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Abstract: Loblolly pine (Pinus taeda L.) is the most commercially important tree species 
in the southeastern United States and driver of timber productivity for the region. The 
positive of loblolly pine to forest management applications such as fertilization and 
competition control have led to such increases in productivity. However, a better 
understanding of impacts from a more variable climate on loblolly pine growth and 
productivity is needed. Across the southeastern United States, a shift towards a warmer 
and drier climate is predicted to occur. Increasing temperatures and more variable 
precipitation is expected to impact southern pine plantation growth and productivity. This 
impact is projected to stem from larger precipitation events with longer dry down periods 
which will ultimately lead to an increased intensity and duration of drought. Therefore, 
the interactive effects of fertilization and reduced water availability, as well as long-term 
moderate drought on a mid-rotation loblolly pine plantation in southeastern Oklahoma 
were studied. The first study examined the effects of nutrient availability and decreased 
soil water availability on leaf gas exchange, LAI, and stand growth. Results showed that 
fertilization increased productivity of throughfall reduction stands such that it was similar 
to ambient throughfall stands not receiving fertilization. Fertilization caused a reduction 
in stomatal conductance while net photosynthesis rates maintained, indicating increased 
water use efficiency. The second study examined the effects of nutrient availability and 
decreased soil water availability on stand-level water use efficiency of stem volume 
production by 18 %. The final study examined the effects of long-term moderate drought 
on leaf gas exchange, whole-tree water use, and individual tree growth. Results showed 
that throughfall exclusion did not significantly reduce leaf gas exchange, water use, or 
tree growth. However, throughfall exclusion significantly reduced leaf biomass. Results 
from all three studies indicate that fertilization can be beneficial in loblolly pine 
plantations experiencing reduced water availability on the western limits of its 
commercial range by increasing water use efficiency and that long-term moderate 
drought may cause reduced leaf area to conserve water rather than reducing leaf-level 
water use.   
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CHAPTER I 
 

 

INTRODUCTION 

 

The southeastern United States produces approximately 60 percent of all timber in 

the country (Smith et al. 2009). Of the approximately 83 million hectares of forest land in 

the Southeast, 16 million hectares (19 percent) is planted pine (Wear and Greis 2012). Of 

the planted pine, loblolly pine (Pinus taeda L.) is the most extensively planted because of 

its ability to grow on a variety soil types and its favorable response to silvicultural 

treatments (Burns and Honkala. 1990). Intensive forest management practices such as 

fertilization, competition control, and improved genetics over the years has increased 

loblolly pine productivity. One of the most important factors that limit loblolly pine 

productivity is soil nutrient availability (Jokela et al. 2004). Therefore, the use of 

fertilizer as a management tool is common on most loblolly pine plantations. The 

increased productivity through intensive management practices has enabled loblolly pine 

to become the most important commercial tree species in the region and vital to the 

forests products economy in the southeastern United States.
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In years to come, it’s likely that decreased precipitation will affect loblolly pine 

plantations across the southeastern United States. The U.S. Global Change Research 

program has projected that temperature in the region will increase between 2.5 to 4 OC 

through the end of the century (Karl et al. 2009). A temperature increase of this 

magnitude is likely to affect loblolly pine productivity. Schmidtling (1994) speculated 

that increases of this magnitude would cause a decline in productivity of loblolly pine by 

a minimum of 10%. Growing seasons for loblolly pine are expected to be affected the 

most by rising temperatures, with an increase in the number of extremely hot days 

showing faster temperature increases than the during the summer months (Collins et al. 

2013). Precipitation predictions are more variable. Based on information from the 

Southern Forest Futures Project, precipitation projections are variable based on four 

separate models, but the overall trend is drier with more sporadic rainfall events likely 

(Wear and Greis 2012). Similarly, the Intergovernmental Panel on Climate Change 

(IPCC) predicts decreases in precipitation across the Southeast as a result of an increase 

in dry days and more intense, but sporadic rainfall events (Collins et al. 2013). Tree 

response to water limitation frequently involves a trade-off with plant productivity, as 

tree stature and canopy leaf area are minimized to reduce transpirational loss and tree 

water stress (Kramer and Boyer 1995). Such response to prevailing precipitation regimes 

establish the potential for intensified precipitation regimes to alter patterns of resource 

availability and gain, influence competitive interactions, and lead to changes in 

productivity and survival. Therefore, a better understanding of how climate affects 

loblolly pine plantation growth and productivity is needed.  
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In association with the United States Department of Agriculture – National 

Institute of Food and Agriculture funded Pine Integrated Network: Education, Mitigation, 

and Adaptation Project (PINEMAP) I studied the effects of fertilization and reduced 

water availability on a mid-rotation loblolly pine plantation in southeastern Oklahoma. 

The overall goal of PINEMAP is to create, synthesize, and disseminate the information 

necessary to adapt forest management practices in order to increase forest resiliency 

under a changing climate. This information will provide the knowledge necessary for 

southern pine landowners and forest managers to increase carbon sequestration, increase 

fertilizer efficiency, and maintain productivity 

I studied the response of mid-rotation loblolly pine to fertilization and reduced 

water availability, as well as long-term moderate drought. The first study focused on 

determining the effects of nutrient availability and reduced precipitation throughfall on 

leaf gas exchange, leaf area index (LAI), and stand growth. The second study focused on 

determining the effects of nutrient availability and reduced precipitation throughfall on 

tree and plot-level water use, water use efficiency, and growth efficiency. The third study 

focused on determining the effects of long-term moderate drought on leaf gas exchange, 

whole-tree water use, and individual tree growth. The first two studies incorporated 

fertilizer application and a moderate reduction in precipitation throughfall and the third 

study focused on complete exclusion of precipitation throughfall without the application 

of fertilization. 
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CHAPTER II 
 

 

FERTILIZATION CAN COMPENSATE FOR REDUCED WATER AVAILABILITY 

ON LOBLOLLY PINE (PINUS TAEDA L.) NET PHOTOSYNTHESIS AND 

PRODUCTIVITY IN SOUTHEASTERN OKLAHOMA, USA 

Abstract 

Loblolly pine (Pinus taeda L.) is the most commercially important tree species in 

the southeastern USA and has potential to increase region-wide carbon sequestration. 

However, projected increases in regional temperature and drought severity will likely 

cause more extreme impacts for the western edge of the loblolly pine commercial range. 

To determine the effects of nutrient availability and reduced water availability on leaf gas 

exchange, leaf area index (LAI), and tree growth, we examined the interactive effects of 

fertilization (one time application of 224 kg N ha-1, 28 kg P ha-1, 56 kg K ha-1 and 

micronutrients) and reduced throughfall (approximate 30 % reduction) over growing 

seasons 5-7 for a loblolly pine plantation in southeast, Oklahoma. Across all plots, 

throughfall reduction reduced volumetric soil water content from 11.3 % to 8.8 % and 

fertilization increased foliar nitrogen concentration from 1.13 to 1.27 mg g-1. Fertilization 

increased LAI (10 %) and subsequently tree growth while reducing stomatal conductance 

(7 %) and leading to
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less negative (3 %) mid-day leaf water potential. Throughfall reduction reduced stomatal 

conductance (12 %) and net photosynthesis (9 %) which was related to more negative 

mid-day leaf water potentials (11 %). These results indicate that fertilization increased 

water use efficiency such that leaf-level photosynthesis was not decreased by throughfall 

reduction even though fertilization increased LAI and potential transpiration.  The net 

effect was that fertilization increased productivity of throughfall reduction stands such 

that it was similar to ambient throughfall stands not receiving fertilization. 

Introduction 

 Over fifty percent of pine plantations in the southeastern USA are loblolly pine 

(Oswalt et al. 2014), thus making it the most commercially important tree species in this 

region.  Given the extent of planting, approximately 16 million ha (Wear and Greis 

2012), pine plantations provide potential to increase region-wide carbon sequestration 

(Albaugh et al. 2012, Noormets et al. 2015, Will et al. 2015). Over the last half century, 

increases in pine plantation management and productivity in the southeastern USA have 

enabled these forests to produce more timber volume than any other region in the United 

States (Oswalt et al. 2014). However, in years to come, decreased precipitation along 

with increases in temperature may affect pine plantations throughout the southeastern 

USA. Average temperature throughout this region is expected to increase by 2.5 to 4 oC 

by the latter half of this century (Collins et al. 2013). Although precipitation projections 

are variable, predictions at the regional level are fairly consistent. Larger and more 

intense precipitation events along with increased length of dry periods are projected for 

the southeastern USA (Easterling et al. 2000, Collins et al. 2013, Walsh et al. 2014). This 

will increase runoff and possibly reduce soil water availability. This combined with 
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higher vapor pressure deficits (VPD) resulting from higher temperature will increase the 

severity of drought (Breshears et al. 2013, Will et al. 2013).   

The effect of water stress on tree physiology can lead to changes in productivity. 

This may be especially important for the western edge of the commercial range of 

loblolly pine in southeastern Oklahoma. This area experiences higher growing season 

temperatures and VPD than the rest of the southeastern USA (Seager et al. 2015) such 

that loblolly pine planted in this area (beyond their natural range) may be more apt to 

experience water stress.  This edge of the loblolly pine commercial range is projected to 

experience more extreme climate patterns consisting of higher temperatures and altered 

precipitation events compared to other parts of the loblolly pine commercial range 

(Walsh et al. 2014).  

Acclimation to water limitation frequently involves a trade-off with tree 

productivity because tree stature and canopy leaf area growth slows to decrease 

transpirational loss and tree water stress (e.g., Kramer and Boyer 1995). In addition to 

these morphological changes, stomatal conductance and carbon assimilation typically 

decline (e.g., Ni and Pallardy 1992). Stomatal closure, to limit water loss, is among the 

earliest response to drought, otherwise severe water stress can lead to cell and tissue 

dehydration, xylem cavitation, and potentially death (Chaves 1991). As stomatal 

conductance is reduced, net photosynthesis also declines from a reduction in the rate of 

CO2 diffusion into the leaf (e.g., Seiler 1984, Teskey et al. 1986, Chaves 2003).  Non-

stomatal limitations to photosynthesis due to water stress also occur (Boyer 1976, Lawlor 

1995) and result from metabolic inhibition (Tezara et al. 2002, Flexas and Medrano 2002, 

Hu et al. 2010). Stomatal and non-stomatal responses to drought have the potential to 
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alter patterns of resource availability and gain, influence competitive interactions, and 

lead to changes in productivity and survival.  

Soil nutrient availability in loblolly pine stands is considered one of the most 

important factors affecting productivity (Jokela et al. 2004). Most loblolly pine 

plantations in the southeastern USA are on soils that cannot meet the demand for nitrogen 

once the trees begin to reach crown closure, which is typically 5-8 years (Allen et al. 

1987). Once trees become nutrient deficient, leaf development and subsequently whole-

tree production is reduced compared to trees with an abundance of nutrient resources 

(Albaugh et al. 2008, Colbert et al. 1990, Vose and Allen 1988). The use of fertilizer as a 

management tool is common on southern forest plantations. Applying fertilizer, 

particularly combinations of N and P, increases development of leaf area in southern pine 

plantations (Albaugh et al. 1998, Will et al. 2002, Gough et al. 2004, Martin and Jokela 

2004, Will et al. 2006). Greater leaf area increases overall productivity by increasing 

carbon fixation (Teskey et al. 1994, Vose and Allen 1988, Albaugh et al. 1998) but at the 

same time, increases potential transpiration and water use.  

Fertilization treatments that increase leaf area index (LAI) increase growth, more 

so on sites with adequate water availability combined with competition control (Ewers et 

al. 2000, Albaugh et al. 2004, Jokela et al. 2004). However, fertilization generally does 

not significantly impact leaf gas exchange in southern pines (e.g., Munger et al. 2003, 

Tang et al. 2004, Samuelson et al. 2014). More specifically, a poor correlation between 

leaf nitrogen concentration and net photosynthesis (Will et al. 2001, Munger et al. 2003, 

Gough et al. 2004) and stomatal conductance (Green and Mitchell 1992) is common in 

loblolly pine.  
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Effects of nutrient availability and irrigation have been well documented in 

loblolly pine stands (e.g., Ewers et al. 1999, Allen et al. 2005, Samuelson and Stokes 

2006, Samuelson et al. 2008b). However, few studies have examined effects of nutrient 

availability and water stress in loblolly pine stands, including photosynthetic and stomatal 

responses (Tang et al. 2004, Samuelson et al. 2014). A better understanding of interactive 

effects of nutrient availability and water stress on physiological mechanisms and growth 

of loblolly pine stands is needed to better understand tree and stand response to a 

potentially warmer and drier climate as well as ultimately help guide effective 

management practices for productivity and carbon sequestration in the future. Knowledge 

of how the benefits of fertilizer are affected by drought will aid in determining its 

effectiveness in future forest management.   

The objective of this study was to determine effects of nutrient availability and 

decreased soil water availability on leaf gas exchange, LAI, and stand growth. To 

accomplish this objective, we examined the interactive effects of fertilization and reduced 

throughfall. Our central hypothesis was that fertilizer added to a loblolly pine plantation 

in southeastern Oklahoma experiencing throughfall reduction will increase LAI and 

exacerbate water stress. Further, we hypothesized that increased water stress will result in 

reduced stomatal conductance and photosynthesis. Therefore, the positive effects of 

fertilizer on growth may be reduced due to potentially more severe water stress in stands 

receiving throughfall reduction and fertilization.  
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Materials and methods 

Study site 

 This experiment was associated with the Pine Integrated Network Education, 

Mitigation, and Adaptation Project (PINEMAP) focused on the effects of a changing 

climate on loblolly pine productivity. As part of PINEMAP, throughfall exclusion and 

fertilization experiments were installed in Oklahoma, Florida, Georgia, and Virginia to 

cover the full spectrum of rainfall and temperature across the loblolly pine natural range 

(Will et al. 2015). This specific study describes results from the Oklahoma installation. 

The study was conducted on a loblolly pine stand near Broken Bow, OK 

beginning in the 5th growing season and continuing through the 7th growing season. The 

study site had an elevation of 150 m, latitude 34o01’52.0’’N, and longitude 

94o49’18.2’’W. Soils were very deep, well-drained, fine sandy loam in the Ruston series 

(Fine-loamy, siliceous, semiactive, thermic Typic Paleudult). Depth to the water table 

was greater than 2 m. This soil was typical for forests on the uplands of the western and 

southern upper Coastal Plain and consisted of 3 to 8 percent slopes 

(http://soilseries.sc.egov.usda.gov, accessed February 2016). The 20-year average annual 

precipitation for Broken Bow, OK was 1281 mm, with most precipitation occurring in 

May (average of 160 mm) and least occurring in August (average of 70 mm). Twenty-

year average annual, maximum, and minimum temperatures for Broken Bow, OK, were 

16.4 oC, 23.8 oC, and 9.7 oC (http://mesonet.org/index.php/weather/daily_data_retrieval, 

accessed February 2016).  Monthly Palmer Drought Severity Index (PDSI) data were 
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downloaded for Climate Division 9 (southeast) in Oklahoma for 2012, 2013, and 2014. 

(http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#, accessed February 2016). 

Before planting, broadcast herbicide of 680 g ha-1 of Chopper ® (27.6 % 

imazapyr, 72.4 % inert ingredients) (BASF Corporation, Florham Park, NJ, USA) plus 

2.8 l ha-1 of glyphosate was applied in August 2007 followed by prescribed burn in 

October 2007. The study site was subsoiled along the contour to depths of 51 to 61 cm 

using a D8 Caterpillar dozer and attached subsoiling shanks (Caterpillar Corporate, 

Peoria, IL, USA) in November 2007. The site was planted in January 2008 with 

improved Western Gulf Tree Improvement Cooperative 1-0 bare-root seedlings 

originating from a mix of half-sib families. Broadcast herbicide of 420  g ha-1 of 

Arsenal® (27.6 % imazapyr, 72.4 % inert ingredients) (BASF Corporation, Florham 

Park, NJ, USA) and 175 g ha-1  of Oust Extra® (56.25 % Sulfometuron methyl, 15.0 % 

Metsulfuron methyl, 28.75 % other) (E.I. Du Pont De Nemours and Company, 

Wilmington, DE, USA) was applied for woody plant and herbaceous weed control in 

March 2008. Spacing for the site was approximately 2 m x 3 m for an approximate 

density of 1650 trees ha -1.   

Experimental design 

 The study comprised four blocks (16 plots total). Each block consisted of four 

treatment plots in a 2 x 2 factorial combination of fertilization and throughfall reduction. 

Each treatment plot was greater than 0.10 ha containing a measurement plot between 

0.034 and 0.041 ha. Fertilization treatments included no fertilizer and an optimum 

nutrition that consisted of 224 kg N ha-1, 28 kg P ha-1, 56 kg K ha-1, as well as 
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micronutrients. N and P consisted of a mix of urea (432 kg ha-1) and diammonium 

phosphate (140 kg ha-1). K consisted of potassium chloride. Micronutrients consisted of a 

granular mix (Southeast Mix, Cameron Chemicals, Inc., Virginia Beach, VA, USA) 

applied at a rate of 22.4 kg ha-1, containing 6% sulfur, 5% boron, 2% copper, 6% 

manganese, and 5% zinc. Fertilizer was broadcast by hand in April 2012. Competing 

vegetation was chemically eliminated using directed sprays of glyphosate (2% a.i., 

Roundup®, Monsanto Company, St. Louis, MO, USA) from spring 2012 through the 

remainder of the study.   

Throughfall treatments included ambient throughfall and a throughfall reduction 

of approximately 30%. A reduction of 30% throughfall was implemented based on the 

driest climate predictions for the region (Christensen et al. 2007). Throughfall reduction 

treatments consisted of throughfall exclusion troughs (excluders) to cover 30% of ground 

area. Excluders were installed in late spring/early summer 2012 and were built of lumber 

and covered with clear, U.V. stabilized plastic sheeting consisting of two layers co-

extruded polyethylene and one layer of high strength polyester string (Tuff-Scrimm™ 

Poly 12, Americover Inc., Escondido, CA, USA). Excluders were installed between each 

row of trees and consisted of two 50 cm wide troughs separated by a 50 cm opening, 

sloping from approximately 1.2 m to 0.6 m in height. Excluders were installed two rows 

beyond the internal measurement plot in the larger gross plot.  Water was transported by 

the excluders out of measurement plots. To eliminate adding water to adjacent plots, 

excluders were fitted with plastic tubing at the ends to carry water out of the research area 

as needed. 
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Growth   

 Tree size was measured in January 2012 prior to treatment application (following 

the 4th growing season) and in December 2012 (following 5th growing season), December 

2013 (following 6th growing season), and December 2014 (following 7th growing season). 

Measurements included DBH and height. DBH was measured after the 4th, 5th, and 6th 

growing seasons by averaging two caliper measurements taken at right angles on the 

stem. Due to increases in tree size, DBH was measured at stand age seven using a 

diameter tape.  Height growth was measured at ages four, five, and six using a height 

pole. Height was measured following 7th growing season using a hypsometer (Laser 

Technology, Inc., Centennial, CO, USA). DBH, basal area, and height growth were 

determined from the difference in successive dormant season measurements. During the 

experiment, only one tree out of 1007 died. 

