated from the 8-d time point of the validation 

study (Table S5) using Equation 2. 

 Flow dependence (RSflow/RSstatic) 

 Dowex Optipore L-493  Oasis HLB 

Analyte 
Fast 

(9.3 cm/s) 
 

Slow 

(5.0 cm/s) 
 

Fast 

(9.3 cm/s) 
 

Slow 

(5.0 cm/s) 

Acetochlor 10.7 (0.9) 
 

6.4 (0.9) 
 

6.4 (1.2) 
 

5.8 (1.7) 

Atrazine 12.0 (1.0)  7.3 (1.1)  6.9 (1.5)  6.3 (1.8) 

Azoxystrobin 13.3 (1.0)  8.2 (1.3)  8.2 (2.3)  7.3 (2.3) 

Benzo(a)anthracene 16.1 (6.0)  6.3 (2.0)  3.4 (0.3)  2.5 (0.7) 

Benzo(a)pyrene 9.8 (4.1)  3.1 (0.9)  1.5 (0.5)  1.0 (0.4) 

Benzo(b)fluoranthene 60.0 (25.3)  17.9 (4.8)  9.2 (1.4)  5.4 (1.7) 

Benzo(g,h,i)perylene 31.9 (13.9)  6.2 (1.7)  5.5 (2.7)  2.4 (0.7) 

Benzo(k)fluoranthene 65.0 (26.6)  16.0 (5.2)  11.2 (1.6)  6.0 (2.7) 

Bifenthrin 2.3 (0.7)  1.1 (0.3)  1.0 (0.2)  0.9 (0.5) 

Chlorothalonil 12.1 (2.4)  8.4 (1.2)  6.7 (1.5)  7.3 (3.2) 

Chlorpyrifos 5.5 (1.0)  3.4 (0.3)  3.0 (0.6)  2.8 (1.2) 

Chrysene 34.1 (13.0)  12.1 (3.3)  7.6 (0.6)  5.3 (1.5) 

Cis-permethrin 6.8 (1.7)  3.5 (0.8)  2.7 (0.7)  2.2 (0.9) 

Cyfluthrin 5.9 (1.2)  3.3 (0.4)  2.5 (0.4)  2.3 (0.6) 

λ-Cyhalothrin 3.6 (1.0)  1.6 (0.4)  1.6 (0.5)  1.2 (0.4) 

DEET 12.3 (0.9)  7.0 (1.0)  6.0 (2.5)  5.7 (2.7) 

Desethyl atrazine 8.3 (0.5)  6.0 (0.6)  3.9 (1.3)  3.9 (1.6) 

Dibenz(a,h)anthracene 14.0 (3.1)  2.2 (0.7)  4.2 (1.9)  1.4 (0.3) 

Fluoranthene 9.0 (1.8)  4.3 (0.7)  3.8 (0.6)  2.8 (0.4) 

Galaxolide 4.6 (0.7)  2.6 (0.4)  2.9 (0.7)  2.5 (1.1) 

Indeno(1,2,3-cd)pyrene 16.3 (6.1)  3.5 (0.8)  3.9 (1.5)  1.9 (0.6) 

Metconazole 18.0 (2.1)  10.1 (0.8)  8.1 (2.6)  6.9 (2.4) 
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Metolachlor 10.9 (0.9)  6.5 (0.8)  6.6 (0.7)  5.8 (1.3) 

Musk ketone 6.9 (1.7)  3.7 (0.5)  4.1 (0.3)  3.5 (0.9) 

Musk Tonalid 4.9 (1.0)  2.7 (0.4)  3.2 (0.2)  2.6 (0.7) 

Octinoxate 4.6 (1.1)  2.9 (0.1)  2.6 (0.7)  2.5 (1.0) 

Pendimethalin 5.4 (0.9)  3.2 (0.3)  3.3 (0.4)  2.8 (0.8) 

Propiconazole 14.8 (2.5)  8.3 (0.5)  7.3 (2.2)  6.2 (2.1) 

Pyraclostrobin 9.1 (2.3)  5.3 (1.1)  5.3 (0.7)  4.5 (1.3) 

Pyrene 8.3 (1.9)  3.9 (0.6)  3.2 (0.3)  2.3 (0.4) 

Tebuconazole 19.3 (5.3)  10.8 (1.5)  8.4 (3.6)  7.4 (2.9) 

Trans-permethrin 5.9 (1.3)  3.0 (0.6)  2.4 (0.6)  2.0 (0.8) 

Trifloxystrobin 7.7 (2.0)  4.3 (0.9)  4.4 (0.5)  3.6 (0.9) 

Trifluralin 3.6 (0.7)  2.1 (0.1)  2.3 (0.2)  2.1 (0.6) 
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Table S7. Mean (standard deviation) performance reference compound (PRC) elimination rate for NOCIS configurations containing Dowex Optipore L-493 and 

Oasis HLB as calculated from the 8-d time point of the validation study using Equation 5. 