LAI 

 Stand-level projected leaf area index was measured with an LAI2000 plant 

canopy analyzer (LiCor, Inc., Lincoln, NE, USA) approximately every four weeks from 

April 2014 through November 2015. LAI2000 data were corrected using empirical litter 

trap data collected for the 2013 foliage cohort (twelve 0.5 m2 traps per plot). LAI2000 

data were multiplied by 0.625 to correct for bias. Due to the size of trees and lower 

branches initially below throughfall excluders, accurate measurements could not take 

place until the 7th growing season.  Measurements were conducted in diffuse light 

conditions, within an hour after dawn or an hour before dusk with clear skies, or within 

1.5 hours of dawn and dusk with uniformly overcast skies. Measurements were taken 
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across treatment plots from a randomly selected starting point. Readings were taken 

along diagonal transects between the rows at intervals of 0.5-1.0 m. The sensor was held 

above the height of the excluder troughs in all plots regardless of treatment. Readings 

were conducted using a 90o filter opening placed opposite the user with the uppermost 4 

rings used for calculation. Approximately 25 subsamples per plot per sample date were 

measured. 

Physiology 

 From October 2012 to October 2014, measurements of leaf gas exchange were 

conducted every four to six weeks during the growing season and every six to eight 

weeks in the winter months using an LI-6400 portable photosynthesis system (LiCor Inc., 

Lincoln, NE, USA). Measured variables included net photosynthesis (Pnet), stomatal 

conductance (gs), and intercellular CO2 concentration (Ci). Leaf gas exchange was 

measured on five trees per plot (80 total). Measurement trees were randomly selected 

within ranges of DBH, consisting of two trees in the upper third, two trees in the middle 

third, and one tree from the lowest third DBH classes. For each tree on each measurement 

date, two fascicles were sampled that developed in full sun in the upper third of the tree 

on the south side. Needles were collected by hand in 2012 and 2013 and by a pole pruner 

in 2014. Fascicles from the first flush of 2012 were measured from October 2012 to July 

2013 while the first flush of 2013 was measured from August 2013 to July 2014 and the 

first flush of 2014 was measured from August 2014 to October 2014. Within sampling 

dates, measurements were conducted by block to balance diurnal environmental variation 

across treatments. Measurements were taken between 0900 and 1500 h.  
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During gas exchange measurements, photosynthetically active radiation and 

reference CO2 concentration were held constant inside the leaf chamber at 1800 μmol m-2 

s-1 and 400 μmol mol-1, respectively. For the majority of measurements, relative humidity 

(Rh) within the chamber (2 x 3 cm) was not controlled and fluctuated with ambient 

conditions. However, on several measurement days when Rh was high, it was reduced to 

between 60 and 70% in the chamber to prevent condensation. Temperature in the leaf 

chamber was kept uniform within blocks on a given sample date.  Initial temperature for 

each block was set approximately 1 oC above ambient temperature in an attempt to 

bracket ambient temperature during the measurements within a given block. For each 

block, one tree of the five from each treatment plot was randomly selected and measured. 

This was repeated successively until all trees within a block were measured (20 trees). 

All sided leaf area in the cuvette was calculated based on measuring the radius of one 

needle per fascicle using a scale loupe. Samples for mid-day leaf water potential (ΨL) 

measurements were collected in unison as those for leaf gas exchange measurements. 

Mid-day ΨL was measured using a pressure chamber (PMS, Instrument Corp., Corvallis, 

OR, USA). 

Stable carbon isotope ratio (δ13C) and nitrogen concentration of foliage that had 

been measured in the cuvette was dried at 60o C, bulked by tree and foliage cohort, and 

stored until measurement. Foliage was measured using an ECS 4010 CHNSO analyzer 

(Costech Analytical Technologies, Inc., Valencia, CA, USA) coupled with Thermo 

Conflo IV and Thermo Delta V Adavantage stable isotope mass spectrometer (Thermo 

Fisher Scientific, Inc., Waltham, MA, USA) at Texas A&M University Stable Isotopes 

for Biosphere Science Laboratory. 
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 Soil moisture 

 Volumetric soil water content (VWC) at 0 to 12 cm depth was measured with a 

HydroSense Soil Water Measurement System (Campbell Scientific, Inc., Logan, UT, 

USA). Eight measurements per plot (128 total) were sampled every four to six weeks 

during the growing season and every six to eight weeks during winter months. Before 

first measurement, locations were determined by completely random sampling design.  

Statistical analysis 

 Total (5th through 7th growing season) height, DBH, and basal area growth were 

analyzed as a 2 x 2 factorial combination of main effects fertilization and throughfall 

reduction (n = 4). For all other measurements, treatment effects were analyzed using 

repeated measures analysis (Proc Mixed, SAS Inc., Cary, NC, USA) with block as a 

random factor and treatments as fixed factors and the autoregressive 1 (AR1) covariance 

structure. Plot means for all data were used (n = 4) and treatment effects were considered 

significant at P < 0.05. 

Results 

Climate 

 Annual precipitation was 1026 mm in 2012, 1312 mm in 2013, and 1289 mm in 

2014. In 2012, greatest precipitation occurred in March (184 mm) and least occurred in 

November (11 mm). In 2013, greatest precipitation occurred in July (239 mm) and least 

occurred in August (17 mm). In 2014, greatest precipitation occurred in July (263 mm) 

and least occurred in August (26 mm) (Fig. 1). Average daily air temperature for 2012 
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was 17.3 oC with average daily maximum and minimum air temperatures of 25.0 oC and 

10.1 oC, respectively. Average daily air temperature for 2013 was 15.5 oC with average 

daily maximum and minimum air temperatures of 22.6 oC and 9.0 oC, respectively. 

Average daily air temperature for 2014 was 15.0 oC with average daily maximum and 

minimum air temperatures of 21.9 oC and 8.7 oC, respectively (Fig. 1). PDSI indicated 

severe to extreme drought (PDSI < -4) from October 2012 through January 2013. PDSI 

became slightly positive beginning in February 2013 and remained so for the rest of the 

calendar year. For 2014, PDSI was near normal with January to May slightly negative 

and the rest of the year slightly positive (Fig. 2).  

Soil moisture 

 Throughfall reduction reduced VWC during wetter periods (Table 1) (Fig. 3). 

Ambient precipitation plus fertilizer (F) maintained greater VWC than control (C) 

treatments while the VWC of the fertilized treatment receiving throughfall reduction 

(TR+F) was similar to the non-fertilized, throughfall reduction (TR) treatment (Table 1) 

(Fig. 3). Across the entire study period, VWC 0-12 cm averaged 8.5 ± SE 2.5 % for the 

TR+F treatment, 9.3 ± SE 2.7 % for the TR treatment, 12.7 ± SE 3.2 % for the F 

treatment, and 9.7 ± SE 2.9 % for the C treatment.  Across all plots, VWC at 0-12 cm was 

reduced from 11.3 % to 8.8 % by throughfall reduction excluders.  

Growth 

 By age 7, average tree height ranged from 6.8 m for F treatment to 6.4 m for 

TR+F treatment (Fig. 4A). Average tree DBH ranged from 13.1 cm for F treatments to 

11.9 cm for TR treatments (Fig. 4B).  There were not interactions between throughfall 
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reduction and fertilization for growth (Table 2).  Throughfall reduction (TR and TR+F) 

reduced total height growth over growing seasons 5-7 (Table 2) by 8.2 % compared with 

ambient precipitation treatments (F and C) (Fig. 5A). Throughfall reduction (TR and 

TR+F) reduced total DBH growth over growing seasons 5-7 (Table 2) by 6.1 % and 

fertilization (F and TR+F) increased total DBH growth (Table 2) by 7.3 %, compared 

with ambient precipitation (F and C) and non-fertilized treatments (TR and C), 

respectively (Fig. 5B). As basal area is largely a function of DBH, results of BA and 

DBH were similar. Throughfall reduction reduced total basal area growth over growing 

seasons 5-7 (Table 2) by 8.8 % and fertilization increased total basal area growth (Table 

2) by 11.6 %, compared with ambient precipitation and non-fertilized treatment trees, 

respectively (Fig. 5C). Fertilization compensated for drier conditions in DBH and BA 

growth, such that TR+F trees had similar growth as C treatment trees (Fig. 5B). 

LAI 

Throughfall reduction reduced LAI and fertilization increased LAI (Table 1), 

compared with ambient throughfall and non-fertilized treatment trees, respectively (Fig. 

6). Similar to tree DBH and BA growth response, fertilizer compensated for drier 

conditions as TR+F stands had higher LAI than both non-fertilized treatment stands (Fig. 

6). The date by treatment interaction was not significant. Seasonally, LAI ranged from 

1.9 m2 m-2 for TR treatment in winter (December 2014) to 4.4 m2 m-2 for F treatment in 

summer (August 2015) (Table 1). Overall, average LAI of treatments was 3.2 ± SE 0.4 

m2 m-2 for TR+F, 2.8 ± SE 0.4 m2 m-2 for TR, 3.3 ± SE 0.4 m2 m-2 for F, and 3.0 ± SE 0.3 

m2 m-2 for C. 
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Physiology 

 Pnet, gs, and Ci, varied by sampling date (Table 1) and followed similar trends. 

Throughfall reduction reduced Pnet (Table 1) (Fig. 7A) and the interaction between date 

and throughfall reduction was not significant (Table 1). On average, the main effect of 

throughfall reduction decreased Pnet by 9 % (Fig. 8A). Fertilization did not significantly 

affect Pnet (Fig. 8A). Throughfall reduction and fertilization reduced gs (Table 1). In 

general, gs was reduced more so due to throughfall reduction during wetter periods (Table 

1) except for August 2013 when throughfall reduction decreased gs (Fig. 7B), but soil 

moisture was low. The August 2013 measurement was the first measurement on the 2013 

flush. On dates where throughfall reduction was significant, throughfall reduction 

decreased gs 20 % on average. Across all dates, throughfall reduction decreased gs by 12 

%. Fertilization decreased gs by 7 % on average (Table 1) and date x fertilization was not 

significant (Fig. 8B). Throughfall reduction and fertilization (Table 1) reduced Ci by 3 

and 4 %, respectively (Fig. 7C, 8C).  

Throughfall reduction (Table 1) caused more negative mid-day ΨL with the 

effects increasing over the course of the experiment (Table 1) (Fig. 7D). On dates where 

throughfall reduction was significant for ΨL, the differences were 16 % on average. 

Across all dates, throughfall reduction decreased ΨL by 11 %. Fertilization caused less 

negative mid-day ΨL (Table 1) (Fig. 9) of 3% on average (Fig. 8D).  

Throughfall reduction caused less negative δ13C for the 2013 foliage cohort (p = 

0.01), but not for the 2012 cohort (developed before treatment) or 2014 cohort (Table 3) 

(Fig. 9A). Fertilization increased foliar N concentration (Table 3). Fertilization had a 
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stronger effect on foliar N in the 2012 cohort with an increase of 16 % (p < 0.0001) 

compared to 12 % (p < 0.0001) and 4 % (p = 0.04) for the 2013 and 2014 cohorts, 

respectively (Table 3) (Fig. 9B). Throughfall reduction did not significantly affect foliar 

nitrogen concentration, but there was a date x throughfall x fertilization interaction (Table 

3) that occurred due to a change among ranking of treatments and years. 

Discussion 

Our results indicate that throughfall reduction decreased leaf gas exchange as a 

result of decreased soil moisture availability (supported by lower VWC and more 

negative leaf water potentials) which probably in turn slowed growth. In contrast, 

fertilization increased growth and did not affect photosynthetic rate. While stomatal 

conductance was reduced by fertilization, it was not due to water stress as the trees in the 

fertilized treatments had less negative water potentials and VWC was not lower on 

average compared to nonfertilized treatments. The net effect was that fertilization 

probably increased the efficiency of photosynthesis per water use which may have helped 

compensate for lower soil moisture such that growth of the TR+F and Control treatments 

were similar.   

As stand-level leaf area increases with resource availability, potential stand water 

use also increases which would be reflected in lower VWC. For instance, a similar study 

(Samuelson et al. 2014) found that fertilization reduced average soil moisture in a 7-year-

old loblolly pine plantation. The lack of reduced VWC in the F treatment in our study, 

even though they had greater LAI than the nonfertilized control treatment, could be from 

random plot-level differences in soil texture causing variability in VWC. In contrast to 
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Samuelson et al. (2014) who found thoughfall reduction decreased VWC during drier 

periods, VWC was reduced by throughfall reduction during wetter periods in our study 

while VWC was similarly low across all treatments during dry periods.  

Fertilization increases diameter and height growth of loblolly pine plantations 

(e.g., Bolstad et al. 1987, Will et al. 2002, Albaugh et al. 2004, Will et al. 2006).  

Compared to fertilization, increased water availability (irrigation) has a small positive or 

no effect (Albaugh et al. 2004, Coyle et al. 2008, Samuelson et al. 2008a). In our study, 

fertilization compensated for reduced throughfall availability on total DBH and total 

basal area growth such that trees experiencing TR+F had similar growth as C treatment 

trees. These results were similar to Samuelson et al. (2014), in that fertilization increased 

mean DBH and basal area growth over the second growing season of treatment. 

However, in that study, throughfall reduction had no effect on mean DBH, basal area, or 

mean height growth. Unlike diameter and BA growth, fertilization in our study did not 

benefit height growth. The only effect on height development was the negative effect of 

throughfall reduction. Fertilization generally has a greater effect on diameter growth than 

height growth in loblolly pine (Allen et al. 2005) and the response could depend on the 

drainage of the site, where fertilization on poorly drained sites increases height growth 

more so than on moderately to well drained sites (Amateis et al. 2000) characteristic to 

our site. 

Increasing the availability of nutrients through fertilizer application increases LAI 

in loblolly pine stands (e.g., Albaugh et al. 1998, Will et al. 2002, Will et al. 2006). We 

found positive effects of fertilization regardless of the negative effects of throughfall 

reduction treatment (no interaction).  Samuelson et al. (2014) found that LAI was higher 
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in fertilized compared to non-fertilized treatments, but throughfall reduction of ~30 % did 

not affect LAI in a loblolly pine plantation in Georgia. The negative effects of throughfall 

reduction we found to both LAI and growth could have been due to higher summer 

temperatures and greater VPD at our site compared sites further east (Seager et al. 2015). 

Will et al. (2015) reported average August daily temperatures during the study period for 

our site was, 2.6 oC warmer than the Georgia site. Aside from our study and Samuelson et 

al. (2014), there are no published results on throughfall reduction effects on LAI of 

southern pine. However, previous studies report increases (Ewers et al. 2000, Albaugh 

2004, Samuelson et al. 2008b) and no effect of irrigation on LAI (Albaugh 1998, 

Samuelson et al. 2001, Allen et al. 2005).  

In our study, throughfall reduction reduced Pnet, and this reduction was consistent 

with water stress, i.e., lower Ci, more negative mid-day ΨL and reduced gs during wetter 

periods, and less negative δ13C for the 2013 cohort (the 2013 cohort represented 45 % of 

gas exchange measurement dates). For dates where throughfall reduction significantly 

decreased gs, average monthly precipitation was 151 mm compared to 88 mm average 

monthly precipitation bracketing dates where gs was not affected. Reduction in gs 

occurred during wetter periods probably because all trees were stressed during the drier 

periods such that the effects of a 30% reduction in throughfall were largely eliminated.  

The only exception was August 2013 when soil moisture was low but gs was significantly 

different due to throughfall reduction. For this measurement date, the difference in gs may 

have resulted from changing sampling from the first flush of 2012 to the first flush of 

2013. Leaf gas exchange of current year foliage in loblolly pine is higher than previous 

year foliage (Will et al. 2001, Radoglou and Teskey 1997) which could have accentuated 
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the differences. Similar studies found contrasting results where Pnet and gs were only 

reduced by throughfall reduction during drought periods (Tang et al. 2004, Samuelson et 

al. 2014). Similar to LAI and growth, the different response of our study may be a result 

of higher temperatures and greater VPD during drought periods at our site at the western 

margin of the loblolly pine commercial range. During drought periods on our site, leaf 

gas exchange was minimal across all treatments.   

The more negative mid-day ΨL due to throughfall reduction occurred overtime as 

a result of throughfall reduction treatment effects compared to sampling dates earlier that 

were closer to when throughfall reduction treatments were implemented (Fig 7D). The 

decrease in Ci that we measured in response to reduced throughfall was due to reduced gs 

as Pnet also declined. This response of Ci is due to a continuation of the removal of CO2 

from the intercellular air space and a reduction in resupply of CO2 from reduced gs 

(Green and Mitchell 1992). When comparing the relationship between Ci and Pnet of 

loblolly pine under water stress, Pnet was nearly linearly (Teskey et al. 1986) or 

curvilinearly (Barber 1986, Green and Mitchel 1992) related to changes in Ci with 

stomatal limitation accounting for 20-30 % of total limitation of CO2 diffusion into the 

leaf under a wide range of environmental conditions (Teskey et al. 1986). When 

experiencing decreased water availability it has been suggested that mesophyll 

conductance is more responsive than gs, limiting CO2 diffusion for photosynthesis 

(Teskey et al. 1986, Green and Mitchell 1992, Grassi and Magnani 2005). 

Foliar δ13C for the 2013 cohort for trees experiencing throughfall reduction was 

more negative than ambient precipitation treatment trees, which indicates less 

discrimination against δ13C and increased leaf water use efficiency in 2013 of the 
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throughfall reduction trees. The year 2013 was the wettest of our study (1312 mm) which 

was preceded by an extremely dry year in 2012. These results relate to our gs findings 

where throughfall reduction had the greatest effect during wetter periods. A similar study 

found contrasting results with less discrimination against δ13C occurring during a drier 

year compared to a wetter year (Samuelson et al. 2014) and could again be related to 

greater temperature and evaporative demand during drier periods at our site.  

Fertilization typically does not affect leaf gas exchange in loblolly pine (Zhang et 

al. 1997, Samuelson et al. 2001, Will et al. 2001, Munger et al. 2003). The same was 

found in studies similar to ours that included throughfall reduction and fertilization (Tang 

et al. 2003, Samuelson et al. 2014). While Pnet was not significantly affected in our study, 

fertilization reduced gs, Ci, and increased (less negative) mid-day ΨL. This indicates that 

photosynthesis was similar across a range of nutrient availability but that leaf-level water 

loss could have been reduced by fertilization. This response could be related to increased 

foliar N concentration found in our study. Fertilization can lead to increased water use 

efficiency in loblolly pine seedlings associated with increases foliar N, Pnet, and 

decreased gs (Green and Mitchell 1992, Samuelson et al. 2000, Tyree et al. 2009). The 

response of mesophyll conductance to fertilization has been positive, where mesophyll 

limitation is decreased, thus increasing photosynthesis (Green and Mitchell 1992). While 

we didn’t measure mesophyll conductance, it seems likely that a positive response of 

mesophyll conductance to fertilization allowed trees within fertilized stands to maintain 

Pnet rates at reduced gs. This increases water use efficiency such that fertilization might 

help sustain carbon gain under drier conditions.   When water use efficiency is expressed 
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as Pnet/gs, the average increased 6%, from 74.5 to 80.0 µmol mol-1, with fertilization in 

our study.  

Conclusions and management implications 

 Our results indicate that thoughfall reduction decrease soil moisture and reduces 

leaf gas exchange and slows growth. However, we found that fertilization can 

compensate for throughfall reduction. Additive effects of throughfall reduction and 

fertilization indicate that positive effects of fertilization are not eliminated by throughfall 

reduction. Because the responses of fertilization and throughfall reduction are additive, 

differences between the two responses will determine whether growth increases or 

decreases when both are combined. Contrary to our initial hypothesis, fertilization did not 

exacerbate the effects of througfall reduction even though leaf area did increase. Rather, 

fertilization increased water use efficiency. These results indicate that fertilization can be 

beneficial in loblolly pine plantations experiencing reduced water availability on the 

western limits of its commercial range and indicates the impact of decreased water 

availability in loblolly pine growing areas with high growing season temperatures and 

atmospheric demand for water. 
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Tables. 

 

Table 1. P values for the effects of  date, throughfall reduction (Water) and fertilization 

(Fert) treatments on volumetric soil water content (VWC), leaf area index (LAI), net 

photosynthesis (Pnet), stomatal conductance (gs), intercellular CO2 (Ci), and midday leaf 

water potential (ΨL) for the entire measurement period (2012-2014). Bold values indicate 

significance at α < 0.05. 

  VWC LAI Pnet gs Ci ΨL 

Date <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Water <0.0001 0.005 <0.0001 <0.0001 0.009 <0.0001 

Fert 0.006 <0.0001 0.23 0.01 0.001 0.02 

Water x Fert <0.0001 0.19 0.64 0.93 0.83 0.86 

Date x Water 0.01 0.76 0.10 0.008 0.52 0.04 

Date x Fert 0.99 0.90 0.08 0.36 0.98 0.95 

Date x Water x Fert 0.81 0.97 0.90 0.79 0.53 0.41 
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Table 2. P values for the effects of block, throughfall reduction (Water) and fertilization 

(Fert) treatments on total height growth (Height), total DBH growth, and total basal area 

growth (BA) for the entire measurement period (2012-2014). Bold values indicate 

significance at α < 0.05. 

  
Height DBH BA 

Block 0.34 0.45 0.24 
Water <0.0001 0.0009 0.004 

Fert 0.97 0.0003 0.0006 

Water x Fert 0.91 0.87 0.11 
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Table 3. P values for the effects of year, throughfall reduction (Water) and fertilization 

(Fert) treatments on stable carbon isotope ratio (δ13C) and nitrogen concentration of the 

foliage, total DBH growth, and total basal area growth (BA) for the 2012-2014 foliage 

cohorts. Bold values indicate significance at α < 0.05. 

  
δ13C N 

Year <0.0001 <0.0001 

Water   0.01 0.17 

Fert 0.07 <0.0001 

Water x Fert 0.95 0.83 

Year x Water 0.0002 0.61 

Year x Fert 0.07 <0.0001 

Year x Water x Fert 0.45 0.008 
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Fig. 1. Monthly precipitation and average maximum, minimum, and mean air 
temperature for 2012, 2013, and 2014 for Broken Bow Oklahoma, USA. 
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Fig. 2. Monthly Palmer Drought Severity index (PDSI) for Climate Division 9 (southeast) 

in Oklahoma for 2012, 2013, and 2014. 
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Fig. 3. Mean volumetric soil water content (%) between 0 and 12 cm in response to 

throughfall reduction plus fertilization (TR+F), throughfall reduction plus no fertilization 

(TR), ambient throughfall plus fertilization (F), and control (C) treatments. In cases 

where there is a significant throughfall reduction x date interaction, an asterisk (*) above 

the data represents dates that throughfall reduction effect is significant (n = 4). 
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Fig. 4. Mean tree height and DBH by stand age in response to throughfall reduction plus 

fertilization (TR+F), throughfall reduction plus no fertilization (TR), ambient throughfall 

plus fertilization (F), and control (C) treatments Error bars represent standard error of 

treatment means (n = 4). 
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Fig. 5. (A) total height growth, (B) total DBH growth, and (C) total basal area growth 

over the 5th, 6th, and 7th growing seasons in response to throughfall reduction plus 

fertilization (TR+F), throughfall reduction plus no fertilization (TR), ambient throughfall 

plus fertilization (F), and control (C) treatments.(n = 4). Error bars represent standard 

error of treatment means (n = 4).  
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Fig. 6. Mean leaf area index (LAI) in response to throughfall reduction plus fertilization 

(TR+F), throughfall reduction plus no fertilization (TR), ambient throughfall plus 

fertilization (F), and control (C) treatments. Error bars represent standard error of 

treatment means (n = 4) 
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Fig. 7. (A) Mean net photosynthesis (Pnet), (B) mean stomatal conductance (gs), (C) 

intercellular CO2 (Ci), (D) mean mid-day leaf water potential (ΨL) in response to 

throughfall reduction plus fertilization (TR+F), throughfall reduction plus no fertilization 

(TR), ambient throughfall plus fertilization (F), and control - ambient throughfall plus no 

fertilization (C) treatments. In cases where there is a significant throughfall reduction x 

date interaction, an asterisk (*) above the data represents dates that throughfall reduction 

effect is significant. Error bars represent standard error of treatment means (n = 4).  
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Fig. 8. Total overall (A) mean net photosynthesis (Pnet), (B) mean stomatal conductance 

(gs), (C) intercellular CO2 (Ci), (D) mean mid-day leaf water potential (ΨL) in response to 

throughfall reduction plus fertilization (TR+F), throughfall reduction plus no fertilization 

(TR), ambient throughfall plus fertilization (F), and control - ambient throughfall plus no 

fertilization (C) treatments. Error bars represent standard error of treatment means (n = 

4). 
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Fig. 9. Mean (A) stable carbon isotope ratio (δ13C) (‰) and (B) nitrogen concentration 

(mg/g) of foliage by year in response to throughfall reduction plus fertilization (TR+F), 

throughfall reduction plus no fertilization (TR), ambient throughfall plus fertilization (F), 

and control - ambient throughfall plus no fertilization (C) treatments. . In cases where 

there is a significant throughfall reduction x date interaction, an asterisk (*) above the 

data represents dates that throughfall reduction effect is significant. Error bars represent 

standard error of treatment means (n = 4).
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CHAPTER III 
 

 

EFFECTS OF DECREASED WATER AVAILABILITY AND FERTILIZATION ON 

WATER USE AND GROWTH EFFICIENCY OF LOBLOLLY PINE (PINUS TAEDA 

L.) STANDS AT THE WESTERN EDGE OF THE COMMERCIAL RANGE 

 

Abstract 

Over half the standing timber volume in the southeastern US is composed of 

loblolly pine (Pinus taeda L.), making it the most important tree species in the region. 

Future climate change may impact productivity of these forests through reductions in 

water availability. To determine the effects of nutrient availability and decreased water 

availability on stand-level water use efficiency and growth efficiency we examined the 

interactive effects of fertilization (one time application of 224 kg N ha-1, 28 kg P ha-1, 56 

kg K ha-1 and micronutrients) and reduced throughfall (approximate 30 % reduction) on 

whole-tree water use, stand-level canopy transpiration, LAI, and volume growth. This 

study was conducted over the 6th and 7th growing seasons (2013-2014) of a loblolly pine 

plantation in southeast, Oklahoma. Across all plots, throughfall reduction reduced VWC 

from 13.6 % to 10.9 % from 0-12 cm soil depth and from 22.3 % to 19.9 % from 12-45 

cm soil 
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depth and reduced stand volume growth from 20.9 m3 ha-1 to 17.9 m3 ha-1. Across all 

treatments, fertilization increased LAI by 12 %, stand volume growth increased from 

18.3 m3 ha-1 to 20.5 m3 ha-1, and increased water use efficiency of stem volume 

production by 18 %. These results indicate that fertilization can benefit stand growth of 

loblolly pine plantations in areas with higher growing season temperatures and greater 

VPD, such as the western edge of the loblolly pine commercial range in part by 

increasing the efficiency of water use. 

Introduction 

The Southeast is considered the wood basket of the United States (Schultz 1997), 

producing more timber volume than any other region in the country (Oswalt et al. 2014). 

Over half the standing pine volume in this region is contained in loblolly pine (Pinus 

taeda L.) plantations, making loblolly pine the most important tree species in the region 

(Wear and Greis 2012). However, the ability to maintain productivity of loblolly pine 

plantations in the future is unclear as these forests are predicted to experience more 

variable precipitation events and increased temperature. Precipitation events are projected 

to become more extreme with increased intensity and longer periods of dry days between 

events (Easterling et al. 2000, Collins et al. 2013, Walsh et al. 2014). By the end of the 

century, a 2.5 to 4 oC increase in average temperature is projected across the region 

(Collins et al. 2013).  

If projections come true, the change in climate may impact productivity of these 

forests through reductions in water availability (Johnson et al. 2014) due to increased 

runoff of the more extreme events and higher potential evapotranspiration (PET) from 
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increased temperature and vapor pressure deficits (Breshears et al. 2013, Collins et al. 

2013, Seager et al. 2015). There is a greater potential for impacts for the western edge of 

the commercial range of loblolly pine in southeastern Oklahoma which is beyond their 

natural range. This area already experiences higher growing season temperatures and 

VPD than the most of the southeastern USA (Seager et al. 2015). This, combined with 

projections of higher increases in temperature and greater summertime drought compared 

the rest of the region (Collins et al. 2013) may lead to greater water stress experienced by 

loblolly pine planted in this area.   

Loblolly pine productivity in the southeastern United States is largely driven by 

intensive silvicultural practices such as site preparation, competition control, and 

fertilization (Fox et al. 2007). Fertilization, specifically combinations of N and P, 

increases leaf area, carbon fixation, and productivity of these plantations (Teskey 1986, 

Vose and Allen 1988, Albaugh et al. 1998), and can increase growth efficiency, i.e., stem 

growth per unit of leaf (Will et al. 2002, Albaugh et al. 2004, Fox et al. 2007). Greater 

leaf area index (LAI) can lead to reduced soil water availability from increased 

interception of precipitation (Stogsdill et al. 1989) as well as increased water use. 

Evapotranspiration (ET) is the largest water output in forests and is closely related to LAI 

(Law et al. 2002, Sun et al. 2011). Increasing LAI increases canopy transpiration as a 

result of increased hydraulic conductance when water is not limiting (Oren et al. 1986, 

Ewers et al. 1999, Samuelson et al. 2008). Canopy transpiration can account for between 

50-70 % of ET in mid-rotation loblolly pine plantations (Cao et al. 2006, Gonzalez-

Benecke and Martin 2010, Domec et al. 2012). Fertilization added to non-water stressed 

loblolly pine plantations could also reduce belowground carbon allocation to fine roots 
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(Albaugh et al. 1998), which could increase stand vulnerability during periods of reduced 

water availability (McNulty et al. 2014), possibly as a result of limited water uptake 

capacity (Hubbard et al. 2004).  

Until recently (Tang et al. 2004, Samuelson et al. 2014, Bartkowiak et al. 2015, 

Ward et al. 2015),  research on water availability and water use in loblolly pine 

plantations focused on the benefits of irrigation (e.g., Pataki et al. 1998, Ewers et al. 

2000, Albaugh et al. 2004), rather than throughfall reduction. Irrigation generally either 

had no effect (Samuelson et al. 2008) or caused moderate increases in canopy 

transpiration (Albaugh et al. 2004, Samuelson and Stokes 2006). The general lack of 

substantial increases in canopy transpiration in regards to irrigation could be attributed to 

greater precipitation and higher relative humidity for areas of these previous studies, 

which may exceed potential transpiration for these sites (Samuelson et al. 2008, Domec 

et al. 2012). However, recent research reports a decline in canopy transpiration from 

reduced water availability in mid-rotation loblolly pine plantations (Bartkowiak et al. 

2015, Ward et al. 2015). 

Understanding how fertilization and water availability affect growth efficiency 

(stem volume per unit of leaf) is important to further understand and predict tree and 

stand growth. Previous studies on southern pines found that nitrogen fertilization 

increases growth efficiency (Vose and Allen 1988, Albaugh et al. 1998), or have found 

effects of nitrogen fertilization on growth efficiency is dependent on stand age or tree 

size, with initial increases in growth efficiency in younger stands and decreased growth 

efficiency in older stands (Jokela and Martin 2000, Will et al. 2002). The effects of 

fertilization and reduced water availability on efficiency of southern pine growth, 
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specifically loblolly pine, are minimal and have showed contrasting results. For instance, 

Samuelson et al. (2014) reported no effects of fertilization or throughfall reduction on 

growth efficiency (slope of the relationship between annual stemwood production and 

peak projected LAI) of a 7-year-old loblolly pine plantation in Georgia. In a similar 

study, Ward et al. (2015) found water use efficiency (stem volume production per sum of 

annual canopy transpiration) increased with both fertilization and throughfall reduction, 

and increased the greatest in a treatment of fertilization plus throughfall reduction in a 10-

year-old loblolly pine plantation in Virginia. When water use efficiency was calculated as 

net photosynthesis divided by leaf-level transpiration for an 18-year-old loblolly 

plantation in Louisiana, throughfall reduction caused increased water use efficiency 

during wetter periods, whereas fertilization had no effect on water use efficiency (Tang et 

al. 2004).   

A better understanding of how fertilized stands with greater leaf area index and 

subsequently stand water use and growth will respond to reduced water availability and 

the negative effects of drought on productivity are needed. This is especially important 

for commercial range loblolly pine planted along their western limits. This information is 

essential for understanding potential impacts on volume growth and potentially provide 

insight on carbon sequestration and ultimately help guide effective management practices 

necessary for sustaining productivity of loblolly pine plantations under a changing 

climate.  

The objective of this study was to determine the interactive effects of nutrient 

availability and decreased water availability on stand-level water use efficiency (stem 

growth per unit of water use) and growth efficiency (stem growth per unit of LAI) by 
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examining whole-tree water use, stand-level canopy transpiration, LAI, and volume 

growth. To accomplish this objective, we examined the interactive effects of fertilization 

and reduced throughfall. Our central hypothesis was that fertilizer added to a loblolly 

pine plantation in southeastern Oklahoma will increase LAI and throughfall reduction 

will reduce whole-tree and stand-level water use. We further hypothesized that 

fertilization will increase stand volume growth and compensate for throughfall reduction 

effects by increasing water use efficiency and growth efficiency, resulting in stand 

volume growth similar to that of stands not experiencing throughfall reduction or 

fertilization. 

Materials and methods 

Study site 

The study was located on a loblolly pine stand near Broken Bow, OK 

(34o01’52.0’’N, 94o49’18.2’’W) that was part of the Pine Integrated Network: Education, 

Mitigation, and Adaptation Project (PINEMAP) (www.pinemap.org) Tier III range-wide 

experiment (Will et al. 2015). The research was conducted beginning in the 6th growing 

season (2013) and continued through the 7th growing season (2014). The study site had an 

elevation of 150 m and soils were very deep, well-drained, fine sandy loam in the Ruston 

series (Fine-loamy, siliceous, semiactive, thermic Typic Paleudult). Depth to the water 

table was greater than 2 m. This soil was typical for forests on the uplands of the western 

and southern upper Coastal Plain and consisted of 3 to 8 percent slopes 

(http://soilseries.sc.egov.usda.gov). On average over the last twenty years (1994 – 2014) 

for Broken Bow, OK, May has been the wettest month (160 mm) and August the driest 



50 

 

(70 mm). Average annual precipitation over this period was 1281 mm. Over the last 

twenty years, August with average maximum temperature of 34.7 oC has been the 

warmest month and January has been the coldest month with average minimum 

temperature of -1.0 oC for Broken Bow, OK 

(http://mesonet.org/index.php/weather/daily_data_retrieval, accessed March 2016).  

Before planting, broadcast herbicide of 680 g ha-1 of Chopper ® (27.6 % 

imazapyr, 72.4 % inert ingredients) (BASF Corporation, Florham Park, NJ, USA) plus 

2.8 l ha-1 of glyphosate was applied in August 2017 followed by prescribed burn in 

October 2007. The study site was subsoiled along the contour to depths of 51 to 61 cm 

using a D8 Caterpillar dozer and attached subsoiling shanks (Caterpillar Corporate, 

Peoria, IL, USA) in November 2007. The site was planted in January 2008 with 

improved Western Gulf Tree Improvement Cooperative 1-0 bare-root seedlings 

originating from a mix of half-sib families. Broadcast herbicide of 420  g ha-1 of 

Arsenal® (27.6 % imazapyr, 72.4 % inert ingredients) (BASF Corporation, Florham 

Park, NJ, USA) and 175 g ha-1  of Oust Extra® (56.25 % Sulfometuron methyl, 15.0 % 

Metsulfuron methyl, 28.75 % other) (E.I. Du Pont De Nemours and Company, 

Wilmington, DE, USA) was applied for woody plant and herbaceous weed control in 

March 2008. Spacing for the site was approximately 2 m x 3 m for an approximate 

density of 1650 trees ha -1.  

Experimental design 

The study consisted of four treatments replicated four times in a 2 x 2 factorial 

combination of fertilization and throughfall reduction. The treatment plots were a 
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minimum of 0.10 ha and contained measurement plots between 0.034 and 0.041 ha. 

Fertilization treatments included no fertilizer and a combination of 224 kg N ha-1, 28 kg P 

ha-1, 56 kg K ha-1, as well as micronutrients. N and P consisted of a mix of urea (432 kg 

ha-1) and diammonium phosphate (140 kg ha-1). K consisted of potassium chloride. 

Micronutrients consisted of a granular mix (Southeast Mix, Cameron Chemicals, Inc., 

Virginia Beach, VA, USA) applied at a rate of 22.4 kg ha-1, containing 6% sulfur, 5% 

boron, 2% copper, 6% manganese, and 5% zinc. Fertilizer was broadcast by hand 

throughout treatments in April 2012. Competing vegetation was chemically eliminated 

beginning in spring of 2012 using directed sprays of glyphosate (2% a.i., Roundup®, 

Monsanto Company, St. Louis, MO, USA).  

Throughfall treatments consisted of ambient throughfall and throughfall exclusion 

troughs (excluders) based on the driest climate predictions at the time for the region 

(Christensen et al. 2007), designed to remove approximately 30 % of precipitation 

throughfall. Excluders were installed between early and mid-summer 2012 and consisted 

of two 50 cm wide troughs separated by a 50 cm opening with a height sloping 

approximately from 1.2 m to 0.6 m, covering ~30 % of ground area. Excluders were built 

of lumber and covered with clear, U.V. stabilized plastic sheeting consisting of two layers 

co-extruded polyethylene and one layer of high strength polyester string (Tuff-Scrimm™ 

Poly 12, Americover Inc., Escondido, CA, USA). 