 

 

 

 

 

 

 

 

 

 

 

 PRC elimination rates ( d-1) 

 Dowex Optipore L-493  Oasis HLB 

PRC 
Fast 

(9.3 cm/s) 
 

Slow 

(5.0 cm/s) 
 

Static 

(0 cm/s) 
 

Fast 

(9.3 cm/s) 
 

Slow 

(5.0 cm/s) 
 

Static 

(0 cm/s) 

Caffeine-13C3 0.100 

(0.007) 
 

0.072 (0.009) 
 0.069 

(0.007) 
 

0.288 (0.021)  
0.270 

(0.012) 
 0.100 (0.023) 

Cotinine-d3 
0.150 

(0.025) 
 0.128 (0.008)  

0.085 

(0.020) 
 0.489 (0.030)  

0.434 

(0.005) 
 0.200 (0.004) 

Desisopropyl atrazine-d5 
0.247 

(0.027) 
 0.169 (0.022)  

0.085 

(0.008) 
 0.321 (0.050)  

0.318 

(0.091) 
 0.064 (0.027) 
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Table S8. Mean estimated water concentrations expressed as percentage of actual measured water concentrations (Table S4) for 34 target analytes during the 

PRC validation study for Dowex Optipore L-493 under fast, slow, and static conditions. Estimates are provided based on sampling rates (RS) from the calibration 

study (Chapter IV) and sampling rates corrected by caffeine-13C3, cotinine-d3, and DIA-d5. 

 

Percentage of measured water concentrations  

(%) 

Analyte RScal RScorr - caffeine-13C3 RScorr - cotinine-d3 RScorr - DIA-d5 

 Fast Slow Static Fast Slow Static Fast Slow Static Fast Slow Static 

 

(9.3 

cm/s) 

(5.0 

cm/s) 

(0 

cm/s) 

(9.3 

cm/s) 

(5.0 

cm/s) 

(0 

cm/s) 

(9.3 

cm/s) 

(5.0 

cm/s) 
(0 cm/s) 

(9.3 

cm/s) 

(5.0 

cm/s) 
(0 cm/s) 

Acetochlor 74.8 44.9 7.0 62.3 51.4 8.4 70.0 47.9 11.5 62.6 55.5 16.8 

Atrazine 72.2 43.9 6.0 60.2 50.2 7.2 67.7 46.8 9.9 60.4 54.1 14.4 

Azoxystrobin 68.6 42.1 5.2 57.0 48.1 6.3 64.2 44.9 8.6 57.7 51.9 12.5 

Benzo(a)anthracen

e 

96.4 37.9 6.2 80.6 43.1 7.4 91.0 40.5 10.0 80.5 47.0 14.8 

Benzo(a)pyrene 99.3 31.1 10.4 83.3 35.5 12.5 94.4 33.2 17.1 82.5 38.4 25.0 

Benzo(b)fluoranthe

ne 

108.5 32.9 1.9 91.1 37.4 2.2 103.4 35.1 3.0 90.2 40.7 4.4 

Benzo(g,h,i)peryle

ne 

94.0 18.9 3.1 78.4 21.5 3.7 89.7 20.1 5.0 79.5 23.2 7.3 

Benzo(k)fluoranthe

ne 

165.3 40.7 2.6 139.0 46.2 3.1 157.9 43.4 4.3 137.3 50.3 6.2 

Bifenthrin 55.7 27.1 25.4 46.3 31.3 30.2 52.1 29.0 40.8 46.7 33.6 60.4 

Chlorothalonil 87.5 60.7 7.3 72.9 69.6 8.7 82.0 64.8 11.8 73.2 75.1 17.4 
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Chlorpyrifos 53.0 33.4 9.8 44.1 38.1 11.7 49.5 35.6 15.8 44.3 41.2 23.4 