Environmental variables 

Meteorological variables were measured on site from a weather station located at 

the top of a tower in an open area centered among plots. Air temperature and relative 
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humidity were measured with a CS215 temperature and relative humidity probe 

(Campbell Scientific, Logan, UT, USA). Vapor pressure deficit (VPD) was calculated 

based on Food and Agriculture Organization of the United Nations FAO guidelines for 

computing crop water requirements (Allen et al. 1998). Average monthly daytime VPD 

was determined by averaging 15-minute VPD calculations from daily sunrise/sunset 

times for Broken Bow, OK (Astronomical Applications Dept., U.S. Naval Observatory). 

Precipitation was measured with a TR-525M remote tipping bucket rainfall sensor (Texas 

Electronics, Inc., Dallas, TX, USA). Data were recorded continuously every 15 minutes 

using a CR1000 data logger (Campbell Scientific, Logan, UT, USA). Missing data from 

malfunctions or power outages were filled using meteorological data from Oklahoma 

Mesonet environmental monitoring station (Oklahoma Agweather 2016) in Broken Bow, 

OK (34o02’35.0’’N, 94o37’27.0’’W). There were 37 out of 428 total days gap filled 

during the two growing seasons. Specifically, 31 days and 6 days for the 5th and 6th 

growing seasons respectively. 

Soil moisture 

Volumetric soil water content (VWC) was measured by time domain 

reflectometry (TDR) using a 1502C metallic cable tester (Tektronix, Inc., Beaverton, OR, 

USA) taken every four to six weeks during the growing season and every six to eight 

weeks during winter months.  Within each plot, 16 pairs of rods were installed (two pairs 

at each of eight randomly chosen locations).  At each location one pair of rods was placed 

vertically in the soil 0-12 cm and one pair 0-45 cm. Modeled VWC calculated by 

calibrating a set of permanent soil moisture probes (model CS655, Campbell Sci., Logan 

UT) to the TDR periodic measurements across all plots using regression. The permanent 
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probes were placed near the center of each treatment plot in a single replication (rep 3). 

In these locations, one probe (12 cm rod length) was installed vertically to match the 

TDR measurements, while others were placed horizontally at 33 and 68 cm. The VWC 

estimates from these probes were recorded every 15 min to a data logger. To estimate 

daily VWC per plot the CS655 probes were calibrated to the TDR spot measurements, 

such that each TDR location had a mapping function that related soil moisture to the soil 

moisture signal at the continuous locations. Location (eight per plot) by depth (0-12 and 

12-45 cm) estimated soil moisture were then estimated using these functions for each 

day. Daily estimates were averaged to compute a plot level estimate. 

Stand volume growth 

Tree size was measured in January 2012 prior to treatment application (following 

the 4th growing season) and in December following each of 5th, 6th, and 7th growing 

seasons. Measurements included DBH and height. DBH was measured after the 4th, 5th, 

and 6th growing seasons by averaging two caliper measurements taken at right angles on 

the stem. Height was measured after the 4th, 5th, and 6th growing seasons using a height 

pole. DBH and Height was measured following 7th growing season using a diameter tape 

and hypsometer (Laser Technology, Inc., Centennial, CO, USA), respectively. DBH 

growth, height growth, and stand volume growth (volume = 

0.34864+0.00232*DBH2*height; volume in ft3, DBH in inches, height in ft) (Burkhart 

1977) were determined from the difference in successive dormant season measurements. 

During the experiment, only one tree out of 1007 died. 
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LAI 

Leaf area index was measured using litter traps. Litter was collected 

approximately every four weeks from September through January each year with less 

frequent samples collected as needed during other times of year. Loblolly pine retains its 

needles for approximately a year and a half (Will et al. 2006). Therefore, litter collected 

from September through January (2012-2013) following the 5th growing season would 

represent foliage developed during the 4th growing season and on the tree for most of the 

5th growing season. Subsequent collections followed similar relationships.  Additional 

collections outside the September to January window made after the preceding March or 

before the following February were included with that cohort. Litter trap construction 

consisted of a circular hoop using 2.5 m long section of PEX tubing connected with a two 

50.8 mm section of hose (0.5 m2 area). Vinyl window screen with round edges was 

stapled to each hoop.  Four 508 mm long steel rods were inserted through drilled holes at 

equal spacing around the tube to function as standing legs. In every plot, each trap was 

assigned a unique position within the 2 m x 3 m growing space so that all possible 

positions within the 6 m2 area were covered. Once assigned positions, traps were 

randomly assigned to trees for placement. Since the bottom of the live crown was initially 

below height of excluders, two traps were used when a trap fell under an excluder. One 

trap was mounted to the excluder and one trap placed directly below near ground level. 

Combined, these traps captured the equivalent litter for one trap. 
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Water use 

Sap flow density was measured using thermal dissipation probes (TDPs) that 

consisted of 19 gauge 38.1 mm stainless steel hypodermic needles that were 20 mm in 

length (Granier 1985) constructed in the tree physiology laboratory at Oklahoma State 

University.  Probes were inserted in to the main trunk below the lowest live branch and 

ranged from a height of 0.7 m to 0.21 m above ground. Five trees per plot contained one 

probe (total 80 probes, 16 plots). Measurement trees were randomly selected within 

ranges of DBH, consisting of two trees in the upper third, two trees in the middle third, 

and one tree from the lowest third of DBH classes. All probes were initially inserted in 

May 2012. Probes were monitored through weekly data downloads and screened for 

malfunctions and errors. Malfunctioning probes were replaced by new probes in the same 

tree at least 100 mm from the original location. New probes were not expected to provide 

the same readings as original probes due to variation in sapwood conductivity (Ward et 

al. 2013, Tateishi et al. 2008), and each replacement was treated as a separate probe. 

Therefore, the actual number of probes in the study varied in the analysis based on the 

number of replacements.  

The temperature differential between the upper probe (heated at constant 0.2 

watts) and lower probe (non-heated) was measured continuously every two minutes 

beginning from initial probe insertion and recorded by data loggers (model CR1000 or 

CR10x, Camppbell Sci., Logan UT). Data from April through October of the 6th and 7th 

growing seasons are presented. Each block contained a data logger that stored data from 

20 probes (4 plots per block, 5 trees per plot). Sap flux was calculated according to 

Granier (1987) by solving the flow index (K) [K = (∆Tmax - ∆T)/ ∆T], where ∆Tmax is the 
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maximum temperature difference established between the heated and non-heated probes 

at zero flux and ∆T is the temperature difference between heated and non-heated probes 

at a given sap flux density and using K to calculate sap flux velocity (V) [V = 

0.000119*K1.231(m s-1)]. V was converted to sap flux (Js = SA x V (m3 sec-1), where SA is 

sapwood area in m2. Finally, these instantaneous measurements were converted to units 

of sap flux in liters per day, and averaged for each day. Sapwood area for all trees in this 

study was assumed to be the cross sectional area at probe height minus bark thickness, 

due to the fact that the trees were 8 years old at the end of the experiment which is under 

the age when heartwood development begins in loblolly pine (Schultz 1997). This was 

confirmed by coring five dominant sized trees in the plantation, outside the measurement 

plots. Due to missing data, average daily (midnight to midnight) tree-level sap flux per 

basal area increment at breast height data was averaged per plot an imputed using a 

mixed model in SAS and backfilled for missing dates as total liters per tree per day. 

Stand-level canopy transpiration 

Transpiration on a ground area basis (EC, mm d-1) was calculated by dividing tree-

level backfilled sap flux data (l m2 SA at DBH) by basal area increment (BAI) and taking 

the natural log (ln) of the ratio. Data were then averaged across each tree per plot by date 

per unit of tree BAI and multiplied by total BAI per plot of using tree-level data as the 

ratio of sap flux per day per tree. 

Efficiency terms 

Two indices of growth efficiency were determined from stem volume production 

(m3 ha-1), water use efficiency of stem volume production (WUEVOL) and growth 
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efficiency of leaf area index (GELAI). WUEVOL was calculated as stand-level stem volume 

growth per plot/total EC per plot for each year. For 2013, GELAI was calculated as stand-

level stem volume growth per plot/2012+2013 foliage cohort projected LAI per plot. The 

GELAI for 2014 was calculated in the same manner. Additionally, water use per unit of 

LAI (WUELAI) was calculated for 2013 growing season as 2013 total EC/2012+2013 

cohort projected LAI.  The WUELAI for 2014 was calculated in the same manner. 

Statistical analysis 

For all measurements, treatment effects were analyzed using repeated measures 

analysis (Proc Mixed, SAS Inc., Cary, NC, USA) with block as a random factor and 

treatments as fixed factors and the autoregressive 1 (AR1) covariance structure. For 

VWC, periodic measurements were modeled for each daily value, but analysis was 

performed on actual periodic measurements using TDR. When there was a significant 

interaction involving year, treatment effects within year were tested using SLICE 

statement in Proc Mixed. Daily tree and plot level water use was summed per week for 

analysis. There were significant interactions involving year and date(year) so separate 

analyses were conducted for the 2013 and 2014 growing seasons.  Within these year-

specific analyses, interactions involving weeks were examined using the SLICE 

statement Plot means for all data were used (n = 4) and treatment effects were considered 

significant at P < 0.05. 
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Results 

Environmental variables 

During 2013, average air temperature ranged from 26.1 oC in August to 4.3 oC in 

December with highest average maximum temperature (33.1 oC) occurring in August and 

lowest average minimum temperature (-0.9 oC) occurring in December (Fig. 10). Highest 

maximum and lowest minimum temperature reached during 2013 were 38.1 oC 

(September) and -10.0 oC (November), respectively (Fig. 10). During 2014, average air 

temperature ranged from 24.6 oC (August) to 2.6 oC (January) with highest average 

maximum temperature (31.7 oC) occurring in August and average lowest minimum 

temperature (-5.3 oC) occurring in January (Fig. 10). Highest maximum and lowest 

minimum temperatures reached during 2014 were 36.0 oC (September) and -13.3 oC 

(January), respectively (Fig. 10). During 2013, average monthly daytime VPD ranged 

from 1.6 kPa in September to 0.25 kPa in December (Fig. 11) and average growing 

season (April – October) VPD for 2013 was 1.1 kPa. Annual precipitation for 2013 was 

1190 mm with the greatest occurring in July (216 mm) and least in August (8 mm) (Fig. 

2). Growing season precipitation for 2013 accounted for 64 % of annual precipitation 

(757 mm). During 2014, average monthly daytime VPD ranged from 0.92 kPa in August 

to 0.17 kPa in December (Fig. 11) and average growing season VPD was 0.82 kPa. 

Annual precipitation for 2014 was 1046 mm with the greatest occurring in July (182 mm) 

and least in August (11 mm) (Fig. 11). Growing season precipitation for 2014 accounted 

for 70 % of annual precipitation (736 mm). 
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Soil moisture 

From statistical analysis on periodic TDR measurements, the interactive effect 

between year, date, and throughfall was significant for VWC from 0-12 cm soil depth 

(Table 4). During 2013, throughfall reduction treatments (TR and TR+F) reduced VWC 

during wetter periods (Fig. 12A). Ambient precipitation plus fertilizer treatment (F) 

maintained greater VWC than the fertilized treatment receiving throughfall reduction 

(TR+F), non-fertilized, throughfall reduction (TR), and control (C) treatments while 

VWC was similar among the TR+F, TR, and C treatments (Fig. 12A). Across 2013, 

VWC 0-12 cm averaged 9.0 ± SE 0.9 % for the TR+F treatment, 10.2 ± SE 0.8 % for the 

TR treatment, 13.5 ± SE 1.0 % for the F treatment, and 10.0 ± SE 1.0 % for the C 

treatment. For VWC from 0-12 cm during 2014, F treatment maintained greater VWC 

than the TR+F, TR, and C treatments while VWC was similar among the TR+F, TR, and 

C treatments (Fig. 12A). Across 2014, VWC 0-12 cm averaged 11.7 ± SE 1.5 % for the 

TR+F treatment, 12.6 ± SE 1.9 % for the TR treatment, 17.1 ± SE 1.1 % for the F 

treatment, and 13.3 ± SE 1.8 % for the C treatments.  

For VWC from 12-45 cm soil depth, the interactions involving year and date were 

not significant (Table 4). Across the entire measurement period (2013-2014), a main 

treatment interaction of throughfall by fertilization was observed. The F treatment 

maintained greater VWC than C, TR+F, and TR treatments while VWC was similar 

among the TR+F, TR, and C treatments (Table 4) (Fig. 12B). Across the entire 

measurement period, VWC 12-45 cm averaged 22.0 ± SE 1.9 % for the TR+F treatment, 

22.2 ± SE 2.1 % for the TR treatment, 25.3 ± SE 2.1 % for the F treatment, and 22.4 ± SE 

1.8 % for the C treatment.  
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Stand volume growth 

Significant interactive effects for year and throughfall and for year and 

fertilization occurred for stand volume growth (Table 5). When differences among 

treatments were considered within years, neither throughfall reduction nor fertilization 

significantly affected stand volume growth in 2012 (Fig. 13). Throughfall reduction 

reduced stand volume growth and fertilization increased stand volume growth during 

both 2013 and 2014 (Fig. 13). During 2013, throughfall reduction reduced stand volume 

growth by 18.5 % and fertilization increased stand volume growth by 10.2 % (Fig. 13). 

During 2014, throughfall reduction reduced stand volume growth by 13.4 % and 

fertilization increased stand volume growth by 12.0 % (Fig. 13).  

LAI 

Interactive effect of year by fertilization and year x throughfall reduction was 

significant for LAI (Table 5). Fertilization significantly increases LAI for the 2012 and 

2013 cohorts by 33.8 % and 18.3 %, respectively (Fig. 14). Throughfall reduction 

reduced LAI for the 2013 cohort by 11.5 % (Fig. 14. Across all treatments, LAI increased 

between the throughout the study foliage cohorts (Table 5). Across all treatments, mean 

LAI for the 2012, 2013, and 2014 foliage cohorts were 1.2 m2 m-2, 2.4 m2 m-2, and 2.7 m2 

m-2, respectively.  

Whole-tree water use 

The interaction between year, week, and throughfall reduction was significant for 

WU. Therefore, separate analyses for each year were conducted.  During the 2013 

growing season, throughfall reduction treatments reduced weekly whole-tree water use 
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(WU) during a week in May when soil moisture was high, in June and July as soil 

moisture was high and began to decrease, and again in August as soil moisture decreased 

from high values during the last week of July. (Table 6) (Fig. 15). Across the 2013 

growing season, throughfall reduction reduced WU by 19.6 %. During the 2014 growing 

season, throughfall reduction reduced WU for two weeks in August as soil moisture 

declined (Table 6) (Fig. 15). 

Water use per tree sapwood area 

Significant interactions involving year occurred so analyses were conducted for 

2013 and 2014 separately. Significant interactive effects of week x throughfall, week x 

fertilization, and throughfall x fertilization were observed for weekly WUSA during the 

2013 growing season (Table 6). Reductions in WUSA from throughfall reduction were 

significant because differences tended to be greater when water use rates were high. The 

throughfall x fertilization interaction was significant across the growing season because 

the C treatment was consistently higher than the other treatments (Fig. 16). Across the 

2013 growing season, WUSA averaged 1159 ± SE 76 cm3 cm2 for the C treatment and 

818 ± SE 53 cm3 cm2, 832 ± SE 75 cm3 cm2, and 899 ± SE 68 cm3 cm2 for the TR+F, TR, 

and F treatments, respectively. Interactive effects of week x throughfall and week x 

fertilization were significant for weekly WUSA during the 2014 growing season (Table 

6). Throughfall reduction reduced WUSA for three weeks in August as soil moisture 

decreased, but also caused an increase WUSA for two weeks in October as a result of 

high WUSA in the TR treatment (Fig. 16). Fertilization reduced WUSA during the 2014 

growing season except during weeks when water use rates were low (Fig. 16). Across the 

2014 growing season, fertilization reduced WUSA by 22 %. Across the 2014 growing 
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season, WUSA averaged 736 ± SE 89 cm3 cm2 for the TR+F treatment, 1016 ± SE 81 

cm3 cm2 for the TR treatment, 807 ± SE 74 cm3 cm2 for the F treatment, and 954 ± SE 87 

cm3 cm2 for the C treatment.  

Stand-level canopy transpiration 

Year by week by treatment interactions were significant for stand-level canopy 

transpiration per unit ground area (EC) so that separate analyses were conducted for each 

year. During the 2013 growing season, interactive effects of week x throughfall, week x 

fertilization, and week x throughfall x fertilization were significant for mean weekly EC 

(Table 6). As EC decreased following periods of high EC, the TR+F treatment reduced EC 

more so than TR, F, and C treatments and the TR treatment reduced EC more so than the 

F and C treatments (Fig. 17). Treatment means for weeks with a significant throughfall 

by fertilization interaction were 8.0 ± SE 0.95 mm wk-1 for the TR+F treatment, 9.6 ± SE 

0.66 mm wk-1 for the TR treatment, 11.1 ± SE 0.82 mm wk-1 for the F treatment, and 11.4 

± SE 0.83 mm wk-1 for the C treatment. Overall treatment means for the 2013 growing 

season were 9.1 ± SE 1.1 mm wk-1 for the TR+F treatment, 9.8 ± SE 0.7 mm wk-1 for the 

TR treatment, 9.6 ± SE 0.7 mm wk-1 for the F treatment, and 9.7 ± SE 0.7 mm wk-1 for 

the C treatment. During the 2014 growing season, there were also significant interactive 

effects for week x throughfall and week x throughfall x fertilization observed for EC. The 

week by throughfall by fertilization interaction was significant across a four week period 

at the end of June and beginning of July as EC was high and starting to decline and during 

a two week period in August as EC began a steep decline before treatment means 

compressed at lower EC. During the four weeks at the end June and beginning of July, EC 

was highest in the TR treatment, second highest in the F treatment and similar for the C 
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and TR+F treatments. During the 2 weeks in August, the EC of the TR+F treatment was 

lowest in the TR+F treatment and similar among the others. (Fig. 17). Treatment means 

across these dates where the interaction between throughfall and fertilization were 

significant were 13.9 ± SE 1.9 mm wk-1 for the TR+F treatment, 17.8 ± SE 1.2 mm wk-1 

for the TR treatment, 17.0 ± SE 1.5 mm wk-1 for the F treatment, and 15.8 ± SE 1.4 mm 

wk-1 for the C treatment. Overall treatment means for the 2014 growing season were 11.3 

± SE 1.6 mm wk-1 for the TR+F treatment, 13.4 ± SE 0.9 mm wk-1 for the TR treatment, 

12.8 ± SE 1.1 mm wk-1 for the F treatment, and 12.3 ± SE 1.1  mm wk-1 for the C 

treatment.  

Efficiency terms 

WUEVOL varied by year (Table 5) as WUEVOL increased in 2014 (0.075 m3 ha-1 

mm-1) compared to 2013 (0.066 m3 ha-1 mm-1). Across the entire study period, 

fertilization increased WUEVOL by 18 % (Table 5) (Fig. 18).The year x fertilization 

interaction for WUEVOL was not significant (Table 5). A year x throughfall interaction 

occurred for GELAI, this could have been driven by the very low GELAI in the TR+F 

treatment in 2013 relative to the other treatments (Table 5). Overall, the TR+F treatment 

had the lowest GELAI which was significant from both the TR and F treatments (Table 5) 

(Fig. 19). Across the entire study period, GELAI averaged 5.3 ± SE 0.6 m3 ha-1 per LAI for 

the TR+F treatment, 7.3 ± SE 0.9 m3 ha-1 per LAI for the TR treatment, 6.2 ± SE 0.8 m3 

ha-1 per LAI for the F treatment, and 6.0 ± SE 0.5 m3 ha-1 per LAI for the C treatment. 

For WUELAI,  TR treatment was the greatest compared to TR+F, F, and C treatments, 

which were all similar (Table 5) (Fig. 20). Across the entire study period, WUELAI 

averaged 68.9 ± SE 9.0 mm per LAI  for the TR+F treatment, 105.9 ± SE 12.5 mm per 
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LAI for the TR treatment, 74.6 ± SE 4.9 mm per LAI for the F treatment, and 82.8 ± SE 

4.9 mm per LAI for the C treatment.  

Discussion 

In regards to volume growth, our results indicate that fertilization can compensate 

for throughfall reduction along the western edge of the commercial range. Part of this 

ability for fertilizer to compensate for throughfall reduction was related to greater leaf 

area production. However, stem volume growth per unit of LAI was lowest in the TR+F 

treatment probably because throughfall reduction decreased the efficiency of leaves to 

produce biomass.  Maggard et al. (2016a) found that throughfall reduction decreased leaf-

level photosynthetic rates when measured across the same time period as this study.   

Although water was limited in the TR+F treatment, which may have decreased GE, 

fertilization increased the amount of stem production per unit of water use. This implies 

that carbon gain of the fertilized stands was not proportional to LAI, but changes 

occurred to increase the efficiency of photosynthesis (as it relates to water consumption). 

This finding supports results from a recent leaf gas exchange study on this same site in 

which fertilization seemed to compensate for reduced growth from throughfall reduction 

by increasing water use efficiency of photosynthesis (Maggard et al. 2016a). As water is 

a finite resource in forest stands that might be less available in the future, this increased 

volume growth per water use with fertilization may be important to increase productivity 

in a future, drier climate. 

In our study, VWC from 0-12 cm soil depth was reduced by throughfall reduction 

during wetter periods across 2013, but was reduced across all dates during 2014. The 
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difference in treatment effects between years could be a result of more days with 

precipitation events during 2014 (60 d) resulting in fewer dry periods where VWC was 

similarly low across all treatments as during 2013 (47 d) (Fig. 11). In similar throughfall 

reduction studies, Ward et al. (2015) similar to our results, observed throughfall reduction 

caused greater separation in VWC from the control treatment following soil recharge 

events while in contrast, Samuelson et al. (2014) found that throughfall reduction reduced 

VWC during dry periods. As opposed to VWC from 0-12 cm, VWC from 12-45 cm soil 

depth was less impacted by dry periods between precipitation events, thus means across 

all treatments were not reduced to similar values during dry periods such that treatment 

separation was maintained. As LAI and subsequently growth increased in stands from 

fertilization, VWC would be expected to be lower from greater water use when stands are 

fertilized. Increased LAI would also be expected to reduce VWC due to greater 

interception of precipitation decreasing throughfall (Stogsdill et al. 1989). In that study, it 

was reported that between 17 and 18 % of precipitation was intercepted by leaf area in an 

11-year old loblolly pine plantation in southeast Oklahoma. In our study, VWC was not 

reduced in the F treatment, even though fertilization increased LAI by 12 %. This 

variability in VWC could be from random plot-level differences in soil texture.  

Fertilization increases volume growth of loblolly pine stands (Albaugh et al. 

1998). In our study, fertilization increased volume growth throughout and throughfall 

reduction reduced volume growth with the exception of the 2012 growing season. The 

lack of treatment effects on volume growth in 2012 was likely due to timing of treatment 

application. Fertilization took place in April and excluders were completed in mid-

summer, which likely delayed treatment effects. In a similar study, Ward et al. (2015) 
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found that fertilization increased stem volume increment, but throughfall reduction had 

no effect over a single growing season which experienced above average precipitation. 

For loblolly pine stands, applying fertilizer is widely recognized to increase LAI 

(e.g., Will et al. 2002, Samuelson and Stokes 2006, Will et al. 2006). In our study, we 

observed negative effects of throughfall reduction across the entire study period and 

positive effects of fertilization for the 2012 and 2013 cohorts. For the 2014 foliage 

cohort, LAI was not significantly increased by fertilization, although LAI was 5 % 

greater. The negligible difference in LAI due to treatments for the 2014 cohort (three 

years after application of fertilizer) may have been due to a weakening of the of the 

effects of a one-time application of fertilizer in addition to the overall higher VWC in 

2014 reducing the impact of throughfall reduction on LAI. Effects of fertilization were no 

longer significant in 2014 (Maggard et al. 2016a) which support a weakening of 

fertilization effects over time.  

In two similar studies, throughfall reduction of ~30 % did not affect LAI over two 

years for a 7-year old loblolly pine plantation in Georgia or over two years for a 9-year 

old loblolly pine plantation in Virginia (Samuelson et al. 2014, Ward et al. 2015).  

Similar to our study, Samuelson et al (2014) found fertilization increased LAI compared 

to nonfertilized treatments. In contrasts, Ward et al. (2015) found that fertilization did not 

increase LAI. The reason for the lack of effect was not certain. However, the authors 

suggested it could be related to the stand not reaching the point where demand for 

nutrients exceeds current supply across all treatments.  
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Decreased water availability reduces whole-tree and canopy transpiration in 

loblolly pine (Ford et al. 2005, Domec et al. 2009, Noormets et al. 2010, Sun et al. 2010) 

as a result of stomatal closure (Whitehead and Beadle 2004) or reduced leaf area 

(Hennessey et al. 1992, Pallardy and Rhoades 1997). Across the span of 35 days from the 

middle of June to the beginning of July in 2013, only 12 mm of precipitation occurred. 

During this period WU, WUSA, and EC considerably decreased across all treatments and 

this decrease was associated with reductions in VWC (Fig.12). However, decreases were 

greater in the throughfall reduction treatments. Similarly, during the month of August in 

2014 only 11 mm of precipitation occurred and WU, WUSA, and EC considerably 

decreased across all treatments due to reductions in VWC, but decreases were greater 

with TR+F and appeared to occur at a more rapid pace in the TR+F than other treatments. 

Treatment effects observed for WU and WUSA across both years were eliminated on 

dates when WU and WUSA means decreased and were compressed to similar values 

across treatments. Decreased WU in our study is consistent with reductions in stomatal 

conductance reported in a recent study by Maggard et al. (2016a) who measured leaf gas 

exchange on the trees in which we measured water use. A smaller scale (10 total trees) 

100 % throughfall exclusion study conducted at an adjacent location did not observe 

significant reductions in WU or WUSA in exclusion treatment trees (Maggard et al. 

2016b). 

Fertilization did not affect WU, but did reduce WUSA. The reason for the effect 

of reduced WUSA resulted from greater sapwood area of the fertilized trees which served 

to reduce this ratio. The interaction between throughfall reduction and fertilization for 

WUSA during 2013 was probably due to the greatest WUSA occurring in the C 
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treatment, probably because the C treatment had the least amount of sapwood area and 

received ambient precipitation.   

The interaction between throughfall reduction and fertilization that occurred for 

EC was because of higher EC in the F and TR treatments compared to the TR+F 

treatment, probably because of greater reductions in stomatal conductance caused by the 

TR+F treatment in relation to lower soil moisture from throughfall reduction and greater 

demand for water use from increased LAI from fertilization. Time periods where the 

throughfall by fertilization interaction was significant were during summer months when 

VPD is highest. Reduced soil moisture, fertilization, and increased VPD can cause 

reductions in stomatal conductance (Ewers et al. 2000, Domec et al. 2009, Domec and 

Johnson 2012, Bartkowiak 2015). In similar throughfall reduction and fertilization studies 

in Georgia (Bartkowiak et al. 2015) and Virginia (Ward et al. 2015), treatment effects on 

EC varied. In Georgia, monthly EC was reduced by throughfall plus fertilization 

(Bartkowiak et al. 2015). In Virginia, throughfall reduction and fertilization reduced 

monthly EC, with the combined treatment reducing EC the greatest (Ward et al. 2015). 

However, LAI did not increase due to fertilization in that study (Ward et al. 2015). The 

week by throughfall by fertilization interactions for EC during both years of our study 

could be due to higher summer temperatures and greater VPD at our site compared sites 

further east (Seager et al. 2015). Will et al. (2015) reported average August daily 

maximum temperatures during the study period for our site was, 2.6 oC warmer than the 

Georgia site and 3.6 oC warmer than the Virginia site. Increases in temperature cause 

VPD and evapotranspiration (ET), thus increasing the potential for tree water stress 

(Breshears et al. 2013, Will et al. 2013). Therefore, periods when EC is similar across 
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treatments in our study appears to be both when VWC is higher and the greater 

atmospheric demand for water at our site is causing similar high EC across treatments or 

when VWC is similarly dry across treatments thus causing similarly low EC across 

treatments, thus causing a week by treatment interaction.  

In this study, efficiency of stem growth was calculated on both an LAI basis and a 

water use basis.  Fertilization increased WUEVOL regardless of throughfall treatment but 

not WUELAI indicating the production of stem volume growth was more efficient due to 

fertilization on a water use basis, but not a leaf area basis. In fact, WUELAI was lowest for 

the TR+F treatment indicating that foliage was less efficient at producing stem volume, 

probably because of water limitation and stomatal closure. Increased WUEVOL with 

fertilization could indicate greater leaf level photosynthesis per transpiration. These 

findings are supported by a study measuring leaf gas exchange on the same site and same 

trees that we measured. Maggard et al. (2016a) found that throughfall reduction 

decreased leaf gas exchange and that fertilization decreased stomatal conductance 

without affecting net photosynthesis. As a result it was suggested that fertilization 

increased photosynthetic efficiency per leaf-level water use. In a similar throughfall 

reduction and fertilization study in Virginia, Ward et al. (2015) found that WUEVOL was 

significantly greater in the TR+F treatment than the C treatment or TR treatment and 

suggested this response was a result of declined EC and an increase in stem volume 

production. Further, effects of throughfall reduction were not significant in that study. In 

contrast, growth efficiency defined as the slope of the relationship between annual 

stemwood production and peak projected LAI in a study most similar to ours, found no 

effects of throughfall reduction or fertilization treatments on growth efficiency 
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(Samuelson et al. 2014). At that site, throughfall reduction did not decrease 

photosynthesis while it did in ours which probably contributed to the lower GELAI of the 

TR+F in our study. Previous loblolly pine plantation growth efficiency research looking 

at the effects of fertilization, age, competition control, or a combination have found 

positive to minimal positive effects of fertilization during the early stages of stand 

development (Colbert et al. 1990, Albaugh et al. 1998, Jokela and Martin 2000), no 

effects (Will et al. 2002), or negative fertilization effects on growth efficiency as stand 

age increased due to larger tree size (Jokela and Martin 2000, Will et al. 2002).  

Conclusions and management implications 

Consistent with our hypothesis, fertilization increased LAI, growth, water use 

efficiency in terms of stand-level volume growth while throughfall reduction reduced 

VWC. Reductions in whole-tree water use and EC were only observed during periods of 

reducing VWC. Further, fertilization did not increase growth efficiency per LAI. 

However, we found that fertilization can compensate for throughfall reduction in regards 

to stem volume production. Fertilization increased WUEVOL which supports a recent 

indication of increased leaf-level water use efficiency from fertilization found previously 

during this experiment. These results indicate that fertilization can benefit stand growth 

of loblolly pine plantations in areas with higher growing season temperatures and greater 

VPD, such as the western edge of the loblolly pine commercial range.  
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Tables.  

Table 4. P values for the effects of date, throughfall reduction (Water), and fertilization 

(Fert) treatments on volumetric soil water content (VWC) at 0-12 cm for 2013 and 2014 

and P values for the effects of year, Water, and Fert on VWC at 12-45 cm for the entire 

measurement period (2013-2014). Bold values indicate significance at α < 0.05. 

  
2013 2014 

VWC 0-12 cm   

Date <0.0001 <0.0001 

Fert 0.02 0.13 

Water  0.0002 0.003 

Water*Fert <0.0001 0.02 

Date*Fert 0.22 0.55 

Date*Water  0.0001 0.16 

Date*Water*Fert 0.19 0.54 

   

VWC 12-45 cm Entire measurement period 

Year <0.0001 

Year*Date <0.0001 

Year*Date*Fert 0.91 

Year*Date*Water 0.35 

Year*Date*Water*Fert 0.63 

Fert 0.04 

Water 0.007 

Water*Fert 0.02 

Year*Fert 0.73 

Year*Water 0.32 

Year*Water*Fert 0.85 
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Table 5. P values for the effects of  year, throughfall reduction (Water) and fertilization 

(Fert) treatments on stand volume growth, leaf area index (LAI), water use efficiency of 

stem volume production (WUEVOL), growth efficiency of leaf area index (GELAI), and 

water use efficiency per unit leaf area index (WUELAI) for the entire measurement period 

(2012-2014). Bold values indicate significance at α < 0.05. 

  
Volume 
growth 

LAI WUEVOL GELAI WUELAI 

Year <0.0001 <0.0001 0.04 <0.0001 0.86 

Fert 0.003 0.001 0.02 0.31 0.20 

Water 0.0001 0.30 0.09 0.20 0.003 

Water*Fert 0.05 0.13 0.92 0.03 0.04 

Year*Fert 0.04 0.002 0.6712 0.21 0.84 

Year*Water 0.01 0.0003 0.60 0.007 0.24 

Year*Water*Fert 0.40 0.92 0.24 0.19 0.81 
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Table 6. P values for the effects of week, throughfall reduction (Water), and fertilization 

(Fert) treatments on 2013 whole-tree water use (WU), 2014 WU, 2013 water use per tree 

sapwood area (WUSA), 2014 WUSA, 2013 stand-level canopy transpiration (EC), and 

2014 EC. Bold values indicate significance at α < 0.05. 

  

2013 
WU 

2014 
WU 

2013 
WUSA 

2014 
WUSA 

2013 EC 2014 EC 

Week <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Water 0.0002 0.61 0.0006 0.95 0.78 0.86 

Fert 0.27 0.22 0.02 0.002 0.46 0.34 

Water x Fert 0.87 0.19 0.04 0.33 0.58 0.11 

Week x Water <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Week x Fert 0.49 0.94 0.0007 0.0005 0.0005 0.80 
Week x Water x 
Fert 

0.84 0.25 0.12 0.32 0.005 0.0004 
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Fig. 10. Study site monthly maximum, average maximum, mean, average minimum, and 

minimum air temperature during 2013 and 2014 in Broken Bow, Oklahoma. 
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Fig. 11. Average monthly daytime vapor pressure deficit (VPD) and annual cumulative 

precipitation for 2013 and 2014 for Broken Bow, Oklahoma, USA. 
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Fig. 12. Daily predicted volumetric soil water content (%) between (A) 0-12 cm soil 

depth and between (B) 12-45 cm soil depth in response to throughfall reduction plus 

fertilization (TR+F), throughfall plus no fertilization (TR), ambient throughfall plus 

fertilization (F), and control (C) treatments, modeled only for 2013 and 2014 growing 

season and (C) daily on-site precipitation across the entire study period.  
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Fig. 13. Stand volume growth over the 2012, 2013, and 2014 growing season in response 

to throughfall reduction plus fertilization (TR+F), throughfall reduction plus no 

fertilization (TR), ambient throughfall plus fertilization (F), and control (C) treatments (n 

= 4). Error bars represent standard error of treatment means (n = 4). P Values represent 

within year analysis (p < 0.05). 
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Fig. 14. Mean leaf area index (LAI) for 2012, 2013, and 2014 foliage cohorts in response 

to throughfall reduction plus fertilization (TR+F), throughfall reduction plus no 

fertilization (TR), ambient throughfall plus fertilization (F), and control (C) treatments. 

Error bars represent standard error of treatment means (n = 4). P values represent within 

year analysis (p < 0.05). 
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Fig. 15. Weekly whole-tree water use for 2013 and 2014 growing seasons in response to 

throughfall reduction plus fertilization (TR+F), throughfall reduction plus no fertilization 

(TR), ambient throughfall plus fertilization (F), and control (C) treatments. In cases 

where there is a significant week x throughfall interaction, a (W) above the data 

represents dates that throughfall reduction effect is significant.  
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Fig. 16. Weekly water use per tree sapwood area for 2013 and 2014 growing seasons in 

response to throughfall reduction plus fertilization (TR+F), throughfall reduction plus no 

fertilization (TR), ambient throughfall plus fertilization (F), and control (C) treatments. In 

cases where there is a significant throughfall x fert, week x throughfall, and week x fert 

interaction a (*), (W), and (F) above the data represents dates that throughfall reduction 

by fertilization, throughfall reduction, and fertilization interaction is significant, 

respectively. 
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Fig. 17. Weekly canopy transpiration per ground area (EC) for 2013 and 2014 growing 

seasons in response to throughfall reduction plus fertilization (TR+F), throughfall 

reduction plus no fertilization (TR), ambient throughfall plus fertilization (F), and control 

(C) treatments. In cases where there is a significant week x throughfall x fert interaction, 

an (*) above the data represents dates that throughfall reduction by fertilization 

interaction is significant. 
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Fig. 18. Water use efficiency of stem volume production (WUEVOL) for 2013 and 2014 

growing seasons in response to throughfall reduction plus fertilization (TR+F), 

throughfall reduction plus no fertilization (TR), ambient throughfall plus fertilization (F), 

and control (C) treatments. Error bars represent standard error of treatment means (n = 4). 
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Fig. 19. Growth efficiency of leaf area development (GELAI) in response to throughfall 

reduction plus fertilization (TR+F), throughfall reduction plus no fertilization (TR), 

ambient throughfall plus fertilization (F), and control (C) treatments. Error bars represent 

standard error of treatment means (n = 4). 
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Fig. 20. Water use efficiency of leaf area development (WUELAI) in response to 

throughfall reduction plus fertilization (TR+F), throughfall reduction plus no fertilization 

(TR), ambient throughfall plus fertilization (F), and control (C) treatments. Error bars 

represent standard error of treatment means (n = 4). 
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CHAPTER IV 
 

 

RESPONSE OF MID-ROTATION LOBLOLLY PINE (PINUS TAEDA L.) 