Chrysene 102.9 37.5 3.2 85.9 42.9 3.8 96.9 40.0 5.1 86.1 46.2 7.5 

Cis-permethrin 113.2 57.2 16.8 94.3 65.7 20.1 106.4 61.2 27.4 95.0 71.1 40.1 

Cyfluthrin 89.8 51.0 15.4 74.5 58.6 18.5 84.0 54.6 25.1 75.8 63.3 36.9 

λ-Cyhalothrin 65.1 28.6 18.4 53.8 32.9 21.9 60.9 30.6 29.8 55.4 35.5 43.8 

DEET 74.5 42.3 6.0 62.1 48.4 7.3 69.8 45.1 9.9 62.2 52.2 14.5 

Desethyl atrazine 79.5 57.2 9.5 66.2 65.8 11.5 74.3 61.0 15.7 66.7 70.5 22.9 

Dibenz(a,h)anthrac

ene 

48.2 7.3 3.4 40.0 8.3 4.1 45.6 7.8 5.7 40.9 9.0 8.3 

Fluoranthene 79.9 38.4 8.9 66.7 43.9 10.7 75.2 41.0 14.6 66.7 47.5 21.3 

Galaxolide 65.7 37.0 14.3 54.8 42.3 17.2 61.7 39.4 23.5 55.0 45.7 34.4 

Indeno(1,2,3-

cd)pyrene 

42.3 9.4 2.7 35.3 10.7 3.2 40.3 10.0 4.3 35.8 11.5 6.4 

Metconazole 60.2 33.8 3.3 50.1 38.9 4.0 56.3 36.0 5.5 50.5 41.6 8.0 

Metolachlor 70.0 42.0 6.4 58.3 48.0 7.7 65.5 44.8 10.5 58.6 51.8 15.4 

Musk ketone 71.5 39.1 10.5 59.7 44.8 12.6 67.4 41.7 17.0 59.7 48.3 25.1 

Musk Tonalid 65.3 35.8 13.4 54.4 41.1 16.1 61.3 38.2 21.9 54.6 44.2 32.2 

Octinoxate 44.9 29.0 9.8 37.4 33.7 11.7 41.9 30.7 15.9 37.5 35.3 23.5 

Pendimethalin 79.1 47.0 14.7 65.9 53.9 17.6 74.1 50.1 23.8 66.2 58.0 35.1 
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Propiconazole 63.1 36.1 4.3 52.5 41.3 5.2 59.0 38.4 7.0 53.0 44.4 10.3 

Pyraclostrobin 80.6 47.8 9.1 67.0 54.7 10.8 75.5 51.0 14.7 67.9 59.0 21.6 

Pyrene 78.1 36.7 9.4 65.2 42.1 11.3 73.6 39.3 15.4 65.2 45.5 22.6 

Tebuconazole 63.6 36.3 3.4 53.0 41.6 4.0 59.9 38.7 5.4 53.4 44.7 8.0 

Trans-permethrin 132.4 67.0 22.7 110.1 77.2 27.2 124.2 71.7 36.9 111.3 83.3 54.2 

Trifloxystrobin 65.6 36.8 8.7 54.6 42.1 10.4 61.2 39.2 14.0 55.0 45.3 20.8 

Trifluralin 53.8 31.9 15.2 44.9 36.8 18.1 50.4 34.0 24.6 44.9 39.3 36.2 
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Table S9. Mean estimated water concentrations expressed as percentage of actual measured water concentrations (Table S4) for 34 target analytes during the 

PRC validation study for Oasis HLB under fast, slow, and static conditions. Estimates are provided based on sampling rates (RS) from the calibration study 

(Chapter IV) and sampling rates corrected by caffeine-13C3, cotinine-d3, and DIA-d5. Bolded values were used for the “Best-Fit” PRC correction. 

 

Percentage of measured water concentrations  

(%) 

Analyte RScal RScorr - caffeine-13C3 RScorr - cotinine-d3 RScorr - DIA-d5 

 Fast Slow Static Fast Slow Static Fast Slow Static Fast Slow Static 

 (9.3 cm/s) (5.0 cm/s) (0 cm/s) (9.3 cm/s) (5.0 cm/s) (0 cm/s) (9.3 cm/s) (5.0 cm/s) (0 cm/s) (9.3 cm/s) (5.0 cm/s) (0 cm/s) 

Acetochlor 65.9 59.1 10.5 80.7 81.5 39.0 81.0 81.5 31.3 50.9 46.2 47.4 

Atrazine 67.0 61.3 9.9 82.0 84.6 36.9 82.4 84.6 29.7 51.6 47.8 44.8 

Azoxystrobin 60.0 53.5 7.6 73.4 73.7 28.8 73.8 73.7 22.9 46.2 42.5 35.5 

Benzo(a)anthracene 83.4 61.2 24.4 102.2 84.5 88.1 102.8 84.5 72.9 64.3 46.7 104.2 