PHYSIOLOGY AND PRODUCTIVITY TO LONG-TERM INDUCED DROUGHT ON 

THE WESTERN EDGE OF THE COMMERCIAL RANGE 

 

Abstract 

Forests in the southeastern United States contain approximately 30 % of forest 

carbon in the contiguous USA and loblolly pine plantations are an important part of these 

forests. However, loblolly pine plantations could be threatened by decreased water 

availability in the future. To determine effects of long-term drought on leaf gas exchange, 

whole-tree water use, and individual tree growth, we examined the response of loblolly 

pine trees to 100 % throughfall exclusion spanning the 6th and 7th growing seasons 

growing in a loblolly pine plantation in southeastern Oklahoma.  Across all trees, 

throughfall exclusion reduced VWC for soil depth 0-12 cm from 10.8 % to 4.8 % and for 

12-45 cm soil depth from 24.2 % to 15.6 %, but did not reduce VWC for soil depth 45-90 

cm. Compared to ambient throughfall trees, predawn and midday leaf water potential of 

the throughfall exlusion trees became more negative, -0.9 MPa vs -1.3 MPa for predawn 

measurements
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and -1.5 MPa vs -1.9 for midday measurements. Throughfall exclusion did not 

significantly reduce leaf gas exchange, water use, or tree growth. However, throughfall 

exclusion significantly reduced leaf biomass of trees by 21 %. These results indicate that 

continuous moderate drought over two years may cause downward shifts in leaf area to 

conserve water rather than reducing leaf-level water use.   

 Introduction 

Forests in the southeastern United States contain approximately 30 % of forest 

carbon in the contiguous Unites States (http://fia.fs.fed.us/forestcarbon/, accessed March 

2016). Planted pines account for 19 % of all forests in the southeastern US (Wear and 

Greis 2012) with loblolly pine (Pinus taeda L.) plantations accounting for over 50 % of 

these pine plantations (Oswalt et al. 2014).  Therefore, loblolly pine plantations are 

important carbon pools, but could be threatened by decreased water availability in years 

to come (Collins et al. 2013, Walsh et al. 2014).  

Atmospheric CO2 is increasing and changes in temperature and precipitation 

regimes are expected to impact the southeastern USA in coming years (Collins et al. 

2013). Increases in intensity and more irregular occurrence of precipitation events across 

the region are predicted to slightly increase total annual precipitation. However, greater 

rainfall intensity and increased dry days between events may increase soil runoff, 

reducing soil water availability (Walsh et al. 2014). Increases in mean annual temperature 

by the end of this century are predicted to be between 2.5 and 4 oC for this region (Walsh 

et al. 2014). Increases in temperature cause greater vapor pressure deficit (VPD) and 

evapotranspiration (ET), thus increasing the potential for tree water stress (Breshears et 
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al. 2013, Will et al. 2013). Therefore, the combined effects of increased temperature and 

decreased soil water availability is predicted to increase the frequency and severity of 

drought (Collins et al. 2013, Walsh et al. 2014). This is especially important for the 

western edge of the loblolly pine commercial range. High growing season temperatures 

and VPD, already common to this area (Seager et al. 2015), are expected to increase 

(Collins et al. 2013), thus increasing the potential of water stress for loblolly pine planted 

in this area.   

Reduced water availability decreases tree growth and can ultimately lead to 

mortality depending on the longevity and severity of drought events (Kramer and Boyer 

1995, Chaves et al. 2003, McDowell et al. 2008). During recent years, drought has been 

linked to widespread tree mortality events (Fensham et al 2009, Allen et al. 2010, 

Anderegg et al. 2011). During drought, reduced stomatal conductance or stomatal closure 

is one of the earliest tree responses (Chaves 1991), which reduces net photosynthesis and 

subsequently growth (Teskey et al. 1986, Chaves 2003). During longer or more intense 

droughts, structural modifications can occur, such as reductions in leaf area or leaf 

biomass (Mencuccini and Grace 1994, Kramer and Boyer 1995, Battaglia et al. 1998). 

Reduced leaf biomass production due to reduced water availability has also been 

reported. Hennessey et al. (1992) found reduced leaf biomass production in a loblolly 

pine stand in southeast Oklahoma in drier years compared to years when water 

availability was not limited. 

Leaf area is commonly studied because it is an important factor in both 

transpiration and photosynthesis. Trees with greater leaf area typically have greater total 

transpiration than trees with smaller leaf area. Failure to reduce transpiration rates during 
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drought can harm trees by leading to dehydration and injury, or possibly death (Kramer 

and Boyer 1995). Changes in stomatal conductance are associated with changes in leaf 

specific hydraulic conductance (Hubbard et al. 2001), indicating that with increasing leaf 

area stomatal reductions are essential in order to avoid damaging leaf water potentials 

(Whitehead and Beadle 2004). During drought, early abscission of leaves can occur 

which reduces shoot water loss and helps conserve resources (Pallardy and Rhoads 

1997).Water stress can lead to early abscission in loblolly pine and shift peak needle fall 

by up to two months (Hennessey et al. 1992). 

Effects of long-term drought (Allen and Breshears 1998, 2007, Dobbertin et al. 

2007) and induced drought (Adams et al. 2009, Galvez et al. 2011, Plaut et al. 2013, 

Pangle et al. 2015) on tree mortality and survival have been documented for numerous 

species (Adams and Kolb 2005, Breshears et al. 2005, Mueller et al. 2005, Breda et al. 

2006, Anderegg et al. 2012, Attia et al. 2015). However, research on the effects of 

drought on loblolly pine has been focused on seedlings (Teskey et al 1986, Perry et al. 

1994, Groninger et al. 1996, Barnes 2002), short-term natural drought (Cregg et al. 1988, 

Ford et al. 2005, Domec et al. 2009), or induced moderate drought (Tang et al. 2004, 

Samuelson et al. 2014, Bartkowiak et al. 2015, Ward et al. 2015). During short-term 

natural drought or induced moderate drought, loblolly pine typically exhibit more 

negative water potentials and respond by reducing stomatal conductance to avoid water 

loss (Teskey et al. 1986, Rahman et al. 2003 Samuelson et al. 2014). We currently lack 

understanding of how long-term drought will impact the physiology and productivity of 

loblolly pine.  
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The objective of this study was to determine effects of long-term drought on leaf 

gas exchange, whole-tree water use, and individual tree growth. To accomplish this 

objective, we examined the response of individual trees to 100 % throughfall exclusion. 

Our central hypothesis was that long-term drought would cause more negative leaf water 

potentials, decrease leaf gas exchange, tree water use, leaf area, and tree growth. Further, 

we hypothesized that leaf gas exchange would be the most pronounced change such that 

water use per sapwood area would be much lower with drought. Determining how long-

term drought responses differs from short-term drought is important for understanding 

physiological and structural responses as well as mechanisms that contribute to survival., 

Further, we hypothesized that long-term drought stress would cause a reduction in annual 

foliage biomass to avoid harmful leaf water potentials.  

Materials and methods 

Study site 

The study took place from March 2013 through September 2014 which spaned the 

6th and 7th growing seasons of a loblolly pine stand near Broken Bow, Oklahoma (N 

34o01’ 47”, W 94o49’ 23”). Soils had 3 to 8 percent slopes and consisted of Ruston series 

(Fine-loamy, siliceous, semiactive, thermic Typic Paleudult). These soil are characterized 

as very deep, well-drained fine sandy loam typical for forests on the uplands of the 

western and southern Coastal Plain (http://soilseries.sc.egov.usda.gov, accessed March 

2016). Mean annual precipitation for Broken Bow, OK since stand establishment 

(January 2008) was 1313 mm, with the greatest average monthly precipitation occurring 

in May (151 mm) and the least occurring in August (79 mm). Annual mean, maximum, 
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and minimum temperatures for Broken Bow, OK since stand establishment were 16.0 oC, 

23.2 oC, and 9.3 oC (http://mesonet.org/index.php/weather/daily_data_retrieval, accessed 

March 2016). Monthly Palmer Drought Severity Index (PDSI) data were downloaded for 

Climate Division 9 (southeast) in Oklahoma for 2012, 2013, and 2014 

(http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#, accessed March 2016). 

Before planting, broadcast herbicide of 680 g ha-1 of Chopper ® (27.6 % 

imazapyr, 72.4 % inert ingredients) (BASF Corporation, Florham Park, NJ, USA) plus 

2.8 l ha-1 of glyphosate was applied in August 2017 followed by prescribed burn in 

October 2007. The study site was subsoiled along the contour to depths of 51 to 61 cm 

using a D8 Caterpillar dozer and attached subsoiling shanks (Caterpillar Corporate, 

Peoria, IL, USA) in November 2007. The site was planted in January 2008 with 

improved Western Gulf Tree Improvement Cooperative 1-0 bare-root seedlings 

originating from a mix of half-sib families. Broadcast herbicide of 420  g ha-1 of 

Arsenal® (27.6 % imazapyr, 72.4 % inert ingredients) (BASF Corporation, Florham 

Park, NJ, USA) and 175 g ha-1  of Oust Extra® (56.25 % Sulfometuron methyl, 15.0 % 

Metsulfuron methyl, 28.75 % other) (E.I. Du Pont De Nemours and Company, 

Wilmington, DE, USA) was applied for woody plant and herbaceous weed control in 

March 2008. Spacing for the site was approximately 2 m x 3 m for an approximate 

density of 1650 trees ha -1.   

Experimental design 

The study was a randomized complete block design consisting of five blocks. 

Each block consisted of two trees (10 trees total), one each of 100 % throughfall 
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exclusion (TRD) and ambient throughfall treatments (TRW) (Fig. 21). Within the stand, 

this experiment was located where trees had relatively uniform height and diameter at 

breast height (DBH) and soils were consistent. The location was on a broad ridge in an 

effort to minimize belowground water flow and increase chances of above- and 

belowground water flow away from treatment blocks. To prevent root expansion beyond 

treatment areas, all 10 trees were trenched. Trenches were excavated to approximately 60 

cm. A 2 x 3 m rectangle representing the growing space of each stem was trenched 

around each treatment tree. Trenches between rows were excavated with ride-on trencher 

(Ditch Witch RT40, Perry, OK, USA) and trenches between tree spacing were excavated 

with Zahn walk-behind trencher (Ditch Witch R150, Perry, OK, USA). Trenches were 

lined with 6 mil heavy duty plastic polyethlene (BLUE HAWK LF, LLC, Mount Mourne, 

NC, USA) and back-filled with soil. Competing vegetation was chemically eliminated 

using directed sprays of glyphosate (2% a.i., Roundup®, Monsanto Company, St. Louis, 

MO, USA) from March 2013 through the remainder of the study.   

The TRD treatment consisted of 3.7 m by 2.7 m excluders built around each tree 

(Fig. 22). Excluders were installed in February 2013 and were built of lumber and 

covered with clear 6 mil heavy duty plastic polyethlene (BLUE HAWK LF, LLC, Mount 

Mourne, NC, USA). Covers were monitored for wear and tear and replaced as needed. 

Excluders were approximately 1.1 m in height at the tree sloping to approximately 0.8 m 

to allow precipitation runoff and air flow to circulate underneath. Excluders extended 

approximately 0.3 m beyond the trenches (Fig. 22). Branches below excluders were 

removed to prevent shading of the soil surface and from potential damage to excluder 

covers. Stemflow was diverted onto excluders by securing cone shaped polyethlene 
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around the tree above excluders. Excluders were designed the same way for TRW trees to 

minimize possible microclimate differences beneath excluders between treatments. 

Openings were cut into polyethlene to allow throughfall to reach the soil for TRW 

treatments.  

Environmental variables 

Climate variables were measured on site using meteorological sensors mounted at 

the top of tower located in an opening within the stand. Sensors included a CS215 air 

temperature and relative humidity probe (Campbell Scientific, Logan, UT, USA) and a 

TR-525M remote tipping bucket precipitation sensor (Texas Electronics, Inc., Dallas, 

TX, USA). Data were recorded continuously every 15 minutes using a CR1000 data 

logger (Campbell Scientific, Logan, UT, USA). Data gaps from sensor malfunctions or 

power outages were backfilled using data from the Broken Bow, OK (34o02’35.0’’N, 

94o37’27.0’’W) Oklahoma Mesonet environmental monitoring station 

(http://mesonet.org) via data request from the Oklahoma Climatological Survey. Vapor 

pressure deficit (VPD, kPa) was calculated from relative humidity and temperature 

measurements based on Allen et al. (1998). Mean monthly daytime VPD was determined 

by averaging daily 15-minute VPD calculations between sunrise and sunset times for 

Broken Bow, OK (Astronomical Applications Dept., U.S. Naval Observatory).   

Soil moisture 

Volumetric soil water content (VWC) was measured by time domain 

reflectometry (TDR) using a 1502C metallic TDR cable tester (Tektronix, Inc., 

Beaverton, OR, USA) taken every seven to ten days during the 6th growing season and 
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every four to six weeks during winter months and throughout the 7th growing season.  

Beneath each excluder, one pair of two rods of each 0-12 cm, 0-45 cm, and 0-90 cm soil 

depths were installed on the south side of the tree approximately 0.3 m apart and 0.6 m 

from the base of the tree. All measurement depths per tree were measured each sampling 

round.  

Physiology 

Measurements of leaf gas exchange were conducted from March 2013 through 

September 2014. Measurements were conducted bi-weekly during the 2013 growing 

season and every four to six weeks during the winter months. For 2014, measurements 

were conducted approximately every four weeks during the growing season and every six 

to eight weeks during the winter months. All measurement were conducted using an LI-

6400 portable photosynthesis system (LiCor Inc., Lincoln, NE, USA). Measured 

variables included net photosynthesis (Pnet), stomatal conductance (gs), and intercellular 

CO2 concentration (Ci). Leaf gas exchange was measured on all trees (10 total). For each 

tree on each measurement date, two fascicles were sampled that developed in full sun in 

the upper third of the tree on the south side. Needles were collected by hand in 2013 and 

by a pole pruner in 2014. Fascicles from the first flush of 2012 were measured from 

March to July 2013 while the first flush of 2013 was measured from August 2013 to July 

2014 and the first flush of 2014 was measured from August 2014 through September 

2014. Within sampling dates, measurements were taken between 1300 and 1500 h.  

During gas exchange measurements, photosynthetically active radiation and 

reference CO2 concentration were held constant inside the leaf chamber at 1800 μmol m-2 
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s-1 and 400 μmol mol-1, respectively. For the majority of measurements, relative humidity 

(Rh) within the chamber (2 x 3 cm) was not controlled and fluctuated with ambient 

conditions. All-sided leaf area in the cuvette was calculated based on measuring the 

radius of one needle per fascicle using a scale loupe. Samples for midday leaf water 

potential (ΨL) measurements were collected in unison as those for leaf gas exchange 

measurements. Samples for predawn leaf water potential (ΨL) were collected from the 

same canopy location as those for midday ΨL. Measurements of predawn ΨL were 

conducted the mornings before leaf gas exchange measurements between 0400 h and 

0600 h, finishing at least 30 minutes before sunrise. Midday ΨL and predawn ΨL were 

measured using a pressure chamber (PMS, Instrument Corp., Corvallis, OR, USA). 

Stable carbon isotope ratio (δ13C) of foliage that had been measured in the cuvette 

was dried at 60o C, bulked by tree and foliage cohort, and stored until measurement. 

Foliage was measured using an ECS 4010 CHNSO analyzer (Costech Analytical 

Technologies, Inc., Valencia, CA, USA) coupled with Thermo Conflo IV and Thermo 

Delta V Advantage stable isotope mass spectrometer (Thermo Fisher Scientific, Inc., 

Waltham, MA, USA) at Texas A&M University Stable Isotopes for Biosphere Science 

Laboratory. 

Annual foliage mass 

Sampling was conducted on August 20-21, 2015 to capture peak LAI of the 2015 

growing season, i.e., both the 2014 and 2015 foliage cohorts.  At that point, a small 

portion of the lower foliage in the 2014 cohort had senesced and that senescence was 

mostly associated with the death of lower branches from canopy shading. 
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For each tree, the diameter at insertion (2 cm from the main stem) for all live 

branches was measured up to a height of 5.5 m.   One branch per whorl was randomly 

selected and harvested with hand clippers and foliage was separated into the 2014 and 

2015 cohorts, placed in paper bags, dried at 60 oC, and weighed.  For whorls higher than 

5.5 m, one branch per whorl was harvested with a pole pruner and its diameter measured. 

The diameters of the remaining branches were estimated by eye based on the measured 

diameter of the harvested branch and the relative size difference of the attached branches.  

Foliage from the main stem was not measured.  When a fork occurred (two of ten trees), 

the smaller of the forks was harvested and all foliage from the fork was collected. 

The relationship between branch diameter2 and foliage biomass was determined 

for each tree and foliage cohort separately.  Based on these plots, the lowest 0 to 3 whorls 

(depending on tree) were excluded from each regression analysis because the lowest 

whorls had disproportionately low leaf biomass per branch diameter2 due to shading 

effects. These lowest branches had developed to support previous cohorts.  After 

removing the lowest branches from the analysis, the results were linear relationships 

between foliage biomass and branch diameter2.  The average r2 was 0.63 and 0.67 for 

2014 and 2015 foliage cohorts respectively.   

To estimate leaf biomass of each tree and cohort, the leaf biomass of the 

nonharvested branches was estimated using the regression relationships and the foliage 

biomass of all branches was summed.  For lower branches in whorls that were not 

included in the regression analysis, biomass of harvested branches was added to the total 

and biomass of nonharvested branches was estimated relative to the harvested branch for 

that whorl, i.e., (diameter2 of branch/diameter2 of harvested branch)*leaf biomass of 
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harvested branch.  For the two trees with forks, forks were not included in the regression 

analysis and the foliage biomass of the fork was included into the total.  

Growth 

Tree size was measured in February 2013 prior to treatment application 

(following the 5th growing season), in January 2014 (following 6th growing season), and 

in January 2015 (following 7th growing season). Measurements included DBH and 

height. DBH was measured using a diameter tape. Height growth was measured prior to 

treatment application and following the 6th growing season using a height pole. Height 

was measured following 7th growing season using a hypsometer (Laser Technology, Inc., 

Centennial, CO, USA). DBH, height, and volume growth (volume = 

0.34864+0.00232*DBH2*height; volume in ft3, DBH in inches, height in ft) (Burkhart 

1977) were determined from the difference in successive dormant season measurements.  

Water use  

Sap flow density was measured using thermal dissipation probes (TDPs) that 

consisted of 19 gauge 38.1 mm stainless steel hypodermic needles that were cut to 20 mm 

in length (Granier 1985) constructed in the tree physiology laboratory at Oklahoma State 

University. Probes were inserted beneath excluders on the north side of each tree. Probe 

height ranged from 0.73 m to 0.42 m above the ground. All trees contained one probe 

(total 10 probes). All probes were initially inserted in February 2013. Probes were 

wrapped with reflective insulation to minimize thermal gradients. Probes were monitored 

through weekly data downloads and screened for malfunctions and errors. Probes were 

monitored through weekly data downloads and screened for malfunctions and errors. 



103 

 

Malfunctioning probes were replaced by new probes in the same tree at least 100 mm 

from the original location. New probes were not expected to provide the same readings as 

original probes due to variation in sapwood conductivity (Ward et al. 2013, Tateishi et al. 

2008), and each replacement was treated as a separate probe. Therefore, the actual 

number of probes in the study varied in the analysis based on the number of 

replacements.  

The temperature differential between the upper probe (heated at constant 0.2 

watts) and lower probe (non-heated) was measured continuously every two minutes 

beginning from initial probe insertion and recorded by data loggers (model CR1000 or 

CR10x, Camppbell Sci., Logan UT). Data from April through October of the 6th and 7th 

growing seasons are presented. Each block contained a data logger that stored data from 

20 probes (4 plots per block, 5 trees per plot). Sap flux was calculated according to 

Granier (1987) by solving the flow index (K) [K = (∆Tmax - ∆T)/ ∆T], where ∆Tmax is the 

maximum temperature difference established between the heated and non-heated probes 

at zero flux and ∆T is the temperature difference between heated and non-heated probes 

at a given sap flux density and using K to calculate sap flux velocity (V) [V = 

0.000119*K1.231(m s-1)]. V was converted to sap flux (Js = SA x V (m3 sec-1), where SA is 

sapwood area in m2. Finally, these instantaneous measurements were converted to units 

of sap flux in liters per day, and averaged for each day. Sapwood area for all trees in this 

study was assumed to be the cross sectional area at probe height minus bark thickness, 

due to the fact that the trees were 8 years old at the end of the experiment which is under 

the age when heartwood development begins in loblolly pine (Schultz 1997). This was 

confirmed by coring five dominant sized trees in the plantation, outside the measurement 
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plots. Due to missing data, average daily (midnight to midnight) tree-level sap flux per 

basal area increment at breast height data was averaged per plot an imputed using a 

mixed model in SAS and backfilled for missing dates as total liters per tree per day. 

Statistical analysis 

For all measurements, treatment effects were analyzed using repeated measures 

analysis (Proc Mixed, SAS Inc., Cary, NC, USA) with block as a random factor and 

treatments as fixed factors and the autoregressive 1 (AR1) covariance structure. When 

there was a significant interaction involving year, treatment effects within year were 

tested using SLICE statement in Proc Mixed. Daily tree and plot level water use was 

summed per week for analysis. As with year, when there was a significant interaction 

involving week, treatment effects within week were tested using SLICE statement.  When 

there was a main treatment effect interaction, difference of least squares means was used 

to determine treatment differences. Plot means for all data were used (n = 5) and 

treatment effects were considered significant at P < 0.05. 

Results 

Environmental variables 

Mean monthly average temperature was greatest in August in 2013 (26.1 oC) and 

2014 (25.4 oC) and lowest in December (4.3 oC) in 2013 and January (4.5 oC) in 2014. 

Overall mean monthly temperature for the measurement period (March 2013 – 

September 2014) was 16.7 oC (Fig. 21A). Mean monthly daytime VPD was greatest in 

August in 2013 (1.41 kPa) and 2014 (0.92 kPa) and lowest in December in 2013 (0.25 

kPa) and 2014 (0.17 kPa). Overall mean monthly daytime VPD for the measurement 
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period was 0.77 (kPa) (Fig. 21B). Annual precipitation was 1190 mm in 2013 and 1046 

mm in 2014. In 2013, greatest precipitation occurred in July (216 mm) and least occurred 

in August (8.1 mm). In 2014, greatest precipitation occurred in July (182 mm) and least 

occurred in August (11 mm). Total precipitation over the measurement period was (1982 

mm) (Fig. 21C). 

Soil moisture 

Throughfall exclusion reduced VWC from 0-12 cm soil depth except for dry 

periods when VWC also decreased in the TRW treatment, causing treatment differences to 

compress (Table 7) (Fig. 22). Across the measurement period, throughfall exclusion 

reduced VWC 0-12 cm soil depth by approximately one half, averaging 4.8 ± SE 1.5 % 

for the TRD treatment and 10.8 ± SE 2.9 % for the TRW treatment. Similar to VWC from 

0-12 cm soil depth, throughfall exclusion reduced VWC from 12-45 cm soil depth except 

for dry periods when VWC also decreased in the TRW treatment, causing treatment 

differences to compress (Table 7) (Fig. 22). Across the measurement period, VWC of the 

TRD treatment was reduced by approximately one third compared to the TRW treatment 

averaging 15.7 ± SE 2.9 % for the TRD treatment and 24.2 ± SE 3.1 % for the TRW 

treatment.  Throughfall exclusion had no effect on VWC from 45-90 cm soil depth. A 

date x treatment interaction for VWC from 45-90 cm was caused by changes in the rank 

of treatment means (Table 7) (Fig. 22). Average VWC from 45-90 cm across the 

measurement was 27.4 ± SE 2.8 % and 26.0 ± 2.8 % for the TRD and TRW treatments, 

respectively.  Over the last week of October 2013 and first week November 2013, the site 

received 213 mm of precipitation which is greater than 2.5 times the average monthly 

precipitation across the study period (73 mm). The intense precipitation over a short 
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period of time caused a recharge in VWC at all depths across both treatments (Fig. 22). 

However, the TRD treatment maintained significantly lower VWC than the TRW 

treatment.  

Annual foliage mass 

Averaged across the 2014 and 2015 foliage cohorts, throughfall exclusion 

decreased foliage mass by 21 % (Table 9) (Fig. 23A).  While the foliage biomass was 

greater for the 2015 than the 2014 foliage cohort, treatment effects were consistent within 

years (Table 9). Average foliage mass across the measurement period was 3550 ± SE 226 

g for the TRW treatment and 2806 ± SE 232 g for the TRD treatment. Throughfall 

exclusion did not significantly affect annual foliage per sapwood area (Table 9) nor was 

there a significant interaction between throughfall reduction and year (Table 9). (Fig. 

23B).  

Physiology 

Pnet, gs, and Ci varied by sampling date (Table 8) and followed similar trends. 

Throughfall exclusion increased gs (Table 8) (Fig. 24B) by 12 % on average. Throughfall 

exclusion did not significantly affect Pnet (Table 8) (Fig. 24A) or Ci (Table 8) (Fig. 24C). 

The interaction between sampling date and throughfall reduction was not significant for 

leaf gas exchange variables (Table 8).  Throughfall exclusion (Table 8) caused more 

negative predawn ΨL following the second measurement date once treatments took effect 

(Table 8) (Fig. 25A). Excluding the first two measurement dates, the differences were 34 

% on average. Throughfall exclusion (Table 8) caused more negative midday ΨL with the 

effects increasing over the course of the experiment (Table 8) (Fig. 25B). On dates where 
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throughfall exclusion was significant for midday ΨL, the differences were 23 % on 

average. Across all dates, throughfall exclusion decreased midday ΨL by 17 %. δ13C 

varied by year (Table 9). Throughfall exclusion did not affect δ13C for the 2012 (p = 

0.89), 2013 (p = 0.29), or 2014 (p = 0.55) foliage cohorts. Average δ13C was -29.38 ± SE 

0.18 ‰ for the 2012 cohort, -29.69 ± SE 0.16 ‰ for the 2013 cohort, and -30.40 ± SE 

0.14 ‰ for the 2014 cohort.  

Water use  

Weekly whole-tree water use (WU) and water use per sapwood area (WUSA) 

varied by sampling date (Table 8) and followed similar trends. Throughfall exclusion 

reduced WU by 12 % on average, but this difference was not significant (Table 8) (Fig. 

26A). Throughfall exclusion increased WUSA by 6% on average, but this difference was 

not significant (Table 8) (Fig. 26B).There was no date by treatment interaction for WU 

(Table 8) or WUSA (Table 8). 

Growth 

Before treatment application, mean terminal height, DBH, and volume was 4.6 m, 

6.8 cm, and 0.012 m3 for the TRD treatment and 4.7 m, 6.9 cm, and 0.012 m3 for the TRW 

treatment, respectively.  

Throughfall exclusion did not significantly affect total height (Table 9), DBH 

(Table 9), or volume growth (Table 9). However, all measures of growth were greater for 

2014 compared to 2013 (Table 9).  Throughfall exclusion showed trends of reduced total 

height, DBH, and volume growth across the entire study period (Fig. 27A-C). On 
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average, total terminal height growth was 11 % less, total DBH growth was 16 % less, 

and total volume growth was 25 % less in the TRD treatment.  

Discussion 

In support of our hypothesis, long-term throughfall exclusion led to reduced VWC 

and more negative predawn and midday ΨL. In turn, these effects of long-term drought 

caused a reduction in foliage mass. However, long-term throughfall exclusion did not 

reduce leaf gas exchange, whole-tree water use, or significantly reduce growth. Given the 

lack of gas exchange and growth response, the net effect was long-term throughfall 

exclusion probably caused moderate, sustained water stress.  Severe drought stress was 

probably avoided due to reducing foliage biomass which may have reduced potential 

water use and by roots accessing water below 45 cm soil depth.   

In our study, throughfall exclusion caused a large sustained decrease in predawn 

and midday ΨL. In regards to throughfall reduction experiments on planted pine, both 

predawn and midday ΨL were more negative in our study than reported in previous 

research (Tang et al. 2004, Samuelson et al. 2014). Mean predawn leaf ΨL  in our study 

reached levels more negative than those previously reported for planted loblolly pine 

during natural drought (Cregg et al. 1988, Domec et al. 2009) but did not quite reach 

midday levels previously reported (Hacke et al. 2000, Domec et al. 2009). Predawn water 

potentials represent the equilibrium between soil water and the plant while midday are 

affected by transpiration rate as controlled by VPD and stomatal conductance. Our 

midday water potentials could have been less negative than some of those reported 

because the natural droughts that reported more negative midday water potentials 
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occurred during periods of very high evaporative demand or because the seed source 

from the Western Gulf region might close their stomate sooner in response to water stress 

than seed sources from further east in the range.  

The excluders were effective at eliminating throughfall.  However, deeper soil 

moisture (45-90 cm depth) did not show a decline. This was probably due to a 

combination of lower rooting density at that depth and subsurface movement of deeper 

soil water.  In loblolly pine, greater than 95 % of root biomass is in the top 60 cm of the 

soil of both dry and wet soil (Harris et al. 1977, Brewer and Linnartz 1978), with 70 to 80 

% commonly located in the top 20 cm of soil (Box 1968) and the majority of absorptive 

roots within the top 15 cm of the soil (Schultz 1997).  While deeper roots are less 

common, access to the more available, deeper soil water may have been able to prevent 

more severe drought stress. Subsurface water moves from areas of higher soil water 

potential to areas of lower soil water potential.  Even though we trenched down to 

approximately 60 cm, lined the trench with plastic, and placed the site on a ridge, lateral 

soil water movement may have still occurred, keeping VWC from 45-90 cm soil depth 

similar throughout the duration of the study.   The net effect was that although we 

eliminated 100% of throughfall, the treatment we imposed was probably represented 

sustained, moderate drought stress rather than severe drought stress sufficient to cause 

mortality.  This differs from other situations where some fraction of throughfall is 

removed (Will et al. 2015), in that the surface soil layers never fully recharged with 

100% exclusion treatment. 

Rather than causing stomatal closure and a reduction in leaf gas exchange, the 

chronic drought treatment caused a downward shift in leaf area. Morphological changes 
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such as reduced leaf area  can occur in some tree species from increased drought severity 

over longer time scales (Kramer 1983, Battaglia et al. 1998) while, short-term and/or less 

severe drought cause stomatal closure without affecting foliage mass (Kramer 

1983).Trees can employ different strategies during drought, ranging from water-

conserving behavior known as isohydric regulation to a riskier, less conservative strategy 

known as anisohydric regulation (McDowel et al. 2008, Sade et al. 2012). Isohydric 

species reduce stomatal conductance as soil water content dries and the demand for water 

in the atmosphere increases during drought conditions, maintaining relatively constant 

midday leaf water potential. In contrast, anisohydric species allow midday leaf water 

potential to decline as soil dries during drought, thus maintaining stomatal conductance 

and CO2 assimilation (McDowell et al. 2008, Sade et al. 2012, Moshelion et al. 2014). 

Trees experiencing of long-term, persistent drought in our study did not maintain leaf 

water potentials or reduce stomatal conductance, which could indicate anisohydric 

response strategy to long-term drought conditions, but this in turn caused a feedback to 

reduce leaf area development.  

In our study, throughfall exclusion reduced annual foliage mass which included 

the 2014 and 2015 cohorts, consistent with effects of severe or long-term drought. 

Current-year loblolly pine needles are influenced by conditions during the previous two 

years (Hebert and Jack 1998). Annual foliage mass was reduced by 21 %. These results 

indicate that throughfall reduction reduced annual foliage mass without changing 

hydraulic conductivity. In comparison, a recent study conducted in the same stand, but 

different area found that a more moderate reduction in throughfall of approximately 30 % 

reduced leaf area index by 8.5 % (Maggard et al. 2016b). Similarly, Tang et al. (2004) 
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reported a 12 % reduction in foliage mass from throughfall reduction in an eighteen year 

old loblolly pine plantation.  

Reductions in VWC often result in reduced gs to conserve water, subsequently 

reducing Pnet and growth in loblolly pine (Teskey et al. 1986, Chaves, et al. 2003). This is 

consistent with recent loblolly pine throughfall reduction studies (Tang et al. 2004, 

Samuelson et al. 2014, and Maggard et al. 2016a), as well as drought induced 

experiments on piῆon pine (Pinus edulis) and juniper (Juniperus monosperma) (Adams et 

al. 2009, Pangle et al. 2015). In contrast, throughfall exclusion in this study increased gs 

and the lack of differences in Pnet and Ci in our study could be due to a combination of the 

significant reduction in annual foliage mass and an anisohydric response to drought 

conditions.  

The partial recharge in VWC observed in late fall 2013 could have prevented 

throughfall exclusion trees from reaching severe drought stress. However, 

physiologically this doesn’t appear to be the case. Leaf gas exchange measurements were 

never significantly different between treatments across the study period. Further, both 

predawn and midday ΨL measurements indicated increased drought stress for the 

throughfall exclusion trees as the experiment progressed. The increases in gs, but not Pnet 

could be from non-stomatal limitation to water stress such that higher gs was necessary to 

maintain Pnet. Mesophyll conductance has been recognized as more sensitive to water 

stress than gs (Green and Mitchell 1992, Grassi and Magnani 2005), which may have 

triggered such a tradeoff. 
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Throughfall exclusion did not reduce WU or WUSA in our study which contrasts 

to recent loblolly pine throughfall reduction studies researching WU (Maggard et al. 

2016b) and stand-level transpiration (Bartkowiak et al. 2015, Ward et al. 2015). The lack 

of effect of throughfall exclusion on WU or WUSA is consistent with our leaf gas 

exchange results. There were nonsignificant trends of lower WU and higher WUSA in 

the throughfall exclusion treatment, which is consistent with reduced foliage mass. The 

increased gs in the throughfall exclusion treatment could be increasing WU even though 

foliage mass was reduced, as water use is highly responsive to leaf area and gs (Sun et al. 

2011, Ni and Pallardy 1992). 

The fact that WU did not decrease in response to throughfall exclusion is a bit 

puzzling given the more negative predawn water potentials and much lower VWC in the 

upper soil surface for the throughfall exclusion trees.  Also, lower leaf area and no 

differences in Pnet could be expected to cause lower tree growth.  While greater gs could 

compensate for reduced leaf biomass in regards to water use, there was still a trigger that 

caused lower leaf biomass development to begin with, which was probably reduced water 

availability. Hennessey et al. (1992), found that leaf biomass production measured across 

5 years was reduced in dry years in which potential evapotranspiration exceeded 

precipitation during the growing season. However, not significant, there was a trend of 

reduced growth in the throughfall exclusion treatment across both years of the study 

period. A possible explanation could be could be relatively small sample size compared 

to the variation among individual trees. 
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Conclusions and management implications 

Our results indicate that 100 % throughfall exclusion surrounding individual trees 

decreases soil moisture, increases tree water stress, and reduces foliage biomass. 

However, contrary to our initial hypothesis, 100 % throughfall exclusion did not reduce 

leaf gas exchange, water use, or growth. Rather, 100 % throughfall exclusion trees 

avoided stomatal closure and avoided significantly reduced growth while reducing 

foliage biomass. In turn, stomatal conductance maintained water use and productivity 

without reaching catastrophic leaf water potential values. These results indicate that 

loblolly pine under long-term, moderate drought may change their water conserving 

strategies and make morphological changes in regards to reduced leaf biomass in order to 

maintain productivity while avoiding severe and potentially fatal levels of water stress. 

During long-term, moderate drought morphological water conserving strategies rather 

than physiological acclimations may be more important for avoiding severe and 

potentially fatal levels of water stress  

 

 

 

 

 

 



114 

 

References 

Adams, H.D. and Kolb, T.E. 2005. Tree growth response to drought and temperature 
along an elevation gradient on a mountain landscape. J. Biogeogr. 32: 1629-1640. 

 
Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G.A., Villegas, J.C., 

Breshears, D.D., Zou, C.B., Troch, P.A., Huxman, T.E. 2009. Temperature sensitivity 
of drought-induced tree mortality portends increased regional die-off under global-
change-type drought. Proc. Natl. Acad. Sci. USA 106: 7063–7066. 

 
Allen, C.D. and Breshears, D.D. 1998. Drought-induced shift of a forest woodland 

ecotone: rapid landscape response to climate variation. Proceedings of the National 
Academy of Sciences, USA 95: 14839-14842. 

 
Allen, C.D. and Breshears, D.D. 2007. Climate-induced forest dieback as an emergent 

global phenomenon. Eos, Transitions American Geophysical Union 88: 504-505.  
 

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, 
M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, 
R., Zhang, Z., Castro, J., Demidova, N., Lim, J-H., Allard, G., Running, S.W., 
Semerci, A., Cobb, N. 2010. A global overview of drought and heat-induced tree 
mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259: 
660-684. 

 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. Crop evapotranspiration – 

Guidelines for computing crop water requirements – FAO irrigation and drainage 

paper 56. FAO – Food and Agriculture Organization of the United Nations, Rome.  
 

Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., L.D.L. Anderegg, L.D.L., 
Field, C.B. 2011. The roles of hydraulic and carbon stress in a widespread climate-
induced forest die-off. Proc Natl Acad Sci USA 109: 233-237.  

 
Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg, L.D.L., Field, C.B. 

2012. The roles of hydraulic and carbon stress in widespread climate-induced forest 
die-off. Proc. Natl. Acad. Sci. 109: 233-237. 

 
Attia, Z., Domec, J-C., Oren, R., Way, D.A., Moshelion, M. 2015. Growth and 

physiological responses of isohydric and anisohydric poplars to drought. J. Exp. Bot. 
66: 4373-4381. 

 

Barnes, A.D. 2002. Effects of phenology, water availability and seed source on loblolly 
pine biomass partitioning and transpiration. Tree Physiol. 22: 733-740. 

 
 
 



115 

 

Bartkowiak, S.M., Samuelson, L.J., McGuire, MA., Teskey, R.O. 2015. Fertilization 
increases sensitivity of canopy stomatal conductance and transpiration to throughfall 
reduction in an 8-year-old loblolly pine plantation. For. Ecol. Manage. 354: 87-96. 

 

Battaglia, M., Cherry, M.L., Deadle, C.L., Sands, P.J., Hingston, A. 1998. Prediction of 
leaf area index in eucalypt plantations: effect of water stress and temperature. Tree 
Physiol. 18: 521-528. 

 

Bréda, N., Huc, R., Granier, A., Dreyer, E. 2006. Temperate forest trees and stands under 
severe drought: a review of ecophysiological responses, adaptation processes and 
long-term consequences. Ann. For. Sci. 63: 525-544. 