Benzo(a)pyrene 89.7 60.4 60.5 110.1 83.4 221.9 110.6 83.4 180.5 69.2 44.7 265.3 

Benzo(b)fluoranthene 93.7 57.3 10.2 115.0 79.1 36.7 115.6 79.1 30.5 72.3 42.7 43.0 

Benzo(g,h,i)perylene 70.0 30.6 12.7 84.9 42.3 46.0 86.9 42.3 38.0 52.1 23.3 54.5 

Benzo(k)fluoranthene 129.3 72.4 11.5 158.2 100.0 41.4 159.5 100.0 34.4 99.2 52.8 48.6 

Bifenthrin 46.0 39.0 46.2 56.3 53.8 171.4 56.6 53.8 138.3 35.4 29.9 208.3 

Chlorothalonil 70.3 73.6 10.9 86.2 101.5 41.3 86.1 101.5 32.6 54.8 57.2 51.0 

Chlorpyrifos 55.4 50.2 18.7 67.7 69.2 70.7 67.9 69.2 56.2 42.8 39.0 86.9 

Chrysene 87.4 61.4 11.5 107.1 84.7 41.3 107.7 84.7 34.3 67.3 46.6 48.8 

Cis-permethrin 97.1 77.9 36.8 118.6 107.4 138.9 119.4 107.4 110.3 74.6 60.5 170.4 

Cyfluthrin 83.3 78.8 34.5 101.6 108.5 130.3 102.0 108.5 103.5 64.2 64.4 160.1 

λ-Cyhalothrin 54.3 42.0 35.6 66.0 57.9 133.1 66.9 57.9 106.6 41.2 33.7 162.5 
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DEET 70.4 66.9 13.2 86.2 92.2 51.1 86.7 92.2 39.5 54.2 51.8 64.2 

Desethyl atrazine 89.7 90.1 24.9 109.8 124.2 95.9 110.3 124.2 74.7 69.3 70.9 119.4 

Dibenz(a,h)anthracene 43.4 14.1 10.3 52.7 19.4 37.1 53.9 19.4 30.7 32.4 10.9 43.8 

Fluoranthene 72.5 54.0 19.3 88.6 74.5 70.1 89.0 74.5 57.7 56.0 42.1 83.1 

Galaxolide 57.8 49.0 20.5 70.7 67.5 77.6 71.0 67.5 61.6 44.6 38.0 95.6 

Indeno(1,2,3-cd)pyrene 37.2 18.1 9.6 45.3 25.0 34.8 46.1 25.0 28.6 28.1 13.8 41.5 

Metconazole 58.5 49.7 7.6 71.5 68.6 28.8 72.0 68.6 22.8 44.9 39.0 35.4 

Metolachlor 62.2 54.3 9.5 76.1 74.9 34.7 76.4 74.9 28.3 48.1 42.5 41.7 

Musk ketone 60.6 51.3 14.7 74.2 70.8 53.7 74.5 70.8 43.8 46.9 39.9 64.3 

Musk Tonalid 57.2 48.1 18.2 70.1 66.3 65.7 70.3 66.3 54.4 44.2 37.2 77.8 

Octinoxate 38.3 36.9 15.2 46.9 50.8 56.7 47.3 50.8 45.7 29.4 28.6 69.1 

Pendimethalin 71.2 60.3 21.6 87.2 83.2 79.3 87.5 83.2 64.6 55.0 47.0 95.3 

Propiconazole 57.0 48.3 8.1 69.7 66.5 30.7 70.2 66.5 24.3 43.8 37.9 37.8 

Pyraclostrobin 74.2 62.0 14.0 90.7 85.5 51.6 91.2 85.5 41.9 57.1 48.6 62.2 

Pyrene 70.5 52.4 22.4 86.4 72.3 81.2 86.6 72.3 66.9 54.6 40.7 96.3 

Tebuconazole 57.5 51.9 7.5 70.3 71.5 28.7 71.0 71.5 22.5 43.9 40.6 35.6 

Trans-permethrin 109.3 89.5 47.5 133.3 123.3 179.0 134.4 123.3 142.3 83.6 70.1 219.7 

Trifloxystrobin 54.6 45.0 12.4 66.8 62.0 45.1 67.2 62.0 37.0 42.0 35.1 53.9 

Trifluralin 48.6 44.0 21.0 59.5 60.6 76.5 59.7 60.6 62.8 37.5 34.1 91.3 
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