 

Breshears, D.D., Cobb, N.S., Rich, P.M., Price, K.P., Allen, C.D., Balice, R.G., Romme, 
W.H., Kastens, J.H., Floyd, M.L., Belnap, J., Anderson, J.J., Myers, O.B., Meyer, 
C.W. 2005. Regional vegetation die-off in response to global-change type drought. 
Proc. Natl. Acad. Sci., USA 102: 15144-15148. 

 
Breshears, D.D., Adams, H.D., Eamus, D., McDowell, N.G., Law, D.J., Will, R.E., 

Williams, A.P., Zou, C.B. 2013. The crucial amplifying role of increasing 

atmospheric moisture demand on tree mortality associated with regional die off. 

Front. Plant Sci. 4: 266. 

Brewer, C.W. and Linnartz, N.E. 1978. Soil moisture utilization by mature loblolly pine 

stands in the Coastal Plain of southeastern Louisiana. In: Balmer, W.E. ed. 

Proceedings, Soil Moisture Site Productivity Symposium, 1977 November 1-3. 

Myrtle Beach, SC. USDA Forest Service, Southeastern Area, State and Private 

Forestry: 296-306.  

Box, B. H. 1967. A study of root extension and biomass in a six-year-old pine plantation 

in southeast Louisiana. Thesis (Ph.D.). Duke University, School of Forest Resources, 

Durham, NC. 178 p. 

Burkhart, H.D. 1977. Cubic-foot volume of loblolly pine to any merchantable top limit. 

South. J. Appl. For. 1: 7-9.  

 
Chaves, M.M., Maroco, J.P., Pereira, J.S. 2003. Understanding plant response to drought-

from genes to the whole plant. Funct. Plant Biol. 30: 239-264. 

 

 

 

 



116 

 

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, 

X., Gutowski, W.J., Johns, T., Krinner, G., et al. Long-term climate change: 

projections, commitments and irreversibility. In Climate change 2013: The physical 

science basis. Contribution of working group I to the fifth assessment report of the 

Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., 

Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 

Eds.; Cambridge University Press: Cambridge, UK/New York, NY, USA, 2013; pp. 

1039-1106. 

Cregg, B.M., Dougherty, P.M., Hennessey, T.C. 1988. Growth and wood quality of 

young loblolly pine trees in relation to stand density and climatic factors. Can. J. For. 

Res. 18: 851-858. 
 

Dobbertin, M., Wermelinger, B., Bigler, C., Bürgi, M., Carron, M., Forster, B., Gimmi, 
U., Rigling, A. 2007. Linking increasing drought stress to scots pine mortality and 
bark beetle infestations. Sci World J. 7: 231-239.  

 

Domec, J-C., Noormets, A., King, J.S., Sun, G., McNulty, S.G., Gavazzi, M.J., Boggs, 
J.L., Treasure, E.A. 2009. Decoupling the influence of leaf and root hydraulic 
conductances on stomatal conductance and its sensitivity to vapour pressure deficit as 
soil dries in a drained loblolly pine plantation. Plant Cell Environ. 32: 980-991. 

 

Fensham, R.J., Fairfax, R.J., Ward, D.P. 2009. Drought-induced tree death in savanna. 
Glob. Change Biol. 15: 380-387. 

 

Ford, C.R., Goranson, C.E., Mitchell, R.J., Will, R.E., Teskey, R.O. 2005. Modeling 
canopy transpiration using time series analysis: A case study illustrating the effect of 
soil moisture deficit on Pinus taeda. Agric. For. Meteorol. 130: 163-175. 

 

Galvez, D.A., Landhäusser, S.M., Tyree, M.T. 2011. Root carbon reserve dynamics in 
aspen seedlings: Does simulated drought induce reserve limitation? Tree Physiol. 31: 
250-257. 

 

Granier, A. 1985. Une nouvelle methode pour la mesure du flux de seve brute dans le 
tronc des arbes. Ann. For. Sci. 42: 193-200. 

 
Granier, A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow 

measurements. Tree Physiol. 3: 309. 
 

Grassi, G. and Manani, F. 2005. Stomatal, mesophyll conductance and biochemical 
limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak 
trees. Plant Cell Environ. 28: 834-849. 

 

 

 



117 

 

Green, T.H. and Mitchell, R.J. 1992. Effects of nitrogen on the response of loblolly pine 
to water stress. I. Photosynthesis and stomatal conductance. New Phytol. 122: 627-
633. 

 

Groninger, J.W., Seiler, J.R., Zedaker, S.M., Berrang, P.C. 1996. Effects of CO2 
concentration and water availability on growth and gas exchange in greenhouse-
grown miniature stands of loblolly pine and red maple. Funct. Ecol. 10: 708-716. 

 
Hacke, U.G., Sperry, J.S., Ewers, B.E., Ellsworth, D.S., Schäfer, K.V.R., Oren, R. 2000. 

Influence of soil porosity on water use in Pinus taeda.  Oecologia 124: 495-505. 

Harris, W.F., Kinerson, R.S., Edwards, N.T. 1977. Comparison of below-ground biomass 

of natural deciduous forests and loblolly pine plantations. Pedobiologia 17: 369-381. 

Hebert, M.T., Jack, S.B. 1998. Leaf area index and site water balance of loblolly pine 
(Pinus taeda L.) across a precipitation gradient in East Texas. For. Ecol. Manage. 105: 
273-282. 

 
Hennessey, T.C., Dougherty, P.M., Cregg, B.M., Wittwer, R.F. 1992. Annual variation in 

needle fall of a loblolly pine stand in relation to climate and stand density. For. Ecol. 
Manage. 51: 329-338. 

 
Hubbard, R.M., M.G. Ryan, M.G., Stiller, V., Sperry, J.S. 2001. Stomatal conductance 

and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. 
Plant Cell Environ. 24:113-121. 

 

Kramer, P.J. 1983. Water relations of plants. Academic Press, New York, NY, 49 p. 
 
Kramer, P.J., Boyer, J.S. 1995. Water relations of plants and soils. Academic Press, 

London, UK, 482 p. 

Maggard, A.O., Will, R.E., Wilson, D.S., Meek, C.R., Vogel, J.G. 2016a. Fertilization 

can compensate for reduced water availability on loblolly pine (Pinus taeda L.) net 

photosynthesis and productivity in southeastern Oklahoma, USA. (In preparation) 

Maggard, A.O., et al. 2016b. Effects of decreased water availability and fertilization on 

water use and growth efficiency of loblolly pine (Pinus taeda L.) stands at the 

western edge of the commercial range. (In preparation) 

McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, 
J., Sperry, J., West, A., Williams, D.G., Yepez, E.A. 2008. Mechanisms of plant 
survival and mortality during drought: why do some plants survive while others 
succumb to drought? New Phytol. 178: 719-739. 

 
Mencuccini, M.and Grace, J. 1994. Climate influences the leaf area/sapwood area ratio in 

Scots pine. Tree Physiol. 15:1-10. 



118 

 

Moshelion, M., Halperin, O., Wallach, R., Oren, R., Way, D.A. 2015. Role of aquaporins 
in determining transpiration and photosynthesis in waterstressed plants: crop water-
use efficiency, growth and yield. Plant Cell Environ. 38: 1785-1793. 

 
Mueller, R.C., Scudder, C.M, Porter, M.E., Trotter, III R.T., Gehring, C.A., Whitham, 

T.G. 2005. Differential tree mortality in response to severe drought: evidence for 
long-term vegetation shifts. J. Ecol. 93: 1085-1093. 

Ni, B.-R. and Pallardy, S.G. 1992. Stomatal and nonstomatal limitations to net 

photosynthesis in seedlings of woody angiosperms. Plant Physiol. 99: 1502-1508. 

Oswalt, S.N., Smith, W.B., Miles, P.D., Pugh, S.A. 2014. Forest resources of the United 

States, 2012: a technical document supporting the Forest Service 2015 update of the 

RPA Assessment. Gen. Tech. Rep. WO-91. Washington, DC: U.S. Department of 

Agriculture, Forest Service, Washington Office. 218 p.  

Pallardy, S.G. and Rhoads, J.L. 1997. Drought effects leaf abscission and leaf production 
in Populus clones. In: Pallardy, S.G., Cecich, R.A., Garrett, H.G., Johnson, P.S., eds. 
Proceedings of the 11th Central Hardwood Forest Conference. Gen. Tech. Rep. NC—
188. St. Paul, MN., U.S. Department of Agriculture, Forest Service, North Central 
Forest Experiment Station: 373-383. 

 

Pangle, R.E., Limousin, J.M., Plaut, J.A., Yepez, E.A., Hudson, P.J., Boutz, A.L., 
Gehres, N., Pockman, W.T., McDowell, N.G. 2015. Prolonged experimental drought 
reduces plant hydraulic conductance and transpiration and increases mortality in a 
piῆon-juniper woodland. Ecol. Evol. 5: 1618-1638. 

 
Plaut, J., Wadsworth, W.D., Pangle, R., Yepez, E.A., McDowell, N.G., Pockman, W.T. 

2013. Reduced transpiration response to precipitation pulses precedes mortality in a 
piῆon-juniper woodland subject to prolonged drought. New Phytol. 200: 375-387. 

 

Perry, M.A., Mitchell, R.J., Zutter, B.R., Glover, G.R., Gjerstad, D.H. 1994. Seasonal 
variation in competitive effect on water stress and pine responses. Can. J. For. Res. 
24: 1440-1449. 

 
Rahman, M.S., Messina, M.G., Newton, R.J. 2003. Performance of loblolly pine (Pinus 

taeda L.) seedlings and micropropagated plantlets on an east Texas site II. Water 
relations. For. Ecol. Manage. 178: 257-270. 

 
Sade, N., Gebremedhin, A., Moshelion, M. 2012. Risk-taking plants: Anisohydric 

behavior as a stress-resistance trait. Plant Signal Behav. 7: 767-770. 
 
Samuelson, L.J., Pell, C.J., Stokes, T.A., Bartkowiak, S.M., Akers, M.K., Kane, M., 

Markewitz, D., McGuire, M.A.,Teskey, R.O. 2014. Two-year throughfall and 
fertilization effects on leaf physiology and growth of loblolly pine in the Georgia 
Piedmont. For. Ecol. Manage. 330: 29-37. 



119 

 

Schultz, R.P. 1997. Loblolly pine: the ecology and culture of loblolly pine (Pinus taeda 

L.). Agriculture Handbook 713. U.S. Department of Agriculture, Forest Service, 

Washington Office, Washington, DC 493 p. 

Seager, R., Hooks, A., Williams, A.P., Cook, B., Nakamura, J., et al. 2015. Climatology, 

variability, and trends in the U.S. vapor pressure deficit, and important fire-related 

meteorological quantity. J. Appl. Meteorol. Climatol. 54: 1121-1141. 

Sun, G., Alstad, K., Chen, J., Chen, S., Ford, C.R., Lin, G., Liu, C., Lu, N., McNulty, 

S.G., Miao, H., Noormets, A., Vose, J.M., Wilske, B., Zeppel, M., Zhang, Y., Zhang, 

Z. 2011. A general predictive model for estimating monthly ecosystem 

evapotranspiration. Ecohydrol. 4: 245-255. 

Tang, Z., Sword Sayer, M.A., Chambers, J.L., Barnett, J.P. 2004. Interactive effects of 
fertilization and througfall exclusion on the physiological responses and whole-tree 
carbon uptake of mature loblolly pine. Can. J. Bot. 82: 850-861. 

 
Teskey, R.O., Fites, J.A., Samuelson, L.J., Bongarten, B.C. 1986. Stomatal and 

nonstomatal limitations to net photosynthesis in Pinus taeda L. under different 

environmental conditions. Tree Physiol. 2: 131-142. 

Walsh, J., Wuebbles, D., Hayhoe, K., Kossin, J., Kunkel, K., Stephens, G., Thorne, P., 

Vose, R., Wehner, M., Willis, J.; et al. Ch. 2: Our changing climate. In: Climate 

Change Impacts in the United States: The Third National Climate Assessment; 

Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research 

Program: Washington, DC, USA, 2014; pp. 19-67. 

Ward, E.J., Oren, R., Bell, D.M., Clark, J.S., McCarthy, H.R., Kim, H.-S., Domec, J.-C. 
2013. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance 
estimated from 11 years of scaled sap flux measurements at Duke FACE. Tree 
Physiol. 33: 135-151. 

 

Ward, E.J., Domec, J-C., Laviner, M.A., Fox, T.R., Sun, G., McNulty, S., King, J., 
Noormets, A. 2015. Fertilization intensifies drought stress: Water use and stomatal 
conductance of Pinus taeda in a midrotation fertilization and throughfall reduction 
experiment. For. Ecol. Manage. 355: 72-82. 

 
Wear, D.N.and Greis, J.G. 2012. The southern forest futures project: summary report. 

General Technical Report SRS-168. USDA Forest Service Southern Research 

Station, Asheville, NC. 

Whitehead, D., Beadle, C.L. 2004. Physiology regulation of productivity and water use in 
Eucalyptus: A review. For. Ecol. Manage. 193: 113-140. 

 



120 

 

Will, R.E., Wilson, S.M., Zou, C.B., Hennessey, T.C. 2013. Increased VPD due to higher 

temperature leads to greater transpiration and faster mortality during drought for tree 

seedlings common to the forest-grassland ecotone. New Phytol. 200: 366-374. 

Will, R.E., Fox, T., Akers, M., Domec, J.-C., González-Benecke, C., Jokela, E.J., Kane, 
M., Laviner, M.A., Lokuta, G., Markewitz, D., McGuire, M.A., Meek, C., Noormets, 
A., Samuelson, L., Seiler, J., Strahm, B., Teskey, R., Vogel, J., Ward, E., West, J., 
Wilson, D., and Martin, T.A. 2015. A range-wide experiment to investigate nutrient 
and soil moisture interactions in loblolly pine plantations. Forests 6: 2014-2028. 

 



121 

 

Tables. 

 

Table 7. P values for the effects of date, throughfall reduction (Water) and fertilization 

(Fert) treatments on volumetric soil water content (VWC) from 0-12 cm, VWC from 12-

45 cm, and VWC from 45-90 cm for the entire measurement period (2013-2014). Bold 

values indicate significance at α < 0.05. 

  

VWC         
0-12 cm 

VWC        
12-45 cm 

VWC       
45-90 cm 

Date <0.0001 <0.0001 <0.0001 

Treatment <0.0001 <0.0001 0.07 
Date x Treatment <0.0001 <0.0001 0.01 
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Table 8. P values for the effects of date, throughfall reduction (Water) and fertilization 

(Fert) treatments on net photosynthesis (Pnet), stomatal conductance (gs), intercellular 

CO2 (Ci), predawn leaf water potential (ΨL), midday leaf water potential (ΨL), whole-tree 

water use (WU), and whole-tree water use per sapwood area (WUSA) for the entire 

measurement period (2013-2014). Bold values indicate significance at α < 0.05. 

 
Pnet gs Ci 

predawn 
ΨL  

midday 
ΨL 

WU WUSA 

Date <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Treatment 0.64 0.09 0.12 <0.0001 <0.0001 0.22 0.45 
Date x Treat. 0.17 0.24 0.78 0.0002 0.04 0.99 0.85 
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Table 9. P values for the effects of date, throughfall reduction (Water) and fertilization 

(Fert) treatments on annual foliage mass, annual foliage mass per sapwood area, stable 

carbon isotope ratio (δ13C), total height growth, total DBH growth, and total volume 

growth for the entire measurement period (2013-2014). Bold values indicate significance 

at α < 0.05. 

  

 Foliage 
mass 

Foliage 
mass per 
sapwood 

area 

δ13C Height DBH Volume 

Year 0.004 0.004 <0.0001 0.0001 0.005 <0.0001 

Treatment 0.047 0.60 0.34 0.49 0.28 0.13 
Year x Treat. 0.50 0.81 0.72 0.91 0.72 0.28 
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Figures. 

 

 

 
 

Fig. 21. Diagram of study site showing treatment design and block layout for 100 % 
throughfall exclusion (TRD) and ambient throughfall (TRW) treatments. 
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Fig. 22. Diagram of individual tree exclusion showing trenching and excluder design with 
lengths and widths for trenches and excluders.  
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Fig. 23. Mean monthly (A) air temperature, (B) mean monthly daytime vapor pressure 

deficit (VPD) and (C) total monthly precipitation for 2013 and 2014. 
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Fig. 24. Mean volumetric soil water content (%) between 0-12 cm, 12-45 cm, and 45-90 

cm in response to 100 % throughfall exclusion (TRD) and ambient throughfall (TRW) 

treatments. An asterisk (*) above the data represents dates that treatments are 

significantly different (α < 0.05 (n = 5). Pre-treatment (PT) represents measurement 

before treatment application.  
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Fig. 25. (A) Annual foliage mass and (B) annual foliage mass per sapwood area for the 

2014 and 2015 foliage cohorts in response to 100 % throughfall exclusion (TRD) and 

ambient throughfall (TRW) treatments. Error bars represent standard error of treatment 

means (n = 5). 
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Fig. 26. (A) Mean net photosynthesis (Pnet), (B) mean stomatal conductance (gs), (C) 

intercellular CO2 (Ci) in response to 100 % throughfall exclusion (TRD) and ambient 

throughfall (TRW) treatments. Error bars represent standard error of treatment means (n = 

5). 
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Fig. 27. (A) Mean predawn leaf water potential (ΨL), (B) mean midday leaf water 

potential (ΨL) in response to 100 % throughfall exclusion (TRD) and ambient throughfall 

(TRW) treatments. An asterisk (*) above the data represents dates that TRD effect is 

significant. Error bars represent standard error of treatment means (n = 5). 
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Fig. 28. (A) Mean weekly total whole-tree water use and (B) mean weekly total water use 

per sapwood area in response to 100 % throughfall exclusion (TRD) and ambient 

throughfall (TRW) treatments (n = 5). 
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Fig. 29. Total (A) terminal height growth (m), (B) DBH growth, and (C) volume growth 

(m3) for 2013 and 2014 in response to 100 % throughfall exclusion (TRD) and ambient 

throughfall (TRW) treatments. Error bars represent standard error of treatment means (n = 

5).
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CHAPTER V 
 

 

CONCLUSION 

 

Results of these studies indicate that throughfall reduction decreases soil 

moisture, reduces leaf gas exchange and slows growth. However, fertilization can 

compensate for throughfall reduction. Fertilization did not exacerbate the effects of 

throughfall reduction, but increased water use efficiency. In the first study I found that 

fertilization decreased stomatal conductance without reducing net photosynthesis 

indicating a positive nonstomatal response to fertilization. In support of results from the 

first study, I found that fertilization increased water use efficiency of stem volume 

production in the second study. These results indicate that fertilization can be beneficial 

in loblolly pine plantations experiencing reduced water availability in areas with higher 

growing season temperatures and greater VPD, such as the western limits of its 

commercial range. In the third study I found loblolly pine under long-term moderate 

drought may change their water conserving strategies by reducing leaf biomass instead of 

reducing leaf-level water use.  
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